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THORACIC RADIOTHERAPY TREATMENT PLANNING  

WITH CINE PET/CT 

 

Publication No. _______ 

Adam Christopher Riegel, B.A. 

Supervisory Professor:  Tinsu Pan, Ph.D. 

 

Purpose:  Respiratory motion causes substantial uncertainty in radiotherapy treatment 

planning.  Four-dimensional computed tomography (4D-CT) is a useful tool to image tumor 

motion during normal respiration.  Treatment margins can be reduced by targeting the 

motion path of the tumor.  The expense and complexity of 4D-CT, however, may be cost-

prohibitive at some facilities.  We developed an image processing technique to produce 

images from cine CT that contain significant motion information without 4D-CT.  The 

purpose of this work was to compare cine CT and 4D-CT for the purposes of target 

delineation and dose calculation, and to explore the role of PET in target delineation of lung 

cancer. 

Methods:  To determine whether cine CT could substitute 4D-CT for small mobile lung 

tumors, we compared target volumes delineated by a physician on cine CT and 4D-CT for 27 

tumors with intrafractional motion greater than 1 cm.  We assessed dose calculation by 

comparing dose distributions calculated on respiratory-averaged cine CT and respiratory-

averaged 4D-CT using the gamma index.  A threshold-based PET segmentation model of 

size, motion, and source-to-background was developed from phantom scans and validated 

with 24 lung tumors.  Finally, feasibility of integrating cine CT and PET for contouring was 

assessed on a small group of larger tumors. 

Results:  Cine CT to 4D-CT target volume ratios were (1.05±0.14) and (0.97±0.13) for high-

contrast and low-contrast tumors respectively which was within intraobserver variation.  

Dose distributions on cine CT produced good agreement (< 2%/1 mm) with 4D-CT for 71 of 

73 patients.  The segmentation model fit the phantom data with R2 = 0.96 and produced 
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PET target volumes that matched CT better than 6 published methods (-5.15%).  Application 

of the model to more complex tumors produced mixed results and further research is 

necessary to adequately integrate PET and cine CT for delineation. 

Conclusions:  Cine CT can be used for target delineation of small mobile lesions with 

minimal differences to 4D-CT.  PET, utilizing the segmentation model, can provide additional 

contrast.  Additional research is required to assess the efficacy of complex tumor 

delineation with cine CT and PET.  Respiratory-averaged cine CT can substitute respiratory-

averaged 4D-CT for dose calculation with negligible differences.     
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Chapter 1  INTRODUCTION AND BACKGROUND 

1.1 Introduction 

In 2009, an estimated 220,000 new cases of lung cancer were diagnosed, 87% of 

which were non-small cell lung cancer (NSCLC).  Deaths from lung cancer in 2009 were 

projected to reach nearly 160,000, substantially higher than deaths attributed to prostate, 

breast, and colorectal cancer combined.  Lung cancer deaths account for 28% of all cancer 

deaths in the United States (ACS, 2009).  Radiation therapy is one important treatment 

option for both early and later stage NSCLC.   Shown to be an effective alternative to 

surgical resection, radiation therapy can produce 5-year survival rates up to 27% for stage I 

patients unfit or unwilling to undergo surgical resection (Dosoretz et al., 1992; Gauden et 

al., 1995).  Stage III patients are often treated with radiation therapy alone or a combination 

of radiation therapy and chemotherapy, which, in terms of one-year survival, was 

demonstrated to be statistically superior to radiation therapy alone (Sause et al., 1995).  

The increasing use of radiation therapy in treatment of lung cancer has driven great 

technological advances in the last decade, including intensity-modulated radiation therapy 

(IMRT) and image-guided radiation therapy (IGRT).  Treatment planning technology has, 

necessarily, kept pace. 

When patients are slated for radiation therapy, they first receive an imaging exam 

on which the radiation treatment is planned.  This exam, typically a computed tomography 

(CT) exam, is performed in the treatment position and is often called a CT “simulation,” 

referring to the fact that imaging geometry and patient setup mimic the geometry in the 

treatment room.  There are many uncertainties in treatment planning, but for lung cancer 

patients, respiratory motion is especially significant.  Typical helical CT scans can cause 

significant image artifacts (Chen et al., 2004) which could lead to inaccurate targeting of the 

tumor.   

In 2004, a new imaging technology was introduced for CT simulation of lung cancer.  

Four-dimensional computed tomography (4D-CT) enables physicists to capture a 3-D movie 

of the patient’s respiratory pattern, thereby accurately representing the movement of the 
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tumor and allowing physicians to account for motion in the treatment plan (Keall et al., 

2004; Low et al., 2003; Pan et al., 2004; Rietzel et al., 2005).  Typically, physicians will aim 

radiation beams at the entire motion path of the tumor to ensure that the tumor stays 

within the beam during the entire respiratory cycle. 

A huge technological breakthrough, 4D-CT has become very popular in the last 5 

years and has been adopted for CT simulation of lung cancer treatment at many centers 

around the world including M. D. Anderson in Houston, Texas.  The American Association of 

Physicists in Medicine (AAPM) Task Group 76 highlights 4D-CT as a technique to effectively 

assess tumor motion (Keall et al., 2006). 

Parallel to the impressive advancement of medical technology in the last few 

decades, however, is the steep increase in healthcare costs.  The implementation of 4D-CT 

is an example of one of these increases.  The acquisition of 4D-CT imaging is a complex 

process:  Besides the scanner itself, additional hardware from a different vendor is required 

to track the respiratory pattern of the patient.  Such hardware may cost an additional 

$75,000.  In the General Electric implementation of 4D-CT, two additional pieces of 

software are required to create 4D-CT images which, along with the proprietary workstation 

on which the software runs, together may cost $300,000.  After installation of the 

technology, trained physicists and technicians must be present to ensure high-quality image 

acquisition which, of course, will incur additional costs.  Though such costs may be minimal 

to an institution like M. D. Anderson or comparable university hospitals across the United 

States, many smaller hospitals and clinics cannot afford such expenses after purchasing the 

scanner itself. 

Fortunately, there may be a way to make sophisticated imaging technology available 

to the majority of hospitals with average resources.  By manipulating CT images that are 

used to create 4D-CT through re-sorting and image processing, we can create image sets 

which contain significant motion information without additional hardware and minimal 

software (Pan et al., 2006; Pan et al., 2007).  These images could be used to plan radiation 

therapy at a fraction of the cost of 4D-CT.   
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The purpose of this dissertation was to determine if these alternative image sets, 

generated by a process called “cine CT,” could, in conjunction with functional imaging such 

as PET, be used for treatment simulation in place of 4D-CT.  The work focused on 

demonstrating equivalence of target delineation and dose calculation using cine CT and PET 

compared with 4D-CT. 

1.2 Background and Significance 

Patients with NSCLC are staged according to the Revised International System for 

Staging Lung Cancer which was adopted by the American Joint Committee on Cancer in 

1997 (NCI, 2010).  The system utilizes combinations of TNM classification to stratify patients 

and is summarized in Table 1.1.  “T” is generally determined by measuring tumor size.  “N” 

is found by assessing spread to regional lymph nodes.  “M” is essentially a binary value 

indicating whether or not the patient has distant metastasis.  Because definitive radiation 

therapy is particularly important for stage I and stage III NSCLC, the following investigations 

are focused on these particular stages. 

 

Table 1.1:  Non-small cell lung cancer staging system based on TNM classification 

IA IB IIA IIB IIIA IIIB IV 

T1 N0 M0 T2 N0 M0 T1 N1 M0 T2 N1 M0 T1 N2 M0 T* N3 M0 T* N* M1 

   T3 N0 M0 T2 N2 M0 T4 N* M0  

    T3 N1 M0   

    T3 N2 M0   

* = any numerical value 

T = tumor stage 

N = regional nodal status 

M = distal metastasis 

 

Computed tomography (CT) has revolutionized the treatment planning process for 

radiation therapy, facilitating the transition from two-dimensional planning to three-

dimensional treatment simulation.  CT, like conventional radiography, is a projection x-ray 

modality.  In current “third-generation” CT scanners, x-rays are produced in a fan beam by 
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an x-ray tube rotating around the patient on a slip-ring gantry.  The detector array rotates 

with the gantry, capturing projections from different angles through the patient.  

Projections are acquired at typical diagnostic energies such as 120 kVp, which provides a 

mean energy of 60-70 kV for a polyenergetic x-ray spectrum.  At these energies, the 

photoelectric effect dominates total attenuation coefficient and produces useful contrast in 

the x-ray projections.  Transverse images are reconstructed using filtered backprojection.  

Iterative reconstruction algorithms have been investigated (Marin et al., 2010), but are 

computationally intensive.  Graphics processing unit (GPU) reconstruction may expedite the 

process (Xu et al., 2007).  Obviously, scanner characteristics vary with manufacturer and 

model, but many modern scanners are capable of multi-slice helical CT in which the 

detector array consists of many individual detectors in the longitudinal direction (through 

the scanner bore) that can be binned together to detect photons over a certain area.  The 

height of this binned area in the longitudinal direction defines the slice thickness.  The 

number of slices is defined by the number of data channels available.  Helical acquisition is 

performed by continuously moving the couch while the beam is on and acquiring data in a 

“candy-stripe” pattern around the patient.  Helical projection data is interpolated to form 

projections at evenly spaced transverse slices (Bushberg, 2002). 

The ability to localize tumors and define regions of interest (ROIs) in 3-D is a huge 

advantage of CT simulation for radiation therapy.  For lung cancer, however, respiratory 

motion remains a huge source of uncertainty for radiotherapy planning, and increasing 

treatment margins is undesirable due to additional normal tissue that will be irradiated in 

the process.  Furthermore, standard helical CT can induce severe artifacts when imaging 

thoracic lesions due to respiratory motion (Chen et al., 2004).  One proposed solution is 

“slow” CT scanning, which uses a 4 second gantry rotation to capture breathing motion in 

one rotation of the x-ray gantry (Lagerwaard et al., 2001).  Although the AAPM Task Group 

76 report advocates the use of slow scanning (Keall et al., 2006), significant image artifacts 

can occur due to assumptions made in the filtered back-projection reconstruction process 

that are violated by the slow scan technique (Bacharach, 2007). 
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Four-dimensional computed tomography (4D-CT) overcomes these issues by 

collecting multiple images at a single couch position, thereby capturing different phases of 

the respiratory cycle (Keall et al., 2004; Low et al., 2003; Pan et al., 2004; Rietzel et al., 

2005).  In the image-binning approach to 4D-CT reconstruction provided by one commercial 

vendor (General Electric Healthcare, Waukesha, WI), image acquisition occurs in “cine 

mode,” in which the couch is stationary and the gantry rotates around the patient 

continuously acquiring data (Pan et al., 2004; Rietzel et al., 2005).  Images are reconstructed 

at pre-defined intervals and are sorted according to respiratory phase determined by a 

respiratory surrogate, such as an external monitor of the location of the external patient 

surface (Real-Time Positioning Management [RPM] system, Varian, Palo Alto, CA).  Ten 3-D 

image sets representing each phase of the respiratory cycle are formed (0% to 90%, where 

0% represents end-inspiration and 50% represents end-expiration).  The utility of 4D-CT was 

recognized immediately in the radiation oncology community and several studies have 

shown the use of 4D-CT in measuring lesion or organ motion (Brandner et al., 2006; Liu et 

al., 2007) and implementing 4-D treatment planning (Kang et al., 2007; Rietzel et al., 2006; 

Underberg et al., 2004). 

One drawback to treatment planning with 4D-CT is the increased delineation 

workload.  Gross tumor volume (GTV) is defined in the International Commission on 

Radiation Units and Measurements (ICRU) report 62 as “gross demonstrable extent and 

location of malignant growth” (International Commission on Radiation Units and 

Measurements., 1999) and is contoured by the radiation oncologist.  For NSCLC, the GTV is 

expanded with an isotropic margin (barring any anatomical boundaries to extension of gross 

tumor) to the clinical target volume (CTV), which includes microscopic extension, and 

expanded again to the internal target volume (ITV) which accounts for physiological motion 

with the internal margin (International Commission on Radiation Units and Measurements., 

1999).  One last margin for setup uncertainty expands the ITV to the planning target volume 

(PTV).  ICRU treatment volumes are illustrated in Figure 1.1 (left).  

ICRU 62, however, was written in 1999, several years before 4D-CT was 

commercially available and does not consider the consequences of 4-D imaging.  For 



 

example, ITV was originally intended as a generic expansion for physiological motion.  Now,

it is possible to obtain patient

generic ITV expansion confusing and obsolete.  Strictly interpreted from ICRU guidelines, 

GTV should be contoured on each phase of 4D

ten-fold.   

 

Figure 1.1:  Target volumes as described by ICRU 62 (left) and M. D. Anderson convention 

(right).  GTV = gross tumor volume.  CTV = clinical target volume.  ITV = internal target 

volume.  PTV = planning target volume.  IGTV = internal gross tumor volume

ICTV = internal clinical target volume.  EE = end

D. Anderson approach utilizes 4D

characterized by IGTV. 

 

Various techniques have been investigated to overcome this obstacle, including rigid 

registration techniques (Ezhil et al., 2009; Liu et al., 2007

projection (MIP) (Bradley et al., 2006; Keall et al., 2006; Muirhead et al., 2008; Rietzel et al., 

2006; Rietzel et al., 2008; Underberg et al., 2005)
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example, ITV was originally intended as a generic expansion for physiological motion.  Now,

it is possible to obtain patient-specific motion parameters with 4D-CT, thereby making a 

generic ITV expansion confusing and obsolete.  Strictly interpreted from ICRU guidelines, 

GTV should be contoured on each phase of 4D-CT, which increases the delineat

:  Target volumes as described by ICRU 62 (left) and M. D. Anderson convention 

(right).  GTV = gross tumor volume.  CTV = clinical target volume.  ITV = internal target 

volume.  PTV = planning target volume.  IGTV = internal gross tumor volume

ICTV = internal clinical target volume.  EE = end-expiration.  EI = end-inspiration.  The M. 

D. Anderson approach utilizes 4D-CT to define a patient-specific motion path 

Various techniques have been investigated to overcome this obstacle, including rigid 

(Ezhil et al., 2009; Liu et al., 2007) and the use of maximum intensity 

(Bradley et al., 2006; Keall et al., 2006; Muirhead et al., 2008; Rietzel et al., 

2006; Rietzel et al., 2008; Underberg et al., 2005).  The MIP is a single 3-D image set 

example, ITV was originally intended as a generic expansion for physiological motion.  Now, 

CT, thereby making a 

generic ITV expansion confusing and obsolete.  Strictly interpreted from ICRU guidelines, 

CT, which increases the delineation workload 

 

:  Target volumes as described by ICRU 62 (left) and M. D. Anderson convention 

(right).  GTV = gross tumor volume.  CTV = clinical target volume.  ITV = internal target 

volume.  PTV = planning target volume.  IGTV = internal gross tumor volume (dotted line).  

inspiration.  The M. 

path 

Various techniques have been investigated to overcome this obstacle, including rigid 

and the use of maximum intensity 

(Bradley et al., 2006; Keall et al., 2006; Muirhead et al., 2008; Rietzel et al., 

D image set 
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processed from 4D-CT data.  Each voxel displays the maximum CT value it encountered 

throughout the 10 phases of the respiratory cycle.  Because of the substantial difference in 

electron density between the tumor, which is similar to “soft tissue,” and the surrounding 

lung parenchyma, which is typically about 1/4 the density of soft tissue (Khan, 2003), the 

MIP, in essence, displays the “motion envelope” of the tumor, a record of everywhere the 

tumor moves over a respiratory cycle.   

Because radiation oncologists typically target the motion envelope of the tumor for 

radiation therapy (treatment delivery technology is not yet sophisticated enough to reliably 

track the tumor during treatment, though this is an active area of research (Suh et al., 

2009)), various institutions have independently modified ICRU target volume definitions to 

incorporate 4-D imaging into the simulation procedure.  At M. D. Anderson, the internal 

gross tumor volume or “IGTV” has been defined as the motion envelope of the gross tumor 

which is expanded for microscopic disease to the internal clinical target volume (ICTV), 

illustrated in Figure 1.1 (right).  A recent study found that IGTV contoured on MIP was 

significantly larger than GTV contoured on helical CT, which implies a more “inclusive” 

method of GTV determination thus less chance of geographic miss (Bradley et al., 2006).  

Several studies have shown that contouring IGTV with MIP produces volumes similar to the 

union of 10 phase GTVs from 4D-CT (Park et al., 2009; Rietzel et al., 2005; Rietzel et al., 

2008; Underberg et al., 2005), suggesting that MIP could be used to define targets for 

radiation therapy instead of all 10 phases of 4D-CT.   

Similar image processing techniques can be applied to 4D-CT data to produce other 

useful image sets, such as the minimum intensity projection (min-ip), which displays the 

minimum voxel value instead of maximum voxel value, and the respiratory-averaged CT 

(RACT), which is the arithmetic average of the 10 phases of 4D-CT.  The RACT appears as a 

motion-blurred CT image and can be used for dose calculation (Admiraal et al., 2008; Glide-

Hurst et al., 2008) and attenuation correction of positron emission tomography (Chi et al., 

2007; Pan et al., 2005).  Examples of end-inspiration and end-expiration phase images from 

4D-CT, as well as MIP and RACT, are shown in Figure 1.2. 



 

Figure 1.2:  (A) maximum intensity projection and 

End-expiration and end-inspiration, the extremes of respiratory motion, are shown in 

CT phase images (C) 50% phase and (D) 0% phase. 

 

Recently, a technique was developed to produce RACT

the purpose of attenuation correction of diagnostic thoracic PET/CT 

performed (Pan et al., 2006).  In this case, RACT is formed by averaging 

each couch position (between 20

instead of a 10-phase subset as determined by 4D

MIP processing; instead of taking the MIP of the 10 phases of 4D

of all images reconstructed from the cin

sets from which MIP and RACT are derived are denoted by a subscript.  For example, MIP 

processed from cine CT is “MIP

that 4D-CT is no longer required to form MIP which, according to t

used for target definition of the IGTV.  This suggests that creating MIP directly from cin

may be a way to bypass the complex and expensive 4D

substantial motion information into the treatment p

A significant drawback of MIP, however, is the lack of contrast when tumors are 

located near structures of equal or greater density 

2008; Rietzel et al., 2005; Rietzel et al., 2008; Underberg et al., 2005)

example, a tumor located just superior to the liver.  The liver moves substantially during 

respiratory motion and can “overwrite” the inferior motion envelope of the

it nearly impossible to determine the inferior extent of the tumor’s motion (

Another example of this problem is a tumor a
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) maximum intensity projection and (B) respiratory-averaged CT from 4D

inspiration, the extremes of respiratory motion, are shown in 

CT phase images (C) 50% phase and (D) 0% phase.  

Recently, a technique was developed to produce RACT directly from cine

the purpose of attenuation correction of diagnostic thoracic PET/CT for which

.  In this case, RACT is formed by averaging all the images at 

each couch position (between 20-30 images, depending on user-defined parameters) 

phase subset as determined by 4D-CT.  The same principle can be applied to 

ad of taking the MIP of the 10 phases of 4D-CT, one can take the MIP 

of all images reconstructed from the cine acquisition (Figure 1.3).  In this work

sets from which MIP and RACT are derived are denoted by a subscript.  For example, MIP 

processed from cine CT is “MIPcine.”  The advantage of processing directly from cine CT

CT is no longer required to form MIP which, according to the studies above, can be 

used for target definition of the IGTV.  This suggests that creating MIP directly from cin

may be a way to bypass the complex and expensive 4D-CT process but still incorporate 

substantial motion information into the treatment plan.  

A significant drawback of MIP, however, is the lack of contrast when tumors are 

located near structures of equal or greater density (Bradley et al., 2006; Muirhead et al., 

08; Rietzel et al., 2005; Rietzel et al., 2008; Underberg et al., 2005).  Consider, for 

example, a tumor located just superior to the liver.  The liver moves substantially during 

respiratory motion and can “overwrite” the inferior motion envelope of the

it nearly impossible to determine the inferior extent of the tumor’s motion (

Another example of this problem is a tumor adjacent to the chest wall (Figure 

 

averaged CT from 4D-CT.  

inspiration, the extremes of respiratory motion, are shown in 4D-

directly from cine CT data for 

for which 4D-CT is not 

the images at 

defined parameters) 

The same principle can be applied to 

CT, one can take the MIP 

In this work, the image 

sets from which MIP and RACT are derived are denoted by a subscript.  For example, MIP 

processing directly from cine CT is 

he studies above, can be 

used for target definition of the IGTV.  This suggests that creating MIP directly from cine CT 

CT process but still incorporate 

A significant drawback of MIP, however, is the lack of contrast when tumors are 

(Bradley et al., 2006; Muirhead et al., 

.  Consider, for 

example, a tumor located just superior to the liver.  The liver moves substantially during 

respiratory motion and can “overwrite” the inferior motion envelope of the tumor, making 

it nearly impossible to determine the inferior extent of the tumor’s motion (Figure 1.4).  

Figure 1.5).   



 

 

 

 

 

 

Figure 1.3:  Image processing of 4D

maximum intensity projection, RACT = respiration

Reproduced with permission from Riegel 
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:  Image processing of 4D-CT imaging versus raw cine CT imaging.  MIP = 

maximum intensity projection, RACT = respiration-averaged computed tomography

Reproduced with permission from Riegel et al. (Riegel et al., 2009) 

 

raw cine CT imaging.  MIP = 

averaged computed tomography.  



 

 

Figure 1.4:  Sagittal views of a moving lesion obscured by the liver.  (A) MIP without 

contour.  (B) MIP with end-inspiration

with contour drawn for reference.

impossible to delineate with the MIP alone.

 

 

 

Figure 1.5:  Sagittal CT image of tumor near the chest wall.  

projection.  (right) Respiratory

al. (Riegel et al., 2009) 
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Sagittal views of a moving lesion obscured by the liver.  (A) MIP without 

inspiration tumor contour (orange).  (C) End-inspiration 

with contour drawn for reference.  Note that the inferior border of the tumor is nearly 

impossible to delineate with the MIP alone. 

CT image of tumor near the chest wall.  (left) Maximum intensity 

Respiratory-averaged CT.  Reproduced with permission from Riegel 

 

Sagittal views of a moving lesion obscured by the liver.  (A) MIP without 

inspiration phase 

Note that the inferior border of the tumor is nearly 

 

(left) Maximum intensity 

Reproduced with permission from Riegel et 
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It is plausible, however, that additional image sets could be used to supplement 

MIPcine and provide enough information for accurate target definition.  Consider the 

example of the tumor near the chest wall:  The tumor is easily defined in the superior, 

inferior, and anterior directions on the MIPcine image (Figure 1.5, left), but the contrast is 

poor in the posterior direction.  The RACTcine image, however, provides good contrast for 

the posterior extent of the tumor due to a density gradient caused by motion blurring 

(Figure 1.5, right).  Used together, it is feasible that the MIPcine and RACTcine could be used 

for IGTV delineation of small, highly mobile tumors (Pan et al., 2007).  For larger, more 

complicated tumors, however, it is likely that cine CT alone will not provide enough 

information for IGTV delineation.  This hypothesis is supported by a result publication by 

Muirhead et al. in which target delineation on MIP4D-CT was compared with 4D-CT phase 

imaging in patients stratified by lung cancer stage.  The authors found that MIP could be 

reliably substituted for 4D-CT in stage I lesions, but not stage II or III (Muirhead et al., 2008). 

Lesion/normal tissue contrast may be enhanced by adding a second imaging 

modality.  The integration of fluorodeoxyglucose positron emission tomography (FDG-PET) 

into the treatment planning process is another recent development in radiation oncology, 

facilitated by the hardware fusion of PET/CT scanners.  Several studies have analyzed the 

impact of including PET data in GTV delineation for NSCLC and have yielded noteworthy 

results, mostly due to the inclusion of lymph nodes and the exclusion of atelectasis 

(Ashamalla et al., 2005; Bradley et al., 2004; Erdi et al., 2002; Nestle et al., 1999; van 

Baardwijk et al., 2006).   

PET imaging provides quantitative data regarding the metabolic behavior of the 

patient.  In that sense, it is a functional imaging modality, as opposed to CT which is a 

structural imaging modality.  To acquire a PET scan, a patient is injected with a radiotracer, 

that is, a compound that follows metabolic pathways but has a radioactive isotope attached 

to it.  In almost all oncological PET imaging, the compound used is fluorodeoxyglucose 

(FDG).  FDG behaves like glucose (except with a radioactive 18F atom attached) and follows 

the glycolytic pathway until it becomes phosphorylated by hexokinase and becomes 

trapped in the cell.  The 18F nucleus decays to 18O by positron (β+) decay.  The ejected 
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positron travels a certain distance (the “range” of the positron, which is unique to the 

isotope and is related to the initial energy of the positron after decay) and undergoes 

annihilation with an electron, emitting two 511 keV photons at approximately 180° from 

each other.  These photons are detected by a ring of detectors positioned around the 

patient that discriminate detection events based on energy (a window around 511 keV) and 

time.  Each event is recorded as a line of response, which is placed in a sinogram and is 

reconstructed using an iterative reconstruction technique such as maximum likelihood 

expectation maximization (Lange et al., 1984; Shepp et al., 1972) or, more recently, ordered 

subsets expectation maximization (OSEM) (Hudson et al., 1994).   

One advantage of using PET images to delineate that GTV is the application of auto-

segmentation techniques.  Currently, there is very little guidance on exactly how to 

incorporate PET information into the delineation process, and, consequently, different 

physicians can produce different GTVs (Riegel et al., 2006).  Auto-segmentation would 

standardize this process, thereby decreasing interobserver variation and simplifying the 

delineation process.   

Target volume delineation of lung cancer with PET/CT has been extensively reported 

in the literature (Biehl et al., 2006; Black et al., 2004; Brambilla et al., 2008; Caldwell et al., 

2003; Davis et al., 2006; Drever et al., 2007; Erdi et al., 1997; Nestle et al., 2005; Okubo et 

al., 2008; Park et al., 2008; Paulino et al., 2004), yet little consensus exists on exactly how to 

use PET to define a GTV (Nestle et al., 2006).  Some studies recommend using an absolute 

SUV threshold such as 2.5 g/mL (Paulino et al., 2004), while others advocate a fixed 

percentage threshold of maximum activity concentration or standardized uptake value 

(SUV) (Erdi et al., 1997; Okubo et al., 2008).  Biehl et al., however, have shown that a single 

threshold for all lung lesions is inadequate and recommend thresholds varying from 15% of 

maximum activity concentration for tumors greater than 5 cm and 42% of maximum activity 

concentration for tumors less than 3 cm (Biehl et al., 2006).  Black et al. derived a linear 

relationship for optimal thresholds from phantom scans as a function of mean SUV, which 

is, in turn, a function of background activity and target volume (Black et al., 2004).  

Brambilla et al. found that both target size and source-to-background ratio were significant 



 

factors in determining appropriate activity concentration thresholds and recommended 

that both variables be included in automatic segmentation algorithms

2008).  Van Baardwijk et al., by way of thresholds determined by Daisne

2003), included both variables in their segmentation algorithm, applied the method to 

patients, and found good correlation with pathological specimen

2007). 

Figure 1.6:  PET image of 37 mm diam

sinusoidal motion. 

 

One significant variable that most of these studies ignore is motion.  

acquisition occurs over several m

respiratory motion on PET imaging is a blurring of the tumor:  Activity is spread out over 

voxels in the motion path of the tumor 

quantification (Boucher et al., 2004)

The aforementioned segmentation studies focused either on stationary o

phantom or moving objects in PET compared with a free

Comparison with free-breathing CT will most likely be inaccurate due to the possib

motion artifacts (Chen et al., 2004)

will be inappropriate because, typically, a breath

when 4D-CT is available.  Recall that 4D

lung lesions to define the IGTV, the motion envelope of the tumor.  
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ors in determining appropriate activity concentration thresholds and recommended 

that both variables be included in automatic segmentation algorithms (Brambilla et al., 

, by way of thresholds determined by Daisne et al.

, included both variables in their segmentation algorithm, applied the method to 

patients, and found good correlation with pathological specimens (van Baardwijk et al., 

37 mm diameter sphere moving at 0, 10, 20, and 30 mm 

One significant variable that most of these studies ignore is motion.  

acquisition occurs over several minutes to accumulate coincidence events, the effect of 

respiratory motion on PET imaging is a blurring of the tumor:  Activity is spread out over 

voxels in the motion path of the tumor (Figure 1.6) which can lead to inaccurate 

(Boucher et al., 2004) and exaggerated tumor geometry (Okubo et al., 2008)
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et al., 2004), and comparison with breath-hold CT, while accurate, 
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ors in determining appropriate activity concentration thresholds and recommended 

(Brambilla et al., 

et al. (Daisne et al., 

, included both variables in their segmentation algorithm, applied the method to 

(van Baardwijk et al., 

 

ter sphere moving at 0, 10, 20, and 30 mm 

One significant variable that most of these studies ignore is motion.  Because PET 

inutes to accumulate coincidence events, the effect of 

respiratory motion on PET imaging is a blurring of the tumor:  Activity is spread out over 

ccurate 

(Okubo et al., 2008).  

bjects in a 

breathing or breath-hold CT.  

breathing CT will most likely be inaccurate due to the possibility of 

hold CT, while accurate, 

hold CT is not used for treatment planning 

CT is used in radiation therapy planning of moving 



14 

 

It seems logical, then, to compare PET to 4D-CT to determine an optimal 

segmentation method.  Caldwell et al. found that PET could indeed be used to determine 

IGTV for radiation therapy planning but that, as a result of their moving phantom study, 

conventional threshold values (acquired at rest) produced volumes that were too small.  

They reduced the threshold to 15% of maximum activity concentration to adequately 

capture what the authors called “ITV” (Caldwell et al., 2003).  Similarly, Yaremko et al. found 

that hot spheres moving in air required a reduced threshold (25%) to capture the IGTV 

(Yaremko et al., 2005).  To date, however, there have not been studies optimizing activity 

concentration thresholds using 4D-CT as the reference for phantoms or patients, though 

some of the aforementioned segmentation studies have called for just such an investigation 

(Biehl et al., 2006; Okubo et al., 2008). 

If a robust segmentation protocol could be developed for moving lung tumors, then 

radiation oncologists could apply such a protocol to radiation therapy treatment planning 

with the confidence that PET is providing accurate targeting information.  Recall that the 

main drawback with target delineation using MIPcine and RACTcine was the lack of contrast 

for tumors with complicated structure.  By using cine CT image sets and PET together 

(utilizing the segmentation protocol), there may be enough information for target 

delineation and treatment planning. 

The purpose of this dissertation was to develop a treatment planning technique 

using image sets processed from cine CT in conjunction with PET imaging as a substitute for 

4D-CT.  The work is split into 4 chapters:  First, we examined the use of MIPcine and RACTcine 

for the purpose of contouring stage I NSCLC; second, we examined the use of RACTcine for 

dose calculation; third, we developed a threshold-based auto-segmentation model to 

accurately contour moving lung tumors; finally, we assessed the feasibility of using cine CT 

image sets and the PET auto-segmentation algorithm together to contour stage III NSCLC.   

If successful, thoracic radiotherapy treatment planning with cine PET/CT may rival 

conventional 4D-CT plans at a fraction of the cost, thereby enabling small, local treatment 

centers to provide motion-encompassing treatment plans to lung cancer patients.   
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1.3 Summary of Chapters 

1.3.1 Chapter 2:  Target Delineation of Stage I Non-Small Cell Lung Cancer with Cine 

CT 

Early-stage lung tumors are often small, well-defined, and can be very mobile.  Our 

first task was to use MIPcine and RACTcine to contour early stage lung cancer for group of 

patients slated for stereotactic body radiation therapy (SBRT).  The purpose was to 

determine if target definition with MIPcine and RACTcine was similar to target definition with 

4D-CT.  Chapter 2 was split into 2 parts:  The phantom study and the patient study.  

Phantoms were used to assess differences between cine CT and 4D-CT in a controlled 

environment and patients were used for clinical significance.   

In the phantom study, a body phantom with 6 spheres was placed on a motion 

platform and moved in an irregular respiratory pattern while cine CT was acquired.  MIPcine 

and MIP4D-CT were formed and auto-segmented in a treatment planning system for volume 

comparison.  In the patient study, cine CT images obtained during treatment simulation 

were used to form MIPcine and RACTcine image sets.  These image sets then were used 

together to define IGTVs.  Patients were included if tumor motion was greater than 1 cm.  

Lesions were contoured first using MIPcine and RACTcine, then with MIP4D-CT along with 10-

phase image sets.  Mean ratios of volume magnitude were compared with intraobserver 

variation, the variation expected by a physician contouring the same region multiple times.  

Mean shifts in centroid location were calculated, and volume overlap was assessed with the 

normalized Dice similarity coefficient index. 

The patient studies demonstrated that IGTV defined on cine imaging was similar to 

or slightly larger than IGTV defined on 4D-CT.  Phantom studies of irregular motion 

confirmed that IGTV defined on cine CT imaging was indeed larger and therefore more 

accurately captured the maximum motion extent of irregular respiration. 
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1.3.2 Chapter 3:  Dose Calculation with Cine Respiratory-Averaged CT 

Dose calculation for thoracic radiotherapy is commonly performed on a free-

breathing helical CT despite artifacts caused by respiratory motion.  Some centers now use 

RACT4D-CT, the pixel-by-pixel average of the 10 phases of 4D-CT, for dose calculation.  

RACTcine, however, may be a means to incorporate motion information into dose calculation 

without performing 4D-CT.  The purpose of this chapter was to determine if RACTcine could 

be substituted for RACT4D-CT for the purposes of dose calculation, and if increasing the cine 

duration can decrease differences between the dose distributions.  Cine CT data and 

corresponding 4D-CT simulations for 23 patients with at least 2 breathing cycles per cine 

duration were retrieved.  RACT was generated four ways:  (1) from 10 phases of 4D-CT, (2) 

from 1 breathing cycle of images, (3) from 1.5 breathing cycles of images, and (4) from 2 

breathing cycles of images.  The clinical treatment plan was transferred to each RACT and 

dose was recalculated.  Planar dose distributions were exported on orthogonal planes 

through the isocenter (coronal, sagittal, and transverse orientations).  The resulting dose 

distributions were compared using the gamma (γ) index within the planning target volume 

(PTV).  Failure criteria were set to 2%/1mm.  A follow-up study with 50 additional lung 

cancer patients was performed to increase sample size.  The same dose recalculation and 

analysis was performed.   

In the primary patient group, 22 of 23 patients had 100% of points within the PTV 

pass γ criteria.  The average maximum and mean γ indices were very low (well below 1), 

indicating good agreement between dose distributions.  Increasing the cine duration 

generally increased the dose agreement.  In the follow-up study, 49 of 50 patients had 100% 

of points within the PTV pass the γ criteria.  The average maximum and mean γ indices were 

again well below 1, indicating good agreement.  Dose calculation on RACTcine is negligibly 

different from dose calculation on RACT4D-CT.  Differences can be decreased further by 

increasing the cine duration of the cine CT scan. 
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1.3.3 Chapter 4:  Segmentation of Moving Targets with PET/CT:  Correlation of 

Thresholds with Lesion Size, Motion Extent, and Source-to-Background Ratio 

 Several studies consider size and source-to-background ratio (SBR) in their 

automatic segmentation methods but neglect respiratory motion.  The purpose of this 

chapter was to model the relationship between optimal activity concentration threshold, 

tumor volume, motion extent, and SBR using multiple regression techniques.  An extensive 

series of phantom scans simulating tumors of varying size, SBR, and motion amplitudes was 

performed.  Regions of interest delineated on PET were compared with the “motion 

envelope” of the moving sphere defined on cine CT.   

 A NEMA IEC thorax phantom containing 6 spheres of inner diameters 10, 13, 17, 22, 

28, 37 mm was filled to 6 SBRs (5:1, 10:1, 15:1, 20:1, 30:1, 50:1) and was placed on a motion 

platform and moved sinusoidally at 0, 5, 10, 15, 20, 25, 30 mm amplitudes (252 

combinations of experimental parameters).  PET images were acquired for 18 minutes and 

split into three 6-minute acquisitions to assess reproducibility.  The spheres (blurred on PET 

images due to motion) were segmented at 1% intervals of maximum activity concentration.  

The optimal threshold was determined by comparing threshold volume surfaces with a 

reference volume surface defined on cine CT.  Optimal activity concentration thresholds 

were normalized to background and multiple regression was used to determine the 

relationship between optimal threshold, volume, motion, and SBR.  Standardized regression 

coefficients were used to assess the relative influence of each variable.   

 The model was validated using patient data.  PET and 4D-CT were performed in the 

same imaging session for 23 patients (24 tumors) for radiation therapy planning.  IGTVs 

were segmented on MIPcine and activity concentration thresholds which best matched were 

determined.  IGTVs were delineated on PET imaging using our segmentation model and 

following methods for comparison:  15%, 35%, and 42% of maximum activity concentration, 

SUV of 2.5 g/mL, 15% of mean activity concentration plus background, a linear function of 

mean SUV, and our motion-inclusive model derived from phantom scans.  Threshold values 

produced from each method were correlated with best-matched threshold values.  PET 
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target volumes were geometrically compared to cine CT target volumes using volume 

magnitude and surface separation.     

 The resulting model and coefficients provided a functional form that fit the phantom 

data with an adjusted R2 = 0.96. The most significant contributor to threshold level was SBR.  

Our technique yielded threshold values well-correlated with measured optimal thresholds 

(slope = 0.8991, R2 = 0.8577) and produced PET to CT volume differences smaller than the 6 

other methods (-5.15%) and surface separation smaller than 5 other methods (1.6 mm).  

IGTVs at 35% and 42% maximum activity concentration substantially underestimated the 

motion envelope of the tumor in most patients. 

1.3.4 Chapter 5:  Target Delineation of Stage III Non-Small Cell Lung Cancer with Cine 

PET/CT 

 The segmentation model developed in Chapter 4 was applied to 5 patients with 

NSCLC: 4 patients with stage III disease, 1 with stage I disease.  Feasibility of using the PET 

segmentation model in conjunction with MIPcine was assessed qualitatively.  The 

segmentation model produced reasonable target volumes for 3 of 5 patients.  Tumors of 2 

patients, however, were not delineated accurately.  Further research is required for this 

application of the segmentation model.  Accounting for nodal involvement was not 

investigated in this chapter but is critical for accurate segmentation of stage III NSCLC and 

therefore should be explored in the future. 

1.3.5 Chapters 6 and 7:  Discussion and Conclusions 

 Results from Chapters 2, 3, 4, and 5 are discussed in the context of the cine PET/CT 

workflow.  Recommendations are made based on experimental results. 
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Chapter 2  TARGET DELINEATION OF STAGE I NON-SMALL CELL LUNG CANCER WITH 

CINE CT 

2.1 Introduction 

Radiation therapy is an important treatment option for stage I NSCLC.  Though 

surgery is still the standard of care, stereotactic body radiation therapy (SBRT) has been 

shown to be as effective as resection for inoperable stage I NSCLC (Chang et al., 2007; 

Timmerman et al., 2007) and multicenter clinical trials are underway to assess the efficacy 

of SBRT in operable NSCLC.  In contrast with conventionally-fractionated radiation therapy, 

SBRT utilizes a hypofractionated approach.  At M. D. Anderson, for example, the tumor 

receives 60 Gy in 4 fractions, or 15 Gy per fraction, as compared with 66 Gy in 2 Gy fractions 

in conventional radiation therapy.  Beyond the convenience of four-fraction treatment for 

the patient, the combination of hypofractionation, multiple fields, and image guidance 

allows higher ablative doses to be delivered to the tumor while keeping normal tissue 

toxicity at an acceptable level (Timmerman et al., 2007).  High doses per fraction, however, 

mean that accuracy becomes even more critical to avoid geometric miss.   

To account for respiratory motion in the SBRT treatment plan, a 4D-CT exam is used 

to image 10 phases of the patient’s respiratory cycle and target the motion path of the 

tumor.  Earlier, the complexity and cost of 4D-CT was briefly described.  The 4D-CT imaging 

process is explained here in more detail to highlight the differences between the 

conventional 4D-CT approach and the cine CT approach.   

The scanner setup is slightly different for 4D-CT simulation than for standard helical 

CT simulation.  In addition to the flat table-top and wing board, the patient’s respiration is 

monitored and recorded (Real-Time Positioning Management, Varian, Palo Alto, CA).  The 

system consists of an infrared camera and a CCD detector docked on the end of the couch 

and a small plastic box with two reflective markers which is placed on the patient’s 

abdomen (Figure 2.1).  The box acts as the surrogate for the patient’s respiratory pattern, 

moving up and down with each inhalation and exhalation of breath.   



 

 For GE CT scanners, images are acquired in “cine” mode 

stationary, and the x-ray tube rotates around the patient multiple times acquiring a 

continuous stream of projection data.  After enough da

turned off and the couch moves to the next bed position and acquisition begins again.  

 

Figure 2.1:  Respiratory surrogate setup for 4D

the movement of the infrared reflector on the patient’s abdomen to record the 

respiratory motion trace.   

 

Several user paramet

(typically quoted as the gantry rotation p

depending on the scanner model.

are acquired at each bed position, in other words, the “beam on” time.  Typically, the CD is 

chosen to reflect the average breathing period of the patient plus one second to 

that a complete set of project

acquisition (Pan et al., 2004).  Because cine data is a long stream of projection data, the user 

must define how the stream will be split into reconstructed images (i.e. which projections 

belong to which reconstruction).  The cine interval (CI) defines the temporal separation 

between adjacent image reconstructions.  The cine interval need not be limited by gantry 

rotation speed (one projection per one gantry rotation); projections can be used in 

20 

For GE CT scanners, images are acquired in “cine” mode in which the couch is 

ray tube rotates around the patient multiple times acquiring a 

continuous stream of projection data.  After enough data has been collected, the beam is 

turned off and the couch moves to the next bed position and acquisition begins again.  

:  Respiratory surrogate setup for 4D-CT acquisition.  The infrared camera tracks 

the movement of the infrared reflector on the patient’s abdomen to record the 

Several user parameters define the cine acquisition.  Gantry rotation “speed” 

the gantry rotation period) typically runs between 0.3 s and 1 s 

depending on the scanner model.  The cine duration (CD) is the amount of time projections 

at each bed position, in other words, the “beam on” time.  Typically, the CD is 

chosen to reflect the average breathing period of the patient plus one second to 

that a complete set of projections exists for reconstruction at the beginning and end of

.  Because cine data is a long stream of projection data, the user 

must define how the stream will be split into reconstructed images (i.e. which projections 

to which reconstruction).  The cine interval (CI) defines the temporal separation 

between adjacent image reconstructions.  The cine interval need not be limited by gantry 

rotation speed (one projection per one gantry rotation); projections can be used in 

the couch is 

ray tube rotates around the patient multiple times acquiring a 

ta has been collected, the beam is 

turned off and the couch moves to the next bed position and acquisition begins again.   

 

The infrared camera tracks 

the movement of the infrared reflector on the patient’s abdomen to record the 

ers define the cine acquisition.  Gantry rotation “speed” 

typically runs between 0.3 s and 1 s 

amount of time projections 

at each bed position, in other words, the “beam on” time.  Typically, the CD is 

chosen to reflect the average breathing period of the patient plus one second to ensure 

s exists for reconstruction at the beginning and end of cine 

.  Because cine data is a long stream of projection data, the user 

must define how the stream will be split into reconstructed images (i.e. which projections 

to which reconstruction).  The cine interval (CI) defines the temporal separation 

between adjacent image reconstructions.  The cine interval need not be limited by gantry 

rotation speed (one projection per one gantry rotation); projections can be used in multiple 



21 

 

image reconstructions to produce finer temporal sampling.  In clinical practice, this is often 

the case.  Typical CI’s range from 0.2 to 0.3 s with a gantry speed of 0.5 s.  When the CI is 

finer than the gantry rotation speed, projection data is used redundantly in adjacent 

images.  The trade-off to finer temporal sampling, however, is an increased number of 

images.  Typically, 10-30 images are reconstructed per cine duration.  To scan 20-25 cm of 

anatomy with 2.5 mm slice thickness, 2400-3000 images are generated.  Currently, the 

number of images generated from cine acquisition is limited to 3000 due to reconstruction 

time and storage limitations. 

This large set of images is commonly referred to as “cine CT.”  Each image captures a 

distinct moment in time and space like a frame in a movie reel.  It is at this point where our 

experimental method detours from the conventional 4D-CT technique.  The experimental 

method will be discussed shortly. 

Because of the time required to move the couch from one position to the next, the 

series of cine CT images captures a different starting phase of the breathing cycle each time.  

This effect is demonstrated in Figure 1.3.  Reconstructing 3-D image sets based on image 

number, then, would be non-sensical (image 1 of couch position 1 does not match the same 

part of the respiratory cycle of image 1 of couch position 2.)  Irregular respiration further 

complicates this problem.  The cine CT images must therefore be sorted into different 

respiratory states and then combined to form 3-D image sets for each respiratory state.  

The respiratory state is provided by the trace recorded by the respiratory monitoring 

device.  Typically, the respiratory cycle is divided into 10 equidistant phase-bins from one 

inspiration to the next.  Proprietary software is used to match cine CT images with their 

appropriate phase by examining the midscan time of each cine CT image and comparing it 

with the respiratory trace.  The result is 10 3-D image sets, each one representing a 

different phase of respiration (hence the term “4D-CT”).   

As described in section 1.2, contouring the tumor on 4D-CT is time-consuming and 

labor-intensive.  The maximum intensity projection (MIP) is often used to display the 

“motion envelope” of the tumor in a single image set.  Several studies have shown that 

target delineation on MIP is similar to target delineation on 4D-CT (Rietzel et al., 2005; 
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Rietzel et al., 2008; Underberg et al., 2005).  Clinically, at M. D. Anderson, MIP4D-CT and 4D-

CT phase images are used together to define the tumor and its motion extent (Ezhil et al., 

2009). 

Recall that our experimental method deviates from 4D-CT acquisition at the series of 

cine CT images, just before the sorting into phase bins.  We have developed software to 

create MIP directly from the cine CT images, bypassing the sorting process of 4D-CT (Pan et 

al., 2007).  The differences between the 4D-CT approach to MIP and cine CT approach to 

MIP are shown diagrammatically in Figure 1.3.  As described in the background and 

significance section, this could eliminate significant costs of 4D-CT simulation while still 

providing useful motion information for planning purposes.   

2.2 Purpose 

In this chapter, we compared two methods of IGTV segmentation on highly mobile 

early stage lung tumors:  First, the conventional 4D-CT approach utilizing phase imaging 

from 4D-CT and MIP processed from 4D-CT and second, the experimental “cine CT” 

approach utilizing MIPcine and RACTcine.  The goal of this chapter was to show that the 

experimental method can produce target volumes similar to the conventional 4D-CT 

method.   

2.3 Methods 

2.3.1 Phantom Study 

Because 4D-CT is essentially a subset of cine CT, we anticipated that generating a 

MIP from 10 phase image sets would yield a target volume different from a MIP generated 

from all images captured during the cine duration (20-30 images) when the motion is 

irregular, which is usually the case with patient scanning.  The objective of the phantom 

study was to show that MIPcine visualized the full extent of irregular motion more precisely 



 

than MIP4D-CT.  In other words, we wanted to demonstrate 

MIPcine were larger than those from MIP

 

Figure 2.2:  NEMA IEC thorax phantom (Data Spectrum, Chapel Hill, NC) placed on
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was scanned using a cine CT protocol on
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following cine scan protocol was repeated 10 times on the moving phantom:  120 kV, 50 

mA, 2.5 mm slice thickness, gantry rotation of 0.5 s, cine interval of 0.2 s, cine duration of 

7.5 s (twice the average breathing cycle of the irregular patt
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ern plus one gantry rotation).  



24 

 

Images were reconstructed with filtered backprojection (Brooks et al., 1975) to a 512 by 512 

image matrix with 50 cm field of view (FOV).  MIP4D-CT and MIPcine were reconstructed.   

Images were transferred to a commercial radiation treatment planning system 

(Pinnacle3, version 7.6, Philips Medical Systems, Madison, WI) for contouring and a -700 

Hounsfield unit (HU) threshold was used to segment IGTVs on MIPcine and MIP4D-CT image 

sets (denoted IGTVcine and IGTV4D-CT respectively).  Volume measurements were recorded 

for each of the 6 spheres on the 10 scans, and a paired t-test was used to measure 

statistically significant differences between the mean volume magnitudes of IGTV4D-CT and 

IGTVcine. 

2.3.2 Patient Study 

 We reviewed the radiation oncology patient database at M. D. Anderson to identify 

patients with stage I NSCLC who had been treated with SBRT, received 4D-CT simulation, 

and had tumor motion extent greater than 1 cm. Between January of 2005 and April of 

2007, 26 patients (27 tumors) fit the criteria.  The study protocol was DR07-0809, approved 

by the institutional review board (IRB).  We determined the extent of tumor motion by 

visually assessing the displacement between extreme phases of the 4D-CT (usually 0% and 

50%).  Motion extent greater than 1 cm was included because this feature represents the 

“worst case” scenario for motion artifact.  According to Liu et al., approximately 10% of 

stage I and stage III tumors move more than 1 cm (Liu et al., 2007).  If target delineation on 

cine CT is similar to 4D-CT for the larger motions, the method demonstrated in this study 

could easily be applied to scenarios where motion is less severe.   

Patients were divided into two groups:  12 patients were in the “high contrast” 

group (13 tumors), with lesions in the middle of the lung parenchyma, and 14 were in the 

“low contrast” group, with lesions adjacent to structures of equal or higher density.  

Patients were separated in this fashion to reflect the concerns of previous studies that the 

MIP does not provide enough contrast to determine the tumor edges when the target is 

adjacent to dense structures (Rietzel et al., 2005; Underberg et al., 2005).  Furthermore, we 
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did not want the success of segmentation in the high-contrast cases to blur statistically 

significant differences from the low-contrast cases. 

In the course of 4D-CT simulation, each patient received a cine CT scan during which 

the patient’s respiratory signal was acquired.  Two sets of images were reconstructed: 4D-

CT images derived from the 10 phase images and produced by the proprietary 4D-CT 

software, and processed images from cine CT.  4D-CT images included 10 phase images, 

MIP4D-CT, and RACT4D-CT.  Cine CT images included MIPcine and RACTcine and were produced 

directly from the cine CT images using in-house software (Pan et al., 2007).  All cine scans 

were performed at 120 kV and 100 mA, with the exception of two patients, whose scans 

were performed at 150 mA and 80 mA.  Gantry rotation period for all patients was 0.5 s.   

 First, IGTV was auto-segmented on MIPcine and MIP4D-CT for 11 high-contrast lesions 

that were not adjacent to dense structures.  A seed-based region-growing algorithm in the 

treatment planning software was used for contouring.  It should be noted, however, that, 

although the treatment planning software documentation defines the algorithm as “region 

growing,” the technique differs from conventionally-defined region growing.  Typically, 

region growing occurs on a pixel-by-pixel basis radiating outwards from the seed point until 

a threshold is reached (Beutel, 2000).  Region growing in the treatment planning system 

occurs by searching pixels to the right of the seed point until a threshold is reached, and the 

closed boundary around the structure is contoured.  The resulting contours were compared 

with a paired t-test to investigate patient contouring while minimizing the influence of a 

human observer.  

 One radiation oncologist who specialized in thoracic SBRT delineated the tumors for 

all patients using the commercial radiation treatment planning system.  The radiation 

oncologist first contoured IGTVcine in all patients from high- and low-contrast tumor groups 

using MIPcine and RACTcine concurrently.  Then, the radiation oncologist contoured IGTV4D-CT 

according to the current M. D. Anderson clinical protocol:  MIP4D-CT was used to outline an 

IGTV and this volume was then edited based on the 4D-CT phase images.  All contours were 

drawn using the “lung” window/level. 
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2.3.3 Analysis 

For the phantom study, mean volume magnitudes were compared with a paired t-

test to assess observer-independent differences in contouring on cine and 4D-CT image sets 

(α = 0.05). 

For the patient study, auto-segmented IGTVs were compared with a paired t-test (α 

= 0.05).  Physician-drawn IGTV4D-CT and IGTVcine volume magnitudes were compared 

statistically by taking the ratio of the volume magnitudes and constructing 95% confidence 

intervals around the mean ratio and comparing these confidence intervals to the 

intraobserver variation.  Three lesions in the high contrast group and 3 lesions in the low 

contrast group were re-contoured on 4D-CT phase imaging by the radiation oncologist at 

least 2 months after initial contouring.  Resulting IGTVs were compared with initial 4D-CT 

results and the average percent differences represented the intraobserver variation for 

each group.  Difference in centroid location between IGTV4D-CT and IGTVcine was compared 

statistically using a log-normal distribution.  95% confidence intervals were constructed 

around the mean centroid shift (geometric mean was used with the logarithmic 

transformation) to assess the variability of centroid shift.   

Volume overlap was assessed with the Dice Similarity Coefficient index (DSC), which 

is a measure of the degree of overlap between two areas or volumes (Dice, 1945; Zou et al., 

2004).  If A is a “reference” volume and B is a “test” volume to be compared to the 

reference,  
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Though the DSC is similar to the concordance index in that small changes in volume yield 

large changes in DSC when the volumes analyzed are small, the DSC is normalized to the 

sum of the two volumes rather than the union (Giraud et al., 2002).   As with any manual 

segmentation, some uncertainty exists in the tumor delineation.  By normalizing the DSC, 

we take both volume size and segmentation uncertainty into account by dividing the DSC in 
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equation ( 1 ) by an “uncertainty index” (UI).  UI is defined as the DSC of the reference 

volume with the reference volume contracted by 1 mm (A-1).  This value was chosen 

because it reflects the width of one CT pixel in the transverse plane using a 50 cm FOV and 

512 by 512 image matrix (which is the typical protocol for CT simulation at M. D. Anderson).  

The normalized DSC (NDSC), therefore, was given by 
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It is helpful to consider the limiting cases when interpreting this index.  Higher DSCs 

mean greater agreement between the experimental and reference volumes.  If the NDSC is 

greater than 1, the DSC of the experimental-to-reference volumes is greater than the 

uncertainty index, implying that the volumes agreed to less than 1 mm uncertainty.  In the 

current study, the reference volume was IGTV4D-CT and the comparison volume was IGTVcine. 

2.4 Results 

2.4.1 Phantom Study 

Ten sets of IGTVcine and IGTV4D-CT auto-segmented at a -700 HU threshold on MIPcine 

and MIP4D-CT image sets respectively were compared with a paired t-test.  For all 6 spheres 

in the phantom, the IGTVcine was significantly larger than IGTV4D-CT (Table 2.1).  Most 

differences between IGTVcine and IGTV4D-CT occurred in the most superior and inferior slices 

of the motion envelope and, by visual inspection, were not caused by in-slice motion 

artifact (the spiral patterns often seen when the sphere is present in some projections but 

not others were not present).  This suggests that the larger IGTVcine better captured the full 

extent of motion because MIPcine included images in the maximum intensity processing 

which were not present in the 4D-CT.  Processing from cine CT, therefore, more accurately 
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captures the extremes of a naturally varying waveform because more samples of the 

waveform are included. 

 

Table 2.1:  Significance values for phantom study 

 MIP4D-CT (cm
3
) MIPcine (cm

3
)  

Sphere 

Diameter (cm) 

Mean 

Volume 

Standard 

Deviation 

Mean 

Volume 

Standard 

Deviation 
p 

3.7 49.8 0.8 51.0 1.1 <0.01 

2.8 24.9 0.5 25.7 0.8 <0.01 

2.2 13.7 0.3 14.1 0.4 0.02 

1.7 7.9 0.2 8.2 0.3 <0.01 

1.3 4.4 0.2 4.6 0.2 0.04 

1.0 2.5 0.1 2.7 0.1 0.01 

MIP = maximum intensity projection 

 

2.4.2 Patient Study 

 For the auto-segmented volumes of 11 high-contrast lesions, the IGTVcine was 

significantly larger than IGTV4D-CT (p=0.02).   These results are consistent with the phantom 

results of section 2.4.1.   

 Table 2.2 and Table 2.3 list IGTVcine and IGTV4D-CT measurements and    

IGTVcine/IGTV4D-CT ratios of manually segmented volumes for the high- and low-contrast 

patient groups respectively.  IGTVcine and IGTV4D-CT volumes were not significantly different 

(as found by a paired t-test) in patients with high-contrast tumors (p=0.32) or patients with 

low-contrast tumors (p=0.29).  Comparisons of mean IGTV ratios with intraobserver 

variation for high-contrast and low-contrast patient groups are shown in Figure 2.3.  The 

95% confidence intervals of the low-contrast group indicate the variation between 

contouring on cine CT and 4D-CT was within measured intraobserver variation (p<0.05) 

(Feng et al., 2006).  Interestingly, for the high-contrast group, the distribution was shifted 

slightly higher, implying IGTVcine was slightly larger than IGTV4D-CT .  This is, however, 

consistent with our phantom and patient auto-segmentation results shown above.  Mean 

centroid shift was 0.9 mm for the high-contrast group and 1.4 mm for the low-contrast 
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group.  The upper 95% confidence interval was 1.5 mm and 2.0 mm for high- and low-

contrast lesions respectively, indicating that cine CT produces volumes positioned similarly 

to those drawn on 4D-CT in high- and low-contrast scenarios. 

 

 

 

Table 2.2:  Internal gross tumor volume (IGTV) measurements for high-contrast patients.   

Patient # IGTVcine  

(cm
3
) 

IGTV4D-CT  

(cm
3
) 

Ratio DSC NDSC 

1 12.6 9.8 1.28 0.83 0.95 

2 11.0 12.6 0.87 0.84 0.98 

3 4.8 3.9 1.26 0.78 0.96 

4 6.6 6.7 1.00 0.90 1.07 

5 15.2 13.8 1.10 0.90 1.01 

6 4.3 3.6 1.20 0.81 1.05 

7 2.9 2.8 1.04 0.78 0.98 

8 11.5 11.2 1.02 0.88 1.02 

9* 2.0 2.1 0.94 0.75 0.97 

10* 15.1 13.8 1.09 0.86 0.99 

11 2.9 2.9 0.99 0.81 0.99 

12 6.1 7.3 0.83 0.84 0.97 

13 18.6 18.8 0.99 0.87 0.96 

Average 8.7 8.4 1.05 0.84 0.99 

SD 5.5 5.4 0.14 0.05 0.04 

CI95   ±0.08   

CI90   ±0.07   

Asterisks (*) indicate bisynchronous lesions. 

SD = standard deviation 

CI95 = 95% confidence interval 

CI90 = 90% confidence interval 
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Table 2.3:  Internal gross tumor volume (IGTV) measurements for low-contrast patients. 

Patient # IGTVcine  

(cm
3
) 

IGTV4D-CT  

(cm
3
) 

Ratio DSC NDSC 

14 5.0 5.8 0.86 0.84 0.99 

15 12.1 11.7 1.04 0.85 0.99 

16 21.6 20.2 1.07 0.85 0.95 

17 4.1 4.1 0.99 0.82 0.97 

18 5.8 6.8 0.84 0.79 0.93 

19 8.1 7.9 1.03 0.86 0.98 

20 3.0 3.3 0.90 0.74 0.96 

21 2.4 2.5 0.97 0.86 1.08 

22 22.4 27.1 0.83 0.83 0.92 

23 14.0 15.4 0.91 0.88 1.01 

24 14.8 15.8 0.93 0.84 0.95 

25 38.1 37.5 1.02 0.88 0.97 

26 22.1 24.2 0.91 0.82 0.91 

27 8.5 6.4 1.33 0.84 0.97 

Average 13.1 13.5 0.97 0.84 0.97 

SD 10.1 10.5 0.13 0.04 0.04 

CI95   ±0.07   

CI90   ±0.06   

SD = standard deviation 

CI95 = 95% confidence interval 

CI90 = 90% confidence interval 

 



 

Figure 2.3:  Mean volume magnitudes for high and low contrast tumors.  Red error bars 

are the 95% confidence interval around the mean.  Black error bars represent mean 

intraobserver variation for 3 re

Riegel et al. (Riegel et al., 2009)

 

 Table 2.2 and Table 2

groups respectively.  DSCs were well over 0.7, which is considered good overlap

1991; Zou et al., 2004).  The mean NDSC for high

NDSC for low-contrast tumors was 0.97.  Because both values are slightl

implies that the volumes were slightly below the threshold for agreement within 1 mm 

uncertainty. 

 Examples of low-contrast tumors are shown in 

1.5, as previously described in section 

chest wall and the anterior, superior, and inferior

are clearly defined on the MIP

density chest wall and the border is

additional information, however, the edges become much more apparent; the degraded 
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:  Mean volume magnitudes for high and low contrast tumors.  Red error bars 

are the 95% confidence interval around the mean.  Black error bars represent mean 

intraobserver variation for 3 re-contoured patients.  Reproduced with permission from 

(Riegel et al., 2009) 

2.3 list results of the DSC analyses for high- and low

.  DSCs were well over 0.7, which is considered good overlap

The mean NDSC for high-contrast tumors was 0.99.  The mean 

contrast tumors was 0.97.  Because both values are slightly less than 1, this

implies that the volumes were slightly below the threshold for agreement within 1 mm 

contrast tumors are shown in Figure 1.5 and Figure 

as previously described in section 1.2, the lung tumor is positioned adjacent to the 

chest wall and the anterior, superior, and inferior edges of the tumor that border the lung 

are clearly defined on the MIPcine.   The posterior edge, however, is adjacent to 

chest wall and the border is difficult to discern.  By using the RACTcine

, however, the edges become much more apparent; the degraded 

 

:  Mean volume magnitudes for high and low contrast tumors.  Red error bars 

are the 95% confidence interval around the mean.  Black error bars represent mean 

Reproduced with permission from 

and low-contrast 

.  DSCs were well over 0.7, which is considered good overlap (Bartko, 

contrast tumors was 0.99.  The mean 

y less than 1, this 

implies that the volumes were slightly below the threshold for agreement within 1 mm 

Figure 2.4.  In Figure 

the lung tumor is positioned adjacent to the 

edges of the tumor that border the lung 

adjacent to the higher-

cine to provide 

, however, the edges become much more apparent; the degraded 



 

density of the RACTcine provides contrast to define 

liver obscures the lesion on the 

extent of the tumor.   

 

Figure 2.4:  Transverse CT image of tumor adjacent to the liver.  (left) Maximum intensity 

projection.  (right) Respiratory

al. (Riegel et al., 2009) 

2.5 Discussion 

Our results indicate that 

or slightly larger than those drawn by full 10

Bradley et al. found that contours based on MIP

those based on helical CT and RACT

would presumably be less prone to geometric miss

more inclusive (Bradley et al., 2006)

demonstrated that MIP4D-CT underestimated

moving irregularly (Cai et al., 2007)

the variability of the respiratory pattern.  

and “incomplete sampling strategy” as causes fo
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provides contrast to define the posterior border.  In Figure 

liver obscures the lesion on the transverse MIPcine, but the RACTcine reveals th

:  Transverse CT image of tumor adjacent to the liver.  (left) Maximum intensity 

Respiratory-averaged CT.  Reproduced with permission from Riegel 

Our results indicate that SBRT targets drawn with cine CT images sets are similar to 

those drawn by full 10-phase 4D-CT image sets.   

found that contours based on MIP4D-CT were significantly larger than 

those based on helical CT and RACT4D-CT and concluded that volumes drawn on MIP

presumably be less prone to geometric miss due to the fact they were larger and 

(Bradley et al., 2006).  A recent dynamic MRI study by Cai et al.

underestimated the true extent of tumor motion

(Cai et al., 2007).  Furthermore, the underestimation was

the variability of the respiratory pattern.  The authors identified limited temporal resolution 

and “incomplete sampling strategy” as causes for the underestimation.  A second study 

Figure 2.4, the 

reveals the transverse 

 

:  Transverse CT image of tumor adjacent to the liver.  (left) Maximum intensity 

Reproduced with permission from Riegel et 

images sets are similar to 

were significantly larger than 

and concluded that volumes drawn on MIP4D-CT 

due to the fact they were larger and 

et al., however, 

the true extent of tumor motion for lesions 

was proportional to 

The authors identified limited temporal resolution 

A second study 



 

using 4D-CT to scan a phantom under irregular motion (similar to the current study) found 

results consistent with our findings

that segmenting on MIPcine produces larger IGTVs

findings of Bradley and Cai, p

of the MIP4D-CT image set because it includes the complete set of cine images at each couch 

position, not just a 10-phase subset.  

 

Figure 2.5:  Observed motion extent in 4D

MIPcine.  Note that in 4D-CT, images that reflected the full motion extent were not 

included in the phase imaging.  In MIP

motion extent is imaged.  Reproduced with permission from Riegel 

2009) 
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CT to scan a phantom under irregular motion (similar to the current study) found 

results consistent with our findings (Park et al., 2009).  In the current study, we have shown 

produces larger IGTVs in phantoms and patients

processing the MIP from cine CT improves the limited sampling 

image set because it includes the complete set of cine images at each couch 

phase subset.   

:  Observed motion extent in 4D-CT (top) versus observed motion extent in 

CT, images that reflected the full motion extent were not 

included in the phase imaging.  In MIPcine, however, all images are included and maximum 

Reproduced with permission from Riegel et al. (Ri

CT to scan a phantom under irregular motion (similar to the current study) found 

In the current study, we have shown 

in phantoms and patients.  Following the 

rocessing the MIP from cine CT improves the limited sampling 

image set because it includes the complete set of cine images at each couch 

 

CT (top) versus observed motion extent in 

CT, images that reflected the full motion extent were not 

, however, all images are included and maximum 

(Riegel et al., 
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When more than one breathing cycle of a naturally varying respiratory waveform is 

imaged in 4D-CT acquisition, it is possible that the end inspiration (0%) and end expiration 

(50%) phases will not include the images that represent the largest motion extent of a 

tumor.   Including more samples in the MIP process will increase the chances that the 

largest motion extent is imaged.  This most likely explains the results of the phantom and 

patient auto-segmentation studies (where IGTVcine was significantly larger than IGTV4D-CT) 

and this effect is demonstrated diagrammatically in Figure 2.5.  As we previously found that 

90% of patients have average breathing cycle periods of less than 6 s (Pan et al., 2006), we 

recommended that cine durations of 6 s be chosen for cine CT acquisition (Chi et al., 2007).  

One can increase the cine duration beyond one average breathing cycle, however, to 

provide better sampling of the varying respiratory waveform and produce a more 

encompassing MIPcine image set.   

One limitation of our method is that processing directly from cine CT will include 

rare respiratory irregularities such as coughing in the image sets.  This is undesirable 

because such discontinuities represent relatively infrequent events that should not be 

included in treatment planning.  Isolating these effects by manually removing cine CT 

images affected by such an event is possible (Pan et al., 2007). 

In the manual segmentation study of patient images, cine-CT-based radiation 

treatment planning performed as well as 4D-CT.  The results of our study show that 

including RACTcine in the delineation process with MIPcine is sufficient in producing IGTVs 

similar (within intraobserver variability) to those formed with full 4D-CT for lesions adjacent 

to tissue of equal or greater density.  Several authors have cautioned against using MIP in 

these cases  (Muirhead et al., 2008; Rietzel et al., 2005; Rietzel et al., 2008; Underberg et al., 

2005), and one group has recommended that RACT not be used for contouring because the 

edges of the tumor are blurred by motion (Bradley et al., 2006).  A group from the 

Netherlands, however, has advocated using RACT with a colormap to highlight degrees of 

motion (Cover et al., 2006).  Figure 1.5 and Figure 2.4 demonstrate the benefit of using MIP 

and RACT together for moving tumors.   



 

Figure 2.6:  Maximum intensity projections 

(bottom row).  Red contours are IGTV

captures several slices of tumor motion beyond that captured by 4D

permission from Riegel et al

 

It is interesting that IGTV

group of tumors, where the lesions were 

was larger, though not significantly, than IGTV

to two factors:  First, the average volume of high

thirds the average volume of low

between IGTVcine and IGTV4D-

the first group than in the second, which would affect the volume ratio.  Second, as 

described in the discussion above, MIP

processing (between 20-30 images pe

processing (10 images per slice location).  The larger IGTV

high-contrast tumors is consistent with the results of the patient and phantom auto
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:  Maximum intensity projections processed from 4D-CT (top row) and cine CT 

(bottom row).  Red contours are IGTVcine and green are IGTV4D-CT.  Note that cine CT 

slices of tumor motion beyond that captured by 4D-CT.  Reproduced with 

et al. (Riegel et al., 2009) 

t is interesting that IGTV4D-CT and IGTVcine were not equivalent in the high

group of tumors, where the lesions were not adjacent to dense structures.  Mean IGTV

was larger, though not significantly, than IGTV4D-CT.  This result can most likely be attributed 

to two factors:  First, the average volume of high-contrast tumors was approximately two

thirds the average volume of low-contrast tumors, so an identical volume difference 

-CT in both groups would be a larger percentage

the first group than in the second, which would affect the volume ratio.  Second, as 

described in the discussion above, MIPcine uses the entire set of cine CT images for 

30 images per slice location), which is a larger sample than MIP

processing (10 images per slice location).  The larger IGTVcine in the manually

is consistent with the results of the patient and phantom auto

 

CT (top row) and cine CT 

.  Note that cine CT 

Reproduced with 

were not equivalent in the high-contrast 

adjacent to dense structures.  Mean IGTVcine 

.  This result can most likely be attributed 

contrast tumors was approximately two-

contrast tumors, so an identical volume difference 

percentage difference in 

the first group than in the second, which would affect the volume ratio.  Second, as 

uses the entire set of cine CT images for 

r slice location), which is a larger sample than MIP4D-CT 

in the manually-contoured 

is consistent with the results of the patient and phantom auto-
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segmentation studies.  Figure 2.6 illustrates this effect for patient 1, whose IGTVcine/IGTV4D-

CT volume ratio was the second largest of all 27 patients.  MIP4D-CT and MIPcine images are 

shown that highlight the region of increased density at the inferior region of the tumor in 

the MIPcine, which is not present in the MIP4D-CT.   

Though cine- and 4D-CT-defined tumor contours for treatment planning showed 

good agreement over the entire sample, individual cases still demonstrated the pitfalls of 

using MIP for contouring.  Three patients with the lowest NDSC values (patients 18, 22, 26) 

all had lesions near the diaphragm where it was difficult to determine inferior extent 

because of overlap with the liver, even when contouring with RACT image data.  These 

patients could potentially benefit from target definition with PET.  In section 5.4.1, patient 

26 is revisited using MIPcine and PET together for contouring.   

Cine acquisition mode is not unique to General Electric CT scanners and other 

groups have explored cine CT with scanners of different manufacture (Low et al., 2003; 

McClelland et al., 2006), but cine acquisition on other CT scanners is more complicated and 

less efficient than the GE implementation.  Other manufacturers use a series of axial 

acquisitions at the same couch position rather than continuously acquiring data and 

reconstructing an image series retrospectively.  Furthermore, the ability to scan a large area 

seems to be limited by protocol setup.  For 4D-CT, Philips and Siemens both use a low-pitch 

helical acquisition mode which requires a respiratory trace to reconstruct images (Keall et 

al., 2004; Pan, 2005).  In theory, low-pitch helical data could be subjected to “cine type” 

processing discussed in this chapter, but data that are not included in 4D-CT reconstruction 

cannot be accessed easily after reconstruction is completed due to the prospective nature 

of the scan.  In the future, it may be possible to implement a similar reconstruction process 

to low-pitch helical data, but no such method has yet been developed.   

Curiously, the GE 4D-CT sorting software enables the user to create MIP and RACT 

directly from cine CT instead of the 10 phases, but a respiratory trace is still required to 

initialize the program even though it is not used for the desired operation.  Our software 

operates on a simple personal computer and bypasses the need for a respiratory trace. 
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2.6 Conclusions 

As described in section 1.2, 4D-CT is complex and costly for many cancer centers.  

The motion information it provides, however, is extremely important in accurately targeting 

lung cancer and reducing treatment margins, thereby sparing additional normal tissue.  This 

chapter has presented a cost-effective alternative to 4D-CT for treatment planning that 

does not require additional hardware or commercial software beyond that already available 

on scanners already in use.  Creating MIP and RACT directly from the cine CT images and 

using these images sets together to define targets for SBRT produces volumes that are 

similar to those drawn by full 10-phase 4D-CT. 

 The results of this chapter pertain mainly to small, mobile lesions.  We anticipated 

that, for larger tumors and later-stage lung cancer (such as stage III, for which IMRT in 

conjunction with chemotherapy is a curative treatment modality for inoperable disease 

(Furuse et al., 1999; Govindan, 2003)), the use of cine CT in treatment planning will be 

limited because of more complicated involvement with surrounding tissue (Muirhead et al., 

2008).  In chapters 4 and 5, attempts to incorporate positron emission tomography (PET) 

into the cine CT treatment planning process are described.  PET/CT may provide additional 

contrast for target definition in cases with complicated tumor involvement with 

surrounding tissue.  Several studies have analyzed the impact of including PET data in GTV 

delineation for NSCLC and have yielded noteworthy results, mostly due to the inclusion of 

lymph nodes and exclusion of atelectasis (Bradley et al., 2004; Nestle et al., 1999; van 

Baardwijk et al., 2006).  Those studies suggest that metabolic information from PET helps 

physicians discriminate between normal and malignant tissue that is indistinguishable on CT 

alone, which can sometimes occur when using MIP. 

 Another subject not covered in this chapter yet still an important aspect of 

treatment planning is dose calculation.  This topic is covered in chapter 3. 
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Chapter 3  DOSE CALCULATION WITH CINE RESPIRATORY-AVERAGED CT 

3.1 Introduction 

In the previous chapter, the important aspect of tumor delineation on MIPcine and 

RACTcine was discussed.  In this chapter, dose calculation with RACTcine is explored.  After the 

tumor is delineated, the appropriate margins are added, and beam arrangements have 

been planned, the resulting dose distribution is calculated.  Convolution-superposition, a 

typical calculation algorithm, operates by integrating the product of the primary photon 

fluence from each beam, a convolution kernel or “dose spread array” that can be obtained 

by measurement or Monte Carlo simulation, and the mass attenuation coefficient provided 

by the CT image set (Khan, 2003).  Note that linear attenuation coefficients obtained at 

diagnostic energies must be scaled for use in the therapeutic (megavoltage) range.  

Typically, dose is calculated on a free-breathing helical CT data set.  However, artifacts 

during image acquisition due to respiratory motion are well-known (Chen et al., 2004; 

Gagne et al., 2004). 

Dose calculation based on 4D-CT data sets has been explored (Flampouri et al., 

2006; Guckenberger et al., 2007; Keall et al., 2004; Rietzel et al., 2005).  These calculation 

methods generally apply a 3-D treatment plan to each phase of the 4D-CT data set, equally 

divide the number of monitor units among each of the phases, and register the resulting 

dose distributions to a reference phase using rigid or deformable registration.  Though not 

truly 4-D treatment planning, this calculation methodology should provide a more accurate 

estimate of how dose is distributed over a respiratory cycle than calculation on a single, 

presumably stationary image set.  Currently, however, this methodology is not commonly 

used clinically. 

Guckenberger et al. compared dose calculation on 3-D and 4-D image sets by 

recalculating dose on different phases of the 4D-CT and comparing these distributions to 4-

D dose calculation described above.  This study demonstrated minimal dosimetric 

differences for GTV and ITV in the two methods (Guckenberger et al., 2007), suggesting that 
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full 4-D dose calculation using all phases of imaging may not be necessary to estimate dose 

to a moving target.  Producing 3-D image sets that reflect respiratory motion, however, still 

requires 4D-CT; end-inspiration and end-expiration scans are generally not reliable (Pan et 

al., 2005).  Admiraal et al. demonstrated that dose calculation on RACT4D-CT, the pixel-by-

pixel average of the 10 phases of 4D-CT, produces similar results to the dose calculation 

methodology described above (Admiraal et al., 2008).  The use of RACT4D-CT for dose 

calculation has been adopted at M. D. Anderson because RACT4D-CT represents moving 

structures more accurately than free-breathing helical CT or end-inspiration/expiration 

imaging over a fraction of radiation. 

As the last chapter explored the use of MIPcine and RACTcine for target delineation, a 

logical question is whether or not RACTcine could replace RACT4D-CT for dose calculation.  

RACTcine, however, averages all the images at each couch position, which can over- or 

under-emphasize different parts of the respiratory cycle in the CT number averaging 

process (Chi et al., 2007).  This can be demonstrated with a simple example.  From calculus, 

the mean of any function is: 

 

 �!�"""""" � # $�%&�'%&() *+,   ( 3 ) 

 

If we consider the respiratory trace as a simple sine function, the mean of the sine function 

is: 

 

 �!�"""""" � -+./0�%�%   ( 4 ) 

 

Figure 3.1 illustrates the sine function and the mean of the sine function.  When x = 

2πk (where k are integers), cos�!� � 1 and  �!�"""""" � 0.  This is comparable to RACT4D-CT:  Ten 

image sets are chosen to represent equally-spaced phases of one respiratory cycle, like 1 

period of a sine wave (k = 1).  When x ≥ 2π,   �!�"""""" reaches a maximum at x ≈ 3π or 1.5 

breathing cycles.  RACTcine, therefore, will be most different from RACT4D-CT when 



 

approximately 1.5 breathing cycles

“weighted” towards one-half of the respiratory pattern more than the other

have a significant impact on dose calculation

feature of Figure 3.1 is the presence of 

overall function to decrease with increasing 

images acquired at each couch position (e.g. increasing the 

similar to RACT4D-CT. 

 

Figure 3.1:  sin(x) and the average of sin(x).

al. (Riegel et al., 2008)  

3.2 Purpose 

 The purpose of this chapter was to evaluate the difference in dose calculation on 

RACT4D-CT and RACTcine.  We hypothesized that differences between the dose distributions 

would be negligible and that differences 

imaging samples of the respiratory cycle are included in the averaging process).  

Successfully demonstrating that RACT

provide an image set which emulates 4
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g cycles are captured in 1 cine duration (CD).  RACT

half of the respiratory pattern more than the other

have a significant impact on dose calculation (Chu et al., 2000; Geise et al., 1977)

the presence of an “envelope” function (1/x) which causes the 

overall function to decrease with increasing x.  Consequently, increasing the number of 

images acquired at each couch position (e.g. increasing the CD) should make RACT

:  sin(x) and the average of sin(x).  Reproduced with permission from Riegel 

The purpose of this chapter was to evaluate the difference in dose calculation on 

.  We hypothesized that differences between the dose distributions 

would be negligible and that differences would decrease as CD increases (because more 

imaging samples of the respiratory cycle are included in the averaging process).  

ating that RACTcine can replace RACT4D-CT for dose calculation could 

an image set which emulates 4-D dose calculation to treatment centers without 

RACTcine will be 

half of the respiratory pattern more than the other, which may 

(Chu et al., 2000; Geise et al., 1977).  Another 

velope” function (1/x) which causes the 

.  Consequently, increasing the number of 

) should make RACTcine more 

 

Reproduced with permission from Riegel et 

The purpose of this chapter was to evaluate the difference in dose calculation on 

.  We hypothesized that differences between the dose distributions 

increases (because more 

imaging samples of the respiratory cycle are included in the averaging process).  

for dose calculation could 

centers without 
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access to 4D-CT.  This, in conjunction with the results of Chapter 2 , lends further support to 

our over-arching hypothesis that image sets processed from cine CT can replace 4D-CT 

image sets for treatment planning purposes with negligible differences.   

3.3 Methods 

3.3.1 Patient Study 

Twenty-three lung cancer patients who received 4D-CT simulation as part of their 

radiation therapy were retrospectively included in the “primary” patient group.  These 

patients had an average of at least 2 breathing cycles per CD.  The respiratory patterns were 

classified as “regular” or “irregular” by calculating the coefficient of variation (COV) of the 

respiratory period over the duration of the scan.  The COV was defined as the standard 

deviation over the mean expressed as a percentage.  COVs <10% were considered regular 

and those >10% were considered irregular.  We anticipated the over/under-emphasis 

phenomenon will affect patients with regular breathing cycles more because the same 

fraction of the breathing cycle will be averaged for every couch position, though the phase 

will be different (Figure 3.2).  Table 3.1 summarizes the patient respiratory characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 3.2:  Overemphasis of sections of the respiratory pattern.  The yellow

region represents one period of the respiratory cycle and the orange

part of the breathing cycle averaged twice in RACT

towards the repeated phase of the breathing cycle.

Riegel et al.  
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:  Overemphasis of sections of the respiratory pattern.  The yellow

region represents one period of the respiratory cycle and the orange-shaded region is the 

part of the breathing cycle averaged twice in RACTcine, thereby “weighting” the image 

ds the repeated phase of the breathing cycle.  Reproduced with permission from 

 

 

:  Overemphasis of sections of the respiratory pattern.  The yellow-shaded 

shaded region is the 

, thereby “weighting” the image 

Reproduced with permission from 
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Table 3.1:  Primary group patient characteristics. 

Patient # Location Avg. T (s) CD/Avg. T COV (%) Tx 

1 Lung 2.2 2.0 4.3 IMRT 

2 Lung 2.7 2.2 4.4 IMRT 

3 Lung 2.3 2.2 4.8 IMRT 

4 Liver 2.5 2.2 6.4 3DCRT 

5 Esophageal 1.8 2.5 6.7 IMRT 

6 Lung 2.1 2.4 6.8 IMRT 

7 Lung 2.7 2.2 7.8 SBRT 

8 Lung 1.9 2.1 7.9 SBRT 

9 Lung 1.6 2.5 8.0 IMRT 

10 Lung 2.1 2.1 8.9 SBRT 

11 Liver 3.0 2.3 9.7 IMRT 

12 Lung 2.6 2.2 11.2 IMRT 

13 Lung 2.3 2.2 12.9 SBRT 

14 Lung 2.2 2.3 13.0 IMRT 

15 Lung 3.5 2.1 16.1 IMRT 

16 Lung 3.2 2.2 18.9 3DCRT 

17 Lung 2.7 2.2 20.5 IMRT 

18 Esophageal 1.9 2.3 20.5 IMRT 

19 Lung 3.1 2.3 22.6 IMRT 

20 Esophageal 2.6 2.3 26.2 3DCRT 

21 Lung 2.2 2.3 34.0 IMRT 

22 Lung 2.3 2.3 37.0 IMRT 

23 Lung 2.6 2.5 37.2 IMRT 

Average  2.4 2.3   

Standard Dev.  0.5 0.1   

Avg. T = average breathing cycle 

CD = cine duration 

COV = coefficient of variation 

Tx = treatment technique 

IMRT = intensity modulated radiation therapy 

SBRT = stereotactic body radiation therapy 

3DCRT = 3-D conformal radiation therapy. 
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All 4D-CT simulations were performed on an 8-slice General Electric Discovery ST 

PET/CT scanner (GEMS, Waukesha, WI) in cine mode with 2.5 mm slice thickness, 50 cm 

field-of-view, and 512 by 512 image matrix producing a pixel size of 0.97 × 0.97 × 2.5 mm3.  

RACTcine was processed from the same cine CT from which the simulation 4D-CT was 

formed, thereby eliminating the need to expose the patient to further irradiation.  A 

different number of images were included in each RACTcine to simulate fractions of the 

breathing cycle being captured at each couch position (1 breathing cycle, 1.5 breathing 

cycles, and 2 breathing cycles).  These image sets are designated RACTcine1, RACTcine1.5, and 

RACTcine2 in this chapter.  

The clinical treatment plan was copied to each RACTcine image set and dose was 

recalculated using CCC on a 4 mm isotropic grid with Pinnacle3 version 7.6.  Sagittal, 

coronal, and transverse dose planes through the isocenter were interpolated to 1 mm pixels 

and exported for RACT4D-CT, RACTcine1, RACTcine1.5, and RACTcine2 treatment plans.   

 Because the clinical protocol for 4D-CT is to set the CD to 1 breathing cycle plus 1 

gantry rotation (Pan et al., 2004), the number of patients in the study is small.  

Furthermore, the average breathing period of these patients was relatively short.  We 

therefore performed a follow-up study with a larger number of patients and longer 

breathing periods more typical of clinical exams.  Fifty (50) lung cancer patients whose 

clinical dose calculation was performed on RACT4D-CT were included for comparison.  This 

group was designated the “follow-up” patient group.  Table 3.2 summarizes patient 

characteristics for the follow-up patient group.  Of these 50 patients, 25 received SBRT and 

25 received IMRT.  As before, RACTcine was reconstructed using the same cine CT data as the 

4D-CT simulation.  Averaging, however, was only performed with the maximum number of 

images at each couch position (as would be performed clinically in our cine CT-based 

planning paradigm).  As before, the clinical plan was copied to the RACTcine image set, dose 

was recalculated, and dose distributions on RACT4D-CT and RACTcine were compared. 
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Table 3.2:  Follow-up group patient characteristics.   

IMRT  SBRT 

Patient # Avg. T (s) CD/Avg. T  Patient # Avg. T (s) CD/Avg. T 

1 7.0 1.3  26 3.4 1.6 

2 6.2 1.2  27 4.6 1.7 

3 6.2 1.1  28 3.1 1.6 

4 6.2 1.2  29 4.9 1.3 

5 6.2 1.2  30 5.2 1.2 

6 6.2 1.2  31 --- --- 

7 6.1 1.2  32 4.2 1.4 

8 5.8 1.3  33 5.6 1.3 

9 5.5 1.3  34 5.7 1.6 

10 5.3 1.3  35 4.5 1.6 

11 5.2 1.1  36 2.6 1.9 

12 5.2 1.3  37 6.0 1.6 

13 5.1 1.4  38 4.6 1.9 

14 5.1 1.5  39 7.9 1.5 

15 5.0 1.4  40 7.6 1.2 

16 4.8 1.3  41 5.9 1.0 

17 4.7 1.3  42 5.2 1.3 

18 4.7 1.3  43 4.9 1.1 

19 4.6 1.3  44 4.8 1.3 

20 4.5 1.1  45 4.7 1.2 

21 4.4 1.4  46 4.7 1.3 

22 4.4 1.6  47 4.7 1.7 

23 4.4 1.4  48 4.6 1.4 

24 4.4 1.4  49 4.4 1.3 

25 4.3 1.4  50 4.1 1.4 

Average 5.3 1.3  Average 4.9 1.4 

SD 0.8 0.1  SD 1.2 0.2 

Respiratory trace could not be retrieved for patient 31.   

For abbreviations, see Table 3.1. 
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3.3.2 Analysis 

RACTcine plans were compared to the RACT4D-CT plan using the gamma (γ) index 

(Depuydt et al., 2002; Low et al., 1998; Low et al., 2003) inside the planning target volume 

(PTV).  The γ index is defined in equations ( 5 ) and ( 6 ).  The variables re and rr represent 

points on the evaluated and reference distributions respectively, where d and D are the 

distance-to-agreement and dose difference pass/fail criteria selected by the user.   

     

Γ�67889, 6:889� � ;:��:<8889,:=8889�>'� ? @��:<8889,:=8889�>��   ( 5 ) 

 A�6:889� � BCDEΓ�67889, 6:889�FGE67889F  ( 6 ) 

 

Pass/fail criteria for the γ index are typically 5%/3 mm or 3%/3 mm in clinical 

situations such as IMRT quality assurance (Depuydt et al., 2002; Low et al., 1998; Low et al., 

2003).  In these cases, dose distributions are calculated in a phantom and are compared to 

film measurements.  Since we compared two calculated distributions, the pass/fail criteria 

were tightened to 2%/1mm to reflect a lower percent dose difference limit of dose 

calculation accuracy (Papanikolaou et al., 2004) and the spatial resolution of the CT scanner 

in the transverse plane with a 512 × 512 image matrix and 50 cm FOV. 

DOSELAB software, a publicly-available dose-comparison software package, was used 

to calculate γ indices in each of the 3 orthogonal planes (Childress et al., 2003; Childress et 

al., 2005).  Dose planes contained the full extent of the dose grid.  The intersection of the 

clinical PTV and the orthogonal dose planes were the areas of interest (Figure 3.3).  

Maximum and mean γ indices and percentages of points passing the γ criteria were 

measured for these areas.  The PTV was formed clinically according to the procedure 

described in a recent publication from authors at M. D. Anderson (Ezhil et al., 2009).  First, 

the IGTV was formed by contouring the “motion envelope” on MIP4D-CT and confirming 

extent on the 4D-CT phase images.  The IGTV was expanded to the internal clinical target 



 

volume (ICTV) using an 8 mm 

a 5 mm or 3 mm expansion depending on the type and frequency of image

in treatment.  For PTVs with 

region was calculated.   

 

Figure 3.3:  Intersection of planning target volume (PTV) and orthogonal

Reproduced with permission from Riegel 

 

For the primary group of patients, γ

RACT4D-CT, and RACTcine2 vs. RACT

analysis of variance (ANOVA) for correlated samples with a post

detect any statistically significant differences between the dose calculations on image s

of increasing CD (Lowry, 2008

decrease with increasing CD.  For the follow

47 

using an 8 mm isotropic expansion.  The ICTV was expanded to the PTV

depending on the type and frequency of image gui

with multiple regions, a weighted average of the γ index in each 

:  Intersection of planning target volume (PTV) and orthogonal dose planes.

Reproduced with permission from Riegel et al. (Riegel et al., 2008) 

For the primary group of patients, γ indices for RACTcine1 vs. RACT4D-CT

vs. RACT4D-CT were calculated and compared using a one

VA) for correlated samples with a post-ANOVA Tukey HSD test to 

detect any statistically significant differences between the dose calculations on image s

(Lowry, 2008).  We anticipated that maximum and mean γ indices would 

.  For the follow-up group of patients, γ indices were calculated 

expanded to the PTV with 

guidance utilized 

multiple regions, a weighted average of the γ index in each 

 

dose planes.  

CT, RACTcine1.5 vs. 

using a one-way 

ANOVA Tukey HSD test to 

detect any statistically significant differences between the dose calculations on image sets 

We anticipated that maximum and mean γ indices would 

up group of patients, γ indices were calculated 
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for the RACTcine vs. RACT4D-CT comparison.  Note that statistical analysis was not performed 

because only one comparison was performed for the follow-up group. 

3.4 Results 

3.4.1 Primary Patient Group 

For the RACTcine1 vs. RACT4D-CT and RACTcine1.5 vs. RACT4D-CT comparisons, 22 of 23 

patients demonstrated 100% of points within the PTV on coronal, sagittal, and transverse 

planes passing our 2%/1mm γ criteria.  The lone patient who demonstrated any failing 

points had 1.4% and 0.3% of points fail on coronal and sagittal planes respectively for the 

RACTcine1 vs. RACT4D-CT comparison.  Though already extremely low, the failures decreased to 

0.6% and 0% on coronal and sagittal planes respectively in the RACTcine1.5 vs. RACT4D-CT 

comparison, then disappeared completely in the RACTcine2 comparison.   All patients 

demonstrated 100% passing points within the PTV for all geometrical orientations in the 

RACTcine2 vs. RACT4D-CT comparison. 

Maximum and mean γ indices for the RACTcine1, RACTcine1.5, and RACTcine2 

comparisons within the PTV for regular respiratory patterns are shown in Figure 3.4 and 

results for irregular respiratory patterns are shown in Figure 3.5.  Maximum and mean 

values are very low, well under 1, which demonstrates that dose calculation on RACTcine is 

very similar to dose calculation on RACT4D-CT, regardless of how many breathing cycles are 

used for averaging.  The data shows, however, that increasing the CD does, in general, 

decrease the γ index to even lower levels.  The maximum and mean γ indices from the 

RACTcine2 vs. RACT4D-CT comparison are significantly lower than the RACTcine1 vs. RACT4D-CT and 

RACTcine1.5 vs. RACT4D-CT indices for several comparisons (coronal and transverse plane) with 

irregular respiration (arrows in Figure 3.5).  The RACTcine1.5 vs. RACT4D-CT γ indices were not 

significantly higher for regular respiration, contrary to what we had anticipated. 

 

 

 



 

 

 

 

 

Figure 3.4:  (A) Maximum and (B) mean gamma (γ) indices for patients with regular 

respiratory patterns.  Error bars are standard error (N=11).  

from Riegel et al. (Riegel et al., 2008)
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:  (A) Maximum and (B) mean gamma (γ) indices for patients with regular 

respiratory patterns.  Error bars are standard error (N=11).  Reproduced with permission 

(Riegel et al., 2008) 

 

:  (A) Maximum and (B) mean gamma (γ) indices for patients with regular 

Reproduced with permission 



 

 

 

 

 

Figure 3.5:  (A) Maximum and (B) mean gamma (γ) indices for patients with irregular 

respiratory patterns.  Error bars are standard error (N=12).  Green arrows are significant 

differences as determined by ANOVA/Tukey HSD tests.

Riegel et al. (Riegel et al., 2008)
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:  (A) Maximum and (B) mean gamma (γ) indices for patients with irregular 

respiratory patterns.  Error bars are standard error (N=12).  Green arrows are significant 

differences as determined by ANOVA/Tukey HSD tests.  Reproduced with perm

(Riegel et al., 2008) 

 

:  (A) Maximum and (B) mean gamma (γ) indices for patients with irregular 

respiratory patterns.  Error bars are standard error (N=12).  Green arrows are significant 

Reproduced with permission from 
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3.4.2 Follow-up Patient Group 

 Gamma criteria were met for 100% of points within the PTV for 49 of 50 patients.  

Patient 22 had 1% of points within the PTV fail the 2%/1mm criteria on the coronal γ 

distribution.   

 Figure 3.6 shows the maximum and mean γ indices within the PTV for the 3 

orthogonal dose planes.  All are well below 1, again supporting that calculation on RACTcine 

is very similar to calculation on RACT4D-CT.  Figure 3.7 compares maximum and mean γ 

indices within the PTV for SBRT and IMRT treatment techniques.  The maximum γ index is 

higher in IMRT treatment techniques, but the mean γ index is higher in SBRT treatment 

techniques.  This discrepancy is most likely caused by the small PTVs utilized in SBRT:  Dose 

was calculated using a 4 mm isotropic grid interpolated to 1 mm on each dose plane for γ 

analysis.  A 4 × 4 × 4 mm3 cube occupies a larger percentage of the total volume for a small 

volume than a large volume, thereby weighting the mean towards the higher γ value. 

 



 

Figure 3.6:  (A) Maximum and (B) mean gamma indices inside the PTV for the follow

patient group.  Error bars are standard error.

al. (Riegel et al., 2008) 
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:  (A) Maximum and (B) mean gamma indices inside the PTV for the follow

group.  Error bars are standard error.  Reproduced with permission from Riegel 

 

:  (A) Maximum and (B) mean gamma indices inside the PTV for the follow-up 

Reproduced with permission from Riegel et 



 

Figure 3.7:  (A) Maximum and (B) mean gamma indices inside the PTV for the follow

patient group, separated by treatment 

therapy.  SBRT = stereotactic body radiation therapy.

Riegel et al. (Riegel et al., 2008)
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:  (A) Maximum and (B) mean gamma indices inside the PTV for the follow

patient group, separated by treatment technique.  IMRT = intensity modulated radiation 

therapy.  SBRT = stereotactic body radiation therapy.  Reproduced with permission from 

(Riegel et al., 2008) 

 

:  (A) Maximum and (B) mean gamma indices inside the PTV for the follow-up 

technique.  IMRT = intensity modulated radiation 

Reproduced with permission from 
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3.5 Discussion 

Several authors have explored 4-D dose calculation (Flampouri et al., 2006; 

Guckenberger et al., 2007; Keall et al., 2004; Rietzel et al., 2005), but the technique is not 

commonly used clinically due to the need for 4D-CT (which, as described above, is not 

readily available for many institutions) and increased calculation time.  At M. D. Anderson, 

dose calculation with RACT4D-CT is currently utilized for treatment planning of thoracic 

lesions.  Admiraal et al. have shown that this technique can produce similar results to 4-D 

dose calculation (Admiraal et al., 2008).  We developed a technique to create RACT image 

sets directly from the cine CT images which does not require a respiratory trace or sorting 

into phase or amplitude bins.  RACTcine, however, is not identical to RACT4D-CT:  Including all 

the cine CT images in RACT processing may cause CT number differences from the RACT4D-

CT.  An early paper by Geise et al. cites that a 4-10% change in electron density may produce 

a 2% error in dose (Geise et al., 1977).  In the case of regions highly affected by motion, 

especially irregular motion, CT number fluctuation may exceed this limit.  

The current chapter has shown that calculating dose on RACTcine image sets is 

negligibly different than calculating dose on RACT4D-CT.  Discrepancies can be decreased 

further by including more than one period of a respiratory pattern in each CD of cine CT 

(Figure 3.4 and Figure 3.5).  Patient 22 in the primary group was the only patient to 

demonstrate any points failing the 2%/1mm γ criteria in the RACTcine1 and RACTcine1.5 

comparisons, but these failing points disappeared as the CD increased to 2 breathing cycles.  

Our findings suggest that RACTcine could replace RACT4D-CT for the purposes of dose 

calculation with negligible differences in resulting dose distributions. 

As briefly described in section 3.3.1, the first set of patients suffers from several 

problems:  First, the sample size is small because the typical criteria for CD selection is 1 

average breathing cycle plus 1 gantry rotation (Pan et al., 2004), therefore making patients 

with 2 breathing cycles per CD rare.  Second, as a consequence of the first point, some 

patients with esophageal or liver malignancies were added to the core of lung cancer 

patients to increase sample size.  Third, patients with multiple respiratory cycles per CD are 

often breathing rapidly and the average respiratory periods of these scans are typically 
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smaller than those of the general population receiving 4D-CT.  The average breathing period 

of patients used in the first part of the study was less than 3 s, while most patients have a 

breathing period between 4 and 5 s (Pan et al., 2006). 

 To address these concerns, we included a second “follow-up” set of 50 lung cancer 

patients whose respiratory periods were closer to the population average.  Multiple 

RACTcine image sets, however, could not be reconstructed because less than 2 breathing 

cycles were captured at each couch position.  The fact that γ analysis of the follow-up 

patient group is similar to results of the first supports the conclusion that RACTcine is 

sufficiently similar to RACT4D-CT for dose calculation. 

 Patient 40 demonstrated a substantial change in density distribution from motion 

blurring on RACT4D-CT and RACTcine.  Patient 40 was also the only patient to show failing 

points in the follow-up group of patients.  The differing density values caused the observed 

disagreement in dose distributions, particularly at the superior and inferior regions of the 

tumor, which was located near the diaphragm (Figure 3.8).  Regardless, the regions of 

disagreement were small and the points failing within the PTV represented only 1% of the 

PTV volume.  Other patients demonstrated similar differences near high contrast 

boundaries, though not beyond our 2%/1mm failure criteria. 

 



 

Figure 3.8:  (A) Coronal RACT

follow-up group.  Note that our 

of tumor motion.  Reproduced with permission from Riegel 
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:  (A) Coronal RACT4D-CT and (B) Coronal γ distribution for patient 40 of the 

up group.  Note that our 2%/1mm γ criteria are violated at the maximum extents 

Reproduced with permission from Riegel et al. (Riegel et al., 2008)

 

distribution for patient 40 of the 

violated at the maximum extents 

(Riegel et al., 2008) 



 

Even when changes in 

high-motion areas can still affect dose agreement within the PTV.  Moving structures in the 

beam path can modulate the depth dose curves, which 

disagreement behind moving 

and end-expiration phases of a 4

one oblique beam.  Figure 3.

primary group where this effect can be observed.  

patient parallel to the transverse plane, this may explain why 

transverse slices more than coronal or sagittal 

Figure 3.5, where the RACTcine1.5

RACTcine1 mean γ index inside the PTV for regular and irregular respiration on transverse 

slices only, not coronal or sagittal.

 

Figure 3.9:  The "dose shadowing" effect, demonstrated by calculating dose on end

inspiration and end-expiration of a 4D

image (A) between the end-

changes in anatomy due to motion.  The gamma (γ) index distribution for a single oblique 

beam (B) shows the streaks of dose disagreement behind the moving anatomy.

Reproduced with permission from Riegel 
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changes in motion blur occur outside the target volumes

motion areas can still affect dose agreement within the PTV.  Moving structures in the 

beam path can modulate the depth dose curves, which can cause “shadows” of dose 

disagreement behind moving structures.  As an example, Figure 3.9 uses the 

phases of a 4D-CT to demonstrate this effect with dose calculated for 

.10 shows images and γ distributions from patient 20 of the 

primary group where this effect can be observed.  Because coplanar beams enter the 

e transverse plane, this may explain why “shadowing” effects 

transverse slices more than coronal or sagittal slices.  This is supported by Figure 

cine1.5 mean γ index is greater, though not significantly, than the 

mean γ index inside the PTV for regular and irregular respiration on transverse 

oronal or sagittal.     

:  The "dose shadowing" effect, demonstrated by calculating dose on end

expiration of a 4D-CT and comparing the distributions.  The difference 

-inspiration phase CT and end-expiration phase CT highlight 

changes in anatomy due to motion.  The gamma (γ) index distribution for a single oblique 

beam (B) shows the streaks of dose disagreement behind the moving anatomy.

Reproduced with permission from Riegel et al. (Riegel et al., 2008) 

target volumes themselves, 

motion areas can still affect dose agreement within the PTV.  Moving structures in the 

cause “shadows” of dose 

uses the end-inspiration 

with dose calculated for 

shows images and γ distributions from patient 20 of the 

Because coplanar beams enter the 

hadowing” effects 

Figure 3.4 and 

mean γ index is greater, though not significantly, than the 

mean γ index inside the PTV for regular and irregular respiration on transverse 

 

:  The "dose shadowing" effect, demonstrated by calculating dose on end-

CT and comparing the distributions.  The difference 

expiration phase CT highlight 

changes in anatomy due to motion.  The gamma (γ) index distribution for a single oblique 

beam (B) shows the streaks of dose disagreement behind the moving anatomy.  



 

 

Figure 3.10:  Shadowing effect seen in patient 20 of the primary group.

highlight areas of moving anatomy on the coronal RACT

(B).  Stripes of disagreement can be seen medial to the beam entrances behind the 

moving anatomy.  Reproduced with permission from Riegel 

 

This geometric ambiguity could be remedied by performing a true 3

a 2-D γ analysis of 3 orthogonal plane

chapter.  At the time this study was performed, no such analytical tool existed at our 

institution.  Spezi et al. suggested that an approximate

performing 2-D γ analyses on successive dose planes and “stacking” the 

γ distribution (Spezi et al., 2006)

indices in a full 3-D γ distribution are less than indices in a “stack” of 2

(Gillis et al., 2005; Spezi et al., 2006; Wendling et al., 2007)

encountered in this chapter, we do not expect a “stacked” 3
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:  Shadowing effect seen in patient 20 of the primary group.  Pink arrows 

highlight areas of moving anatomy on the coronal RACT4D-CT (A) and transverse

(B).  Stripes of disagreement can be seen medial to the beam entrances behind the 

Reproduced with permission from Riegel et al. (Riegel et al., 2008)

This geometric ambiguity could be remedied by performing a true 3-

3 orthogonal planes of dose through the isocenter as executed in this 

At the time this study was performed, no such analytical tool existed at our 

suggested that an approximate 3-D γ analysis could be created 

on successive dose planes and “stacking” the slices

(Spezi et al., 2006).  Several authors have demonstrated, however, that 

D γ distribution are less than indices in a “stack” of 2-D γ distributions

(Gillis et al., 2005; Spezi et al., 2006; Wendling et al., 2007).  Given the low γ indices 

, we do not expect a “stacked” 3-D analysis or a true 3

 

Pink arrows 

(A) and transverse RACT4D-CT 

(B).  Stripes of disagreement can be seen medial to the beam entrances behind the 

(Riegel et al., 2008) 

-D γ analysis, not 

as executed in this 

At the time this study was performed, no such analytical tool existed at our 

could be created 

slices to form a 3-D 

, however, that 

D γ distributions 

Given the low γ indices 

D analysis or a true 3-D 
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analysis (which would produce lower values than a stacked analysis) to yield significant (if 

any) failures using our established criteria. 

We had originally anticipated that irregular respiratory patterns would be less 

affected by the over-emphasis averaging than regular respiratory patterns.  As explained 

briefly in section 3.3.1, for regular respiratory patterns, the same fraction of the respiratory 

cycle is emphasized at each couch position.  The over-emphasized phase, however, is 

different each time.  The results of section 3.4.1 and Figure 3.4 and Figure 3.5 have shown 

this to be untrue:  Disagreement was approximately twice greater for 1, 1.5, and 2 

breathing cycle RACTcine image sets visualizing irregular respiratory motion.  This greater 

disagreement can most likely be attributed to extreme changes in respiratory amplitude, 

which can produce severe artifacts on RACT images (Gould et al., 2008).  Recall, however, 

that respiratory patterns were classified as “regular” and “irregular” by period not 

amplitude.  Respiratory frequency and amplitude are often correlated (Davis et al., 1975), 

which would explain why artifacts caused by irregular amplitude would show up with 

patients separated by irregularity of respiratory period.  These artifacts are localized to the 

“slabs” of tissue imaged at each couch position defined by the beam width, but may occur 

at multiple couch positions if the irregularity persists through the entire scan. 

The results of Chapter 2 and Chapter 3  suggest that increasing the CD during cine CT 

acquisition will produce better results for both target delineation (to better capture the 

extremes of an irregular breathing pattern) and dose calculation.   Increasing CD, however, 

increases scan time and patient dose.  Previous experience with cine CT has shown that 

RACTcine and MIPcine can be produced using as little as 40 mA and still maintain acceptable 

image quality, which could drastically reduce patient dose from a cine CT scan (Pan et al., 

2007). 

While the negligible differences between RACTcine and RACT4D-CT for dose calculation 

is encouraging, it is important to note that the similarity of RACTcine to RACT4D-CT for dose 

calculation does not necessarily imply similarity of RACTcine to 4-D dose calculation.  We did 

not explicitly compare RACTcine to 4-D dose calculation.  This topic should be investigated.  
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Given the low γ indices produced in spite of conservative 2%/1mm γ criteria, however, we 

do not expect that additional differences would be significant. 

3.6 Conclusions 

The previous two chapters focused on applying image sets processed from cine CT to 

different, but equally important, parts of the treatment planning process:  Target 

delineation ( Chapter 2 ) and dose calculation ( Chapter 3 ).  For tumors influenced by 

respiratory motion, RACT generated from unsorted cine CT images provided a similar 

environment for dose calculation as RACT generated from sorted, 10-phase 4D-CT images.  

Substituting RACTcine for RACT4D-CT for the purposes of dose calculation can provide centers 

without 4D-CT access to an image set that may emulate 4-D dose calculation. 

The results of the previous two chapters support the over-arching hypothesis that 

image sets processed from cine CT can be used for treatment planning of mobile thoracic 

lesions.  As described in section 2.6, however, target delineation was only shown for small 

lesions.  The next chapter explores the incorporation of PET/CT to aid in segmentation of 

larger mobile tumors using an automatic segmentation algorithm. 
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Chapter 4  SEGMENTATION OF MOVING TARGETS WITH PET/CT:  CORRELATION OF 

THRESHOLDS WITH LESION SIZE, MOTION EXTENT, AND SOURCE-TO-BACKGROUND 

RATIO 

4.1 Introduction 

 The use of fluorodeoxyglucose positron emission tomography (FDG-PET) in the 

treatment planning process for lung cancer has become popular in recent years due to 

evidence that data from PET imaging can significantly change various aspects of treatment.  

Several studies have found that incorporating PET information into CT simulation can 

change treatment intent from curative to palliative (Brink et al., 2004; Ciernik et al., 2003; 

Dizendorf et al., 2003; Mah et al., 2002), reduce interobserver variation (Ashamalla et al., 

2005; Caldwell et al., 2001; Ciernik et al., 2003; Mah et al., 2002), and alter GTV delineation 

where PET effectively discriminates between malignant tissue and atelectasis (Ashamalla et 

al., 2005; Erdi et al., 2002; Nestle et al., 1999; van Baardwijk et al., 2006).  Recall from 

Chapter 2 that we successfully demonstrated target delineation of small, mobile stage I 

NSCLC using image sets processed from cine CT, but based on findings by Muirhead et al. 

(Muirhead et al., 2008) and common clinical experience at M. D. Anderson, we anticipated 

that these image sets alone would be insufficient for treatment planning of larger tumors.  

We hypothesized that PET would provide additional information to make target delineation 

possible.   

 Target volume delineation of lung cancer with PET/CT has been extensively reported 

in the literature (Biehl et al., 2006; Black et al., 2004; Brambilla et al., 2008; Caldwell et al., 

2003; Davis et al., 2006; Drever et al., 2007; Erdi et al., 1997; Nestle et al., 2005; Okubo et 

al., 2008; Park et al., 2008; Paulino et al., 2004), yet little consensus exists on exactly how to 

use PET to define a GTV (van Baardwijk et al., 2006).  One of the first studies by Erdi et al. 

found that 36-44% of maximum activity concentration (ACmax) correlated well with known 

sphere volumes in a stationary phantom (Erdi et al., 1997).  In a later publication, the group 

settled on a single threshold of 42% (Erdi et al., 2002).  Paulino et al. suggested an SUV 
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threshold of 2.5 g/mL (Paulino et al., 2004), a value that originated from differentiation of 

benign versus malignant lesions in PET imaging of NSCLC (Patz et al., 1993).   

 Subsequent publications questioned the use of a single threshold and proposed 

other techniques.  As described in section 1.2, several studies show that target size and 

source-to-background ratio (SBR) are important parameters (Biehl et al., 2006; Brambilla et 

al., 2008; van Baardwijk et al., 2007).  Nestle et al., in an attempt to incorporate background 

into the contouring scheme, proposed thresholds at 15% of mean activity concentration 

plus background activity concentration (Nestle et al., 2005).  Black et al., using phantom 

scans of different-sized spheres, developed a linear function of mean standardized uptake 

value (SUVmean) (Black et al., 2004).  Few studies, however, investigated motion as a 

parameter for threshold-based automatic segmentation of the PET image.  Caldwell et al. 

found conventional segmentation techniques produced volumes too small to cover the 

motion extent of the tumor on PET imaging.  They suggested using a threshold at 15% of 

ACmax to include motion (Caldwell et al., 2003).  In a subsequent study attempting to define 

a motion-inclusive tumor volume, Okubo et al. found that 35% was the optimal threshold 

for large stationary or moving spheres.  Given the shortcomings of single threshold values 

for stationary objects, however, the validity of single-threshold values for segmentation of 

motion-inclusive target volumes remains questionable.   

4.2 Purpose 

The purpose of this chapter was to develop a threshold-based segmentation 

technique that accounted for tumor size, motion, and SBR.  We therefore modeled activity 

concentration threshold dependence on object volume, motion amplitude, and SBR for 

moving targets using an extensive series of phantom scans performed at varying object 

volume, motion, and SBR.  We validated the model with 24 lung tumors that were imaged 

with 4D-CT and PET/CT for radiation therapy simulation and compared IGTVs formed with 

our model to IGTVs formed with 6 segmentation methods previously reported in the 

literature (Black et al., 2004; Caldwell et al., 2003; Erdi et al., 1997; Nestle et al., 2005; 
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Okubo et al., 2008; Paulino et al., 2004).  A reliable segmentation technique that 

incorporates volume, motion, and SBR into threshold determination could provide radiation 

oncologists with a tool to segment tumors whose contrast on cine CT image sets is 

insufficient for tumor delineation. 

4.3 Methods 

4.3.1 Terminology 

 For clarity, terminology and notation used in this chapter will be summarized in this 

section.  Many segmentation methods utilize activity concentration (AC) or standardized 

uptake value (SUV) measurements in some way.  AC is typically in units of Becquerel per 

milliliter (Bq/mL).  SUV for voxel i is defined in equation ( 7 ) as the AC of the voxel ACi 

divided by the injected activity A0 in Bq normalized to patient mass in grams (M).  Defined 

as such, the units of SUV are grams per milliliter (g/mL).  One can make SUV unitless by 

normalizing to density of soft tissue, which is assumed equal to that of water (1 g/mL).  

Pixel-by-pixel densities are not used to normalize SUV. 

 

�HIJ � ��K�L MN   ( 7 ) 

 

 Maximum activity concentration will be denoted ACmax.  A threshold value will be 

denoted ACn%.  For example, 15% of ACmax is described as AC15%.  Mean activity 

concentration, which requires an ROI in which to take the mean, is denoted ��O%""""""" which can 

be interpreted as “mean activity concentration of voxels above n% of ACmax.  All ROIs in this 

chapter were formed using seed-based region growing (thresholds were not applied to the 

entire image), so all ROIs are closed shapes.  Mean activity concentration in background is 

designated by ���P""""""".  ROIs produced from these methods will be denoted similarly.  For 

example, the IGTV produced by taking all voxels above 15% of ACmax will be indicated 

“IGTV15%.”  More complex methods will be defined accordingly.   
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 It is also worthwhile to review the distinction between “GTV” and “IGTV,” as both 

will be included in the discussion with reference to the literature.  “IGTV” is a term coined 

by M. D. Anderson and is not recognized outside the institution.  In this chapter, the term 

“GTV” will be used when motion was neglected or there was no intent to capture motion.  

For example, when a study investigated delineation of gross tumor with a free-breathing 

helical CT where no attempt was made to incorporate motion information (whether 

through inhale/exhale breath-holds, expanding to ITV, etc.), the gross tumor volume is 

“GTV.”  IGTV will be used to reference gross tumor volume with a motion envelope 

included, in other words, where the intent was to capture motion.  Most papers in the 

literature explore GTV delineation, not IGTV delineation.  In fact, 4 of the 6 segmentation 

methods utilized in this study were not originally intended to form IGTVs.  It is, however, 

our intention to include motion and compare with a motion-inclusive ROI, so all segmented 

ROIs in this chapter will be referred to as “IGTV.” 

 

4.3.2 Development of the Regression Model 

4.3.2.1 Phantom Scanning 

The goal of the phantom scans was to determine the AC threshold on PET 

(IGTVPET_n%) which best matched the IGTV defined on cine CT (IGTVCT) for a range of sphere 

sizes, motion extents, and SBRs.  The best-matched thresholds would then be used to 

develop a segmentation model with linear regression techniques. 

The NEMA IEC thorax phantom (Data Spectrum, Chapel Hill, NC) was used to form 

the regression function.  The phantom has 6 spheres of varying size set inside a background 

tank.  The 6 spheres had inner diameters equal to 10, 13, 17, 22, 28, 37 mm.  These spheres 

and the background tank were filled to 6 SBRs:  5:1, 10:1, 15:1, 20:1, 30:1, and 50:1.  A 

sinusoidal motion platform was placed on the flat couch of a General Electric Discovery VCT 

64-slice PET/CT scanner (GE Health Care, Waukesha, WI).  The phantom was placed on the 

motion platform (Figure 4.1) and moved sinusoidally with a range of motion amplitudes (0, 



 

5, 10, 15, 20, 25, 30 mm peak

the sinusoidal motion were chosen to represent typical motion extent

Stevens et al., 2001) and respiratory frequency 

imaged per motion amplitude per SBR, with 7 amplitudes and 6 SBRs requires 42 PET scans 

to capture 252 combinations of the 3 variables.  

 

Figure 4.1:  NEMA IEC thorax phantom on 1

PET/CT scanner.  Reproduced with permission from Riegel 

 

Coincidence data were collected for 18 minutes in 3

through list-mode acquisition at each motion extent and SBR.  After completion of the scan, 

the volume imaging protocol (ViP) replay feature was used to split t

three 6-minute scans for repeatability.  Images were reconstructed using 

expectation maximization (OSEM

of view.  Using a 128 × 128 image matrix, voxel sizes

were transferred to a commercial treatment planning system (

Philips Medical Systems, Milpitas, CA)

 Cine CT was used to capture

reference volume.  The spheres 

filled with water.  The scan protocol utilized cine CT at 120 kV, 

8 × 2.5 mm, CD of 4.8 s, cine interval of 0.4 s, and gantry rotation of 0.4 s.  In order to 

contour the maximum motion extent, th
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5, 10, 15, 20, 25, 30 mm peak-to-peak) and 4 second period.  The amplitude and period of 

the sinusoidal motion were chosen to represent typical motion extent (Liu et al., 2007; 

respiratory frequency (Pan et al., 2006).  To summarize, 6 

imaged per motion amplitude per SBR, with 7 amplitudes and 6 SBRs requires 42 PET scans 

to capture 252 combinations of the 3 variables.   

:  NEMA IEC thorax phantom on 1-D motion on flat couch of GE Discovery VCT 

Reproduced with permission from Riegel et al.  (Riegel et al., 2010)

Coincidence data were collected for 18 minutes in 3-D mode and were recorded 

mode acquisition at each motion extent and SBR.  After completion of the scan, 

the volume imaging protocol (ViP) replay feature was used to split the 18 minute scan into 

minute scans for repeatability.  Images were reconstructed using ordered

OSEM) reconstruction, 21 subsets and 2 iterations at 50 cm field 

of view.  Using a 128 × 128 image matrix, voxel sizes were 3.9 by 3.9 by 3.3 mm.  PET images 

a commercial treatment planning system (Pinnacle3, version 

Philips Medical Systems, Milpitas, CA) for delineation of the 6 spheres. 

capture motion envelopes at each extent to obtain the 

he spheres were drained of liquid while the background tank 

filled with water.  The scan protocol utilized cine CT at 120 kV, 100 mA, x-ray collimation of 

of 4.8 s, cine interval of 0.4 s, and gantry rotation of 0.4 s.  In order to 

contour the maximum motion extent, the minimum intensity projection was produced

peak) and 4 second period.  The amplitude and period of 

(Liu et al., 2007; 

To summarize, 6 spheres 

imaged per motion amplitude per SBR, with 7 amplitudes and 6 SBRs requires 42 PET scans 

 

couch of GE Discovery VCT 

et al., 2010) 

D mode and were recorded 

mode acquisition at each motion extent and SBR.  After completion of the scan, 

18 minute scan into 

ordered-subsets 

reconstruction, 21 subsets and 2 iterations at 50 cm field 

were 3.9 by 3.9 by 3.3 mm.  PET images 

version 8.1w, 

to obtain the 

drained of liquid while the background tank was kept 

ray collimation of 

of 4.8 s, cine interval of 0.4 s, and gantry rotation of 0.4 s.  In order to 

was produced 



 

directly from the cine CT data 

were empty and the background tank was full, the min

value over the image sequence, 

4.2).  Furthermore, this method allowed us to capture the inner diameter

sphere, which was consistent with

min-IPcine images were transferred to 

contouring. 

 

Figure 4.2:  Minimum intensity projection

diameter spheres of NEMA IEC phantom.  

amplitude. 

 

4.3.2.2 Target Delineation

IGTVs of the 6 spheres on the min

based 3-D region growing.  These ROIs, termed IGTV

reference volumes to which PET threshold volumes would be optimized.  A threshold of 

425 HU was used to limit the region growing algorithm 

1998). 

The motion-blurred spheres on PET imaging were segmented by determining AC

in each sphere and auto-segmenting 10

intervals) of ACmax using seed

Because PET acquisition occurred on different days for each SBR, care was taken to 

reposition the phantom on the scanner bed.  To further ensure PET/CT registration and 
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from the cine CT data (min-IPcine) with in-house software.  Because the spheres 

round tank was full, the min-IPcine, which records the lowest pixel 

value over the image sequence, captured the motion path of the empty spheres

Furthermore, this method allowed us to capture the inner diameter of the moving 

sphere, which was consistent with the activity-filled volume imaged by the PET scan.  All 

were transferred to the commercial treatment planning system 

:  Minimum intensity projection from cine CT (min-IPcine) for 37 and 28 mm 

ter spheres of NEMA IEC phantom.  From left to right:  0, 10, 20, and 30 mm motion 

Target Delineation 

IGTVs of the 6 spheres on the min-IPcine images were auto-segmented using seed

D region growing.  These ROIs, termed IGTVCT for this chapter, served as the 

lumes to which PET threshold volumes would be optimized.  A threshold of 

425 HU was used to limit the region growing algorithm (Goo et al., 2005; Kemerink et al., 

blurred spheres on PET imaging were segmented by determining AC

segmenting 10-20 ROIs at different percentage thresholds (in 1% 

using seed-based region growing.  These ROIs are termed IGTV

Because PET acquisition occurred on different days for each SBR, care was taken to 

reposition the phantom on the scanner bed.  To further ensure PET/CT registration and 

house software.  Because the spheres 

, which records the lowest pixel 

captured the motion path of the empty spheres (Figure 

of the moving 

filled volume imaged by the PET scan.  All 

the commercial treatment planning system for 

 

) for 37 and 28 mm 

0, 10, 20, and 30 mm motion 

segmented using seed-

for this chapter, served as the 

lumes to which PET threshold volumes would be optimized.  A threshold of -

(Goo et al., 2005; Kemerink et al., 

blurred spheres on PET imaging were segmented by determining ACmax 

20 ROIs at different percentage thresholds (in 1% 

based region growing.  These ROIs are termed IGTVPET_n%.  

Because PET acquisition occurred on different days for each SBR, care was taken to 

reposition the phantom on the scanner bed.  To further ensure PET/CT registration and 
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mitigate the effects of phantom repositioning, the centroids of IGTVPET_n% and IGTVCT 

volumes were registered. 

When IGTVCT and IGTVPET_n% were contoured for all spheres, motion extents, and 

SBRs, the ROIs were converted to mesh surfaces using a software tool in the treatment 

planning system.  The mesh surfaces were exported from the treatment planning system 

and the separation between the surfaces was analyzed by in-house software. 

4.3.2.3 Analysis 

To assess differences between IGTVCT and each IGTVPET_n%, we developed an 

algorithm to measure the separation between two mesh surfaces similar to the method 

used by Pevsner et al. which can assess concave volumes (Pevsner et al., 2006).  This 

method was a modification of the method put forth by Remeijer et al. (Remeijer et al., 

1999) and was recently used by Rietzel et al. to compare GTVs drawn on MIP to the union of 

GTVs from 10-phase 4D-CT (Rietzel et al., 2008).  Our technique was developed in MATLAB 

(Mathworks, Natick, MA) and was termed the “surface separation” algorithm.  The main 

advantage of the surface separation method over simply comparing volume magnitudes 

(Nestle et al., 2005; Park et al., 2008) or concordance (Giraud et al., 2002) is that this 

method provides specific geometric information of where the volumes disagree.  

Furthermore, this information can be visualized in a polar-azimuthal plot (Figure 4.3). 

 A brief explanation of the surface separation analysis is provided here.  For a more 

detailed description please see the Appendix.  First, slice-by-slice contours were converted 

to a triangular mesh by the treatment planning system (this feature is commonly used in 

conjunction with model-based auto-segmentation, but is convenient for our purposes as 

well).  Triangular meshes were created for the IGTVCT and IGTVPET_n% volumes for all n.  In 

the treatment planning system, region of interest (ROI) and mesh information are stored in 

text files called “plan.roi.”  Mesh data are stored in Visualization ToolKit (VTK) format.  

These data consist of two matrices:  First, 3 columns of x, y, and z coordinates which 

represent the vertices of the mesh; Second, 3 columns of indices which specify how the 
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vertices are connected to form the triangular mesh surface.  Our software extracted this 

mesh information to recreate the mesh surface in MATLAB. 

 The software was designed to compare a “test” volume to a “reference” volume.  In 

this particular application, IGTVCT was the reference volume and IGTVPET_n% was the test 

volume.  The surface separation “operator” will be signified by the “|” character in this 

chapter.  For example, comparing IGTVPET_27% (the test volume) to IGTVCT (the reference 

volume) is denoted “IGTV PET_27%|IGTVCT”.  Rays were projected from the centroid of the 

reference volume at equally-spaced altitudinal and azimuthal angles (in our study, 5° 

spacing was used).  For each ray, we calculated the intersection of the ray and every plane 

defined by the triangles of the mesh surface to “sample” the reference mesh surface.  For 

each sampling point on the reference mesh, we calculated the closest distance to the test 

mesh by projecting the sampling point to the planes defined by the triangles of the test 

mesh surface.  Our algorithm was validated using a series of low and high resolution 

spherical meshes of varying size (Figure 4.3).   

 

 

 

 

 

 



 

Figure 4.3:  (Top) The test mesh (

surface separation algorithm.  Blue lines

points on the reference mesh and the test mesh surface.  (Bottom) Deviations are 

expressed in terms of altitudinal and azimuthal angles.
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:  (Top) The test mesh (red) is compared with a reference mesh (black) with the 

surface separation algorithm.  Blue lines represent shortest distances between sampling 

points on the reference mesh and the test mesh surface.  (Bottom) Deviations are 

expressed in terms of altitudinal and azimuthal angles. 

 

) is compared with a reference mesh (black) with the 

represent shortest distances between sampling 

points on the reference mesh and the test mesh surface.  (Bottom) Deviations are 
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 In our study, for each sphere volume, motion extent, and SBR, the surface 

separation algorithm was iterated to compare IGTVCT and IGTVPET_n%, a series of meshes 

created by different thresholds of ACmax.  For each iteration, the deviations between the 

surfaces were squared and summed to determine which threshold n% produced the 

minimal sum of squared differences between IGTVCT and IGTVPET_n%.  The resulting threshold 

n% was the “optimal” threshold for that sphere volume, motion, and SBR.  The algorithm 

was repeated for each of 3 image sets per experimental condition and the average optimal 

threshold was used for regression. 

 Multiple regression was utilized to determine a model f(x,y,z) that best described 

the relationship between volume, motion, and SBR (3 independent variables) and optimal 

threshold (1 dependent variable).  This model was termed the “volume/motion/SBR” 

model.  We first attempted to fit optimal threshold values normalized to ACmax, but quickly 

realized that ACmax was substantially degraded by partial-volume averaging (related to 

object size) and motion blur (related to motion extent).  The normalization factor of the 

dependent variable, therefore, was a function of two independent variables we were fitting 

against.  In order to avoid unnecessary complication in the regression procedure, we 

normalized the threshold AC values to a background measurement.  The mean AC in a 

spherical ROI at the center of the phantom was used for the background measurement 

(���P""""""").   

 Partial volume averaging and motion blur likewise affected the measurement of SBR.  

We therefore used the SBR measurement for the largest sphere (where the effect of partial 

volume averaging was minimal) without motion for regression.  SBR was defined as the 

ratio of ��QR%"""""""" and the previously-described ���P""""""" as shown in equation ( 8 ).  

 

�
S � ��TL%"""""""""���U""""""""   ( 8 ) 

 

SBR was measured 3 times, once on each image set per experimental condition.  The 

average of the 3 SBR measurements was used for regression.  Sphere volume was measured 
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on the treatment planning system using the segmented ROIs from the 0 mm motion 

condition.  Nominal motion values were used in the regression. 

 We also wanted to examine the relative influence of volume, motion, and SBR on 

optimal threshold.  For this purpose, typical regression coefficients are unreliable; they have 

different units and different scales from each other and therefore cannot be compared.  We 

can, however, transform the variables such that the mean of each variable is 0 and the 

standard deviation is 1 and re-run the regression.  The resulting regression coefficients, 

often called standardized regression coefficients, allow us to infer relative importance of 

each variable (Kim et al., 1981).  The transformation is shown in equation ( 9 ), where x is 

the unstandardized variable, !V and sx are the mean and standard deviation of the 

unstandardized variable respectively, and xstd is the standardized variable.  The magnitude 

of the standardized coefficients, denoted by βn, represents the relative importance of each 

term in the regression function. 

 

!0W' � �%+%V�0X   ( 9 ) 

 

4.3.3 Application of the Regression Function to Patients 

4.3.3.1 Imaging 

 Lung cancer patients who underwent 4D-CT and PET/CT simulation in the same 

imaging session were retrospectively included in the study under an IRB-approved protocol 

if the patient demonstrated one or more solid lesions with relatively homogeneous uptake 

on PET without invasion into the chest wall or mediastinal regions.  PET/CT and 4D-CT 

simulations were performed on an 8-slice PET/CT scanner (General Electric Discovery ST, 

General Electric Medical System, Waukesha, WI).  The 4D-CT protocol used 120 kV, 100 mA, 

0.5 s gantry rotation, 0.25 s cine interval, and cine duration equal to 1 average breathing 

cycle plus 1 s.  For PET imaging, patients were injected with 477 to 740 MBq and PET was 

acquired in 2-D mode for 3 minutes per bed position from the base of skull to mid-thigh.  
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Attenuation correction was performed with respiratory-averaged CT (Chi et al., 2007; Pan et 

al., 2005).  Images were reconstructed with OSEM iterative reconstruction utilizing 30 

subsets and 2 iterations, with a 3.91 mm FWHM loop filter, 5.45 mm FWHM post filter, and 

z-axis filtering applied.  Both PET and CT imaging used a 50 cm field-of-view with a 128 × 

128 and 512 × 512 image matrix respectively, producing pixel sizes of 3.9 mm and 

approximately 1 mm respectively.  PET slice thickness was 3.27 mm and CT slice thickness 

was 2.5 mm.  PET and 4D-CT images were transferred to treatment planning system for 

contouring. 

4.3.3.2 Target Delineation 

 To form the “reference” IGTVCT, the motion envelope was contoured on the MIPcine.  

A seed-based 3-D region growing auto-segmentation algorithm was used to minimize 

observer variation and bias.  As with the phantom scans used in model development, a 

threshold of -425 HU was used to limit the region growing algorithm (Goo et al., 2005; 

Kemerink et al., 1998).  A radiation oncologist reviewed and adjusted the IGTVCT contours if 

necessary. 

 

Table 4.1:  Tumor delineation methods on PET 

Study Delineation Technique ROI Notation 

Caldwell et al. (Caldwell et al., 2003) 15% of ACmax IGTV15% 

Okubo et al. (Okubo et al., 2008) 35% of ACmax IGTV35% 

Erdi et al. (Erdi et al., 2002) 42% of ACmax IGTV42% 

Paulino et al. (Paulino et al., 2004) SUV = 2.5 g/mL IGTV2.5 

Nestle et al. (Nestle et al., 2005) 15% of ��YR%""""""""+ BG IGTV15%+BG 

Black et al. (Black et al., 2004) 0.307 × SUVmean + 0.588 IGTVSUVmean 

Riegel et al. (Riegel et al., 2010) Volume/motion/SBR model  IGTVV,M,SBR 

ROI = region of interest 

ACmax = maximum activity concentration 

ACmean = mean activity concentration 

SUV = standardized uptake value 

BG = background 
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 IGTVs were delineated on PET data sets based on 6 segmentation methods from the 

literature (collectively referred to as IGTVPET).  These methods are summarized in Table 4.1.  

IGTV15%, IGTV35%, IGTV42%, and IGTV2.5 were all single thresholds of ACmax or SUV (Caldwell et 

al., 2003; Erdi et al., 2002; Okubo et al., 2008; Paulino et al., 2004).  IGTV15%+BG was more 

complex, as it was formed by calculating 15% of ��YR%"""""""", adding the result to a background 

measurement, and setting the threshold at this value.  As described in Nestle et al., ���P""""""" 

was measured in a small ROI defined in the adjacent anatomical structure with the highest 

background activity (Nestle et al., 2005).  Though IGTVSUVmean only requires a measurement 

of SUVmean as input for the linear function, the starting threshold required to measure 

SUVmean is not specified.  The authors address this circular problem by starting at an 

arbitrary threshold, taking the mean, (we used �HIYR%"""""""""") and iterating through the 

regression function several times, each time producing a new SUVmean for input into the 

next iteration (Black et al., 2004).  As per the author’s suggestion, we iterated 5 times.  All 

IGTVs were formed using seed-based region-growing automatic segmentation in the 

treatment planning system.   

 IGTV was contoured using our motion-inclusive model by measuring the tumor 

volume, motion, and SBR and plugging them into the model.  Tumor volume and motion 

were determined by auto-segmenting the end-inspiration and end-expiration phases of the 

4D-CT.  Volume was measured at end-expiration, and motion was measured as the distance 

between the end-inspiration and end-expiration centroids.  SBR was calculated by equation 

( 8 ) where ���P""""""" was measured by segmenting the ipsilateral lung, removing any areas of 

high uptake (tumors, inflammation, imperfect segmentation near the mediastinum, etc.), 

and measuring mean AC in the remaining lung voxels (van Baardwijk et al., 2007).   IGTV 

produced using the volume/motion/SBR model (IGTVV,M,SBR) was created by seed-based 

region-growing auto-segmentation of the PET images.  Prior to threshold calculation, 

however, a recovery coefficient (described in the next section) was applied to the SBR. 
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4.3.3.3 Recovery Coefficient 

 The measured SBR value was degraded by partial volume averaging (Soret et al., 

2007) and tumor motion (Boucher et al., 2004).  Recall that true SBR was used for multiple 

regression to develop our model (section 4.3.2.3).  We therefore corrected for size and 

motion degradation by multiplying the degraded SBR by a recovery coefficient (RC).  The RC 

was developed from the phantom data.  ��QR%"""""""" for each sphere size and motion condition 

was compared with the largest stationary sphere, such that the RC for each size and motion 

condition was defined as: 

 

S��!, Z� � ��QR%""""""""�26.5,0���QR%""""""""�!, Z�  ( 10 ) 

 

where x is volume in cubic centimeters and y is extent of motion in millimeters.  RCs were 

averaged over the 3 phantom trials.  The largest nominal sphere volume is 26.5 cm3 and “0” 

represents the stationary scan condition.  Multiple regression was used to fit an RC function 

of volume and motion.  Recovered SBR is simply the product of the degraded SBR and the 

RC for the size and motion of the object of interest.    

4.3.3.4 Analysis 

 The AC thresholds that best matched IGTVCT were determined for each patient in the 

same manner as the phantoms.  ROIs were segmented on PET images at a range of ACn% at 

1% intervals of ACmax.  Each threshold volume was compared with IGTVCT using the surface 

separation tool.  The threshold that produced the minimal sum of squares was considered 

the “best fit” threshold.  This provided an independent standard to compare against 

performance of the segmentation techniques.  AC thresholds produced by each of the 7 

segmentation methods were correlated with the measured “best fit” AC threshold.   

 Each IGTVPET was geometrically compared with IGTVCT two ways:  First, by measuring 

the magnitude of each IGTVPET and IGTVCT volume, and second, by measuring the surface 
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separation between each IGTVPET and IGTVCT using the algorithm described in section 

4.3.2.3.  Using this tool, we calculated the mean surface separation between IGTVCT and 

each IGTVPET (IGTVPET|IGTVCT).  We were, essentially, comparing radius (via surface 

separation) and volume of the IGTVs, similar to the analysis of Nestle et al. in which the 

authors calculated the virtual radius of the tumor from the measured volume assuming a 

spherical shape (Nestle et al., 2005).  IGTVPET volume magnitudes were compared with 

IGTVCT for statistically significant differences by log-transforming the data to ensure 

normality (Limpert et al., 2001) and performing a paired t-test (α=0.05).  Surface separation 

for each IGTVPET|IGTVCT pair was compared with IGTVV,M,SBR|IGTVCT using a paired t-test 

(α=0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4.4:  Transverse, sagittal, and coronal PET images of the 37 mm inner diameter 

sphere moving at 20 mm sinusoidal motion amplitude.  The green contour 

IGTVCT derived from cine CT.  Purple contours represent IGTV

concentration thresholds.  The optimal threshold (the threshold 

ROI most similar to the green ROI) was determined with the surface 

Reproduced with permission from Riegel 
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:  Transverse, sagittal, and coronal PET images of the 37 mm inner diameter 

sphere moving at 20 mm sinusoidal motion amplitude.  The green contour 

derived from cine CT.  Purple contours represent IGTVPET_n% at a range of activity 

concentration thresholds.  The optimal threshold (the threshold that created the purple 

ROI most similar to the green ROI) was determined with the surface separation algorithm.

Reproduced with permission from Riegel et al. (Riegel et al., 2010) 

 

:  Transverse, sagittal, and coronal PET images of the 37 mm inner diameter 

sphere moving at 20 mm sinusoidal motion amplitude.  The green contour represents 

at a range of activity 

created the purple 

separation algorithm.  
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4.4 Results 

4.4.1 Volume/Motion/SBR Segmentation Model 

 PET images for each of the 252 combinations of volume, motion, and SBR were 

segmented as described in section 4.3.2.2.  An example of these contours is shown in Figure 

4.4.   Approximately 20 percentage thresholds were contoured for each 

volume/motion/SBR combination, resulting in approximately 5000 ROIs to analyze with the 

surface separation algorithm.  Optimal thresholds were unable to be determined for 5 

volume/motion combinations at SBR of 5:1 (1.2 cm3 at 30 mm motion, 0.5 cm3 at 15-30 mm 

motion).  The substantial motion blurring caused the spheres to be indiscernible from 

background.  Nominal sphere volume and SBR versus measured values used for regression 

are shown in Table 4.2.  Note that ROIs segmented with a -425 HU threshold are within ±1 

mm (approximately 1 CT pixel) of the sphere’s true inner radius. 

 

 

Table 4.2:  Nominal and actual volumes and SBRs 

Volume (cm
3
) SBR (unitless) 

Nominal Measured Nominal Measured 

26.5 28.6 5 4.33 ± 0.02 

11.5 12.7 10 8.12 ± 0.25 

5.6 6.4 15 14.88 ± 0.22 

2.6 3.1 20 19.91 ± 0.73 

1.2 1.4 30 28.88 ± 1.40 

0.5 0.7 50 52.15 ± 1.95 

SBR = source-to-background, measured in the largest stationary 

sphere 

 



 

 

 

 

 

 

Figure 4.5:  Optimal thresholds (normalized to background) versus motion, 

background (SBR), and sphere volume.  Volume is denoted by the different colors and 

symbols shown in the legend (which lists nominal sphere diameters).  Error bars represent 

1 standard deviation.  Reproduced with permission from Riegel 
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:  Optimal thresholds (normalized to background) versus motion, 

background (SBR), and sphere volume.  Volume is denoted by the different colors and 

symbols shown in the legend (which lists nominal sphere diameters).  Error bars represent 

Reproduced with permission from Riegel et al. (Riegel et al., 2010)

 

:  Optimal thresholds (normalized to background) versus motion, source-to-

background (SBR), and sphere volume.  Volume is denoted by the different colors and 

symbols shown in the legend (which lists nominal sphere diameters).  Error bars represent 

(Riegel et al., 2010) 
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Figure 4.5 is a 3-D scatter plot of the optimal thresholds for each of the 252 

combinations of volume, motion, and SBR.  Since our data is four-dimensional and is 

therefore difficult to visualize, motion, SBR, and optimal threshold were placed on separate 

axes, with sphere inner diameter represented by different symbols and color for each value.  

There are clear patterns to the data and isolating the patterns by keeping one variable 

constant is helpful to suggest terms for the regression model.  The relationship of optimal 

threshold with SBR, for example, is close to linear (Figure 4.6).  Optimal threshold versus 

motion and volume, however, are more complicated (Figure 4.7 and Figure 4.8).  After 

trying several combinations of functions that were physically appropriate to the phenomena 

(quadratic functions, for example, were not considered because there is no reason to 

expect maxima or minima, and therefore do not make sense physically), we settled on the 

model shown in equation ( 11 ).  Threshold normalized to background is denoted by w, x is 

volume in cubic centimeters, y is motion in millimeters, z is SBR (unitless), and Bn are the 

regression coefficients. 

 

 

Figure 4.6:  Optimal threshold versus source-to-background for stationary spheres.  Each 

line represents a different sphere diameter as denoted in the legend.  Note the linear 

nature of the relationship.  Error bars are 1 standard deviation (3 measurements).  

Reproduced with permission from Riegel et al. (Riegel et al., 2010) 
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Figure 4.7:  Optimal threshold versus motion for source-to-background = 19.9.  Each line 

represents a sphere diameter as shown in the legend.  Error bars are 1 standard deviation 

(3 measurements).  Reproduced with permission from Riegel et al. (Riegel et al., 2010) 

 

 

Figure 4.8:  Optimal threshold versus volume for source-to-background = 19.9.  Each line 

represents motion extent (0 mm to 30 mm).  Error bars are 1 standard deviation (3 

measurements).  Reproduced with permission from Riegel et al. (Riegel et al., 2010) 
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ln�a� � 
-!- bN ? 

Z- bN ? 
b ln�c� ? 
d e!- bN ln�c�f ?

g eZ- bN ln�c�f ? 
h�xZ�- bN ? 
Y  

( 11 ) 

 

There are a few noteworthy aspects of this equation.  First, because the residuals 

increased with increasing SBR, we took the natural logarithm of the threshold values w.  We 

therefore took the natural log of SBR in the model to maintain the previously linear 

relationship with optimal threshold.   For volume, the choice of cube root is not entirely 

surprising because radius is proportional to the cube root of volume.  For motion, we 

originally tried a logarithmic function.  We measured optimal threshold, however, at a 

motion extent of 0 mm and log is undefined at zero.  A cube root, therefore, was chosen 

because it behaves similarly to natural log but is defined at zero.  The second three terms in 

the equation are interaction terms and were included in the model because we found their 

inclusion created a substantially better fit to the data.   

 ln�a� �
0.0634!- bN ? 0.12Z- bN ? 0.7327 ln�c� ? 0.0597 e!- bN ln�c�f n
0.12 eZ- bN ln�c�f n 0.025�xZ�- bN n 0.9504  

( 12 ) 

 

 The volume/motion/SBR model with regression-determined coefficients is shown in 

equation ( 12 ).  This function produced an R2 value of 0.96 and an adjusted R2 value (which 

accounted for increasing R2 due to additional terms in the fitting function) of 0.96.  Several 

surfaces of the regression function (because the function is a family of surfaces) are shown 

in Figure 4.9.   

 The standardized regression coefficients, often denoted as βn, are listed in Table 4.3.  

Of the 3 independent variables, SBR was the most influential (β3 = 1.0606), followed by 

motion (β2 = 0.2114), then volume (β1 = 0.0841).  Both interaction terms with SBR, however, 

were more influential than motion and volume alone. 



 

Figure 4.9:  Surfaces of regressi

surfaces displayed is calculated for 

Reproduced with permission from Riegel 

 

 

Table 4.3:   Regression 

Variable

Volume

Motion

Volume • SBR

Motion • SBR

Volume • 

Constant

Bn = unstandardized regression coefficients

βn = standardized regression coefficients

“•” denotes interaction term
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:  Surfaces of regression function defined in equation ( 12 ).  Each of the 4 

splayed is calculated for spheres of inner diameter 10, 17, 28, and 37 mm.

Reproduced with permission from Riegel et al. (Riegel et al., 2010) 

:   Regression coefficients for model in equation ( 11

Variable Bn βn 

Volume 0.0634 0.0841 

Motion 0.12 0.21 

SBR 0.7327 1.0606 

Volume • SBR 0.0597 0.275 

Motion • SBR -0.12 -0.73 

Volume • Motion -0.025 -0.110 

Constant -0.9504 -0.0321 

= unstandardized regression coefficients 

= standardized regression coefficients 

“•” denotes interaction term 

 

.  Each of the 4 

spheres of inner diameter 10, 17, 28, and 37 mm.  

11 ). 
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4.4.2 Application to Patient Studies 

 The RC function developed from phantom data (R2=0.95) is shown in equation ( 13 ).  

Again, x is volume in cubic centimeters and y is motion extent in millimeters.  Volume and 

motion measurements were plugged into equation ( 13 ), and the degraded SBR and RC 

were multiplied to obtain the recovered SBR. 

 S��!, Z� � 0.199!+- ? 0.014Z ? 0.073!+-Z ? 0.8839  ( 13 ) 

 

 Twenty-four tumors (23 patients) scanned from May 2004 to February 2009 fit our 

criteria, were adequately registered, and were included in the analysis.  IGTV15% could not 

be segmented for 6 tumors because ��-g% fell below background AC.  Similarly, IGTV2.5 

could not be segmented for 2 tumors for the same reason.  As such, t-tests were performed 

with paired values, limiting the sample to 18 and 22 tumors respectively. 

 Volume, motion, and SBR measurements for the 24 tumors as well as threshold 

values calculated from the volume/motion/SBR model are shown in Table 4.4.  Linear 

correlations (y = mx+b) of the measured “best fit” threshold value and the threshold 

predicted by each segmentation technique for every patient are shown in Figure 4.10.  The 

correlation of IGTVV,M,SBR thresholds with measured values has the slope closest to 1 (m = 

0.8991) implying good correlation of predicted with best-fit values, the y-intercept closest 

to 0 (b = 1.3963) implying little systematic over- or underestimation, and  the highest R2 

value (R2 = 0.8577). 
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Table 4.4:  Volume, motion, and source-to-background characteristics of 24 lung tumors, 

with model-produced threshold  

Tumor 
Volume 

(cm
3
) 

Motion 

(mm) 
Corrected SBR Threshold 

1 21.1 10.8 30.07 4.3685 

2 15.3 7.8 26.37 4.1071 

3 1.1 10.3 7.21 1.4395 

4 0.8 6.2 48.19 4.3495 

5 1.0 6.6 19.63 2.6316 

6 28.0 1.5 13.47 3.6915 

7 2.5 13.6 18.38 2.3723 

8 1.5 2.4 25.08 3.6546 

9 0.7 4.6 20.17 2.7718 

10 0.6 2.2 13.05 2.3129 

11 13.6 1.0 39.76 7.6571 

12 1.1 8.0 5.49 1.2723 

13 10.3 8.6 25.90 3.7288 

14 0.4 8.8 13.41 1.9457 

15 3.6 4.0 7.87 1.7821 

16 2.2 15.0 8.57 1.5572 

17 4.8 3.1 9.19 2.0621 

18 2.7 2.7 25.17 3.8271 

19 0.7 1.5 20.59 3.2432 

20 1.6 6.3 29.31 3.4625 

21 1.5 2.7 14.60 2.5703 

22 5.2 0.6 17.73 3.7687 

23 0.1 1.0 11.52 2.1201 

24 0.5 5.1 23.55 2.9347 

SBR = source-to-background ratio 

Threshold is normalized to background and is therefore unitless. 
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Figure 4.10:  Correlation between predicted 

threshold values and measured optimal 

threshold values for each segmentation 

method.  Best-fit lines, their equations, and 

R
2
 values of the fit are shown in each plot.
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 Figure 4.11 shows IGTVs contoured for each delineation method for 

typical case.  IGTVCT is denoted by the thick red line.  For this patient, the volume magnitude 

of IGTVV,M,SBR most accurately matched 

separation was less than 2 mm for 

 

Figure 4.11:  (A) Transverse, (B) sagittal, and (C) coronal 

internal gross tumor volume (

IGTVCT, shown in red, was delineated 

using methods described in 

(IGTVV,M,SBR) is shown in green.
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GTVs contoured for each delineation method for 

is denoted by the thick red line.  For this patient, the volume magnitude 

most accurately matched IGTVCT (-1.1%) followed by IGTV15% (

separation was less than 2 mm for IGTV15%, IGTV2.5, IGTV15%+BG, IGTVSUVmean, and 

:  (A) Transverse, (B) sagittal, and (C) coronal PET/CT images of tumor 13 with 

gross tumor volume (IGTV) contours.  PET is displayed with a “thermal” colormap.  

, shown in red, was delineated on MIPcine.  Other IGTVs were delineated on PET 

using methods described in Table 4.1.  The contour from the volume/motion/SBR 

) is shown in green. 

GTVs contoured for each delineation method for tumor 13, a 

is denoted by the thick red line.  For this patient, the volume magnitude 

-10.1%).  Surface 

, and IGTVV,M,SBR.   

 

PET/CT images of tumor 13 with 

PET is displayed with a “thermal” colormap.  

GTVs were delineated on PET 

.  The contour from the volume/motion/SBR model 



 

 Figure 4.12 provides another patient example, tumor 1.  For this patient, the volume 

magnitude of IGTVV,M,SBR most accurately matched IGTV

(-12.2%).  Surface separation was again less than 2 mm for IGTV

IGTVSUVmean, and IGTVV,M,SBR.  IGTV

 

Figure 4.12:  (A) Transverse, (B) sagittal

internal gross tumor volume (

IGTVCT, shown in red, was delineated on 

using methods described in 

(IGTVV,M,SBR) is shown in green.

 

 Volume and surface separation analyses for all patients are summarized in 

and illustrated in Figure 4.13

Of the 7 segmentation methods, 6 underestimated mean volume compared to the motion

inclusive IGTVCT.  IGTV15%, IGTV

IGTVCT.  IGTV15%+BG, IGTVSUVmean

from IGTVCT.  IGTVV,M,SBR produced the smallest difference with 

Figure 4.13 shows IGTV2.5 slightly closer to 

87 

provides another patient example, tumor 1.  For this patient, the volume 

most accurately matched IGTVCT (-11.0%) followed by IGTV

tion was again less than 2 mm for IGTV15%, IGTV2.5, IGTV

.  IGTVV,M,SBR had the lowest mean surface separation at 1 mm.

:  (A) Transverse, (B) sagittal, and (C) coronal PET/CT images of tumor 1 with 

gross tumor volume (IGTV) contours.  PET is displayed with a “thermal” colormap.  

, shown in red, was delineated on MIPcine.  Other IGTVs were delineated on PET 

using methods described in Table 4.1.  The contour from the volume/motion/SBR 

) is shown in green. 

Volume and surface separation analyses for all patients are summarized in 

13 (volume analysis) and Figure 4.14 (surface separation analysis)

on methods, 6 underestimated mean volume compared to the motion

GTV35%, IGTV42%, and IGTV2.5 were significantly smaller than 

SUVmean, and IGTVV,M,SBR volumes were not significantly different 

produced the smallest difference with IGTVCT (-5.15%). 

slightly closer to IGTVCT than IGTV15%+BG, which was not 

provides another patient example, tumor 1.  For this patient, the volume 

11.0%) followed by IGTV2.5         

, IGTV15%+BG, 

had the lowest mean surface separation at 1 mm. 

 

PET/CT images of tumor 1 with 

PET is displayed with a “thermal” colormap.  

GTVs were delineated on PET 

.  The contour from the volume/motion/SBR model 

Volume and surface separation analyses for all patients are summarized in Table 4.5 

(surface separation analysis).  

on methods, 6 underestimated mean volume compared to the motion-

were significantly smaller than 

volumes were not significantly different 

5.15%).  Note that 

which was not 
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significantly different than IGTVCT.  Though this appears contradictory, IGTVCT displayed on 

the graph is the average of all patients whereas the statistical comparison with IGTV2.5 used 

only the tumors that could be contoured (in this case, N=22).  The same is true for IGTV15% 

(N=18).   

 Mean surface separation (Figure 4.14) produced results consistent with the volume 

comparison.  IGTV15%|IGTVCT, IGTV35%|IGTVCT, IGTV42%|IGTVCT, and IGTV2.5|IGTVCT produced 

surface separations significantly larger than IGTVV,M,SBR|IGTVCT.  IGTV15%+BG|IGTVCT and 

IGTVSUVmean|IGTVCT were not significantly different from IGTVV,M,SBR|IGTVCT. 

 

 

Table 4.5:  Comparison of IGTVPET with IGTVCT for different segmentation methods 

Notation 
Volume ± 

SEM (cm
3
) 

p 

(IGTVPET-

IGTVCT) ± 

SEM 

Percent 

Difference 

(%) 

Mean Surface 

Separation 

(mm) 

p 

IGTV15%* 10.93±2.71 0.01 +1.05±0.89 +10.7% 1.9±0.7 0.02 

IGTV35% 4.15±0.99 <0.01 -4.17±1.24 -50.1% 2.4±0.8 <0.01 

IGTV42% 3.12±3.93 <0.01 -5.21±1.38 -62.5% 3.0±1.1 <0.01 

IGTV2.5† 6.93±2.14 <0.01 -1.99±0.73 -22.3% 2.4±1.7 0.04 

IGTV15%+BG 6.36±1.67 0.14 -1.96±0.60 -23.6% 1.7±0.5 0.44 

IGTVSUVmean 7.02±1.67 0.33 -1.30±0.65 -15.7% 1.6±0.5 0.98 

IGTVV,M,SBR 7.89±1.76 0.39 -0.43±0.55 -5.15% 1.6±0.5 --- 

IGTVCT 8.32±2.16 --- --- --- --- --- 

Statistically significant differences are in green print.  Non-significance p-values are in red. 

SEM = standard error of the mean 

*N = 18.  Statistics were calculated using paired values. 

†N = 22.  Statistics were calculated using paired values. 
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Figure 4.13:  Volumes (in cubic centimeters) of IGTVPET and IGTVCT.  Error bars represent 

standard error of the mean (N = 24 tumors for IGTV35%, IGTV42%, IGTV15%+BG, IGTVSUVmean, 

IGTVV,M,SBR, N = 22 for IGTV2.5, N = 18 for IGTV15%).  p-values are shown with each column 

(green = significant, red = non-significant). 

 

 
Figure 4.14:  Surface separation (in millimeters) between IGTVPET and IGTVCT.  Error bars 

represent standard error of the mean (N = 24 tumors for IGTV35%, IGTV42%, IGTV15%+BG, 

IGTVSUVmean, IGTVV,M,SBR, N = 22 for IGTV2.5, N = 18 for IGTV15%).  p-values are shown with 

each column (green = significant, red = non-significant). 
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4.5  Discussion 

 We successfully developed an expression for optimal AC threshold as a function of 

object volume, motion, and SBR.  The volume/motion/SBR model, described in equation       

( 12 ), fit the data well (adjusted R2 = 0.96).  By determining standardized regression 

coefficients, we found that SBR was the most influential variable in the model.  In applying 

this model to 24 lung tumors, we found the volume/motion/SBR model generated an 

IGTVPET that accurately matched IGTVCT in volume magnitude (mean of 5.15% 

underestimation) and surface separation (mean of 1.6 mm).  The volume/motion/SBR 

model produced the smallest volume differences and tied for the smallest surface 

separation compared with 6 other segmentation techniques.   

 This investigation is the most comprehensive examination of threshold-based 

segmentation of PET imaging of moving targets to date.  It is the first to investigate the 

relationship between motion, size, and SBR for large ranges of SBR (5:1 to 50:1) and motion 

(0-30 mm), and the first to use the surface separation algorithm to determine optimal 

threshold volume.  Several studies have explored elements of the current work, but not to 

the same depth.  Yaremko et al. determined optimal thresholds for moving and static 

spheres in air, sizes ranging from 0.56 mL to 57.37 mL with 25 mm motion amplitude 

(Yaremko et al., 2005).  Caldwell et al. investigated feasibility of using PET to delineate ITV 

by assessing PET images of 3 moving spheres (inner diameters = 1.3, 2.9, 6.6 cm) at 3 

motion amplitudes (7, 16, 27 mm).  The authors did not, however, determine optimal 

thresholds for each experimental condition but qualitatively found 15% of ACmax produced 

an adequate ITV (Caldwell et al., 2003).  Black et al. examined the influence of size and, 

indirectly, SBR by developing a linear function of mean SUV, but motion was not included 

(Black et al., 2004).   

 There are several recent studies of moving phantoms that are similar to the model-

development portion of this investigation.  Park et al. examine the effects of target size, 

motion, and background activity on optimal thresholds in a phantom (Park et al., 2008).  

The authors use the NEMA IEC phantom (sphere diameters identical to the current work), 

sinusoidal motion with amplitudes of 0, 10, 20 mm (adjusted with an exponential shaping 
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parameter), and SBRs of 4.0, 8.3, and infinite (no background) to determine optimal 

thresholds for these varying conditions.  After re-normalizing the threshold values in Figure 

4.5 to ACmax for comparison, we found that the optimal thresholds in our study were 

generally lower than those determined by Park et al. 

 One significant difference between the two studies was the purpose of determining 

optimal thresholds.  Park et al. intended to show the difficulty of obtaining the “true target 

volume” without gated (4-D) PET, which required comparing PET volumes to the known 

sphere volume, i.e. the stationary sphere.  This explains the large difference in thresholds at 

2 cm motion (90% in Park et al. vs. 18% in the current study for the smallest sphere with 

SBR = 8) (Park et al., 2008).  The goal of this chapter was to match PET threshold volumes 

with motion-inclusive IGTV often used in 4D-CT-based simulation, not the volume of the 

spheres themselves.  Our values, however, were lower for the stationary spheres as well, 

especially for the smallest sphere (75% in Park et al. vs. 40% in the current study with SBR = 

8).  This difference can most likely be explained by the fact that Park et al. compared 

volume magnitudes and we compared surfaces.  Volume was estimated by summing the 

number of voxels above the threshold and multiplying by voxel volume, which, for Park et 

al., was 4.7 × 4.7 × 3.27 mm.  The width of one voxel was almost one half the inner diameter 

of the smallest sphere, which causes partial volume averaging and inaccurate calculation of 

the volume.  The surface separation algorithm essentially measures between meshes 

interpolated from the voxel-based contours.  Though not technically higher resolution, the 

interpolated meshes give us a finer estimation of the best-fit threshold volume.   

 Brambilla et al. investigated target volume delineation in the NEMA IEC thorax 

phantom as a function of several variables, including SBR, sphere diameter, injected activity, 

and emission scan duration (motion was not examined) (Brambilla et al., 2008).  Using 

multiple linear regression and standardized regression coefficients, the authors found that 

for sphere diameters less than 10 mm (additional microspheres of inner diameter 4.1, 4.7, 

6.5, and 8.1 mm were added to the phantom for analysis), sphere diameter and SBR were 

significant predictors of optimal target threshold (as a percentage of ACmax).  SBR 

dependence, however, could be neglected with little effect on optimal threshold to a first 
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approximation.  For sphere diameters greater than 10 mm, again sphere diameter and SBR 

were significant predictors of optimal target threshold, but the opposite relationship 

between the two was observed:  Sphere diameter was less significant and, to a first 

approximation, could be neglected.  Injected activity and emission scan duration were not 

included in the current work because Brambilla et al. found both to be non-significant 

predictors of optimal threshold.   

 The multiple regression techniques used in the current study are similar to those 

used in Brambilla et al.  In selecting their regression model, the authors determined from 

previous studies that optimal threshold normalized to ACmax is related to 1/SBR (Brambilla 

et al., 2008).  In the present study, we found a nearly linear relationship between SBR and 

optimal threshold normalized to background.  These findings are consistent:  An inverse 

relationship between SBR and threshold normalized to “signal” is equivalent to a linear 

relationship between SBR and threshold normalized to “background.”   Brambilla et al. also 

used standardized regression coefficients in their study and found that SBR is the most 

influential variable for sphere diameters greater than 10 mm, which is consistent with the 

findings of the current study. 

 Okubo et al. used the NEMA IEC body phantom on a motion platform to examine 

optimal thresholds of moving spheres.  In a stationary phantom at SBRs of 10:1, 15:1, and 

20:1, the authors found 35% of ACmax was a reasonable threshold (Okubo et al., 2008) after 

excluding the smaller spheres (inner diameter 10-17 mm) due to partial volume averaging.  

The 35% of ACmax threshold was applied to PET images of moving spheres at an SBR of 20:1.  

Motion was characterized as sinusoidal with a 4-sec period to 10, 20, and 30 mm 

amplitudes (peak-to-peak).  The authors found that a 35% threshold overestimated actual 

sphere size in the sagittal plane and underestimated the actual sphere size in the axial 

plane.  The extent in the sagittal plane, however, was smaller than the ideal IGTV.  For 

comparison, we segmented the 28 mm inner diameter sphere, at 30 mm motion extent, 

and SBR = 19.9, at 35% of ACmax and compared with the stationary sphere (Figure 4.15).  

Axial extent was underestimated and sagittal extent was overestimated compared with the 

stationary sphere, consistent with the findings of Okubo et al.  The motion envelope 
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(IGTVCT), however, was underestimated in both axial and sagittal directions, suggesting that 

35% of ACmax is too high a threshold to capture the entire extent of motion. 

 

 

Figure 4.15:  Reference volume for stationary sphere (black mesh, inner diameter = 28 

mm) compared with 35% maximum activity concentration of same volume sphere at 30 

mm motion extent and source-to-background = 19.9 (red mesh).  Note that the 35% 

threshold underestimates the axial and overestimates the sagittal extent of the sphere, 

but underestimates the full motion envelope of the tumor.  Reproduced with permission 

from Riegel et al. (Riegel et al., 2010) 

 

 Several contouring methods, including those of Okubo et al. and Caldwell et al. 

discussed above, were applied to 24 lung tumors along with our volume/motion/SBR 

model.  Our patient validation study is similar to a study by Nestle et al. which focused on a 

comparison of PET segmentation techniques for NSCLC (Nestle et al., 2005) but there are 

several key differences.  First, in the previous study, PET was acquired using a standalone 
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PET scanner with 137Cs transmission scanning for attenuation correction.  The current study 

utilizes an integrated PET/CT scanner with RACT attenuation correction.  Second, the 

previous study contained 5 tumors able to be fully delineated on CT, whereas 24 tumors in 

our study were delineated on CT.  Third, free-breathing CT was used to delineate the GTV in 

the previous study (which required additional coregistration because the PET and CT were 

not hardware-fused) and a margin was applied to account for breathing motion (1.5 mm 

lateral, 2 mm anterior-posterior, 3 mm superior-inferior).  We explicitly determined the 

“motion envelope” of the tumor (IGTV) using 4D-CT.   

 The PET segmentation methods used in this study can be roughly split into two 

groups:  The “first order” methods, which utilize a single threshold of activity concentration 

or SUV to form IGTV, and the “second order” methods, which incorporate additional 

variables into threshold determination.  IGTV15%, IGTV35%, IGTV42%, and IGTV2.5 fall into the 

first category, while IGTV15%+BG, IGTVSUVmean, and IGTVV,M,SBR fall into the second.  Our 

analysis suggests there are advantages to using more complex methods.  IGTVV,M,SBR, 

IGTV15%+BG, and IGTVSUVmean produced smaller surface separations than all first order 

methods and volume magnitude differences smaller than all but 1 first order method 

(IGTV15%) when compared with IGTVCT.  Though IGTV15% performed relatively well in the 

volumetric analysis (the percent difference with CT was second smallest), 6 tumors (25%) 

were unable to be contoured because 15% of ACmax was below the background activity 

concentration in those patients.  The paired t-test with the remaining pairs showed IGTV15% 

being significantly larger than IGTVCT and the inability to contour IGTV15% in high background 

limits the applicability of such a method. 

 Of the second order techniques, IGTVV,M,SBR produced the smallest average volume 

difference with IGTVCT (-5.15%) and tied IGTVSUVmean for the smallest average surface 

separation (1.6 mm).  The differences, however, were not statistically significant.  The 

second order methods had the smallest standard deviations in both volume difference and 

surface separation, suggesting they are more adaptable and more consistently delineate 

tumor over a sample of patients with varying characteristics.  IGTVV,M,SBR demonstrated the 
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best adaptability by producing the lowest standard error of the mean in volume difference 

from CT. 

 The lack of statistical superiority of our segmentation technique (that includes 

motion) over the other second-order methods (that neglect motion) may indicate the 

importance of SBR relative to the other variables in the segmentation procedure in a clinical 

setting.  Recall that we demonstrated SBR was the most influential variable in the model via 

the standardized regression coefficients.  The fact that both IGTV15%+BG and IGTVSUVmean 

explicitly or implicitly account for SBR (the former by simply forming a threshold above a 

background measurement and the latter by using SUVmean, a value normalized to injected 

activity divided by patient weight which is essentially “background” if one assumes the 

patient is uniform) and both perform nearly as well as a method that accounts for size, 

motion, and SBR seems to suggest that considering SBR in segmentation is essential and the 

other variables could be neglected.  Our results, however, indicate that including size and 

motion in the segmentation technique can further increase the accuracy of the PET contour 

when compared with CT, though the improvement was not statistically significant. 

 The current manifestation of the volume/motion/SBR model represents a first 

approximation to modeling real moving tumors and there are several ways the model can 

be improved.   The measurement of SBR, and particularly the measurement of background, 

is evidently critical for segmentation and the various factors that affect SBR should be 

further investigated.  The selection of the background ROI for tumors bordering two tissues 

with different uptake such as lung and chest wall, for example, should be evaluated.  Since 

the model is normalized to background, the selection of background ROI can substantially 

affect the resulting threshold.  The size- and motion-dependent recovery coefficient to 

restore degraded SBR could also be further refined.  Additionally, several assumptions were 

made in the development of the volume/motion/SBR model that should be explored 

further:  First, the model was developed using one-dimensional sinusoidal motion, which is 

obviously not the case for many lung tumors (Boldea et al., 2008; Mageras et al., 2004).  An 

asymmetric breathing pattern may be more appropriate (Lujan et al., 1999).  Second, the 

model was developed with spherical objects; tumors with spiculations or substantial 
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asymmetry may not conform to the model.  Third, we assumed that motion during the 4D-

CT exam was essentially the same as motion during the PET exam.  Motion patterns, 

including amplitude, frequency, and baseline position, can change over time (Nehmeh et al., 

2004) leading to mismatching motion envelopes or misregistration.  Fourth, the model was 

developed assuming homogeneous uptake, which is a reasonable assumption for smaller 

tumors, but not for larger tumors where heterogeneity, hypoxia, or necrosis often occur.  

The impact of AC heterogeneity on the volume/motion/SBR model should be evaluated. 

 Nevertheless, the volume/motion/SBR model has produced promising results and 

could be fine-tuned to produce more accurate contours.  Though the model itself is 

somewhat complex, application is relatively simple.  Only 4 measurements are required:  

Tumor volume, motion extent, ��QR%"""""""" of the tumor, and ���P""""""".  First order techniques may 

be simpler, but the findings of Biehl et al. suggest that a single threshold is inappropriate for 

target delineation (Biehl et al., 2006) and, given the results of our validation, we must 

concur.  Nestle et al. found that 40% threshold of ACmax underestimates GTVCT with a 

population-based expansion to account for motion (Nestle et al., 2005).  We had similar 

findings for both IGTV42% and IGTV35% when compared with a motion envelope explicitly 

determined on 4D-CT (as illustrated qualitatively in Figure 4.15 for IGTV35% and 

quantitatively in Figure 4.13 and Figure 4.14).  Sura et al. found high local failure rates when 

using PET to visually aid delineation of GTV (Sura et al., 2008), so caution must be exercised 

when using methods which substantially underestimate gross tumor. 

 Segmentation by threshold is a common method of target delineation with PET, but 

gradient methods have been investigated as well.  Drever et al. compared threshold-based 

segmentation with Sobel edge-detection and a watershed technique (Drever et al., 2007).  

Sobel edge-detection operates by finding the maximum gradient values in the image and 

the watershed technique combines edge detection and region-growing (Drever et al., 2007).  

The authors found that both gradient techniques failed to accurately segment stationary 

targets in a phantom and that a threshold-based technique was most successful.  Though 

gradient segmentation is beyond the scope of this work, exploration of gradient-based 

segmentation is important and should be pursued in future studies.  For moving lung 
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tumors, however, we anticipate that a gradient-based approach will be problematic.  

Motion blur substantially decreases the AC gradient in the direction of motion, creating a 

situation where the edge of the tumor produces a high gradient in planes perpendicular to 

motion but a low gradient in planes parallel to motion.  A single gradient threshold may be 

inadequate. 

4.6 Conclusions 

 A segmentation model for moving lung lesions in PET was developed that 

incorporates tumor volume, motion, and SBR into determination of optimal activity 

concentration threshold (volume/motion/SBR model).  The model, calibrated with an 

extensive series of phantom scans at varying size, motion, and SBR, was applied to 24 lung 

tumors to form IGTVs. These IGTVs, as well as IGTVs generated from 6 segmentation 

methods published in the literature, were compared with IGTV defined on cine CT.  The 

volume/motion/SBR model produced IGTVs that correlated well with IGTV defined on cine 

CT.  Segmentation techniques that used a single threshold produced significantly different 

IGTVs than the reference CT.   

 One significant objection to the clinical validation of the volume/motion/SBR model 

with respect to the over-arching purpose of this dissertation is the use of 4D-CT to 

determine motion extent.  Recall that a primary motivation for incorporating PET into 

treatment planning in this work was to avoid using 4D-CT for complicated tumors.  

Measuring motion with 4D-CT defeats this purpose.  We have shown in Chapter 2 , 

however, that substantial motion information can be gleaned from MIPcine and RACTcine 

(image sets processed directly from cine CT), so it is probable that estimates of motion 

extent could be made with cine CT image sets. 

 The final chapter combines elements of Chapter 2 and Chapter 4 to contour more 

complex tumors. 
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Chapter 5  FEASIBILITY OF TARGET DELINEATION OF STAGE III NON-SMALL CELL LUNG 

CANCER WITH CINE PET/CT 

5.1 Introduction 

 We have, thus far, focused on early stage lung cancer. We demonstrated the utility 

of contouring stage I NSCLC with MIPcine and RACTcine in Chapter 2.  We developed and 

validated a motion-inclusive PET contouring technique for relatively simple lesions in 

Chapter 4.  In the final chapter, we assess the feasibility of combining these techniques to 

contour locally advanced NSCLC with “cine PET/CT” imaging. 

 Ultimately, application of this contouring technique to stage III NSCLC would impact 

the greatest number of patients because a combination of chemotherapy and radiation 

therapy is a standard of care for stage III NSCLC (along with surgical resection for stage IIIA).  

There are several differences between stage I and stage III NSCLC, including tumor size, 

shape, uptake heterogeneity in PET imaging, and nodal involvement, which make applying 

the cine PET/CT contouring technique non-trivial.  These different aspects of stage III 

disease were not considered during development of the volume/motion/SBR segmentation 

model.  The largest sphere volume, for example, was approximately 27 cm3, whereas many 

stage III GTVs can be greater than 100 cm3.  Extrapolation from the model may be 

necessary.  Such differences may cause problems when the model is applied to more 

complex cases.  

5.2 Purpose 

 The purpose of this final study was to explore the feasibility of using PET together 

with MIPcine and RACTcine for target delineation of stage III NSCLC by qualitatively assessing 

target volumes formed by the PET-based volume/motion/SBR model in stage III NSCLC. 
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5.3 Methods 

 Five patients were included in the feasibility study.  Four patients had stage III NSCLC 

and each underwent 4D-CT and PET/CT as part of their treatment simulation.  One patient 

had stage I NSCLC.  The patient with stage I NSCLC was previously contoured in Chapter 2 as 

“patient 26” and was 1 of 3 patients with a tumor near the diaphragm who demonstrated 

substantial differences between contouring on cine CT image sets and 4D-CT.  The patient 

did not receive a PET/CT at time of simulation but did receive a diagnostic PET/CT two 

weeks prior which was used for the feasibility study. 

 

Table 5.1:  Patients for cine PET/CT feasibility study 

Patient Stage T N M 
Volume 

(cm
3
) 

Motion 

(mm) 

Corrected 

SBR 
Tx 

1 IA 1 0 0 10.7 17.8 23.2 SBRT 

2 IIIB 3 3 0 215.0 8.1 25.0 IMRT 

3 IIIB 4 0 0 5.8 2.9 17.7 SBRT 

4 IIIA 3 1 0 20.0 8.9 25.4 PROTON 

5 IIIB 4 2 0 86.3 1.0 64.7 IMRT 

T = tumor grade based on tumor size 

N = regional nodal status 

M = distant metastasis 

SBR = source-to-background ratio 

Tx = Treatment modality 

SBRT = stereotactic body radiation therapy 

IMRT = intensity modulated radiation therapy 

 

 Tumor volume and motion were estimated using 4D-CT.  If volumes could not be 

adequately defined using CT alone, volume estimates were made with rough threshold 

segmentation of PET.  ��QR%"""""""" was measured as described in Chapter 4  and ���P""""""" was 

measured by manually drawing an ROI in the lung and taking the mean activity 

concentration.  Volume, motion, ��QR%"""""""", and ���P""""""" served as input for the 

volume/motion/SBR model.  Threshold calculations were performed on a simple 

spreadsheet (Excel, Microsoft, Inc., Redmond, WA), which included the recovery coefficient 

(Figure 5.1).  IGTVPET formed from volume/motion/SBR thresholds were applied and 
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qualitatively compared with fused MIPcine imaging to assess feasibility of using the model to 

contour in tandem with CT imaging.  In particular, we looked for concordance of IGTVPET 

with high contrast tumor/lung boundaries on CT. 

  

 

 

Figure 5.1:  Microsoft Excel spreadsheet used to calculate thresholds using 

volume/motion/SBR model. 
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5.4 Results 

5.4.1 Patient 1 

 This patient is the only stage I NSCLC patient and was contoured in Chapter 2 as 

patient #26.  The PET data set, acquired two weeks prior to 4D-CT simulation, was manually 

registered to the tumor.   The fused PET/CT data set, along with volume/motion/SBR model 

contour, is shown in Figure 5.2.  Note the excellent agreement between anterior, posterior, 

and superior borders of the model-produced threshold and the MIP data set.  The inferior 

border is well-described by the volume/motion/SBR model threshold.  It is difficult, 

however, to say for certain whether or not the model is performing well because PET and 

CT were acquired on different days and there is no guarantee the patient was breathing 

similarly from day to day.  The coincidence of the contour with the CT data set, however, is 

striking. 

 

 

Figure 5.2:  Sagittal PET/CT data set and volume/motion/SBR contour (green line) for 

patient 1.  For this particular patient, PET was performed prior to 4D-CT simulation and 

was manually registered to the maximum intensity projection. 
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5.4.2 Patient 2 

 The primary in patient 2 was a large tumor adjacent to the chest wall and aorta.  The 

tumor demonstrated significant AC heterogeneities, which contributed to an 

underestimated tumor boundary compared with CT (green contour, Figure 5.3).  In this 

case, ��QR%produced a mean value too high to segment the tumor.  Manually drawing an 

ROI and taking the mean within the tumor produced a better result (blue contour), but the 

maximum motion extent is still underestimated. 

 

 

Figure 5.3:  Coronal PET/CT data set and volume/motion/SBR contours for patient 2.  

Green line represents contour when opqr%""""""""" is used in volume/motion/SBR model.  Blue 

line represents contour when mean AC in manually drawn contour in middle of tumor is 

used in volume/motion/SBR model.   
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5.4.3 Patient 3 

 This patient had two lesions, one of which was invading the anterior chest wall and 

demonstrated 3 mm motion in the anterior-posterior direction.  The result was a masking of 

the anterior extent of the tumor by the moving chest wall.  We applied the model to this 

lesion and obtained the contour shown in Figure 5.4.  Note that the posterior extent is 

slightly overestimated by the model, which may suggest overestimation in the anterior 

direction.  There is, however, an asymmetric blur to the PET activity concentration gradient 

that can be explained by the asymmetric breathing pattern observed when scrolling 

through the 4D-CT phase imaging.  The tumor spends more time in the posterior part of the 

motion envelope, resulting in sharper AC gradients on the posterior edge.  For this patient, 

we obtained a better result using ���P""""""" in the chest wall rather than the lung. 

 

 

Figure 5.4:  Sagittal PET/CT data set and volume/motion/SBR contour (green line) for 

patient 3.   

 

 



 

5.4.4 Patient 4 

 The tumor in patient 4

resulting volume/motion/SBR threshold 

CT and provides a good example of the ability of PET to distinguish between malignant 

tissue and atelectasis (which was noted in the n

PET/CT data set and threshold contours are shown in 

 

Figure 5.5:  Coronal (left) and transverse (right) PET/CT 

contour (green line) for patient 4.  Note the atelectasis present in the left upper lobe on 

the transverse CT image. 
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The tumor in patient 4 demonstrates substantial mediastinal involvement

resulting volume/motion/SBR threshold volume correlates well with the lateral border on 

CT and provides a good example of the ability of PET to distinguish between malignant 

tissue and atelectasis (which was noted in the nuclear medicine report of the PET/CT scan).  

ld contours are shown in Figure 5.5. 

:  Coronal (left) and transverse (right) PET/CT data set and volume/motion/SBR 

contour (green line) for patient 4.  Note the atelectasis present in the left upper lobe on 

demonstrates substantial mediastinal involvement.  The 

correlates well with the lateral border on 

CT and provides a good example of the ability of PET to distinguish between malignant 

uclear medicine report of the PET/CT scan).  

 

and volume/motion/SBR 

contour (green line) for patient 4.  Note the atelectasis present in the left upper lobe on 



 

5.4.5 Patient 5 

 A similar case to patient 4, the tumor in patient 5

mediastinal involvement with more heterogeneity in the metabolic uptake of FDG.  Again, 

the volume/motion/SBR model produces a volume that agrees well with the lateral border 

on CT.  The superior-anterior border also matc

contours are shown in Figure 

 

Figure 5.6:  Sagittal (left) and transverse (right) PET/CT 

contour (green line) for patient 5.  

5.5 Discussion 

 The current chapter explored the feasibility of applying the volume/motion/SBR 

model, which was developed using phantom scans and validated with reasonably simple 

tumors, to more complicated stage III NSCLC tumors.  The results were mixed:  The 

volume/motion/SBR model produced qualitatively good thresholds for some tumors 

(patients 1, 4, and 5) but not in others (patients 2 and 3).  Obviously, further study will be 

needed to validate the use of the volume/motion/SBR method in this application.  
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needed to validate the use of the volume/motion/SBR method in this application.   
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 There are several differences between stage I and stage III NSCLC that could be 

obstacles to full clinical use.  First, stage III NSCLC tumors are larger and often display 

heterogeneous uptake on PET.  As we saw in patient 2, this could cause problems for the 

volume/motion/SBR algorithm, which was not developed with heterogeneous tumors.  

Second, larger tumors are often adjacent to different kinds of tissue, which makes the 

selection of “background” for the segmentation algorithm tricky.  The background ROI for 

patient 3 is a good example; placing the ROI in the chest wall gave a better threshold value 

than placing the ROI in the lung.  Third, and probably most importantly, stage III NSCLC by 

definition has nodal involvement.  Mediastinal and hilar lymph nodes have been shown to 

move substantially with respiratory motion (Donnelly et al., 2007; Pantarotto et al., 2009; 

Sher et al., 2007) and therefore could benefit from the volume/motion/SBR model, but we 

have not validated the model for this application.  Furthermore, GTVs for stage III NSCLC 

often encompass large regions of the mediastinum if multiple nodes are present.  A 

localized threshold-based segmentation technique such as the volume/motion/SBR model 

may be inappropriate for such an application. 

5.6 Conclusions 

 Applying the volume/motion/SBR model to stage III NSCLC may be feasible, but 

further study into the appropriateness of the application and effectiveness of the model 

must be performed. 
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Chapter 6  DISCUSSION 

6.1 Significance and Impact 

 Radiation therapy is becoming increasingly important for NSCLC.  SBRT has been 

shown to be as effective as resection for inoperable stage I NSCLC (Chang et al., 2007; 

Timmerman et al., 2007).  Retrospective studies have shown promising results for the use of 

SBRT in operable stage I NSCLC (Onishi et al., 2007) and investigations are currently 

underway to prospectively evaluate SBRT in operable stage I NSCLC (including a multicenter 

clinical trial led by M. D. Anderson.)  Chemoradiation substantially benefits patients with 

stage III NSCLC (Govindan, 2003). 

 Considering the high dose gradients associated with IMRT and high biologically 

equivalent doses in SBRT, imaging is becoming ever more critical for target definition of lung 

tumors.  One of the more recent technologies for imaging lung cancer is 4D-CT, which can 

capture the motion of the tumor during the patient’s respiratory cycle.  This information 

can be used to define a “motion envelope” of the tumor, what M. D. Anderson has dubbed 

the “internal gross tumor volume” or IGTV.  Implementation of 4D-CT, however, can be 

costly and we have developed a simpler, more cost-effective alternative which provides 

significant motion information by generating MIP and RACT, image sets commonly used in 

target delineation, directly from cine CT.  The purpose of this dissertation was to investigate 

the feasibility of using these image sets in conjunction with PET imaging to define IGTV on 

tumors of varying complexity. 

 We began in Chapter 2 by examining small, mobile stage I NSCLC tumors.  We 

considered 2 groups of tumors:  “High-contrast” tumors located in the middle of the lung 

parenchyma and “low-contrast” tumors adjacent to structures of equal or greater density.  

The average volume ratios for high-contrast and low-contrast tumors were 1.05±0.14 and 

0.97±0.13 respectively.  It was therefore shown that IGTVs contoured with MIPcine and 

RACTcine are similar to or slightly larger than IGTVs contoured with 4D-CT (Riegel et al., 

2009).  In both phantom and patient studies, we found that MIPcine captured the maximum 
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extent of motion more effectively than MIP4D-CT.  In Chapter 3, we turned to calculation of 

dose, another important aspect of treatment planning.  Because RACTcine utilizes all the 

images in the cine CT image sequence, there is the possibility of weighting the average 

towards one phase of the breathing cycle.  By calculating dose on RACT image sets formed 

by averaging 1, 1.5, and 2 breathing cycles, we showed that discrepancies between dose 

distributions calculated on RACTcine and RACT4D-CT were minimal (71 of 73 patients had all 

points within the PTV pass 2%/1mm γ index criteria).  Including more breathing cycles 

reduced discrepancies even further (Riegel et al., 2008).  Once dose calculation with 

RACTcine and stage I NSCLC contouring with MIPcine and RACTcine were shown to be feasible 

alternatives to 4D-CT, we tackled tumor contouring using PET in the hopes that it would 

provide sufficient motion-inclusive targeting information to use with MIPcine and RACTcine for 

more complex tumors, such as stage III NSCLC which have been shown to cause difficulties 

in MIP contouring (Muirhead et al., 2008).  A threshold-based segmentation model was 

developed in Chapter 4 using an extensive series of phantom scans at varying sphere 

volume, motion amplitude, and SBR (Riegel et al., 2010).  This model was applied to 24 lung 

tumors and performed better than 6 commonly-used segmentation methods at defining 

IGTV (-5.15% volume underestimation compared with CT), though the difference was only 

significant when compared with “first order” methods (simple thresholds of ACmax or SUV).  

Finally, we combined the cine CT contouring technique from Chapter 2 with the 

segmentation model from Chapter 4 to assess the feasibility of using structural and 

functional image modalities together to contour tumor on stage III NSCLC and a complex 

stage I NSCLC in Chapter 5.  The results were mixed in that the volume/motion/SBR model 

was applicable and effective in some patients but not in all.  With further research, the 

integration of cine CT and PET could prove to be a useful tool for physicists and radiation 

oncologists to accurately define motion-inclusive target volumes for lung tumors.  

 Though much work remains before clinical implementation, it is worthwhile to 

consider how a “cine PET/CT” simulation could be implemented in the clinic.  The typical 

workflow for CT simulation begins at the scanner and ends at the treatment planning 

workstation.  At M. D. Anderson, several pieces of hardware and software are utilized to 
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perform PET/CT and 4D-CT in the same imaging session:  A PET/CT scanner, respiratory 

surrogate, respiratory surrogate computer and accompanying tracking software, a picture 

archiving and communication system (PACS) workstation (Advantage Window [AW], 

General Electric Medical Systems, Waukesha, WI), and 4D-CT sorting software (Advantage 

4-D, General Electric Medical Systems, Waukesha, WI).  At M. D. Anderson, 4D-CT images 

are generated on the AW workstation and transferred directly to treatment planning 

servers (they are not interpreted diagnostically).  PET images are interpreted diagnostically 

by nuclear medicine physicians and, due to the inability to interactively view PET/CT 

imaging on our institution-wide PACS system, physicians utilize the AW as a “mini-PACS” to 

interpret PET images.  They are then sent to the treatment planning servers for planning.   

 To perform PET/CT and cine CT, only two pieces of hardware are required:  A PET/CT 

scanner and a personal computer networked to the scanner console.  The only additional 

piece of software required is the relatively simple code to process cine CT image sets, which 

can be implemented on a standard Windows-based personal computer.  If one is only 

concerned with using imaging for radiation therapy treatment planning (and not diagnostic 

value), 4D-CT and PET images can be sent directly to treatment planning servers, bypassing 

the need for a mini-PACS (though some digital storage back-up mechanism obviously must 

be in place).  If the patient has not received a diagnostic PET/CT scan, however, it is 

beneficial to use the PET for staging purposes due to the ability to detect distant metastasis 

and the potential to change treatment intent from curative to palliative (Brink et al., 2004; 

Ciernik et al., 2003; Dizendorf et al., 2003; Mah et al., 2002).  The different workflows are 

shown diagrammatically in Figure 6.1.   

 Three imaging exams should be performed in the treatment position (flat table top, 

wing-board to support arms above the head, etc.) in order to gain adequate information for 

treatment planning:  (1) Cine CT of the thoracic cavity near the tumor using a long cine 

duration (approximately 2 average breathing cycles) to maximize respiratory waveform 

sampling for MIPcine (Riegel et al., 2009) and minimize weighting for RACTcine (Riegel et al., 

2008), (2) PET from base of skull to mid-thigh, and (3) free-breathing helical CT from the 

skull to the knees.  Cine CT is acquired to produce MIPcine and RACTcine, which are used for 



110 

 

contouring purposes in high-contrast regions and motion measurement for the 

volume/motion/SBR model.  RACTcine is additionally used for dose calculation and, together 

with the free-breathing helical CT, PET attenuation correction (Pan et al., 2006).  PET is used 

to assess distant metastasis and is utilized for contouring with the volume/motion/SBR 

model (SBR is measured on the PET scan).  Though helical CT of moving tumors does 

produce artifacts, it could be used to roughly estimate tumor volume for the 

volume/motion/SBR model input.  The robustness of the model with respect to this input 

should be studied further. 

 One counterargument to cine PET/CT as a cost-saving measure compared with 4D-

CT is the expense of the PET scan itself, both in the cost of the PET/CT scanner and FDG for 

each patient.  Any costs cut by excluding 4D-CT, the argument goes, would be offset by 

costs of the PET scan.  While it is true that the cost of PET scanning is by no means trivial, 

the utility of PET imaging versus 4D-CT imaging is greater.  Currently, the use of 4D-CT is 

restricted to treatment planning and, in some limited cases, assessment of ventilation 

(Guerrero et al., 2006).  PET, however, has significant utility in diagnosis in addition to 

applications in radiation oncology.  It is feasible that the cooperative purchase of a PET/CT 

scanner shared by departments of radiology, nuclear medicine, and radiation oncology 

could defray the costs, making the cost of cine PET/CT to the radiation oncology 

department manageable.  Diagnostic scans could increase patient throughput on the 

machine and help recoup costs. 
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Figure 6.1:  Workflow for (top) 4D-CT and PET acquisition versus (bottom) cine CT and PET 

acquisition. 
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6.2 Future Work 

6.2.1 Weighted Maximum Intensity Projection (wMIP) 

 One of the findings of Chapter 2 was that some tumors near the diaphragm 

demonstrated substantial IGTV differences when contouring with MIPcine and RACTcine.  This 

was mostly caused by the motion of the liver obscuring the inferior extent of the tumor’s 

motion envelope.  We developed an image processing technique called “weighted MIP” to 

solve this problem.  Essentially, the weighted MIP or “wMIP” is formed by taking the MIP of 

a subset of images from the cine CT image sequence at the lung/liver junction.  These 

images can be processed to include images of the tumor but exclude images of the liver, 

thereby discarding images that would overwrite inferior motion extent of the tumor. 

 Future work with wMIP will consist of contouring lesions that would otherwise be 

difficult to contour with cine CT alone and automating the image selection process.  

Automation could be achieved by using the liver itself as a respiratory surrogate.  Since we 

are only concerned with the images at the lung/liver interface (which, of course, moves 

during the respiratory cycle), we could segment the lung at each slice in this region using a 

CT number threshold and derive a respiratory trace by measuring the changing lung area 

over the temporal cine CT sequence.  Increasing and decreasing lung area would indicate 

end inspiration (no liver in slice) and expiration (liver in slice) respectively. 

6.2.2 Improvement in PET Uptake Quantification 

 An interesting byproduct of Chapter 4 was the development of the recovery 

coefficient (RC) to correct for partial volume averaging and motion blur of the PET image.  

Though RCs based on object size have been explored, few publications of size- and motion-

based RCs exist (Park et al., 2008).   

 Though the function used to model the RC fit the data well overall, there were 

regions of inaccuracy.  Further research, including validation with gated 4D-PET/CT as the 

gold standard, is warranted. 
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 In diagnostic PET for NSCLC, the commonly-accepted SUV for malignancy is 2.5 g/mL 

(Patz et al., 1993).  This value, however, was determined by correlating SUV (without any 

size or motion correction) with histological results.  For large, stationary tumors, SUV was 

likely not affected.  For small, mobile tumors, however, SUV would have been 

underestimated.  This may have caused dispersion in the data, clouding the relationship 

between SUV and histology.  It may be worthwhile, therefore, to update the study using 

current technology.  We intend to retrospectively recruit a large number of lung cancer 

patients who have received PET and 4D-CT, measure the motion and size via 4D-CT, apply a 

size- and motion-dependent RC to correct for partial volume averaging and motion blur, 

and compare corrected SUVs with histology to determine an appropriate benign/malignant 

SUV threshold. 

6.2.3 Fine-Tuning the Volume/Motion/SBR Model 

 The volume/motion/SBR model is far from perfect for all the reasons listed in 

section 4.5.  Ultimately, we hope to use this model in situations where CT cannot 

adequately define tumor boundaries, such as the stage III patients in the feasibility study 

described in Chapter 5.  In order to do that, the model must be robust enough to work 

under a variety of conditions.  Investigating asymmetry of the breathing cycle, irregular 

tumor geometry, the effect of heterogeneous uptake, and improvements to the recovery 

coefficient model are a few of several avenues to pursue to further refine the segmentation 

model for this purpose.   

6.2.4 Nodal Involvement in Stage III Non-Small Cell Lung Cancer 

 Perhaps the biggest difference between stage I and stage III NSCLC is the presence of 

regional lymph node metastasis.  As briefly discussed in Chapter 5, it is worthwhile to 

consider the appropriateness of using a localized threshold-based segmentation technique 

for contouring mobile hilar and mediastinal lymph nodes.  Regardless of whether or not the 

volume/motion/SBR model is used, the efficacy of PET in contouring nodal involvement in 

conjunction with MIPcine and RACTcine should be evaluated by comparing with 4D-CT.  We 
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should, in essence, repeat the experimental setup detailed in Chapter 2, this time 

comparing IGTVs delineated on MIPcine + RACTcine + PET versus IGTVs delineated on MIP4D-CT 

+ 4D-CT phases + PET.  In addition to intraobserver variation, interobserver variation should 

be assessed. 
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Chapter 7  CONCLUSIONS AND RECOMMENDATIONS 

 The results of this work are promising.  We have shown that RACTcine is a viable 

alternative to RACT4D-CT for the purposes of dose calculation and can be implemented 

reasonably.  We have shown MIPcine and RACTcine can be used to contour moving stage I 

NSCLC located in the lung parenchyma and we have presented evidence that PET (via the 

segmentation model) can be used in conjunction with MIP and RACT to contour smaller 

tumors adjacent to structures of equal or greater density.  Though more research is 

required to assess the efficacy of PET in stage III disease, the work presented here provides 

a solid foundation for future investigations. 

 The cine PET/CT workflow in Figure 6.1 reduces the complexity of the motion-

inclusive simulation process and could substantially reduce the costs of motion-inclusive 

imaging for radiation therapy simulation.  Though more research is required to fine-tune 

the technique, we have 4 recommendations:   

• If 4D-CT is not available, we recommend acquiring cine CT and free-breathing helical 

CT for treatment simulation of lung cancer patients, including the use of MIPcine and 

RACTcine for contouring and RACTcine for dose calculation.  Any motion information is 

better than none.  

• If 4D-CT is available, we recommend that MIPcine be used with phase imaging 

because it more accurately captures the maximum motion extent of the tumor than 

MIP4D-CT.  Dose calculation with either RACT4D-CT or RACTcine is recommended. 

• If PET/CT is available, we recommend that IGTV be contoured primarily on CT (cine 

CT or 4D-CT) using volume/motion/SBR model as a supplemental guide when 

contouring small, mobile tumors with relatively homogenous uptake on PET.  

Further research is required to recommend use in larger, more complex lesions. 

• If cine CT is acquired, we recommend that cine duration be set as long as possible (2 

average breathing cycles is a good target) to maximize sampling of the respiratory 

waveform and minimize density weighting effects. 
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Chapter 8  APPENDIX  

A detailed description of the surface separation algorithm is provided here.  The 

code is basically split into two main parts:  First, the “reference” surface mesh is sampled by 

calculating the intersection of equally-spaced vectors projected from the center of the 

reference ROI and the triangular mesh surface; second, the shortest distance between the 

sampling point on the reference mesh and the test mesh surface is calculated. 

8.1 Sampling the Reference Surface 

The centroid (the center of mass assuming unit density) of the reference ROI is 

determined by averaging the pixel coordinates inside the ROI.  Vertices of the reference 

mesh are transformed such that the reference ROI centroid is the origin of the coordinate 

system.  Rays are projected from the origin (the centroid) at regular azimuthal and 

altitudinal angles.  For our study, we used an angular interval of 5°.   

The mesh surface is made of hundreds or thousands of adjacent triangles which 

connect the vertices of the mesh.  Each triangle defines a plane.  Our task is twofold:  We 

must calculate the intersection of the sampling vector with the plane and also determine 

whether or not the intersection is inside the triangle defined with the mesh vertices.  

Furthermore, we must iterate this process for all triangles, for every sampling ray. 

Mathematically, if we consider r1, r2, and r3 to be vertices of a triangle on the 

reference surface mesh, the plane that contains the triangle is defined by equation ( 14 ): 

 s�t, u� � 6-8889 ? �6
8889 n 6-8889�t ? �6b8889 n 6-8889�u  ( 14 ) 

 

where u and v are barycentric coordinates of a point in the plane of the triangle (Moller et 

al., 1997).  The equation for the ray originating from the reference centroid (denoted by v, 

the origin of the coordinate system) is: 
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S�w� � v9 ? xℓ89 n v9zw  ( 15 ) 

 

where ℓ89 is the directional ray vector and t is the length of the ray (in this case, a parametric 

variable).   

 According to Moller and Trumbore (Moller et al., 1997), we can simultaneously 

determine the intersection of the ray with the plane and whether or not the intersection is 

inside the triangle by setting equation ( 14 ) equal to equation ( 15 ) and solving for the 

vector [t u v].   

 

v9 ? xℓ89 n v9zw � 6-8889 ? �6
8889 n 6-8889�t ? �6b8889 n 6-8889�u  ( 16 ) 

 

By rearranging and putting this equation into matrix form, 

 

{v% n 6-,%v| n 6-,|v} n 6-,} ~ � {v% n ℓ% 6
,% n 6-,% 6b,% n 6-,%v| n ℓ| 6
,| n 6-,| 6b,| n 6-,|v} n ℓ} 6
,} n 6-,} 6b,} n 6-,} ~ �
wtu�  ( 17 ) 

 

we can take the inverse of the middle matrix to determine [t u v].  

 

�wtu� � {v% n ℓ% 6
,% n 6-,% 6b,% n 6-,%v| n ℓ| 6
,| n 6-,| 6b,| n 6-,|v} n ℓ} 6
,} n 6-,} 6b,} n 6-,} ~
+-

{v% n 6-,%v| n 6-,|v} n 6-,} ~  ( 18 ) 

 

 Because u and v represent barycentric coordinates, they are relative to the vertices 

of the triangle.  Therefore, if the solution of u and v satisfies the following conditions, 

 0 � t � 1  0 � u � 1  t ? u � 1    
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then the intersection of the ray and the plane lies within the triangle defined by r1, r2, and 

r3, and the coordinates of the intersection can be found by plugging the solution for t into 

equation ( 15 ).  The intersection coordinates are deposited into a new matrix of points that 

“sample” the reference mesh surface.  If the point lies outside the triangle, it is discarded.  

This is repeated for all triangles and all sampling rays. 

 For typical convex shapes, the number of sampling points will equal the number of 

sampling rays.  There are clinical scenarios, however, when the tumor contains spiculations 

and will cause multiple intersections of the ray with the mesh surface.  The algorithm is 

designed to include these multiple intersections in the surface separation calculation. 

8.2 Determination of Shortest Distance between Reference and Test Surfaces 

 First, the test surface mesh is transformed to the reference ROI centroid coordinate 

system.  The next step is to measure the separation between the reference surface and the 

test surface by calculating the shortest distance from each sampling point to the test 

surface.  There are two outcomes:  Either the shortest distance is on a face of the surface 

mesh (inside the triangle formed by the vertices) or it is on the edge of the surface mesh 

(one of the lines connecting the vertices).  The algorithm is designed to consider each 

scenario separately and determine which distance is smaller.   

8.2.1 Faces 

First, to measure the distance from the sampling point to each plane formed by the 

surface triangles, we must calculate the projection of the sampling point q on every plane.  

To do so, we must establish orthogonal basis vectors within each plane using the Gram-

Schmidt process (Lay, 1997).  To summarize, if p1, p2, and p3 are vertices of a triangle on the 

test surface mesh and q is the point to be projected onto that plane, consider the vectors !-8889 � �
88889 n �-8889, !
88889 � �b88889 n �-8889 , and Z9 � �9 n �-8889.  Orthogonal basis vectors are formed using 

equations ( 19 ) and ( 20 ): 
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u-88889 � !-8889  ( 19 ) 

u
88889 � !
88889 n %�88889·��88889��88889·��88889 u-88889  ( 20 ) 

 

The projection of the sampling point onto a p-dimensional space is defined by Lay (Lay, 

1997): 

 

 

Z� � |89·��888889��888889·��888889 t-88889 ? �? |89·��888889��888889·��888889 t�88889  ( 21 ) 

 

 

Where �t-, � , t�� is an orthogonal basis of the plane.  In our case, the orthogonal basis is 

provided by the Gram-Schmidt process, and the projection is demonstrated in equation        

( 22 ): 

 

 

Z� � |89·��88889��88889·��88889 u-88889 ? |89·��88889��88889·��88889 u
88889 ? �-88889  ( 22 ) 

 

 

We now have two points that define a line normal to the plane:  q, the sampling point on 

the reference mesh, and Z�, the projection of q on the plane.  Using the method described in 

the previous section, we determine whether or not this line falls inside the vertices of the 

plane-defining triangle p1, p2, and p3.  If Z� lies within the triangle, the distance �Z� n �� is 

placed in a matrix where “candidate” shortest distances are stored.  If it lies outside the 

triangle, it is discarded.   
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8.2.2 Edges 

 The sampling point is then projected on each edge of the triangle using equation        

( 21 ) with only 1 basis vector for each edge.  The edges are defined thusly:  u-88889 � �
88889 n �-8889, u
88889 � �b88889 n �-8889, ub88889 � �b88889 n �
88889.  The vectors to be projected are defined as such:  Z-88889 � �9 n �-8889,  Z
88889 � �9 n �
88889 ).  The projections are therefore: 

 

Z-� � |�88889·��88889��88889·��88889 u-88889 ? �-88889   

Z
� � |�88889·��88889��88889·��88889 u
88889 ? �-88889  ( 23 ) 

Zb� � |�88889·��88889��88889·��88889 ub88889 ? �
88889   

 

 The distances from the sampling point q to each projection is stored in the 

“candidate” matrix, along with the distance from q to the triangle face (if the normal lies 

inside the triangle).  This represents one iteration of the process.  The process is repeated 

for all triangles and the shortest distance of all the triangles is recorded as the surface 

separation for that particular sampling point.  The process is iterated over all sampling 

points.  A visualization of the surface separation algorithm is shown in Figure 8.1. 

 



 

Figure 8.1:  End result of the surface separation algorithm.  Black mesh is "reference" 

mesh.  Red mesh is "test" mesh.  Blue lines represent shortest distances from the 

sampling points on the reference mesh to the test mesh surface.
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:  End result of the surface separation algorithm.  Black mesh is "reference" 

"test" mesh.  Blue lines represent shortest distances from the 

sampling points on the reference mesh to the test mesh surface. 

 

 

:  End result of the surface separation algorithm.  Black mesh is "reference" 

"test" mesh.  Blue lines represent shortest distances from the 
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