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Abstract 

DCE-MRI is an important technique in the study of small animal cancer models 

because its sensitivity to vascular changes opens the possibility of quantitative assessment of 

early therapeutic response.  However, extraction of physiologically descriptive parameters from 

DCE-MRI data relies upon measurement of the vascular input function (VIF), which represents 

the contrast agent concentration time course in the blood plasma.  This is difficult in small 

animal models due to artifacts associated with partial volume, inflow enhancement, and the 

limited temporal resolution achievable with MR imaging.  In this work, the development of a 

suite of techniques for high temporal resolution, artifact resistant measurement of the VIF in 

mice is described.  One obstacle in VIF measurement is inflow enhancement, which decreases 

the sensitivity of the MR signal to the presence of contrast agent.  Because the traditional 

techniques used to suppress inflow enhancement degrade the achievable spatiotemporal 

resolution of the pulse sequence, improvements can be achieved by reducing the time required 

for the suppression.  Thus, a novel RF pulse which provides spatial presaturation 

contemporaneously with the RF excitation was implemented and evaluated. This maximizes the 

achievable temporal resolution by removing the additional RF and gradient pulses typically 

required for suppression of inflow enhancement.  A second challenge is achieving the temporal 

resolution required for accurate characterization of the VIF, which exceeds what can be 

achieved with conventional imaging techniques while maintaining adequate spatial resolution 

and tumor coverage.  Thus, an anatomically constrained reconstruction strategy was developed 

that allows for sampling of the VIF at extremely high acceleration factors, permitting capture of 

the initial pass of the contrast agent in mice.  Simulation, phantom, and in vivo validation of all 

components were performed.  Finally, the two components were used to perform VIF 
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measurement in the murine heart.  An in vivo study of the VIF reproducibility was 

performed, and an improvement in the measured injection-to-injection variation was observed.  

This will lead to improvements in the reliability of quantitative DCE-MRI measurements and 

increase their sensitivity. 
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1  Hypothesis and Specific Aims 

Tumor growth and progression is intertwined with the growth and development of its 

associated microvasculature (1). As a result of this relationship, vascular changes in response to 

therapy are desirable endpoints in preclinical studies of novel interventions (2).  Dynamic-

contrast enhanced (DCE) magnetic resonance imaging (MRI) enables interrogation of the 

microvasculature by investigating the dynamics of the uptake and clearance of an exogenous 

contrast agent, which will be altered by the characteristics of the vasculature in and around 

tumors (3).  DCE-MRI is used both clinically, in the diagnosis (4) and in treatment response 

monitoring of cancer (5), and investigationally (6-8) in humans, as well as in animal models of 

disease, with unique and prominent challenges found in the latter. 

Quantitative analysis of DCE-MRI data frequently uses pharmacokinetic models(9) to 

relate the uptake of contrast agent into tissue to the concentration time course in the blood 

plasma, known as the vascular input function (VIF), and subsequently producing a set of 

pharmacokinetic parameters.  These descriptive parameters permit expressing DCE-MRI data 

as physiologically meaningful parameters which are related to quantities such as microvascular 

volume, flow and permeability.  Accurate and precise measurement of the VIF, although 

required for accurate and reproducible parameter measurement, is challenging.  Blood vessels 

are not ideal locations in which to acquire MR data, as artifacts are associated with flowing 

blood; these artifacts are dependent on the orientation of the blood vessel with regard to the 

slice and are thus unpredictable.  The small size of blood vessels can introduce substantial 

partial volume effects that depend upon the relationship between the vessel and the acquisition 

matrix, again resulting in unpredictability.  Additionally, small animals have low blood 

volumes and fast heart rates (over 300 bpm(10)).  This introduces very rapid VIF kinetics, 
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placing difficult demands on the spatial and temporal resolution of the VIF 

measurement.  These demands are difficult to meet while also providing adequate sampling of 

the tumor tissues. 

The precision of VIF measurements needs to be increased to improve the precision of 

pharmacokinetic parameter measurements in small animal imaging.  The objective of this 

research is to develop methods for measuring the VIF in a manner that satisfies the need for 

both high temporal sampling rates and freedom from artifacts.  For the sake of providing a 

basis for quantitative comparison of the measurements, it is convenient to express the VIF as a 

set of parameters fit to a biexponential model.  We hypothesize that when VIFs measured in 

the heart using a highly subsampled acquisition and reconstruction strategy and flow 

suppressive RF excitation are compared to VIFs measured in cerebral vessels, subsecond 

temporal resolution of the VIF will be achieved and reduced coefficients of variance of the 

biexponential parameters will be achieved.  This hypothesis was tested in the following 

specific aims: 

1.  Develop, characterize, and test a novel RF excitation pulse for flow suppression.  

A family of RF pulses that produce spoiled regions adjacent to the primary slice were 

developed.  These provided spatial presaturation in the regions adjacent to the slice, allowing 

for steady state imaging of inflowing spins, reducing the flow enhancement effect.  The 

efficacy of the pulse for the suppression of inflow enhancement was demonstrated in 

simulations, phantom, and in vivo, and an improvement in the sensitivity of the MR signal 

measurement to the presence of contrast agent was demonstrated. 

2.  Develop, characterize, and test a novel constrained reconstruction technique to 

allow analysis of data from a highly undersampled data set.  A novel constrained 

reconstruction technique which permits measurement of the signal in regions of interest within 
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a slice in the heart using very large undersampling factors was developed. Simulations 

and in vivo data testing was performed to demonstrate that the algorithm provides an accurate 

interpretation of the acquired data in the presence of both dynamic contrast enhancement and 

cardiac motion. 

 3.  Compare the characteristics of VIFs in a population of healthy mice using both 

conventional and developed techniques.   A population of eight mice was individually 

injected with contrast agent and the resulting VIFs were measured.  Each mouse was injected 

three times with contrast agent, and a sufficient delay was allowed between injections for 

clearance of the contrast agent from blood and soft tissue.  The coefficients of variations (CV) 

of a parametric representation of the VIF were compared to determine the intra-subject 

reproducibility of the pharmacokinetic parameters. 
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2 Introduction 

2.1 Dynamic Contrast Enhanced MRI  

Pathological conditions frequently involve the microvasculature and associated blood 

flow of the affected tissues.  Angiogenesis is a prominent example from cancer models, for 

without the development of new blood vessels, tumors are incapable of growth beyond the 

diffusion range of oxygen (1), which is a few tenths of a millimeter (11).   The growth and 

decay of the tumor vasculature can therefore provide information about the response of tumors 

to therapy, and the use of non-invasive imaging modalities to probe the microvascular 

characteristics of tissue is critical to biomedical research (2).  This may be achieved by 

exploiting the fact that vessels produced by tumors are often malformed and leaky, resulting in 

hyperpermeability to small molecules, such as contrast agents (12), producing signal changes 

which may be observed using advanced imaging techniques.  

MRI is widely used for non-invasive investigation of pathology because of its excellent 

soft tissue contrast and sensitivity to a wide variety of biochemical effects (13).  In particular, 

MRI may be used to dynamically observe changes in tissue contrast due to the uptake of 

exogenous contrast agents. Dynamic Contrast Enhanced-MRI is achieved by exploiting the T1-

shortening effects of contrast agents, while a focus on the T2
*-shortening effects is the basis for 

Dynamical Susceptibility Contrast (DSC)-MRI.  Both techniques are used in the study of 

microvasculature, with DSC more commonly used in studies of blood volume and flow in the 

brain with an intact blood brain barrier, and DCE generally used in studies of microvascular 

permeability and perfusion in the body (14,15) and in brain tumors(16).  This work is primarily 

concerned with DCE-MRI applications in small animal models of cancer. 
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DCE-MRI has been found useful in the management of many tumor types, 

which underscores its relevance to a wide variety of models.   It has been found, in either 

qualitative or quantitative form, to be a sensitive and specific technique for the detection and 

staging of disease, with examples including, but not limited to, breast cancer (17), prostate 

cancer (18), and bone marrow lesions (19),  and in many cases it has been shown to be effective 

for the monitoring of patient response to therapy (20,21).  Quantification becomes more 

important preclinically, in which changes in vasculature measured using DCE-MRI are a 

common endpoint in drug development (2), and precise measurements are essential for reliable 

evaluation of efficacy. Quantification of DCE-MRI has shown much recent use in relation to 

the development of antiangiogenic drugs (22,23), response to radiation (24), and chemotherapy 

(25,26).  

2.2 Data acquisition and analysis for quantitative DCE-MRI 

A typical DCE-MRI protocol for quantification of dynamics consists of several 

sequences for localization and anatomic imaging.  After these images are acquired, the pre-

contrast T1 of the tumor is often measured before dynamic data are acquired to enable 

calculation of the contrast agent concentration, although an assumed value may be used (27). 

Finally, a dynamic series of images is acquired, typically with a short-TR spoiled gradient echo 

sequence, during which a bolus of contrast agent is injected after the acquisition of a few 

baseline images.  This sequence allows both a relatively high frame rate and short echo times, 

which minimizes T2*-related dephasing produced by the contrast agent.  The dynamic protocol 

must strike a difficult balance between high temporal resolution for measuring the uptake 

dynamics, spatial coverage, and high spatial resolution, which is required due to the 

heterogeneity of tumor tissue (28).  Relatively fast uptake and clearance is expected in areas of 
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highly permeable vasculature, such as in many tumors, while in healthy tissue contrast 

agent extravasates and clears at a slower rate (29).  

The analysis and interpretation of the dynamic MR data is most easily performed in 

terms of the contrast agent concentration, a physical quantity, as opposed to the MR signal, 

which has an arbitrary meaning and a non-linear relationship to the concentration.  Because the 

MR signal depends indirectly on the contrast agent concentration through the relaxation rates, 

the path from MR signal to final measurement of the vascular state requires several steps and 

relies upon several measured, known, or assumed parameters. 

In order to calculate the concentration levels in vivo, the signal time course is measured 

from the dynamically acquired images. For an ideal spoiled gradient echo sequence with 

perfect spoiling of the signal between excitations, the signal is given by the equation (30): 

 (Eq. 2.1) 

where S is the measured signal, ρ is a term including the spin density, as well the receiver gain 

and other constant factors, TE is the echo time, TR is the repetition time, θ is the excitation flip 

angle, and T1 and T2* are the longitudinal and transverse relaxation times, respectively.  When 

the signal changes dynamically, this is due to temporal dependence in T1, caused in turn by the 

changes in the contrast agent concentration.  Often the effects of a temporally varying T2* are 

ignored due to the use of a short echo time; ignoring these effects simplifies the necessary 

calculations (31). 

The above equation can be solved for the T1 of tissue after contrast agent 

administration, assuming that baseline values for the tissue signal and its longitudinal relation 

time are known.  The equation for the time dependant T1 becomes 
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, where

 (Eq 2.2) 

 (Eq 2.3) 

and S(t) is the dynamically measured signal, S0 is the baseline signal, T1,0 is the native T1 of the 

tissue, θ is the flip angle, and TR is the repetition time. The concentration can be calculated 

using the relation: 

  

1
T1 t( ) =

1
T1,0

+ r1C t( )  (Eq 2.4) 

where C(t) is the contrast agent concentration as a function of time, and r1 is the contrast agent 

T1 relaxivity.  This is a parameter of the contrast agent that describes the agent’s effect on the 

T1 relaxation rate.  Values for this parameter, reported for human blood at 3T are 3.3 M-1s-1for 

gadopentetate dimeglumine, 3.6 M-1s-1for gadobutrol, and are 6.3 M-1s-1 for gadobenate 

dimeglumine. 

2.3 Pharmacokinetic modeling of DCE-MRI Data 

Three different modes are found in the analysis of dynamic uptake data: qualitative 

curve shape analysis, semi-quantitative analysis, and quantitative analysis.  Although it is 

sometimes possible to interpret the shape of the tissue-enhancement curve directly to provide 

diagnostic information, this is not reproducible across imaging systems (32).  It also relies on 

non-quantitative, subjective assessment and is thus not a useful approach for small animal 

DCE-MRI studies.  Visual changes in enhancement curves are also much less sensitive 

indicators of changes in the tumor than quantitative analysis; a difference of approximately 
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50% in quantitative measurements is required to produce a perceptible qualitative 

change (33).  As a result, small animal studies, which hope to detect smaller and earlier 

changes in the tumors require more rigorous quantification that is more sensitive and 

reproducible than curve-shape analysis provides.   

Semi-quantitative analysis relies upon the calculation of an empirically useful 

descriptive parameter from the tissue uptake curve. These parameters include the initial area 

under the curve (IAUC) and the initial slope of the enhancement curve (34).  Although they do 

not have directly interpretable physiological meanings, they have been used for many clinical 

applications (34).  However, semi-quantitative analysis has been found to be less reproducible 

than a full kinetic analysis (35), and the lack of interpretability has led to a desire for analyses 

that are based on the physiology of tissue. 

Quantitative analysis (34) is based upon simple physiological models which permit 

transforming the contrast uptake curves measured in tissue into physically meaningful terms.  

These models provide parameters which are sensitive to flow, permeability, and blood volume, 

although in some models their effects may become indistinguishable.   

The models most frequently cited in the literature were adapted from the work of Kety, 

which is based in indicator-dilution theory (36), and the same models are generally used in both 

human and small animal imaging.  Although many variations are present, the most common 

models present in literature related to the Tofts-Kermode model, which as presented here uses a 

consensus terminology from many early workers in the field of DCE-MRI (3).  This model is 

derived from compartmental assumptions, that is, that blood and tissue are two well-mixed, 

disjoint units that exchange contrast agent, shown in Figure 2-1.  The extracellular components 

of blood and tissue are assumed to be two pools which exchange contrast agent according to a 

differential equation(3): 
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 (Eq 2.5) 

where KTrans represents the forward transfer constant, a mixed term describing both flow and 

perfusion effects, and the concentrations in the blood plasma and tissue are Cp and CT, 

respectively.  The fractional extracellular extravascular volume is given by ve.   

The most general expression for KTrans is (29): 

 (Eq 2.6) 

where F is the blood flow, Hct is the hematocrit, ρ is the tissue density, and PS is the 

permeability-surface area product. In the case of high perfusion, uptake is limited by flow and 

. In the case of high flow, .  When neither flow nor 

perfusion dominates, the two quantities are not distinguishable (3), in tumors the mixed case 

generally applies(8).  An alternative parameterization with a second rate constant in place of 

the EES volume,  is also quite common.  This allows consideration of the 

dynamics in terms of the mean residence time of the contrast agent instead of the volume of the 

EES.  Tissue and blood plasma contrast agent concentrations are denoted by Ct and Cp, 

respectively.  The blood plasma concentration is frequently given a special name, either the 

arterial input function (AIF), or the vascular input function (VIF).  We use the term VIF 

exclusively in this work.  The VIF represents the blood supply of the tissue, which is typically 

approximated by a measurement performed in a nearby artery or vein.  These equations assume 

a lipophobic contrast agent that does not penetrate the cell walls; which leads to the factors 

accounting for the extracellular volume and the hematocrit. The convolution equation below is 

a solution to Eq. 2.5 (3): 
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 (Eq 2.7) 

 

Figure 2-1 Diagram showing the differential compartmental model.   

In practice, use of the two parameter model is often associated with spuriously large 

values for KTrans, which result from the presence of blood vessels in the tissue voxel; this is 

known as the pseudopermeability artifact (37). A threshold of 1.2 min-1 is commonly used for 

identifying voxels that are corrupted by pseudopermeability (16). This criteria is strangely 

uncontroversial in the DCE-MRI literature, however, voxels which are only partially affected 

will not be identified by thresholding (38). No alternate threshold for small animal imaging has 

been proposed.  These effects may be mitigated by the use of the extended model (39,40), 

where vb is the fractional intravascular space:  

  (Eq 2.8) 
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An implicit assumption of this model is that there is a single T1 behavior for both the 

intravascular space and the EES, which is equivalent to assuming fast proton exchange between 

vessels and tissue.  This assumption has been experimentally tested and it was concluded that 

the assumption held in most tissues, with a notable exception in the cerebrovasculature 

resulting from the blood-brain barrier (41). 

A simplification of the three-parameter model was put forth by Li (42), called the First-

Pass Leakage Profile (FPLP) model, which only analyzes the first pass of the contrast agent in 

the blood.  This simplifies calculations of pharmacokinetic parameters and allows for shortened 

acquisition times, which may be useful in cases of severe motion or a non-compliant patient.  

The simplified model assumes that no appreciable amount of contrast backflows from tissue 

into the blood over this interval, that is, neglecting kep.  This model is not commonly used in 

small animal models. 

Other models that are not based on compartmental assumptions have been proposed, 

most notably the adiabatic approximation to the tissue homogeneity model (AATH) (43,44), 

where 

 (Eq 2.9) 

 (Eq 2.10) 

In the above equation, Tc is the time that contrast agent spends in the capillary before entering 

the tissue, and other quantities are as previously defined.  This model fails to be a 

compartmental model because it does not include the assumption that blood is well-mixed (45).  

Instead, it assumes that the blood dynamics occur on a much faster timescale than the exchange 

of contrast agent between blood and tissue.  If the tissue is sampled faster than Tc, this model is 

able to separate flow and perfusion effects.  When the temporal sampling rate is slower than Tc, 
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the model becomes indistinguishable from the three-parameter two-compartment 

model.  In humans, values for Tc have been measured on the order of 40 s in a particular tumor 

model (46); in rats, values of approximately 11 s have been measured (47) using dynamic CT. 

The tissue homogeneity model itself is rarely used because it does not have a closed form 

solution when written as a function of time (43,48).  Another variation of this model includes a 

distribution of capillary transit times within a single voxel (46). 

Some investigators have used models that rely on the same contrast agent dynamics, but 

which explicitly account for the exchange of water between the intracellular space and the EES.  

Conventionally, it is assumed that water exchange is in the so-called fast exchange limit, in 

which water exchanges sufficiently rapidly to only have a single T1 behavior in the voxel.  This 

form of modeling introduces an additional parameter that describes the exchange rate of 

protons between the two components of tissue (49).  The significance of these effects remains 

controversial (41,50).   

An alternative to the use of an explicit model is to perform a non-parametric 

deconvolution to produce a residue function (51).  This allows for improved fitting of the 

concentration time courses by avoiding model errors during the deconvolution step.  Although 

interpretation of the residue curves for measurements of blood flow and blood volume is 

commonly done in DSC-MRI (52), there has not yet been a method for interpreting 

permeability in this context, other than fitting the residue curve itself to one of the 

aforementioned models (51). 

Limited comparisons have been performed between the various pharmacokinetic 

models.  Buckley performed a simulation study in which an independent model for blood 

transport was used to compare both forms of the two compartmental model and the AATH to 

the actual simulated values.  The latter was capable of producing the most accurate results, but 
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also had the most strenuous requirements for temporal sampling and was subject to 

the most difficulties in fitting.  The extended Toft’s model was found to avoid the 

pseudopermeability artifact, but in general tended to overestimate KTrans and underestimate vp 

(39). 

Comparisons have also been performed using in vivo data.  Harrar, et al. found in 

glioma patients that the FPLP and the extended Tofts model provided comparable results, and 

that both were considerably less sensitive to the pseudopermeability artifact than the two-

parameter Tofts model (37).  Haroon, et al., directly compared the FPLP and the two-parameter 

Tofts model, and came to a similar conclusion regarding the presence of the 

pseudopermeability artifact (38). 

2.4 Uncertainty in the calculation of kinetic parameters 

Fundamentally, the calculation of the pharmacokinetic parameters relies on two 

measurements: the concentration time courses in tissue and that in blood.  Uncertainty and 

errors in those two measurements contribute to uncertainty and errors in the final calculated 

parameters.  Because concentration measurements in MRI are indirect, several quantities, 

which are themselves subject to uncertainty, are required for precise and accurate calculation of 

the pharmacokinetic parameters.  These quantities include the baseline T1 of blood and tissue, 

the flip angle used to excite the spins in the dynamic acquisition, the T1 relaxivity of the 

contrast agent used, and the individual signal time courses of both tissue and blood (53). 

The variations in the final pharmacokinetic parameters that result from errors in the 

individual input parameters have been estimated by various investigators.  While the contrast 

agent relaxivity affects the absolute values of the parameters measured, it is constant across an 

experiment and does not introduce imprecision into the final values (53).  It has been argued 

that the accuracy of the baseline T1 measurement is not a major factor in the accuracy and 
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precision of the final kinetic parameter measurement. Specifically Dale, et al. (53), 

found that uncertainties in measuring the baseline T1 resulted in a coefficient of variation (CV) 

in the final kinetic parameters of between 5 to 6%, over a wide range of T1 and parameter 

values, and Haacke, et al.(27) even found that reproducibility was enhanced by assuming a 

constant value for T1.  The effects of flip angle errors depend on the analysis performed, but 

proper measurement of the transmit field strength B1 (e.g., (54)) and appropriate choice of 

protocols can reduce the error to a few percent, and this is less problematic in small animal 

imaging due to the small size of the RF coils (55).   

Both the temporal sampling rate of tissue (56) and the spatial resolution (28) affect the 

accuracy and precision of pharmacokinetic parameters.  The effects of these factors were not 

investigated in this work.  However, the techniques presented here are anticipated to ease the 

necessary protocol compromises by enabling optimization of the VIF measurement without 

affecting the encoding of the tissue. 

2.5 Uncertainty resulting from the VIF measurement 

As one of the main components of the kinetic model, it should not be surprising that the 

accuracy and precision of the VIF has a strong impact on the accuracy and precision of the 

measured pharmacokinetic parameters, and these effects have been studied by several 

investigators.  The prominence of this measurement in the DCE-MRI literature, as opposed to 

that in tissue or the common issues of quantifying contrast agent concentrations in MR, is due 

to the fact that the measurement of the VIF presents unique artifacts beyond those associated 

with the conversion of signal into concentration. Errors in the VIF will have substantial effects 

on the accuracy and reproducibility of all pharmacokinetic parameters (11) and the VIF has 

been identified as a major source of error in these parameters (57).  Improved measurement of 

the VIF is an important goal for improvements in the reliability of DCE-MRI.  Because of the 



   15 

limitations imposed by partial volume effects, blood flow, and sampling 

requirements, many groups have proposed strategies for improved measurement of the VIF 

(58-63), and improved VIF measurement  has been identified as an important need by the 

Pharmacodynamic/Pharmacokinetic Technologies Advisory Committee for the UK (8,64). Key 

contributors to the uncertainty in VIF measurement are partial volume effects due to the small 

size of blood vessels, inflow enhancement due to blood flow, and inadequate temporal 

resolution of VIF sampling.  As will be discussed in the next few paragraphs, these effects are 

estimated to produce errors and uncertainties in pharmacokinetic parameter measurements in 

excess of 30%. 

Partial volume and flow effects tend to scale the entire VIF (65), as a first order effect, 

although distortion of the VIF due to partial volume effects has also been reported when the 

amount of tissue in the voxel is above 30-40% (66).  Uncertainty in the peak concentration 

manifests directly as uncertainty in both KTrans and vb, and therefore variance of the 

concentration amplitude appears directly as variance in both parameters (65), implying that 

these artifacts tend to introduce unpredictable scaling into the measurement of pharmacokinetic 

parameters.  It has also been estimated that uncertainties in the measurement of kinetic 

parameters of over 20% have been attributed to uncertainties in the measurement of the 

VIF (67).   

Another commonly studied source of error in the VIF is insufficient temporal sampling 

of the VIF.  For example, Karmonik and Jackson (68) found that sampling at least once every 4 

seconds in humans is associated with variations in excess of 10% into the measurement of 

KTrans and over 30% in vb; these figures would likely be higher for the faster kinetics of small 

animal models.  Using parameter estimates typical of human breast cancer, Henderson et al. 

recommended that the VIF be sampled at least once per second in order to reduce the 95% 



   16 

confidence interval of kinetic parameter measurements to within 10% of the true 

value for all three parameters in the extended Toft’s model (56), and this is a widely accepted 

guideline (55).  Notably, the needs for sampling of the uptake in tissue are considerably 

different than in blood: much more modest temporal resolution and higher spatial resolution are 

preferred, and this has resulted in suggestions that acquisition schemes be capable of separate 

behaviors for blood and tissue; this is achieved with the techniques proposed in this work. 

Faster VIF sampling may be required in mice than in humans due to the smaller blood volumes 

and faster heart rates, exacerbating this challenge (10,69), although no specific criteria has been 

established. 

Additional artifacts arise from considering the use of Cartesian phase encoding in MR. 

The use of conventional phase encoding when measuring the VIF may also lead to substantial 

artifacts in the measurement of pharmacokinetic parameters, because the bolus of contrast 

agent may arrive at any time during the acquisition of k-space. This can lead to distortion of 

VIF solely due to the arrival of the contrast agent arriving while sampling the edge of k-space.  

Roberts, et al., found that this introduces uncertainties in the measurement of KTrans of 

approximately 10% and in excess of 50% in vp (70).  This is consistent with the recent work by 

Cheng (65), which reported that the errors in pharmacokinetic parameter measurements 

associated with incorrect sampling of the initial passage were at least 10%. 

2.6 Previous approaches to measuring the VIF  

Due to the peculiar challenges of VIF measurement in mice, many approaches have 

been put forth in an attempt to solve what has been described as a “notoriously difficult 

problem” (71).  Early approaches to VIF measurement included blood draws (72); these are 

unsuitable for small animal imaging due to insufficient mouse blood volume (71).  Both 

population average VIFs (72) and assumed functional forms (73) have also been used, although 
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these methods are discouraged because they may not appropriately describe the 

kinetics within each individual (55,74) and have been found to provide less reproducible results 

than individual measurements (75). However, it has been argued that population averaging may 

be appropriate in some cases with highly distal tumors, where dispersion of the VIF reduces 

individual variations (76).  It seems unlikely that dispersion comparable to that encountered 

along the entire length of a human leg would be encountered in most murine applications, and 

because of the anatomic specificity, this is not a general solution to the problem of VIF 

measurement.  

One of the most common and natural methods for subject-specific measurement of the 

VIF is to measure in a blood vessel local to the tissue of interest, however, this approach is not 

without the limitations of flow and partial volume effects which can also substantially affect 

quantification (77).  In addition, identification of blood vessels in which to perform the 

measurement is problematic.  Manual identification is both tedious and subjective; while 

automatic techniques (78) may address this issue, they are still unable to address fundamental 

artifacts, such as partial volume and inflow effects, within the data. 

In rats, a highly invasive technique has been used which provides accurate measurement 

of the VIF (79), that involved inserting a shunt off of the carotid artery and running the shunt 

through an RF coil.  This presented none of the difficulties associated with blood vessel 

identification or partial volume effects, but was obviously highly invasive.  There have been no 

reports of the use of this technique in mice, and to do so in a large study would be costly, and to 

use it in a longitudinal study would raise issues of the long term effects of the shunt on the 

subject.  

Recently, some groups have proposed using a reference tissue method, which infers a 

VIF from the contrast agent dynamics in normal tissue (59,63,71,80,81).  This is not 
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susceptible to the limitations of measurements in local blood vessels, but it requires 

assuming a pharmacokinetic parameter value for healthy tissue, such as muscle, and any 

variations of the tissue will be transferred to measurements in tumor.  In addition, this 

technique has not been found to provide superior reproducibility as compared to measurement 

in a local blood vessel (63). 

A direct approach to measurement of the VIF was used by Pickup, et al.(10)  They 

acquired very low-resolution images (24 phase encode lines) of the heart during contrast agent 

injection, achieving a temporal resolution as low as 2 s but with only coverage of a single slice.  

This allows the measurement of the VIF in a structure that is sufficiently large to avoid in-plane 

and through-plane partial volume effects, as well as improved noise performance resulting from 

the large size of the heart.  Images were prospectively gated using an ECG signal.  This 

technique has been used to measure the pharmacokinetics of tumors (10,69), but it requires the 

tumor to be in the same plane as the heart, compromising both tumor coverage and spatial 

resolution of the tumor kinetics. 

Similarly, McIntyre, et al. (60), used a dedicated transceiver coil around the tail to 

perform measurement of the VIF in the tail veins in rat models.  A saturation-recovery protocol 

was used to provide suppression of inflow enhancement; they were able to acquire three slices 

of tumor tissue in the delay between saturation and imaging of the tail.  Imaging in the tail 

allowed high resolution through the use of a small field-of-view (FOV), and the saturation-

recovery approach provided flow suppression.  However, the temporal resolution and coverage 

of the tumor were both limited by the timing restrictions imposed by the saturation preparation 

pulse: only three slices of tumor could be imaged, and temporal resolution for both the VIF and 

tissue was only 6.7 s. 
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A technique to rapidly sample signal from blood vessels was proposed by 

Taylor, et al. (82).  That work used a radial projection acquisition to measure the VIF in major 

blood vessels from individual projections.  This allowed measurement of the VIF each 

repetition period, however, the partial volume correction was crude and approximate.  Flow 

suppression was performed using a saturation slab adjacent to the slice of interest, although at a 

cost of extending the minimum TR of the sequence by over 20 ms. This reduced the rate of 

tissue sampling from once every 9 s to once every 12 s, although the VIF sampling rate 

remained faster than once every 80 ms. 

No MR technique yet proposed has been able to provide high temporal resolution 

measurements of the VIF in mice that are simultaneously insensitive to inflow enhancement 

and partial volume artifacts.  The objective of this work is to develop and test a novel approach 

for VIF measurement in mice while satisfying these criteria.  It is demonstrated that flow 

suppression can be accomplished by applying spatial presaturation during excitation, which 

does not require additional RF pulses, gradients, or delays, providing considerably faster flow 

enhancement than is otherwise possible.  Measurement in the left ventricle allows for 

minimization of partial volume effects.  Also, a constrained reconstruction technique that 

allows measurement from an extremely reduced number of views is used to provide high 

temporal resolution VIF sampling.  Finally, these developments are applied to VIF 

measurement in mice in an in vivo study of reproducibility. 
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3 Specific Aim 1 – A composite RF pulse for flow 

enhancement suppression 

3.1 Introduction 

As previously mentioned in §2.5 , inflow enhancement reduces the sensitivity of the 

MR signal to contrast-related T1 alterations due to the spurious hyperintensity caused by fresh 

spins entering the imaging plane.  The partial replacement of saturated with fully relaxed spins 

substantially reduces the signal sensitivity to T1 changes due to the addition of contrast agent.  

The only effective counter to this artifact is to prepare spins with a non-trivial history of RF 

pulses before they enter the area of interest.   

Flow enhancement suppression is commonly accomplished using a 90° preparatory 

pulse to saturate a wide region around the slice; this fully saturates the incoming magnetization 

and avoids flow enhancement by suppressing the signal entirely.  This prevents vascular 

hyperintensity in images, but for quantification of vascular signals requires a delay to obtain a 

useful signal level from blood, which compromises sequence timing.  The requirement for 

additional delays has compromised several approaches for VIF measurement employing flow 

suppression.  One such acquisition strategy acquires only a single slice containing both the 

vascular structure of interest and the tumor (10).  In an alternative approach, three tumor slices 

may be acquired during the delay between saturation and excitation, as was done by McIntyre, 

et al. (60).  Both approaches ultimately restrict tumor coverage, and the use of discrete RF 

pulses for preparation and measurement, along with their associated gradients, does not make 

optimal use of time during the pulse sequence. 
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Alternatively, presaturation can also be performed at a lower flip angle, which 

requires multiple repetition periods to bring flowing blood into steady state, but which does not 

necessitate the use of a delay.  While a 90° pulse brings spins into steady state after a single 

pulse (83), lower flip angles require multiple pulses (30).  Because spins must experience more 

pulses, this extends the width of the saturation region that spins must pass through in order to 

reach steady state.  However, in this work it is demonstrated that presaturation may be made a 

very efficient part of the pulse sequence by combining the saturation and excitation 

components into a single pulse and exploiting the slice select gradient for signal spoiling.   

3.2 Theory 

3.2.1 Desired slice profile 

 The efficiency of presaturation may be improved by combining separate excitation and 

presaturation pulses into a single composite pulse.  The slice-select gradient may be used to 

spoil the signal excited in the presaturation region.  This may be represented as a single slice 

profile that describes the magnetization produced during both the excitation and saturation 

phases of the pulse sequence.  The regions excited for presaturation, where signal is both 

excited and spoiled, may be represented as a section of the slice profile with uniform magnitude 

and linear phase dependence.  The resulting phase incoherence causes no net signal to be 

produced in this region.  The excitatory component corresponds to a segment with uniform 

magnitude and a constant phase.      

Because relatively shallow flip angles are used, the RF pulse has a Fourier relationship 

to the desired slice profile (84).  One possible slice profile, specified relative to the Larmour 

frequency, (Figure 3-1a) is:  
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 (Eq. 3.1) 

where ω1 is the bandwidth of the coherent region of the slice, and ω2 is the additional 

bandwidth that is excited, but spoiled for flow enhancement suppression.  The rate of phase 

change over distance is given by . 

An alternative profile choice is to keep the direction of the phase gradient the same in 

both saturation regions (Figure 3-1b): 

 (Eq. 3.2) 

This profile is, in theory, equivalent to the first from a flow saturation perspective, however it 

results in a different RF waveform, with some advantages and disadvantages.  
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Figure 3-1 The two basic forms of the flow suppressive slice profile.  

The profile generated by the symmetric pulse (Eq. 3.1) is shown in (a), while the 

antisymmetric pulse (Eq. 3.2) generates (b).  The only difference between the two profiles, 

in principle, is the sign of the phase gradient in the spoiled region on one side. 

3.2.2 RF waveform 

Because the flip angles used in DCE-MRI are relatively small, the slice profile is related 

by the Fourier transform to the desired RF waveform.  For the first slice profile (Eq. 3.1, shown 

in Figure 3-1a), the corresponding RF pulse is (85):  

 (Eq. 3.3) 

The reversal of the phase gradient in the slice profile comes from the symmetry of the two 

components that are time-shifted before and after the first term of the equation: one component 

Magnitude 
Phase 
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) 
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is under-refocused by the rephasing gradient, the other is over-refocused.  The pulse 

which generates the asymmetric slice profile (Eq. 3.2, shown in Figure 3-1b) is: 

  (Eq 3.4) 

We refer to the first pulse as a symmetric pulse because of the shape of its envelope; the second 

pulse shape will be called an asymmetric pulse.  Example asymmetric pulses are shown in 

Figure 3-2 and symmetric pulses are shown in Figure 3-3. 

The composite flow suppression pulse consists of two or three separate sinc pulses, each 

exciting different regions of the slice.    Increasing the phase gradient in the sidebands 

corresponds to increasing the shift between the centers of the pulses, which results in those 

excited components being more over- or under- refocused by the slice rephase gradient.  The 

maximum phase gradient is limited by the duration of the RF pulse.  Compared to the 

symmetric pulse, the asymmetric pulse requires greater peak RF power and a higher RF slew 

rate.  However, because the high-power region of the RF pulse is more compact, with 

appropriate hardware it would be possible to truncate the pulse more aggressively and shorten 

the excitation time.  This possibility was not explored in this work because very short duration 

versions of the asymmetric pulse required more power than was achievable on the system 

hardware. 

The use of a sinusoidally modulated sinc pulse to achieve spatial suppression was 

previously proposed by Doddrell, et al. (86)  We have taken the further step of reducing the 

time for the pulse by incorporating the spatial suppression and excitation components into a 

single composite pulse, which further reduces the time required by the pulse. 

When using a sinc pulse for excitation, one of the fundamental design decisions is the 

number of zero-crossings of the truncated waveform.  In this pulse, the number of zero-

crossings of the component producing the coherent region provides the equivalent tradeoff 
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between pulse duration and slice thickness; this decision restricts the timeshift of two 

component pulses, limiting the maximum value of α.  The saturation region width becomes 

primarily limited by the peak RF power needed and the acceptable duration of the pulse, which 

increases with the width of the saturation regions.  The relative amplitudes and durations of all 

pulse components are fixed in the raw pulse waveform because they are identically scaled 

during excitation to achieve the desired flip angle. For this reason, it is convenient to refer to a 

pulse by the ratio of the widths of the two regions, rather than an absolute width.  We chose a 

sinc pulse with three zero crossings on each side of the central lobe for consistency with the 

equivalent 2D excitation pulse. 

Although only integer values for α and ω2/ω1 are used in this study, this is not a 

necessity.  Because we investigate the effects of the saturation width in this work, the use of an 

integer value for α allows for a natural increment of the saturation width in units of the coherent 

slice thickness.  The use of an integer for both parameters simplifies pulse construction because 

it forces all three components of the pulse to have several zero-crossings in common, allowing 

for simple construction of the pulse with a finite slew rate at the beginning and end of the pulse.  
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Figure 3-2 Asymmetric pulses used in the simulations and measurements. 

The pulses from the asymmetric family that were used are shown; units are specified as 

γB1.  Increasing the width of the sideband (a to c to e and b to d to f) both makes the 

spoiling pulse more narrow and increases its amplitude.  Increasing the separation of the 

spoiling lobe and the main lobe (a to b, c to d, and e to f) corresponds to a larger phase 

gradient in the resulting slice profile. 
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Figure 3-3 Symmetric pulses used in the simulations and measurements. 

The relationships between the sideband width and the degree of spoiling to the RF pulse 

that were mentioned regarding the asymmetric pulse apply here.  The prominent 

imaginary components of the suppression lobes occur because the two pulses are centered 

on a different frequency than the zero of the rotating reference frame; in the asymmetric 

case the imaginary components of the two sub-pulses cancel.  The peak amplitude of these 

pulses is half that of the corresponding asymmetric pulse, as given in the Eq 3.3 and 3.4. 
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3.3 Calculated slice profiles  

3.3.1 Methods 

To validate the theoretical slice profile calculation and to evaluate the artifacts resulting 

from the truncation of the pulses, numerical simulations were performed of the composite RF 

pulses by numerically solving the Bloch equation using Matlab (Mathworks, Natick, MA).  

Simulations were performed by assuming a linear slice-encoding gradient for the duration of 

the RF pulse, which was amplitude-reversed for 50% of the pulse duration immediately 

afterwards.  Stationary spins were simulated at 1024 evenly-spaced points along the gradient 

providing to peak frequency offsets from -42 kHz to +42 kHz when the gradient was present.  

The RF pulses simulated had ω2/ω1 of 1 through 5 and α = 1 and 2; both symmetric and 

asymmetric pulses were used.  The flip angle was 30°; the RF pulse amplitude was calibrated to 

the appropriate area under the slice profile according to a Fourier relationship.  Relaxation 

effects were neglected due to the short (1 ms) pulse duration.  The residual transverse and 

longitudinal magnetization after the rephase gradient was plotted, as was the phase of the 

transverse magnetization.  The flip angle of the slice profile was calculated by taking the 

arccosine of the ratio of the signal in the saturation band to the signal outside the excited 

region; the standard deviation of the flip angle in the saturation band was calculated to estimate 

the ripple in the profile. Example asymmetric pulses used are shown in Figure 3-2 and 

symmetric pulses are shown in Figure 3-3.   

3.3.2 Results 

The calculated slice profiles are flat in each region of the profile, although a slight 

artifact at the transition between the regions is observed in all three profiles, resulting from the 
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truncation of the edges of the saturation pulses.  The ripple in the saturation band was 

equal for both symmetric and asymmetric pulses; it was ±0.15º for pulses with α = 1 and ±0.33º 

for pulses with α = 2.  Greater ripple, as well as an artifact at the transition of the regions, is 

found in the profiles with a greater phase gradient.  The artifacts do not vary with the width of 

the saturation region because they are a Gibbs effect arising from the truncation of the RF 

pulse, as opposed to cross-talk between the coherent and incoherent regions.  The artifacts are 

larger with the greater value of α because the pulse is truncated at a larger amplitude level of 

the time-shifted component.  A slight bowing of the profile is observed as the saturation width 

increases; this is a change of less than 1.5º over the width of the profile shown.  The profiles for 

the asymmetric pulses are shown in Figure 3-4 and the symmetric pulse profiles are in Figure 

3-5.   
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Figure 3-4 Simulated slice profiles with from the asymmetric pulses. 

The transverse magnetization of the slice profiles shows a flat response (a), which is 

matched by the residual longitudinal magnetization (c).  The 4π pulse shows some 

artifacts at the transition between the coherent and the incoherent regions (b,d).  The 

phase profile is identical on both sides of the coherent region (e,f), as both sides are under-

refocused by the slice select gradient. 
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Figure 3-5 Simulated slice profiles from the symmetric pulses. 

The magnitude of the slice profiles is comparable to those produced by the asymmetric 

pulses, although close examination shows that the profiles are slightly less bowed.  The 

phase gradient changes direction on each side of the coherent region, due to one side 

being over-refocused by the rephasing gradient. 
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3.4 Calculated signals 

3.4.1 Methods 

The use of this RF pulse relies upon the assumption that widening the saturation region 

does not change the net signal produced by the pulse.  To test the stability of the signal as the 

sideband width was increased, theoretical calculations were performed using the previously 

tabulated slice profiles. To calculate the net signal, the signal at each point along the slice 

profile was weighted according to the flip angle at that point in space according to the equation 

for a steady state spoiled gradient echo sequence for four scenarios: 

1) Full T1 relaxation 

2) TR of 40, T1 of 700 ms 

3) TR of 40, T1 of 1800 ms 

4) TR of 40, T1 of 3500 ms 

The fixed value of TR was chosen to match the TR used in the institutional small-animal DCE-

MRI protocol, which would be used as the basis for the VIF measurements in the final aim.  

These weighted profiles were integrated to provide the simulated signal that would be 

measured using a sinc pulse (i.e., ω2 = 0) and flow suppressive pulses with ω2 /ω1 = 1 to 5 and α 

= 1 and 2.  The simulated parameters are nominal parameters for in vivo measurement of blood, 

blood with 0.2 mM of contrast agent, and water at 4.7 T.  The flip angle of the profiles was 30º.  

3.4.2 Results 

The expected signal produced by the RF pulses, shown in Figure 3-6 demonstrates 

interesting features of the signal behavior of the slice profiles and shows differences between 

both the symmetric and the asymmetric pulses, as well as between the different levels of 
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spoiling.  First, a drop in signal is seen for composite pulses.  The origin of this 

difference is shown in the slice signal profile from the sinc pulse (Figure 3-7).  The profile 

contains a non-trivial region with flip angles below the nominal flip angle.  In a short TR, T1-

weighted sequence, these components can provide a large fraction of the signal within the slice 

(30).  Effects become more prominent as T1 increases.  However, in the composite pulse the 

transition regions have a large phase gradient and their contribution is substantially reduced, 

producing a smaller overall signal.  

 

Figure 3-6 Theoretical signal as a function of sideband width. 

For all of the pulses, a gradual increase of the signal level is found with increasing 

sideband width due to imperfect spoiling of the signal.  The profiles produced by the 
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symmetric pulses are considerably more stable with changes in the sideband 

width than those produced by the asymmetric. 

When varying the width of the composite pulses, there is an approximately linear drift 

in the signal with the width of the saturation bands.  The signal change over the entire width is 

given in Table 3-1, calculated as the difference of maximum and minimum of signal values for 

each pulse, normalized to the signal produced with ω2/ ω1 = 3.  The symmetric pulses 

demonstrated greater stability with changes in width than the asymmetric pulses, drifting in 

signal by much less over the range of widths considered, indicating that they will likely provide 

better spoiling of out-of-slice signals and that it is more suitable for in vivo imaging.  These 

figures assume a homogenous phantom and do not account for differences in spoiling of 

inhomogeneous structures out of the slice. 

 Full Relaxation Short T1 Medium T1 Long T1 

Asymmetric 

α = 1 

8% 15% 17% 18% 

Asymmetric 

α = 2 

2% 12% 15% 15% 

Symmetric 

α = 1 

2% 2% 3% 2% 

Symmetric 

α = 2 

2% 3% 4% 4% 

Table 3-1 Range of signals generated by the RF pulse over the sideband widths 

considered. 

Values are the difference in the maximum and minimum signal, normalized to the median 

signal 
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Figure 3-7 Slice profile of a sinc pulse. 

(a) shows the flip angle slice profile generated by a sinc pulse, while (b) shows the signal 

generated by each point along the slice.  The horns are due to the low flip angle 

components of the slice profile.  As the specified flip angle is above the Ernst angle for the 

simulation parameters, the region with greatest signal contribution is outside of the 

central region of the slice.  (c) shows the cumulative integral of the signal produced by the 

sinc pulse.  (d) shows the cumulative signal produced by the pulse width a saturation 

width of 2 mm and α = 2.  With the composite pulse, signal from the periphery is spoiled 

and has a relatively small contribution.  For the sinc pulse, the transition region 

contributes a large fraction of the total signal. 



   36 

3.5 Measured slice profiles 

3.5.1 Methods 

All data in this and later sections were acquired on a Biospec 4.7T small animal MR 

scanner (Bruker Biospin MRI, Billerica, MA) using the Paravision 4.0 operating system.  The 

pulses that had been simulated were implemented on the scanner and slice profiles were 

measured to confirm the slice profile simulations experimentally. Excitation was performed 

with the RF pulse being tested, followed by nonselective 90° and 180° pulses, providing a 

measurement of the residual longitudinal magnetization.  Acquisition parameters were: TE = 

12.4 ms, TR = 4000 ms, matrix size = 256, FOV = 3 cm, receiver bandwidth = 85 kHz, flip 

angle = 30°.  The pulse duration was 1 ms, yielding bandwidths of 6210 Hz for coherent band, 

corresponding to a coherent region width of 2.2 mm and sideband widths from 2.2 mm to 11 

mm were used.  Measurements were performed in a 6 cm long, 4.7 mm inner diameter (ID) 

water phantom doped with 0.5 mM gadopentetate dimeglumine (nominal T1 = 400 ms).  

Measurements were made using S116 gradients and a 72 mm ID birdcage coil (Bruker 

BioSpin, Billerica, MA) to minimize effects of RF coil inhomogeneity on the acquisition.  The 

ripple in the slice profile was calculated as before.   

The transverse magnetization was measured by excitation, followed by a hard 180° 

refocusing pulse.  Only the phase was plotted; the measurement of the amplitude was unreliable 

because, unlike the simulations, physical measurements are necessarily an integral over a finite 

spatial region, which would lead to signal dephasing. Acquisition parameters were the same in 

the longitudinal and transverse magnetization measurements.  The same phantom and hardware 

were used as in the measurement of saturation profiles. 
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3.5.2 Results 

The measured slice profiles demonstrate good reproduction of the RF pulse.  Magnitude 

profiles with sideband-to-center ratios of 1, 3, and 5 are shown in Figure 3-8 and Figure 3-9, 

while the phases are shown in Figure 3-10 and Figure 3-11.  As with the simulations, some 

artifacts are visible at the transition between the coherent and the incoherent regions of the slice 

profile, however the shape of the slice profiles matches well with the calculated values.  As 

before, the artifact at the transition is larger for the profile with the greater phase gradient.  The 

standard deviation of the flip angle in the saturation region remained under 1 degree, which 

includes variations from noise.  The mean flip angle produced by the asymmetric pulse with a 

width of 5 mm and a phase gradient of 2π/mm was 28.1º and 29.0º for the 4π/mm pulse.  The 

symmetric pulse produced slightly more accurate flip angles of 29.0º and 29.6º, respectively.  

These measurements indicate that the pulse is produced as desired by the scanner and that the 

desired phase behavior is present. 
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Figure 3-8 Measured saturation profiles from the asymmetric pulses. 

The profiles all display flat saturation regions, although the more heavily spoiled profiles 

show the same Gibbs artifact which appeared in the simulations. 
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Figure 3-9 Measured saturation profiles from the symmetric pulses. 

The profiles produced by the symmetric pulses show similar behavior to those generated 

by the asymmetric pulses.  The width of the saturation region increases as desired, and is 

the same for pulses with both degrees of spoiling. 
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Figure 3-10 Measured transverse profile phases from the asymmetric pulses. 

The phase profiles from the asymmetric pulses display the desired combination of 

coherent and spoiled regions.  The linear phase gradient continues past the desired 

excited width due to the sidelobes of the RF pulses that have a meaningful phase but low 

amplitude.  Slightly more ripple is noticed in the phase profile of the more heavily spoiled 

profiles, resulting from the greater Gibbs ringing artifact.  Shaded regions indicate 

boundaries of the primary excited regions. 
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Figure 3-11 Measured transverse profile phases from the symmetric pulses. 

As with the asymmetric pulses, the symmetric pulses produce the desired phase behavior. 

3.6 Numerical simulations of flow 

3.6.1 Methods 

Simulations were also performed to investigate the approach of flowing spins to steady 

state when excited with the proposed RF pulse.  A set of discrete spins were used, which 

moved linearly through the excitation region with time.  A train of RF pulses that affected the 

moving spins was simulated via the Bloch equations, and the signal produced by the spins at 

each spatial point was calculated over the entire excitation region.  The transverse 
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magnetization after each RF pulse was used to construct the signal profile across the 

slice.  Simulation parameters were:  TR = 40 ms, flip angle = 30º, T1 = 1800 ms, gradient 

strength = 140 kHz.  Flow rates from 1 mm/s to 20 mm/s were tested and a pulse with α = 2 and 

ω2/ω1 = 9 that produced a slice thickness of 1 mm was used. 

3.6.2 Results 

The numerical simulations of flow produced signal profiles along the slice direction, 

shown in Figure 3-12.  The profiles demonstrate that the magnetization reaches its steady state 

value before arriving at the coherent portion of the slice for velocities of up to 10 mm/s, with 

the combination of flip angle and TR that were tested.  This velocity is somewhat less than 

average velocities of 23 cm/s which have been reported in the aortas of mice (87), however, it 

must be considered that linear velocity in the heart will be slower because the ventricle is larger 

than the aorta and that the width of the saturation region is amplified by tortuous path blood 

must travel before entering the ventricle.  More rapid flows may prevent spins from reaching 

steady state before reaching the coherent center, resulting in incomplete suppression.  A 

cumulative signal profile for the same three velocities is shown in Figure 3-13.  Simulations 

indicate that the use of this pulse is able to improve the sensitivity of flow-affected 

measurements, but testing in realistic applications is warranted. 
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Figure 3-12 Signal profile in the presence of flow. 

(a) The signal profile along the slice is shown for a spatial presaturation pulse at several 

velocities.  Flows below 10 mm/s are fully in steady state by the time they reach the center 

of the slice for this protocol.  More rapid flows are not in steady state and will have a 

reduced sensitivity to contrast related signal changes. (b)  The signal profile in the 

absence of flow is shown. 
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Figure 3-13 Cumulative signal of the profile generated by RF pulse in the presence of 

flow. 

The signal from the flow-related peak, although large in magnitude, is attenuated by the 

incoherence of the sidebands.  The most rapid flow, where spins have not reached steady 

state prior to entering the coherent portion of the slice, displays considerably flow-related 

hyperintensity.  Some residual signal, constituting up to 30% of the total signal, remains 

when flow travels in a linear path.  A greater degree of signal spoiling would reduce this 

effect.  No amount of increase in the width of the saturation bands will remove this 

spoiling because it represents the signal requiring a distance to reach steady state which is 

long compared to the spoiling, but not necessary the saturation width. 

3.7 Phantom measurements of flow 

3.7.1 Methods 

The ability of the RF pulse to suppress enhancement due to linear flow was tested in 

phantom.  A silicone catheter was embedded within a bovine gel phantom (nominal T1 of gel 
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was 700 ms, nominal T1 of the water in the catheter was 3000 ms).  Flow was 

introduced in the catheter using a power injector (Harvard Apparatus, Boston, MA) at several 

rates.  Composite RF pulses with α = 1 and 2 and ω2/ω1 = 1 to 5 were used for both symmetric 

and asymmetric pulses.  For RF pulse, spoiled gradient echo images were acquired of the 

phantom with flow for 1 minute, followed by 30 seconds without flow.  No dummy scans were 

acquired, but the initial frame after the injector was started was not included in signal averaging 

to account for transitory signal states.  Acquisition parameters were: TE = 2.75 ms, TR = 20 

ms, flip angle = 25°, matrix size = 256x192, FOV = 4.1 x 3.1cm, receiver bandwidth = 80 kHz, 

pulse width = 1 ms, slice thickness = 1 mm.  Flow rates ranged from 0.05 mL/min (average 

linear velocity of 0.6 mm/s) to 1 mL/min (12 mm/s).  The signal for each pulse with and 

without flow was measured in an ROI drawn around the interior of the catheter.  The flow 

related enhancement was calculated as the percent increase in the signal amplitude due to flow.  

Additionally, a region of interest was drawn in the gelatin at the center of the phantom and the 

mean signal within that ROI calculated for all pulses used.  Measurements were made with 

BG6 gradients and a 35 mm ID birdcage coil.  The choice of the smallest available birdcage 

was to maximize the SNR available. 

3.7.2 Results 

The RF pulse effectively suppressed flow enhancement in phantom.  A 5 mm saturation 

width reduced the signal of flowing spins to slightly less than that of stationary spins for all but 

the flow of 1 mL/min, as illustrated in Figure 3-14, indicating effective flow suppression.  

Increasing the phase gradient of the spoiled region from 2π/mm (Figure 3-15ac) to 4π/mm 

(Figure 3-15bd) provided slightly greater reduction in flow enhancement for most velocities, 

due to better suppression of the signal at the edges of the slice, although exceptions are noted.  

The symmetric pulse was comparable to the asymmetric pulse in the effectiveness of reducing 
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inflow enhancement, although the stability of the signal in the gel and of the baseline 

signal was considerably better with the symmetric pulse than with the asymmetric pulse.  The 

CV of the signal in the gel (Figure 3-16) with the asymmetric pulses were 41% and 23% for α = 

1 and α = 2, respectively, while the symmetric pulses each had a CV of 4%.  The fluctuations in 

the baseline signal of the tap water were similarly superior with the symmetric pulse: 8% and 

7% vs. 18% and 13%.  The signal change with sideband width is not the generally linear 

behavior observed in the simulations, although the stability advantages of the symmetric pulse 

are still present.  Deviations from linear behavior may be the result of imperfections in the 

phantom, or in the differences between the pulse as idealized and as actually produced.  We 

observe the decrease in signal relative to the sinc pulse of 40%, which is comparable to the 

signal decreases of 45-55% that were found in simulations. 
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Figure 3-14  Images of the flow phantom acquired during 1 mL/min flow. 

The signal of the flowing water inside the catheter fades away as the width of the sideband 

increases and the signal enhancement artifact is reduced in strength.  The inset shows a 

magnified view of the catheter; signal was measured on the interior of the catheter and 

contained only water. Instability with sideband width in the signal from the asymmetric 

pulse is observable in the surrounding gels. 



   48 

 

Figure 3-15  Plot of the signals in the catheter during flow. 

The percent signal increase in the presence of different rates of flow, relative to the 

baseline signal, is shown for two different choices of the sideband phase gradient (a vs. b 

and c vs. d), as well as for asymmetric vs. symmetric profiles (a and b vs. c and d).  The 

composite RF pulse provides effective flow suppression across a wide range of flows.  

Volumetric flows are specified to avoid inconsistencies associated with non-plug flows.  

The presence of non-plug flow in measured data makes direct comparison to simulations 

difficult to perform meaningfully. 
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Figure 3-16 Signal of stationary structures in the phantom. 

The stability of the signal of stationary structures in the phantom is shown is shown for 

two different choices of the sideband phase gradient (a vs. b and c vs. d), as well as for 

asymmetric vs. symmetric profiles (a and b vs. c and d).  More stable behavior is observed 

with the use of the symmetric pulse, as well as the signal decrease relative to a sinc pulse, 

as was found in simulations. 

3.8 In vivo measurements 

All experiments and procedures, in this and later sections, were approved by our 

Institutional Animal Care and Use Committee, which is accredited by the Association for the 

Assessment and Accreditation of Laboratory Animal Care International. Respiratory 

monitoring of subjects was performed (Model 1025 Monitoring & Gating System, Small 
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Animal Intruments, Inc., Stony Brook, NY) and animals were kept at respiratory rates 

of 20-30 breaths per minute.  Constant temperature was maintained with a water-heating and 

recirculation system. 

3.8.1 Methods 

3.8.1.1 Heart and vessel images 

To test the ability of the pulse to perform flow suppression in vivo, short axis images of 

the heart were acquired using with a spoiled gradient echo sequence.  Cardiac motion artifacts 

were suppressed by averaging.  Acquisition parameters were:  TE = 1.7 ms, TR = 40 ms, matrix 

size = 128x128, FOV = 3x3 cm, receiver bandwidth = 80 kHz, number of averages = 20, flip 

angle = 35°, pulse duration = 1 ms, slice thickness = 1 mm. Symmetric and asymmetric 

composite RF pulses with α = 1 and 2 and ω2/ω1 = 1 to 5 were used, as well as a sinc pulse.  

ROIs were drawn on the interior of the left ventricle and on the fat in the shoulder to measure 

the signal change with the width of the saturation region. 

Additional in vivo measurements were performed using the symmetric pulse with α = 2 

for wider saturation bandwidths and at two anatomic locations. Comparisons were made 

between structures with linear and tortuous flow to investigate the possibility of signal bias due 

to incomplete spoiling of the initial signal peak.  Separately acquired short axis images of the 

heart and an abdomen, in which the inferior vena cava (IVC) was visible, were acquired using a 

spoiled gradient echo sequence in separate acquisitions.  Acquisition parameters were:  TE = 

1.7 ms, TR = 40 ms, matrix size = 128x128, FOV = 3x3 cm, receiver bandwidth = 80 kHz, 

number of averages = 20, flip angle = 30°, pulse duration = 1 ms, slice thickness = 1 mm. 

Composite RF pulses with α = 2 and ω2/ω1 = 1 to 7 were used, as was a sinc pulse.  The signal 
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in each image was normalized to the signal of muscle from each slice.  Average 

signal intensities of the blood within the left ventricle and the IVC were measured. 

3.8.1.2 VIF measurement 

The change in sensitivity to the presence of contrast agent with and without the 

presaturation was demonstrated by interleaving VIF acquisition in the heart with a flow 

suppressed pulse with measurements made with a sinc pulse in the same anatomy. Baseline T1 

measurements were performed using a variable flip angle protocol with a spoiled gradient echo 

sequence.  Acquisition parameters common to all images were: TE = 1.7ms, TR = 40 ms, 

matrix size = 128x96, FOV = 3x3 cm, slice thickness = 1 mm, receive bandwidth = 80 kHz, 

number of averages = 10.  For the composite RF pulse, which was symmetric, the saturation 

width was 5 mm and α = 2.  The flip angles used for the T1 measurement were 10º, 20º, 30º, 

and 40º.  The T1 was calculated by fitting the measured signal to the signal equation with a 

nonlinear least-squares fit (31).  After T1 measurement, a 300 µL bolus of 83 mmol contrast 

agent (gadopentetate dimeglumine) was injected through a tail vein catheter.  Acquisition 

parameters were the same as the variable flip angle measurement, but only a flip angle of 30º 

was used.  Dynamic images were acquired beginning approximately 30 seconds after injection.  

Image acquisition with each pulse was interleaved.   

3.8.2 Results 

3.8.2.1 Heart and vessel images 

In the first set of anatomic images where symmetric and asymmetric pulses were 

compared, as the width of the sideband increases, the signal of the blood in the ventricle 

decreases to be similar to that of the surrounding myocardium, again indicating that the flow 

enhancement effect is being suppressed, as shown in the progression of images in Figure 3-17.  
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Images with the 2π/mm show considerable banding artifacts that are not visible in the 

images with the larger phase gradient.  This appears to be due to better spoiling of changes in 

the out-of-slice signal with the larger phase gradient.  It was not clear if the signal in the left 

ventricle had stabilized, so supplementary measurements were performed with wider saturation 

regions, and are presented at the end of this section. 

 

Figure 3-17  Anatomical images acquired with the flow suppressive pulse. 

Signal in the blood is, like signal in the catheter, shown to decrease with the increasing 

width of the sideband.  Signal fluctuations are again visible with the asymmetric pulse, 

but not with the symmetric pulse, which effectively suppresses flow without artifacts.  

Arrows indicate where signal was measured. 



   53 

The symmetric pulse produces images with a considerable improvement in 

the stability of the normal tissue signal as compared to the asymmetric pulse (Figure 3-18).  For 

the 2π/mm asymmetric pulse, the coefficient of variation of the ROI in normal tissue over the 

width of the sideband is 21.7%, while for the 4π/mm asymmetric pulse it is 15.0%.  The 

coefficients of variation for the 2π and 4π symmetric pulses the coefficients of variation are 

5.7% and 3.5%, respectively.  This is again consistent with the simulations and the phantom 

data. 

 

Figure 3-18  Plots of in vivo signal in the left ventricle and in solid tissue as the width of 

the presaturation region is increased. 
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For all pulses, use of the flow suppressive pulse reduces the amount of flow 

enhancement.  Consistent with previous observations, the symmetric pulses produce more 

stable signal levels in the stationary tissue.  

 Because it was inconclusive if the 5 mm width was sufficient to minimize flow 

enhancement, another set of images were acquired using only the symmetric pulse with α = 2.  

In this set of images, the signal of the blood in the ventricle and IVC again decreases with the 

sideband width in vivo, shown in Figure 3-19, indicating a decrease in flow-related 

enhancement.  The signal from fat was stable as the width was varied (4% CV) while the 

structures with flowing blood converged to a stable signal after 5 mm of presaturation. The 

ultimate stability of the signal is a strong indicator that spins are in steady state by the time they 

reach the coherent region.  The bias suggested in simulations with high flow velocity may also 

be manifest in inferior vena cava and the other veins in the cardiac slice. These vessels remain 

hyperintense even when the blood in the heart has reached a highly saturated state, which is 

possible evidence for residual flow enhancement.   
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Figure 3-19  Comparison of images acquired at the IVC with the heart. 

Images show the IVC and heart of a mouse acquired with a sinc pulse (a) and the flow 

suppressive pulse over multiple sideband widths (b-d).  Flow suppression is visible even at 

narrow bandwidths and a 5mm suppression band is sufficient to suppress inflow 

enhancement even within the heart at a TR of 40 ms.  The signal from fat is stable as the 

sidebands are changed, indicating that the signal from those regions is effectively 

suppressed, as shown in part (e).  The geometry of the cardiac slice, shown in (f), shows 

that the saturation region covers the majority of the lungs and heart, indicating that the 
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pulse may be particularly suited to flow suppression in the heart, due to the 

extended period of time blood stays within the saturation region in this case. 

3.8.2.2 VIF measurement 

The measured T1 values of flowing blood differed substantially between the 

conventional sinc pulse and the flow suppressive pulse (Figure 3-20).  The former gave 196 ms, 

while the later gave a measurement of 1739 ms. The value measured with flow suppression is 

consistent with the values reported by Pickup, et al. of 1780±60 ms for mouse blood at 4.7T 

(10), another indication that the applied suppression sufficiently eliminates inflow enhancement 

in vivo.   
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Figure 3-20 T1 mapping signal curves. 

The signal measured with the non-flow suppressive sinc pulse continues to increase with 

flip angle even to a fairly large angle, characteristic of a short T1 tissue.  This is not the 

case of the signal measured with the flow suppressive pulse. 
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Figure 3-21  Signal time courses measured in the heart with conventional and flow 

suppressive excitation. 

The baseline (pre-injection) signals are shown as horizontal lines.  The baseline signal for 

the sinc pulse is considerably larger than that of the flow suppressive pulse, due to the 

short apparent T1 without flow suppression.  Because of this, the same amount of contrast 

agent causes a much smaller signal increase when using the conventional RF pulse. 

Comparison of the post-injection signal time courses of the two pulses demonstrates 

that the loss of sensitivity caused by inflow enhancement (Figure 3-21) with conventional 

excitation is mitigated by the composite RF pulse.  Although the sinc pulse produces a larger 

baseline signal due to the flow enhancement, the introduction of contrast agent produces only a 
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25% increase in the signal, while that same contrast agent concentration showed a 

450% increase in signal with flow suppression. 

3.9 Discussion 

Flow suppression is a key component of the planned VIF measurement in the heart.  

This is well demonstrated by comparing the two VIFs measured in the heart, where much of the 

structure of the VIF is lost without flow suppression.  However, the RF pulse developed here 

allows for effective flow suppression without requiring additional time in the pulse sequence. 

The coherent region at the profile center is the source of the signal, and maximum 

sensitivity to contrast agent is achieved when spins are at steady state there. Imperfect spoiling 

may result if the applied phase gradient in the saturation regions is insufficiently sharp, causing 

residual flow enhancement for linear flow.  Residual signal will be maximized if the flow 

travels in a straight line perpendicular to the slice.  This effect was prominent when comparing 

signal in the IVC, a structure with linear blood flow, to the left ventricle, where blood must 

pass through the lungs and other three cardiac chambers before entering.  The tortuous path 

blood takes through the saturation region near the heart may make the pulse particularly 

suitable for use in this region.  The signal from the IVC was consistently higher than the signal 

measured in the left ventricle, with both signals were normalized to muscle.  The veins in the 

thoracic slice containing the heart remained hyperintense even with relatively wide saturation 

regions. 

Two types of waveforms were studied: both symmetric and asymmetric.  They differ in 

that they produce slice profiles with different spatial dependence of the phase in the slice 

profiles.  The symmetric pulse has a peak power requirement which is half that of the 

asymmetric pulse and produces apparently more effective spoiling in vivo, as well as providing 

a more stable signal.  For this reason, the symmetric pulse was preferred for VIF measurement.   
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Two levels of spoiling were also tested.  Greater degrees of spoiling were not 

tested due to a desire to match the pulse duration to that achieved with a conventional sinc 

pulse used for imaging. Increasing the phase gradient further would require extending the 

duration of the RF pulse.  Increasing the phase gradient without lengthening the RF pulse 

would cause the main lobe of the suppression component to be truncated, resulting in severe 

slice profile artifacts.  However, the stability of the signal in normal tissue indicates that image 

quality can be maintained with the timings used. 

The pulses used in this experiment all had a fixed duration of one millisecond and a 

coherent slice thickness of one millimeter.  With these parameters fixed, the design of the RF 

pulse was limited in two respects.  As previously mentioned, the amount of phase change is 

limited by the shifting of the centers of the component pulses.  The maximum width of the 

sidebands which can be generated is limited by the available RF power of the system because 

the narrower RF component pulses that generate wider suppression bands require greater 

amplitude to produce the same tip angle.  These constraints were able to be satisfied on the 

available system, however, different systems have somewhat different limitations, and some 

modification of the duration of the RF pulse may be required. 

With the development of this pulse, we have provided an efficient way for bringing 

blood into the appropriate steady state magnetization prior to its arrival in the left ventricle.  

However, while this addresses one limitation of VIF measurement, the temporal resolution 

which could be attained for the measurement is still limited by the need to acquire k-space for 

the measurement.  This difficulty will be addressed in the next section. 
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4 Specific Aim 2 – Constrained reconstruction analysis 

for rapid VIF sampling 

4.1 Introduction 

High temporal resolution is desired for VIF sampling to achieve accurate or 

reproducible measurements of pharmacokinetic parameters.  A frequently cited target sampling 

rate is taken from a simulation study by Henderson, which found that a sampling rate of at least 

once per second is required, in humans, to obtain uncertainty bounds of 10% on all three of the 

parameters in the extended Toft’s model for parameter values typical of breast cancer (39), and 

other researchers have also found similarly demanding requirements (68).  No corresponding 

estimate of the required temporal resolution for small animal DCE-MRI has been published.  It 

is expected to be higher due to the faster VIF dynamics which occur in mice, although the 

necessary temporal resolution is not obvious because tissue permeability does not increase 

proportionally in mice. Additionally, sampling in a short time frame reduces motion-related 

inconsistencies and prevents the potentially large errors which can occur due to mismatches 

between the k-space acquisition pattern and the bolus arrival (70). 

However, achieving a temporal resolution of even one second with sufficient slice or 

volume coverage is challenging with conventional acquisition techniques.  As will be discussed 

in the next section, most constrained reconstruction techniques are able to produce acceleration 

factors of about eight.  Reconstruction of a full image with a full complement of anatomical 

detail from highly undersampled data is a difficult problem.  However, simplification is 

possible when the spatial details are not of interest and the objective is simply the mean signal 

in an ROI. We have proposed an algorithm, called cardiac anatomy constrained, temporally 
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unrestricted sampling, or CACTUS, to perform highly constrained reconstruction 

which is capable of extracting the desired information from as little as a single projection. 

4.2 Techniques for acquisition acceleration 

Achieving high temporal resolution can be difficult in MRI, and numerous methods 

have been proposed to exploit redundancies and correlations in MR data in order to reduce the 

data required for image reconstruction.  Many types of constraints and assumptions have been 

exploited, ranging from strategic undersampling of dynamic data (88-90), or sparsity 

assumptions (91-97), to modeling the image as generalized series (98-103).   Parallel 

imaging (104) which relies upon using multiple receive coils to introduce additional encoding 

may also be used to accelerated image acquisition. 

Generalized series type approaches, such as reduced-encoding imaging with 

generalized-series reconstruction (RIGR), were originally put forth by Liang (99), although 

many other investigators have applied the basic approach in which a dynamically acquired, 

undersampled, portion of k-space is extrapolated to be most consistent with a reference image 

(105).  Some variations also use multiple reference images, such as ones acquired before and 

after administration of contrast, which leads to more accurate quantification and more reliable 

results (106).  This approach, called two-reference RIGR (TRIGR), has been tested for DCE-

MRI purposes.  Good results were obtained with 64 and 32 phase encode lines, but at an 

acceleration factor of 16 or greater pharmacokinetic parameter maps were rendered 

unusable (28).  In qualitative imaging situations, such as investigating the motion of the tongue 

during speech (105), reasonable results have been achieved with only 8 phase encode lines. 

Parallel imaging uses multiple coils with different sensitivity profiles to achieve 

acceleration (104).  While useful in many applications, the achievable acceleration is limited by 

the number of coils used, and dedication of coils to sampling the heart with high acceleration 
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consumes receive channels that could be used to improve tissue sampling.  While 

potentially a viable tradeoff, it is also a costly one because improvements in sampling the VIF 

would come at the cost of sampling the tissues of interest.  

Highly constrained backprojection (HYPR) was originally designed for magnetic 

resonance angiography (MRA) and creates a composite image from a set of undersampled data 

and then retrospectively interpolates a high temporal resolution set of images (95).  It has the 

ability to produce extremely high acceleration factors (~100) for the reconstruction of 3D 

sparse data sets.  In the presence of enhancing background tissue, as would be encountered in a 

DCE-MRI experiment, a modified approach must be used, such as iterative HYPR (I-HYPR) 

(96).  This modified technique has demonstrated lower acceleration factors, requiring as many 

as 32 projections per time frame to reconstruct an image (96). 

Compressive sensing is a relatively new technique that achieves high acceleration 

factors by using pseudo-random acquisition strategies to effectively transform aliasing artifacts 

into noise, which is then eliminated by a non-linear reconstruction (91,93).  It relies on the 

assumption that there is a sparse representation of the image being reconstructed in some 

parameter space; a frequent choice is a wavelet basis.  Maximum acceleration is determined by 

the level of detail and structure in the image.  Specifically, compressive sensing techniques 

require 2-5 times as many samples as there are non-zero coefficients in its sparse 

representation; even at its extreme limit compressive sensing cannot reconstruct a reasonable 

image from fewer than about a dozen k-space lines (93). 

Very large acceleration factors have also been achieved with a technique called SLIM 

(spectral localization by imaging) (107).  It used a reference image to provide a basis for 

anatomic segmentation, although the reference was not directly used in the reconstruction.  

This allows sifting different spectra from distinct spatial regions.  This technique forsakes any 
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knowledge of the structure within the regions, but requires minimal data (as few as 

two phase encode lines) to sample the structures of interest.   

We follow in the approach of SLIM by achieving highly accelerated sampling by using 

anatomical constraints.  Like HYPR, we are able to retrospectively interpolate high temporal 

resolution data from individual projections that compose a complete, low-temporal resolution 

acquisition.  SLIM processes spectroscopic data, and thus in order to achieve spatial separation 

at least two acquisitions with different phase encoding are acquired.  We are not interested in 

spectroscopic data and in principle only require a single projection.  However, preliminary 

simulations (§4.5) indicate improved robustness with the use of multiple projections. 

4.3 Theory 

4.3.1 Derivation 

This structure-oriented reconstruction is developed in the context of a radial data 

acquisition scheme.  Through the projection-slice theorem, a spoke in k-space is related to the 

full image by 

  (Eq. 4.1) 

  (Eq. 4.2) 

where Sk,t is the spoke in k-space at angle θ at time t, F is the one-dimensional Fourier 

transform along the spatial dimension,  Pt is the projection at angle θ, and the position along the 

projection is given by r, R is the Radon transform, and St(x,y) is the signal intensity distribution 

in the spatial domain.  Solving this system of equations for a full set of projections reconstructs 

the image and is the approach used in a conventional algebraic reconstruction technique, where 

the image reconstruction equation is expressed as a matrix whose coefficients are determined 

by ray-tracing through a grid (108).    
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To simplify the system of equations, reducing the number of unknowns and 

decreasing the number of projections required, we partition the image into N ROIs, defining the 

indicator function for the ith ROI as: 

  (Eq. 4.3) 

We assume that the ROIs enhance smoothly, in the sense that, for a voxel at position x,y 

located within the ith partition:  

It(x, y) = wi(x,y,t)I0(x, y)  (Eq. 4.4) 

where I0 is a reference image of the anatomy and wi(x,y,t) is a smooth contrast modulation 

function for the partition that relates the dynamic images to the reference. We can expand this 

function as a Taylor series in the spatial dimensions: 

  (Eq. 4.5) 

where xi and yi denote the point around which the Taylor series is evaluated. 

Truncating this series reduces the number of coefficients required to describe the 

dynamic coefficients.  This can be considered a form of modeling the image as a set of partially 

separable functions (109).  For our purposes, it suffices to keep only the spatially constant term 

of the Taylor series 

  (Eq. 4.6) 

This physically corresponds to assuming homogeneous enhancement within the ROI. Spatial 

details are not needed for VIF measurement, only the mean signal within the blood in the left 

ventricle. Combining the above equations leads to 
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 (Eq 4.7) 

The linearity of the Radon transform allows bringing the spatially constant, temporally varying 

value of wi outside of the transformation.  This produces a set of linear equations in a number 

of unknowns equal only to the number of partitions. 

To solve the system of equations, we express the equations as a matrix 

  

 (Eq. 4.8) 

assuming N segments and recognizing that the signal and Radon transform terms are vectors 

with a length equal to the number of readout points.  Modifying the algorithm to include 

projections at multiple angles is straightforward: 

 

 (Eq. 4.9) 

where a horizontal line implies concatenation and assuming M projection angles.  Denoting the 

matrix containing the reference data as A, the measured signal vector as P, and the weighting 

coefficient vector was w, we have 
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 (Eq. 4.10) 

Because there is one equation for each point along the readout direction, the set of 

equations will be overdetermined.  The system of equations may be solved in the least-squares 

sense (110) to produce coefficients describing the dynamic behavior of the image.  Specifically, 

denoting the pseudoinverse of A as A+, we may solve for w: 

 (Eq 4.11) 

An illustration of the relationship between the segmentation, the derived basis functions, and an 

an unknown image is shown in Figure 4-1. 

 It must be noted that the use of this algorithm does not lead to the reconstruction of an 

image, but rather to mean signals in an ROI.  For our application, we are only concerned with 

the mean signal, and the restriction is appropriate. 

After the weighting coefficients for the regions of interest have been determined from a 

given projection, the signal in that ROI can be estimated 

 (Eq. 4.12) 

where the bar represents spatial averaging.   
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Figure 4-1 Schematic representation of the CACTUS algorithm. 

An example application of the constrained reconstruction algorithm is diagrammed in the 

figure.  A reference image is segmented into several distinct structures; these components 

of the image can be transformed into basis vectors by numerically calculating the Radon 

transform of the image.  Then, a single projection can be acquired of the same anatomy 

with different contrast (i.e., after the introduction of contrast agent).  A least squares fit of 

the shapes from the reference image, as described by the basis functions, to the measured 

projection, allows for the reconstruction of the unknown images. 

4.3.2 Comparison to other techniques 

The technique described here shares many common themes with other approaches for 

reconstruction from undersampled data, most notably SLIM.  Both CACTUS and SLIM use an 
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anatomical segmentation to guide interpretation of a very sparse set of phase encode 

lines. However, CACTUS has several features which make it more suitable to application in 

dynamic imaging.   

The original SLIM algorithm used Cartesian phase encoding to spatially separate 

signals from different regions, while in this work the Radon transform was used.  This 

difference does not affect the derivation shown; the equations are valid for any linear 

transformation of the data.  However, with the Radon transform the projection angle used can 

be varied while still obtaining the center of k-space.  This allows for the acquisition of fully 

encoded images that may be used as references and allows the measurement of a low-temporal 

resolution VIF to serve as a reality check on the constrained reconstruction.  While it would be 

possible to vary the phase encode line used with the Fourier transformation, exclusion of the 

central region of k-space from measured projections would potentially compromise the SNR of 

the signal curves produced. 

A more substantial difference is that CACTUS uses a true reference image to generate 

basis functions, unlike SLIM, which uses a uniform image.  In the notation used here, this is the 

same as assuming that I0(x, y, t) = 1.  Using a measured reference image has two effects.  One 

is that it causes w to be defined relative to the signal in the reference image.  A value of 1 

corresponds to the same signal as in the reference image, a value of 2 corresponds to the signal 

doubling, etc.  Changing the reference image redefines w.  This is of practical importance if the 

reference image is updated during data acquisition.   

The second consequence is that, because w describes the voxel-by-voxel scaling of the 

image being reconstructed with respect to the reference image, it implicitly accounts for some 

forms of variation in the image.  Spatially varying, temporally constant multiplicative factors, 

such as the background phase of the image, are inherently included in the reference image.  For 
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example, if two voxels have a background phase that varies by 90°, then signals of 1 

and i will become 2 and 2i; which are different absolute changes but the same relative changes. 

This approach is expected to provide more resistance to background phase variations than the 

assumption of fully homogenous signal that was used in SLIM because susceptibility-related 

phase variations across the image can lead to signal fluctuations in tissue when the projection 

angle changes.  A comparison of reconstruction using both the CACTUS approach to reference 

images and the SLIM approach will be performed in §4.13 . 

Ideally, uncertainty due to reconstruction errors should be less than the background 

noise of the image.  Image SNR levels cited for DCE-MRI protocols are on the order of 8 (31) 

to 10 (111); this implies that noise and motion-related fluctuations should be no more than 10% 

of the signal, and preferably less.  We will generally desire 5% uncertainty in this work for 

signal estimates to keep reconstruction-related artifacts below the noise level of the image. 

4.4 Numerical phantom simulations 

4.4.1 Methods 

Dynamic enhancement was simulated in a numerical phantom to demonstrate the proof-

of-principle that the CACTUS algorithm can produce accurate signal measurements even in the 

presence of imperfectly homogenously enhancing tissue.  The feasibility of the CACTUS 

algorithm was tested in a dynamic numerical phantom, shown in Figure 4-2a, containing a 

small region that rapidly changes to model the vasculature and several large slowly enhancing 

regions that represent normal tissue. Each voxel of the phantom was assigned an independent 

T1, KTrans, and ve chosen from a Gaussian distribution with a standard deviation of 25% of the 

mean of that parameter for that tissue type.  Enhancement was simulated by assuming the two-

parameter Tofts model and a biexponential AIF: 
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 (Eq. 4.13) 

with t in minutes and Cp in mmol.  Values are taken from Padhani, et al.(112), modified to give 

greater differences between tissues (Table 4-1). A radial acquisition was simulated with TR = 

40 ms, flip angle = 30°, number of spokes = 384, matrix size = 512 x 512 over a time of 250 s.  

Fully encoded images were acquired at a rate of 15.4 s per image; this is not a reasonable 

sampling rate for VIF measurement but serves to highlight the temporal resolution achieved by 

the constrained reconstruction algorithm.  Both filtered backprojection (FBP) and the 

constrained reconstruction algorithm were used to measure the mean signal within each ROI. 

The reference image used in constrained reconstruction technique was a fully encoded pre-

contrast image and reconstruction was performed on each individual projection.  Signals from 

both techniques were compared to the true value. 

 T1 KTrans ve 

Blood 1800 ms - - 

Myocardium 2100 ms 0.25 min-1 0.2 

Muscle 1600 ms 0.125 min-1 0.5 

Fat 400 ms 0.05 min-1 0.4 

Table 4-1 Parameter values used in the simulation 

4.4.2 Results 

The numerical simulations of dynamic uptake showed very close agreement between 

the true signal means and those calculated through CACTUS; the difference between the true 

and the constrained reconstruction signal for any ROI and any time point was 0.8%.  The 

standard deviation of signal in the ROIs ranged from 14% to 25% of the mean.  Measurement 
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of signals from fully encoded filtered backprojection images, while suitable for the 

slower enhancing tissues, was not able to accurately measure the peak of the simulated VIF and 

significantly altered the initial rise of the signal and caused a loss of the peak signal, as shown 

in Figure 4-2b.  Even though the heterogeneity in signal across each ROI was substantial, the 

constrained reconstruction approach provided an accurate measurement of the signal mean.   

The presence of T1 heterogeneities prevents the spatially averaged signal from being a 

representation of the true concentration level.  For this reason, calculations were not undertaken 

to test whether mean values would lead to mean estimates of the original pharmacokinetic 

parameters.  Because blood is a fluid that is continually mixed in vivo, heterogeneous T1 

behavior is not anticipated to present a problem for VIF measurement within the left ventricle. 

 

Figure 4-2 Numerical simulation of dynamic uptake. 

The simulated enhancement time courses in the four tissues are plotted.  In all cases, there 

is excellent agreement between the constrained reconstruction and the true value of the 

signal; the true signal and constrained reconstruction are visually instinguishable.  The 

VIF (b) shows distortion of the initial peak as a result of the prolonged sampling required, 

although it is able to characterize the signal of the solid tissues well. 
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4.5 Simulation of segmentation errors 

CACTUS relies upon an anatomic segmentation. However, segmentation based on 

anatomical features may not produce an accurate functional representation of the image. 

Therefore, the impact of segmentation errors on measurements produced by the algorithm was 

investigated via simulation.  Although a theoretical description of all possible segmentation 

errors is beyond the scope of this work, it is possible to consider example cases which illustrate 

the effects of errors and provide guidance as to their effects. 

The effects of segmentation errors can be quantified by assuming that there is a true 

segmentation that describes the image dynamics.  In this case, there is a true segmentation .  

A second segmentation that contains some error is given by .  Both segmentations can be 

used to produce a system matrix from a reference image I0: 

 

The true segmentation accurately describes the changes to the image.  As a result, given 

contrast weighting terms, the measured projection can be constructed: 

 (Eq. 4.14) 

For the flawed segmentation, this does not hold.  However, it is still possible is to construct an 

imperfect estimate of the weighting functions given a projection: 

 (Eq. 4.15) 

Combining these two matrices allows describing errors in segmentation in terms of errors in 

contrast change: 

 (Eq. 4.16) 

This same relationships holds when multiple projections are used in the reconstruction, with the 

final expression being identical (although the form of and differ). 
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Although the most natural example of a segmentation error is a gross failure 

to identify anatomy, the concept is more general.  Other possible errors would include large 

regions of soft tissue fed by different branches of the vasculature; different regions would show 

different dynamics, even if grouped as one tissue in the segmentation. 

4.5.1 Numerical phantom 

4.5.1.1 Methods 

We first consider a three-region simulation with a simple geometry.  A numerical 

phantom, shown in Figure 4-3, was created with a large (120 pixel radius) circular “body” ROI, 

in which were embedded two smaller ROIs.  One of the two represented an identified “target” 

ROI (radius of 24 pixels), while the other represented an occult ROI (variable radius) that is not 

segmented out of the body.    The occult ROI represents some feature which has not been 

correctly identified.  In these simulations we investigate the effects that such a segmentation 

error has on the signal measured in the other regions. 

 

Figure 4-3 Numerical phantom from the occult heterogeneity simulations. 

The three structures in the simulation are shown, consisting of a background region, a 

known structure, and an occult structure. 

Background 

Target 
Occ 

Het 
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Acquisition and reconstruction from two projections was modeled by taking 

the Radon transform of the phantom, and the matrix was calculated for all possible pairs of 

projection angles (sampled in 1° steps).  The equations produced had the form: 

   (Eq. 4.17) 

where and are the contaminated weighting coefficients of the body and target ROIs, 

, , and are the true scaling coefficients of the three ROIs, and  and 

are geometry dependent coefficients which describe the leakage of the signal from the 

occult ROI into the others.  These parameters are dimensionless measures of a partial volume-

like effect that causes the signal between different ROIs to mix. Understanding how  and 

change with the acquisition geometry allows choosing a geometry that minimizes the 

impact of segmentation errors on measurements made using the constrained reconstruction 

algorithm. 

Three scenarios were considered for the orientation of the projections with the anatomy.  

In the first case, one projection was oriented to provide the maximum overlap between the 

target ROI and the occult ROI, while the orientation of the other projection varied.  In the 

second case, one projection was fixed at the minimum overlap of the two ROIs while the other 

one was varied.  In the last case, the effects of the separation angle between the two projections 

was investigated in terms of the maximum amplitude of  and  for any relative 

orientation of the acquisition geometry and the phantom. 
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4.5.1.2 Results 

The numerical simulations indicate that the effects of focal segmentation errors can be 

reduced, although not completely eliminated, through the use of multiple projections.  

Considering the case where one projection is fixed to maximally overlap the target ROI and the 

occult ROI (one projection fixed at 90°), a second projection can reduce the contamination 

artifact by a factor of ~2.7 when widely separated (Figure 4-4a), at the expense of introducing 

some contamination (up to 3%) into the surrounding region (Figure 4-4d).  However, no choice 

of projection angles completely eliminates the contamination artifact.  Fixing one projection at 

minimum overlap (0°) produces smaller overall errors, although they are not completely 

eliminated, except at one particular combination (Figure 4-4be). 

However, this discussion relies upon knowing the location of the supposedly unknown 

object.  More relevant to protocol design is to apply a criteria of minimizing the maximum 

error.  Figure 4-4cf illustrates that for any possible orientation of the projections, even a 

modestly wide separation angle of 40º minimizes the worst case value of  and , and 

that using a wider angle does not cause harm. 

These simulations represent the effects of segmentation errors and do not model the 

effects of noise.  Because the primary geometry being considered is the relative orientation of 

the target and occult ROI, the separation width and angle of the two bodies relative to the body 

ROI should not strongly affect the curves. 

Because of the strong dependence of the partial volume contamination on the projection 

angle, strong oscillations occurring when the projection angle is varied is an indicator that the 

segmentation does not fully describe the behavior of the system.  Although it may be possible 

to derive a method for identifying segmentation errors from the structure of the oscillations, at 

present it remains only a diagnostic marker. 
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Figure 4-4 Signal contamination, simulated in the numerical phantom. 

Subplot a shows the values of  for with one projection forced to maximally overlap 

the target and occult ROIs.  Subplot b shows the values when one projection is forced to 

minimally overlap the two.  Analogously, d and e show values for .  The maximum 

value of these parameters for any pair of orientations is given in parts c and f. 

4.5.2 In vivo simulation 

4.5.2.1 Methods 

The same calculations were run in a more complicated and realistic geometry.  

Segmentation was performed of a short-axis view of the heart.  A disc ROI was placed in the 

lung at the level of the heart and its radius was varied from 1 to 5 voxels representing varying 
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extents of segmentation error.  This segmentation was used as the true segmentation, 

and the original segmentation was used as the flawed segmentation.  The size of the left 

ventricle in this image was approximately a circle with a radius of 9 voxels.  Proceeding as in 

the previous section, was calculated for the same combinations of angles.   

4.5.2.2 Results 

Once again, the error propagation matrices again had a simple form: 

  (Eq. 4.18) 

where wi is the true weighting coefficient of the ith ROI, wLung is the true weighting coefficient 

of the lung ROI, and wOcc is the true weighting coefficient of the occult ROI.  The contaminated 

solutions are denoted with tildes.  The symbols ki and kLung represents geometry dependent 

coefficients that describe the signal contamination.  The segmentation used is shown in Figure 

4-5. 
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Figure 4-5 Segments generated from the in vivo data. 

The anatomic structures identified in the segmentation are identified.  RV = right 

ventricle, LV = left ventricle, Myo = myocardium 

The simulations that are inspired by in vivo anatomical structures show more 

complicated behavior than the numerical phantoms (Figure 4-6).  The more complicated 

anatomy produces more complicated angular dependence of the segmentation artifacts.  

Additional large peaks occur even when the separation of the two angles is relatively large.  

However, even in this scenario, a separation angle of at least 60° gives some resistance to the 

worst possible artifacts. 

Based on these simulations, it was decided that a two projection reconstruction would 

be used with a separation between consecutive projections of between 60° and 120°. 
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Figure 4-6 Signal contamination, simulated with the in vivo data. 

The curves from the heterogeneity with radius 5 (abc) have the same structure as those 

from the smaller artifact of radius 3 (def), but with lower amplitudes.  Colors of the lines 

match the ROI segmentation.  Although the behavior of the curve is more complex than 

those of the numerical phantom, the key point that wide separation of the projection 

angles reduces artifacts remains.  The unshaded areas in c and f show the region between 

separations 60º and 120º where all of the curves are at or near their minima.  The curves 

for the other size heterogeneities show similar curves, with the magnitude of the 

contamination coefficients increasing with larger ROIs. 
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4.6 Phantom measurements 

4.6.1 Methods 

The constrained reconstruction algorithm was tested using a phantom containing four 

samples of water doped with contrast agent (gadopentetate dimeglumine; concentrations: 0.8, 

0.6, 0.3, and 0.15 mmol, intended to produce T1 values in the range of 200 ms to 1000 ms) in a 

bath of tap water.  The use of homogeneous samples provides a good test of the algorithm in 

the presence of a system which will behave as close as any system will to the homogeneity 

approximation.  Images were acquired of a phantom at multiple repetition times using a 

projection acquisition strategy; acquisition parameters were: TE = 2.5 ms, flip angle = 90º, 

acquisition matrix = 256 points over 3.84 cm, number of spokes = 512, receiver bandwidth = 

101 kHz.  The TRs used were 30, 100, 250, 500, and 1200 ms.  Images were reconstructed 

using complex filtered backprojection; these images were segmented and the mean signal in the 

ROIs was taken as the gold standard.  For every TR, all pairs of projections were analyzed 

using the constrained reconstruction algorithm for pairs separated by 90°, using the fully 

acquired image with TR of 1200 ms as a reference image.  The mean and standard deviation of 

the ROI signal estimates from all pairs of orthogonal projections were calculated for all ROIs 

and flip angles.  The segmentation used and a representative FBP image are shown in Figure 

4-7. 

Additionally, although these measurements were performed for the sake of providing a 

test of the algorithm in a phantom with varying levels of contrast, it is possible to derive 

estimates of the phantom T1 from this data.  T1 estimates for each ROI from both the FBP 

images and the estimates produced by the mean constrained reconstruction signal were 

calculated by using a non-linear least squares fitting algorithm in Matlab. 
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4.6.2 Results 

The phantom measurements (given in Table 4-2 and Table 4-3) display good accuracy 

of the constrained reconstruction algorithm for the four samples, compared to the desired 5% 

criteria.  The difference between the mean signal estimate from all projection pairs using the 

constrained reconstruction algorithm and the signal from FBP is less than 4% for the samples, 

except at the longest TR, where the error reached 4.6% for two of the samples.  The accuracy 

of the signal in the water bath was slightly worse, with a mean signal difference ranging from 

5.6 to 8.4%, which is still acceptable.   

 

Figure 4-7  Phantom and segmentation used in testing the constrained reconstruction. 

(a) The filtered backprojection image from the image with the longest TR.  Some 

streak artifacts are visible in the image, but they do not severely compromise the results 

of the constrained reconstruction algorithm.  (b)  The segmentation used in the 

reconstruction.  Letters correspond to those in the tables below.  The water bath was 

included in the segmentation. 

The T1 values (Table 4-4) between the two algorithms again showed fairly good 

agreement between the two techniques.  The measured values are shorter than anticipated, but 
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the study was not designed to measure T1 and the long TR values needed for accurate 

quantification of long T1 values were not acquired. 

 

 30 ms 100 ms 250 ms 500 ms 1200 ms 

A 1.3% 1.3% 1.2% 1.2% 1.5% 

B 1.9% 2.5% 2.9% 3.7% 4.6% 

C -1.6% -0.5% 0.6% 2.3% 4.6% 

D -2.5% -0.8% -0.3% 1.2% 3.4% 

Water 8.4% 7.2% 6.7% 6.1% 5.6% 

Table 4-2  Mean errors of the constrained reconstruction analysis for phantom data 

Values are expressed as percent difference from the signal measured with filtered 

backprojection 

 30 ms 100 ms 250 ms 500 ms 1200 ms 

A 2.0% 2.0% 2.2% 2.7% 4.5% 

B 3.8% 3.9% 4.8% 5.7% 8.6% 

C 3.3% 2.3% 2.2% 1.8% 2.6% 

D 6.0% 4.9% 4.7% 4.4% 4.9% 

Water 4.2% 0.6% 0.4% 0.4% 0.5% 

Table 4-3  RMS errors of the constrained reconstruction analysis for phantom data 

 A B C D Water 

FBP T1 82 ms 126 ms 250 ms 337 ms 587 ms 

CACTUS T1 84 ms 127 ms 232 ms 358 ms 599 ms 

Table 4-4  T1 values derived from the signal measurements 
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4.7 Static segmentation effects 

4.7.1 Methods 

Because in vivo application of the algorithm will face challenges due to mismatches 

between the segmentation and the anatomy due to cardiac motion, an additional simulation was 

performed to investigate the sensitivity of the algorithm to mismatches in segmentation due to 

cardiac motion.  A dynamic digital phantom was created, and the structures representing the 

ventricle and myocardium were constricted to simulate cardiac motion at 17 cardiac phases.  

Four segmentation schemes were generated: 

1)  Segmentation representing the anatomy at end systole 

2)  Segmentation representing the anatomy at end diastole 

3)  Segmentation representing the anatomy at 50% of the cardiac cycle 

4)  Segmentation with a ring-shaped transition ROI between the myocardium and 

ventricle containing the region which has both blood and myocardium during 

the cardiac cycle 

The four segmentations used are shown in Figure 4-8.  Synthetic data was generated by taking 

projections of the phantom during each cardiac phase at 1° increments.  Single projection 

CACTUS analysis was performed of each projection with each of the four segmentation 

schemes to generate signal curves for each structure in the phantom.  No actual changes in the 

mean signal of each structure were introduced; signal fluctuations are purely the result of 

motion.  The mean and standard deviation of the signal in the ventricle were calculated to 

compare the effects of motion on the signal measured with each of the four segmentation 

schemes.   
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4.7.2 Results 

Simulations of cardiac motion show that the limitations of a static model of the anatomy 

do not excessively compromise the measurement and that the algorithm can produce a 

measurement that has a low sensitivity to cardiac motion. Time courses of the apparent signal 

from each segmentation are shown in Figure 4-8.  Both the error in the mean and the coefficient 

of variation were less than 1% when using the additional ring ROI as a dynamic shim (Table 

4-5).  The other segmentation schemes fared slightly worse: static segmentation based off of 

the end systole overestimated the signal by 3%, but fairly precisely (2% coefficient of 

variation).  The 50% segmentation was accurate, but with greater uncertainty than the shim 

segmentation (5% coefficient of variation). The segmentation based on the end diastole 

segmentation proved the worst, being both least accurate (4% underestimation) and least 

reliable (7% coefficient of variation). All of these uncertainties are small compared to the large 

signal changes of up to 400% that occur due to the presence of contrast agent. 

 Ventricle Myocardium Body Lung 

50% 1.00±0.05 0.69±0.05 0.33±0.00 0.10±0.06 

End Systole 1.03±0.02 0.75±0.10 0.32±0.01 0.18±0.10 

End Diastole 0.97±0.07 0.62±0.05 0.33±0.00 0.09±0.01 

Shim 1.00±0.01 0.65±0.02 0.33±0.00 0.08±0.00 

True Value 1 0.67 0.33 0.08 

Table 4-5  Mean and standard deviation of simulated cardiac signals measured with four 

different segmentation schemes. 
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Figure 4-8 Simulated signals in heart that vary with segmentation. 

The simulated constrained reconstruction waveforms for the four different segmentation 

schemes are shown.  The segmentation that uses the additional shim ROI stays closest to 

the true value of 1 over almost all of the cardiac cycle, with the segmentation based off of 

end systole also performing well.  Segmentations based on other phases of the cardiac 

cycle have large signal changes as a result of the mismatch between the assumed and 

actual geometry. 

Introducing an additional ROI to allow for compensation of cardiac motion has 

substantial benefits in reducing the signal fluctuations due to cardiac motion.  In practice, the 

easiest segmentation to generate is the average segmentation, because it does not require any 

form of gating to produce.  An approximation of the shim segmentation can be generated from 

the average segmentation by manually segmenting the myocardium and left ventricle.  A shim 

ROI can be created by using the boundary of the two ROI as its approximate location and 

dilating the ROI.  Because both the systole and the shim segmentation produced accurate 

results, it is reasonable to expect that such an approximation to the shim ROI will also lead to 

acceptable results. 
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4.8 Filtration of the cardiac signal 

4.8.1 Methods 

Motion is an obvious challenge for sampling of the VIF in a beating heart.  The highest 

level of image quality is achieved through the use of prospective or retrospective gating 

techniques (113), which allows for reconstruction of images using only single phases of the 

cardiac cycle.  Self-gating approaches, which introspectively analyze the MR signal, are 

preferred because of distortions involving metallic ECG leads (114,115).  However, with the 

use of the RF pulse for inflow enhancement suppression, the signal from the heart is 

substantially lowered and the signal change due to cardiac motion is lessened.  We investigated 

reduction of signal fluctuations due to cardiac motion in vivo.   

A spatially-static projection was repeatedly acquired in a cardiac slice of a mouse with 

acquisition parameters: TE = 1.55 ms, TR = 18 ms, matrix size = 256 points over 4 cm, flip 

angle = 30º, slice thickness = 1mm.   This measurement was using both a sinc pulse for 

excitation and a flow suppressive pulse (saturation width = 5 mm).  The projection was oriented 

to not overlap the left ventricle with the right ventricle or great vessels, which would have 

signal fluctuations which were out-of-phase with the signal from the left ventricle.  The signal 

in a voxel through the largest portion of the left ventricle was measured.  Fluctuations in signal 

would arise through cardiac and respiratory motion.  We investigated three candidate schemes 

for reduction of signal fluctuations due to cardiac motion.   

1)  Identifying local signal maxima 

3) A sliding window mean filter, width varied up to 1.2 s 

4)  A sliding window median filter, width varied up to 1.2 s  

The coefficients of variation for signals measured with both pulses after the application of each 

filter. 
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4.8.2 Results 

Filtering of the cardiac signal required the temporal resolution compromise of low-pass 

filtration to substantially reduce the fluctuations in the signal.  Coefficients of variation for the 

maxima filter and two different widths of the sliding window filters are given in Table 4-3.  

Time courses for selected filters are shown in Figure 4-9.  The signal variation produced by 

assorted widths of the mean and median filters is shown in Figure 4-10.  We desire an SNR of 

12-20 for comparability with the SNR expected in the images of a DCE-MRI protocol, which 

can be achieved through filtration.  This compromises temporal resolution slightly, but serves 

to improve the reliability of non-linear fitting.  A wide range of filter widths result in 

acceptable levels of signal fluctuations.  The optimal trade-off between resolution and noise is 

not considered in this work, but two different choices of filter width will be considered in §5.6 

and their effects of VIF reproducibility will be considered.  A single projection was used 

without the application of constrained reconstruction on the basis that if a filter failed to reduce 

variation in the simple case with no other sources of motion or error, then it would be unlikely 

to provide acceptable results in the more complicated scenario with changing projections.  An 

additional candidate approach for reducing the variation due to motion that uses the shim ROI 

is investigated in §4.11. 
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 Sinc Flow Suppressed Data 

Raw signal 28% 45% 

Maxima filter 21% 45% 

1 s mean filter 3% 6% 

0.6 s mean filter 4% 8% 

1 s median filter 3% 7% 

0.6 s median filter 4% 9% 

Table 4-6  Signal CVs of the signal under four filtering choices. 
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Figure 4-9  Fluctuations in signal due to cardiac motion. 

Four different filtering algorithms are shown.  Although not an ideal solution because of 

the reduction in the temporal resolution of the VIF, the low pass filter is the most effective 

technique for reducing signal fluctuations due to cardiac motion. 
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Figure 4-10  Signal CVs produced by mean and median filtration. 

At narrow filter widths (<300 ms) the mean filter produces slightly noisier measurements 

than the median filter, but this trend reverses itself at the longer filter widths.  To obtain 

signal fluctuations of the desired magnitude, filter widths of 600 ms to 1000 ms are 

needed. 

4.9 Retrospective respiratory gating 

4.9.1 Methods 

Respiratory motion occurs over a longer timescale and is of greater amplitude than 

cardiac motion, making it easier to identify.  During respiration, the lungs expand, pushing the 

liver and diaphragm out of the slice, causing the signal from the liver to decrease.  Because the 
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liver is explicitly identified during the segmentation process, it is possible to identify 

time points corrupted by respiratory motion during contrast agent uptake and remove them, 

avoiding erroneous signal fluctuations. 

A radial acquisition was performed of a short axis slice traversing the heart to acquire in 

vivo data for the sake of testing an algorithm for identifying respiratory motion.  Acquisition 

parameters were: TE = 1.5 ms, TR = 40 ms, frequency encode = 256 points over 4 cm, number 

of spokes = 384, receiver bandwidth = 85 kHz, number of repetitions = 8.  Segmentation and 

reconstruction was performed using the CACTUS algorithm. 

Because of the presence of contrast enhancement in the liver, a simple threshold is 

insufficient.  To account for changes in the liver signal during acquisition, the signal in the liver 

from the FBP image was subtracted from the high temporal resolution liver signal.  Then, for 

each block of high temporal resolution points corresponding to a single FBP image, the points 

with signal above a percentile threshold of were discarded and not included in any fitting or 

filtering performed on the VIF.  Three threshold levels were investigated: removing the 

smallest 20% of points, the smallest 25%, and the smallest 30%. 

4.9.2 Results 

At the 20% and 25% threshold levels some respirations were not identified from the 

liver signal.  The use of a 30% threshold for the gating signal identified all of the sharp drops in 

the liver signal (Figure 4-11).  In the displayed interval, four time points were inadvertently 

identified as falsely motion-corrupted at this level, indicating that the 30% level is slightly 

conservative.  It was preferable to omit a small number of points from the rapidly sampled VIF 

than include points with potentially large artifacts, so the more conservative 30% level was 

used. 
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Figure 4-11 Respiratory triggering derived from the liver. 

The trigger signal follows the rises and drops of the liver signal well.  A few false negatives 

are present (arrows), although the exclusion of a small number of points out of several 

thousand is anticipated to be less problematic than including points with large signal 

decreases. 

4.10 Software implementation 

To measure VIFs using CACTUS, values are needed for St, I0, and χi.  The former two 

quantities can be obtained from MR data; the latter is obtained through manual segmentation of 

fully encoded images.  This is achieved through a guided segmentation script that is run prior to 

CACTUS analysis.  First, postprocessing software performed filtered backprojection on the 

dynamically acquired projections to produce images with normal temporal resolution. From 

those images, the operator is prompted to segment structures found in the cardiac slice: left 
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ventricle, myocardium, right ventricle, lungs, great vessels, liver/diaphragm, portal 

vein, chest cavity, soft tissue, and the fat around the skin. A two-voxel ring is automatically 

generated at the boundary of the ventricle and the myocardium to approximate the shim ROI 

used in the previous simulation.  The segmentations are used in the constrained reconstruction 

algorithm: consecutively acquired pairs of projections are used to produce weighting 

coefficients, which are used to scale the signal in the reference image, from which the highly 

accelerated signal could be obtained.  The FBP image reconstructed from the temporally closest 

set of full projection data is used as the reference image.  For the protocols used in this work, 

this led to VIF updates every 81 ms.  Respiratory gating was performed by monitoring the 

signal of the liver ROI, which has a substantial drop in its measured signal during respiration.  

A 1 s sliding window mean filter was applied to the signal from the left ventricle signal curve 

to reduce the effects of cardiac motion and noise. 

4.11 Variable flip angle measurements in vivo 

We desire precise measurements of the signal in the left ventricle of the heart.  Several 

components of this aim have focused on techniques to reduce the effects of motion on the 

signal measured in the left ventricle.  The combination of correction techniques which produces 

the least uncertain measurement of the signal will lead to the most reliable measurements with 

the constrained reconstruction analysis. 

4.11.1 Methods 

To test the accuracy of the CACTUS algorithm and assess its sensitivity to cardiac 

motion, in vivo measurements in a mouse heart were performed.  Multiple flip angles were used 

to test the algorithm at different contrasts between blood and tissue.  The absence of dynamic 

changes due to contrast agent allowed for direct comparison of the constrained reconstruction 
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signal in the left ventricle with that from the filtered backprojection images.  Radial 

acquisitions were performed of a short-axis slice with acquisition parameters: TE = 1.5 ms, TR 

= 41 ms, flip angle = 10°, 20°, 30°, and 40°, frequency resolution = 256, frequency FOV = 4 

cm, number of spokes = 384, angular increment = 120.5°, receiver bandwidth = 85 kHz, 

number of repetitions = 8.  The reconstruction algorithm was performed with and without 

retrospective respiratory gating and with and without the use of the shim ROI, using the 

matching FBP image as the reference.  For each reconstruction, the temporal coefficient of 

variation of the left ventricular signal from CACTUS was calculated.  In addition, a linear least 

squares fit was made of the filtered back projection signal to the constrained reconstruction 

signal values to assess of the accuracy of the constrained reconstruction algorithm. 

In addition to these measurements, an approach for decreasing motion-related signal 

fluctuations exists that could not be performed with the previous single-projection study.  The 

signal in the shim ROI from the constrained analysis will vary with the cardiac cycle.  In an 

attempt to use this for retrospective gating of the cardiac signal, the signal in the left ventricle at 

time points corresponding to local maxima of the signal in the shim ROI was also considered as 

a candidate signal.  Respiratory gating was used for this measurement.  The same analysis was 

performed on the resulting left ventricular signal as was performed on the filtered waveforms. 

4.11.2 Results 

The in vivo cardiac measurements made with the variable flip angle protocol show that 

motion-related signal fluctuations can be reduced when both a shim-ROI and respiratory gating 

are used, which is consistent with the previous simulations.  With both respiratory gating and a 

shim ROI, the line of best fit relating the FBP signal to the CACTUS signal had a slope of 

1.012, an intercept of -0.002, and an r2 of 0.995, indicating a very strong agreement between 

the two (Figure 4-12a).  Additionally, the coefficient of variation of the signal, which includes 
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variations due to both the cardiac cycle and to changes in the acquisition geometry 

with projection angle, was low at all flip angles compared to typically SNR values for DCE-

MRI studies of 10-12 (111).  Measurements made without the corrections for motion showed 

increases in the signal variation by up to a factor of 3, indicating that the use of the 

retrospective gating and a shim ROI does provide an improvement in resistance to motion. 

Retrospective gating with a shim ROI did not produce an acceptable level of signal 

fluctuations.  The coefficients of variation of the signal ranged from 17% to 50%, which is well 

in excess of the desired 5% level of uncertainty.  For this reason, the low-pass filter approach 

continued to be used in this work. 
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Figure 4-12 Stability of the left ventricle signal with and without respiratory gating and 

with and without a shim segment. 

The measured relationship between the constrained reconstruction signal and the filtered 

backprojection signal is shown.  Across a wide range of signal levels, the constrained 

reconstruction algorithm matches well to the signal from filtered backprojection.  The use 

of corrective strategies for retrospective gating and the use of a shim ROI together reduce 

the fluctuations in the signal level significantly. 
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Figure 4-13 Stability of the signal in the left ventricle when performing retrospective 

cardiac gating through the shim ROI. 

Signal fluctuations are considerably higher when using this approach than with the low-

pass filtered signals.  For this reason, the signal from the shim ROI was not used as a 

technique for gating. 
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4.12 VIF accuracy compared to filtered backprojection 

4.12.1 Methods 

Comparison of the VIF from the left ventricle measured with CACTUS and the 

ventricular VIF from FBP was performed to assess the soundness of the constrained 

reconstruction approach.   A healthy nice mouse was anesthetized using 0.5%-2% isoflurane in 

oxygen and placed head-first and supine on an imaging sled. A catheter was inserted into the 

tail vein.  A radial acquisition was performed of a short axis slice traversing the heart.  

Acquisition parameters were: TE = 1.5 ms, TR = 40 ms, frequency encode = 256 points over 4 

cm, number of spokes = 384, receiver bandwidth = 85 kHz, number of repetitions = 30.  A 

bolus of 10 µL of 0.25 M gadopentetate dimeglumine was injected 45 s into the acquisition.  

Manual segmentation was performed of the dynamically acquired images.   

For each FBP image, the constrained reconstruction algorithm produces 192 

corresponding high-temporal resolution samples of the signal in the left ventricle from pairs of 

projections.  These groups of 192 projections were binned together, and the mean signal of 

each bin was calculated and compared to the signal in the FBP image.  The RMS difference 

between the mean constrained reconstruction signal and the FBP signal was calculated.  To 

highlight the difference in temporal resolution between the two approaches, the FBP signal was 

linearly interpolated in time to match the time points the constrained reconstruction signal was 

sampled at and the resulting curve subtracted from the CACTUS signal time course. 
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4.12.2 Results 

The left ventricle VIF measurements show visibly close agreement between the filtered 

backprojection signal and that from the constrained reconstruction approach, shown in Figure 

4-14ab.  Averaging the signal to decrease the temporal resolution effectively recovers the 

original FBP signal (Figure 4-14d), with the RMS difference of the two curves shown was only 

4.0%, normalized to the mean of the FBP signal.  Comparing the constrained reconstruction 

against the interpolated signal (Figure 4-14c) reveals generally small differences between the 

two curves except at the initial rise of the curve, indicating both good agreement in slowly 

changing regions of the curve and improved temporal resolution with the constrained 

reconstruction approach.  These results, although qualitative, suggest that measurement with 

CACTUS will produce reasonable VIFs with high temporal resolution. 
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Figure 4-14 Comparison of constrained reconstruction with filtered backprojection. 

The high temporal resolution signal and the conventionally sampled signal from the 

filtered backprojection images match well, although as expected the peak of the 

constrained reconstruction VIF is higher and the rise steeper than for conventional 

sampling.   

4.13 Comparison to SLIM 

4.13.1 Methods 

As previously mentioned, a key advantage of CACTUS over SLIM is that it uses a 

measured reference image, allowing for more accurate reconstruction of the dynamic time 
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course than when a homogenous reference is used.  This assumption was tested by 

reconstructing the previous VIF again, this time with the uniform reference (that is, 

I0(x, y, t) = 1).  Because the uniform reference does not account for variations in the image such 

as the background phase, orientation-dependant signal fluctuations may occur.  The same 

filtering and post-processing was applied to both curves. 

4.13.2 Results 

CACTUS produced a VIF with fewer oscillations and artifacts than SLIM for this 

measurement.  Large oscillations are found in the VIF from SLIM, which are very reminiscent 

of the effects of segmentation errors found earlier.  As discussed, these fluctuations occur from 

changes in the mismatch between the measured signal and the reference image that occurs 

when the projection angle changes.  Additionally, the CACTUS technique lies much closer to 

the FBP signal in the slowly varying regions, indicating a more accurate reconstruction of the 

signal. 
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Figure 4-15 VIF reconstruction with both CACTUS and SLIM. 

Measurements made with both constrained reconstruction approaches, as well as the FBP 

signal, are shown.  CACTUS produces a measurement that is more stable with projection 

angle (and thus, time) than SLIM.  In addition, the CACTUS signal time course more 

closely matches the FBP signal in the slowly varying portion of the VIF. 

4.14 Discussion 

We have developed a strategy for reduced artifact acquisition of the VIF that relies upon 

measurement in the heart, which provides resistance to partial volume effects and an improved 

signal to noise ratio due to its large size, and by using a constrained reconstruction approach, 

which provides high temporal resolution measurement of the VIF. 

The constrained reconstruction algorithm developed and used here relies upon a simple 

approximation that allows very large imaging acceleration factors.  The homogeneity 

assumption, while not necessarily applicable to tumor tissue, or other heterogeneous areas, is 
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reasonable for the slowly enhancing soft tissues and muscle found in the chest.  This 

does not compromise the interpretation of the measurements; the figure of ultimate interest is 

the mean signal in the left ventricle.  In vivo application of the algorithm demonstrates that it 

provides a high temporal resolution measurement of the VIF that is sufficient to capture the 

first pass of the contrast agent through the vasculature.  Because tumors often display greater 

enhancement heterogeneity than normal tissue, care may be needed when disease is present 

near the heart.  If the tumor does not enhance homogenously, then it may be necessary to 

segment the tumor into multiple structures with different dynamics, or to include higher-order 

terms of the Taylor series in the reconstruction. 

Because all tissue has some level of small-scale structure, such as vasculature, that 

would be tedious to manually identify and segment, the segmentation used will necessarily be 

an imperfect representation of the dynamic changes in the image. Small structures are likely to 

vanish within the image noise and the limited image resolution.  Larger structures could be 

identified and included in the segmentation. 

The numerical simulations indicate that the algorithm can accurately reconstruct highly 

undersampled data, even in the presence of spatially incoherent fluctuations.  Mismatches 

between the segmentation and the actual dynamics of the image present larger challenges, but 

these may be minimized through the use of a shim ROI and low pass filtration.  Numerical 

simulations indicate that the use of a second projection reduces errors associated with imperfect 

segmentation.  Phantom data shows agreement of the CACTUS measurement with a full 

acquisition to within a few percent.  This is also found by comparing the CACTUS 

measurements to those from FBP, which demonstrates that the constrained approach produces a 

measurement which is consistent with the slowly changing component of the VIF, yet which 

produces a sharper and more realistic rise of the contrast agent.  The temporal resolution 
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achieved is faster than the cardiac cycle of a mouse, to the point where it is 

reasonable to sacrifice temporal resolution for the sake of motion and noise suppression.     
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5 Specific Aim 3 – In vivo study of VIF repeatability 

5.1 Introduction 

With methods for both flow suppression and high temporal resolution sampling in 

place, whether their combination results in a superior approach for measurement of the vascular 

input function in mice can now by tested.  The intra-subject and inter-subject variances in VIF 

measurement using these techniques in a population of mice were evaluated.  The hypothesis of 

this work is that intra-subject coefficients of variation will be reduced, but we also anticipate 

that a decrease in the inter-subject variation will be achieved. 

5.2 Inflow enhancement of cerebral blood vessels 

The reproducibility study compared interleaved acquisitions of slices through the heart 

and the head and neck region.  To fairly compare VIFs measured at each location, inflow 

enhancement must be suppressed in the local vessels as well as the heart.  However, performing 

a full saturation recovery protocol for the head and neck region was infeasible because it would 

compromise the temporal resolution of the cardiac slice.  The effects of the cardiac slice itself 

on the inflow enhancement in the head and neck region was investigated. 

5.2.1 Methods 

Since the VIFs are to be simultaneously measured in two different slices, it is possible 

that the RF pulses that excite the heart, specifically designed to mitigate inflow enhancement, 

will introduce some presaturation into the local vessel measurement if the travel time is shorter 

than the T1 of the blood.  This will reduce the inflow enhancement artifacts found in the local 



   107 

blood vessels.  We evaluate the signal found in the internal carotid artery and a 

cerebral vein in response to the presence of the applied presaturation in the heart. 

A 2D gradient echo acquisition was performed of slices through the head and neck of a 

healthy nude mouse with the following acquisition parameters:  TE = 1.55 ms, TR = 41 ms, flip 

angle = 30º, matrix size = 256 x 256, FOV = 4 cm x 4 cm, slice thickness = 1 mm, slice spacing 

= 0.5 mm, number of slices = 7, number of averages = 5.  In addition, flow suppression was 

applied with the following schemes: 

1) No flow suppression 

2) Varying widths of a flow-suppressive excitation pulse applied in the heart (12 

mm offset from the head and neck slices), from 1 to 11 mm, which corresponds 

to the geometry intended for typical VIF measurement (i.e., 11 mm corresponds 

to 1 mm slice and a pair of 5 mm presaturation regions on each side) 

3) A narrower gap (7 mm) between the neck and the flow suppressed area 

4) A wider gap (15 mm) between the neck and the flow suppressed area 

5) Minimal gap between the neck slices and the suppression region, corresponding 

to the use of an additional RF pulse at a 30º flip angle to provide optimal flow 

suppression for the local tissues.  Widths of flow suppression of up to 22.5 mm 

Signal was measured in the internal carotid artery (ICA) and in a vein outside the skull and 

normalized to the signal level of that same vessel with the 22.5 mm of flow presaturation.  To 

account for motion during the course of the examination, the baseline signal measurement 

(geometry 1) was repeated before each of geometries 2, 3, 4, and 5. 

5.2.2 Results 

The signal was found to decrease substantially in the ICA (Figure 5-1a), for which the 

presence of an 11 mm presaturation region at the heart produces a 40% drop in signal, 
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compared to a 41% signal drop from a 22.5 mm presaturation region applied 

adjacent to the slices.  Suppression in the veins is less effective with both techniques (Figure 

5-1b).  The same 11 mm of presaturation decreases venous signal by 8%, which is the same as 

the comparable amount using the adjacent presaturation region. With 22.5 mm of presaturation 

adjacent to the head and neck slices, the venous signal decreases somewhat more at the full 

width to 16%.  Suppression is more effective in an artery than in a vein, indicating that the 

fairest vessels to choose from comparison are arteries.  These results suggest that local vessel 

VIF measurement with an 11 mm excitation region in the paired experiment in the heart is a 

good approximation of what could be achieved with a dedicated presaturation component of the 

pulse sequence.   
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Figure 5-1  Indirect flow enhancement suppression of cerebral vessels. 

Arterial signal is significantly attenuated by the presence of a dedicated saturation band, 

as it is with the indirect suppression applied at the heart.  Zero on the width-axis 

corresponds to no suppression.  The saturation regions applied caudal to the head are 

relatively less effective at decreasing venous signal.  Signal in brain tissue is stable with 

the saturation width applied. 

5.3 Animal preparation 

Reproducibility studies were performed in healthy nude mice.  A total of five animals 

were placed under isoflurane anesthesia and given tail vein catheters, which were loaded with 

40 µL of heparinized saline followed by 110 µL of 0.25 M gadopentetate dimeglumine.  

Animals were kept under anesthesia during the entire acquisition.   
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The VIFs were measured in five mice, three of whom were imaged twice to 

produce a total of eight reproducibility measurements.  Previous comparisons of the variability 

between mice and the variability between injections have found that the variability of the same 

mice on different days is the same as the variability across mice (63), which means that the 

reusing mice does not compromise the independence of the measurements on different days.   

5.4 Data acquisition 

5.4.1 Methods 

After positioning the mouse in the scanner, three-plane localizers were acquired using a 

FLASH protocol to permit visualization of the heart.  Acquisition parameters were:  TE = 1.6 

ms, TR = 30 ms, flip angle = 5º, matrix size = 128x128, FOV = 6.4 cm x 6.4 cm, slice thickness 

= 1 mm, number of averages = 10.  Averaging allowed visualization of the heart without 

interference from motion artifacts.  These images were used to position the cardiac and 

anatomic slices. 

Before contrast injection, short axis images were acquired in the heart using a radial 

RF-spoiled gradient echo sequence.  Acquisition parameters were:  TE = 1.55 ms (fat and water 

in phase), TR = 41 ms, flip angle = 30º, slice thickness = 1 mm.  The acquisition matrix was 

256 points over 4 cm with 384 spokes and an angular increment of 120.5º.  This angle was used 

to disperse projections containing respiratory motion more evenly throughout the acquired 

angles than incrementing by 90º.  The resulting images were used to verify good visualization 

of the heart in the slice.   

To account for variations in the preparation of the catheter, low volume (5-10 µL) 

injections were performed to clear the saline from the catheter, followed by the acquisition of 

another cardiac image.  This was repeated until contrast enhancement was observed.  
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Afterwards, images were acquired at 15 minute intervals until the signal in the heart 

had returned to its baseline value.  This guaranteed that the measurement of future injections 

would not be influenced by residual contrast agent. 

Acquisition of the VIFs in the mice was performed using a spoiled gradient echo 

sequence.  Acquisition parameters were:  TE = 1.55 ms, TR = 41 ms, flip angle = 30º, slice 

thickness = 1 mm.  One trans-cardiac slice was acquired using a radial acquisition scheme 

while seven slices were acquired with Cartesian encoding of the head and neck region.  The 

acquisition matrix for the Cartesian encoded head and neck slices was 256x96 over a 4 cm x 

3.84 cm FOV, providing one sample every 3.9 s.  The acquisition matrix for the radial encoded 

cardiac slice was 256 points over 4 cm with 384 spokes and an angular increment of 120.5º. 

Duration was of the dynamic sequence was 30 repetitions of the radial protocol, corresponding 

to 120 repetitions of the Cartesian sequence. A 5 mm presaturation band was applied on each 

side of the trans-cardiac slice to suppress inflow enhancement during excitation using the RF 

pulse described in Chapter 3.  A 10 µL injection of contrast agent was performed with an 

injection rate of 0.5 mL/min approximately 75 seconds after the start of the acquisition using a 

computer controlled injection system (Harvard Apparatus, Holliston, MA).  After the dynamic 

acquisition was complete, images were acquired at 15 minute intervals to monitor the clearance 

of contrast agent.  Once the signal in the left ventricle of the heart had returned to within 5% of 

its baseline value, indicating that the contrast agent had cleared from the blood, the dynamic 

protocol and injection were repeated.  The injection protocol was performed three times per 

imaging session. 

After data acquisition, VIFs were measured in the heart using the CACTUS analysis 

technique.  Filtered backprojection was performed to generate anatomic images, from which 

manual anatomic segmentation was performed.  This segmentation was used to produce a high 
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temporal resolution VIF measurement from the left ventricular signal.  Further 

details on the processing were provided in §4.11.  In addition, VIFs were measured in the 

conventionally encoded head and neck slices.  The same vessel was used for measurements in 

all three injections whenever possible.  Voxels were manually selected that displayed 

prominent signal enhancement and with minimal motion artifacts.  All signal measurements 

were converted into concentration as described in §2.2using assuming a baseline T1 of 1800 ms 

for blood and a contrast agent relaxivity of 4.8 s-1mM-1 for gadopentetate dimeglumine. 

5.4.2 Results 

Comparison of the VIFs measured with the proposed strategy to those from local blood 

vessels reveals that the overall amplitude of the cardiac VIFs is greater.  Five of the CACTUS 

VIFs display periodic oscillatory artifacts; others display varying levels of noise.  The 

oscillations are possibly the result of segmentation errors, as suggested in §4.5, although this is 

not possible to confirm.  Relatively larger fluctuations are visible in the local vessel VIFs, 

which result from motion artifacts and noise.  Formal reproducibility analysis is presented in 

§5.5. 

5.5 Curve fitting and statistical analysis 

5.5.1 Methods 

To allow comparison of the reproducibility of the VIFs measured in the heart to a 

conventional local vessel measurement, signal measurements were converted into 

concentration(31), and the resulting concentration curves were fit to a biexponential model 

  (Eq. 5.1) 
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where C0 is the amplitude of the slow component of the VIF, α is the relative 

amplitude of the fast component, and kslow and kfast are the decay constants of the two VIF 

components.  Because partial volume and inflow effects tend to affect the entire input function 

(58), they affect the amplitude of both terms in the model, as well variations in the injection 

amplitude.  To partially segregate these artifacts from differences in temporal resolution, the 

amplitude of the fast component was defined in a relative manner.  With this formulation, the 

overall amplitude is most affected by partial volume and flow artifacts, and the relative fast 

amplitude is most affected by the temporal resolution.  This segregation is imperfect because 

partial volume effects cause some distortion of the VIF (66).  The model was fit to the decaying 

portion of the model after the initial rise of the contrast agent using a Levenberg-Marquardt 

algorithm (116) in Matlab.  To minimize the difficulties associated with the sensitivity of 

biexponential fits to initial parameter values in fitting, a stripping algorithm was used (117).  In 

this approach, the slow component is first estimate solely from the last half of the data, which 

should be approximately monoexponential due to decay of the fast component.  This term is 

then subtracted from the data to produce a set of data which should only include the fast 

component, which can also be calculated.  These parameters are then used as initial values for 

the non-linear fit to the entire model and the entire set of data. 

For each mouse, the coefficient of variation of each parameter was calculated for VIF 

measurements.  The mean coefficients of variation for the biexponential parameters were 

compared using the paired Hotelling T2 test, which is the multivariate analogue of the paired t-

test (118).  As additional figures of interest, the CV of the parameters means across subjects 

was calculated from the mean parameter values from each mouse. 
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5.5.2 Results 

The raw values for the biexponential model parameters for each technique are given in 

Table 5-1 and Table 5-2, and are plotted in graphical format in Figure 5-2.   
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 kfast (1/min) α kslow (1/min) C (µmol) 

Injection 1 2.96 1.13 0.169 67 

Injection 2 4.50 0.77 0.138 52 

Mouse 1 

Injection 3 3.22 1.21 0.00 48 

Injection 1 2.93 1.62 0.090 65 

Injection 2 1.61 2.31 0.000 29 

Mouse 2 

Injection 3 1.35 1.13 0.079 49 

Injection 1 3.11 1.66 0.145 105 

Injection 2 2.42 1.82 0.076 96 

Mouse 3 

Injection 3 2.53 1.82 0.118 55 

Injection 1 2.49 2.32 0.162 52 Mouse 4 

Injection 2 2.22 1.44 0.055 130 

Injection 1 0.66 2.04 0.013 116 Mouse 5 

Injection 2 1.03 1.98 0.029 79 

Injection 1 0.93 3.54 0.000 61 

Injection 2 1.10 1.92 0.183 64 

Mouse 6 

Injection 3 0.53 1.34 0.139 53 

Injection 1 0.71 1.64 0.065 77 Mouse 7 

Injection 2 0.49 1.28 0.083 79 

Injection 1 2.37 2.94 0.059 355 

Injection 2 2.60 2.03 0.225 38 

Mouse 8 

Injection 3 5.24 2.28 0.049 26 

Table 5-1  VIF descriptive parameters from the heart using constrained reconstruction 

analysis. 
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 kfast (1/min) α kslow (1/min) C (µmol) 

Injection 1 0.83 1.1864 0.154 21 

Injection 2 14.05 0.4236 0.291 25 

Mouse 1 

Injection 3 15.57 0.7590 0.010 32 

Injection 1 1.44 0.4616 0.056 50 

Injection 2 1.16 0.7590 0.018 18 

Mouse 2 

Injection 3 22.29 0.0000 0.169 33 

Injection 1 2.81 0.9659 0.146 53 

Injection 2 1.48 0.6980 0.068 45 

Mouse 3 

Injection 3 3.96 0.6717 0.075 31 

Injection 1 2.55 1.3365 0.130 53 Mouse 4 

Injection 2 2.43 0.9201 0.043 72 

Injection 1 0.36 0.3240 0.049 99 Mouse 5 

Injection 2 0.15 0.0929 0.153 36 

Injection 1 0.22 0.4868 0.216 80 

Injection 2 1.36 0.2295 0.161 71 

Mouse 6 

Injection 3 3.54 0.0000 0.085 42 

Injection 1 1.05 0.8379 0.047 34 Mouse 7 

Injection 2 44.50 0.4067 0.72 39 

Injection 1 0.99 0.3410 0.022 329 

Injection 2 4.76 1.3436 0.120 33 

Mouse 8 

Injection 3 0.11 0.4439 1.429 14 

Table 5-2  Measured VIF descriptive parameters from the cerebral vessels with 

conventional encoding. 
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Figure 5-2  Measured VIF parameters for all mice and injections. 

Tighter clustering is found in the estimates from constrained reconstruction in the heart 

(circles) than those made in local blood vessels using conventional encoding (diamonds), 

demonstrating the superior reproducibility of the cardiac sampling.  These differences are 

most pronounced in comparisons of the fast component, which showed the most 

improvement in reproducibility of the four parameters. 
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 kfast α kslow C0 

Mouse 1 23% 22% 88% 18% 

Mouse 2 43% 35% 87% 38% 

Mouse 3 14% 5% 31% 31% 

Mouse 4 8% 33% 70% 60% 

Mouse 5 31% 2% 52% 27% 

Mouse 6 34% 50% 89% 10% 

Mouse 7 26% 18% 17% 2% 

Mouse 8 47% 20% 89% 133% 

Table 5-3  Coefficients of variation of the parameters for the biexponential fits measured 

in the heart using CACTUS acquisition and analysis. 

 

 kfast α kslow C0 

Mouse 1 80% 48% 93% 20% 

Mouse 2 146% 94% 97% 47% 

Mouse 3 45% 21% 45% 26% 

Mouse 4 4% 26% 71% 21% 

Mouse 5 59% 78% 73% 67% 

Mouse 6 99% 102% 43% 31% 

Mouse 7 135% 49% 29% 9% 

Mouse 8 127% 78% 151% 141% 

Table 5-4  Coefficients of variation of the parameters for the biexponential fits measured 

in the cerebral vessels using conventional Fourier-encoded acquisition and processing. 
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 Mean 

Value 

(Local 

Vessel) 

Mean 

Value 

(Heart) 

Intrasubject 

CV (Local 

Vessel) 

Intrasubject 

CV (Heart) 

Intersubject 

CV (Local 

Vessel) 

Intersubject 

CV (Heart) 

kfast 

min-1 

6.01  2.14  86% 28% 120% 58% 

α 0.6042 1.82 62% 23% 51% 24% 

kslow 

min-1 

0.17  0.09  75% 65% 97% 38% 

C0 

µmol 

57  81 45% 40% 55% 36% 

Table 5-5  Interanimal comparisons of the pharmacokinetic parameters. 

The parameter values of the biexponential fits reveal a greater reproducibility, both 

within and between animals, of the VIFs measured in the heart using CACTUS compared to 

those measured in local vessels with conventional sampling.  The biexponential parameters for 

all mice are shown graphically in Figure 5-2.  The measured VIFs, and the fits, are shown in 

Figure 5-3 through Figure 5-10.  The within-mouse reproducibility of injections was 

considerably improved (p<0.05), with the CV of kfast and α decreasing the most, from 86% to 

28% and 62% to 23% in constrained and local vessels, respectively, while the changes in both 

kslow and C0 were a more modest 10% and 5%, respectively.  The inter-subject variation was 

also decreased for the four parameters, again most prominently in the fast time constant, 

although the number of mice imaged was not sufficient to permit usable statistical comparisons.  
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Coefficients of variation for each mouse and each technique are given in Table 5-3 

for cardiac sampling and Table 5-4 for left ventricular measurements, and overall results are 

summarized in Table 5-6.  These figures include both errors due to measurements and also true 

changes in the blood dynamics due to variation in the injections and drift in the physiological 

state of the mouse, however, a reduction in the variance may be attributed to a reduction in 

measurement error because of the paired nature of the measurements and physiological drift 

will be common to both techniques. 

Quantitative differences in the VIFs measured with the two techniques were observed, 

indicated by the mean biexponential parameters differing between conventional vessel 

sampling and cardiac sampling with constrained analysis (p<0.05).  The mean concentration 

measured in the heart was larger, which is consistent with a decrease in the presence of partial 

volume and flow artifacts.  The mean relative amplitude of the fast component was larger when 

measured using constrained reconstruction in the heart, which is consistent with better 

sampling of the peak, as was seen in both the proof-of-principle simulations and in the 

comparison of FBP with the CR algorithm.  
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Figure 5-3 VIFs measured in mouse 1. 

In these VIFs, the curves from the constrained cardiac measurement present considerably 

smaller signal fluctuations due to noise and motion.  In the fits to the third local vessel 

VIF, the fit of the fast component is noticeably brief, consisting of only a single point, as 

evidenced by the very large decay constant for the curves. 
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Figure 5-4 VIFs measured in mouse 2. 

Motion is less problematic in the local vessel measurements in this mouse than in the 

previous, although a few large signal jumps are visible.  For the first two injections, the 

initial peak of the VIF is noticeably more prominent in the cardiac measurements than in 

the vascular ones. 
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Figure 5-5 VIFs measured in mouse 3. 

Many of the same comments that apply to the first mice apply to these curves.  Of 

particular note is the second pair of measurements, where an initial peak of the contrast 

agent that is clearly seen in the cardiac measurement is not resolved in the vessel 

measurement.  The second and third curves have secondary bumps which are consistent 

with recirculation, although they are less distinct than in the first mouse. 
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Figure 5-6 VIFs measured in mouse 4. 

Only two measurements were performed in this mouse due to substantial motion during 

the third injection.  Relatively large oscillations are found in the cardiac measurements, 

although the relative magnitude of these is less than the artifacts found in the local vessel 

measurements. 
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Figure 5-7  VIFs measured in mouse 5. 

These VIFs demonstrate relatively large fluctuations and are fairly low in amplitude.  

Neither technique provided extremely high quality measurements in this mouse. 
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Figure 5-8 VIFs measured in mouse 6. 

The VIFs measured with both techniques display unusually broad initial regions, which 

seems to widen with time.  This may be due to drift in the physiology or some motion in 

the catheter placement.  The overall slow dynamics of these uptake curves render the 

higher temporal resolution of the cardiac measurement less evident. 
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Figure 5-9 VIFs measured in mouse 7. 

The cardiac measurement proved more reproducible in this mouse, despite fairly noisy 

measured VIFs.  In particular, in this mouse the fast decay constant shows the largest 

improvement with the cardiac measurement of any mouse. 
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Figure 5-10 VIFs measured in mouse 8. 

These uptake curves display unusually low relative amplitude slow phases.  In the third 

injection, the oscillations in the local vessel curve are often larger than the concentration 

level itself, artifacts which are not found in the cardiac measurement.  For both curves, 

the first injection is of larger amplitude than the last two.  This appears to be a legitimate 

difference in the amount of contrast delivered due to substantial backwash of blood into 

the catheter after the first injection. 
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5.6 Comparison of different levels of low-pass filtering 

5.6.1 Methods 

Although the temporal resolution needed for VIF measurement in mice has not been 

established, the raw output of the constrained reconstruction is certainly sampled sufficiently 

rapidly to potentially satisfy any temporal resolution criteria for small animal DCE-MRI. 

However, model fitting is sensitive to problems with local minima that result from noise (119).  

Biexponential models, as will be used in this work, are known to be highly sensitive to this 

effect, with unreliable results reported even for SNR levels of 70 (120), although those results 

featured closer values of the two decay constants.  To more reliably perform fits of in vivo data 

to models, filtration was performed as described in §4.11.  However, the range of reasonable 

filtration choices is wide.  Therefore, we performed a comparison of the reproducibility VIFs in 

one mouse with both a 1 s filter and a 0.6 s filter.  The biexponential fitting and CV calculation 

was performed for the data from a single mouse. 

5.6.2 Results 

The two VIF signal curves agree closely (Figure 5-11), although the curve processed 

with greater filtration is smoother and shows a lower noise level.  Except for the fast decay 

constant of the third injection, all parameter values agree to within 3%, and the coefficients of 

variation derived from these parameters are nearly identical.  These results indicate that the 

measurement reproducibility in these mice does not depend strongly on the choice of the filter 

used.  Parameter values and corresponding variations are given in Table 5-6. 



   130 

 

Figure 5-11 Comparison of a VIF measured with two different filter widths. 

The curves generated by two different filter widths align quite closely (top), and only 

small fluctuations are seen in the difference curve (bottom). 
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 kfast (1/min) α kslow (1/min) C (µmol) 

Injection 1 3.21 1.70 0.147 105 

Injection 2 2.50 1.87 0.077 95 

0.6 s 

Injection 3 2.75 1.86 0.119 56 

Injection 1 3.11 1.66 0.145 105 

Injection 2 2.42 1.82 0.076 96 

1 s  

Injection 3 2.53 1.82 0.118 55 

1s 13% 5% 31% 31% CV 

0.6 s 13% 5% 31% 30% 

Table 5-6  Biexponential parameters calculated with two different filter widths applied. 

 

5.7 Discussion 

Robust and consistent VIF measurement is an outstanding challenge in small animal 

MRI.  We have developed a strategy for reduced artifact acquisition of the VIF that relies upon 

measurement in the left ventricle, which provides resistance to partial volume effects and an 

improved signal to noise ratio due to its large size, and by using a constrained reconstruction 

approach, which provides high temporal resolution measurement of the VIF. 

Our measurements of the VIF rise times indicate conventional encoding is not able to 

reliably measure the VIF dynamics in mice.  The rise times were substantially wider than the 

width of the filter, indicating its effect on the measurement will be relatively slight. 

Our measurements indicate a significant improvement in the within-mouse 

reproducibility of VIF measurement, as quantified by analyzing the variations in a 

biexponential representation of the VIF.  The experimental setup was designed to maintain the 
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stability of the animal’s physiology, ensuring that the variation in VIFs between 

injections is dominated by measurement effects and not by physiological drift. Although 

measurements were not performed of tumor enhancement, the VIF is an input into the 

parameter calculation and is known to strongly affect the resulting parameters(11,57).  In 

addition, we observed both a reduction in the inter-animal variation and a significant change in 

the shapes of the VIFs compared to conventional vessel sampling. 
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6 Conclusions 

6.1 Summary 

This work consisted of three aims, with the objective of testing the hypothesis that 

rapidly sampled measurements of the VIF in the heart would produce more reproducible 

measurements than conventional local vessel sampling of the VIF.  The first two aims involved 

the implementation and development of the technical components necessary to accomplish 

cardiac sampling of the VIF.  The final aim was perform a comparison of the within-subject 

variation of VIF measurement using the newly developed and conventional techniques. 

 The first aim was concerned with the development of a novel RF pulse to mitigate the 

effects of flow enhancement on the VIF measurement.  We considered two classes of pulses 

that combine spatial presaturation of flowing spins with excitation.  One used a symmetric 

envelope of three sinc pulses; the other used an asymmetric envelope with a sinc pulse and a 

cosine-modulated sinc pulse.  Phantom data showed that both families of pulses were able to 

reduce the signal of flowing water to its baseline level, however, simulations and measured data 

showed that the asymmetric pulse tended to produce an show fluctuations with the width of the 

sideband, rendering its suppression of out-of-slice signal suspect.  For this reason, the 

symmetric pulse was determined to be preferable and was used in the remainder of the 

measurements in this body of work. 

Our results also suggest that, while the use of this pulse is always able to increase the 

sensitivity of the MR signal to the presence of contrast agent, some residual flow enhancement 

in the case of straight-line flow may be present due to incomplete out-of-slice signal spoiling.  

This was indicated in simulations and measurements in the inferior vena cava.  Suppression of 

flow enhancement in the left ventricle is less susceptible to this artifact because blood does not 
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follow a straight-line path in the thorax, the entirety of which can be covered by the 

presaturation region produced by the RF pulse.  Blood enters the thorax through the vena cava 

and passes through the other three chambers of the heart and the lungs before arriving in the 

left ventricle.  This both extends the effective width of the saturation region and prevents the 

signal bias from interfering with the measurement in the left ventricle. 

Final measurements in the first aim demonstrate the that a VIF measured in the heart 

shows a much larger signal increase when measured with the composite pulse than with a sinc 

pulse with no additional flow suppression.  Even in data sampled at low temporal resolution, 

the flow suppressed VIF showed more structure than the VIF acquired with conventional 

excitation.  This both underscores the importance of flow enhancement suppression to VIF 

measurement and demonstrates the ability of this pulse to provide efficient flow suppression 

without sacrificing excessive time during the pulse sequence. 

The second aim was devoted to the development of CACTUS, an anatomically 

constrained approach to data analysis which allows sampling of the signal from the left 

ventricle at extremely rapid rates.  This technique relies upon the use of a manual segmentation 

to provide prior information that is used to reconstruct an approximate measure of the mean 

signal in each ROI. 

Numerical simulations of the algorithms show that it is insensitive to random variations 

in the dynamics of the tissue.  Non-random variations in the tissue dynamics, such as would 

result from segmentation errors, can produce artifacts, although these may be mitigated by the 

use of multiple projections.  Phantom and in vivo measurements indicate accuracy to within 4% 

of the actual value in many cases when using a two projection protocol.  The use of CACTUS 

was found to provide higher temporal resolution measurement of the VIF than full encoding, 

while capturing the low temporal resolution dynamics comparable to a full acquisition.  This 
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technique was in fact able to identify the first pass of the contrast agent in mice, 

although recirculation of the contrast agent was not identifiable. 

With these technical developments, we performed a reproducibility study of VIFs 

measured in small animal models.  Measurements made with the techniques were compared to 

measurements made in blood vessels in the head and neck region using conventional sampling 

techniques.  We found a statistically significant improvement (p < 0.05) in the intra-subject 

reproducibility, with the CV of model parameters decreasing by up to 56%. We also observed 

an improvement in the inter-subject reproducibility, although we did not image a sufficient 

number of mice to perform rigorous statistical comparisons. 

6.2 Hypothesis 

Our in vivo comparisons found a statistically significant reduction in the coefficients of 

variation of the biexponential parameters of VIFs measured using the techniques described here 

as compared to measurements in a local blood vessel.  We also achieved sub-second temporal 

resolution of the measurement.  Based on these two points, we find that that hypothesis is 

supported by the data. 

6.3 Limitations and Future work  

The comparison of VIF reproducibility was between measurements made in the heart 

with the developed techniques and measurements made with a conventional vessel 

measurement.  Only a limited number of voxels were used in the measurements of the local 

vessel VIFs, which is a contributor to the noise of these measurements, although this is in part 

due to the greater volume of blood available in the heart for VIF measurement and in part a 

reflection of the difficulty in finding blood vessels that had similar VIF amplitudes and whose 

time courses were not offset in time.  The reliability of the local vessel measurements could 
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have been improved by the use of dedicated flow suppression techniques to 

minimize inflow artifacts in those measurements, however, an objective of this work was to 

measure VIFs without the compromise in slice coverage that would be required.  This rendered 

truly paired results impossible.  Additionally, we found a substantial attenuation of inflow 

enhancement in local vessels due to residual saturation from the spin preparation in the thorax.  

For these reasons, the overall conclusion that a substantial improvement in VIF measurement is 

achieved with this technique is still valid. 

Our technique provided considerably more reproducible measurements of the VIF than 

conventional measurements. Although it is expected that these techniques should lead to an 

improvement in the measurement of pharmacokinetic parameters, this was not directly 

demonstrated.  In vivo testing with a tumor model would provide additional characterization of 

the technique and a more direct indication of the extent to which it improves upon existing 

techniques.  However, those measurements are outside the scope of this work. 

Further improvements to the technique are also possible.  Because of the decreased 

signal from the ventricles, conventional filters for approaches to retrospective cardiac gating 

were not able to reduce the signal fluctuations due to cardiac motion.  We reduced cardiac 

motion artifacts with a low pass filter, however, this decreased our temporal resolution.  More 

intelligent denoising approaches, such as a Wiener filter (121) or wavelet-based approaches 

(122) may be more suitable this application. 

The techniques used in this work allow the potential for very high temporal resolution.  

However, there is no established rate at which the temporal resolution of VIF measurement for 

use in pharmacokinetic parameter calculation in mice is optimized.  Simulations should be 

performed to establish a required sampling rate for a given accuracy of the final parameters, as 

has been done in humans (56). 
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This work used the same acquisition protocols for both the tissue slices and 

the cardiac slice using interleaved encoding schemes, except for the k-space trajectory.  

However, the contrast agent concentrations reach higher peak levels in blood than they do in 

tissue, resulting in shorter relaxation times.  As a result, larger flip angles are needed for 

optimal imaging of contrast agent concentrations in the blood than are needed for tissue (31).  

Because a separate slice is used for VIF measurement with the approach implemented here, the 

use of a different excitation angle for each is easily achieved, and consideration of these effects 

may lead to further improvements in VIF measurement.   

6.4 Conclusions 

We have developed a set of tools to address what has been called “a notoriously 

difficult problem” (71).  Artifacts, such as inflow enhancement and partial volume effects, as 

well as limitations in the achievable temporal resolution, compromise the integrity of the VIFs 

used in small animal DCE-MRI studies.  The techniques developed in this work have shown 

that they are capable of producing more reproducible measurements of the vascular input 

function, which will lead to more reliable and robust measurements of DCE-MRI 

pharmacokinetic parameters. 
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Appendix:  Matlab reconstruction code 

function getAIFheart(varargin) 
  
%% Front matter 
%Here are the parameters this function uses: 
grouping = 2; %Number of projections to use per constrained time point 
              %It needs to divide the number of spokes 
liverind = 4; %ROI position of the liver; should be 4 
respthresh = .3; %Percentage of points to discard for respiratory triggering 
order = 0;  %Order of the Taylor polynomial 
  
%% Identify the directory to process 
if nargin==0 
    dirname = uigetdir; 
else 
    dirname = varargin{1}; 
    if isnumeric(dirname) 
        dirname = num2str(dirname); 
    end 
end 
  
%% Read in and reconstruct filtered backprojection images 
tic 
fbpname = fullfile(dirname, 'fbp.mat'); 
if exist(fbpname) 
    load(fbpname, 'this'); 
else 
    this = readHybridData(dirname); 
    save(fbpname, 'this'); 
end 
toc 
% a=questdlg('Continue to segmentation?'); 
% if ~(a(1)=='Y') 
%     return 
% end 
  
%% Perform manual segmentation 
roisname = fullfile(dirname, 'rois.mat'); 
if exist(roisname) 
    load(roisname, 'rois'); 
else 
    %Choose the image with the greatest overall increase in image intensity 
    temp = abs(squeeze(sum(sum(this.radimg, 1), 2))); 
    gradient(2:length(temp)) = temp(2:end)-temp(1:end-1); 
    argpeak = find(gradient==max(gradient)); 
    rois = guidedManualSegmentation(sum(this.radimg, 3)); 
%     rois = guidedManualSegmentation(abs(this.radimg(:, :, argpeak))); 
    save(roisname, 'rois'); 
end 
  
%% Expand ROIs 
tic 
%Expand ROI 1 
radius = 1; 
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old1 = rois(:, :, 1); 
expansion = rois(:, :, 1); 
contraction = ~rois(:, :, 1); 
for ind = radius:-1:1 
    contraction(2:end-1, :, 1) = contraction(2:end-1, :, 1) | 
contraction(1:end-2, :, 1) | contraction(3:end, :, 1); 
    contraction(:, 2:end-1, 1) = contraction(:, 2:end-1, 1) | contraction(:, 
1:end-2, 1) | contraction(:, 3:end, 1); 
end 
contraction = ~contraction; 
rois(:, :, 1) = contraction; 
rois(:, :, 11) = expansion&~contraction; 
  
for ind = 2:10 
    rois(:, :, ind) = rois(:, :, ind)&~rois(:, :, 11); 
end 
  
%% Raw constrained reconstruction 
[Nfreq Ntheta Nframe] = size(this.proj); 
Nrois = size(rois, 3); 
Ngroups = Ntheta/grouping; 
Npoints = Nframe*Ngroups; 
this.theta = reshape(this.theta, Ntheta, Nframe); 
indices = reshape(1:Ntheta, grouping, Ngroups); 
  
%For the Taylor expansion version 
nterms = (order+2)*(order+1)/2; 
[x, y] = ndgrid(linspace(-1, 1, size(rois, 1)), linspace(-1, 1, size(rois, 
2))); 
  
n = nterms; 
for indO = order:-1:0 
    for indP = indO+1:-1:1 
        geom(:, :, n) = x.^(indP-1).*y.^(indO-indP+1); 
        n = n-1; 
    end 
end 
  
  
  
for ind = Nframe:-1:1 
    refimg = this.radimg(:, :, ind); 
    A = dPrepareConstrainedRecoTaylor(this.theta(:, ind), rois, (refimg)); 
     
%     A2 = dPrepareConstrainedReco(this.theta(:, ind), rois, refimg2); 
    support = dPrepareConstrainedReco(this.theta(:, ind), any(rois, 3), 
ones(size(refimg)))>0; 
    support = reshape(support, size(support, 1)*grouping, Ngroups); 
    heartros = dPrepareConstrainedReco(this.theta(:, ind), any(rois(:, :, 
1:3), 3), ones(size(refimg)))>0; 
%     A = reshape(A, Nfreq, Nrois, grouping, Ngroups); 
    projections = reshape(this.proj(:, :, ind), Nfreq, grouping, Ngroups); 
    offset = (size(A, 1)-size(projections, 1))/2; 
    projections = cat(1, zeros(floor(offset), grouping, Ngroups), 
projections, zeros(ceil(offset), grouping, Ngroups)); 
    for ind2 = Ngroups:-1:1 
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        [tempz(:, :, ind2) condsigs(:, ind2, ind) res(:, ind2, 
ind)] = dPerformConstrainedReconTaylor((projections(:, :, ind2)), A, 
indices(:, ind2), [], rois, refimg); 
    end 
    thisimg = this.radimg(:, :, ind); 
    res(:, :, ind) = res(:, :, ind).*support; 
    ravg(:, ind) = mean(abs(res(:, :, ind)))./mean(support); 
    heartros = reshape(heartros, size(projections)); 
    heartsig(:, :, :, ind) = projections.*heartros; 
    heartres(:, :, ind) = res(:, :, ind).*reshape(heartros, size(res, 1), 
size(res, 2)); 
    for ind2 = Nrois:-1:1 
        fbpsigs(ind2, ind) = mean(thisimg(rois(:, :, ind2))); 
    end 
end 
condsigs = reshape(condsigs, Nrois, Npoints); 
condsigs(isnan(condsigs))=0; 
 
cutoffind = round(respthresh*Ngroups); 
  
liverpresent = any(any(rois(:, :, liverind), 1), 2); 
if liverpresent 
    liversigs = reshape(condsigs(liverind, :), Ngroups, Nframe); 
    for ind = Nframe:-1:1 
        fastliver = abs(liversigs(:, ind))-abs(fbpsigs(liverind, ind)); 
        temp = sort(fastliver); 
        threshold = temp(cutoffind); 
        respgate(:, ind) = fastliver>threshold; 
    end 
else 
    respgate = true(Ngroups, Nframe); 
end 
respgate = respgate(:); 
for ind = 2:length(respgate)-1 
    if respgate(ind-1)&respgate(ind+1) 
        respgate(ind) = true; 
    end 
end 
for ind = 2:length(respgate)-1 
    if ~respgate(ind-1)&~respgate(ind+1) 
        respgate(ind) = false; 
    end 
end 
  
%% Perform despiking 
  
  
  
%% Perform cardiac triggering 
  
% respgate(:) = true; 
  
heartsig = reshape((sum(heartsig, 1))./sum(abs(heartsig)>1, 1), grouping, 
Ngroups, Nframe); 
tempgate = repmat(respgate, [1 grouping])'; 
tempgate = reshape(tempgate, grouping, Ngroups, Nframe); 
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for ind = Nframe:-1:1 
    temp = heartsig(:, :, ind); 
    temp = temp(tempgate(:, :, ind)); 
    timedrift(1, ind) = mean(angle(temp)); 
end 
  
heartsig = reshape(heartsig, Ntheta, Nframe); 
tempgate = reshape(tempgate, Ntheta, Nframe); 
for ind = Ntheta:-1:1 
    temp = heartsig(ind, :); 
    temp = temp(tempgate(ind, :)); 
    spacedrift(ind, 1) = mean(angle(temp)); 
end 
  
heartphase = angle(heartsig)-repmat(timedrift, [Ntheta 1])-
repmat(spacedrift, [1 Nframe]); 
heartphase = heartphase-mean(heartphase(tempgate(:))); 
temp = heartphase(:); 
threshold = std(temp(tempgate(:)))/2; 
cgate = abs(heartphase)<threshold; 
cardiacgate = all(reshape(cgate, grouping, []), 1)'; 
  
%% Perform residual gating 
  
% ravg = reshape(mean(abs(res), 1), [], 1); 
% rgate = false(size(ravg)); 
% rgate(2:end-1) = (ravg(2:end-1)<ravg(1:end-2)) & (ravg(2:end-
1)<ravg(3:end)); 
  
%% Filter 
  
%Create a list of filterwidths 
duration = Ntheta*Nframe*this.method.PVM_RepetitionTime/1000/60; %in minutes 
tslow = linspace(0, duration, Nframe); 
tfast = linspace(0, duration, Npoints); 
fbpvif = abs(fbpsigs(1, :)); 
lvslow = interp1(tslow, fbpvif, tfast); 
  
weights = (lvslow/min(lvslow(:))).^1; 
% lvslow = lvslow-min(lvslow(:)); 
  
% for ind = Npoints:-1:1 
%     percentile(ind) = sum(lvslow(ind)>lvslow)/Npoints; 
% end 
% weights = (log(100*percentile+exp(3))-2).^1.5; 
%  
% %Alternate approach 
% weights = 4*lvslow/max(lvslow(:))+1; 
  
  
lvsig = condsigs(1, :); 
rvsig = condsigs(3, :); 
filteredsig = zeros(size(lvsig)); 
windowwidth = 24/grouping; 
  
%Hack to disable respgating 
% respgate(:) = true; 
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% windowwidth = 1; 
weights(:) = 1; 
for ind = Npoints:-1:1 
    if respgate(ind) 
        thiswidth = round(windowwidth/weights(ind)); 
        imax = min(Npoints, ind+thiswidth); 
        imin = max(1, ind-thiswidth); 
        localgate = respgate(imin:imax); 
        localsigs = lvsig(imin:imax); 
        filteredsig(ind) = mean(localsigs(localgate)); 
        localrsigs = rvsig(imin:imax); 
        rvfilt(ind) = mean(localrsigs(localgate)); 
        tw(ind) = thiswidth; 
    end 
end 
  
plot(tfast(respgate), abs(filteredsig(respgate)), tslow, fbpvif) 
  
vifname = fullfile(dirname, 'heartvif.mat'); 
save(vifname, 'condsigs', 'filteredsig', 'tfast', 'tslow', 'fbpvif', 
'respgate', 'res', 'heartsig', 'ravg', 'heartres', 'heartphase', 'rvfilt', 
'rois'); 
toc 
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function this = readHybridData(indir) 
  
this = readBrukerDirectory(indir); 
Nx = this.method.PVM_Matrix(1); 
Ny = this.method.PVM_Matrix(2); 
Ntheta = this.method.nTheta; 
Nreps = this.method.PVM_NRepetitions; 
deltatheta = this.method.loopskip; 
Nslices = this.method.PVM_SPackArrNSlices(1); %Number of Cartesian slices 
this.fid = reshape(this.fid, Nx, Nslices+1, Ny, Nreps); %For now, just 
assume that there is only one radial slice 
this.fid = permute(this.fid, [1 3 2 4]); 
this.radfid = squeeze(this.fid(:, :, end, :)); 
  
n = Ny*Nreps; 
thetaind = mod((0:(n-1))*deltatheta, Ntheta)+1; 
theta = (thetaind-1)*180/Ntheta; 
if isfield(this.method, 'cover') 
    if strncmp(this.method.cover, 'Full', 4) 
        theta(2:2:end) = theta(2:2:end)+180; 
%         this.fid(:, 2:2:end, :, :) = this.fid(end:-1:1, 2:2:end, :, :); 
    end 
end 
nRadImg = floor(Ny*Nreps/Ntheta); %Number of fully encoded radial images 
fid = this.radfid; 
proj = fftshift(ifft(ifftshift(fid), [], 1)); 
ptemp = mean(mean(proj, 2), 3); 
ptemp = exp(i*angle(ptemp)); 
proj = proj./repmat(ptemp, [1 Ny Nreps]); 
proj = reshape(proj, Nx, []); 
proj = proj(:, 1:(Ntheta*nRadImg)); 
proj = reshape(proj, Nx, Ntheta, nRadImg); 
  
proj = reshape(proj, Nx, Ntheta, nRadImg); 
for ind = nRadImg:-1:1 
    tind = Ntheta*(ind-1)+(1:Ntheta); 
    cimg(:, :, ind) = iradon(real(proj(:, :, ind)), theta(tind), 'Ram-Lak', 
'Linear', 1, Nx) + ... 
        i*iradon(imag(proj(:, :, ind)), theta(tind), 'Ram-Lak', 'Linear', 1, 
Nx); 
%     cimg(:, :, ind) = iradon(abs(proj(:, :, ind)), theta(tind), 'Ram-Lak', 
'Linear', 1, Nx); 
     
end 
  
this.proj = proj; 
this.theta = theta; 
this.thetaind = thetaind; 
this.radimg = cimg; 
  
%% Deal with body images 
fid = this.fid(:, :, 1:end-1, :); 
img = fftshift(fftshift(ifft2(ifftshift(ifftshift(fid, 1), 2)), 1), 2); 
this.img = img; 
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function output = readBrukerDirectory(directory, varargin) 
  
if nargin == 0 
    directory = uigetdir('/~', 'Directory for Dixon data'); 
end 
if(directory(end)~='/') 
    directory = [directory '/']; 
end 
  
output.acqp = readBrukerHeader([directory 'acqp']); 
output.method = readBrukerHeader([directory 'method']); 
output.fid = readBrukerFID(directory, output.method); 
output.subject = readBrukerHeader([directory '../subject']); 
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function struct = readBrukerHeader(filename) 
  
fid = fopen(filename, 'r', 'l'); 
  
if (fid==-1) 
    error('File not found in readBrukerHeader'); 
end 
  
  
rawitems = textscan(fid, '%s', 'Delimiter', '\n'); 
fclose(fid); 
rawitems = rawitems{1}; 
  
% rawdata = fread(fid, Inf, 'char=>char')'; 
%  
% fclose(fid); 
%  
% temp = rawdata; 
% index = 1; 
%  
% while ~isempty(temp) 
%     [thisstring temp] = strtok(temp, sprintf('\n')); 
%     if(strncmp(thisstring(end:-1:1), '$$', 2)) 
%         thisstring = thisstring(1:end-2); 
%     end 
%     rawitems{index} = thisstring; 
%     index = index+1; 
% end 
  
index = 1; 
  
while index<=length(rawitems) 
    offset = 0; 
    thisstring = rawitems{index}; 
    %The next line is a hack.  I'm okay with that. 
    %Account for comment lines and other special cases 
    if(strncmp(thisstring, '$$ @vis', 7)) 
        index = index + 1; 
        continue 
    end 
    if(strncmp(thisstring, '##END=', 6)) 
        break 
    end 
    %Test that we're on a variable definition lines 
    if(strncmp(thisstring, '##', 2)) 
        [name value] = strtok(thisstring, '='); 
        %Trim off special characters 
        name = name(3:end); 
        if(name(1)=='$') 
            name = name(2:end); 
        end 
        if ~isvarname(name) 
            name = genvarname(name); 
        end 
        value = value(2:end); 
         
        %Here's the case of just one item 
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        if(~any(value=='(')) 
            num = str2num(value); 
            if ~isempty(num) 
                struct.(name) = num; 
            else 
                struct.(name) = value; 
            end 
            index = index+1; 
            continue 
        end 
         
        %Now, consider the case of a string 
        if(rawitems{index+1}(1)=='<') 
            struct.(name) = rawitems{index+1}(2:end-1); 
            index = index + 1; 
            continue 
        end 
         
        %Check for an array 
        if(strncmp(value, '( ', 2)) 
            array_is_numeric = true; 
            %Parse the dimension description 
            size = str2num(value(3:end-1)); 
            if(isscalar(size)) 
                size = [1 size]; 
            end 
            n = prod(size); 
            offset = 1; 
            data = []; 
            while (rawitems{index+offset}(1)~='#') && 
(rawitems{index+offset}(1)~='$') 
                data = [data rawitems{index+offset}]; 
                offset = offset+1; 
            end 
            for index2 = 1:n 
                [temptemp, data] = strtok(data); 
                if(strncmp(temptemp((end-1):-1:1), '$$', 2)) 
                    temptemp = temptemp(1:end-2); 
                end 
                num = str2num(temptemp);   
                if isempty(num) 
                    array{index2} = temptemp; 
                    array_is_numeric = false; 
                else 
                    array{index2} = num;        
                end 
            end 
            if(array_is_numeric) 
                array = cell2mat(array); 
            end 
            array = reshape(array, size); 
            if n==1 && iscell(array) 
                array = array{1}; 
            end 
            struct.(name) = array; 
            clear array 
            index = index + offset; 
            continue 
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        end 
         
        %Check for a cell array analogue 
        if(strncmp(value, '(', 1)) 
            data = value(2:end); 
            while ~any(data==')') 
                offset = offset+1; 
                data = [data rawitems{index+offset}]; 
            end 
            data = data(1:end-1); 
            index = index + offset; 
            struct.(name) = data; 
        end 
         
        %Lastly, handle XYPOINTS 
        if(strcmp(name, 'XYPOINTS')) 
            offset = 1; 
            ok = 1; 
            while(ok) 
                [data ok] = str2num(rawitems{index+offset}); 
                if(ok) 
                    struct.XYPOINTS(offset, 1:2) = data; 
                end 
                offset = offset + 1; 
            end 
            index = index + offset; 
        end 
    end 
    index = index+1; 
end 
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function fid = readBrukerFID(directory, varargin) 
  
 
filename = fullfile(directory, 'fid'); 
  
fileid = fopen(filename, 'r', 'l'); 
fid = fread(fileid, Inf, 'int32'); 
fclose(fileid); 
  
fid = fid(1:2:end) + i*fid(2:2:end); 
  



   149 

function rois = guidedManualSegmentation(refimg) 
  
s.Default = 'Ok'; 
s.Interpreter = 'tex'; 
  
lv = false(size(refimg)); 
lvmyo = false(size(refimg)); 
heart = false(size(refimg)); 
vess = false(size(refimg)); 
portalvess = false(size(refimg)); 
allliver = false(size(refimg)); 
chest = false(size(refimg)); 
muscle = false(size(refimg)); 
body = false(size(refimg)); 
waterbed = false(size(refimg)); 
  
refimg = abs(refimg)/max(abs(refimg(:))); 
  
answer = questdlg('Please contour the \bf{left ventricle}', 'Contouring', 
'Ok', 'Not Present', 'Stop Now', s); 
n = parse(answer); 
if n == 0 
    lv = roipoly(refimg); 
    close(gcf); 
elseif n == 2 
    rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, chest, 
muscle, body, waterbed); 
    return 
end 
  
answer = questdlg('Please contour the \bf{outside of the myocardium}', 
'Contouring', 'Ok', 'Not Present', 'Stop Now', s); 
n = parse(answer); 
if n == 0 
    lvmyo = roipoly(refimg); 
    close(gcf); 
elseif n == 2 
    rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, chest, 
muscle, body, waterbed); 
    return 
end 
  
answer = questdlg('Please contour the \bf{entire heart}', 'Contouring', 
'Ok', 'Not Present', 'Stop Now', s); 
n = parse(answer); 
if n == 0 
    heart = roipoly(refimg); 
    close(gcf); 
elseif n == 2 
    rois = lv; 
    return 
end 
  
answer = questdlg('Please contour any \bf{great vessels} present', 
'Contouring', 'Ok', 'Not Present', 'Stop Now', s); 
n = parse(answer); 
if n == 0 
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    vess = roipoly(refimg); 
    close(gcf); 
elseif n == 2 
    rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, chest, 
muscle, body, waterbed); 
    return 
end 
  
answer = questdlg('Please contour any \bf{liver vessels} present', 
'Contouring', 'Ok', 'Not Present', 'Stop Now', s); 
n = parse(answer); 
if n == 0 
    portalvess = roipoly(refimg); 
    close(gcf); 
elseif n == 2 
    rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, chest, 
muscle, body, waterbed); 
    return 
end 
  
answer = questdlg('Please contour the \bf{liver}', 'Contouring', 'Ok', 'Not 
Present', 'Stop Now', s); 
n = parse(answer); 
if n == 0 
    allliver = roipoly(refimg); 
    close(gcf); 
elseif n == 2 
    rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, chest, 
muscle, body, waterbed); 
    return 
end 
  
answer = questdlg('Please contour the \bf{chest cavity}', 'Contouring', 
'Ok', 'Not Present', 'Stop Now', s); 
n = parse(answer); 
if n == 0 
    chest = roipoly(refimg); 
    close(gcf); 
elseif n == 2 
    rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, chest, 
muscle, body, waterbed); 
    return 
end 
  
answer = questdlg('Please contour the \bf{body without fat layer}', 
'Contouring', 'Ok', 'Not Present', 'Stop Now', s); 
n = parse(answer); 
if n == 0 
    muscle = roipoly(refimg); 
    close(gcf); 
elseif n == 2 
    rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, chest, 
muscle, body, waterbed); 
    return 
end 
  
answer = questdlg('Please contour the \bf{entire body}', 'Contouring', 'Ok', 
'Not Present', 'Stop Now', s); 
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n = parse(answer); 
if n == 0 
    body = roipoly(refimg); 
    close(gcf); 
elseif n == 2 
    rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, chest, 
muscle, body, waterbed); 
    return 
end 
  
answer = questdlg('Please contour the \bf{waterbeds}', 'Contouring', 'Ok', 
'Not Present', 'Stop Now', s); 
n = parse(answer); 
if n == 0 
    waterbed = roipoly(refimg); 
    close(gcf); 
end 
  
rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, chest, 
muscle, body, waterbed); 
  
end 
  
function n = parse(answer) 
switch answer 
    case 'Ok' 
        n = 0; 
    case 'Not Present' 
        n = 1; 
    case 'Stop Now' 
        n = 2; 
end 
end 
  
function rois = stackROIs(lv, lvmyo, heart, vess, portalvess, allliver, 
chest, muscle, body, waterbed) 
myo = lvmyo&~lv; 
rv = heart&~(lv|lvmyo); 
liver = allliver&~portalvess; 
lungs = chest&~(lv|lvmyo|heart|vess|portalvess|allliver); 
muscle = muscle&~(lv|lvmyo|heart|vess|portalvess|allliver|chest); 
body = body&~(lv|lvmyo|heart|vess|portalvess|allliver|chest|body); 
waterbed =waterbed&~body; 
rois(:, :, 1) = lv; 
rois(:, :, 2) = myo; 
rois(:, :, 3) = rv; 
rois(:, :, 4) = liver; 
rois(:, :, 5) = vess; 
rois(:, :, 6) = portalvess; 
rois(:, :, 7) = muscle; 
rois(:, :, 8) = body; 
rois(:, :, 9) = waterbed; 
rois(:, :, 10) = lungs; 
end 



   152 

function [weights] = dPrepareConstrainedRecoTaylor(theta, segments, 
img0, varargin) 
%dPrepareConstrainedReco(theta, segments, img0, varargin) 
  
%Flags is true if we are going to assume a constant value over the ROI 
  
%First determine what format the rois are in... 
if ~islogical(segments) 
    %Convert indices into ROIs 
    els = unique(segments(:)); 
    for ind = length(els):-1:1 
        rois(:, :, ind) = segments==els(ind); 
    end 
else 
    rois = segments; 
end 
  
order = 0; 
nterms = (order+2)*(order+1)/2; 
  
if nargin==3 
    flags = false(1, size(rois, 3)); 
else 
    flags = varargin{1}; 
end 
[x, y] = ndgrid(linspace(-1, 1, size(rois, 1)), linspace(-1, 1, size(rois, 
2))); 
n = nterms; 
%Hack for the case of using one line of Cartesian data 
for indO = order:-1:0 
    for indP = indO+1:-1:1 
        geom = x.^(indP-1).*y.^(indO-indP+1); 
        if theta == 90 
            for ind = size(rois, 3):-1:1 
                thisroi = rois(:, :, ind).*geom; 
                if flags(ind) 
                    weights(:, :, n, ind) = sum(thisroi, 
2)*mean(img0(thisroi)); 
                else 
                    weights(:, :, n, ind) = sum(thisroi.*img0, 2); 
                end 
            end 
        elseif theta ==0 
            for ind = size(rois, 3):-1:1 
                thisroi = rois(:, :, ind).*geom; 
                if flags(ind) 
                    weights(:, :, n, ind) = sum(thisroi, 
1)*mean(img0(thisroi)); 
                else 
                    weights(:, :, n, ind) = sum(thisroi.*img0, 1); 
                end 
            end 
        else 
            for ind = size(rois, 3):-1:1 
                thisroi = rois(:, :, ind).*geom; 
                if flags(ind) 
                    %     weights(:, :, ind) = radon(temp, theta); 
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                    weights(:, :, n, ind) = radon(thisroi, 
theta)*mean(img0(thisroi)); 
                else 
                    weights(:, :, n, ind) = radon(thisroi.*real(img0), 
theta)+i*radon(thisroi.*imag(img0), theta); 
                end 
            end 
        end 
        n = n - 1; 
    end 
end 
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