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EYE MOVEMENT MEASURES OF COGNITIVE CONTROL  

IN CHILDREN WITH TOURETTE SYNDROME 

Publication No.___________ 

Cameron Beth Jeter, Ph.D. 

Supervisory Professor: Anne B. Sereno, Ph.D. 

Tourette Syndrome begins in childhood and is characterized by uncontrollable repetitive 

actions like neck craning or hopping and noises such as sniffing or chirping.  Worst in early 

adolescence, these tics wax and wane in severity and occur in bouts unpredictably, often 

drawing unwanted attention from bystanders.  Making matters worse, over half of children with 

Tourette Syndrome also suffer from comorbid, or concurrent, disorders such as attention deficit 

hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD).  These disorders 

introduce anxious thoughts, impulsivity, inattention, and mood variability that further disrupt 

children with Tourette Syndrome from focusing and performing well at school and home.  Thus, 

deficits in the cognitive control functions of response inhibition, response generation, and 

working memory have long been ascribed to Tourette Syndrome.  Yet, without considering the 

effect of medication, age, and comorbidity, this is a premature attribution.  This study used an 

infrared eye tracking camera and various computer tasks requiring eye movement responses to 

evaluate response inhibition, response generation, and working memory in Tourette Syndrome.  

This study, the first to control for medication, age, and comorbidity, enrolled 39 unmedicated 

children with Tourette Syndrome and 29 typically developing peers aged 10-16 years who 

completed reflexive and voluntary eye movement tasks and diagnostic rating scales to assess 

symptom severities of Tourette Syndrome, ADHD, and OCD.  Children with Tourette Syndrome 

and comorbid ADHD and/or OCD, but not children with Tourette Syndrome only, took longer to 

respond and made more errors and distracted eye movements compared to typically-

developing children, displaying cognitive control deficits.  However, increasing symptom 

severities of Tourette Syndrome, ADHD, and OCD correlated with one another.  Thus, 

cognitive control deficits were not specific to Tourette Syndrome patients with comorbid 

conditions, but rather increase with increasing tic severity, suggesting that a majority of 

Tourette Syndrome patients, regardless of a clinical diagnosis of ADHD and/or OCD, have 

symptoms of cognitive control deficits at some level.  Therefore, clinicians should evaluate and 

counsel all families of children with Tourette Syndrome, with or without currently diagnosed 

ADHD and/or OCD, about the functional ramifications of comorbid symptoms and that they may 

wax and wane with tic severity. 
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In 1885, Georges Gilles de la Tourette first described nine patients with compulsive tics 

(Gilles de la Tourette, 1885).  Gilles de la Tourette’s mentor and the father of modern 

neurology, Jean-Martin Charcot, chose the eponym Gilles de la Tourette illness, now more 

commonly known as Tourette Syndrome (TS).  While widely documented in the late 1800’s, TS 

was not often detailed again until Arthur Shapiro and others published a monograph in the late 

twentieth century (Shapiro et al., 1978). 

 

Diagnosis and Prevalence 

 Tics are brief, repetitive, stereotyped (i.e., unoriginal, patterned) movements or noises.  

Intriguingly, tics often appear as segments of familiar motor movements or phonic sounds yet 

are improper for the situation.  Physicians classify tics by their anatomical location, number, 

frequency, duration, intensity (i.e., exaggerated nature or volume), and complexity (i.e., extent 

of muscles involved or sounds versus syllables or words produced; Leckman et al., 2006a). 

Parents often overlook simple motor and occasional vocal tics.  Children suppress or 

hide tics in the doctor’s office, leading many general practitioners to miss tics or mistake those 

observed as symptoms of allergies or “nervousness,” resulting in referrals to ophthalmologists, 

allergists, or psychologists.  This only delays proper diagnosis and treatment, amplifying family 

distress (Bruun and Budman, 2005; Zinner, 2006). 

Further complicating definitive diagnosis, no clinical examination or laboratory test (e.g., 

blood test or neuroimaging result) exists.  Thus, a trained neurologist must base diagnosis on 

family history, clinical interview, and brief observation.  For diagnosis, neurologists widely use 

the criteria listed in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition 

(DSM-IV) from the American Psychiatric Association.  Thus, TS is differentiated from transient 

tic and chronic tic disorders when multiple motor and one or more vocal tics have been present 

for over a year, with no more than three tic-free consecutive months.  Onset must be before the 

age of 18 and cannot be the result of drugs or other medical condition (APA, 2000). 

Although tics occur in up to a quarter of all kids at sometime during childhood (Kurlan et 

al., 2002; Snider et al., 2002; Robertson, 2003; Khalifa and von Knorring, 2003), only about 1% 

of children meet diagnostic criteria for TS (Comings and Comings, 1990; Robertson, 2008).  

Once thought rare, TS may in fact be under diagnosed because of inconsistent diagnostic 

criteria and a decrease of perceived distress and impairment in some cultures leading to fewer 

clinic visits (Robertson, 2003).  Whether TS is increasing in prevalence, however, is uncertain.  

There is undoubtedly increased public awareness of TS, but current studies cannot confirm an 
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actual increase in TS (Robertson et al., 2009).  Found four times as often in boys than girls 

(Freeman et al., 2000), TS affects most all cultures equally, emphasizing the biological, rather 

than psychiatric, foundation of the disorder (Robertson et al., 2009). 

 Motor tics are classified as simple or complex.  A simple motor tic is a brief, sudden, 

purposeless movement, typically involving a single muscle.  Simple motor tics usually occur in 

runs, though not always at the same anatomical site.  The most common simple motor tics 

include forceful eye blinking, mouth movements, nostril flares, and shoulder shrugs.  An 

extended, but in no way exhaustive, list appears in Table 1.1.  Younger patients are often 

oblivious to their simple motor tics. 

 As patients mature, simple motor tics are joined by complex motor tics, which are 

sudden, coordinated, and seemingly purposeful sequential movements of multiple muscle 

groups over a longer duration.  Examples are endless and include head jerks to toss the hair, 

neck craning followed by a shoulder shrug, and walking interjected with choreographed hops.  

Patients are often very aware of their complex motor tics, which with increased frequency and 

intensity often lead to physical pain and fatigue.  Further, complex motor tics can be 

emotionally painful, drawing unwanted stares from bystanders, opening the door for loneliness 

and low self-esteem.  In response, patients will camouflage tics to make them appear 

purposeful (e.g., arm jerk ending in smoothing the hair).  Consequently, a frequent lip-pursing 

tic may be less impairing than an infrequent obscene gesture. 

 Moving air through the nose, mouth, or throat produces vocal tics, also called phonic 

tics (Fahn, 2005).  This leads to a nearly endless range of possible vocal tics, some captured in 

Table 1.1.  As with motor tics, vocal tics are categorized as simple or complex.  A single sound, 

such as a snort, tongue click, or bird chirp qualifies as a simple vocal tic.  These sudden, 

meaningless noises occur in bouts of repeated succession.  Complex vocal tics are comprised 

of syllables, words, phrases, or variations in speech patterns, such as stuttering or repeating 

oneself (palilalia) or another (echolalia).  Contrary to media portrayal of TS, only around 10% of 

patients have coprolalia – obscene and socially inappropriate remarks (Goldenberg et al., 

1994; Freeman et al., 2000). 

One intriguing aspect of tics is their suggestibility.  This feature is discernable in multiple 

settings.  During clinical observation and, more specifically, during a structured, systematic 

interview of current and past symptoms, mentioned tics may appear immediately (often 

unbeknownst to the child), even if the tic had been absent for months (Leckman et al., 2006b).  

Suggestibility extends beyond an individual’s personal repertoire of tics.  Astonishingly, patients 

in the waiting room of a TS specialty clinic would mimic the tics witnessed in other waiting, 
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Table 1.1 Examples of simple and complex motor and vocal tics 

Tic Symptom Dimensions Examples 

Simple motor tics: 

Sudden, brief, meaningless movements 

Eye blinking, eye movements, grimacing, 

nose twitching, mouth movements, lip pouting, 

head jerks, shoulder shrugs, abdominal 

tensing, kicks, finger movements, jaw snaps, 

rapid jerking of any part of the body 

Complex motor tics: 

Slower, longer, more “purposeful” movements 

Sustained “looks,” facial gestures, biting, 

touching objects or self, thrusting arms, 

throwing, banging, gestures with hands, 

gyrating and bending, dystonic postures, 

copropraxia (obscene gestures) 

Simple phonic tics: 

Sudden, meaningless sounds or noises 

Throat clearing, coughing, sniffling, spitting, 

screeching, barking, grunting, gurgling, 

clacking, hissing, sucking, animal noises, and 

innumerable other sounds 

Complex phonic tics: 

Sudden, more “meaningful” utterances 

Syllables, words, phrases, statements such as 

“shut up,” “stop that,“ “oh, okay,” “I’ve got to,” 

“honey,” “what makes me do this?” “how 

about it,” or “now you’ve seen it,” speech 

atypicalities (usually rhythms, tone, accents, 

intensity of speech); echo phenomenon 

(immediate repetition of one’s own [palilalia] or 

another’s words or phrases [echolalia]); and 

coprolalia (obscene, inappropriate, and 

aggressive words and statements) 

 

From Leckman LF, King RA, Cohen DJ.  Tics and tic disorders.  In: Leckman JF, Cohen DJ 

with Colleagues from the Yale Child Study Center.  Tourette’s Syndrome – Tics, Obsessions, 

Compulsions: Developmental Psychopathology and Clinical Care.  New York: John Wiley and 

Sons; 1998:23-42.  Reprinted with permission.
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ticcing patients (Ian J. Butler, personal communication).  This latter example of suggestibility 

demonstrates tic response to external, and often unconscious, stimuli (e.g., scratchy shirt tag). 

Many children with TS report an urge preceding a tic (Banaschewski et al., 2003).  Like 

an itch before a scratch, this premonitory urge only becomes harder to ignore the longer the tic 

is resisted.  Once the tic is released, children experience fleeting relief until the urge inevitably 

returns.  Indeed, a tic’s irresistibility has been cited as its most prominent feature, “The strain in 

holding back is as great as the relief in letting go” (Wilson, 1940).  Of note, it is detection of the 

urge (often not recognized until preteen years) that alerts kids to attempt to suppress, or hold 

in, a forthcoming tic.  Unfortunately, of the tics TS patients can only hold in, restraint is only 

temporary (few minutes to an hour; Banaschewski et al., 2003).  Despite tics long being 

classified as entirely involuntary and reflexive (Meige and Feindel, 1907), this ability to 

suppress tics, albeit momentarily, indicates some voluntary or willful control.  Hence, Lang 

proposed the involuntary label of tics be reevaluated (Lang, 1991).  In response, Fahn has 

offered the term unvoluntary, as tics are seemingly a voluntary response to an involuntary 

sensation (Fahn, 2005). 

 

Natural History 

 Tourette Syndrome has an interesting natural history, or classical pattern of 

development.  Motor tics appear first, around the age of five to seven (Freeman et al., 2000; 

Leckman et al., 2006a; Zinner, 2006), joined by vocal tics on average two years later, 

somewhere between 8-15 years of age (Peterson, 1996; Leckman et al., 2006a).  Tics 

progress in a rostral-caudal manner, first affecting the face and head (e.g., eye blinking, head 

bobbing, and neck craning), then the torso (e.g., abdominal flexing and shoulder shrugging), 

and finally the limbs (e.g., finger tapping and knee bouncing; Singer and Walkup, 1991; Bruun 

and Budman, 2005).  Furthermore, tics begin as simple and meaningless, involving usually only 

one muscle group.  As the child enters the preteen years, new tics take on a complex nature 

involving a combination of muscles and sounds that appear almost purposeful.  For example, a 

child with Tourette Syndrome often begins with simple, forceful eye blinks and eye rolls, which 

later disappear or are joined by a complex tic, such as the combination of a shoulder roll 

accompanied by a neck crane.  As one can imagine, motor and particularly vocal tics draw 

unwanted attention from bystanders and classmates leading to social stigma, complicating the 

daily life of a child with Tourette Syndrome. 

As implied above, tics change in identity over time and individual tics also change in 

frequency and severity.  Unfortunately, this fluctuation is largely unpredictable.  Features of tics 
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contributing to overall severity are displayed in Table 1.2.  A given tic may appear for a few 

weeks or may persist for years.  During the presence of one tic, other tics will surface (Bruun 

and Budman, 2005).  Thus, tics naturally wax and wane throughout childhood and 

adolescence, peaking around age twelve, regrettably at the same time as the natural self-

doubts of the teen years.  In addition to their long-term variability, tics are further exacerbated 

by anxiety, stress, and excitement (Findley et al., 2003; Leckman et al., 2006a).  This makes a 

new school year, a timed test, and, ironically, a family vacation to Disney World, prime causes 

of tic intensification.  For unknown reasons, tics mysteriously and overwhelmingly resolve in 

adulthood (Leckman et al., 1998).  By age 18, over 90% of children with TS will experience 

near resolution of tic symptoms (Goetz et al., 1992; Bloch et al., 2006).  Figure 1.1 illustrates 

the variable, tiered course of TS into adulthood.  While the future extent of TS symptom 

severity and complexity is unpredictable at diagnosis, one study found caudate brain volume in 

childhood inversely correlated with tic severity in adulthood (Bloch et al., 2005). 

 

Comorbidities 

 To make matters worse, many children with Tourette Syndrome also have concurrent, 

or comorbid, conditions.  In fact, one report found only 40% of TS patients do not have a 

comorbidity (Denckla, 2006).  Attention deficit hyperactivity disorder (ADHD) occurs in over 

50% of children with TS (Comings and Comings, 1985).  As the name denotes, ADHD results 

in developmental inappropriate hyperactivity, inattention, and impulsivity that may persist into 

adulthood.  As a chief source of dysfunction, ADHD is a major clinical concern (Spencer et al., 

2001) and often disrupts social and academic capacity more than tics do (Mostofsky et al., 

2001).  Another comorbidity, obsessive compulsive disorder (OCD) occurs in about 30% of 

children with TS (Comings and Comings, 1985).  OCD introduces distressing, intrusive, and 

unwanted thoughts and fears (e.g., worry of an intruder), resulting in ritualized actions or 

thoughts done to relieve anxiety or distress (e.g., repeatedly checking a locked door).  Other 

less common comorbidities include learning difficulties (e.g., dyslexia), anxiety disorders (e.g., 

social anxiety), affective disorders (e.g., depression or mania), pervasive developmental 

disorders (e.g., Asperger’s syndrome), and aggressive behavior.  Comorbid disorders may 

develop at any time, but are most likely and numerous in early adolescence, mimicking the 

progression of tic severity.  These comorbidities introduce confusing heterogeneity into the 

syndrome phenotype and further disable children with TS from focusing and performing well at 

school and home. 
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Table 1.2 Spectrum of severity of tics 

Feature Mild Moderate Severe 

Duration Acute, brief Intermediate length Tics status 

Motor tics Simple Complex 
Copropraxia, echopraxia, self-

mutilation 

Vocal tics None 
Poorly audible 

noises 
Loud noises, coprolalia 

Variety of tics Few Multiple Many 

Suppressible Easily 
With concentrated 

volition 
No 

Interference with life’s 

activities 

No 

disruption 
Mildly disruptible Highly disruptible 

 

From Fahn S.  The clinical spectrum of motor tics.  In: Friedhoff AJ and Chase TN.  Gilles de la 

Tourette Syndrome.  Advances in Neurology.  Philadelphia: Lippincott Williams & Wilkins; 

1982; 35:341-344.  Reprinted with permission. 
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Figure 1.1 Course of Tourette Syndrome 

 At diagnosis around age 7, it is unknown whether a given child with Tourette Syndrome 

will follow a mild or severe trajectory of symptoms.  Tic severity and comorbidities (concurrent 

disorders) increase throughout adolescence but overwhelmingly resolve by age 18 in about 

90% of patients.  Figure adapted from Ian J. Butler, M.D.
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 TS is closely intertwined with ADHD and OCD.  Symptoms of ADHD often appear 

between 3-5 years of age, before tic onset at age 6, and are followed by OCD symptoms up to 

a few years later (Bloch et al., 2005).  While Pauls and colleagues proposed there are two 

types of ADHD, one independent of and another implanted in TS, Towbin and Riddle suggest 

all TS patients have some degree of ADHD symptomatology – subthreshold in some patients 

and above threshold for ADHD diagnosis in others (Robertson, 2000).  The intimate 

relationship between TS and OCD is confirmed by historical (e.g., Meige and Feindel, 1907), 

epidemiological (e.g., Comings and Comings, 1985), phenomenological (e.g., Pitman et al., 

1987), genetic (e.g., Pauls et al., 1986a), and neuroanatomical evidence (e.g., Rauch et al., 

2001).  Specifically, whereas OCD occurs in only 1-3% of the general population, OCD in TS 

patients is much more prevalent.  Also, the symptoms of both TS and OCD patients wax and 

wane and include compulsive tics like touching, counting, and “evening-up.”  Critically, TS, 

ADHD, and OCD share the common feature of aberrant inhibition of unwelcome thoughts and 

behaviors, underscoring the related clinical features and likely analogous neural circuitries of 

each disorder. 

 

Etiology and Genetics 

Several cited risk factors of TS include prenatal and perinatal adverse events, 

psychosocial stressors, and post-infectious immune responses.  Much controversy surrounds 

the last (Kurlan and Kaplan, 2004), which proposes that abnormal response to streptococcal 

infection may lead to onset or exacerbation of neuropsychiatric disorders (Swedo et al., 1998).  

One type, pediatric autoimmune neuropsychiatric disorders associated with streptococcal 

infection (PANDAS), has a similar phenotype as TS and OCD, and is proposed to develop 

through a process called molecular mimicry.  Antibodies in response to streptococcal antigens 

cross-react with brain targets (e.g., anti-basal ganglia antibodies, Rizzo et al., 2006; but see 

Singer et al., 2005 and Morris et al., 2009) and lead to neuropsychiatric disorders.  Only 

recently did a large case-control study definitively show no strong association between 

streptococcal infections and neuropsychiatric syndromes (Schrag et al., 2009). 

Many family members of TS patients have transient tics (15-20%) or TS (10-15%) at 

rates significantly higher than in controls (Pauls et al., 1991; Eapen et al., 1993; Walkup et al., 

1996; Hebebrand et al., 1997).  Even in Gilles de la Tourette’s original description of TS he 

noted that three of the nine patients had relatives with tics, and attributed TS to hereditary 

factors.  Over a century later, geneticists are still in agreement with Gilles de la Tourette’s 

limited data, but still have not yet pinpointed a TS gene(s) or inheritance pattern.  
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Chromosomal rearrangement studies have reported rearrangement (Donnai, 1987; Brett et al., 

1996; Devor and Magee, 1999), translocation (Boghosian-Sell et al., 1996; Cuker et al., 2004), 

de novo duplication (Kroisel et al., 2001), and inversion (Abelson et al., 2005) on various 

chromosomes, but without clear association with TS.  Candidate gene studies, which identify 

deviations in genes coding for proteins implicated in the disease of interest, have resulted in 

negative or equivocal results (Pauls, 2001).  Genome-wide linkage studies are used in complex 

disorders to search for rare mutations in affected families, but such large pedigrees are hard to 

assemble and have not found strong evidence for linkage in TS (Pauls et al., 1990; Pakstis et 

al., 1991; Walkup et al., 1996).  The most successful studies have been in twins.  Monozygotic 

twins (identical genomes) are 50-70% concordant for TS, whereas dizygotic twins (50% genes 

shared) are only 9% concordant for TS (Price et al., 1985; Hyde et al., 1992).  Thus, 

monozygotic twins have a many-fold times greater risk to both have TS, indicating multiple 

genes constitute a risk of TS.  Furthermore, because the rate of TS in monozygotic twins is not 

100%, environmental factors must have considerable contribution to the disease (Keen-Kim 

and Freimer, 2006). 

The strength of conclusions drawn from genetic studies is severely limited by the 

heterogeneity of TS.  Uncertainty in how to best describe the TS phenotype hampers attempts 

to link genes to a given trait (Keen-Kim and Freimer, 2006).  Consequently, a new method, 

such as the one presented in the current study, is needed to assist categorization of patients 

with homogenous symptoms before genetic studies begin. 

 

Pathophysiology 

TS was long thought to be purely a psychiatric disorder, and even as late as the 1960s 

literature discussed the psychological causation of tics.  Margaret Mahler posited that tics 

developed following a three-stage process triggered by overprotective and restrictive parents 

and solidified by the child’s revolt (Mahler, 1949).  In truth, TS is firmly neurologically based, 

and only a few decades ago the dopamine hypothesis was established after the first reports of 

pharmacologic response to neuroleptics (dopamine antagonists; Bockner, 1959) and tic 

exacerbation after high dopamine agonist doses.  Neurochemical measurements further 

substantiated the role of dopamine and serotonin, as abnormal levels of these neurotransmitter 

metabolites were found in the cerebral spinal fluid (Butler et al., 1979), blood (Leckman et al., 

1984; Cath et al., 2001), and urine (Bornstein and Baker, 1988) of TS patients. 

While the exact pathophysiology of TS is unknown, loci of dopamine and serotonin 

interaction are prime candidates.  Neurochemical, neuroanatomical, and neurophysiological 
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evidence points to involvement of the basal ganglia (e.g., Peterson et al., 2003; Cheon et al., 

2004; Houeto et al., 2005; Kalanithi et al., 2005), frontal cortex (e.g., Peterson et al., 1998; Moll 

et al., 1999; Stern et al., 2000; Peterson et al., 2001; Fredericksen et al., 2002), and distinct 

neural circuitry interconnecting the two. 

The basal ganglia, comprised of several subcortical nuclei, control and program 

movements, activating the desired action and inhibiting all inappropriate alternatives (Figure 

1.2, cf., Hallett, 1993; Mink, 1996).  The subthalamic nucleus (STN) and striatum (caudate and 

putamen nuclei) are the input structures to the basal ganglia.  Both receive excitatory, 

glutamatergic projections from the cortex, although the “hyperdirect” pathway to the STN is 

exclusively from the frontal cortex (Hartmann-von Monakow et al., 1978), whereas all cortical 

areas project to the striatum (Kemp and Powell, 1970).  This cortical input is topographically 

organized (parallel), yet broad dendritic trees accept input from multiple cortical areas 

(convergence) and a given cortical area projects to several striatal zones (divergence; Selemon 

and Goldman-Rakic, 1985).  Further, each cortical projection synapses onto a dendritic spine 

head of medium spiny neurons in the striatum (Bouyer et al., 1984; Cherubini et al., 1988), 

while the dopamine-containing substantia nigra pars compacta (SNpc) phasically projects onto 

the shaft of the same spine (Carpenter, 1981).  This anatomic framework allows the striatum to 

transform and integrate incoming signals for action selection. 

Ultimate basal ganglia output depends on the class of dopamine receptor activated in 

the striatum.  Two classes of dopamine receptors have been described – the D1 class (D1 and 

D5 receptors) and the D2 class (D2, D3, and D4 receptors; Sibley et al., 1993) – and each class 

produces an opposite effect.  D1 receptors in the striatum send focused inhibitory GABA 

projections to the basal ganglia output structures, the globus pallidus internus (GPi) and 

substantia nigra pars reticulata (SNpr; Gerfen and Young, 1988; Gerfen et al., 1990).  This 

“direct/go” pathway serves to inhibit the basal ganglia’s tonic inhibitory output, releasing distinct 

thalamic regions to activate their cortical targets and thus generate discrete desired action(s).  

In parallel with the “direct/go” pathway, activated striatal D2 receptors phasically send GABA-

ergic inhibitory signals to the globus pallidus externa (GPe; Gerfen and Young, 1988; Gerfen et 

al., 1990), which in turn disinhibits the subthalamic nucleus (STN) through GABA-ergic 

inhibitory projections (Kita et al., 1983).  The STN tonically sends quick, divergent 

glutamatergic excitation to the GPi/SNpr (Brotchie and Crossman, 1991; Rinvik and Ottersen, 

1993).  This “indirect/stop” pathway, together with the “hyperdirect” pathway, serves to provide 

widespread excitation to the basal ganglia’s tonic inhibitory output, further clamping down the 

thalamus and preventing cortical initiation of diverse, undesired actions.  Taken together, the 

“direct/go” and “indirect/stop”/”hyperdirect” pathways work in delicate “push-pull” concert to  
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Figure 1.2 Basal ganglia circuitry 

 The frontal cortex sends excitatory, glutamatergic signals to the STN (the “hyperdirect” 

pathway), whereas all cortical regions send such signals to the striatum.  The striatum 

additionally receives dopaminergic projections from the SNpc, activating D1 or D2 striatal 

receptors.  D1 receptors directly inhibit the GPi/SNpr interrupting its tonic inhibitory GABA-ergic 

output to the thalamus, releasing the thalamus to authorize a cortically directed action (the 

“direct/go” pathway).  Conversely, by inhibiting GPe and disinhibiting STN, D2 receptors 

indirectly reinforce GPi/SNpr inhibitory output, obstructing the thalamus from activating an action 

(the “indirect/stop” pathway).  Shaded boxes comprise the basal ganglia, green projections are 

excitatory; red are inhibitory, dotted lines are phasic, solid lines are tonically active.  SC, 

superior colliculus; see text for other abbreviations. 
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disinhibit (and thereby select) the precise suitable response and maintain inhibition on (and 

thus prevent) the myriad, undesired alternatives, respectively. 

In addition to motor control, the basal ganglia are involved in the control of a variety of 

functions including cognition, emotions, and learning.  The basal ganglia control these functions 

through five parallel basal ganglia-thalamocortical loops (Alexander et al., 1986).  In each loop, 

discrete areas of the cerebral cortex project to certain basal ganglia nuclei, which send 

information to specific thalamic nuclei and terminate on originating cerebral structures unique to 

that loop.  The information in each circuit is topographically organized.  While the loops are 

structurally and functionally segregated, the operations processed at each level of one circuit 

are analogous to that of the others.  Hence, an abnormality measured at one level in a basal 

ganglia-thalamocortical circuit may indicate dysfunction at the same level of other loops 

(Alexander et al., 1986). 

Specifically, the five basal ganglia-thalamocortical loops include the Motor, Oculomotor, 

Dorsolateral Prefrontal, Lateral Orbitofrontal, and Anterior Cingulate circuits (see Figure 1.3 

and Figure 1.4).  The Motor Loop, which provides motor control, begins in motor cortices, 

projects to the putamen, onto ventrolateral pallidal segments and caudolateral SNpr, through 

the ventrolateral thalamic nucleus, and back to motor cortices.  The Oculomotor Loop controls 

externally and internally generated eye movements via frontal cortices, caudate, dorsomedial 

GPi and ventrolateral SNpr, and ventral anterior and mediodorsal thalamic nuclei.  The 

Dorsolateral Prefrontal Loop subserves spatial memory, executive function, and attention.  It is 

comprised of dorsolateral prefrontal cortex (DLPFC), dorsolateral caudate, dorsomedial GPi 

and rostrolateral SNpr, and ventral anterior and mediodorsal thalamic nuclei.  The Lateral 

Orbitofrontal Loop originates in lateral orbitofrontal cortex (LOFC) and includes ventromedial 

caudate, dorsomedial GPi and rostromedial SNpr, and ventral anterior and medial dorsal 

thalamic nuclei.  This Loop supplies inhibitory control and flexibility of response, as ablation of 

LOFC in monkeys results in perseveration and reduced capacity for switching between 

behavioral sets (Iversen and Mishkin, 1970; Butters et al., 1973).  Finally, the Anterior 

Cingulate Loop, which is responsible for limbic (i.e., emotional and motivational) processes, 

involves the anterior cingulate cortex (ACC), ventral striatum, rostrolateral GPi and rostrodorsal 

SNpr, and mediodorsal thalamic nucleus. 
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 A. Motor Loop        B. Oculomotor Loop 

C. Dorsolateral Prefrontal Loop     D. Lateral Orbitofrontal Loop E. Anterior Cingulate Loop 

 
Figure 1.3 Circuitry of the basal ganglia-thalamocortical loops 

Each loop entails distinct subpopulations of cells in cortical, striatal, pallidal, nigral, and 

thalamic regions.  A. The Motor Loop includes specific motor cortices and the putamen.  B. The 

Oculomotor Loop involves frontal cortices and the caudate.  C. The Dorsolateral Prefrontal 

Loop involves the DLPFC and the caudate.  D. The Lateral Orbitofrontal Loop includes the 

LOFC and caudate.  E. The Anterior Cingulate Loop involves the ACC and ventral striatum.  

Shaded boxes comprise the basal ganglia, green projections are excitatory, red are inhibitory, 

dotted lines are phasic, solid lines are tonically active.  See text for abbreviation details. 
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Figure 1.4 Anatomy of the basal ganglia-thalamocortical loops 

 The five parallel basal ganglia-thalamocortical loops originate and terminate in their own 

unique cortical areas.  Additionally, all loops traverse the same subcortical nuclei, but synapse 

on distinct subpopulations of cells.  A. Four loops can be seen on the lateral surface of the 

brain.  The primary (1°) motor cortex is topographically organized (rainbow gradient) and 

distinct tics correspond to discrete aberrant cells.  B. One loop is visible only in a sagittal view 

of the brain.  1º Motor, primary motor cortex; FEF, frontal eye field; DLPFC, dorsolateral 

prefrontal cortex; LOFC, lateral orbitofrontal cortex; ACC, anterior cingulate cortex 
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Much evidence supports the dysfunction of the basal ganglia-thalamocortical loops in 

TS, ADHD, and OCD.  Consistent with motor tics originating in the Motor Loop, cortical thinning 

of sensorimotor areas is reported in TS (Sowell et al., 2008).  Emotional disturbances and the 

occasional obsene nature of gestures and comments (i.e., copropraxia and coprolalia, 

respectively) in TS give suggestion of Anterior Cingulate Loop involvement as well (Trimble and 

Robertson, 1987).  As the hippocampus projects to the ventral striatum (Krayniak et al., 1981; 

Kelley and Domesick, 1982), part of the Anterior Cingulate Loop, the involvement of this loop in 

TS is further supported by reports of an abnormal hippocampus in children with TS (larger 

volume; Peterson et al., 2007; less gray matter; Ludolph et al., 2006).  Cortical thinning (Shaw 

et al., 2006; Makris et al., 2007) and volumetric abnormalities (Seidman et al., 2006) of DLPFC 

and ACC have been reported in ADHD, highlighting the involvement of the Dorsolateral 

Prefrontal and Anterior Cingulate Loops in the disease.  Finally, smaller LOFC (Rotge et al., 

2009), less activation of LOFC (Chamberlain et al., 2008), and regional cerebral blood flow 

abnormalites in LOFC and ACC as measured by single photon emission computed tomography 

(Busatto et al., 2001) implicate the Lateral Orbitofrontal and Anterior Cingulate Loops in the 

pathophysiology of OCD. 

Stated again, the cause of TS is unknown, but likely involves the basal ganglia and 

frontostriatal circuits.  Several anatomic models of TS exist (for review, see Steeves and Fox, 

2008), including one based on the above-described modification of Albin and colleagues’ 

classic two-circuit model of the basal ganglia (see Figure 1.2; Albin et al., 1989).  This early TS 

model proposed an imbalance between an overactive “direct/go” pathway, which continues to 

release intended movements, and overactive “indirect/stop” and “hyperdirect” pathways, which 

fail to inhibit certain involuntary actions (tics).  Disparity in other basal ganglia-thalamocortical 

loops would lead to unwanted thoughts and behaviors.  A recent update to the model proposes 

“centre-surround” activation, stressing the focused inhibition of the “direct/go” pathway, and 

widespread excitation of the “indirect/stop” and “hyperdirect” pathways on GPi/SNpr output 

(Mink, 2001).  The “direct/go” pathway serves to create a “centre” of GPi/SNpr inhibition and 

consequent excitation of thalamus and cortical motor pattern generators, whereas the 

“indirect/stop” and “hyperdirect” pathways produce a “surround” of GPi/SNpr excitation, realized 

as thalamic inhibition and halt of cortical motor activity.  By way of the multiple basal ganglia-

thalamocortical circuits, pathologic activity in specific striatal neurons could aberrantly inhibit 

basal ganglia output topographically, releasing not only distinct, unwanted tics, but also 

unwelcome thoughts and behaviors.  This pathological activation may be isolated to 

subcompartments of the striatum that in a third model have functional relevance to TS (Canales 

and Graybiel, 2000).  First described by Graybiel and colleagues, striatal regions named 
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striosomes stain only lightly for acetylcholinesterase (AChE), whereas the surrounding matrix 

stains heavily for AChE (Holt et al., 1997).  Matrix afferents come from many cortical areas and 

efferents form the “direct/go” and “indirect/stop” pathways to the GPi/SNpr.  Striosomal-based 

stereotypies observed in stimulant-treated mice lead to the theory that tics may result from 

metabolic activity imbalance between the matrix and striosome (Mink, 2001; Saka and 

Graybiel, 2003).  In a final model of TS, Leckman and colleagues proposed that asynchronous 

oscillations of basal ganglia-thalamocortical loops disrupt the tonic inhibitory output of GPi, thus 

repeatedly and momentarily releasing the thalamus to excite cortical areas, producing tics 

(Leckman et al., 2006c).  In support of this, deep brain stimulation (DBS) and lesions of GPi, 

thought to disrupt neural firing, ameliorate tics (Houeto et al., 2005; Zhuang et al., 2009).  

Intriguingly, single-unit recordings during pallidotomy showed phasic discharge of GPi 

correlating with electromyogram (EMG) recordings of intra-operative tics (Zhuang et al., 2009).  

The authors proposed GPi activity preceding EMG onset up to 2 seconds might represent 

premonitory urges.  In a recent update on basal ganglia models, however, action selection (and 

therefore improper action release) is proposed to be a function primarily of the cortex, not basal 

ganglia, as basal ganglia subunits are tightly influenced by their respective cortical inputs 

(DeLong and Wichmann, 2009).  Regardless of the model preferred, a continued search is 

necessary to clarify the pathophysiology of TS. 

TS has baffled and captivated clinicians and researchers for over 125 years.  Modern 

technologies and theories continue to push the field closer to a pathophysiological and 

etiological consensus.  The multifarious dimensions of TS, however, befuddle this effort.  

Clearer understanding of TS will come after ferreting out the impact comorbidities have on TS 

phenomenology and pathophysiology.
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2. Chapter 2 

Orienting in TS 
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Eye Movements 

 We make countless eye movements every day, even every minute (three per second!; 

Rayner, 1998).  We execute different classes of eye movements when we read a book, track a 

buzzing mosquito, or spot out our passenger window the telephone poles whizzing by on a 

family car trip.  These eye movements serve to orient each eye on the same object, effectively 

centering the object of interest on our fovea, the retinal location of highest acuity.  One 

category of eye movements, saccades, quickly foveate an object or location in space with an 

abrupt, small, jerky movement.  Saccades are further classified as reflexive or voluntary, each 

controlled by distinct, well-known, and well-studied neurocircuitry. 

 Reflexive saccades are stimulus driven, as they occur in response to a peripheral 

stimulus.  An instinctive glance to a suddenly appearing light is a reflexive saccade.  This type 

of saccade is generated in a “bottom-up” fashion in that midbrain reflexive control centers 

detect the external stimulus and automatically orient the eyes to it.  Reflexive saccades are 

driven by the superior colliculus (SC, the midbrain saccade generator) as lesion of it alone 

results in saccade slowing and a loss of express (fast) saccades (Schiller et al., 1987). 

 Voluntary saccades are internally driven, dependent on a plan of action informed by 

prior information.  Intentionally looking away from a suddenly appearing light involves a 

voluntary saccade.  This “simple” undertaking demands cognitive control, including inhibition, 

generation, and working memory.  To successfully look away from the light, you must inhibit 

saccades to the appearing light, generate a saccade to the opposite point in space, and 

remember what you are trying to accomplish.  These components require “top-down” control 

from the frontal cortex to the SC via the Oculomotor Loop in the basal ganglia (see Chapter 1).  

Explicitly, the dorsolateral prefrontal cortex (DLPFC) inhibits inappropriate reflexive saccades 

and the frontal eye field (FEF) triggers the generation of planned voluntary saccades (Pierrot-

Deseilligny et al., 2004).  Further, the “direct/go” pathway releases the SC to produce a 

saccade and the “indirect/stop” pathway prevents SC execution of an eye movement (refer to 

Figure 1.2; Hikosaka et al., 2000). 

 The ability to override a reflexive response in preference of a voluntary one is 

contingent on intact frontal brain regions.  Patients with frontal cortex lesions have great 

difficulty with the antisaccade task in which they must inhibit a reflexive saccade and instead 

make a voluntary saccade (Guitton et al., 1985).  Based on such patient and 

neurophysiological data, the Tonic Inhibition Model asserts frontal cortical areas, subserving 

voluntary control, modulate midbrain reflexive control by way of the basal ganglia’s tonic 

inhibitory output (Figure 2.1; Sereno, 1992).  Indeed, the basal ganglia perform response  
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Figure 2.1 Model of reflexive and voluntary orienting 

 The Tonic Inhibition Model (Sereno, 1992) maintains that voluntary orienting centers in 

the frontal lobe (orange oval) activate the basal ganglia to selectively inhibit the midbrain 

reflexive orienting center.  The midbrain is free to automatically respond to external stimuli.  For 

voluntary responses, though, frontal control centers modulate midbrain output by triggering the 

basal ganglia to select the appropriate response through calculated release of the midbrain 

from its tonic inhibition.  SC, superior colliculus 
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selection through interconnections with the frontal cortex and brainstem (Hikosaka et al., 2000).  

Thus, the reflexive control center can respond to external stimuli as needed.  To coordinate a 

voluntary response, however, frontal cortices inhibit brainstem execution of reflexive actions in 

order to delay the intended response until the appropriate time. 

This interplay between reflexive and voluntary systems is evident in everyday 

examples.  When you are walking alone to the parking lot at twilight, a dancing shadow beside 

some bushes causes you to instinctively jump.  In this unnerving situation, your voluntary 

frontal center only lightly impedes reflexive responses, allowing hypervigilance.  Alternatively, 

when you are rigorously studying in a bustling coffee shop (which, as an aside, I deem 

counterproductive regardless the strength of your voluntary control), the sea of people and 

vibrant colors don’t even cause you to look up.  In this instance, your voluntary center strongly 

dampens reflexive responding to allow maintained focus. 

 

Value of Saccade Research 

The direct study of saccadic eye movements has great utility.  Saccades are a discrete 

behavioral method with limited output, measureable with extraordinary precision and influenced 

with slight paradigm and sensory changes (Hutton, 2008).  Saccadic eye movements and their 

neural command have long been studied in non-human primates and lesion patients (Hikosaka 

and Wurtz, 1983; Bruce and Goldberg, 1985; Guitton et al., 1985; Pierrot-Deseilligny et al., 

1991; Everling et al., 1999).  Also, cortical neuroanatomy of saccade control has been 

investigated in healthy adults with intact oculomotor systems by inducing temporary “functional 

lesions” with transcranial magnetic stimulation (TMS; Muri and Nyffeler, 2008).  Consequently, 

the neural circuitry underlying saccades is intimately known. 

Compared to traditional psychological testing, eye movement tests are particularly well suited 

for evaluating cognitive control and motor processes.  First, task instructions are simple and 

easily understood by all ages.  Second, in eye movement tasks, encoding and response 

processes are in the same modality (visual), whereas in typical tasks translation is required 

from the stimulus input modality (visual, auditory) to behavior measures (motor, speech), which 

dilutes the task’s ability to directly measure the desired cognitive process.  Third, eye 

movements share brain areas with cognitive control and motor processes (Luna et al., 2004) 

and different (and experimentally separable) brain areas control reflexive and voluntary 

saccades.  Moreover, saccade tasks have been shown to have greater test-retest reliability 

than neuropsychological tasks in healthy individuals and patients (Gooding et al., 2004; Hill et 
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al., 2008) and be more sensitive measures of cognitive control (Broerse et al., 2001) and 

treatment effects (Hill et al., 2008). 

Further, studies of saccades eliminate confounds common to neuropsychological 

testing.  Neurological and psychiatric patient populations (e.g., Parkinson disease and 

schizophrenia) demonstrate slowing in the initiation and execution of manual responses (e.g., 

key press) compared with healthy participants (Benson, 1990; Bermanzohn and Siris, 1992; 

Jogems-Kosterman et al., 2001).  Psychomotor slowing is specific to manual response tasks 

but not eye movement tasks (Gale and Holzman, 2000; Reuter and Kathmann, 2004).  

Whereas neuropsychological tests tap broad frontal areas, saccade paradigms exploit known, 

distinct regions.  Moreover, saccade tasks do not require additional higher order processing, 

like for colors, pictures, or words. 

 Saccade paradigms are particularly effective measures of cognitive control in hard-to-

test populations, like patients and children.  Eye movement tasks allow careful and easy 

manipulation of task difficulty and produce robust and sensitive results.  Assessment is quick 

and avoids fatigue common to such participants.  Significantly, hypotheses of a disease’s 

neuropathological loci can be appraised by saccade task performance (Farber et al., 1999).  

Indeed, patients with frontal cortex and basal ganglia neuropathology exhibit saccadic deficits 

(Guitton et al., 1985; Briand et al., 1999).  The utility of saccade tasks in patients and children is 

demonstrated by successful treatment evaluation (Reilly et al., 2006), prediction of disease 

outcome (Robert et al., 2009), utility as an endophenotype (Calkins et al., 2008) and biomarker 

(Blekher et al., 2006), and assessment of cognitive development (Luna et al., 2004).  Our lab 

has extensive experience and success conducting eye movement research in patients and 

children.  We have demonstrated eye movement performance is linked to schizotypy in healthy 

participants (Larrison et al., 2000), correlates with symptom severity (Briand et al., 2001; 

Amador et al., 2006; Jeter et al., 2010), evaluates treatment efficacy (Larrison-Faucher et al., 

2004; Hood et al., 2007; Babin et al., in preparation 1), differentiates clinically-defined disease 

subtypes (Jeter et al., 2009), and identifies a cognitively-impaired subtype of schizophrenia 

(Babin et al., in preparation 2). 

 In addition to the specific advantages of eye movement studies described above in 

neurological and psychiatric patient and child populations, saccade tasks are particularly well 

suited for investigations in TS.  As a disease characterized not only by release of situationally 

unfitting movements and behaviors, but also insufficient generation of pertinent actions, TS 

dysfunction is synonymous with misdirected cognitive control.  Restated, TS patients have a 

specific lack of response inhibition, response generation, and working memory.  These faculties 
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are also critically employed in voluntary eye movement tasks.  Fittingly, common brain areas 

instruct cognitive control and voluntary eye movements (Luna et al., 2004).  Thus, dysfunctional 

cognitive control, measureable with simple saccade paradigms, can be linked to mutual brain 

regions.  Specifically, the parallel basal ganglia-thalamocortical Motor and Oculomotor Loops 

underwrite this relationship (see Chapter 1), making eye movement experiments useful for 

understanding how the brain controls movement (Leigh and Zee, 1999).  Unlike limb 

movements, though, eye movements are simple movements not hindered by joints, muscle 

load restrictions, or large ranges of motion, and so are easily measured.  Eye movements are 

natural, quick, and quantifiable.  From decades of non-human primate and lesion patient 

research, the neural circuitry controlling saccade generation is better understood (Leigh and 

Zee, 1999).  While a few research groups have capitalized on the advantages of oculomotor 

research in TS, more studies are needed (Rommelse et al., 2008). 

Not only are oculomotor tasks poised to effectively evaluate Motor Loop function, but 

also they are suitable for appraisal of the other three basal ganglia-thalamocortical loops.  

These parallel loops, namely the Dorsolateral Prefrontal Loop, the Lateral Orbitofrontal Loop, 

and the Anterior Cingulate Loop, govern spatial working memory and attention, socially 

appropriate response lability, and mood stability and motivational drive, respectively.  Not 

surprisingly, then, irregularity in these loops leads to ADHD and OCD, the conditions most 

commonly coexisting with TS.  Thus, in conjunction with eye movement investigations of TS 

cognitive control, saccade tasks can examine the impact of comorbid ADHD and OCD on 

cognitive control in TS patients.  Such an endeavor is imperative to quantify and better 

understand the specific functional weight TS individuals bear due to comorbid conditions 

(Gooding and Basso, 2008; Rommelse et al., 2008).  Parceling and attributing the impact of 

comorbid ADHD and OCD will create more homogenous subtypes of TS necessary to advance 

stymied genetic analyses (Gooding and Basso, 2008). 

 

Model of Orienting in TS 

 TS patients are known to have abnormal frontal lobe anatomy and function, perhaps in 

response to a primary dysfunction of the basal ganglia.  As frontal cortices and the basal 

ganglia are directly involved in the Oculomotor Loop, these disruptions have immediate 

implications for the control of eye movements.  According to the model of reflexive and 

voluntary orienting in Figure 2.1, frontal deficit leads to poor performance on tasks of voluntary 

orienting.  Further, a weak frontal cortex reduces its excitation of the basal ganglia, which, in 

turn, relents from its tonic inhibitory dominance over the midbrain reflexive control center (SC).  
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Thus, performance on reflexive eye movement tasks is normal or even hyper-reflexive.  Figure 

2.2 details this hypothesized dysfunction in TS.  In addition to impacting the SC, reduced basal 

ganglia output allows the thalamus to excessively activate the cortex, producing tics. 

 

Previous Eye Movement Studies in TS 

Motivated by all the benefits saccadic research affords, the current study employed 

behavioral tasks of saccadic response to assay cognitive control in TS.  A handful of past 

investigations have undertaken this endeavor, but taken together, they have emerged in a 

cacophony of contradiction.  Reporting findings from a reflexive saccade task, three groups 

found normal response times in TS patients (Bollen et al., 1988; Straube et al., 1997; Nomura 

et al., 2003), while Farber and colleagues (1999) reported faster response times than controls 

and two teams cited slower response times for TS patients (Mostofsky et al., 2001; Munoz et 

al., 2002).  On eye movement tasks tapping voluntary function, all studies found slower 

response times (Straube et al., 1997; Farber et al., 1999; Dursun et al., 2000; Mostofsky et al., 

2001; Munoz et al., 2002; Nomura et al., 2003).  On measures of error rate (percent of 

responses to an incorrect location), though, two research teams reported increased voluntary 

antisaccade errors compared to controls (Farber et al., 1999; Dursun et al., 2000), yet three 

others found no significant increase (Straube et al., 1997; Mostofsky et al., 2001; Munoz et al., 

2002). 

In only a subset of the oculomotor studies were both reflexive and voluntary tasks 

administered, enabling consideration of the results in terms of the underlying anatomical and 

functional relationships between reflexive and voluntary control.  While frontal cortices reinforce 

the basal ganglia’s tonic inhibitory output to block midbrain-mediated automatic responses (see 

Figure 2.1), the midbrain reflexive center is allowed to execute automatic responses when 

momentarily released from basal ganglia domination.  This interchange proffers the prediction 

that a deficit in prefrontal activity can result in both deficits in voluntary orienting as well as 

decreased inhibition producing normal or hyper-reflexive orienting (see Figure 2.2).  Evidence 

from Parkinson’s disease patients, as well as other clinical populations across a number of 

paradigms, supports this assertion (Sereno and Holzman, 1995; Sereno and Holzman, 1996; 

Briand et al., 1999; Larrison et al., 2000).  For response time, three studies (Straube et al., 

1997; Farber et al., 1999; Nomura et al., 2003) aligned with the claim that decreased prefrontal 

activity in TS (demonstrated by increased voluntary eye movement response time) should 

result in decreased inhibition of reflexive orienting mechanisms (revealed in normal or  
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Figure 2.2 Model of hypothesized effect of TS on orienting 

 Normal orienting is achieved when frontal voluntary control centers modulate the 

midbrain reflexive center by way of the basal ganglia’s tonic inhibitory output.  In TS, known 

abnormalities in the frontal cortex lead to impaired voluntary orienting.  Further, weak frontal 

cortices are lax in properly engaging the basal ganglia to inhibit the reflexive control center.  As 

a result, reflexive orienting is normal or hyper-reflexive.  Similar dysfunction in the Motor Loop 

disinhibits the thalamus, allowing excessive excitation of motor actions (tics).  1º Motor, primary 

motor cortex; SC, superior colliculus 
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decreased reflexive eye movement response time) and two did not (Mostofsky et al., 2001; 

Munoz et al., 2002).  For error rate, two supported (Farber et al., 1999; Dursun et al., 2000) and 

three contradicted the prediction (Straube et al., 1997; Mostofsky et al., 2001; Munoz et al., 

2002).  The divergence of results prevents a clear understanding of the biological basis of TS. 

How could the findings from these studies be so different?  On closer inspection of the 

study designs, three aspects emerge as confounding factors.  When sufficient regard is not 

given to the influence of these factors on oculomotor performance, the conclusions drawn from 

a study will be attributed solely to disease effects, when in reality other obstructing factors are 

at play (Reilly et al., 2008).  Regrettably, most studies did not even consider culprit confounds; 

only a few groups performed underpowered post hoc analyses.  In the following paragraphs I 

will enumerate the complicating factors of medication status, age, and comorbidity in prior eye 

movement studies in TS and address why these aspects must be constrained to provide clear 

ascertainment of cognitive control in pure TS.  Table 2.1 and Table 2.2 catalog each study, 

reviewing how study design features obfuscated results. 

Medication status is the first confound frequently present in eye movement studies in 

TS.  Psychiatric medications are known to alter eye movement performance (for review, Reilly 

et al., 2008).  TS participants were commonly tested while actively taking pharmacological 

treatments for their symptoms.  Risperidone (dopamine [D2] and serotonin [5HT2A] antagonist) 

is a common pharmacotherapy in TS and has been shown to slow reflexive saccade response 

time (Sweeney et al., 1997; Nieman et al., 2000).  Hence, it is possible TS studies that do not 

control for medication may show saccadic response time increases due to medication 

differences.  For example, one previous study examined performance in risperidone-treated TS 

patients and found increased reflexive eye movement response times (Munoz et al., 2002).  

Interestingly, risperidone has been shown to decrease antisaccade errors (Burke and Reveley, 

2002; Harris et al., 2006).  Studies in risperidone-treated TS patients that do not control for 

medication may show normal antisaccade error rate (Munoz et al., 2002) that may be due to 

medication normalizing an antisaccade deficit in TS.  While some groups did attempt to probe 

for a drug effect and argued for its absence, such post hoc analyses are known to be 

underpowered (Reilly et al., 2008). 

A second confound of previous saccade work in TS is age.  Not only is controlling for 

age important because TS severity changes drastically throughout development and 

neurobiological differences exist between children and adults with TS, but also many studies 

have documented development of oculomotor function during childhood (Munoz et al., 1998; 

Fukushima et al., 2000; Klein and Foerster, 2001; Luna et al., 2004).  Reflexive saccade  
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Table 2.1 Confounding factors and results of past eye movement studies in TS (I) 
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ADHD, attention deficit hyperactivity disorder; OCD, obsessive compulsive disorder; y, years; 

RT, response time; ER, error rate; + slower or greater than controls; – faster or less than 

controls; 0 no difference from controls; SD, standard deviation; N/A, not applicable 
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Table 2.2 Confounding factors and results of past eye movement studies in TS (II) 
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ADHD, attention deficit hyperactivity disorder; OCD, obsessive compulsive disorder; y, years; 

RT, response time; ER, error rate; + slower or greater than controls; – faster or less than 

controls; 0 no difference from controls; CV, coefficient of variation; N/A, not applicable 
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response time is greatly prolonged in 6-7 year olds, but decreases to adult levels by the age of 

10-11 years.  Studies that do not consider developmental differences in saccade parameters 

may report response time increases due to age effects.  Most previous studies enrolled adults 

or a broad range of ages rather than only children (Straube et al., 1997; Farber et al., 1999; 

Dursun et al., 2000; Munoz et al., 2002).  Only two studies have considered oculomotor 

development (Mostofsky et al., 2001; Nomura et al., 2003); one found increased reflexive 

response time in participants less than 10 years old.  Again, there are also important 

developmental changes in antisaccade error rates.  Antisaccade error rate decreases to near 

adult levels around age 16 (Munoz et al., 1998; Fukushima et al., 2000; Klein and Foerster, 

2001).  Only one prior study considered an age effect on antisaccade errors and found more 

errors in those less than 10 years old than those older than 10 years (Mostofsky et al., 2001). 

Comorbid status is the final confound present in past oculomotor studies in TS.  Most 

TS patients have a concurrent pathology, or comorbidity, such as ADHD or OCD, which may 

impact eye movement findings.  In point of fact, multiple eye movement studies in children with 

ADHD alone report increased reflexive response time variability (Mostofsky et al., 2001; Munoz 

et al., 2003) and increased antisaccade response time and errors compared to controls (Klein 

et al., 2003; Munoz et al., 2003; Karatekin, 2006).  Only one study has been conducted in 

children with OCD alone and compared to controls found increased antisaccade errors and 

anticipatory errors in a memory-guided task (Rosenberg et al., 1997).  Four prior studies in TS 

did not consider the impact of concomitant conditions (Bollen et al., 1988; Straube et al., 1997; 

Dursun et al., 2000; Nomura et al., 2003).  Of the three studies that did, Farber and colleagues 

(1999) hinted at differing performance in TS subpopulations.  This study reported that while TS 

antisaccade errors were significantly increased compared to controls, the increased errors 

were from a subset comprising 19% of the patients.  Straube and colleagues (1997) also 

reported increased antisaccade errors, but the large error rate variability suggests 

subpopulations.  Only Mostofsky and colleagues (2001) controlled for ADHD and found TS 

patients with ADHD had greater prosaccade response time and response time variability, more 

antisaccade errors, and more anticipatory saccades during the delay period of a memory 

saccade task compared to patients with only TS.  This pattern of results suggests TS patients 

with a comorbidity display unique, separable results (and underlying pathophysiology) from 

patients with only TS.  Also to be considered, age effects may occur in comorbid populations.  

Only one study considered this in TS patients with ADHD and found a significant interaction 

between age and diagnosis (Mostofsky et al., 2001). 
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Current Study 

The goal of my study was to obtain an accurate saccadic measure of cognitive control 

in unmedicated children with TS and assess the influence of comorbid conditions.  Further, this 

study improved upon prior work in this field by controlling for medication status, age, and 

comorbid conditions known to have produced conflicting results.  These precautions ensured 

my observed outcomes were a direct reflection of TS pathology, not study confounds.  First, to 

avoid diverse impacts of medications on eye movement performance, I included only 

unmedicated TS patients.  Such patients are not rare.  Family members are often more 

troubled by TS than the patient and because symptoms wax and wane in severity, initiating 

educational interventions and lifestyle adjustments before jumping to medications is best 

(Swain et al., 2007).  Second, this study limited enrollment to children 10-16 years old.  The 

age of peak tic severity occurs in this age range (Leckman et al., 1998; Bloch et al., 2006).  At 

ten years old most visual functions stabilize and become adult like (Klein and Foerster, 2001), 

cerebral blood flow to frontal lobe grey matter reaches adult patterns (Ogawa et al., 1989), and 

right hemisphere fronto-temporal/occipital EEG coupling becomes evident (left coupling occurs 

earlier; Thatcher et al., 1987).  Around age 16, antisaccade error rate decreases to near adult 

levels (Munoz et al., 1998; Fukushima et al., 2000; Klein and Foerster, 2001).  Therefore, I 

restricted enrollment to this smaller age range and carefully selected each control participant to 

be within six months of age of one or more TS patients.  Thirdly, this study compared two 

subsets of TS patients, individuals with TS only and those with TS and comorbid ADHD and/or 

OCD.  Thus, largely unhindered by medication, age, or comorbidity, this unique, carefully 

controlled study directly measured aspects of cognitive control. 

I used traditional reflexive and voluntary saccade tasks to evaluate orienting in TS.  

These tasks included the reflexive Prosaccade task (automatically look to a peripheral target 

when it appears), and the voluntary Antisaccade task (deliberately look opposite the suddenly 

illuminated target).  I also created variants of the spatial N-back task – the 0-back task (look to 

the last stimulus in a variable series of flashes) and 1-back task (look to the next-to-last 

stimulus in a variable series of flashes).  Versions of these N-back tasks were extensively pilot 

tested in healthy adults and children (Jeter et al., submitted).  The design is scalable for 

difficulty, producing robust results regardless of the number of stimuli or possible stimulus 

locations.  Whereas the Prosaccade is a control task, the Antisaccade, 0-back, and 1-back 

tasks are powerful measures of response inhibition, response generation, and working 

memory.  These tasks require the same processes that allow proper execution of body 

movements and are thought to be dysfunctional in TS.  In addition to suppression of automatic 

and early responses (like withholding tics), these tasks require remembering and generating 
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voluntary eye movements at the proper time to a specific non-illuminated location (voluntarily 

generating a proper non-tic action).  Performance of TS patients, broken down by TS children 

with or without comorbid ADHD and/or OCD, was compared to typically developing children.  

The research plan and hypotheses for these comparisons are detailed in the next sections. 

In addition to evaluating cognitive control in TS, my study will verify a couple cognitive 

theories.  First, are reflexive and voluntary functions really inversely related in TS as current 

models hold (i.e., inadequate volitional control produces normal or hyper-reflexive responses; 

see Figure 2.2)?  Independent or positively related, rather than inversely related, results from 

reflexive and voluntary eye movement tasks would necessitate revision of this cognitive model.  

Second, do multiple aberrant basal ganglia-thalamocortical loops coincident with TS and 

implicated in the cause of comorbid ADHD and OCD (see Chapter 1) induce worse eye 

movement performance?  If TS patients with comorbid conditions perform poorly compared to 

individuals with TS only, such a contention is upheld. 

 

Research Plan Part 1: Classic Oculomotor Tasks 

 The goal of the current study, to obtain an accurate saccadic measure of cognitive 

control in children with TS and assess the influence of comorbid conditions, was completed in 

two parts.  First, basic reflexive and voluntary orienting in TS patients was assessed with 

classic oculomotor tasks.  As detailed above, past evaluations of reflexive and voluntary eye 

movement performance in TS has produced mixed results.  When tested with reflexive, 

Prosaccade tasks, TS patients have demonstrated slow reflexive responses (Mostofsky et al., 

2001; Munoz et al., 2002) and normal reflexive responses (Bollen et al., 1988; Straube et al., 

1997; Farber et al., 1999; Nomura et al., 2003).  So, too, on Antisaccade tasks of voluntary 

function, TS patients have shown increased errors (Farber et al., 1999; Dursun et al., 2000) 

and normal error rates (Straube et al., 1997; Mostofsky et al., 2001; Munoz et al., 2002).  Any 

attempt at deducing the biological truth from these disparate results, although valiant, is 

grasping at straws.  Even if a composite view is proposed, such a model of TS is undeniably 

influenced by medication, age, and/or comorbid status and thus is not representative of the 

pure disease.  Critically, then, this study probes TS reflexive and voluntary eye movement 

performance while controlling for confounding factors. 

 I expected unmedicated TS patients without concomitant ADHD or OCD to exhibit 

impaired voluntary orienting and normal or heightened reflexive orienting (i.e., prolonged 

response time and increased errors on an Antisaccade task and normal or faster Prosaccade 

response times).  This hypothesis follows from the model of orienting in TS depicted in Figure 
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2.2.  Because of involvement of additional basal ganglia-thalamocortical loops, I expected 

those TS patients with comorbid ADHD and/or OCD to display even more exaggerated 

voluntary orienting yet largely normal reflexive orienting (i.e., slower response times and more 

errors on an Antisaccade task than healthy control children or patients with TS only).  Indeed, 

children with only ADHD have slower response times and increased errors on Antisaccade 

tasks compared to healthy control children (Klein et al., 2003; Munoz et al., 2003; Karatekin, 

2006).  Children with OCD also have more Antisaccade errors than typically developing 

children (Rosenberg et al., 1997).  Increasingly impaired voluntary function in TS patients with 

comorbid conditions points to pathophysiology additional to that of individuals with TS only.  

Thus, in an extended model of orienting in TS (see Figure 2.3), overlay of defective basal 

ganglia-thalamocortical circuits representing TS, ADHD, and OCD results in progressively 

weaker frontal voluntary control and diminished basal ganglia output. 

 

Research Plan Part 2: Novel Spatial N-back Tasks 

 The second part of the current study was to evaluate childhood cognitive control in TS 

and its comorbidities using a variant of the spatial N-back task (Callicott et al., 1998).  The N-

back task is a working memory task in which participants must continually revise and update 

their mental set with each subsequent stimulus in order to properly respond to a specific 

previously presented stimulus.  N-back tasks allow working memory load to be adjusted for 

difficulty, as higher N requires more stimuli to be held in mind (e.g., the 0-back task requires 

response to the current stimulus, the 1-back task requires response to the previous stimulus, 

etc.).  While most spatial and non-spatial N-back tasks are runs of continually appearing 

stimuli, my novel version was designed in blocks of discrete trials.  This enabled all stimuli to be 

identical squares (rather than numbers, for example) differentiable only by location, duplicating 

the Prosaccade and Antisaccade task stimuli.  Participants completed N-back tasks of two 

levels of difficulty, 0-back and 1-back, suitable for a child patient population (Jeter et al., 

submitted). 
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Figure 2.3 Model of hypothesized effects of comorbidities and TS on orienting 

 Normal orienting is achieved when frontal voluntary control centers modulate the 

midbrain reflexive center by way of the basal ganglia’s tonic inhibitory output.  In TS, 

dysfunction in the Motor Loop disinhibits the thalamus, allowing excessive excitation of motor 

actions (tics).  Comorbid conditions in TS arise likewise from additional pathology of other basal 

ganglia thalamocortical loops.  Each successive Loop abnormality leads to further impaired 

voluntary orienting.  Weak frontal cortices diminish the basal ganglia’s inhibition of the reflexive 

control center.  As a result, reflexive orienting is normal or hyper-reflexive.  1º Motor, primary 

motor cortex; FEF, frontal eye field; DLPFC, dorsolateral prefrontal cortex; LOFC, lateral 

orbitofrontal cortex; SC, superior colliculus 
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 While no group has tested TS patients on saccadic spatial N-back tasks, a select few 

have administered saccadic working memory tasks.  Unfortunately, research groups did not 

report the same dependent variables, preventing complete comparison of results.  In the 

Memory Guided task, participants must look to a remembered location at the appropriate time. 

Straube and colleagues (1997) found normal response time, whereas Nomura and colleagues 

(2003) found slower response time.  Nomura and colleagues (2003) also reported fewer 

distracted saccades in children with TS, and Mostofsky and colleagues (2001) were able to 

identify this increase specifically in TS patients with ADHD compared to those with TS alone.  

More similar to spatial N-back tasks, the Sequential Memory task requires participants to 

maintain fixation on a central light during a sequence of peripheral flashes.  Munoz and 

colleagues (2002) reported increased anticipatory errors in TS patients. 

As with the Antisaccade task, which also tested voluntary function, I expected 

unmedicated patients with TS alone to exhibit impaired cognitive control on these voluntary 

tasks (i.e., prolonged response time and increased errors on both N-back tasks).  Furthermore, 

compared to healthy age-matched peers, I expected children with TS only to perform even 

more poorly on the 1-back task than the 0-back task, as the former entails greater working 

memory load.  Because of involvement of additional basal ganglia-thalamocortical loops, I 

expected the voluntary performance of TS patients with comorbid ADHD and/or OCD to be 

even more lacking (i.e., slower response times and more errors on both N-back tasks than 

healthy controls or patients with TS only). 

Highlighting deficits on tasks demanding working memory, children with only ADHD 

have slower response times (Mostofsky et al., 2001) and increased anticipatory errors (Ross et 

al., 1994; Castellanos et al., 2000; Mostofsky et al., 2001; Rommelse et al., 2008) on Memory 

Guided tasks, which, like N-back tasks, require a delayed response to a remembered target.  

Compared to normal controls, children with OCD tend to have more anticipatory errors on 

Memory Guided tasks (Rosenberg et al., 1997).  One study of children with TS and 

concomitant ADHD reported increased anticipatory errors compared to children with TS only 

(Mostofsky et al., 2001).  This result supports the model of orienting for TS patients with 

comorbidities (Figure 2.3), contending that the additional impaired basal ganglia-

thalamocortical circuits representing TS, ADHD, and OCD result in progressively weaker frontal 

voluntary control. 
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Research Plan Part 3: Factor Analysis 

As a third focus, I undertook an endeavor to reduce this study’s many variables into 

meaningful factors, each comprised of related dependent variables.  Two factor analyses were 

completed.  The first created factors explaining the variance in the eye movement response 

time and error rate variables.  The second divided the variance in the totals and subscales of 

three diagnostic rating scales administered to assess symptoms of TS, ADHD, and OCD. 

Both factor analyses are novel to the literature.  Very few studies have analyzed eye 

movement variables by factor analysis, and then only Prosaccade and Antisaccade tasks 

(Fischer et al., 1997; Klein and Foerster, 2001; Fischer et al., 2000).  Factor analyses of clinical 

symptoms are much more common, often in the creation or validation of a diagnostic rating 

scale (Conners et al., 1998; Storch et al., 2005; Storch et al., 2006).  These factor analyses of 

symptoms, however, have not assessed multiple diagnostic rating scales at once.  Such a test 

would provide insight into the interrelatedness of frequently co-occurring disorders. 

I expected the eye movement variables to divide into factors representing reflexive and 

voluntary processes (i.e., a Prosaccade factor and an Antisaccade, 0-back, and 1-back factor).  

In previous factor analyses of eye movement tasks, variables from the reflexive Prosaccade 

task loaded a different factor than variables from a voluntary Antisaccade task in both healthy 

participants (Fischer et al., 1997; Fischer et al., 2000; Klein and Foerster, 2001) and those with 

dyslexia (Fischer et al., 2000).  As each disorder is comprised of a common constellation of 

symptoms, I expected some diagnostic rating scale factors to represent a single scale, with the 

possibility of other factors representing a potpourri of mixed subscales. 
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Study Participants 

 Before testing, each participant’s parent or guardian gave informed consent and as 

children, each participant gave assent.  The University of Texas Health Science Center at 

Houston Committee for the Protection of Human Subjects approved the study consistent with 

the Declaration of Helsinki. 

Patients 
 TS patients were recruited through The University of Texas Child and Adolescent 

Neurology Clinic without bias for gender or ethnicity.  Patients were diagnosed with TS based 

on the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders – Fourth 

Edition (DSM-IV).  Dr. Ian J. Butler, a pediatric neurologist and TS expert, performed 

independent evaluations of each TS patient, including clinical history and neurological 

examination to ensure each patient met the study inclusion criteria. 

• Inclusion Criteria for TS Group 

1. Diagnosis of TS based on DSM-IV diagnostic criteria 

2. Aged 10-16 years 

3. Normal (or corrected-to-normal) vision 

• Exclusion Criteria for TS Group 

1. Tic disorder (did not meet TS diagnostic criteria) or psychogenic tics 

2. Unable or unwilling to wean off neurological or psychiatric medications in order 

to be medication-free one week prior to testing 

3. (a) Other active medical or major psychiatric disorders except ADHD or OCD, 

(b) substance abuse, (c) history of electroconvulsive therapy, (d) neurosurgery, 

(e) history of head injury, or (f) brain tumor or infection 

Controls 

 Control participants were recruited from the community by Institutional Review Board-

approved flyers and a listing on The University of Texas Health Science Center at Houston 

Clinical Trials website.  The control group was not case-matched to TS patients, but rather 

each control participant was matched by gender and within 6 months of age to 2 or 3 TS 

patients.  Thus, the control group had an equivalent gender ratio and similar age mean and 

standard deviation as TS patients (see Results, Table 4.1). 

• Inclusion Criteria for Control Group 
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1. Aged 10-16 years 

2. Normal (or corrected-to-normal) vision 

• Exclusion Criteria for Control Group 

1. Diagnosis of a neurological or psychiatric condition 

2. Currently using neurological or psychiatric medications 

3. Sibling or parent with an active neurological or psychiatric disorder 

4. (a) Substance abuse, (b) history of electroconvulsive therapy, (c) neurosurgery, 

(d) history of head injury, or (e) brain tumor or infection 

 

Diagnostic Measures 

 Dr. Butler assessed TS patients in the clinic as described above.  In the experimental 

session, diagnostic rating scales were administered to assess disease state and symptom 

severity of each child.  All participants (TS patients and Controls) and their parent(s) or 

guardian independently completed the diagnostic rating scales.  As an expert rater, I also 

evaluated each participant.  My ratings of each child only differed from the participant’s self-

report value when the rating was obviously contrary to behavior I observed during the two-hour 

testing session.  Thus, for two diagnostic scales, each participant had three scores, one each 

from the participant, parent(s) or guardian, and me.  On the scale assessing OCD symptoms, 

only the participant and parent(s) or guardian values were used, as I did not know each child 

well enough to accurately evaluate his or her internal obsessions and daily compulsions, and 

these would not fully be evident in a two-hour testing session.  The diagnostic rating scales are 

available in Appendix A and the group means for these measures are in the Results, Table 

4.1.  Scales always were administered in the same order and after eye movement tasks. 

• Attention Deficit Hyperactivity Disorder Rating Scale – IV (ADHD-IV; DuPaul et al., 

1998):  This self-report scale is a reliable measure to assess childhood and adolescent 

attention and behavior deficits.  ADHD-IV subscales include inattention and 

hyperactivity. 

• Obsessive Compulsive Inventory – Child Version (OCI-CV; Foa et al., 2010):  All 

participants completed this self-report inventory as a measure of obsessive-compulsive 

characteristics.  Derived from the adult OCI, the OCI-CV authors revised and simplified 

the inventory to be well suited for a child population.  OCI-CV subscales addressed 

obsessing, washing, hoarding, doubting/checking, neutralizing, and ordering. 
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• Yale Global Tic Severity Scale (YGTSS; Leckman et al., 1989):  This self-report version 

of the YGTSS rated number, frequency, intensity, complexity, and interference of motor 

and phonic tics separately and impairment combined.  The correlation between the self-

report and clinician versions of the YGTSS is r = 0.86, p < 0.0001 (Leckman et al., 

1994b). 

 
General Procedure 

 All aspects of experimental design were optimized for use in a child patient population.  

Testing sessions were scheduled at each family’s convenience, usually on a Saturday.  Under 

the guidance of Dr. Ian Butler, their pediatric neurologist, willing TS patients on neurological or 

psychiatric medications (12 of 39 patients) were placed on an individualized weaning schedule.  

This ensured each patient had a proper washout period of at least one week prior to testing.  

Behavioral testing (eye movement tasks) and diagnostic rating scales were completed 

in The University of Texas Medical School at Houston.  All participants (except one very wiggly 

10-year-old boy) were tested on one day.  The wiggly boy completed three of the four eye 

movement tasks and all diagnostic rating scales during our first testing session.  At the second 

testing session three and a half weeks later, he completed the one remaining eye movement 

task and repeated the diagnostic rating scales.  For analysis, the self-report, parent, and expert 

diagnostic rating scale scores from his two testing sessions were averaged. 

 During each testing session, consent was obtained from the parent(s) or guardian and 

assent from child participants.  A background questionnaire (see Appendix A) was completed 

to gather information on first-degree relatives with schizophrenia, bipolar disorder, or other 

psychiatric, neurological, or developmental disorders.  Further questions inquired about 

previous diagnoses (including streptococcus, implicated as a risk factor), medications, and 

nicotine or caffeine intake, as these substances are known to possibly affect eye movements.  

Patients and parent(s) or guardian also reported age at first tic onset, age of diagnosis, types of 

motor and vocal tics from childhood to the present, when tics most likely occur, how patients 

knew a tic was about to happen, and whether and for how long patients could suppress tics. 

 Following informed consent, assent, and background questionnaire completion, 

parent(s) or guardian waited in an adjacent room and completed three diagnostic rating scales 

to assess the child participant on symptom severity.  Child participants completed the 

behavioral testing followed by the diagnostic rating scales.  All participants also agreed to give 

a saliva sample for proteomic analysis, in collaboration with Pramod Dash, Ph.D., and future 

correlation with behavioral measures. 
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Eye Movement Tasks 

Overview 

 Extensive pilot testing guaranteed the eye movement tasks were simplified as much as 

possible (Jeter et al., submitted).  Each task took between 5 and 15 minutes to complete, with 

all tasks completed within one hour, including breaks.  The brevity of the tasks and ample 

breaks ensured that even the youngest and most inattentive child was not fatigued.  I used 

white stimuli on a black screen so potential color vision deficiencies would not be a factor 

(Melun et al., 2001).  Each task was devised to test specific cognitive processes.  An important 

element of task design was that each task required the same response (a vertical or horizontal 

saccade).  Thus, any performance differences among groups could be ascribed to an aspect of 

cognitive control, not to a change in sensory or motor control.  One task was designed as a 

control to verify equivalent sensorimotor control in TS and control children. 

Prosaccade 

 In this task (Figure 3.1), participants simply looked to a stimulus that appeared 

randomly in one of four peripheral locations.  The Prosaccade task served as a control task, 

verifying that sensory-input (stimulus) and motor-output (an eye movement of a specified 

amplitude) processes were intact. 

The computer screen was black (25.3° x 19.5° of visual field; 0.32 cd/m2) with a central 

grey fixation circle (0.2° diameter; 28.04 cd/m2) surrounded by four open boxes (1.1° x 1.1°; 

28.04 cd/m2) placed in cardinal directions (north, south, east, and west), 7° eccentric to the 

central fixation point.  The open boxes at potential target locations served as landmarks to 

increase the spatial accuracy of participant saccades (Briand et al., 2001; Karatekin, 2006).  

Stimuli were filled white boxes (0.2 x 0.2°; 156.61 cd/m2), which could appear in one of the four 

landmark boxes.  An eye movement was recorded when both areal and velocity criteria were 

met: 

• Fixation Window:  A region 5.8° in diameter was centered over the fixation point.  

Fixation was maintained if the participant’s current eye position was determined to be 

within in this window. 

• Target Window:  A region 4.2° in diameter was centered over each landmark (target 

location).  Saccades to the target were considered correct if they terminated in this 

region. 

• Velocity Criteria:  Initiation of an eye movement was indicated by velocity above 18.0°/s 

and the end was indicated by velocity below 4.6°/s. 
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Figure 3.1 Prosaccade task 

See text for task procedure details.  Correct response is an upward saccade. 
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 Specifically, participants were instructed to fixate on a central fixation point and make a 

speeded, accurate saccade to the peripheral target when it appeared.  To initiate each trial, 

participants had to first fixate the central fixation point for 400 ms (Figure 3.1A).  Next, a 

peripheral target appeared simultaneously with the offset of the central fixation point (Figure 

3.1B); this is called a step paradigm, as the target appears to step outward from the fixation 

point.  Finally, the participant made a saccade to the peripheral target.  The Prosaccade task 

comprised of 8 practice trials and 48 task trials with equal target presentation in each of the 

four landmarks.  Each trial was classified and recorded based on the participant’s eye 

movement response and saved in a file. 

• Break in Fixation:  If an eye movement was made before target presentation, the trial 

was aborted, recorded as a discarded trial, and added to the trial pool to be re-

presented in random order. 

• Correct:  If an eye movement was initiated after target presentation and ended in the 

correct Target Window, it was recorded as a correct trial.  Trial details (response time, 

duration, gain [i.e., spatial accuracy], and eye position coordinates sampled every 4 ms) 

were recorded. 

• Error:  If an eye movement was made after target presentation and it ended anywhere 

but inside the correct Target Window, it was recorded as an error trial.  Trial details 

(response time, duration, gain, and eye position coordinates sampled every 4 ms) were 

recorded.  Visual feedback (“wrong place”; 24 point font, 28.04 cd/m2) was presented 

just below the fixation point. 

• Timeout:  For the first 28 patients and 8 controls, if an eye movement was not made 

within 1492 ms of target presentation, the trial was aborted, recorded as a timeout, and 

added to the trial pool to be re-presented in a random order.  Once I discovered the 

timeout parameter was mistakenly this long, I reduced the setting such that subsequent 

participants had 906 ms after target presentation to complete an eye movement.  This 

change was made to reduce the number of discarded trials, as trials with response 

times longer than 900 ms were trimmed from analysis.  Visual feedback (“too slow”; 24 

point font, 28.04 cd/m2) was presented just below the fixation point and auditory 

feedback (double tone, 45 then 44 Hz) was presented.
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Antisaccade 

 In this task (Figure 3.2), participants inhibited the reflexive impulse to look to the 

peripheral stimulus and instead voluntarily generated an eye movement to the opposite 

landmark.  This task tested the participants’ cognitive control. 

 The computer screen, “Fixation Window,” “Target Window,“ and “Velocity Criteria” 

settings were identical to those for the Prosaccade task. 

Specifically, participants were directed to fixate on the central fixation point and make a 

speeded, accurate saccade directly opposite a peripheral stimulus when it appeared.  

Participants fixated the central fixation point for 400 ms to initiate each trial (Figure 3.2A).  

Next, a peripheral target appeared simultaneously with the offset of the central fixation point 

(Figure 3.2B); again, this is called a step paradigm, as the target appears to step outward from 

the fixation point.  Lastly, the participant completed an eye movement to the stimulus’s mirror 

location on the opposite side of the screen.  The Antisaccade task comprised of 8 practice trials 

and 48 task trials with equal target presentation in each of the four landmarks. 

The “Break in Fixation,” “Correct,” “Error,” and “Timeout” parameters were identical to 

those in the Prosaccade task. 
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Figure 3.2 Antisaccade task 

 See text for task procedure details.  Correct response is an upward saccade. 
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0-back 

In this task (Figure 3.3), participants observed a series of sequential stimulus flashes, 

each in a different location and made a saccade to the remembered location of the last, or 0-

back, stimulus.  This task was a classic test of working memory. 

The computer screen, “Fixation Window,” “Target Window,“ and “Velocity Criteria” 

settings were identical to those for the Prosaccade task. 

Specifically, participants were told to fixate on the central fixation point throughout a 

succession of flashes occurring (without location repeat) in the four peripheral landmarks.  

Once the fixation point disappeared, participants were to make a quick and accurate saccade 

to the last flash of the remembered sequence.  To initiate a trial, participants first had to fixate 

the central fixation point for 750 ms (Figure 3.3A).  While participants kept their eyes on the 

fixation point, 2 or 3 white, square stimuli appeared in sequence, each in a unique landmark.  

Stimuli appeared for 80 ms with a 350 ms interstimulus interval (ISI) between each stimulus 

(Figure 3.3B-D).  The participants continued to fixate during a 500 ms delay until the central 

fixation point was extinguished (Figure 3.3E).  This served as the “go signal,” at which the 

participants made a saccade to the remembered location of the last, or 0-back, stimulus, be it 

the second of two or third of three flashes in the sequence (Figure 3.3F).  The random 

presentation of two or three stimuli per trial (each in 50% of the trials) prevented participants 

from using predictive strategies to time the initiation and direction of the saccade.  The 0-back 

task comprised of 8 practice trials and 96 task trials with equal final stimulus presentation in 

each of the four landmarks.  Every participant saw the same 96 trials of stimulus sequences, as 

the trials were run from a file of pre-generated random sequences. 

Inherently, an N-back task first requires the subject to remember N+1 locations at once, 

and second to update those locations – dropping the old one and remember the new – while 

retaining the presentation order of each.  This second demand to actively manipulate the 

information in mind crucially differentiates the N-back task as a measure of working memory 

rather than short-term memory, as the latter only requires memory on a short time-scale.  Such 

delayed response task measures of working memory critically rely on the prefrontal cortex 

(Barch et al., 1997). 
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Figure 3.3 0-back task 

See text for task procedure details.  Correct response is an upward saccade.  The 

ellipsis after the fixation screen denotes the omission of an additional stimulus and ISI 

occurring on 50% of the trials.  The possibility of an additional stimulus prevented participants 

from predicting the timing and direction of their saccades.  ISI, interstimulus interval 
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Each trial was classified based on the participant’s eye movement response and saved in a file. 

• Discarded:  If an eye movement was made at an improper time, such as before offset of 

the fixation point, the trial was aborted, recorded as a discarded trial, and added to the 

trial pool to be re-run in a random order.  Trial details (locations of sequence stimuli, 

final eye position, type of discard, time point in trial of discard, and eye position 

coordinates sampled every 4 ms) were recorded.  Discarded trials were further 

classified based on when the saccade was made. 

1. Break in Fixation:  If an eye movement was made before stimulus presentation, 

the trial was aborted, recorded as a fixation break, and added to the trial pool to 

be re-run in random order. 

2. Disinhibition:  If an eye movement was made after the first stimulus, but before 

the offset of the fixation point, the trial was aborted, recorded as a discarded 

trial, and added to the trial pool to be re-run in a random order.  Trial details 

(time point in trial of eye movement and 10 eye position coordinates sampled 

every 4 ms) were recorded. 

3. Timeout:  For 28 patients and 8 control participants, if an eye movement was not 

made within 1492 ms of target presentation, the trial was aborted, recorded as a 

timeout, and added to the trial pool to be re-run in a random order.  However, 

once this long timeout parameter was discovered, the setting was changed such 

that subsequent participants had 906 ms after target presentation in which to 

make an eye movement.  This change was made to reduce the number of 

discarded trials after trimming trials with latencies longer than 900 ms.  Visual 

feedback (“too slow”; 24 point font, 28.04 cd/m2) was presented just below the 

fixation point and auditory feedback (double tone, 45 then 44 Hz) was 

presented. 

• Correct:  If an eye movement was made after offset of the fixation point and it ended in 

the correct Target Window, it was recorded as a correct trial.  Trial details (response 

time, duration, gain, and eye position coordinates sampled every 4 ms) were recorded. 

• Error:  If an eye movement was made after offset of the fixation point and it ended 

anywhere but inside the correct Target Window, it was recorded as an error trial.  Trial 

details (response time, duration, gain, and eye position coordinates sampled every 4 

ms) were recorded.  Visual feedback (“wrong place”; 24 point font, 28.04 cd/m2) was 

presented just below the fixation point. 
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1-back 

In this task (Figure 3.4), participants observed a series of sequential stimulus flashes, 

each in a different location, and made a saccade to the remembered location of the next-to-

last, or 1-back, stimulus.  This task was a classic test of working memory. 

The computer screen, “Fixation Window,” “Target Window,“ and “Velocity Criteria” were 

identical to those for the Prosaccade task. 

Specifically, participants were told to fixate on the central fixation point throughout a 

succession of flashes occurring (without location repeat) in the four peripheral landmarks.  

Once the fixation point disappeared, participants were to make a quick and accurate saccade 

to the next-to-last flash of the remembered sequence.  Trial events and timing proceeded 

identically to those in the 0-back task, with the exception that when the central fixation point 

disappeared, participants made a saccade to the remembered location of the next-to-last, or 1-

back, stimulus, be it the first of two or second of three flashes in the sequence (Figure 3.4F).  

Again, the random presentation of two or three stimuli per trial (each in 50% of the trials) 

prevented participants from using predictive strategies to time the initiation and direction of the 

saccade.  The 1-back task comprised of 8 practice trials and 96 task trials with equal next-to-

last stimulus presentation in each of the four landmarks.  Every participant saw the same 96 

trials of stimulus sequences, as the trials were run from a file of pre-generated random 

sequences. 

Critically, the 1-back task required participants to continually update their mental set by 

holding the two most recent locations in mind – exchanging the earliest presented for the most 

recent stimulus – all while remembering presentation order.  In comparison to the 0-back task, 

which required memory of and response to only the most recent stimulus, the 1-back task 

demanded greater working memory load as correct response necessitated maintaining two 

locations and presentation orders in active memory storage. 

The “Discarded,” “Correct,” and “Error” parameters were identical to those in the 0-back 

task.
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Figure 3.4 1-back task 

 See text for task procedure details.  Correct response is an upward saccade.  The 

ellipsis after the fixation screen denotes the omission of an additional stimulus and ISI 

occurring on 50% of the trials.  The possibility of an additional stimulus prevented participants 

from predicting the timing and direction of their saccades.  ISI, interstimulus interval 
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Task Counterbalance 

 The four eye movement tasks described above were semi-counterbalanced.  The N-

back working memory tasks were always completed first, and the basic orienting tasks were 

completed second.  This ensured the children completed the lengthy tasks (in trial duration and 

number of trials) first, leaving the shorter tasks (again, in trials and trial duration) as a fresh 

surprise and motivator to maintain cooperation and attention.  Both TS and healthy control 

children were assigned a counterbalance order in this rotation, respectively: 

• 0-back, 1-back, Prosaccade, Antisaccade 

• 0-back, 1-back, Antisaccade, Prosaccade 

• 1-back, 0-back, Prosaccade, Antisaccade 

• 1-back, 0-back, Antisaccade, Prosaccade 

 

Behavioral Testing Procedure 

 Following parental/guardian informed consent, child participant assent, and completion 

of the background questionnaire, families were introduced to the entire experimental set-up 

(Figure 3.5A) and procedures.  Then, families departed to rest in the adjacent waiting room 

(Figure 3.5B), which was filled with kid-friendly décor and toys, perfect for accompanying 

siblings and participant breaks.  Testing room lights were turned off and participants were 

allowed to dark-adapt as they were seated in a (non-rolling, non-swiveling!) chair and fitted in 

the chin rest (Figure 3.5C).  Each task (“games,” as called for the kids’ benefit) began with an 

explanation of rules and example trials acted out on a printed page of the basic task screen.  

Participants could ask questions both before and after a set of practice trials, which could be 

repeated, to ensure each child understood the rules before continuing with the experimental 

trial block.  Because trials were self-paced, participants were encouraged to rest their eyes or 

sit back from the chin rest, as trials only continued when the eye tracking camera detected the 

participant’s gaze at the fixation point on the monitor. 
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Figure 3.5 Eye tracking set-up 

 A. From left, participant chair and chin rest, eye-tracking monitor/computer, participant 

flat screen monitor on far side of divider wall, Macintosh computer with custom programs, 

experimenter seat and monitor.  B. Comfortable space with fun toys and popular chalkboard.  

C. From left, stimulus screen, ISCAN® camera, and example volunteer on chin rest. 
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Eye Movement Measurement 

 Each participant was seated 72 cm from the center of a computer screen in a dark room 

with his/her head held in place by a chin rest and forehead restraint.  Stimuli were presented on 

a monitor (LCD, 17 inch, 75 Hz refresh rate, 1024 x 768 pixels) connected to a Power G4 

Macintosh computer running OS 9 operating system.  An infrared eye-tracking camera 

(ISCAN® ETL-200, Burlington, Massachusetts) measured eye movement of the right eye.  The 

eye-tracker, connected to the Macintosh via a USB port, pinpointed the participant’s pupil and 

corneal reflection of infrared rays.  Using the spatial difference of these two points, which 

changed as the participant looked around the screen, the ISCAN® equipment could calculate 

eye position at 240 Hz regardless of small shifts in head or body position.  Consequently, 

further restraint of a participant’s head was not needed and childhood squirming or the tics of 

TS did not affect the measurements.  A custom program developed using commercially 

available software (Vision Shell; Code Warrior) was used to present visual stimuli and record 

details of eye movements.  For each trial in all experiments, the eye position data were 

analyzed online, automatically canceling trials with invalid eye movements and later re-

presenting them in random order. 

Before each eye movement task, the participant was instructed to look at nine points on 

the screen.  Corresponding eye position coordinates were recorded.  Throughout the task, 

custom calibration software used these reference points to calculate the x- and y-axis screen 

coordinates of the participant’s pupil (with an error radius about 0.25°). 

Dependent Measures 

For each task, two files per participant were saved.  The data file recorded specific trial 

types, timing of precise screen events, and classification of each trial’s result (as described 

above).  The x- and y-axis eye position coordinates from every 4 ms sample for each trial were 

saved in a separate file.  Online control of the experiments (e.g., aborting a trial) was enabled 

by measures calculated from these values.  The files were also available for offline analysis 

(see Appendix B for sample outputs).  Dependent measures common to each task include: 

• Response Time:  This was the elapsed time from when the fixation point disappeared 

until the saccade began, also known as latency.  Meeting both areal (gaze outside the 

Fixation Window) and velocity (movement above 18.0°/s) criteria marked the initiation of 

a saccade. 

• Error Rate:  This was the percentage of trials in a task in which the participant made an 

eye movement at the correct time, but to an incorrect location. 
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• Working Memory Load:  This was a measure of working memory demand on a 

participant, calculated as the difference in response time or error rate for the 1-back and 

0-back tasks.  A positive working memory load indicated a greater demand on working 

memory in the 1-back task.  This measure pertained only to the 0-back and 1-back 

tasks. 

• Disinhibition:  This was a measure of inhibition and was a count of the number of N-

back discarded trials in which the participant made an eye movement after the first flash 

but before the “go signal.”  This measure pertained only to the 0-back and 1-back tasks. 

 

Data Analysis 

 Customized programming scripts in MATLAB 7.3 for Mac (Mathworks) compiled and 

averaged each participant’s data file from each task.  First, trials with a response time less than 

100 ms or greater than 900 ms were discarded.  From the remaining trials, error rate was 

calculated as the percentage of trials in which the participant made an eye movement to an 

incorrect location.  Correct trials were further trimmed if response time was 2.5 standard 

deviations from the participant’s mean.  Mean response time was calculated from these 

remaining trials. 

 The MATLAB output and clinical measures were combined in a PASW Statistics 17.0 

for Mac (formerly SPSS) spreadsheet for subsequent analyses.  Pearson’s correlations (two-

tailed) compared the symptom severities of TS, ADHD, and OCD.  Those patients with an OCI-

CV score greater than 2.33 standard deviations above the mean control participant score 

and/or an ADHD-IV percentile rank above 85 were classified as TS-comorbid patients.  Raw 

response time and error rate of each behavioral task and working memory load were included 

in separate multivariate linear models with TS status (Control, TS-only, TS-comorbid) as a main 

factor, adjusting for age as a covariate, to assess planned contrasts.  Because of a non-normal 

distribution, disinhibitions from the 0-back and 1-back tasks were included in a Poisson 

loglinear Generalized Linear Model with TS status as the main factor and age as a covariate to 

evaluate planned contrasts.  Response time and error rate of each behavioral task and working 

memory load were included in a factor analysis and factors with eigenvalues over one 

extracted.  Totals and subscales of the three diagnostic rating scales were included in another 

factor analysis and again factors with eigenvalues over one extracted.  Pearson’s partial 

correlations (controlling for age) compared each of the eye movement factors to each of the 

diagnostic rating scale raw totals and diagnostic rating scale factors. 
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4. Chapter 4 

Results 
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Control and Tourette Syndrome Participants 

 Twenty-nine typically developing children (Controls) and thirty-nine children with TS 

completed all diagnostic rating scales and eye movement tasks.  The age and gender 

composition of the two participant groups are listed in Table 4.1 and did not statistically differ 

from one another (gender: t66 = 0.55, p = 0.59; age: t66 = 0.29, p = 0.77).  Three raters per 

participant independently completed self-report diagnostic rating scales of ADHD (Attention 

Deficit Hyperactivity Disorder Rating Scale-IV, ADHD-IV), OCD (Obsessive Compulsive 

Inventory – Child Version, OCI-CV) and TS (Yale Global Tic Severity Scale, YGTSS) to assess 

symptom severity of the child.  For the ADHD and TS scales, every participant had three 

scores, one each from the participant, parent(s) or guardian, and me.  On the scale assessing 

OCD symptoms, only the participant and parent(s) or guardian values were used, as I did not 

know each child well enough to accurately evaluate his or her internal obsessions and daily 

compulsions, whereas I could assess the severity of external hyperactivity, inattention, and tics.  

Mean scores of these scales are also listed in Table 4.1.  As expected, Controls and children 

with TS differed statistically on all scale ratings (ADHD-IV: t66 = -6.44, p < 0.001; OCI-CV: t60 =  

-7.24, p < 0.001; YGTSS: t39 = -12.60, p < 0.001). 

 To identify any relationship between symptom severities of TS, ADHD, and/or OCD, 

individual patient diagnostic rating scale scores were plotted against one another in pairs.  

Scatter plots of these three comparisons are shown in Figure 4.1 (ADHD-IV vs. OCI-CV), 

Figure 4.2 (ADHD-IV vs. YGTSS), and Figure 4.3 (OCI-CV vs. YGTSS).  Interestingly, patient 

scores on all three diagnostic rating scales correlated with one another.  Patient scores of 

ADHD symptoms correlated strongly with OCD symptoms (ADHD-IV vs. OCI-CV: r(38) = 0.53, 

p < 0.001) and moderately with TS symptoms (ADHD-IV vs. YGTSS: r(38) = 0.22, p = 0.17).  

Ratings of patient OCD symptoms significantly correlated with TS symptoms (OCI-CV vs. 

YGTSS: r(38) = 0.35, p = 0.03).  Thus, as symptoms of one disorder increase, so do symptoms 

of the other two.  This indicates that not only are ADHD and OCD strongly related to one 

another in TS, but also that these comorbid conditions are inherent in TS, not additional to the 

disorder as classically thought.  Further, this indicates ADHD and OCD symptoms are present 

at some level in most all TS patients.  Only ADHD and OCD diagnostic rating scale scores 

correlated among Controls; the other scale pairings were not significant (ADHD-IV vs. OCI-CV 

r(28) = 0.42, p = 0.02; ADHD-IV vs. YGTSS r(28) = 0.05, p = 0.80; OCI-CV vs. YGTSS r(28) = 

0.34, p = 0.07). 
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Table 4.1 TS and Control demographics and diagnostic rating scale scores 

 Gender Age ADHD-IV OCI-CV YGTSS 

Control 19 M, 10 F 
13.16 (2.10) 

[10.19-16.54] 

43.3 (24.3) 

[0-84.0] 

3.9 (2.6)    

[0-9.5] 

0.7 (1.3)    

[0-3.7] 

Tourette 

Syndrome 
28 M, 11 F 

13.01 (2.11) 

[10.09-16.95] 

78.3 (20.4) 

[28.4-98.9] 

10.8 (5.1) 

[3.0-22.0] 

36.0 (17.5) 

[9.3-95.0] 

 p = 0.59 p = 0.77 p < 0.001 p < 0.001 p < 0.001 

 

Gender: M = male, F = female.  All values are mean (standard deviation) [range].  Age is in 

years.  ADHD-IV, Attention Deficit Hyperactivity Disorder Rating Scale-IV (percentile rank 1-

100); OCI-CV, Obsessive Compulsive Inventory – Child Version (score range 0-42); YGTSS, 

Yale Global Tic Severity Scale (score range 0-100).
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Figure 4.1 TS and Control ADHD and OCD symptom severity 

Individual TS patient and Control ADHD-IV percentile ranks are plotted against OCI-CV 

total scores.  Dotted lines indicate the cutoff scores above which participants are classified as 

having ADHD or OCD.  ADHD-IV, Attention Deficit Hyperactivity Disorder Rating Scale-IV; OCI-

CV, Obsessive Compulsive Inventory – Child Version 
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Figure 4.2 TS and Control ADHD and tic symptom severity 

Individual TS patient and Control ADHD-IV percentile ranks are plotted against YGTSS 

global (total) scores.  Dotted line indicates the cutoff score above which participants are 

classified as having ADHD.  ADHD-IV, Attention Deficit Hyperactivity Disorder Rating Scale-IV; 

YGTSS, Yale Global Tic Severity Scale 
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Figure 4.3 TS and Control OCD and tic symptom severity 

Individual TS patient and Control OCI-CV total scores are plotted against YGTSS global 

(total) scores.  Dotted line indicates the cutoff score above which participants are classified as 

having OCD.  OCI-CV, Obsessive Compulsive Inventory – Child Version; YGTSS, Yale Global 

Tic Severity Scale 
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Control and Tourette Syndrome Participants Divided by Comorbid Status 

For a classification of comorbid ADHD, children must have ranked above the 85th 

percentile on the ADHD-IV total score, which is the standard per the ADHD-IV manual.  

Because I used the OCI-CV while its authors still were determining a cutoff score, I set a value 

based on the Controls in my study.  A classification of OCD was given when a child scored 

2.33 standard deviations above the mean of the Controls.  This deviance value represents 2% 

of the population, which is the prevalence of childhood OCD (Zohar, 1999).  In the last section, 

I showed that the symptom severities of TS, ADHD, and OCD correlated with one another.  So, 

all children with TS who scored above the cutoffs for ADHD and/or OCD were assigned to a 

TS-comorbid group, while those below the cutoffs for ADHD and OCD were considered to have 

only TS (TS-only).  As tic severity correlates with ADHD and OCD symptom severity, the 

nomenclature of TS-only and TS-comorbid more precisely refers to an overall less and more 

severe profile, respectively.  No control child scored above the ADHD or OCD cutoffs. 

 Table 4.2 lists the demographics and diagnostic rating scale scores of the same 

Controls and TS patients, the latter now divided into eighteen TS-only children and twenty-one 

TS-comorbid children.  These three groups did not differ statistically by gender or age (gender: 

F(2,65) = 1.19, p = 0.31; age: F(2,65) = 0.05, p = 0.95), but a higher proportion of females were TS-

comorbid patients than males (8/11 girls compared to 13/28 boys).  Naturally, the three groups 

differed on the diagnostic rating scale scores (ADHD-IV: F(2,65) = 37.00, p < 0.001; OCI-CV: 

F(2,65) = 53.91, p < 0.001; YGTSS: F(2,65) = 61.84, p < 0.001).  Controls differed significantly from 

TS-only patients (ADHD-IV: p = 0.001; OCI-CV: p = 0.002; YGTSS: p < 0.001) and TS-

comorbid patients (ADHD-IV: p < 0.001; OCI-CV: p < 0.001; YGTSS: p < 0.001).  TS-comorbid 

children were rated significantly more severe than TS-only children on all but tic severity 

(ADHD-IV: p < 0.001; OCI-CV: p < 0.001; YGTSS: p = 0.11). 

 Age is known to affect eye movement performance (Fukushima et al., 2000; Klein and 

Foerster, 2001; Munoz et al., 1998; Luna et al., 2004), which is why this study not only 

excluded adults, but also limited the juvenile participant ages to between 10 and 16 years 

(discussed in Chpt. 2, Orienting in TS).  Yet, as shown in Figure 4.4A and B, younger 

participants, regardless of disease status, had significantly increased response times and more 

errors (higher error rate) on voluntary eye movement tasks such as the Antisaccade task 

(response time: r(67) = -0.28, p = 0.02; error rate: r(67) = -0.61, p < 0.001).  Thus, in all 

analyses of eye movement variables, age was entered as a covariate to eliminate its influence 

on the behavioral data. 
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Table 4.2 TS subtype and Control demographics and diagnostic rating scale scores 

 Gender Age ADHD-IV OCI-CV YGTSS 

Control 19 M, 10 F 
13.16 (2.10) 

[10.19-16.54] 

43.3 (24.3) 

[0-84.0] 

3.9 (2.6)    

[0-9.5] 

0.7 (1.3)    

[0-3.7] 

TS-only 15 M, 3 F 
12.95 (2.24) 

[10.18-16.95] 

63.1 (20.1) 

[28.4-84.9] 

7.2 (2.0) 

[3.0-10.0] 

32.3 (13.3) 

[9.3-67.7] 

TS-comorbid 13 M, 8 F 
13.06 (2.06) 

[10.09-15.98] 

91.5 (7.7) 

[75.0-98.9] 

13.9 (4.9) 

[5.0-22.0] 

39.2 (20.2) 

[18.3-95.0] 

 p = 0.31 p = 0.95 p < 0.001 p < 0.001 p < 0.001 

 

Gender: M = male, F = female.  All values are mean (standard deviation) [range].  Age is in 

years.  See text for planned comparisons between group diagnostic rating scale scores.  

ADHD-IV, Attention Deficit Hyperactivity Disorder Rating Scale-IV (percentile rank 1-100); OCI-

CV, Obsessive Compulsive Inventory – Child Version (score range 0-42); YGTSS, Yale Global 

Tic Severity Scale (score range 0-100).
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A. Response Time 

 

B. Error Rate 

 

Figure 4.4 Voluntary eye movement performance across age 

 A. Response times and B. errors on a voluntary eye movement task decrease with age.
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Part 1: Classic Oculomotor Tasks – Prosaccade and Antisaccade 

 The first part of this study employed the Prosaccade and Antisaccade tasks, two 

traditional measures of orienting, to assess reflexive and voluntary functioning, respectively. 

 
Prosaccade Task 

Response Time 

 For each participant, trials with a response time less than 100 ms or greater than 900 

ms were discarded.  Correct trials were further trimmed if response time was 2.5 standard 

deviations from the participant’s mean.  Mostofsky and colleagues used a similar procedure 

(Within a task, response times ≤115 ms were trimmed.  Additional trials were trimmed if they 

were 2 standard deviations from the mean response time of the task; Mostofsky et al., 2001).  

Mean response time was calculated from these remaining correct trials.  Controls, TS-only 

patients, and TS-comorbid patients did not differ from one another on Prosaccade response 

time (F(2,64) = 0.27, p = 0.78; Figure 4.5A). 

 

Error Rate 

 From trials remaining after the initial trim (response time less than 100 ms or greater 

than 900 ms), error rate was calculated as the percentage of trials in which the participant 

made an eye movement to an incorrect location.  Controls, TS-only patients, and TS-comorbid 

patients had comparable Prosaccade task error rates (F(2,64) = 1.56, p = 0.22; Figure 4.5B).  

Only when all TS patients were combined did they marginally have more errors than Controls 

(p = 0.08). 
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A. Response Time 

 

B. Error Rate 

 

Figure 4.5 Prosaccade task response time and error rate 

 A.  Response Time.  B.  Error Rate plotted on y-axis for comparison to subsequent 

tasks.  Inset below plotted to visualize group differences.  All TS patients combined marginally 

had more errors than Controls. 
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Antisaccade Task 

Response Time 

 Mean Antisaccade response time for each participant was calculated in the same way 

as for the Prosaccade task and differed among the groups (F(2,64) = 2.83, p = 0.07).  TS-

comorbid patients took significantly longer to respond than TS-only patients (p = 0.02), whose 

performance was comparable to Controls (p = 0.29; Figure 4.6A).  Controls and TS-comorbid 

patients did not differ in time to respond (p = 0.13). 

 

Error Rate 

 Antisaccade error rate was calculated in the same way as for the Prosaccade task.  

Antisaccade error rate nearly differed among groups (F(2,64) = 1.76, p = 0.18).  TS-comorbid 

patients marginally had more errors on the Antisaccade task than Controls (p = 0.07).  TS 

patients combined, regardless of comorbid condition, also showed a statistical trend for more 

errors than Controls (p = 0.09; Figure 4.6B).  Counter to expected results, Control and TS-only 

patients had equivalent Antisaccade error rates (p = 0.28). 

Because increasing tic severity is associated with increasing severities of ADHD and 

OCD symptoms (Figure 4.2 and Figure 4.3), and TS patients with increased severities of 

these comorbid conditions tended to have more errors than Controls on the voluntary 

Antisaccade task (Figure 4.6B), I next completed an exploratory analysis to determine whether 

TS-only patients with high tic severity had increased Antisaccade errors compared to TS-only 

patients with low tic severity or Controls.  Using the median tic severity of the TS-only group 

(YGTSS = 31.83) as the cutoff, I divided the TS-only patients into higher (TS-only Higher, n = 

9) and lower (TS-only Lower, n = 9) tic severity groups.  The groups did differ on Antisaccade 

error rate (F(2,43) = 3.37, p = 0.04).  Amazingly, TS-only Higher patients had a significantly 

greater Antisaccade error rate than TS-only Lower patients (p = 0.03) or Controls (p = 0.02; 

Figure 4.7).  In contrast, TS-only Lower patients had a similar Antisaccade error rate as 

Controls (p = 0.81).
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A. Response Time 

 

 

B. Error Rate 

 

 

Figure 4.6 Antisaccade task response time and error rate 

 A.  Response Time.  Patients with comorbid conditions were significantly slower to 

respond than patients without comorbid conditions.  B.  Error Rate.  TS-comorbid patients, as 

well as all TS patients combined, had marginally more errors than Controls.
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Figure 4.7 Antisaccade task error rate for TS-only patients with lower and higher tic severity 

 While TS-only patients with lower tic severity (TS-only Lower) continued to perform 

comparably with Controls, TS-only patients with higher tic severity (TS-only Higher) not only 

had significantly more errors than Controls, but also more errors than TS-only patients with 

lower tic severity (TS-only Lower).
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Part 1 Summary 

 These data support the hypothesis that TS patients with comorbid conditions have weak 

voluntary control in comparison to Controls and patients with TS only.  TS-comorbid patients 

had slowed voluntary responding (Antisaccade response time; Figure 4.6A) compared to TS-

only patients.  Intimating weak voluntary inhibition, TS-comorbid patients tended to have an 

elevated Antisaccade error rate compared to Controls (Figure 4.6B).  Unexpectedly, TS-only 

patients did not show any voluntary deficits compared to Controls. 

 

Part 2: Novel Spatial N-back Tasks – 0-back and 1-back 

 In the second part of this study the 0-back and 1-back tasks, novel measures of spatial 

working memory, were administered to assess components of voluntary function, specifically 

response inhibition, response generation, and working memory. 

 
0-back Task 

Response Time 

 Each participant’s mean 0-back response time was calculated as described in the 

Prosaccade task response time section.  Controls, TS-only patients, and TS-comorbid patients 

did not differ from one another on 0-back response time (F(2,64) = 0.03, p = 0.97; Figure 4.8A). 

 

Error Rate 

Each participant’s error rate for the 0-back task was computed as described in the 

Prosaccade error rate section.  0-back error rate differed across the three groups (F(2,64) = 6.08, 

p = 0.004).  TS-comorbid patients not only had a significantly higher 0-back error rate than 

Controls (p = 0.002), but they also had a significantly higher 0-back error rate than TS-only 

patients (p = 0.006; Figure 4.8B).  Again, TS-only patients surprisingly had comparable error 

rate performance to Controls (p = 0.98).  When all children with TS were grouped, they showed 

a marginally greater 0-back error rate than Controls (p = 0.07).
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A. Response Time 

 

 

B. Error Rate 

 

 

Figure 4.8 0-back task response time and error rate 

 A.  Response Time.  B.  Error Rate.  TS-comorbid patients not only had significantly 

more errors than Controls, but also more errors than TS-only patients.  Additionally, all TS 

patients combined had marginally more errors than Controls.
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1-back Task 

Response Time 

 Mean 1-back response time for each participant was calculated using the same 

procedure as for the Prosaccade task.  Groups marginally differed on 1-back response time 

(F(2,64) = 1.95, p = 0.15).  TS-comorbid patients tended to have increased 1-back response time 

compared to Controls (p = 0.09) and TS-only patients (p = 0.09; Figure 4.9A).  TS-only 

patients responded in similar time as Controls (p = 0.81). 

 

Error Rate 

 1-back error rate was calculated in the same way as for the Prosaccade task.  Controls, 

TS-only patients, and TS-comorbid patients had similar 1-back error rate (F(2,64) = 1.39, p = 

0.26; Figure 4.9B). 

 

Working Memory Load 

 Working Memory Load is the added demand placed on working memory by the 1-back 

task compared to the 0-back task.  Response time or error rate Working Memory Load is 

quantified by subtracting the 0-back task performance from that of the 1-back task.  A positive 

value denotes more working memory load in the 1-back task compared to the 0-back task. 

 

Response Time 

 Working Memory Load mean response time was computed by subtracting each 

participant’s mean 0-back response time from mean 1-back response time.  There were 

differences among the groups (F(2,64) = 2.71, p = 0.07).  TS-comorbid patients not only took 

significantly longer to respond in the 1-back task than 0-back task compared to Controls (p = 

0.04), but also longer than TS-only patients (p = 0.05; Figure 4.10A).  As in all other tasks, TS-

only patients did not differ from Controls (p = 0.91). 

 

Error Rate 

 Working Memory Load error rate was computed by subtracting each participant’s 0-

back error rate from 1-back error rate.  Controls, TS-only patients, and TS-comorbid patients 

did not differ on Working Memory Load error rate (F(2,64) = 0.09, p = 0.92; Figure 4.10B).
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A. Response Time 

 

 

B. Error Rate 

 

 

Figure 4.9 1-back task response time and error rate 

 A.  Response Time.  TS-comorbid patients responded in marginally more time than 

Controls or TS-only patients.  B.  Error Rate.
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A. Response Time Difference 

 

 

B. Error Rate Difference 

 

 

Figure 4.10 Working Memory Load response time and error rate difference 

 A.  Response Time Difference between 1-back and 0-back tasks.  Working Memory 

Load response time difference was significantly greater for TS-comorbid patients than for 

Controls or TS-only patients.  B.  Error Rate Difference between 1-back and 0-back tasks.  RT, 

response time; ER, error rate
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N-back Task Disinhibitions 

 0-back and 1-back response time and error rate were calculated only on trials when 

participants properly maintained fixation throughout the delay period (see Methods, Figure 3.3 

and Figure 3.4).  Trials in which participants made an early eye movement in response to a 

mid-trial stimulus flash were considered disinhibitions.  While disinhibitions were tallied and 

saved in a file, these trials were rerun and did not count toward the 96 total trials in a testing 

block. 

 The distribution of the number of disinhibitions was non-normal in both N-back tasks for 

Controls, TS-only patients, and TS-comorbid patients.  Thus, the data were analyzed using a 

Poisson loglinear Generalized Linear Model with age as a covariate.  For the 0-back task, all 

participant groups had equivalent disinhibitions (Wald Chi-Square(2, 64) = 1.94, p = 0.38; Figure 

4.11A).  For the 1-back task, however, the effect of group was significant (Wald Chi-Square(2, 64) 

= 12.67, p = 0.002).  Whereas TS-only patients had marginally more disinhibitions than 

Controls (p = 0.08), TS-comorbid patients had significantly more disinhibitions than Controls (p 

< 0.001; Figure 4.11B).  TS-only and TS-comorbid patients did not differ (p = 0.11). 

 

Part 2 Summary 

 TS-comorbid patients continued to demonstrate poor voluntary control in comparison to 

Controls and patients with TS only.  Not only did TS patients with comorbid conditions have 

increased 0-back errors compared to Controls, but also TS-only patients (Figure 4.8B).  Had 

TS patients not been subdivided by comorbidity, this significant difference would have been 

masked as a trend, falsely attributing inhibitory deficits to all TS patients, regardless of 

comorbid status.  As in Part 1, TS-only patients countered my hypothesis and showed no 

voluntary deficits in comparison to Controls.  A tendency for TS-comorbid patients to respond 

more slowly than Controls or TS-only patients in the 1-back task (Figure 4.9A) was significant 

for Working Memory Load in both cases (Figure 4.10A).  TS-comorbid patients also made 

more disinhibitions in the 1-back task than Controls (Figure 4.11B).
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A. 0-back 

 

 

B. 1-back 

 

 

Figure 4.11 0-back and 1-back task disinhibitions 

 A.  0-back task disinhibitions.  B.  1-back task disinhibitions.  TS-comorbid patients had 

significantly more early eye movements to mid-trial stimuli (disinhibitions) than Controls.  TS-

only patients tended to have more disinhibitions than Controls. 
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Part 3: Factor Analysis – Eye Movement Variables and Rating Scale Totals/Subscales 

 In the final part of this study, factor analyses served to 1) reduce my data into fewer, 

meaningful components that capture the majority of the variance within my original variables 

and 2) detect structural relationships and explain the pattern of correlations among variables.  

In a factor analysis, each subject is plotted in an n-dimensional space where n represents the 

number of original variables.  A line most closely passing through all data points, and thus 

accounting for as much variance as possible, is drawn through this space.  The extent to which 

each axis (original variable) correlates with this first factor is its loading strength.  Another line 

(factor) is drawn that accounts for the majority of the remaining variance and is orthogonal to 

(uncorrelated with) the first factor.  This process is reiterated until all variance is accounted for. 

 

Eye Movement Variables 

To determine if the many eye movement variables could be reduced into meaningful 

factors that also represent the structural relationships between variables, presumably reflecting 

brain organization, I conducted a factor analysis of the response time and error rate measures 

from all four eye movement tasks and working memory load.  A variable was considered to 

have loaded a factor if its correlation (loading) with the factor was greater than r = 0.45.  Table 

4.3 lists the four factors extracted, the amount of variance for which they accounted, and the 

eye movement variables represented by each factor and at what rotated loading strength. 

Fascinatingly, the first two factors seem to represent the respective voluntary functions 

of inhibition and generation.  Inhibition, measured as error rate, is the ability to prevent a 

response and instead correctly execute another action.  Accordingly, the error rate variables 

from all three voluntary eye movement tasks and measure of working memory strongly loaded 

on the first, or Inhibition Factor.  Generation, measured as response time, activates the 

appropriate motor action.  All voluntary response time variables except 0-back response time 

loaded the second, or Generation Factor.  The last two factors seem to represent different 

oculomotor functions.  1-back and Working Memory Load error rates loaded the Working 

Memory factor, whereas Prosaccade response time and error rate and Antisaccade response 

time loaded the Basic Sensorimotor Performance factor. 

Each eye movement factor was independently correlated with each diagnostic rating 

scale, adjusting for age and the other three factors as covariates.  Table 4.4 shows that the 

Inhibition Factor correlated significantly with all three clinical measures (ADHD-IV: r(62) = 0.27, 

p = 0.03; OCI-CV: r(62) = 0.32, p = 0.009; YGTSS: r(62) = 0.34, p = 0.006).  The Generation 
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Table 4.3 Factor analysis of eye movement variables 

Factor Extracted Variance Explained Variables Loadings 

Inhibition 21.0% 0-back ER 

Antisaccade ER 

1-back ER 

Working Memory Load ER 

0.844 

0.746 

0.734 

0.453 

Generation 20.3% 1-back RT 

Working Memory Load RT 

Antisaccade RT 

0.906 

0.904 

0.504 

Working Memory 16.9% Working Memory Load ER 

1-back ER 

0.671 

0.513 

Basic Sensorimotor 

Performance 

16.9% Prosaccade RT 

Antisaccade RT 

Prosaccade ER 

0.827 

0.622 

0.524 

 

A variable was considered to have loaded a factor if its correlation (loading) with the factor was 

greater than r = 0.450.  ER, error rate; RT, response time
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Table 4.4 Correlations of eye movement factors with diagnostic rating scales 

EM Factor ADHD-IV OCI-CV YGTSS 

Inhibition 
r(62) = 0.27 

p = 0.03 

r(62) = 0.32 

p = 0.009 

r(62) = 0.34 

p = 0.006 

Generation 
r(62) = 0.16 

p = 0.20 

r(62) = 0.30 

p = 0.02 

r(62) = 0.24 

p = 0.05 

Working Memory 
r(62) = -0.14 

p = 0.26 

r(62) = -0.10 

p = 0.44 

r(62) = 0.02 

p = 0.88 

Basic Sensorimotor 

Performance 

r(62) = -0.03 

p = 0.83 

r(62) = -0.03 

p = 0.80 

r(62) = -0.08 

p = 0.54 

 

EM, eye movement; ADHD-IV, Attention Deficit Hyperactivity Disorder Rating Scale-IV; OCI-

CV, Obsessive Compulsive Inventory – Child Version; YGTSS, Yale Global Tic Severity Scale; 

Bold correlations are statistically significant.
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Factor correlated significantly with the OCD and tic scales (OCI-CV: r(62) = 0.30, p = 0.02; 

YGTSS: r(62) = 0.24, p = 0.05).  The Working Memory and Basic Sensorimotor Performance 

factors did not strongly correlate with any of the three diagnostic rating scales. 

 

Diagnostic Rating Scale Totals and Subscales 

To determine if the aspects of TS captured by each clinical measure overlapped, I also 

conducted a factor analysis of the diagnostic rating scale totals and subscales.  See Appendix 

A for a full list of each diagnostic rating scale’s subscales and the questions comprising them.  

A variable was considered to have loaded a factor if its correlation (loading) with the factor was 

greater than r = 0.45.  Table 4.5 lists the four factors extracted, the amount of variance for 

which they accounted, and the scale totals or subscales represented by each factor and at 

what rotated loading strength. 

The first factor, or Tic Severity factor, clearly represents the YGTSS, which assesses 

phonic (vocal) and motor tic severity.  Phonic tic subscales loaded more strongly than motor tic 

subscales.  The second factor, or ADHD/OCD factor, primarily represents the ADHD-IV total 

and its two subscales, but also includes the OCI-CV total and four of its six subscales.  The 

OCI-CV total and a new mix of three of six subscales loaded onto factor three, or the OCD 

factor.  Finally, factor four, or Tic-related OCD factor, captures motor tics and the OCI-CV 

Washing subscale.  Figure 4.12 is a scatter plot of the ADHD/OCD and Tic Severity Factors.  

These two factors correlated for Controls (r(28) = -0.69, p < 0.001), but not TS patients (r(38) = 

-0.21, p = 0.21). 

Lastly, the diagnostic rating scale factors (Tic Severity, ADHD/OCD, OCD, and Tic-

related OCD) were correlated with the eye movement factors (Inhibition, Generation, Harder 

Task, and Easier Task), adjusting for age as a covariate.  Table 4.6 reveals the ADHD/OCD 

factor significantly correlated with the Inhibition factor (r(62) = 0.39, p = 0.001) and Generation 

factor (r(62) = 0.27, p = 0.03). 
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Table 4.5 Factor analysis of diagnostic rating scale totals and subscales 

Factor Extracted Variance Explained Subscales and Totals Loadings 

Tic Severity 39.6% Phonic Tic Overall 

Phonic Tic Number 

Phonic Tic Intensity 

Phonic Tic Complexity 

Phonic Tic Frequency 

Tic Global (Total) Score 

Phonic Tic Interference 

Motor Tic Number 

Overall Life Impairment 

Motor Tic Frequency 

Motor Tic Overall 

Motor Tic Interference 

Motor Tic Intensity 

0.929 

0.907 

0.878 

0.872 

0.868 

0.858 

0.805 

0.759 

0.747 

0.731 

0.730 

0.676 

0.673 

ADHD/OCD 19.7% ADHD Total 

ADHD Inattention 

ADHD Hyperactivity 

OCD Obsessions 

OCD Total 

OCD Doubting/Checking 

OCD Washing 

OCD Neutralizing 

0.857 

0.815 

0.806 

0.662 

0.626 

0.566 

0.484 

0.452 

OCD 13.6% OCD Hoarding 

OCD Total 

OCD Doubting/Checking 

Motor Tic Interference 

OCD Neutralizing 

0.857 

0.653 

0.577 

0.490 

0.451 

Tic-related OCD 9.1% Motor Tic Complexity 

OCD Washing 

Motor Tic Overall 

0.788 

0.674 

0.550 
 

A variable was considered to have loaded a factor if its correlation (loading) with the factor was 

greater than r = 0.450.  See Appendix A for a list of each rating scale’s subscales and the 

questions comprising them. 
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Figure 4.12 TS and Control Tic Severity and ADHD/OCD Factors 

 Individual TS patient and Control ADHD/OCD Factor scores are plotted against Tic 

Severity Factor scores. 
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Table 4.6 Correlations of eye movement factors with diagnostic rating scale factors 

EM Factor Tic Severity ADHD/OCD OCD Tic-related OCD 

Inhibition 
r(62) = 0.20 

p = 0.11 

r(62) = 0.39 

p = 0.001 

r(62) = -0.05 

p = 0.69 

r(62) = 0.17 

p = 0.19 

Generation 
r(62) = 0.07 

p = 0.60 

r(62) = 0.27 

p = 0.03 

r(62) = 0.07 

p = 0.61 

r(62) = 0.05 

p = 0.69 

Harder Task 
r(62) = 0.05 

p = 0.72 

r(62) = -0.10 

p = 0.43 

r(62) = -0.06 

p = 0.65 

r(62) = -0.10 

p = 0.46 

Easier Task 
r(62) = -0.12 

p = 0.36 

r(62) = -0.20 

p = 0.12 

r(62) = 0.10 

p = 0.44 

r(62) = 0.07 

p = 0.60 

 

EM, eye movement; Bold correlations are statistically significant. 
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Part 3 Summary 

Separate factor analyses, one of the eye movement variables and another of the 

diagnostic rating scale totals and subscales, each produced four interpretable factors.  The first 

two eye movement factors represented the voluntary functions of inhibition and generation, 

respectively.  The latter two factors seemed to signify oculomotor function, namely Working 

Memory and Basic Sensorimotor Performance (Table 4.3).  Only the Inhibition and Generation 

factors significantly correlated with the total scores of the three clinical measures (Table 4.4).  

Whereas the subscales loading most heavily on the first diagnostic rating scale factor 

exclusively evaluated tic severity, those loading the second factor were a mix of ADHD and 

OCD subscales.  The third and fourth factors represented OCD and tic-related OCD, 

respectively (Table 4.5).  Tic severity and ADHD/OCD factor scores correlated for Controls, but 

not TS patients (Figure 4.12).  Of these diagnostic rating scale factors, only the ADHD/OCD 

factor significantly correlated with the Inhibition and Generation factors (Table 4.6). 
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5. Chapter 5 

Discussion 
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Despite the unwanted motor and vocal tics of TS, it is the highly prevalent comorbid 

conditions of ADHD and OCD associated with increased tic severity that insidiously impair the 

daily functioning of children with TS.  This study clearly assessed the voluntary control abilities 

of children with TS.  As suggested by the Tonic Inhibition Model (Sereno, 1992), frontal cortex 

regions regulate the basal ganglia’s tonic inhibitory output applied on midbrain structures.  

Thus, it follows that impaired prefrontal cortex function will be evidenced by inferior voluntary 

performance, perhaps in tandem with enhanced reflexive operation.  The neuroanatomical 

model outlined in Chapter 2 describes the role of basal ganglia-thalamocortical loops in 

cognitive and motor control, anticipates behavioral deficits in individuals with TS, and predicts 

how they are exaggerated by comorbid ADHD and/or OCD.  Earlier oculomotor investigations 

of cognitive control in TS ignored troublesome confounds, including medication, age, and 

comorbidity.  The current study shows cognitive control deficit is not attributable to TS alone, 

but rather only when affiliated with increased symptom severities.  In the final chapter, I will 

discuss this surprising finding, anchor its conclusion to the literature, and present a revised 

neuroanatomical model of TS and concomitant ADHD and OCD.  In the process I will address 

three questions: Are comorbid ADHD and OCD additional, or instead inherent, to TS?  How 

can children with only TS, who have obvious outward behavioral differences from typically 

developing children (i.e., tics), not also display behavioral differences on voluntary saccadic 

tasks of cognitive control?  What, then, causes children with TS and ADHD and/or OCD to 

show cognitive control deficits?  I will close with comments on how this study’s conclusions can 

translate into improved clinical care. 

 

Collective Results 

In TS patients, ADHD and OCD symptom severities correlated strongly with one 

another.  Additionally, tic severity increased positively with the symptom severities of both 

ADHD and OCD.  Thus, symptoms of all three disorders tended to increase in tandem.  This 

finding indicates comorbid ADHD and OCD are not self-contained components that often 

appear in partnership with TS, but rather that ADHD and OCD symptomatology is present at 

some level in the majority of TS patients, subthreshold to diagnosis in some and above 

diagnostic threshold in others. 

On the Prosaccade and Antisaccade tasks of Part 1, I expected both TS-only and TS-

comorbid patients to have a normally functioning reflexive system (normal Prosaccade 

response time and error rate), but depleted voluntary control (impaired Antisaccade response 

time and/or error rate) compared to Controls.  This hypothesis was supported only partially.  



  85 

Whereas TS-comorbid patients did have normal reflexive performance and deficient voluntary 

control, surprisingly neither TS-only patients’ reflexive nor voluntary control differed from that of 

Controls.  Just as symptom severities of all three disorders increase with one another and 

Antisaccade response times and error rates increase in patients with elevated symptom 

severities (i.e., TS-comorbid patients), perhaps these measures of voluntary function increase 

on a sliding scale encompassing even TS-only patients.  This possibility was corroborated by 

the strikingly increased Antisaccade error rate evident in TS-only patients of higher tic severity 

when separately compared to TS-only patients with lower tic severity and Controls.  The latter 

two groups did not differ in Antisaccade error rate.  Thus, the data support the notion that as 

frontal lobe function becomes progressively worse, symptoms become more severe. 

On the 0-back and 1-back tasks of Part 2, I expected both TS-only and TS-comorbid 

patients to have weak voluntary control (impaired 0-back and 1-back response time and/or 

error rate).  Furthermore, I expected the Working Memory Load (response time or error rate 

performance difference between the 1-back and 0-back tasks) to be progressively greater on 

TS-only and TS-comorbid patients compared to Controls.  Working Memory Load, as a 

difference measure, is a particularly accurate gauge of working memory, as it specifically 

captures the impact of increased task demands on an individual and removes the influence of 

other factors that may differ between the N-back tasks.  As in Part 1, only a portion of the 

hypothesis was substantiated.  With elongated response times, elevated error rates, and 

greater Working Memory Load, TS-comorbid patients demonstrated their voluntary control to 

be lacking not only in comparison to Controls, but also to TS-only patients, as again TS-only 

patients and Controls unexpectedly had comparable voluntary performance.  The presence of 

measureable deficits in TS-comorbid patients, who have more severely defective basal ganglia-

thalamocortical loops than TS-only patients, supports the idea that as basal ganglia-

thalamocortical loops become gradually more damaged, frontal lobe voluntary control suffers. 

In the factor analyses of Part 3, eye movement variables loaded onto four orthogonal 

(non-correlative) factors.  Thus, Inhibition and Generation factors likely represent distinct 

voluntary processes, which correlate with the total scores of all three diagnostic rating scales.  

Hence, as symptom severities increase, inhibition and generation are progressively lacking.  As 

for the factor analysis of diagnostic rating scales, subscales of the YGTSS are highly related 

and loaded the first factor.  A mix of ADHD-IV and OCI-CV subscales next best accounted for 

the variance in clinical data.  Interestingly, while the Hoarding, Doubting/Checking, and 

Neutralizing subscales of the OCI-CV loaded the third factor, only the Washing subscale 

loaded the fourth.  Perhaps this division is influenced by the fact that symmetry obsessions and 

hoarding, touching, and counting compulsions are more common in patients with TS and OCD 
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than contamination obsessions and washing/cleaning compulsions, which more often afflict 

patients with OCD alone (de Groot and Bornstein, 1994; Leckman et al., 1994a; Cath et al., 

2001). 

In sum, I interpret the data to indicate (1) ADHD and OCD symptoms are present at 

some level in most all TS patients, because severities of these three disorders increase 

together, (2) orienting in TS patients with increased symptom severities follows the cognitive 

theory that inadequate volitional control produces normal or hyper-reflexive responses, (3) 

involvement of aberrant basal ganglia-thalamocortical loops leads to progressively more 

pronounced cognitive control impairments, specifically response inhibition, response 

generation, and working memory, and (4) eye movement variables and clinical data can be 

reduced separately into meaningful factors. 

 

ADHD and OCD in TS: Additional or Integral? 

 As the controversial revisions of the DSM-IV are currently in committee, the debate 

whether to define mental disorders categorically or dimensionally is as germane as ever.  

Current standards use a categorical description, with discrete criteria to place a binary 

diagnosis on an individual.  A dimensional approach, however, acknowledges the effluence of 

one disease into another and considers continuous severity of symptoms.  One could argue the 

different frontostriatal underpinnings of TS and comorbid ADHD and OCD warrant a categorical 

approach.  Growing evidence, however, calls for a dimensional method encompassing the 

shared phenotypes and overlapping frontostriatal circuitry of these developmental disorders.  

Some have doubted that what is currently categorically described as three concomitant, yet 

independent disorders, may in fact be the random parcellation of a solitary entity (Klein and 

Riso, 1993).  For TS, comorbid ADHD and OCD may not be distinct, but rather intrinsic in TS. 

 The debate whether ADHD and OCD are additional, or instead integral, to TS started 

decades ago.  Most studies based their stance on behavioral and epidemiological data.  

Comings and Comings, after extensive study, concluded ADHD is an integral aspect of TS 

(Comings and Comings, 1984, 1985, 1987).  Later, this same group argued for a genetic 

relationship between ADHD and TS (Knell and Comings, 1993).  While the Pauls group 

acknowledged the concurrence of ADHD and TS (Pauls et al., 1986a), they posited two types 

of TS with comorbid ADHD, one in which ADHD and TS independently coexist and another in 

which ADHD is secondary to TS (Pauls et al., 1993).  While the evidence for overlap and 

genetic relationship between OCD and TS is strong (Frankel et al., 1986; Pauls et al., 1986b), 

some studies still offered controversy (Black et al., 1992; Shapiro and Shapiro, 1992). 
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Shared clinical manifestations of tics, compulsions, and behavioral disturbances seem 

to suggest similar neural circuits underlie them.  As symptoms worsen, are these circuits 

involved in succession or in parallel?  A scatter plot of the symptom severities of two disorders 

can reveal clues of their neurobiological relationship.  A plot with an initial slope of zero, which 

at some point spikes upward, signals the additive involvement of neural circuits.  Critically, 

though, if TS and comorbid ADHD and OCD share a common neural substrate, their respective 

symptoms should correlate (Spessot and Peterson, 2006).  Indeed, in my patient sample, TS, 

ADHD, and OCD symptom severity correlated with one another.  Zhu and colleagues also 

found that tic severity correlated with attention problems and thought problems, as measured 

by the Child Behavior Checklist (Zhu, et al., 2006).  While they did not use global tic severity as 

I did, their correlation values for YGTSS motor and phonic subscales ranged between r = 0.32 

and 0.52 (p < 0.05 to p < 0.01) for attention problems and r = 0.28 and 0.33 (p < 0.01) for 

thought problems.  This ADHD-tic symptom severity correlation was stronger than mine (r = 

0.22) giving greater credence to the claim that ADHD is part and parcel with TS.  My study’s 

OCD-tic symptom severity correlation value (r = 0.35) is similar to that of Zhu and colleagues.  

Of interest, Cath and colleagues qualitatively confirm this, stating the primary difference among 

TS patients with and without OCD is increased symptom severity in TS patients with OCD 

(Cath et al., 2000).  Zhu and colleagues also report significantly increased attention and 

thought problems in TS children with more severe tics compared to those with less severe tics.  

This aligns with my findings not only of increased Antisaccade errors in the TS-only patients 

with high tic severity, but also with impaired voluntary control in TS-comorbid patients (who also 

tend to have more severe tics).  These data point to parallel, gradually increasing symptom 

severities matching with equivalently escalating behavioral performance deficits.  This suggests 

ADHD and OCD are integral to TS. 

 ADHD and OCD symptoms commonly coexist in TS, but is their pairing more or less 

strong in the absence of TS?  Mathews and colleagues demonstrated that inattention/ 

hyperactivity and obsessions/compulsions are present together in undergraduate students 

(Mathews et al., 2004).  The strength of their relationship (r = 0.28) was less than in the 

typically developing children in my study (r = 0.42), but ADHD symptoms (Faraone et al., 2006) 

as well as OCD symptoms (Bloch et al., 2009) are known to decline in adulthood.  Regardless, 

in both Mathews’ and my non-TS samples, ADHD and OCD symptoms were not as tightly 

linked as in my TS patients.  Therefore, ADHD and OCD uniquely interact in TS. 
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TS-only Patients: Tics, but No Cognitive Control Impairments? 

 Owing to known frontostriatal dysfunction, patients with TS are expected to have 

neuropsychological deficits in addition to their tics (Eddy et al., 2009).  These impairments 

could include visuomotor deficits, attention deficits, or executive deficits encompassing 

inhibition and working memory break down.  Indeed, cognitive impairments in other movement 

disorders of basal ganglia origin, like Parkinson’s disease (Gabrieli et al., 1996; Weintraub et 

al., 2005) and Huntington’s disease (Lawrence et al., 1998; Montoya et al., 2006), have been 

linked to basal ganglia-thalamocortical circuit dysfunction.  So, too, have many studies reported 

cognitive deficit in individuals with TS.  As in previous eye movement studies, however, most 

study designs prevent complete attribution of deficit to TS, but rather to the culprits of 

medication, age, and comorbid status. 

Echoing the findings of my eye movement investigation in TS, the neuropsychological 

literature largely finds cognitive control deficits only in TS children with comorbid disorders.  My 

review here will discuss only studies in children with TS, although the same issues stand in 

adults (Eddy et al., 2009).  On tests of working memory, Verte and colleagues reported children 

with TS to have impairment, however 22 of 24 subjects had comorbid ADHD and/or OCD 

(Verte et al., 2005).  Poysky and colleagues attributed the working memory deficits in their 

study to the influence of coexistent ADHD (Poysky et al., 2006).  In fact, Martha Denckla, 

doyenne of ADHD research, remarked that after a decade of research with TS children free of 

ADHD, she could not find the substandard motor control or executive control typifying children 

with ADHD alone or TS with ADHD (Denckla, 2006).  Perhaps most applicable to my study, 

children with pure TS showed no confirmation of working memory deficit on an N-back verbal 

working memory task (Crawford et al., 2005). 

With the unintended release of tics in TS, inhibitory control deficits are expected to be 

central to TS.  On a Go-No Go task, children with TS were impaired, although several patients 

in this study had OCD (Muller et al., 2003).  Couple this with another Go-No Go study in which 

inadequate performance was found only in patients with OCD, not in children with 

uncomplicated TS or controls (Watkins et al., 2005).  In strong corroboration of my findings, 

Ozonoff and colleagues found reduced inhibitory function on a negative priming task not only 

exclusive to TS patients with comorbid ADHD and/or OCD, but also patients of high symptom 

severity (tics, inattention/hyperactivity, and obsessions/compulsions), not patients with low 

symptom severity (Ozonoff et al., 1998).  They concluded that cognitive control impairment is a 

function of both comorbidity and global symptom severity.  In sum, children with TS have no 
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general cognitive impairments, except when accompanied by comorbid conditions (Como, 

2001). 

Yet, if the presence of tics obviously distinguishes TS-only patients from typically 

developing children, why do the implicated basal ganglia-thalamocortical circuits not also 

produce reduced cognitive control?  For a possible answer, we can turn to neuroimaging, which 

provides direct evidence for the involvement of distinct brain areas.  Most work in TS has 

scrutinized subcortical basal ganglia volumes, but recent work has focused on the cortical 

origins of the multiple basal ganglia-thalamocortical circuits.  In a seminal paper, Sowell and 

colleagues reported thinning of gray matter layers in the sensorimotor cortices of children with 

TS, providing express evidence for involvement of the Motor Loop in TS (see Chapter 1; 

Sowell et al., 2008).  Not only was thinning more pronounced in teens than children, but also 

was coupled with more severe tics, paralleling the progression of tic severity through 

adolescence.  Specifically, while thinning in dorsal sensorimotor cortices inversely correlated 

with worst-ever tic severity, thinning was most pronounced in ventral areas and directly 

correlated with the number of simple facial tics.  The ventral sensorimotor cortex is known to 

control the musculature of the face, mouth, and larynx, the very structures most commonly 

involved in simple tics.  Fahim and colleagues recently replicated these exciting findings, which 

link anatomy to symptoms, and reported that significant cortical thinning in sensorimotor 

cortices inversely correlated with tic severity (Fahim et al., 2009). 

Many imaging studies in TS have found significant changes in the DLPFC, the cortical 

origin of the Dorsolateral Prefrontal Loop that enables spatial memory, executive function, and 

attention.  An early anatomical magnetic resonance imaging (MRI) study reported larger 

DLPFC volume in children with TS compared to controls (Peterson et al., 2001).  Further, 

bilateral DLPFC thinning correlated inversely with tic severity (Sowell et al., 2008).  So, too, in 

the orbitofrontal cortex (OFC), the frontal lobe origin of the Lateral Orbitofrontal Loop involved 

in inhibitory control, cortical volume negatively correlated with tic severity (Peterson et al., 

2001).  Two groups found more white matter under these frontal lobe regions, implying more 

connectivity with deep brain structures (Fredericksen et al., 2002; Hong et al., 2002). 

Because increased DLPFC and OFC brain matter is associated with less tic severity, 

several authors have interpreted these results as evidence of an adaptive, compensatory 

mechanism (Peterson et al., 2001; Baym et al., 2008; for review, see Spessot et al., 2004).  

This view is further supported by a functional MRI (fMRI) study in which effortful tic suppression 

activated vast areas of the prefrontal cortex (Peterson et al., 1998).  Moreover, TS patients had 

increased electroencephalogram (EEG) coherence among sensorimotor, prefrontal, and 
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frontomesial regions not only during voluntary tic suppression, but also during a Go-No Go 

inhibition task (Serrien et al., 2005).  Critically, patients had equivalent performance on the task 

as controls, suggesting the increased coherence was behaviorally compensatory. 

As increased tic severity in early adolescence is coupled with the rigid expectations of 

school and social settings, youth with TS continually tap these prefrontal regions to suppress 

tics.  Over time, activity-dependent enlargement of prefrontal cortices builds the capacity for 

inhibitory functions (Spessot et al., 2004).  This change is known as neural plasticity, which in 

humans can occur in just days (Pascual-Leone et al., 1995) or minutes (Classen et al., 1998).  

The prefrontal cortex has long been connected with this type of self-regulatory control, 

arbitrating working memory and inhibition (Fuster, 1989).  The same frontal regions also 

moderate the cognitive control of voluntary eye movements (Oculomotor Loop; for review, see 

Hutton, 2008).  Thus, in TS, while abnormalities of sensorimotor cortices underpin the presence 

of tics, the enlarged prefrontal regions of DLPFC and OFC not only adaptively protect against 

worse symptoms, but also enable the absence of measureable neuropsychological and eye 

movement deficits. 

 

TS-comorbid Patients: What Pathology Causes Cognitive Control Deficits? 

 Children with TS and comorbid ADHD and/or OCD are known to have cognitive 

impairment on tasks assessing a wide range of neuropsychological functions.  In fact, these 

deficits are equal or greater to those found in children with ADHD or OCD alone.  In a 

behavioral study, children with TS and ADHD demonstrated no difference from children with 

pure ADHD (Sukhodolsky et al., 2003).  Further, these two groups showed more behavioral, 

functional, and family disturbances than either controls or children with only TS.  In OCD, 

patients with tic-related OCD were found to have higher incidences of substance abuse, mood 

disorders, and anxiety than either those with TS or OCD alone (Coffey et al., 1998).  This 

asserts that TS with OCD results in more clinical morbidity than either isolated condition.  So, 

what pathology contributes to inferior cognitive control in these comorbid patients? 

 Interestingly, the DLPFC and OFC, the same areas posited to compensate for tics and 

potential cognitive control deficits in pure TS, have been implicated in the functional demise of 

children with comorbid ADHD and OCD.  Children with TS and ADHD were found to have 

smaller frontal lobes than uncomplicated TS patients (Fredericksen et al., 2002).  In particular, 

Kates and colleagues identified less gray and white matter in the prefrontal cortex of children 

with TS and ADHD compared to those with only TS (Kates et al., 2002).  In a diffusion tensor 

imaging study of a juvenile TS sample, the strength of the DLPFC connection to the caudate of 
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the basal ganglia was found to inversely correlate with obsessive-compulsive behavior (Makki 

et al., 2009).  Thus, these abnormal frontal regions likely may lead to functional impairments in 

children with TS and coexistent ADHD and/or OCD. 

The DLPFC is not only abnormally smaller in children with TS and concomitant ADHD, 

but also in children with ADHD alone.  Youth with ADHD have smaller frontal lobes with less 

underlying connective white matter (Castellanos et al., 2002; Mostofsky et al., 2002).  Filipek 

and colleagues located the cortical shrinkage and white matter depletion in children with ADHD 

to be in the anterior-superior frontal lobe (region including DLPFC; Filipek et al., 1997).  The 

DLPFC was specifically found to be smaller in children with ADHD alone (Sowell et al., 2003).  

A longitudinal study reported kids with persistent ADHD have cortical thinning in DLPFC at 

baseline and at follow-up an average of 5.7 years later compared to controls and patients with 

remitted ADHD (Shaw et al., 2006).  These data indicate abnormalities of the DLPFC contribute 

to an aberrant Dorsolateral Prefrontal Loop particular to ADHD. 

Although pediatric OCD patients have been included in very few neuroimaging studies, 

the data implicate the OFC in OCD.  Carmona and colleagues found decreased gray and white 

matter in the inferior frontal lobes (region including OFC; Carmona et al., 2007; but see 

Szeszko et al., 2008).  In an fMRI study, both children with OCD and healthy controls 

completed tests of inhibition – a stop task, a motor Stroop task of spatial interference, and a 

switch task (Woolley et al., 2008).  Children with OCD showed reduced activation of the OFC 

and its subcortical targets compared to controls, demonstrating dysfunctional frontostriatal 

circuitry.  While patient performance did not differ statistically from controls, patients did show a 

statistical trend toward worse performance on the Stroop and switch tasks.  Limitations of the 

study included a small patient sample size, 80% of whom were medicated, and all of whom 

were in partial remission of OCD symptoms.  These studies allude to an irregular OFC leading 

to an impaired Lateral Orbitofrontal Loop in OCD. 

The degree of comorbidity in a child has monumental ramifications on the extent of his 

or her functional impairment.  As both the number and severity of comorbidities increase, so, 

too, do behavioral disturbances (Caron and Rutter, 1991).  In fact, the level of comorbidity may 

represent the extent of underlying pathophysiology in terms of brain function and lead to more 

symptoms of greater severity (Freeman et al., 2000).  For TS, perhaps initially enlarged DLPFC 

and OFC enable dampened symptom severity and eased cognitive control deficit.  But, as 

volumes of DLPFC and OFC gray and white matter decrease, TS patients inevitably succumb 

not only to more severe symptoms of TS, ADHD, and OCD, but also more severe functional 

impairment.  Restated, while enhanced DLPFC and OFC allow reduction of symptom severities 



  92 

and equivalent voluntary eye movement control in TS-only patients, emaciated DLPFC and 

OFC expose greater overall symptom severity and poor voluntary eye movement control in TS-

comorbid patients. 

 

Updated Model of Orienting in TS 

 The original model of orienting in TS (Figure 2.2) hypothesized weak frontal areas 

would lead not only to impaired voluntary eye movement performance, but also to release of 

the mid-brain reflexive control center from basal ganglia tonic inhibition, allowing normal or 

hyperreflexive responding.  The presence of comorbid ADHD and/or OCD, underpinned by 

involvement of additional basal ganglia-thalamocortical circuits (see Figure 2.3), would 

motivate further frontal weakness and poorer voluntary eye movement control.  Results from 

both Part 1 and 2, however, unexpectedly revealed TS-only patients to be free of eye 

movement deficit, whereas only TS-comorbid patients demonstrated the predicted voluntary 

eye movement dysfunction. 

 The updated model of orienting in TS (Figure 5.1) reconciles the seeming disconnect 

between the presence of tics and the absence of voluntary eye movement impairment in 

children with TS but without comorbid ADHD and OCD.  Thinning of the sensorimotor cortex 

and impairment of the Motor Loop leads to tics.  Repeated activation of the DLPFC and LOFC 

to suppress tics stimulates plastic hypertrophy of these stalwart prefrontal titans, achieving 

augmented inhibitory reserves.  Bolstered Dorsolateral Prefrontal and Lateral Orbitofrontal 

Loops result in greater capacity for self-regulatory control, keeping otherwise rising symptom 

severities in check.  Benefits of this compensatory mechanism extend to the normalization of 

potential deficits in eye movement measures of cognitive control. 

An extension of this model encapsulates the neuroanatomical changes leading to the 

worsened symptoms and voluntary eye movement deficits characterizing TS patients with 

comorbid ADHD and/or OCD (Figure 5.2).  Further thinning of the sensorimotor cortex leads to 

a growing repertoire of tics, especially if simultaneous with shrinkage or stymied adaptive 

growth of the DLPFC and/or LOFC.  Progressively impaired Dorsolateral Prefrontal and Lateral 

Orbitofrontal Loops lead to increased severities of ADHD and OCD symptoms, respectively.  

Consequent reductions in self-regulatory control reveal eye movement deficits indicative of the 

extent of pathophysiology.
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Figure 5.1 Updated model of orienting in Tourette Syndrome 

 Thinning of the motor cortex and impairment of the Motor Loop disinhibits the thalamus, 

leading to tics.  Repeated use of the DLPFC and LOFC to suppress tics leads to adaptive 

growth of these prefrontal volumes and enhanced Dorsolateral Prefrontal and Lateral 

Orbitofrontal Loops.  The resulting boost to self-regulatory control keeps otherwise increasing 

symptom severities in check and through the FEF and Oculomotor Loop permits normalization 

of potential eye movement deficits.  1º Motor, primary motor cortex; FEF, frontal eye field; 

DLPFC, dorsolateral prefrontal cortex; LOFC, lateral orbitofrontal cortex; SC, superior colliculus 
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Figure 5.2 Updated model of orienting in Tourette Syndrome patients with comorbidities 

Further thinning of the sensorimotor cortex and breakdown of the Motor Loop leads to a 

growing repertoire of tics, especially if simultaneous with shrinkage or stymied adaptive growth 

of the DLPFC and LOFC.  Progressively impaired Dorsolateral Prefrontal and Lateral 

Orbitofrontal Loops lead to increased severities of ADHD and OCD symptoms, respectively.  

Consequent reductions in self-regulatory control involve the FEF and Oculomotor Loop, 

revealing eye movement deficits indicative of the extent of pathophysiology.  1º Motor, primary 

motor cortex; FEF, frontal eye field; DLPFC, dorsolateral prefrontal cortex; LOFC, lateral 

orbitofrontal cortex; SC, superior colliculus 
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This model is supported by the wealth of neuroimaging data reviewed above, but is not 

without caveat.  This model of orienting in TS holds only for children and adolescents, not 

adults (who are the extreme minority of TS patients, see Chapter 1).  While some 

neuroimaging studies in adults with persistent TS report findings in line with that of children, 

plenty others do not.  For example, while less gray matter in the middle frontal gyrus of adults 

with TS inversely correlates with tic severity and more white matter underlies this area (Müller-

Vahl et al., 2009), critically, adults with TS were found to have smaller DLPFC than age-

matched peers (Peterson et al., 2001).  These data highlight the developmental nature of TS 

and underscore the necessity to control for age. 

 

Alternative Model 

In Alexander and colleagues’ influential papers describing the neuroanatomy of the 

basal ganglia-thalamocortical loops, they emphasized the parallel anatomical and physiological 

nature of each loop (Alexander et al., 1986, 1990).  In their description, the circuits all course 

through the same structures, but never interconnect, establishing segregated, parallel loops.  

Yet, this model focuses on the basal ganglia’s role in selecting and completing learned, 

coordinated actions or emotions, not its more recently identified ability to learn behaviorally 

relevant rules (Aosaki et al., 1994).  The basal ganglia reinforce behavior, but also integrate 

current situational cues to allow estimation of future events and execute proper responses.  To 

accommodate these functions, cross talk among functionally distinct loops is necessary (Haber, 

2003). 

The basal ganglia-thalamocortical loops consult with one another through several 

mechanisms.  First, while the general alignment of anatomical projections through each loop is 

maintained, the broad dendritic arbors of neurons in adjacent loops often overlap along 

adjoining functional areas.  Further, the sharp reduction of structure size at each circuit level 

subsequent to the cortex forces convergence of nerve terminals from neighboring functional 

regions (Percheron and Filion, 1991; Yelnik et al., 1997; Yelnik, 2002).  Whereas these means 

of overlap are primarily at the functional edges of circuits, gross information sharing occurs 

through several non-reciprocal connections.  The motor (Motor), associative (Oculomotor and 

Dorsolateral Prefrontal), and limbic (Lateral Orbitofrontal and Anterior Cingulate) loops not only 

form traditionally-described “closed” circuits, which begin and end at the same cortical target, 

but each loop also has one or more “open” pathways (Joel and Weiner, 1994).  The cortical 

target of an “open” pathway is not the loop’s originating cortical structure, but rather that of 

another basal ganglia-thalamocortical loop.  In this way, the motor, associative, and limbic 



  96 

circuits interact.  Inter-loop communication also occurs subcortically, in striato-nigro-striatal 

(Haber et al., 2000) and thalamo-cortico-thalamic pathways (McFarland and Haber, 2002).  In 

these feed forward routes, limbic regions of a subcortical loop structure (e.g., dorsal SNpr) 

influence associative regions (e.g., medial SNpr), which interact with motor regions (e.g., ventral 

SNpr). 

Open, interconnected basal ganglia-thalamocortical loops are important to a 

comprehensive view of TS.  While a dysfunctional Motor Loop underlies symptoms of TS, an 

aberrant Dorsolateral Prefrontal Loop triggers symptoms of ADHD, and a damaged Lateral 

Orbitofrontal Loop prompts symptoms of OCD, these clinical signs do not appear or progress 

independently in TS.  In contrast, symptoms of the comorbid triad increase in parallel and may 

be accommodated by overlapping information flow through basal ganglia-thalamocortical loops.  

Hence, TS patients with mild overall symptoms and undetectable cognitive control impairments 

may have moderately affected pathways, while those with more severe global symptoms and 

measureable cognitive control deficits may have extensive disruption of interconnected loops. 

 

Future Directions 

I personally will use the three diagnostic rating scale scores from this study to develop a 

single composite score (z-score) for each participant.  With this z-score, patients will be divided 

into those with lower or higher overall symptom severity.  This is a more accurate division of 

symptom severities from my current division into those with or without comorbidities, because it 

also accounts for tic severity.  Analysis of eye movement performance can be repeated to see 

if a more significant difference exists between patient severity groups, corroborating my model 

in which cognitive control deficits increase with overall symptom severity. 

Another potential direction is to assess the efficacy of common TS pharmacotherapies 

to improve cognitive control in TS.  Children with TS can be tested on tasks of reflexive and 

voluntary eye movement control before treatment as a baseline measure.  After several weeks 

of drug administration when effectiveness is optimal, patients can be retested to quantitatively 

determine the improvement of the child’s cognitive control due to the medicine. 

Finally, as a postdoctoral fellow with Pramod Dash, Ph.D., I will search for candidate 

salivary protein biomarkers of TS.  With high performance liquid chromatography (HPLC) and 

tandem mass spectrometry, I will investigate Control and TS patients’ saliva samples for a 

protein(s) that is in a significantly different quantity(ies).  The identity of this candidate protein 

biomarker(s) will be confirmed by enzyme-linked immunosorbent assay (ELISA). 
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Implications for Changed Clinical Care 

Much evidence supports the deleterious clinical and functional impact of increased tic 

and comorbid symptom severities in TS.  Comorbid conditions, though, are more functionally 

impairing than tics themselves (Spessot and Peterson, 2006).  ADHD is unmistakably the main 

cause of behavioral, emotional, and cognitive deficit in TS (Spessot and Peterson, 2006).  

Case in point, children with TS and ADHD have a risk of academic problems four times as 

great as TS patients without ADHD (Erenberg et al., 1986; Abwender et al., 1996; Schuerholz 

et al., 1996).  Because ADHD leads to more strained social interaction, an early diagnosis of 

ADHD in TS and subsequent psychosocial coaching may directly improve quality of life (Carter 

et al., 2000).  OCD, too, with increased anxiety, substance abuse, and mood disorders, may 

bestow a greater functional burden than TS or OCD alone (Coffey et al., 1998).  Thus, 

proactive clinical intervention is direly needed to reduce the effect of comorbid conditions in TS. 

Perhaps preventive behavioral therapy could be effective in minimizing future impact of 

elevated symptom severities in TS.  Therapists could employ neuropsychological tasks to 

strengthen the planning, working memory, and cognitive flexibility of the DLPFC and the 

reward-motivated, inhibitory processes of the LOFC.  This approach has at least two potential 

benefits.  First, reinforced control in these prefrontal cortex regions may produce the activity-

dependent plasticity necessary to stave off the progression of symptoms and associated 

functional impairment.  Second, rather than wait until the patient is mired in troubles at school 

and home, proactive training in recognizing significant triggers, problem events, and associated 

feelings as well as navigating complex responsibilities (e.g., school demands) can better equip 

the patient for inevitable struggles. 

This study quantitatively established that ADHD and OCD symptoms are present in the 

majority of TS patients, even if these symptoms are below diagnostic threshold.  More exactly, 

symptoms of comorbid conditions increase together with tic severity.  Given tic severity 

erratically waxes and wanes on both short and developmental time scales, even mild TS 

patients may face hindering attentional and obsessional symptoms at some time.  Thus, 

clinicians must use vigilance to evaluate all TS patients for the full range of symptom severities.  

Even families of TS patients presenting with little or no comorbid symptoms should be 

educated on the possible course and impending impairment of increased symptoms.  Pollak 

and colleagues stress the need for this approach, “TS is itself a risk factor for behavioral 

problems mandating that children with TS even if without ADHD and OCD still need to be 

assessed and treated for psychopathology” (Pollak et al., 2009). 
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To aid this endeavor, inclusion of a dimensional assessment could assist standard 

categorical diagnostic procedures, not only enabling confirmation of the presence or absence 

of a condition, but also the degree of expression (Hudziak et al., 2007).  As neuropsychological 

impairment is a function of both comorbid status and overall symptom severity, dimensional 

assessment is the best predictor of current cognitive status (Ozonoff et al., 1998).  In my study, 

the combinatorial loading of subscales from several clinical measures onto a single factor (e.g., 

ADHD-IV and OCI-CV subscales) suggest that future work could create a new TS “superscale,” 

or combination of the three current diagnostic rating scales to most fully evaluate overall 

symptom severities.  Overall, consideration of the complete amalgam of symptoms existing in 

children with TS will ensure a greater understanding of their functional implications. 
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6. Appendix A 

Diagnostic Rating Scales
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List of Diagnostic Rating Scales and Subscales 

 

Attention Deficit Hyperactivity Disorder Rating Scale – IV (ADHD-IV) 

Inattention Subscale  (Odd numbered questions) 

Hyperactivity Subscale  (Even numbered questions) 

ADHD-IV Total (Percentile Rank of Total Sum) 

 

Obsessive Compulsive Inventory – Child Version (OCI-CV) 

Obsessing Subscale  (Questions 1, 11, 14, and 18) 

Washing Subscale  (Questions 2, 10, and 21) 

Hoarding Subscale  (Questions 3, 7, and 16) 

Doubting/Checking Subscale  (Questions 4, 5, 13, 15, and 20) 

Neutralizing Subscale (Questions 6, 9, and 12) 

Ordering Subscale  (Questions 8, 17, and 19) 

OCI-CV Total (Sum of all Questions) 

 

Yale Global Tic Severity Scale (YGTSS) 

Motor Tic Number Subscale  

Motor Tic Frequency Subscale  

Motor Tic Intensity Subscale  

Motor Tic Complexity Subscale  

Motor Tic Interference Subscale  

Motor Tic Overall Severity  (Sum of Motor Tic Subscales) 

Phonic Tic Number Subscale  

Phonic Tic Frequency Subscale  

Phonic Tic Intensity Subscale  

Phonic Tic Complexity Subscale  

Phonic Tic Interference Subscale  

Phonic Tic Overall Severity  (Sum of Phonic Tic Subscales) 

Overall Life Impairment  

Global Tic Severity Total  (Sum of Motor Tic Overall, Phonic Tic 

Overall, and Overall Life Impairment 

Subscales) 



ID #__________ Youth Date___________________ 
 Parent____________ Time___________________ 
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Rating Scale 
 

Please circle the number that best describes your child’s behavior over the past 6 months. 
This is not a test, so there are no right and wrong answers.  
  
            Never or   Some-  Often   Very 
              Rarely     times           Often
1. Fails to give close attention to details or make careless 

mistakes in schoolwork. 
2. Fidgets with hands or feet or squirm in seat. 

 
3. Has difficulty sustaining attention in tasks or play 

activities. 
4. Leaves seat in classroom or in other situations in which 

remaining seated is expected. 
5. Does not seem to listen when spoken to directly. 

 
6. Runs about or climbs excessively in situations in which 

it is inappropriate. 
7. Does not follow through on instructions and fails to 

finish work. 
8. Has difficulty playing or engaging in leisure activities 

quietly. 
9. Having difficulty organizing tasks and activities. 

 
10. Is “on the go” or acts if “driven by a motor”. 

 
11. Avoids tasks (e.g., schoolwork, homework) that require 

sustained mental effort. 
12. Talks excessively. 

 
13. Loses things necessary for tasks or activities. 

 
14. Blurts out answers before questions have been 

completed. 
15. Is easily distracted. 

 
16. Has difficulty awaiting turn. 

 
17. Is forgetful in daily activities. 

 
18. Interrupts or intrudes on others. 
 
 
 

0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 
 
0 1 2 3 

 
 
 
 



ID #_________ Youth Date______________ 
 Parent____________ Time______________ 
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Rating Scale 
 

Please circle the number that best describes your child’s behavior over the past month. 
This is not a test, so there are no right and wrong answers.  
   
Example  Never Sometimes Always 
Think a lot about dogs   0 1 2 

 Never Sometimes Always 
1. Thinks about bad things and can’t stop.  0 1 2 

2. Feels like they must wash and clean over and over 
again.  

0 1 2 

3. Collects so much stuff that it gets in the way.  0 1 2 

4. Checks many things over and over again.  0 1 2 

5. After they have done things, they’re not sure if they 
really did them.  

0 1 2 

6. Needs to count while they do things.  0 1 2 

7. Collects things they don’t really need.  0 1 2 

8. Gets upset if their stuff is not in the right order.  0 1 2 

9. Gets behind in their schoolwork because they 
repeat things over and over again.  

0 1 2 

10. Worries a lot about things being clean.  0 1 2 

11. Gets upset by bad thoughts.  0 1 2 

12. Have to say some numbers over and over.  0 1 2 

13. Even after they’re done, they still worry they didn’t 
finish things.  

0 1 2 

14. Gets upset by bad thoughts that pop into their head 
when they don’t want them to.  

0 1 2 

15. Checks doors, windows, and drawers over and over 
again.  

0 1 2 

16. Don’t throw things away because they’re afraid they 
might need them later.  

0 1 2 

17. Gets upset if people change the way they arrange 
things.  

0 1 2 

18. If a bad thought comes into their head, they need to 
say certain things over and over. 

0 1 2 

19. Needs things to be in a certain way.  0 1 2 

20. Even when they do something very carefully, they 
don’t think they did it right.  

0 1 2 

21. Washes their hands more than other kids.  0 1 2 



ID #_________ Youth Date______________ 
 Parent____________ Time______________ 
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Tic Severity Scale 
 
Part I.  Please mark the tics below that have been present during the past week. 
 
A. Simple Motor Tics 
(rapid, darting, ‘meaningless’ movements) 
_____ Eye blinking 
_____ Eye movements 
_____ Nose movement 
_____ Mouth movements 
_____ Facial grimace (wince) 
_____ Head jerks/movements 
_____ Shoulder shrugs 
_____ Arm movements 
_____ Hand movements 
_____ Abdominal (stomach) movements 
_____ Leg, foot, or toe movements 
_____ Other_________________________ 
         _________________________ 
 
 
B. Complex Motor Tics 
(slower, ‘purposeful’ movements) 
_____ Eye gestures or movements 
_____ Mouth movements 
_____ Facial movements or expressions 
_____ Head gestures or movements 
_____ Shoulder gestures 
_____ Arm or hand gestures 
_____ Writing tics 
_____ Distorted, abnormal postures 
_____ Bending or gyrating  

(twisting, writhing) 
_____ Rotating 
_____ Leg, foot, or toe movements 
_____ Tic-related compulsive behaviors 
(touching, tapping, grooming, evening-up) 
_____ Involuntary obscene or forbidden 
 gestures 
_____ Self-abusive behavior (describe)  
 _____________________________ 
_____ Outbursts of tics (displays),  

duration _________seconds 
_____ Other_________________________ 
 _____________________________ 

_____ Describe any elaborate, 
choreographed patterns or 
sequences of motor tics 
_____________________________ 
_____________________________ 

 
 
C. Simple Phonic Symptoms 
(fast, ‘meaningless’ sounds) 
_____ Coughing 
_____ Throat clearing 
_____ Sniffing 
_____ Grunting 
_____ Whistling 
_____ Animal or bird noises 
_____ Other_________________________ 
         _________________________ 
 
 
 
D. Complex Phonic Symptoms 
(language: words, phrases, statements) 
_____ Syllables (list)__________________ 
_____ Words (list)____________________ 
_____ Stuttering (list)_________________ 
_____ Speech interruption by tongue, lips, 

or vocal chord freezing___________ 
_____ Involuntary obscene or forbidden 
 words or remarks (list)___________ 
 _____________________________ 
_____ Repeating another’s words 

(describe) _____________________ 
_____ Repeating one’s own words 

(describe) _____________________ 
_____ Disinhibited speech (immediate 
 impulsive response) (describe) 
 _____________________________ 
_____ Describe any elaborate, 

choreographed patterns or 
sequences of phonic tics 

 _____________________________ 
 _____________________________ 
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Part II.  Rate motor and phonic tics separately, unless otherwise indicated. 
 
 
Using the following scale, rate the number of:  
_____ motor tics (selected in sections A and B) present during the past week. 
_____ phonic tics (selected in sections C and D) present during the past week. 
 
0 None 
1 Single kind of tic (eye blinking, for example) 
2 Multiple kinds of tics (2-5) (eye blinking and nose movements, for example) 
3 Multiple kinds of tics (>5) 
4 Multiple kinds of tics plus at least one elaborate, choreographed pattern of multiple 

simultaneous or sequential tics where it is difficult to distinguish distinct tics. 
5 Multiple kinds of tics plus several (>2) elaborate, choreographed patterns of multiple 

simultaneous or sequential tics where it is difficult to distinguish distinct tics. 
 
 
Using the following scale, rate the frequency of: 
_____ motor tics (selected in sections A and B) present during the past week. 
_____ phonic tics (selected in sections C and D) present during the past week. 
 
0 None.   No evidence of specific tic behaviors. 
1 Rarely.   Specific tics have been present during the past week.  These  

behaviors occur infrequently, often not on a daily basis.  If bouts 
(attacks) of tics occur, they are brief and uncommon. 

2 Occasionally.  Specific tics are usually present on a daily basis, but there are 
long tic-free intervals during the day.  Bouts (attacks) of tics may 
occur on occasion and are not sustained for more than a few 
minutes at a time. 

3 Frequently.  Specific tics are present on a daily basis.  Tic-free intervals as 
long as 3 hours are not uncommon.  Bouts of tics occur regularly, 
but may be limited to a single setting or environment. 

4 Almost Always. Specific tics are present virtually every waking hour of every day, 
and periods of sustained tics occur regularly.  Bouts (attacks) of 
tics are common and are not limited to a single setting or 
environment. 

5 Always.  Tics are present virtually all the time.  Tic-free intervals are  
difficult to identify and do not last more than 5 to 10 minutes at 
most. 
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Using the following scale, rate the intensity of: 
_____ motor tics (selected in sections A and B) present during the past week. 
_____ phonic tics (selected in sections C and D) present during the past week. 
 
0 Absent. 
1 Minimal intensity. Tics are not visible or audible (exist only in patient’s private  

experience) or tics are less forceful than comparable voluntary 
actions and typically are not noticed because of their intensity. 

2 Mild intensity.  Tics are not more forceful than comparable voluntary actions or  
utterances and are typically not noticed because of their intensity. 

3 Moderate intensity. Tics are more forceful than comparable voluntary actions, but are  
not outside the range of normal expression for comparable 
voluntary actions or utterances.  They may call attention to the 
individual because of their forceful character. 

4 Marked intensity. Tics are more forceful than comparable voluntary actions or  
utterances.  Such tics frequently call attention to the individual 
because of their forceful and exaggerated character. 

5 Severe intensity. Tics are extremely forceful and exaggerated in expression.   
These tics call attention to the individual and may result in risk of 
physical injury (accidental, provoked, or self-inflicted) because of 
their forceful expression. 

 
Using the following scale, rate the complexity of: 
_____ motor tics (selected in sections A and B) present during the past week. 
_____ phonic tics (selected in sections C and D) present during the past week. 
 
0 None.   If present, all tics are clearly ‘simple’ (sudden, brief, purposeless). 
1 Borderline.  Some tics are not clearly ‘simple’ in character. 
2 Mild.   Some tics are clearly ‘complex’ (purposive in appearance) and  

mimic brief ‘automatic’ behaviors, such as grooming, syllables, or 
brief meaningful utterances such as ‘uh huh,’ or ‘hi,’ that could be 
readily camouflaged. 

3 Moderate.  Some tics are more ‘complex’ (more purposive and sustained)  
and may occur in elaborate bouts (attacks) that would be difficult 
to camouflage, but could be rationalized or ‘explained’ as normal 
behavior or speech (picking, tapping, saying ‘you bet’ or ‘honey,’ 
brief repeating of another’s words). 

4 Marked.  Some tics are very ‘complex’ in character and tend to occur in  
sustained elaborate bouts that would be difficult to camouflage 
and could not be easily rationalized as normal behavior or speech 
because of their duration and/or their unusual, inappropriate, 
bizarre, or obscene character (a lengthy facial contortion, 
touching genitals, repeating another’s words, longer bouts of 
saying ‘what do you mean’ repeatedly, or saying ‘fu--’ or ‘sh--’). 

5 Severe.  Some tics involve lengthy bouts of elaborate behavior or speech  
that would be impossible to camouflage or successfully 
rationalize as normal because of their duration and/or extremely 
unusual, inappropriate, bizarre, or obscene character (lengthy 
displays or utterances often involving self-abusive behavior or 
involuntary obscene or forbidden gestures, words, or remarks). 
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Using the following scale, rate the interference of: 
_____ motor tics (selected in sections A and B) present during the past week. 
_____ phonic tics (selected in sections C and D) present during the past week. 
 
0 None. 
1 Minimal.  When tics are present, they do not interrupt the flow of behavior 

or speech. 
2 Mild.   When tics are present, they occasionally interrupt the flow of 

behavior or speech. 
3 Moderate.  When tics are present, they frequently interrupt the flow of 

behavior or speech. 
4 Marked.  When tics are present, they frequently interrupt the flow of  

behavior or speech, and they occasionally disrupt future intended 
action or communication. 

5 Severe.  When tics are present, they frequently disrupt future intended  
action or communication. 

 
Using the following scale, rate the impairment of: 
_____ motor and phonic tics combined (selected in sections A-D) present during the past 

week. 
 
0 None. 
10 Minimal.  Tics are associated with subtle difficulties in self-esteem, family  

life, social acceptance, or school or job functioning (infrequent 
upset or concern about tics compared to the future; periodic, 
slight increase in family tensions because of tics; friends or 
acquaintances may occasionally notice or comment about tics in 
an upsetting way). 

20 Mild.   Tics are associated with minor difficulties in self-esteem, family  
life, social acceptance, or school or job functioning. 

30 Moderate.  Tics are associated with some clear problems in self-esteem,  
family life, social acceptance, or school or job functioning (feel 
depressed, anxious, or irritable; periodic distress and upheaval in 
the family, frequent teasing by peers or social avoidance). 

40 Marked.  Tics are associated with major difficulties in self-esteem, family  
life, social acceptance, or school or job functioning. 

50 Severe.  Tics are associated with extreme difficulties in self-esteem, family  
life, social acceptance, or school or job functioning (severe 
depression with thoughts or plans about suicide, disruption of the 
family [separation/ divorce, residential placement], disruption of 
social ties – severely restricted life because of social stigma and 
social avoidance, removal from school or loss of job).
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Background Questionnaire 
 
ID#:       TASK ORDER      
 
DATE OF BIRTH:   ____ SEX: M F HANDEDNESS: L R 
 
EDUCATION:  3rd  4th  5th  6th  7th  8th  Fr So Jr Sr 
  
ETHNICITY: 

Ethnicity / Racial Category Hispanic or Latino Non-Hispanic or 
Latino American Indian / Alaska 

Native 
  

Asian   
Hawaiian or Islander   
Black or African American   
White   
More than one race   
Unknown   

 
VISION: Normal  Nearsighted  Farsighted 
 

None  Glasses  Contacts 
 
SURGERIES, OTHER NEUROLOGICAL DISORDERS OR DISEASES: NO YES 
(e.g., car accident, brain injury or tumor, cerebrovascular disease, epilepsy, stroke, eye 
surgery, ADHD, OCD) 
 
            _____ 
 
FIRST DEGREE RELATIVES WITH NEUROLOGICAL DISORDERS:  NO YES 
(e.g., Bipolar, Schizophrenia, Autism, Parkinson, Huntington, Tourette, ADHD, OCD) 
 
            _____ 
 
 
======================================================================== 
 
DATE:     TIME:      AM PM  
 
CONDITION:     ON     OFF     Control 
 
CURRENT MEDICATIONS:  NO YES 
 
 Type:            _____ 
 

Dosage:           _____ 
 

Time since last Dose:         _____ 
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DRUG ABUSE HISTORY:  NO YES 
 
ALCOHOL in last 24 hours:  NO YES 
 
SMOKING:    NO YES  per day 

  Time since last cigarette:   _____ 
 
CAFFEINE in last 24 hours:  NO YES 
 
 
 
VIDEO GAMES:   hours per day/week 
 
TV WATCHED:   hours per day/week 
 
Have you ever had a streptococcal infection?  If so, when?     _____ 
 
Have you ever taken nasal steroid spray medication?     _____ 
 
 
 
TS PATIENTS: Age of Onset / Duration:       
 
   Motor tics        _____ 
 
   Vocal tics        _____ 
 
During what situations are you most likely to have tics?     _____ 
 
Are you able to suppress your tics?  If so, for how long?     _____ 
 
How do you know a tic is about to happen?       _____ 
 
 
 
YGTSS: Motor  Phonic   Impairment   Global   
 
ADHD: Inattention   Hyperactivity/Impulsivity   Total ____ 
 
OCD: Washing  Checking  Ordering  Total   
 
 Obsessing   Hoarding  Neutralizing   
 
IQ: Full Scale   T-Score  Percentile   
 
Clinical Measures: 
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7. Appendix B 

Sample Data Files
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Sample Data Output File – Task parameters and practice trials preceding a 0-back trial block 
 
Testing TS7 at 10:03:55 AM on Saturday, August 30, 2008. 
Number of trials = 96               Experiment is S. 
EMs (well radius in pixels):  
  fixation =  110 pixels      target =   80 pixels 
  target distance :  266 
Durations (ms):  
  fixation =  399 ms 
  target (pred exps) = 2998 ms    timeout = 1492 ms 
  anticipation cutoff =   93 ms 
  anticipation trials discarded = 0 [0=keep, 1=discard]  
  Averages and speed criteria: 
  Fixn = 2 Speed = 2 Below =  2 Above =  8 
Colors:  
  background =   0, fixation = 120, cue =  50, target = 255 
  Landmarks ON 
 Number of Targets = 4 
Config Type = 1761605440 [0=On-Axis, 1=Off-Axis] 
 NBack ON 
 This was a 0 Back Run 
Min locations in 1B sequence: 2 
Max locations in 1B sequence: 3 
Sequence Type [0=Random, 1=From file] : 1 
Sequence File : FullSeq_4pos_96trials 
Delay in 1B sequence: 350 msec 
Target duration in 1B sequence: 80 msec 
Fixation Off Delay: 500 msec 
 Last Target Off 
  Iscan sampling rate = 4 
  Screen refresh rate = 13328 microsec 
 
Time between distance points 26 ms.  
 
  NOTE: for delayed & remembered, disinhibitions: -2 = correct, -3 = wrong 
 
Eye Pos: 1=to the target, 2=to diagonally/vertically opposite side of tagret,  
 otherwise the location of the target closest to the eye position (target location labelled from 3 to 
8, starting at [hor=right, vert=0] going anticlockwise) 
 
Ts = response time relative to start of a trial (i.e. once stable fixation is achieved 
Tb = response time relative to the begin of first target presentation 
Te = response time relative to the end of last target presentation 
Error position within a trial: 1 = Before target presentation, 2 = Before fixation erased in gap 
paradigm 
Error position within a trial: 3 = After fixation erased in gap paradigm, 4 = After target presented 
but before target erased 
Error position within a trial: 5 = After target erased but before fixation erased, 6 = After target 
presented but before fixation erased 
Error position within a trial: 7 = After go signal 
Error position within a trial: 10+a = Error position within a trial: 10+a = During the N back 
sequence when a=ordinal number of stimulus in sequence 
Begin_______________________________________ 
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Trial TargHF TargVF TargID Seq Eye  Cor  RT  Duration  NinSeq  Ts   Tb  Te     EP 
No (L=-) (T=-)   Pos_H (err=0) (ms) (ms) (ms) (ms) (ms) 
 (R=+) (M=0)   (in=1) (cor=1)  
  (B=+) 
 1 0.00 -1.00 4 6-4- 1 1 459.0 53.8 2 0     0     0 0 
 2 -1.00 0.00 5 3-6-5- 1 1 252.2 53.8 3 0     0     0 0 
 3 1.00 0.00 3 6-5-3- 1 1 239.8 24.8 3 0     0       0 0 
 4 0.00 -1.00 4 3-6-4- 1 1 272.9 37.2 3 0     0       0 0 
 5 1.00 0.00 3 4-3- 5 0 454.8 20.7 2 0     0       0 0 
 6 0.00 1.00 6 4-6- 1 1 339.1 41.3 2 0     0       0 0 
 7 -1.00 0.00 5 3-5- 1 1 301.8 53.8 2 0     0       0 0 
 8 0.00 1.00 6 3-5-6- 1 1 264.6 70.3 3 0     0       0 0 
There were 2 retrials because of eye movement. 
 
 
 Discarded Trials 
Correct Column Codes: 2=MoveOut, 3=MoveOutGap, 4=Blink, 5=Timeout, 6=Antic 
Trial TargHF TargVF TargID Seq Eye  Cor  RT  Duration  NinSeq  Ts   Tb  Te     EP 
No (L=-) (T=-)   Pos_H (err=0) (ms) (ms) (ms) (ms) (ms) 
 (R=+) (M=0)   (in=1) (cor=1)  
  (B=+) 
 1 0.00 1.00 6 0-0-0- 0 2 -4.1  0.0 3 26  -13   -13 1 
 2 -1.00 0.00 5 4-5-6- 6 2 -4.1  0.0 3 1212 799-13 13 
 
 Eye position data (Valid trials only)  
Trial TargHFTargVFTargID Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9
 Dist10 
 1 0.00 -1.00 4 -260 -262 -262 -265 -266 -278 -281 -274 -272 
 2 -1.00 0.00 5 -250 -252 -246 -253 -248 -250 -262 -265 -251 
 3 1.00 0.00 3  246  246  246  250  249  238  246  249  252 
 4 0.00 -1.00 4 -254 -248 -254 -254 -254 -248 -248 -248 -248 
 5 1.00 0.00 3  252  253  250  250  242  243  242  246  251 
 6 0.00 1.00 6  301  300  300  300  313  308  313  319  314 
 7 -1.00 0.00 5 -284 -284 -287 -284 -281 -284 -280 -284 -294 
 8 0.00 1.00 6 -299 -299 -293 -299 -299 -287 -275 -275 -274 
End_______________________________________ 
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Sample Eye Coordinates File – Part of a single trial 
 
0 271 
Sample  X     Y 
  1  491  366 3997717 
  2  491  366 3997721 
  3  500  354 3997721 
  4  500  354 3997721 
  5  503  361 3997721 
  6  498  367 3997721 
  7  498  367 3997717 
  8  498  367 3997717 
  9  502  367 3997721 
 10  506  367 3997721 
 11  502  367 3997717 
 12  502  367 3997717 
 13  498  373 3997721 
 14  497  385 3997721 
 15  497  379 3997721 
 16  504  380 3997721 
 17  498  373 3997717 
 18  498  373 3997721 
 19  501  379 3997721 
 20  497  385 3997717 
 21  497  385 3997721 
 22  500  385 3997721 
 23  503  392 3997721 
 24  504  380 3997721 
 25  505  373 3997721 
 26  504  386 3997717 
 27  504  380 3997721 
 28  504  380 3997721 
 29  501  379 3997721 
 30  489  384 3997721 
 31  494  372 3997713 
 32  498  367 3997717 
 33  503  361 3997721 
 34  498  367 3997717 
 35  484  365 3997721 
 36  491  366 3997721 
 37  498  367 3997717 
 38  498  367 3997721 
 39  491  366 3997721 
 40  495  366 3997721 
 41  496  354 3997721 
 42  500  354 3997713 
 43  496  354 3997717 
 44  492  360 3997717 
 45  499  360 3997721 
 46  499  360 3997721 
 47  499  360 3997717 
 48  495  366 3997721



 

  113 

Sample MATLAB Summary Output File – 0-back task variables for all control participants 
 
Subject Trial Trim %Errors RTTrials  Mean RT  SEM RT      Median RT    SE of Median RT  

(msec)  (msec)  (msec)  (msec)  
 
***************** 
Data for Task: 0 Back 
***************** 
CTS01  84 4.76 80 328.64  12.75  296.70  17.56  
CTS02  91 3.30 86 309.46  8.89  307.40  10.73  
CTS03  95 1.05 90 312.98  9.57  303.30  9.67  
CTS04  91 1.10 90 294.30  7.17  288.00  10.05  
CTS05  89 6.74 80 440.02  12.35  443.00  17.32  
CTS06  94 9.57 84 409.18  13.99  386.20  17.31  
CTS07  96 3.12 91 322.02  6.61  319.60  8.38  
CTS08  82 3.66 79 382.19  16.85  355.60  25.98  
CTS09  92 0.00 89 365.65  10.97  363.60  12.00  
CTS10  88 5.68 81 463.62  15.47  440.90  19.65  
CTS11  93 0.00 92 341.36  9.69  328.60  12.13  
CTS12  90 3.33 84 355.61  8.51  359.40  10.81  
CTS13  90 3.33 85 360.84  11.06  343.00  11.13  
CTS14  90 1.11 89 351.00  12.00  338.64  17.27  
CTS15  70 15.71 58 234.36  9.22  195.50  18.81  
CTS16  85 3.53 79 260.57  7.00  253.40  11.88  
CTS17  95 1.05 92 282.62  5.76  281.10  7.63  
CTS18  92 1.09 88 324.73  9.42  307.60  11.00  
CTS19  74 5.41 69 271.27  12.97  195.50  22.82  
CTS20  94 1.06 92 329.61  13.53  307.80  20.72  
CTS21  95 11.58 82 348.00  11.90  321.90  12.97  
CTS22  95 1.05 92 416.77  15.72  396.50  20.25  
CTS23  88 0.00 86 337.31  11.12  312.10  9.51  
CTS24  88 1.14 85 295.24  8.42  282.90  10.41  
CTS25  93 2.15 88 393.69  9.62  386.80  10.37  
CTS26  94 3.19 89 353.90  7.81  339.00  9.73  
CTS27  92 1.09 88 276.95  7.18  275.90  6.49  
CTS28  93 1.08 90 299.78  9.59  303.70  10.50  
CTS29  94 3.19 88 386.93  9.78  367.80  10.91  
CTS30  88 4.55 81 448.13  11.26  436.20  12.90  
CTS31  92 2.17 87 348.69  8.50  334.00  10.71  
CTS32  92 0.00 88 320.56  8.32  308.85  10.88  
CTS33  84 4.76 79 321.08  13.34  305.75  22.67  
CTS34  92 2.17 86 311.70  6.04  306.30  6.19  
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