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The p53-family of proteins regulates expression of target genes during tissue development and 

differentiation. Within the p53-family, p53 and p73 have hepatic-specific functions in 

development and tumor suppression. Despite a growing list of p53/p73 target genes, very few of 

these have been studied in vivo, and the knowledge regarding functions of p53 and p73 in 

normal tissues remains limited. p53+/-p73+/- mice develop hepatocellular carcinoma (HCC), 

whereas overexpression of p53 in human HCC leads to tumor regression. However, the 

mechanism of p53/p73 function in liver remains poorly characterized. Here, the model of mouse 

liver regeneration is used to identify new target genes for p53/p73 in normal quiescent vs. 

proliferating cells. In response to surgical removal of ~2/3 of liver mass (partial hepatectomy, 

PH), the remaining hepatocytes exit G0 of cell cycle and undergo proliferation to reestablish 

liver mass. The hypothesis tested in this work is that p53/p73 functions in cell cycle arrest, 

apoptosis and senescence are repressed during liver regeneration, and reactivated at the end of 

the regenerative response. Chromatin immunoprecipitation (ChIP), with a p73-antibody, was 

used to probe arrayed genomic sequences (ChIP-chip) and uncover 158 potential targets of p73-

regulation in normal liver. Global microarray analysis of mRNA levels, at T=0-48h following 

PH, revealed sets of genes that change expression during regeneration. Eighteen p73-bound 

genes changed expression after PH. Four of these genes, Foxo3, Jak1, Pea15, and Tuba1 have 

p53 response elements (p53REs), identified in silico within the upstream regulatory region. 

Forkhead transcription factor Foxo3 is the most responsive gene among transcription factors 

with altered expression during regenerative, cellular proliferation. p53 and p73 bind a Foxo3 

p53RE and maintain active expression in quiescent liver. During liver regeneration, binding of 

p53 and p73, recruitment of acetyltransferase p300, and an active chromatin structure of Foxo3 

are disrupted, alongside loss of Foxo3 expression. These parameters of Foxo3 regulation are 

reestablished at completion of liver growth and regeneration, supporting a temporary suspension 

of p53 and p73 regulatory functions in normal cells during tissue regeneration.
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CHAPTER I 

 

 

INTRODUCTION 

 

BACKGROUND AND RATIONALE FOR THE STUDY
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1. Transcription factors regulate regeneration and tumor development in liver. 

 

1.1. Physiology and biochemistry of liver: “Poor seed, good soil”. 

 

 The liver is the largest solid organ in the body that serves essential functions, 

including carbohydrate and protein metabolism, lipogenesis, production of coagulation 

factors and bile acids, as well as the detoxification of compounds, absorbed by the intestine. 

The metabolic activity of liver is therefore essential for homeostasis; it requires a complex 

functional anatomy and tightly regulated biochemical processes. Two important 

characteristics of this complexity include highly developed cardiovasculature, represented in 

liver by a network of sinusoids, and a strong regenerative response to damaging agents. The 

major cell of liver tissue is the hepatocyte, one of the body’s most versatile cells, which 

accomplishes multiple metabolic functions and retains the ability to proliferate in response 

to liver damage. A large blood supply and the ability of liver cells to proliferate predispose 

liver to a higher risk of cancer development. The fourth leading cause of cancer-related 

deaths, and the fifth most common solid tumor worldwide, is hepatocellular carcinoma 

(HCC). It is triggered in liver tissue by chronic inflammation, toxins intake, and hepatitis, 

resulting in aberrant proliferation of hepatocytes and activation of liver cancer stem cells (1, 

2). Published studies of systemic chemotherapy report response rates of 0% to 25%, with no 

prolonged survival in patients with HCC (1). In some cases, partial hepatectomy (PH) is 

used to remove parts of liver lobes affected by HCC, but the overall response to liver 

resection in patients remains complicated (3, 4).  
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 Back in 1889, Stephen Paget made an important observation that patients with breast 

cancer were predisposed for metastasis to the liver. He hypothesized that tumor cells (seeds) 

colonize distant organs with favorable environment (soil) (Paget, S. 1889, ref. in (5)). Since 

then, multiple studies confirmed that the liver is one of the most affected organs in patients 

with metastatic tumors. Often, liver is a terminal point of metastasized cancer, leading to a 

high mortality rate due to various conditions collectively known as liver failure. Extending 

Paget’s “seed and soil” hypothesis, liver thus is a poor seed, but a good soil for cancer 

development. Infiltration of liver by metastatic colorectal cancer (CRC) causes up to 90% of 

all deaths from CRC (6). Importantly, hepatic metastases from CRC derive almost all of 

their blood flow from the arterial vasculature of affected liver lobes (7). If complete surgical 

resection, or if hepatospecific radiotherapy of liver-only CRC can be achieved, the survival 

probability increases significantly (6, 8). Whereas several types of cancer, like CRC, 

lymphomas, and pancreatic cancer, readily metastasize to liver, tumor growth in the latter 

does not infiltrate other organs (5, 6). Confinement of tumor growth to liver makes it an 

attractive therapeutic target, and many successful advances have already been made in this 

direction (6). Better understanding of mechanisms that distinguish normal hepatic growth 

and the development of liver cancer therefore remains a highly desirable goal of molecular 

hepatology.  

 

1.2. Common molecular mechanisms may regulate liver carcinogenesis and regeneration. 

 

 At present, liver resection and liver transplantation are considered the only curative 

measures for liver cancer. Both procedures are associated with high risk due to post-
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hepatectomy complications (4, 9). A large number of liver transplantation candidates remain 

on the waiting list until they die from tumor progression or cirrhosis.  

 A significant research effort in creating bioartificial substitutes for liver using ex vivo 

cultured, immortalized human hepatocytes, in a filter unit connected to a patient had very 

limited success in clinical trials (10). Important issues such as finding a source of viable 

hepatocytes and maintaining viable and fully functional cells ex vivo throughout treatment 

directed research toward embryonic, induced pluripotent, and adult liver stem cells. Further 

understanding of molecular mechanisms that regulate liver development and regeneration is 

required for the new strategies in liver bioengineering and improvement of the patient’s 

recovery after hepatectomy or liver transplantation.  

 Several intracellular signaling pathways have been studied in association with liver 

regeneration and liver cancer: PI3K/Akt-mediated growth factor signaling; transforming 

growth factor-beta (TGFβ)−mediated inhibition of cellular growth; Wnt/β-catenin pathway 

of cellular adhesion; Hippo/Yorki (Mst1/2/YAP) pathway of organ size control; regulation 

of the cell cycle by tumor suppressor proteins p53 and retinoblastoma (Rb) (11-14). 

Conceptually, liver regeneration and hepatocarcinogenesis are based on two major 

molecular events: (1) the activation of cytokine and growth factor-mediated signaling (e.g., 

IL-6, IGF, VEGF), accompanied by the activation of oncogenes, such as c-Myc and β-

catenin; and (2) the inactivation of tumor suppressors, such as p53 and Rb (12, 15). The 

immortalization of neoplastic cells, in the case of liver cancer, can be achieved by the 

activation of hTERT, a component of telomerase (16, 17). Loss of TGFβ signaling and 

activation of signal transducer and activator of transcription 3 (STAT3) contribute to the 

malignant transformation in hepatic tumors (18); similarly, cytokine-induced activation of 
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STAT3 and a decrease in TGFβ are observed during the initiation of hepatocyte 

proliferation during liver regeneration (13).  

 Growing evidence in the literature suggests that loss of p53 function contributes to 

the molecular pathogenesis of liver cancer, whereas restoration of p53 expression clears 

liver tumors in mice and humans in vivo (19-21). A significant increase in p53 protein levels 

was observed in Ataxia telangiectasia mutated (ATM) knock-out (KO) mice, rendering them 

resistant to the development of HCC (22). Importantly, the induction of p53 in liver cancer 

cells induces senescence and a decrease in tumor size without induction of cell death that 

might cause the inflammatory response and/or liver failure. Thus, activation of p53 might be 

the best approach for HCC treatment. However, very little is known about the mechanism of 

p53-mediated anti-proliferative functions in liver. 

 

1.3.  p53 family of tumor suppressors have hepatoprotective functions in vivo. 

 

 The p53-family of proteins regulates expression of target genes that promote cell 

cycle arrest and apoptosis, which may be linked to growth control during liver regeneration, 

as well as to tumor suppression. These functions are executed through the extra-nuclear 

(mitochondrial) and the intra-nuclear (transcriptional) activity of p53 and family members 

p63 and p73 (represented by p53 on Diagram 1). p53 target genes, inhibitors of cell cycle 

CDKN1A (p21) and CDKN1B (p27) and the TP53 gene itself, are mutated in HCC, or 

inactivated at the level of protein function (12). TP53 alterations are generally associated 

with larger, less differentiated tumors and poor survival (23), whereas restoration of wt 

Trp53 function clears liver carcinomas in mice (20). The reactivation of p53 protein via 
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inactivation of p53 ubiquitin ligase MDM2, as well as the overexpression of the positive 

regulator of p53 ARF might be a treatment strategy for HCC (24). Despite the clinically 

established correlation between the status of p53 and hepatocarcinogenesis, little is known 

about mechanisms of p53-mediated tumor suppression in liver.  

 p53 is member of a larger family of tumor suppressors, which includes p53, p63, and 

p73 and their multiple isoforms, with primary functions as transcription factors in 

mammalian cells (25). Comparison of p53-/-, p63-/-, and p73-/- mice, as well as studies in 

tissue culture, demonstrate that while trans-activating (TA) p63 and TA-p73 regulate many 

of the same functions controlled by p53, these proteins clearly play unique roles in vivo 

during development and disease (26). Tumor predisposition is the most obvious phenotype 

of p53-/- mice, which predominantly develop lymphomas and sarcomas within 3-5 months of 

age (27). However, knockout of all p63 isoforms (p63-/-) results in embryonic lethality due to 

epithelial malformations (28). p73-/- mice have neurological, pheromonal and inflammatory 

abnormalities and die in early adulthood (29). Interestingly, when p73 is depleted together 

with p53 (p53+/-; p73+/-), there is an obvious phenotype in liver.  The p53+/-; p73+/- mice 

develop hepatocellular carcinoma (HCC) at 5-7 months of age, suggesting a pivotal and 

cooperative role for p53 and p73 in regulation of hepatic gene expression. In human HCC 

samples, alternatively spliced p73 transcripts, which may be associated with inactive or 

dominant negative isoforms of p73 (30), are increasingly expressed compared to healthy 

liver tissue (31). Approximately 90% of p53+/-;p73+/- mice with HCC have loss of 

heterozygocity in Trp73, further emphasizing the importance of tissue-specific functions of 

p73 in liver (32). Very few studies elucidate roles for p53 and TA-p73 as transcriptional 

regulators in quiescent vs. proliferating hepatocytes during liver regeneration or in liver 
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cancer cells. Most of p53 and TA-p73 target genes are studied in tissue culture, and very 

little is known about p53 and TA-p73-mediated transcription in normal, quiescent liver or in 

proliferating liver cells in vivo. 

 Studies of p53 function in different cell types strongly suggest that p53 is activated 

in response to genotoxic stress in a tissue- and stress-dependent manner (33). MacCallum et 

al. compared the cellular responses of wt and p53 KO mice to γ−irradiation and observed a 

difference in accumulation of p53 among examined tissues, with liver showing no increase 

of p53 protein levels (34). More recently, another study of irradiated wt and p53 KO mice 

confirmed the lack of p53-mediated response to ionizing radiation in hepatocytes, and 

showed apoptosis in all irradiated wt tissues except liver (35). Recently, an induction of 

phosphatase in regenerating liver, PRL-1, observed in liver cancer, was shown to 

downregulate p53 via proteosomal degradation (36). A marker of metastatic liver tumors, 

PRL-3, is a p53 target involved in cell cycle regulation (37). Despite the relative resistance 

of the liver to irradiation and p53-mediated apoptosis, a high rate of TP53 mutations in 

HCC, along with described here observations, clearly indicates a hepatoprotective role of 

p53. These results suggest a specific function of p53 in liver that is different from all other 

tissues and cell types. However, very limited research has been done to elucidate functions 

of p53 in normal liver in vivo. Based on the existing evidence for transcriptional activity of 

p53 family members p53 and TA-p73 in normal liver, as well as for their role in growth 

suppression of cultured cancer cells, a hypothesis was formulated to suggest that p53 and 

TA-p73 activate expression of tumor suppressor genes in normal quiescent adult liver. We 

hypothesized that p53 and p73 function in normal quiescent liver cells by targeting genes 

responsible for activation of cell cycle arrest, apoptosis and senescence. These functions of 
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p53/p73 are repressed during liver regeneration, and reactivated at the end of the 

regenerative response. A model of liver regeneration in mice, complemented by studies of 

cultured cells, was used to test p53 and TA-p73 transcriptional activity in quiescent vs. 

proliferating liver cells. 
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Diagram 1. Activation and outcomes of the p53-mediated transcription. Stress signals 

activate p53 through protein kinases and/or acetyltransferases, which phosphorylate or 

acetylate p53, respectively. These post-translational modifications generally result in 

stabilization and activation of p53 in the nucleus, where p53 (along with other members of the 

p53 family, p63 and p73) interacts with sequence-specific DNA binding sites of the target 

genes. The transcriptional activation leads to diverse cellular responses such as apoptosis, 

cell-cycle arrest, senescence, or DNA repair. When p53 is no longer needed, it is targeted for 

ubiquitylation by MDM2 and moved out of the nucleus to be degraded by the 26S 

proteasome. p53 can also act outside of the nucleus (e.g., in mitochondria) to induce apoptosis 

by binding with anti-apoptotic proteins, such as BCL2.  

Reproduced with permission from Nature Publishing Group (NPG): Ann M. Bode and Zigang 

Dong. Post-translational modification of p53 in tumorigenesis. Nature Rev Cancer 2004. 
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2.  Partial hepatectomy model of liver regeneration.  

 

2.1. Transcription factors control gene expression during liver regeneration. 

 

 Liver regeneration after partial hepatectomy, or after toxic injury induced by specific 

chemicals, offers a unique and robust model to study initiation, progression, and termination 

of tissue growth in vivo.  A major goal is to understand this process in humans in order to 

apply this knowledge in regenerative medicine, or to oppose dysregulated proliferation and 

growth in tumorigenesis.  Monitoring patients with liver disease, as well as healthy liver 

donors, provides invaluable, but limited, information about regulation of liver regeneration 

in humans (4, 38). To fill this gap, research turns to animal models, and several exist for the 

study of liver regeneration (13, 39).  Among these, the mouse liver regeneration model 

allows more mechanistic insights, as knock-out and knock-in mutations of selected genes are 

more readily created in this species. Interestingly, liver regeneration in zebrafish has gained 

in use during the past few years; small-scale PH performed in this animal triggers a 

regenerative response similar to that of rodents and humans (40, 41). Here, the primary 

focus is on the rodent model, as it is used to study the progressive activation of transcription 

factors in response to inductive signals of PH.  Transcription factors exert their influence 

through networks of targeted gene regulation that promote and precisely terminate the 

remarkable process of tissue regeneration.      

 The classical rodent model of PH requires ~65-70% removal of liver to initiate liver 

regeneration via hepatic cell proliferation.  This initial phase of liver regeneration is often 

termed the priming phase, and is required for the G0-G1 transition of hepatocytes and non-

parenchymal liver cells.  The responsive phase includes proliferation (G1-S-G2-M 
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transitions) and cessation of growth (exit back to G0).  Unless hepatocytes are inhibited or 

greatly delayed in replication by extensive disease or injury, response of these differentiated 

cells is the primary means by which liver mass is restored.  

 PH-induced regeneration is initiated by hemodynamic changes due to two-thirds 

removal of liver mass, which triples the portal load per unit of tissue (42). Proliferation 

occurs in all populations of cells within the liver: mature normal hepatocytes of the liver 

parenchyma, as well as induction and proliferation of non-parenchymal, hepatic cell types: 

stellate cells, endothelial cells of sinusoid, biliary epithelium, and hepatic macrophage-like 

Küpffer cells (Diagram 2).  Cellular proliferation begins in the periportal region, i.e. around 

the portal triad consisting of the portal vein, hepatic artery and bile duct, and proceeds 

toward the central vein. An increase of gut-derived factors, such as lipopolysaccharide, 

complement factors, and intercellular adhesion molecules in portal blood, and subsequently 

in liver sinusoids, activates Küpffer cells (43).  

 Küpffer cells come in close contact with parenchymal hepatocytes and induce 

replication of hepatocytes through their release of tumor necrosis factor and interleukin 6 

(Il6) cytokines in a paracrine manner. Experiments performed with mice mutant for Il6 (44) 

and Tnfa receptor 1 (45) demonstrated that these factors are essential for initiation of liver 

regeneration (Diagram 2).  

 The first transcription factors are activated within approximately 4h after PH, and 

these include NFkB, Stat3, and AP-1 (44-46). The transcriptional activity of these factors is 

critical for initiation of liver regeneration, as their target genes encode many proteins, which 

are not expressed in quiescent hepatocytes and must be synthesized de novo for the G0-G1 

and later transitions.  
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 Expression of immediate-early and delayed-early response genes initiated during the 

priming phase of liver regeneration leads to de novo synthesis of transcription factors, thus 

starting the next cascade of transcriptional activity during the G1-S-G2 transition (Diagram 

2). The newly synthesized transcription factors include Myc, C/EBPs, FoxM1, and others 

previously reviewed in (47). However, the number of transcription factors necessary for 

successful initiation and completion of mitosis may be significantly higher. At least 185 

genes change expression during the first 4 hours after PH, as revealed by high-density 

microarray analysis (48). 
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Diagram 2. Transcriptional cascades activate liver regeneration after partial 

hepatectomy. Blood-borne factors and components of the extracellular matrix activate 

non-parenchymal liver cells in response to PH surgery. Release of cytokines and growth 

factors activate the first transcriptional response in hepatocytes, leading to the 

expression of early-response genes (G0-G1-S transition) and consecutive activation of 

late-response transcription factors (S-G2-M). Liver regeneration is complete after 1-2 

mitotic cycles, and hepatocytes exit back to the quiescent state (G0).   

1 – LPS, ICAM, complement factors, insulin, acetycholine, norepinephrine, EGF, 

xenobiotics; 2 – Il6 and TNFα; 3 – VEGF; 4 – HGF; 5 – TGFβ; 6 – bile acids. 

BD – bile duct; CV – central vein; HA – hepatic artery; HC – Hering’s canal; 

PV – portal vein; S – sinusoid; CH – cholangiocyte; EC – endothelial cell; H - 

hepatocyte; KC – Kuppfer cell; SC – stellate cell; ECM – extracellular matrix, ILK – 

integrin-linked kinase. Transcription factors: NFκB, STAT3, AP1, β-catenin, 

HIF1α, RBPJκ, NFAT, CAR, FXR, Fos, Myc, C/EBPβ, HES1, EGR-1, Ets-2, Nrf2, 

Arf3, Smad3, FoxM1, p53, SnoN, Ski, mSin3A, PGC1α,  p73, C/EBPα, Socs. 
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 Mitotic entry (G2-M transition) occurs during the second day after PH in mice, and 

requires expression of cyclin A, cyclin B, cyclin-mediated kinases Cdk2, Cdk1, and the 

Cdc25 family of protein phosphatases. FoxM1, a transcription factor activated during the 

early response phase of liver regeneration, induces some of these genes. Hepatocytes enter 

mitosis as a synchronized population at approximately 48 h after PH, followed by non-

parenchymal liver cells. At approximately 72h after liver resection, a subset of hepatocytes 

exits cell cycle and returns back to G0. The remainder continues to divide through one more 

round of mitosis prior to exit to G0 at approximately 96 h after PH (49). Mitotic progression 

is controlled by Polo-like kinases Aurora A and Aurora B, which phosphorylate regulatory 

proteins of the mitotic machinery and mediate prophase-to-metaphase transition, 

chromosome alignment, mitotic spindle assembly, and cytokinesis (50, 51). Expression and 

post-translational modifications of the major checkpoint regulator p53 have been previously 

linked to Aurora A function (52, 53). Experiments demonstrated that p53 expression and/or 

protein stability is regulated at the G2-M checkpoint and suggested that p53 regulates G2-M 

transition during liver regeneration in liver-specific Aurora A-transgenic mice (53).   

 Liver regeneration after PH stops precisely when a pre-operative liver index (ratio of 

liver weight/body weight) is restored, within 7-14 days in mice. Liver cells therefore possess 

highly effective mechanisms that control mitotic exit of hepatocytes and non-parenchymal 

cells and return to G0. A deeper understanding of these mechanisms will provide valuable 

information about regulation of proliferation and quiescence in normal cells, critical for the 

treatment of cancer, wound repair, and many other medical conditions associated with 

abnormalities of tissue growth.  
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2.2. Tumor suppressors p53 and TA-p73 regulate transcription of hepatic target genes in 

vivo.  

 

 Studies of cancer cell lines, mouse models, and patient samples clearly establish that 

loss of p53 and p73 functions is causative in tumor development (32, 54-57). However, 

much less is known about the status and functions of p53 and p73 in normal, quiescent 

tissues in the absence of cellular stress. Recent publications describe p53-mediated 

regulation of metabolic pathways, organ development, and stem cell renewal (58).  New p53 

target genes Gfi-1 and Necdin were identified as regulators of quiescence of hematopoietic 

stem cells (59).  Additionally, combined loss of p53 and p73 leads to genomic instability in 

mouse embryonic fibroblasts (55), further emphasizing the importance of p53 and p73 

functions in normal cells. 

 p53 and p73 regulate gene expression by binding to a consensus DNA sequence 

known as a response element (RE). The canonical p53 response element (p53RE) comprises 

two decamer motifs, or half-sites, RRRCWWGYYY, where R is a purine, W is A or T, and 

Y is C or T), separated by a spacer of 0-13 base pairs (Diagram 3). Intrinsic features of the 

REs, such as the sequence and organization of the individual functional units in an RE, and 

the spacer separating the two decamer half sites, can greatly affect the transactivation 

potential of p53 (Diagram 3) (60). The C and G nucleotides are highly conserved, whereas 

WW and flanking sequences and the spacer length vary and are thought to affect 

transcriptional activity of p53 (61). Several studies demonstrate that p73 binds to the p53RE, 

either by itself, or in a complex with p53 (62, 63). However, a number of genes have been 

reported as unique p73-targets (64); more research is necessary to explain the differences in 

the specificity of p53 and p73 binding to the target genes.    
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Diagram 3. The interaction of p53 protein with target response elements is 

essential in the transcriptional modulation of target genes. The canonical p53 

response element (p53RE) comprises two decamer motifs, or half-sites, 

RRRCWWGYYY, where R is a purine, W is A or T, and Y is C or T) separated by a 

spacer of 0-13 base pairs. Logo representations of p53 REs were identified based on in 

vivo occupancy studies and show the results from a ChIP-chip study originally 

presented in Smeenk, L. et al. Characterization of genome-wide p53-binding sites 

upon stress response. Nucleic Acids Res. 36, 3639–3654 (2008). In both logos, the 

height of a letter at each given position of the p53 RE is proportional to the frequency 

of its corresponding nucleotide, at that position, among the identified p53 REs in p53-

bound DNA sequences. 

Modified and reproduced with permission from Nature Publishing Group (NPG): 

Daniel Menendez, Alberto Inga and Michael A. Resnick. The expanding universe of 

p53 targets. Nature Rev Cancer 2009. 
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 Previous studies show that p53 protein levels are developmentally regulated in 

mouse liver. p53 protein is low or undetectable in newborn mice but increases within two 

weeks and is maintained throughout adulthood, decreasing with age (65, 66).  The data 

presented in this work, as well as published results, suggest that TA-p63 has very low 

expression and little or no transcriptional activity in liver, whereas TA-p73 complements 

functions of p53 in adult mouse liver, e.g. in transcriptional repression of tumor marker gene 

Afp (32, 62).  The expression of Afp is high in developing liver and in HCC but is 

undetectable in normal adult liver (67). Both p53 and TA-p73 bind to the p53RE of Afp in 

liver, targeting co-repressor proteins and repressive histone modifications to chromatin at 

the p53RE and Afp transcription start site (TSS), and repress Afp within 2-3 weeks of age 

(62, 68). In p53-/- mice, Afp repression is delayed up to 4 months, suggesting a more limited 

capability of chromatin-bound TA-p73 in co-repressor recruitment (62).  

 Several recent studies expanded on functions of p53 and TA-p73 during liver 

regeneration. During PH-induced liver regeneration, p53-mediated recruitment of histone 

demethylase LSD1 and transcriptional repression if Afp is decreased, suggesting a loss of 

p53 transcriptional activity in proliferating hepatocytes (69). Study of Aurora A transgenic 

mice revealed p53 activity at the G2-M checkpoint during regeneration (53). In mice treated 

with the hepatocarcinogen o-aminoazotoluene (OAT), partial hepatectomy increased p53 

protein levels and induced expression of p53 target genes, compared to the control group 

that underwent PH surgery without prior treatment with OAT (70). This result suggests a 

hepatoprotective response, mediated by transcriptional activity of p53 when regenerating 

hepatocytes are exposed to carcinogens. Interestingly, liver regeneration in Trp53 KO mice 

proceeds without major complications (71).  One possibility is that TA-p73 partially 
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compensates for loss of p53 transcriptional activity during liver regeneration, as it does 

during liver development of Trp53 KO mice (62).  Trp73 KO mice have profound 

developmental abnormalities and do not live to adulthood (29); therefore, TA-p73-mediated 

transcription has not been studied in the context of liver regeneration. 

 Both p53 and TA-p73 have a potential to execute hepatoprotective functions through 

transcriptional activation or repression of target genes involved in cell death, cell cycle, and 

senescence (61, 64). p53/p73 target genes responsible for the G1 arrest and apoptosis are 

activated by the recruitment of the acethyltransferase p300/CBP to p53-regulated promoters 

(72) and by the direct interaction of p300/CBP with TA-p73 (73). These processes, and 

expression of the relevant target genes, are highly regulated during regeneration of liver 

when quiescent, mature hepatocytes re-enter the cell cycle (74, 75).  To uncover potential 

liver-specific targets of p53 family members, this work combines analysis of chromatin 

association of TA-p73 in adult mouse liver, by chromatin immunoprecipitation and 

hybridization to microarrays (ChIP/chip), with determinations of global expression during 

liver regeneration in response to partial hepatectomy.  The results show that only a highly 

restricted number of TA-p73-target genes significantly change expression during liver 

regeneration.  Among these are genes encoding several transcription factors, which 

potentially amplify the effects of tumor suppressor TA-p73 or p53 activation or repression, 

by establishing cascades of regulated gene expression.  This study identifies the Forkhead 

box transcription factor Foxo3 as a new target gene of p53 and TA-p73 in normal quiescent 

liver. 
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2.3. Foxo3 is a tumor suppressor gene expressed in liver.   

 

 FoxO3 is a bona fide tumor suppressor that belongs to the Forkhead box O subfamily 

of a large group of Forkhead transcription factors named after the forkhead-like motif in the 

protein (76) (Diagram 4). FOXO1, FOXO3, and FOXO4 genes are disrupted by 

chromosomal translocations in human cancers (77). FoxO3 is inactivated by 

phosphorylation, mediated by serine/threonine kinase Akt, by the inhibitor of NFκB (IκB) 

kinase IKKβ, or by the extracellular signal-mediated kinase ERK in response to growth 

factor signaling, inflammation, or mitogen activation, correspondingly (78-80).  

Phosphorylated FoxO3 protein loses its transcriptional activity due to nuclear exclusion and 

proteosomal degradation in the cytoplasm (81, 82). When active and localized to the 

nucleus, FoxO3 regulates expression of genes that inhibit cell cycle and activate apoptosis, 

sharing some of these gene targets with p53 and TA-p73 (64, 83). FoxO3 is critical for the 

maintenance of quiescence in hematopoetic stem cells and primordial follicles in mice and 

humans (84, 85). Intriguingly, recent data demonstrated that FoxO3 protein directly interacts 

with p53, allowing these proteins to act as transcriptional partners (86, 87). FoxO3 has been 

considered as a potential target for cancer treatment (88). Changes in expression of FoxO3 

were implicated in several diseases including Alzheimer disease (89-91).  The transcription 

factor E2F1 was shown to activate FOXO3 expression, but direct regulation of endogenous 

FOXO3 transcription has not been demonstrated (92). In UV-treated keratinocytes, FOXO3 

is negatively regulated by HES/HERP repressors (93). Interestingly, FoxO3 protein can 

directly bind to promoters of other FoxO family members and activate expression of FOXO1 

and FOXO4. However, despite high homology between FOXO genes, FoxO3 protein fails to 
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bind and activate FOXO3 (94). Thus, the mechanism of transcriptional regulation of FOXO3 

remains to be identified.  

 At the level of protein, FoxO3 expression is detected in various organs during 

embryonic and post-neonatal development (95-97). However, FoxO3 expression is not 

ubiquitous and is controlled in a tissue-specific manner. Conditional deletion of all Foxo 

genes in liver endothelial cells (EC) enhances proliferation and survival, while FoxO-

deficient lung EC cells do not have phenotypic alterations (80). FoxO3 mRNA, and not 

mRNAs of other FoxOs, is expressed in embryonic liver at day 13.5 (98), however, very 

little is known about FoxO3 mRNA and protein levels in normal adult liver.  

 This work demonstrates that p53 and TA-p73 bind to the p53RE of endogenous 

Foxo3 in adult quiescent mouse liver. p53 and TA-p73 activate expression of the Foxo3 

gene by recruiting acethyltrasferase p300 to Foxo3 p53RE. FoxO3 protein is also detected in 

normal adult liver. During liver regeneration, p53 and TA-p73-mediated transcription of the 

Foxo3 gene is lost, resulting in a decrease in FoxO3 mRNA and protein levels. Binding of 

p53 and TA-p53, as well as expression of FoxO3, are restored after completion of post-

hepatectomy liver growth. This work establishes a direct regulatory link between p53, TA-

p73 and FoxO transcription factors, which are growth suppressors in normal tissues.  
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Diagram 4. Tumor suppressor pathways and growth regulation converge on FoxO 
transcription factors. The core phosphatidylinositol 3-kinase (PI3K) signaling pathway 
(blue symbols) begins with PI3K activation by receptor tyrosine kinases (RTKs). 
Activated protein kinase B (PKB, also known as AKT) inhibits the activities of the 
FOXO transcription factors, resulting in cell proliferation and survival. The Ras pathway 
(orange symbols) can be triggered by a set of RTKs that are activated by growth factors. 
The activation status of p53 can also affect the outcome of PI3K signaling by interacting 
with the FOXO transcription factors and with extracellular-regulated kinase 1 (ERK1) 
and ERK2. Other members of the PI3K and the RTK–Ras signaling pathways include 
SGK (serum- and glucocorticoid-induced kinase), TSC1/TSC2 (tuberous sclerosis 1 and 
2), RHEB (Ras homologue enriched in brain), TOR (target of rapamycin), 4EBP 
(eukaryotic initiation factor 4E (EIF4E)-binding protein), p70S6K (ribosomal protein, S6 
kinase 70kD), and PP2A (protein phosphatase 2A), GRB2 (growth factor receptor-bound 
protein 2), SOS, Ras, Raf, MEK (mitogen-activated ERK kinase) and ERK. Modified and 
reproduced with permission from Nature Publishing Group (NPG): Megan Cully , Han 
You , Arnold J. Levine and Tak W. Mak. Beyond PTEN mutations: the PI3K pathway as 
an integrator of multiple inputs during tumorigenesis. Nature Rev Cancer 2009. 
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1.  Liver regeneration in mice  

  

 Partial hepatectomy (PH) to remove 65% of total liver tissue, or sham surgery was 

performed using isoflurane anesthesia according to published protocol (Cold Spring Harb. 

Protoc.; 2006; doi:10.1101/pdb.prot4384). Five to seven C57Bl6/Sv129 mice, 2 months of 

age, were used for each experimental condition according to the MD Anderson Cancer 

Center Institutional Animal Care and Use Committee guidelines. Mice were sacrificed 1, 2, 

3, 4, or 7 days following PH and sham surgeries; remnant liver tissue was harvested, flash-

frozen, and processed for RNA and ChIP analyses. A separate set of surgeries was 

performed to harvest and fix liver tissue in formalin for the immunohistochemistry 

experiments. Liver/body weight ratios were calculated to estimate the recovery of liver mass 

(Appendix Figure 1). 

 

2.  Cell Culture and Plasmids 

 

 Hepa1-6, mouse hepatoma cells, were obtained from ATCC and cultured under 

standard conditions (RPMI medium supplemented with 10% calf serum, in incubators with 

5% CO2 at 370C). The plasmid encoding wild type p53 has been previously described (99). 

Plasmids encoding p73α and p73β have been previously described and were generous gifts 

of G. Melino (62). The cells were transfected with 4 µg of total DNA/100-mm plate using 

Lipofectamine, according to the manufacturer's instructions (Invitrogen). Val5 mouse 
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embryonic fibroblasts stably expressing temperature-sensitive p53 R135V mutant were 

obtained from M. Murphy (Fox Chase Cancer Center, Philadelphia, PA) (100). 

 

3.  ChIP/chip and microarray analyses 

 

 Chromatin immunoprecipitation (ChIP) was performed on liver tissue lysate with a 

p73 antibody that detects the full-length (TA) forms of p73. Liver tissue was isolated and 

flash-frozen from 2 month old C57Bl/129 mice, and ChIP assays were performed as 

described previously (62). To analyze resulting DNA, an Agilent promoter array was 

employed representing 60-mer oligomeric probes within -5.5kb and +2.5kb of 17,000 genes 

or predicted gene regulatory regions of the mouse genome. Ligation-mediated amplification 

was used prior to labeling and hybridization; amplified material was shown to have p73-

interaction sites by analysis for Afp and Cdkn1a binding by quantitative PCR. 

 To analyze expression of hepatic genes in response to partial hepatectomy (PH), liver 

tissue was collected at T=0, 24, 38, and 48 hours following PH (n=3 for each time-point). 

Total RNA was isolated using the RNeasy mini columns from Qiagen and 5 μg of RNA 

from the PH samples was used for hybridization to an Affymetrix MOE430 high-density 

oligonucleotide array that contains 45,000 probe sets for mouse genes and expressed 

sequence tags (ESTs).  Data quality control was carried out using Affymetrix Microarray 

Suite (MAS) 5.0 and normalized using the Robust Multichip Analysis (RMA) software. 

Linear modeling was carried out on the normalized data for time course analysis of gene 

expression using the LIMMA software available through bio conductor package (101). Gene 

lists were generated for the genes with a negative or positive fold change of 1.5 times or 
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more between 0h control and 24h, 38h or 48h time point and a significance cut-off of P-

value < 0.0001 was used.  

 ChIP/chip and microarray data sets were annotated and analyzed using Ingenuity 

Pathway Analysis (IPA Vesion 7.5, Ingenuity Systems, Inc.) 

 

4.  ChIP and RNA analyses of liver tissue and cultured cells 

 

 Liver tissue for ChIP and RNA analyses was harvested from C57Bl6/Sv129 wt, p53-/-

, and p73+/- mice at 2 month of age. Chromatin lysate was precleared and incubated 

overnight with the following specific antibodies for ChIP: antibodies to histone H3 

(Abcam), H3K4me2 (Active Motif), H3K9Ac (Active Motif), H3K14Ac 

(Upstate/Millipore), H4Ac (Upstate/Millipore), p53 (Novocastra), p73 (Santa Cruz) and 

normal sheep immunoglobulin G (IgG) (Upstate/Millipore). To analyze specific and 

antibody- and protein-bound DNA, real-time quantitative PCR (qPCR), and quantitative 

TaqMan (Applied Biosystems, ABI, Foster City, CA) real-time PCR were used. The 

following TaqMan real-time PCR primers and probes were used for the AFP p53RE region: 

forward primer, 5'-CTACGGCATTGAGGGTGAA-3'; reverse primer, 5'-

TGGGCACTGACATACTTCTGA-3'; and probe, 6-carboxyfluorescein (FAM)- 

AGTGAAGCACTCTTA-MGB. The following real-time PCR primers were used to detect 

the Foxo3 gene 5' p53 binding element: forward primer, 5'-

AGTCACTGCAGTTAGAAGATTTCCA-3'; reverse primer, 5'-

AACTCAGTCAGTGCTCTCATACTCA-3'; and probe, 6-carboxyfluorescein (FAM)- 

AGCAGGAGGAGGC-MGB. 5’ region of DNA located at -2 kb from Foxo3 TSS was 
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chosen as a non-specific control for ChIP experiments using following primers: forward 

primer, 5’-TGGGCACAGAGCCTAACAC-3’; reverse primer, 5’-

AGTGGGGATTTGTGCAGAGA-3’; and probe, 6-carboxyfluorescein (FAM)- 

GATTCCAGGTAATAAACCCT-MGB. The percentage of the input that was bound was 

calculated by the dCt method and averaged over at least three experiments. 

 Real-time PCR primers used to test p53 and TA-p73 binding to the genes from TA-

p73 ChIP/chip analysis were as follows. Jak1: forward primer: 5’-

ATCACTCACGCAGGGAATAAGAAT–3’, reverse primer: 5’-

ACCCAGGAGAAAGCTAACACAAGA-3’; Pea15 -0.6 kb: forward primer: 5’- 

ATCTTGGTGAAGGGTGTTGTTG–3’; reverse primer: 5’-

TCAGAATATGGCAGCAAGGA-3’; Pea15 -3.0 kb: forward primer: 5’– 

AACAAGCCTTTTCTGAACACATG-3’, reverse primer: 5’– 

GGCAGACACGAGTCAGCTCAAG –3’; Tuba1a –3.3 kb: forward primer: 5’– 

GACAGCACATGCCTATAATCTCA-3’; reverse primer: 5’– 

GGCTAGCTTCCAACTTGATTCAGTATGTA – 3’. 

 Primers and reverse transcription-PCR determinations of RNA expression were 

performed as previously described (62). Briefly, total RNA from mouse liver was extracted 

with TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. At least 3 

mice were used to prepare individual RNA samples in each experiment; to avoid zonal gene 

expression effect, livers were homogenized prior to taking a sample for RNA isolation. 

cDNA was obtained by reverse transcription of 2 ug of RNA using the SuperScript first-

strand synthesis system (Invitrogen).  Real-time PCR was carried out using primers for 

indicated genes simultaneously with beta-actin (Aktb) primers: forward primer, 5’-
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CGTGCGTGACATCAAAGAGAA-3’; reverse primer, 5’-GGCCATCTCCTGCTCGAA-

3’.  The following primers were used to detect expression of the Foxo3 gene: forward 

primer, 5'- TGGGTACCAGGCTGAAGGA-3'; and reverse primer, 5'- 

ACTAACCTGCTTTGCCCATT-3'. The Jak1 gene: forward primer, 5’- 

CTACCGCATGAGGTTCTACTTTAC-3’, and reverse primer, 5'- 

TCGCCATACAGACTGTTCGT-3’; the Pea15 gene: forward primer, 5’-

GGACACCAAGCTAACCCGTATT-3’, and reverse primer, 5'-

GAGGGCTGCCGGATAATGT-3’; the Tuba1 gene: forward primer, 5’-

CCGGGCAGTGTTCGTAGAC-3’, and reverse primer, 5'-GCCGGTGCGAACTTCA-3’.  

Relative amounts of RNA were determined by the ddCt method. 

 

5. Western Blot analysis and immunohistochemistry  

  

 Western Blot analysis of whole-cell lysates prepared from homogenized liver or 

from cultured cells was performed using standard SDS-polyacrylamide gel electrophoresis 

methodology. Whole livers were homogenized in T-PER buffer (BioRad), and cleared by 

centrifugation according to the manufacturer’s protocol. Supernatant containing whole liver 

cell protein was used for WB analysis. Cultured Hepa-1-6 cells were lysed in Triton-X100 

lysis buffer containing protease inhibitors (cocktail Set 1, Calbiochem) and phosphatase 

inhibitors (cocktail Set 1, Sigma). 25 µg of total protein was heat-denatured in SDS buffer 

(25mM Tris-HCl, pH 7.5, 150mM NaCl, 5 mM EDTA, 1% SDS) and separated on 10% Bis-

acrylamide gel. Transferred nitrocellulose blots were blocked in 5% milk in TBST, followed 

by incubation with the antibody. The primary antibodies used are as follows: p53 (Santa 
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Cruz), TA-p73 (Santa Cruz), HA-tag (Cell Signaling), and actin (Santa Cruz). After 

antibody incubation and washes, WB were developed using standard ECL kit (Amersham). 

 For immunohistochemistry, livers harvested from mice sacrificed at indicated time 

points following partial hepatectomy or sham surgeries, were perfused first with ~2 ml of 

PBS and then with ~2 ml of 10% Neutral Buffered Formalin (Fisher) before liver dissection 

and fixation in formalin. Tissues were embedded in wax paraffin and sectioned by the MD 

Anderson Department of Veterinary Medicine and Surgery. Slides were stained with FoxO3 

antibody (Cell Signaling) following the manufacturers’ recommended protocols and then 

counterstained with hematoxylin. 

  

6.  Isolation of primary hepatocytes and TGF-β1 treatment. 

 

 Primary hepatocytes were isolated from wt mice following standard liver perfusion 

protocol, utilizing Type IV Collagenase treatment (Sigma) to digest extracellular matrix and 

release liver cells into suspension. Obtained liver cell suspension was filtered through 70 µm 

cell strainer (BD Falcon) and centrifuged at low 50Xg speed for 10 min at 40C to separate 

hepatocytes. Supernatant containing non-parenchymal cells was removed, and pelleted 

hepatocytes were resuspended in cold William’s Plating medium (Sigma) with added 

glutamine/gentamycin, insulin-transferrin-sodium selenite, glucagon, amphotericin B, and 

FBS (Gibco). Cell viability was measured using trypan blue exclusion method. Plated 

hepatocytes were allowed to attach overnight, and treated with TGF-β1 ligand (R&D 

Systems) at a concentration of 4 ng/ml or to vehicle control (4 mM HCl containing 0.1% 

bovine serum albumin [BSA]) for the indicated time points. 
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  Similarly, Hepa 1-6 cells were cultured under standard conditions and exposed to 

TGF-β1 ligand at a concentration of 4 ng/ml or to vehicle control for the indicated time 

points. 

 

7.  Bioinformatics analysis 

 

 Potential p53 and TA-p73 consensus binding sites (p53REs) were mapped upstream 

of the transcription start sites of TA-p73-bound genes using a published algorithm available 

online on http://rockefeller.edu (102). p53REs, identified in Foxo3 gene, were analyzed 

using a motif discovery software MDScan, available at 

http://ai.stanford.edu/~xsliu/MDscan/ (103), and a logo was built using a sequence logo 

generator WebLogo software available at http://weblogo.berkeley.edu/ (104). Functional 

annotations of genes, comparison of ChIP/chip and microarray results, as well as 

identification of p53 target genes were performed using Ingenuity Pathway Analysis 

https://analysis.ingenuity.com. 

 

8.  Statistical analysis 

 

 Results are expressed as means standard error of the mean (SEM). Statistical 

analyses were performed with t-test, and p values less than 0.05 were considered significant. 
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1.  Comparative analysis of genes bound by p73 in quiescent liver and genes that 

change  expression during liver regeneration. 

 

1.2. Analysis of potential p73-bound genes in quiescent liver. 

 

 Expression levels of p53 family members in liver remains poorly characterized; thus, 

we first measured relative levels of p53, p63, and p73 mRNA in mouse liver over the course 

of post-neonatal development (Figure 1A). During first week of post-neonatal development, 

p63 mRNA level was the lowest of all three family members, and was set as 1 (2d, Figure 

1A). p63 mRNA remained very low through adulthood, as compared to p53 and TA-p73 

mRNA levels (Figure 1A). Changes in p53 protein levels during development of mouse liver 

were described previously (69) and were higher at 2 weeks and 2 months of post-neonatal 

development, compared to newborn mice (69). TA-p73 protein levels significantly increased 

at weaning age, and remained unchanged throughout adulthood (Figure 1B). Thus, p53 and 

p73 are expressed in mouse liver during post-neonatal development, and are detected in 

adult mouse liver at the protein level.  

 To search for genes regulated by TA-p73 in normal quiescent liver, chromatin 

immunoprecipitation (ChIP) analysis of liver tissue from 2-month-old wild type (wt) mice 

was performed using antibody against full length TA-p73. Isolated TA-p73-bound 

chromatin fragments were analyzed using a custom Agilent mouse promoter array set, which 

presents 1-2 60-mer oligomeric probes within -5.5 and +2.5 kb of 17,000 genes or predicted 

gene regulatory regions of the mouse genome (ChIP/chip analysis). 158 genes were found as 

potential targets of TA-p73-binding activity in liver (Supplementary Table 1). Functional 

annotations of genes were performed using Ingenuity Pathway Analysis (IPA), which allows 
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comparison of several annotated datasets within a common list of functional categories 

(https://analysis.ingenuity.com). Annotation of 158 newly uncovered genes yielded 12 

categories with cancer, cell death, and cell proliferation receiving the highest number of hits 

with the lowest p-value, as determined by IPA (Figure 2A). Other categories of TA-p73-

bound genes in the quiescent liver included hematological disease and function, 

inflammatory response, cell signaling, development, and cell cycle (Figure 2A). 

 Of these gene targets, none were previously reported as p73-regulated and 8 were 

known targets of p53 (e.g, Annexin A1 (105), Notch1 (106), and Bai1 (107). Thus, many of 

identified TA-p73 target genes are not known as p53/p73-regulated and potentially define a 

specific set of TA-p73-regulated genes in quiescent liver. 
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Figure 1. Expression of p53 family members p53, p63, and p73 during post-

neonatal liver development. (A) Relative Trp53, Trp63, and Trp73 transcript levels 

measured by real-time PCR in total RNA from liver samples isolated from at least 3 

mice per time point (d indicates days, m – months). (B) TA-p73 protein levels measured 

by Western Blot analysis show increasing expression of TA-p73 in developing mouse 

liver. 
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1.2. Analysis of genes that change expression during liver regeneration. 

 

 Two-thirds partial hepatectomy (PH) promotes proliferation of liver cells and a rapid 

growth of the remaining liver tissue, resulting in complete restoration of organ mass in 

approximately 7 days following PH in mice (75). Global analysis of mRNA levels isolated 

at early time points (first 4 hours) and at later time points (24, 38, 48 hours) using 

microarray analysis provides lists of genes that regulate the priming phase of liver 

regeneration vs. genes responsible for the progression of the cell cycle (108, 109). Liver 

tissue collected from mice at T=0, 0.5, 1, 2, 4, 24, 38, and 48 hours following PH was used 

to determine specific gene expression by the microarray analysis using Affymetrix 430.2 

gene array platform containing 45,000 probe sets for mouse genes and expressed sequence 

tags. Statistical analysis yielded 434 genes that changed expression between 0.5 – 4 h after 

surgery (Supplementary Table 2), and 3807 genes that changed expression between 24 - 48 

h following PH, as compared to T=0 (Supplementary Table 3).  

 Consistent with previous observations, microarray analysis of 0.5 - 4 h post-PH 

livers showed a significant increase in expression of ‘early response’ genes, upregulated 

during the priming phase of liver regeneration, e.g., C/EBPb, Jun, Myc, Tnfrsf1a, Hif1a, 

Atf3, Ets2 (Supplementary Table 2). Several genes not previously reported in the context of 

liver regeneration, included pluripotency regulator Klf4, transcription factors Mxi1 and 

Sin3a, as well as anti-apoptotic Bcl2 family member Bcl2l1, Cbp/p300-interacting 

transactivator Cited2, and protein phosphatase 2 regulatory subunit B56α Ppp2r5a 

(Supplementary Table 2). Functional annotations of genes that changed expression in 
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response to partial hepatectomy at 0.5 - 4 hours yielded hematological disease as a major 

functional category with genes implicated in leukemia, thrombosis, apoptosis and necrosis 

of blood cells, as well as in hypoglycemia (Figure 2B). Hematological disease category was 

also present in functional annotations of TA-p73-bound genes and included Anxa1, Casp3, 

Foxo3, and Notch1. The direct comparison of early-response gene IDs from this microarray 

to TA-p73 bound genes showed only one known TA-p73-bound gene (RNA terminal 

phosphate cyclase-like 1 Rcl1) upregulated at 0.5 - 4 hours post-PH. Thus, the majority of 

identified TA-p73-regulated genes described here are novel targets of this protein. 

 Similar to TA-p73-bound genes in quiescent liver, the major functional categories of 

genes that changed expression (either increasing or decreasing) during 24 - 48 hours of liver 

regeneration included those associated with cancer, cell death, and cell proliferation (Figure 

2C). This important finding indicates that many genes altered during liver regeneration also 

function in cancer development. Several genes that encode regulators of cell division and 

cell death, as well as transcriptional regulators, change expression during 24 – 48 h of liver 

regeneration: cell division protein phosphatase Cdc25, pro-apoptotic Bcl2 family member 

Bax, tumor suppressor Pten, histone acetyltransferase Pcaf and Myst3 (Supplementary Table 

3). Two other categories, represented among TA-p73-bound genes, were cell signaling and 
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Figure 2. Functional annotations of p73-bound genes and genes that change 

expression during liver regeneration. Genes from p73 ChIP/chip (A), genes that 

change expression at 0.5 – 4 h post-PH (B), and genes that change expression at 24 - 

48 h post-PH (C) were annotated and analyzed using Ingenuity Pathway Analysis 

application. Functional categories were selected based on the highest number of genes 

and lowest p-values. Pie charts were created based on the number of genes in each 

category. (D) Results presented in (A), (B), and (C) were combined a linear format. 

Functional categories are presented on the X-axis, and the number of genes in each 

category is presented on the Y-axis. 
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inflammatory response (7% each), reflecting TA-p73 functions in multiple signaling 

cascades described in tissue culture experiments (110) and inflammatory defects found in 

p73-/- mice (29). These categories had less than 1% hits among genes that changed 

expression at 24 - 48 hours following partial hepatectomy, suggesting unique functions for 

TA-p73 in quiescent liver that are not executed during regeneration.  

 Compared to earlier time points, genes that changed expression in regenerating liver 

at 24 - 48 hours post-PH had a significant increase in the number of targets in cell cycle and 

DNA replication categories (Figure 2B and 2C). TA-p73 targets were present in both of 

these categories and included S-phase regulator Pea15, metaphase protein Smc1a, 

hedgehog receptor Ptch1, insulin receptor Insr, and the Forkhead transcription factor Foxo3 

(Supplementary Table 3). Taken together, the comparison of the number of genes 

represented in each of the 12 functional categories in all three analyses (TA-p73 ChIP/chip, 

0.5-4h post-PH, and 24-48h post-PH gene expression) suggests that TA-p73 regulates more 

genes that change expression at early stages of regeneration, versus cell cycle-regulated 

genes (24-48 h post-PH, Figure 2D). 

 The direct comparison of gene IDs from 24 - 48 hours microarray to TA-p73 bound 

genes yielded seventeen TA-p73-bound genes among the 3807 genes found to be up- or 

down-regulated in response to PH (Table 1). This list included heat shock proteins Carhsp1 

and Dnajc19, transcription factors Dmtf1, Foxo3, and Nfatc3, cyclin L2 Ccnl2, plasma 

membrane receptors Insr, Ptch1, xenotropic retrovirus receptor Xtr1, and enzymes Janus 

kinase 1 (Jak1) and polymerase epsilon Pole (Table 1).  

 To identify known p53-regulated genes that may function in quiescent and 

regenerating liver, the list of genes that change expression during liver regeneration 
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(Supplementary Table 3) was analyzed for known p53-target genes using the Ingenuity 

knowledge database. Based on publication records in the IPA database, a majority of the 

p53 target genes were discovered and confirmed in tissue culture cells, whereas few are 

known to be bound by p53 in liver tissue in vivo, e.g., Afp and Cdkn1a (p21) (Figure 3). 

 Depletion of both p53 and TA-p73 in mice leads to development of HCC, which is 

unique to this combinatorial depletion among p53-family members. Many known TA-p73 

target genes are shared with p53 (64, 111, 112).  TA-p73 can bind to the same consensus 

site with p53 on hepatic gene Afp (62). Therefore, a select group of TA-p73-bound genes, 

which displays altered expression during liver regeneration, may offer further clues 

regarding liver-specific gene targets of both p53 and p73 that are either up- or down-

regulated during cellular proliferation and disruption of quiescence. 
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Gene ID Name Full name p73/input 24h 38h 48h p value p53RE 
NM_025821 Carhsp1 Calcium regulated heat stable 

protein 1 
37.29 1.16 1.34 1.61 1.51905E-06  

NM_033325 Loxl2 Lysyl oxidase-like 2 18.82 1.44 1.48 1.60 6.42488E-05  
NM_019740 Foxo3 Forkhead Box o3a 14.63 0.49 0.47 0.48 4.163E-10 Y 
NM_011273 Xpr1 Xenotropic and polytropic retrovirus 

receptor 1 
10.74 0.63 0.41 0.47 4.40E-08  

NM_133752 Opa1 Optic atrophy 1 homolog  10.38 0.59 0.51 0.58 1.21815E-07  
NM_00102621
1 

Dnaj Dnaj (Hsp40) homolog, subfamily c, 
member 19 

8.7 0.80 0.64 0.67 5.35E-07  

NM_011825 Grem2 Gremlin 2 homolog, cysteine knot 
superfamily 

7.61 0.52 0.32 0.32 1.15E-07  

NM_011063 Pea15 Mammary transforming gene 1  6.11 1.53 2.06 1.89 6.84E-06 Y 
NM_011132 Pole Polymerase epsilon 6.1 1.36 2.82 2.15 7.65336E-08  
NM_146145 Jak1 Janus kinase 1 5.21 0.83 0.41 0.51 3.0463E-05 Y 
NM_010730 Anxa1 Annexin A1 5.11 2.20 2.89 2.28 8.86989E-05  
NM_011653 Tuba 1 Tubulin, alpha 1 4.98 2.33 2.64 2.55 7.78639E-07 Y 
NM_008957 Ptch1 Patched homolog 1 4.52 0.39 0.33 0.40 7.80E-08  
NM_010901 Nfatc3 Nuclear factor of activated t-cells, 

cytoplasmic, calcineurin-dependent 
3 

3.79 0.73 0.49 0.59 2.51318E-05  

NM_207678 Ccnl2 Cyclin L2 3.66 0.52 0.45 0.50 3.90362E-05  
NM_011806 Dmtf1 Cyclin d binding myb-like 

transcription factor 1 
3.25 0.61 0.50 0.68 1.85E-06  

 
Y - p53RE perfect match 

 
Y - p53RE found 

 Table 1. p73-bound genes that change expression in response to partial hepatectomy. 

List of TA-p73 bound genes  (Supplementary Table 1), was compared to genes that change 

expression during 24 – 48 hours of liver regeneration (Supplementary Table 3). IPA 

Compare Analysis function identified 17 gene IDs that are common between two datasets. 

The intensity of TA-p73 binding was determined by ChIP/chip (Supplementary Table 1), 

and the expression levels of 17 genes were analyzed by microarray (Supplementary Table 

3). Search for p53 response elements was performed using results of algorithm (Hoh J, Jin 

S, Parrado T, Edington J, Levine AJ, Ott J. The p53MH algorithm and its application in 

detecting p53-responsive gene PNAS 2002; 99(13): 8467-72). 
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Figure 3. Diagram of putative p53 target genes in liver. List of genes that change 

expression during liver regeneration was analyzed for known p53-target genes using 

Ingenuity knowledge database. p53 target genes shown here were originally discovered 

and confirmed in tissue culture cells. Based on our microarray analysis, these genes are 

also up-regulated or down-regulated during liver regeneration. Only few of them were 

previously characterized as p53 targets in liver tissue in vivo, e.g., AFP and CDKN1A 

(p21). The majority of listed here p53 target genes remain uncharacterized in liver 

during quiescence and regeneration. 
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1.3. Identification of new target genes regulated by p53/p73 during liver regeneration. 

 

 TA-p73-bound genes, uncovered by ChIP/chip, were considered as potential p53-

regulated gene-targets in normal, quiescent liver (30, 62, 113).  Using a published algorithm 

(102), to find p53 consensus sites, potential, shared p53 and TA-p73 (p53/p73) binding sites 

(p53 response elements, p53RE) were mapped upstream of the transcription start site (TSS) 

of only four TA-p73-bound genes that changed expression during 24 - 48 hours of liver 

regeneration: Forkhead Transcription Factor O3 (Foxo3), Janus kinase 1 (Jak1), 

phosphoprotein enriched in astrocytes 15A (Pea15), and tubulin alpha 1A (Tuba1) (Table 

1). p53 REs were found within intronic regions of Jak1, at -3.7 kb of Foxo3 TSS, at -0.6 kb 

and -3.0 kb of Pea15 TSS, and at -3.3 kb of Tuba1. Binding of p53 and TA-p73 to p53REs 

of Foxo3, Pea15, Jak1, and Tuba1 were verified by ChIP using antibody against p53 and 

TA-p73 (Figure 4). Since no p53REs were found in the region covered by the Agilent 

promoter probe for Jak1 (within -5.5kb and +2.5kb of TSS), ChIP primers for the probe 

region located at -1.5 kb from Jak1 TSS were used to test p53/p73 binding (Figure 4). Afp 

p53RE served as a positive control for p53/p73 binding in quiescent liver, whereas upstream 

regions of Alb and Brn3B genes served as negative controls for p53 and TA-p73 binding 

(62, 68). Binding of p53 and TA-p73 was observed for all examined genes at identified or 

potential p53REs, thus confirming that putative targets uncovered by TA-p73 ChIP/chip 

may be bound by both p53 and TA-p73 in quiescent liver in vivo. By microarray analysis, 

expression of Foxo3 was downregulated at 24 – 48 hours after partial hepatectomy, Jak1 

expression was decreased at 38 - 48 h post-PH, whereas other two genes, Pea15 and Tuba1, 

showed a significant increase in mRNA levels between 24 – 48 hours of liver regeneration 
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(Supplementary Table 3). To test whether Foxo3, Jak1, Pea15, and Tuba1 are regulated by 

p53 at the level of basal expression in normal quiescent liver, mRNA levels for these genes 

were determined in livers collected from p53-/- mice, and compared to wt littermates.  By 

real-time RT-PCR, a 2-fold decrease of Foxo3, and a 1.5 fold increase of Pea15 and Tuba1 

expression was observed in p53-/- livers, compared to wt (Figure 5). Jak1 expression did not 

change significantly in p53-/- mice, suggesting p53-independent regulation of this gene 

during liver regeneration. 

 Taken together, these results suggest that p53 and TA-p73 act to activate or repress 

target genes in quiescent liver, and that the transcriptional activity of p53 and TA-p73 

changes during liver regeneration. Foxo3, Pea15, and Tuba1 are regulated by p53 in 

quiescent liver, and bound by TA-p73 at the p53RE located at the 5’ regulatory region of a 

gene. Since TA-73 compensates for p53 in regulating expression of the Afp gene in p53-/-, 

we suggest that expression of Jak1, Foxo3, Pea15, and Tuba1 is regulated by TA-p73. 
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Figure 4. p53 and TA-p73 binding to genes from TA-p73 ChIP/chip analysis. ChIP 

from adult mouse liver tissue was performed using antibodies against each p53 and TA-

p73. Binding of p53/p73 to the previously identified p53RE upstream of AFP served as 

a positive control; primers to Alb and Brn3B genes were used as a negative control. 

Average of at least three independent ChIPs for each p53 and p73 is shown as 

percentage of input bound. Differences between p53/p73 binding to AFP, Foxo3, Jak1, 

Pea15, and Tuba1a genes as compared to Alb and Brn3B, are statistically significant 

(p<0.05).  
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Figure 5. Expression of potential p53/p73 target genes in quiescent mouse liver. 

RNA levels of 4 genes bound by p53 and TA-p73 in quiescent WT mouse liver was 

compared to the expression in p53-/- mouse liver. Differences in basal transcript 

levels expression of Foxo3, Pea15, and Tuba1 are statistically significant and 

marked with asterisks (p<0.05).  
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2. Identification of Foxo3 gene as a new transcriptional target of p53/p73. 

 

2.2. p53 and p73 directly bind and activate expression of Foxo3 gene in mouse liver and 

in cultured cells. 

 

 Among the seventeen TA-p73 gene-targets revealed by ChIP/chip, the gene encoding 

the Forkhead box transcription factor O3 (Foxo3) had the most significant change in 

expression in response to partial hepatectomy ( >2 fold decrease, p value 4.163*10-10) and a 

high p73-binding ratio (14.63 fold over input, Table 1). A p53 consensus site was found 3.7 

kb upstream of the TSS of Foxo3 gene, as well as at several other locations within the 

second and third introns of the gene (Figure 6A). The p53REs identified in the Foxo3 gene 

were analyzed using a motif discovery software MDScan (103), and a logo for the Foxo3 

p53 half-site was built using WebLogo software (104) (Figure 6B). Seven p53REs found in 

Foxo3 gene correspond to the canonical p53RE (61, 114), having two half-sites separated by 

a 1-10 bp spacer (Figure 6A). As discussed in more detail later, the structure of Foxo3 

p53REs suggest that p53 binding to these consensus sequences activates expression of the 

Foxo3 gene. Only one p53RE was found upstream (at -3.7 kb) of TSS; the other six were 

located within the 2nd and the 3d intron of Foxo3 (Figure 6A). To access the specificity of 

p53/p73 binding to the Foxo3 p53RE during ChIP analysis of wt mouse liver tissue, primers 

for the region located at -2.0 kb upstream of Foxo3 TSS was used as a negative control 

(non-specific region, n.s). This region contains no p53REs and shows background levels of 

interaction as compared to the binding of p53 and TA-p73 to the Afp p53RE and Foxo3 

p53RE (Figure 6C and 7A). Both p53 and TA-p73 showed significant levels of binding to 

the upstream p53RE of the Foxo3 gene in wt liver (Figure 7A).
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Figure 6. Foxo3 is a new p53/p73 target gene. (A) p53-DNA binding motifs (p53 

response elements, p53REs, labeled with asterisks) are found upstream and 

downstream of the Foxo3 transcription start site (TSS). Half-sites nucleotides have 

colors that correspond to the structure of the p53 half-site on Figure 5B. Spacer 

region is in black. (B) p53REs, identified in Foxo3 gene, were analyzed using a 

motif discovery software, and a logo was build using a sequence logo generator. The 

height of a letter at each given position of the p53RE is proportional to the frequency 

of its corresponding nucleotide at that position among the identified p53REs in p53-

bound DNA sequences (C) Primers used for consequent ChIP experiments for the 

p53RE site (marked in the table in bold) and to the non-specific site (n.s.) are shown 

with pairs of arrows below. Position of Foxo3 p53REs are marked with asterisks.  
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Figure 7. p53 and TA-p73 bind to the p53 RE located at -3.7 kb 5’ Foxo3 region. 

(A) ChIP from adult mouse liver tissue was performed using antibodies against each p53 

and p73. Binding of p53/p73 to the previously identified p53RE upstream of AFP 

served as a positive control. Primers to the -2 kb region of Foxo3 (non-specific site, n.s.) 

was used as a negative control. Average of at least three independent ChIPs for each p53 

and p73 is shown as percentage of input bound. The difference between p53/p73 binding 

to AFP and Foxo3 p53REs as compared to n.s. site is statistically significant and marked 

with asterisks (p<0.05). (B) p73 binds Foxo3 p53RE in the absence of p53. ChIP using 

p53-/- adult liver tissue was done with antibodies against p53 and p73. Average of three 

independent ChIPs is shown; p73 binding to Foxo3 p53REs is statistically significant 

and marked with an asterisk (p < 0.05). 
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 Previous work showed that binding of p53 to Afp in adult mouse liver is essential for 

repression of Afp transcription within 2-3 weeks of age (68).  However, TA-p73 

compensates for loss of p53, by binding to the Afp p53RE in the absence of p53, to promote 

a delayed but significant reduction of Afp expression in liver by 4-months of age in p53-/- 

mice (62). ChIP analysis performed using liver tissue collected from p53-/- mice at 2 months 

of age demonstrated that TA-p73 binds the p53RE of Foxo3 in the absence of p53 (Figure 

7B). Thus, both p53 and TA-p73 may regulate transcription of Foxo3 in adult mouse liver. 

 FoxO3 functions as a tumor suppressor, activating pro-apoptotic target genes, and 

suppressing proliferation. Based on known functions of p53 and TA-p73 as tumor 

suppressors and positive transcriptional regulators of pro-apoptotic and anti-proliferative 

genes, the original hypothesis was expanded to suggest that p53 and TA-p73 act as positive 

regulators of Foxo3 at the level of transcription. First, levels of Foxo3 mRNA, isolated from 

liver tissue collected from p53+/-, p53-/-, and p73+/- mice, were determined in comparison to 

wt littermates.  By real-time RT-PCR, a significant decrease of Foxo3 expression was 

observed in p53-/- and p73+/- mice (Figure 8). Next, expression of Foxo3 was determined in 

liver tissue isolated on day 2, 8, and at 1, 2, 6 months of post-neonatal development in wt 

mice (Figure 9). Expression of Afp is dramatically repressed in mouse liver after birth (115), 

and p53 and TA-p73 mediate Afp repression in adult mouse liver (62, 68). In contrast to Afp 

repression, Foxo3 expression was activated in 1 - 6 month old mouse liver (Figure 9), 

suggesting that p53 and TA-p73 activate expression of Foxo3 in adult liver when the organ 

is fully developed and liver cells become quiescent. 
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Figure 8. p53 and p73 activate expression of Foxo3 gene in quiescent 

adult mouse liver. Foxo3 mRNA levels in p53+/-, p53-/-, and p73+/- mice were 

compared to the Foxo3 expression in WT mice by real-time PCR. The 

difference between Foxo3 mRNA levels between WT and p53-/- and between 

WT and p73+/-statistically significant and marked with asterisks (p < 0.05).  
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Figure 9. Foxo3 expression during post-neonatal liver development. 

Relative Foxo3 and Afp transcript levels measured by real-time PCR in total 

RNA from liver samples isolated from at least 3 mice per time point during 

post-neonatal development. Expression levels of Afp and Foxo3 in liver at two 

days after birth are set as 1; the other developmental time points are shown as 

fold change compared to day 2. The difference in expression between all time 

points are statistically significant, as compared to day 2 separately for each 

gene.  
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 Transcription of Trp73 from alternative promoters, together with the alternative 

mRNA splicing at the C’-terminus, results in approximately 28 isoforms of p73 (116). To 

test if ectopically overexpressed p53 and TA-p73 isoforms activate Foxo3 expression in 

liver cancer cells, transient transfection of a mouse hepatoma-derived cell line Hepa1-6 

(117) was done with plasmids expressing HA-tagged p53, HA-TA-p73α, and HA-TA-p73β. 

A significant increase in endogenous Foxo3 mRNA levels is observed in cells over 

expressing p53, TA-p73α, and TA-p73β, as compared to an empty vector transfection 

(Figure 10).  Immunoblotting with antibodies against p53 and all TA-p73 isoforms (Figure 

10, lower panel) shows that, despite expression of HA-TA-p73β at a lower level than HA-

TA-p73α, the induction of Foxo3 expression is comparable.  This is consistent with 

increased transcriptional activity previously reported for TA-p73β versus other TA-p73 

isoforms (63, 113, 118); however, more experiments are required to elucidate a mechanism 

behind this difference in TA-p73-mediated transcriptional regulation.   

 To establish cause-and-effect in direct transcriptional regulation of Foxo3 by p53, 

immortalized MEFs that express a temperature-sensitive p53 conformational mutant: 

p53val135 (Val5MEFs) were used for Foxo3 mRNA analysis. In this model system, Val5MEFs 

incubated at a restrictive temperature (37°C) have only cytoplasmic-localized p53, p53val135, 

which is unable to regulate target gene expression (100).  At the permissive temperature of 

32oC, p53val135 assumes a wt conformation and moves to the nucleus to activate or repress its 

target genes, including endogenous Foxo3 (Figure 11). Together, these results demonstrate 

that endogenous Foxo3 is activated by p53 and TA-p73 in mouse liver, and by nuclear 

translocation of p53 in Val5 MEFs or ectopic expression of p53 or TA-p73 in hepatoma 

cells.  
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Figure 10. p53 and TA-p73 activate expression of Foxo3 gene in liver cancer cells. 

Hepa1-6 mouse hepatoma cells were transiently transfected with HA-p53, HA-

TAp73α and TA-p73β; mRNA levels were measured by real-time PCR. Average of 

three independent trasfection experiments is shown; the difference between Foxo3 

expression in vector-transfected cells and cells overexpressing p53 and TA-p73 is 

statistically significant (p < 0.05).  
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Figure 11. Temperature-sensitive p53 activates expression of Foxo3 gene 

in immortalized mouse embryonic fibroblasts. Foxo3 expression was 

measured in immortalized MEFs overexpressing temperature-sensitive p53 

R135V mutant. RNA was isolated from cells incubated at permissive 

temperature (32oC) for 0, 8, 12, and 24h. Average of three independent 

experiments is shown; the difference between each time point and T=0 is 

statistically significant and marked with an asterisk (p < 0.05).   
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2.3. Binding of p53 and p73 to Foxo3 gene is lost during liver regeneration. 

 

 Analysis of global gene expression levels (Supplementary Table 2 and 3) suggested 

that Foxo3 expression is dramatically decreased during a time period following partial 

hepatectomy when hepatocytes undergo DNA replication and enter mitosis, 24 - 48 hours 

after surgery. To test if Foxo3 expression decreases in regenerating liver due to loss of p53 

and p73 binding to chromatin at the p53RE of Foxo3, ChIP analysis of liver tissue, collected 

at 1, 2 and 7 days after PH and sham surgeries, was performed using antibodies that 

recognize p53 and TA-p73.  Chromatin interaction of p53 at Foxo3 p53RE was dramatically 

reduced at 1 day and 2 days after PH, accompanied by an equally significant reduction in 

TA-p73 binding (Figure 12). Binding of both p53 and TA-p73 is partially restored after 7 

days of liver regeneration (Figure 12), but is not equivalent to the level of binding observed 

in quiescent liver (T=0), suggesting that complete restoration of p53 and TA-p73 binding to 

Foxo3 gene occurs at later time points following PH. 
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Figure 12. p53/p73 binding to Foxo3 5’ p53RE changes during liver 

regeneration. ChIP from mouse liver tissue collected at 1, 2, and 7 days 

following sham and PH surgeries were performed using antibody against p53 

and p73. Average of at least three independent ChIPs for each time point is 

shown as a fold ratio of % input bound for PH over % input bound in sham. The 

difference between p53/p73 binding in sham and at each time point following 

PH is statistically significant and marked with an asterisk (p<0.05). 
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2.4. Expression of FoxO3 is decreased during proliferative stage of liver regeneration, 

 and is restored during termination of liver growth. 

 

 FoxO3 is a critical regulator of cell proliferation and tissue growth (119), but our 

understanding of FoxO3 regulation during cell cycle and tissue growth in vivo is limited. 

Liver regeneration in mice is a unique model allowing study of cell cycle in vivo during the 

first three days of regeneration, in comparison to growth cessation, 4-7 days following 

partial hepatectomy. The initial microarray data showed a significant decrease in Foxo3 

expression in liver collected at 24, 38, and 48 hours following PH, as compared to T=0 

(Supplementary Table 3). It is important to note that microarray analysis of earlier time 

points (0.5 – 4 h) showed an insignificant decrease in Foxo3 expression, suggesting that loss 

of FoxO3 occurs during the G1-S-G2 transition versus the priming phase (0 - 4 hours) of liver 

regeneration. Sets of PH and sham surgeries were performed on 2-month-old wt mice, and 

livers were collected at 1, 2, 3, 4, and 7 days after surgeries. Levels of FoxO3 mRNA were 

measured separately for each mouse in the PH or sham group, and compared to FoxO3 

mRNA at T=0.  Consistent with the global expression data, a significant decrease in FoxO3 

mRNA levels was observed between 1-3 days after PH, with the lowest Foxo3 expression on 

day 2  (Figure 13A). Foxo3 expression was gradually restored back to T=0 level on day 4 

following PH (Figure 13A), when final adjustments of regenerating liver tissue restores a 

normal liver/body weight index by 7 days in mice (Appendix Figure 1).  No significant 

difference in Foxo3 expression is observed following sham surgeries, compared to T=0 

(Figure 13B), supporting a regenerative-specific response in regulation of Foxo3. 
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 FoxO3 protein levels were determined by immunohistochemistry analysis of liver 

tissue collected at 24 hours and 7 days following PH and sham surgeries. FoxO3 protein was 

detected in sham-operated liver, and in the fully regenerated liver collected at 7 days 

following PH (Figure 14). There was a reduction in FoxO3 protein staining at 24 hours after 

PH, indicating that a decrease in FoxO3 mRNA levels, observed at this time point (Figure 

13A), is followed by the loss of FoxO3 protein in hepatic nuclei (Figure 14).  
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Figure 13. Foxo3 expression is decreased at 1-3 days following PHx and 

increased when regeneration is complete. Foxo3 mRNA was isolated from mouse 

liver tissue at indicated time points following the surgery. Relative expression levels 

were measured by real-time PCR using primers to Foxo3. (A) Foxo3 expression in 

response to 65% PH. Time points following PH with statistically significant 

difference in Foxo3 expression as compared to sham are marked with asterisks * 

p<0.05; ** p<0.01. (B) Foxo3 expression in response to sham surgery. There is no 

statistically significant difference in Foxo3 mRNA levels between T=0 and all time 

points following sham surgeries. 
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Figure 14. FoxO3 protein levels decrease in nuclei of regenerating 

hepatocytes. Livers were collected from WT mice at 24 hours and 7 days 

following sham and PH surgery. Paraffin-embedded sections were stained with 

FoxO3-specific antibody and counterstained with hematoxylin.  
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2.5. TGFβ-signaling does not regulate expression of Foxo3 gene in liver. 

 

 Termination of liver regeneration is a poorly understood process that requires 

hepatocytes to exit the cell cycle back into a quiescent G0 state. Several molecules were 

suggested in the previous studies as potential terminators of hepatocyte proliferation, among 

them TGFβ-ligand and plasminogen activator inhibitor PAI-1 protein (reviewed in (13, 49). 

TGFβ activates PAI-1 expression and suppresses DNA synthesis in hepatocytes (13, 120). 

Anti-proliferative functions of TGFβ are suppressed during liver regeneration (120), 

suggesting that TGFβ−mediated activation of anti-proliferative genes occurs in quiescent 

hepatocytes and during termination of liver growth.  

 Mouse hepatoma cells (Hepa1-6) respond to TGFβ1 treatment within hours of ligand 

application by the recruitment of p53 and Smad2/4 to the Afp p53RE, resulting in 

transcriptional repression of Afp (121). Another TGFβ−responsive gene, Pai1, has also been 

identified as a p53 target gene during replicative senescence in primary mouse embryonic 

fibroblasts (122). Transfection with small-interfering RNA specific for Foxo3 significantly 

inhibited caspase activation and apoptosis in rat hepatoma cells treated with TGFβ1 (123). 

Therefore, we tested whether TGFβ−mediated signaling regulates p53-mediated activation 

of Foxo3 expression in Hepa1-6 cells and in primary hepatocytes. No significant change in 

Foxo3 expression was observed in Hepa1-6 cells (Figure 15A) or in primary hepatocytes in 

response to TGFβ1 treatment (Figure 16), despite strong activation of Pai1 and repression of 

Afp (Figure 15B, and Figure 16). Thus, signaling events, other than TGFβ1 induction, 

account for the p53-mediated transcriptional activation of Foxo3 in liver-derived cells. 
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Figure 15. Expression Foxo3 does not change in response to TGFβ  treatment 

in mouse hepatoma cells. Hepa1-6 cells were treated with TGFβ1 ligand and 

vehicle control for the indicated time points. Afp, Pai1, and Foxo3 mRNA levels 

were measured by real-time PCR. Average of three independent treatment 

experiments is shown. There is no statistical difference in Foxo3 expression 

between untreated cells, vehicle-treated, and TGFβ1−treated cells. Afp was 

significantly repressed, and Pai1 expression was significantly increased by 

TGFβ1 treatment, and served as controls for TGFβ1 treatment.  
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Figure 16. Expression Foxo3 is does not change in response to TGFβ  

treatment in primary hepatocytes. Primary hepatocytes were isolated from 

WT mice, cultured and treated with TGFβ1 ligand vs. vehicle control for the 

indicated time points. Foxo3 and Pai1 expression was measured by real-time 

PCR in triplicates. Average of three independent treatment experiments is 

shown. There is no statistical difference in Foxo3 expression between vehicle-

treated and TGFβ1−treated cells. Pai1 expression was significantly increased by 

TGFβ1 treatment and served as a positive control. 
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3. p53 and TA-p73 recruit histone acetyltransferase p300/CBP to activate expression of 

 Foxo3 gene in mouse liver. 

 

3.2. Loss of FoxO3 expression during liver regeneration is associated with decreases in 

 histone H3 and H4 modifications observed in transcriptional activation. 

 

 Regulated gene expression is associated with modifications in chromatin structure; 

loss of histone post-translational modifications associated with activation of transcription, 

e.g., dimethylation of histone H3 at lysine 4 (H3K4me2) and acetylation of H3K9, H3K14, 

and several lysines of histone H4 are associated with repression of transcription (124). We 

performed ChIP analysis of liver tissue collected 1 day after PH and sham surgeries to 

determine histone modifications, associated with active chromatin. We observed no change 

in histone H3 levels at the Foxo3 p53RE in livers collected from sham and PH mice at day 1 

after surgeries (Figure 17A). Decreases in H3K4me2, H3K14Ac, and H4Ac, without a 

significant change in H3K9 acetylation, were observed at the Foxo3 p53RE in regenerating 

liver compared to sham (Figure 17A). These results suggest that decreases in H3K4me2, 

H3K14Ac, and H4Ac levels, but not changes in histone occupancy manifested by H3 levels, 

account for the loss of Foxo3 expression during liver regeneration. Importantly, these 

decreases occur concomitantly with loss of p53 and TA-p73 binding at the Foxo3 p53RE 

region (Figure 12), and suggest that p53 and TA-p73 recruit histone modifying enzymes to 

activate expression of Foxo3 at T=0.  
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3.3. Recruitment of p300 to the p53/p73 binding site of Foxo3 gene decreases in 

 regenerating liver. 

 

 p53 and TA-p73 recruit acetyltransferase CBP/p300 (KAT3A/KAT3B) to activate 

transcription of target genes (72, 73). Using antibodies against p300, a significant decrease 

in p300 binding to Foxo3 p53RE was observed in quiescent liver (T=0) of p53-/- mice 

(Figure 17B). A more significant loss of p300 binding to Foxo3 p53RE was observed in 

regenerating liver of wt mice at 24 hours post-PH (Figure 17C), suggesting that both p53 

and TA-p73 contribute to the recruitment of p300 to activate expression of Foxo3 in normal 

quiescent liver. It is important to note that recruitment of p300 by p53 and TA-p73 may 

activate Foxo3 transcription not only by acetylating histone H3K14 and H4 residues, but 

also by acetylating C’-termini of p53 and TA-p73 – a post-translational modification known 

to enhance p53/p73-mediated activation of target genes (125-127). 
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Figure 17. Acetyltransferase p300 binds p53RE. (A) Histone modifications at 

Foxo3 p53RE region during liver regeneration. ChIP from mouse liver tissue 

collected at 24 hours following sham and PH surgeries were performed using 

antibodies against modified histones H3 and H4. An average of at least three 

independent ChIPs for each time point is shown as percentage of input bound for 

PH and sham. The difference between sham and PH is statistically significant 

when marked with ** asterisks (p<0.01). (B) p53 and p73 recruit p300 to the 

p53RE of 5’ Foxo3 region. ChIP was performed using antibodies against p300. 

Average of at least three independent ChIPs for is shown as percentage of input 

bound. The difference between p300 binding to Foxo3 p53REs in WT as 

compared to p53-/- mouse liver is statistically significant and marked with an 

asterisk (p<0.05). (C) p300 binding to Foxo3 p53RE is lost during liver 

regeneration. ChIP experiments using liver tissue collected at 24h post-PH and 

sham surgeries were done with antibodies against p300. Average of three 

independent ChIPs is shown; decrease in p300 binding to Foxo3 p53REs is 

statistically significant and marked with ** asterisks (p<0.01).  
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DISCUSSION 

 

SIGNIFICANCE OF FINDINGS 
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1. Global analysis of p53/p73 target genes in normal liver tissue.  

 

 Definition of regulatory mechanisms employed by p53 family members in specific 

tissues or biological responses requires evaluation of their chromatin interactions and 

functional consequences in recruitment of co-factors, histone modifications and target gene 

expression. Experimental approaches using chromatin immunoprecipitation (ChIP) in 

conjunction with microarrays (ChIP/chip) or ChIP-paired-end (ChIP-PET) sequencing 

identified multiple p53 target genes responsive to DNA damage, irradiation, and 

actinomycin D treatment of cancer cell lines (60, 128-130). More recent p53 ChIP/chip 

analyses, utilizing an array with 540 p53-PET sites, 62 additional p53 target regions, and 

846 random promoter regions, revealed profound differences in p53 DNA binding activity 

between primary cells (fibroblasts and periferal blood cells) and cancer cell lines after 

exposure to genotoxic stress (131). In tumor-derived cell lines, there is little correlation 

between DNA binding by p53 and active expression of several, known p53-regulated genes, 

in the absence of genotoxic stress, suggesting that “latent” or inactive p53 has limited 

binding activity at its target genes (131).  However, ChIP/chip analysis and comparison of 

p53-binding in nontransformed, primary cells (fibroblasts and blood cells) and cancer cell 

lines, revealed profound difference in p53 functions in normal vs. continuously cultured, 

tumor-derived cell lines (131). This result further emphasizes the importance of 

characterization of p53-mediated transcription in normal tissues.  

 Genome-wide binding of p63 and p73 yielded additional sets of targeted genes, 

many of which overlap with p53 target genes, which regulate DNA damage response, cell 

cycle arrest, and apoptosis (60, 64, 132, 133). These results are not surprising, since p53 
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family members have highly homologous DNA-binding domains, and can bind each other to 

form heterotetramers (54, 134). p53, p63, and p73 bind to a very similar DNA consensus 

sequence (60), referred here as a p53RE (112). However, despite these similarities, p53 

family members also have distinct functions in vivo, demonstrated by differences in 

phenotypes of p53-/-, p63-/-, and p73-/- mice (27-29), as well as distinct tumor profiles of 

p53+/-, p63+/-, p73+/- compound mice (32). In order to explain both overlapping and unique 

functions of p53 family members in vivo, it is necessary, therefore, to analyze the 

transcriptional activity of these proteins in normal tissues during different stages of cell 

cycle and stress response. 

 In our work, mouse liver was used to perform ChIP/chip analysis and identify 

potential p53/p73 target genes for the following reasons. Two types of cancer, hepatocellular 

carcinoma and pancreatic carcinoma, are found in p53+/-p73+/- mice (32). Since hepatocytes 

and pancreatic cells share a common developmental progenitor (135), tumor cells in these 

mice may originate from hepatic progenitor cells. Genome-wide evaluation of p53- and p73-

bound sequences by ChIP/chip analysis, using cultured cells, demonstrated that 72% of p53-

bound sites were also bound by p73 in vivo (60). Previously published work provided a 

detailed mechanism for p53/p73-mediated repression of transcription of the Afp gene (62, 

136), demonstrating that both p53 and p73 can bind p53RE within the distal promoter of Afp 

in adult mouse liver. Transcriptional targets of p53 and p73 have been extensively studied in 

a variety of cell types both by in vitro assays and by ChIP (64); however, very few of these 

genes have been confirmed as direct p53/p73 transcriptional targets in vivo, and there is no 

global analysis of p73 target genes in normal tissues. The lack of data could be explained by 

the difficulties of analyzing the very low level of p53 and p73 protein in nuclei of normal 
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cells. Chromatin isolated from mouse liver can be used for ChIP/chip experiments to 

identify genes bound by TA-p73 (and, potentially, p53) in normal quiescent liver cells. 

Using this approach, 158 genes bound by TA-p73 in normal mouse liver were uncovered, 

and considered as potential p53-bound genes as well (Supplement Table 1). Among these, 

only ten targets were previously reported p53-regulated genes, whereas most of the 

identified genes had not been previously connected to p53/p73-mediated transcriptional 

regulation. In a recent review, Riley et al. identified criteria for bona fide p53 target genes, 

and generated a list of 129 genes containing at least one p53RE per gene. These 129 genes 

also satisfied two other criteria: changing expression upon wt p53 activation and bound by 

p53 at a p53RE site (61). In our ChIP/chip experiments, we identified a similar number of 

TA-p73 target genes (158, Supplementary Table 1). The liver regeneration model allowed 

the discovery of genes that change expression during activation of cell cycle in normal cells 

responding to signaling induced by partial hepatectomy. Seventeen TA-p73-target genes 

significantly change expression during the G1-S transition that occurs at 24-48 hours 

following PH (Table 2). A search for p53REs within these genes, revealed four genes with 

potential p53/p73 binding sites that also changed expression during liver regeneration: 

Forkhead transcription factor Foxo3, mammary transforming gene Pea15, Janus kinase 1, 

and tubulin a1. Using ChIP with primers to p53RE-containing regions of these genes, both 

p53 and p73 were found to bind to the upstream p53REs of Foxo3, Pea15, Jak1, and Tuba1 

(Figure 4). Foxo3 gene was chosen to study the mechanism on p53/p73-mediated regulation 

of gene during liver regeneration for the reasons discussed in more detail below.  
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2. p53/p73-mediated activation of Foxo3 expression as a defense line in tumor 

 suppression 

 

 Studies of tumor suppressor properties of FoxO proteins began with the 

characterization of chromosomal translocations in alveolar rhabdomyosarcoma, a tumor of 

skeletal muscle prevalent in children (76). Typical chromosomal translocations found in this 

tumor, t(2;13)(q35;q14) and t(1;13)(q36;q14), result in an in-frame fusion of a paired-box 

gene PAX7 to the forkhead in rhabdomyosarcoma (FKHR, or FOXO1) gene, located on 

chromosome 13 (137). A full-length FKHR-like gene (FKHRL1, or FOXO3) was cloned 

from an acute leukemia patient with a chromosomal translocation t(6;11)(q21;q23) (138). 

Later, a FOXO4 gene was identified and characterized from acute leukemia patients carrying 

a chromosomal translocation t(X;11)(q13;q23) (139). Unlike other Forkhead box family 

members predominantly expressed in adipose cells (FoxO1) and muscle (FoxO4), FoxO3 is 

expressed primarily in liver during embryogenesis in mice (98). While expression in adult 

tissues, responsiveness to growth factors, and transcriptional activity of FoxO3 is similar to 

other members of the subfamily, FoxO1 and FoxO4 (98), FoxO3 KO mice display 

developmental abnormalities and early onset of sterility of female mice (85, 140). 

 Overexpression of Drosophila dFoxO induced cell death and organ size reduction in 

flies (141). The most closely related mammalian ortholog of dFoxO is Foxo3. Unlike other 

FoxOs, FoxO3 controls cell proliferation and suppresses tumorigenesis by activating genes 

that control inflammation, cell cycle and apoptosis in mammalian cells (142). The 

transcriptional activity of FoxO3 is inactivated by protein kinases Akt, IKKβ, and ERK, all 

of which phosphorylate FoxO3 and promote its nuclear exclusion and protein degradation in 
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response to growth factor signaling, inflammation, or mitogen activation (78, 79, 142). 

Frequent inactivation of PTEN in human cancers leads to the constitutive activation of Akt 

and inactivation of FoxO3-mediated transcription (143). Aberrant activation of the Ras-ERK 

pathway leads to a rapid Mdm2-mediated degradation of FoxO3 and promotes cell 

proliferation and tumorigenesis in vivo (142).  

 Inhibition of FoxO3 significantly augments tumor growth in mice, whereas restored 

expression of FoxO3 inhibits colony formation of breast cancer cells in vitro (79). Most 

importantly, injection of FoxO3-siRNA transfected breast cancer cells into fat pads of nude 

mice significantly increased tumor formation, suggesting that downregulation of FoxO3 

expression can enhance tumorigenesis in vivo. In contrast, the ability to form tumors was 

dramatically decreased in breast cancer cells when expression of FoxO3 was restored (79). 

However, the expression of FoxO3 in normal adult tissues remains poorly characterized, and 

the transcription factors that activate expression of Foxo3 gene in vivo have not been 

described. Our work identified p53 and p73 as activators of endogenous Foxo3 gene 

expression in vivo. It also demonstrated expression of FoxO3 in quiescent adult mouse liver 

at the level of mRNA and protein.  

 FoxO3 protein levels and nuclear localization are negatively regulated by Akt 

signaling. Studies of Pten+/- and Promyelocytic leukemia Pml-/- mice with constitutively 

active Akt, demonstrated that Akt-mediated phosphorylation of FoxO3 results in a complete 

loss of FoxO3 nuclear localization and loss of FoxO3-mediated activation of pro-apoptotic 

and cell cycle arrest genes Bim and p27 (143). Importantly, colon and prostate tissues 

isolated from Pten+/- Pml-/- mice showed increased proliferation and neoplastic formations, 

suggesting that loss of FoxO3 protein from the nucleus may lead to tumor development in 
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vivo (143). In our experiments, FoxO3 protein was present in nuclei of quiescent 

hepatocytes (in livers from sham-operated mice, as well as in fully regenerated livers 

collected at 7 days post-PH, Figure 14), suggesting that Akt-mediated inactivation of nuclear 

FoxO3 is not present in quiescent liver cells.  

 Foxo3 KO mice show a reduction of the quiescent HSC pool and a deficient 

repopulating capacity in serial transplantation assays, similar to Pml-/- mice (84). Loss of 

Pten or Trp53 in the mouse prostate does not favor a tumor phenotype, whereas combined 

inactivation of Pten and Trp53 elicits invasive prostate cancer and is invariably lethal by 7 

months of age (144). Therefore, combined inactivation of Trp53 and Pten is required for 

maximal tumor growth in some tissues. Intriguingly, FoxO3, a downstream target positively 

regulated by Pten, as well as p53 and p73, all interact with PML in the nucleus, promoting 

apoptosis and cell cycle arrest (143, 145, 146). PML is involved in the early stage of 

hepatocarcinogenesis (147). Loss of interaction of p53 with PML protein also leads to 

development of HCC as a result of a decrease in p53 transcriptional activity toward pro-

apoptotic genes (148). Surprisingly little is known about functions of PML in normal liver 

cells, despite several reports demonstrating loss of PML functions in development of liver 

cancer (148-150). The Pml/Pten/Akt/FoxO signaling pathway has critical functions in 

regulating the sensitivity of cancer stem cells to chemotherapy, and can offer new targets for 

more efficient cancer stem cell-specific therapy (151). These results suggest 

hepatoprotective functions for p53, p73, FoxO3, and PML in normal quiescent liver. It 

would be interesting to determine if interactions and transcriptional activities of these tumor 

suppressors play any roles in normal liver during regeneration. 
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 One of the most comprehensive reviews on liver regeneration, written by Rebecca 

Taub (49), establishes that three patterns or waves of gene expression occur during liver 

regeneration. The first two waves are marked by expression of growth-regulated genes, 

activated immediately after PH, and cell cycle regulated genes, activated at 24 – 48 hours 

following PH. The third wave of expression (after 48 hours PH) includes anti-proliferative 

genes that are downregulated during the period of maximal growth and are re-expressed 

after the growth phase has occurred (Diagram 5). This third wave includes genes that are 

least studied in liver regeneration, but might function as tumor suppressors, preventing 

excessive proliferation of liver cells. Reactivation of Foxo3 expression at 3-7 days after PH 

follows the pattern of gene expression in the after-growth phase of liver regeneration (Figure 

13A). 

 As mentioned previously, common molecular mechanisms may regulate liver 

carcinogenesis and regeneration (Chapter I). Several intracellular signaling pathways, 

including those mediated by p53, have been studied in association with liver regeneration 

and liver cancer (11-14).  A recently published clinical report provides direct evidence that 

emphasizes the importance of restoration of p53 functions for successful treatment of liver 

cancer (19). A 62-year-old patient with a massive 16x13.5 cm tumor in the right hepatic lobe 

had blood levels of AFP equal to 12947 µg/l (normal value, <8.1 µg/l). The patient was 

treated with adenovirus-packaged wt p53 (Ad-p53), followed by 5-fluorouracil (5-FU) 

chemotherapy to disrupt DNA synthesis. Injection of Ad-p53 into the tumor feeding artery 

decreased tumor size 2-fold, within 16 days of the treatment; after prolonged injection of 

Ad-p53 + 5-FU the tumor became a 3x2 cm hypovascular lesion, and AFP levels decreased 

to 4.2 µg/l (19). Afp expression in normal mouse liver and mouse hepatoma cells is 
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repressed by p53 and TA-p73 (62, 68). During liver regeneration, p53 binding to the Afp 

p53RE decreases, and expression of the Afp gene increases (69), suggesting similar 

mechanisms regulating transcriptional activity of p53 in liver cells during regeneration and 

HCC development.  This case demonstrates that restoration of p53 functions is useful for 

patients with progressive liver cancer, and suggests that further studies of p53 functions in 

regenerating hepatocytes will provide new strategies for the treatment of liver cancer. 

  

Diagram 5. Activation of growth suppressor genes during liver generation. 

Liver cells enter mitosis (24 – 48 h post-PH), and hepatocytes proliferate 1-2 

times before liver restores its original mass by 7 days. The majority of 

hepatocytes exit mitosis at 72 - 96 h (4 days) following PH. During this time, 

reactivation of growth suppressor genes reestablishes quiescent state of liver 

cells, leading to a cessation of liver growth.  

Modified and reproduced with permission from Nature Publishing Group (NPG): 

Rebecca Taub. Liver regeneration: from myth to mechanism. Nature Rev Cancer 

2004.  
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3. p53, TA-p73, and FoxO3 protect quiescence of normal cells. 

 

 Many studies have shown that p53/p73-mediated growth suppression relies on 

transcriptional regulation of target genes that promote senescence an and anti-proliferative 

state. Recently, new p53-mediated functions came to light that do not involve acute stress 

response, but are based on a basal constitutive presence and activity of p53 in the nucleus. 

Recent publications describe p53-mediated regulation of metabolic pathways, organ 

development, and stem cell renewal (58, 152). p53 can limit the self-renewal of adult 

neuronal stem cells and regulate quiescence of HSC, pointing to distinct roles of p53 in 

resting versus cycling cells (59, 153). Studies of MEFs from p53-/- embryos, and primordial 

(quiescent) ovarian follicles of TA-p73-/- mice demonstrated that TA-p73 is important for the 

maintenance of genomic stability in normal cells, protecting them in the G0 state (55, 154).  

 Several studies suggest a function for p53 in the maintenance of cellular quiescence. 

Stable transfection of cancer cells with a temperature-sensitive mutant of p53 retained cells 

in G0-like quiescent state at the permissive temperature, when p53 has wt confirmation and 

translocates to the nucleus to bind target genes (155). p53-mediated repression of Myc at the 

permissive temperature has been directly linked to cell cycle arrest and the accumulation of 

cells in the G0 state, but not to pro-apoptotic functions of p53 (155, 156). A p53 ChIP carried 

out at the permissive temperature, in cancer cell lines overexpressing a temperature-sensitive 

p53 mutant protein, showed that p53 binds to the p53RE located at -1.7 kb from the TSS of 

the mouse Myc. Binding of p53, loss of acetylated histone H4 and recruitment of co-

repressor mSin3A were observed at the +48 to +236 promoter region at permissive 
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temperature; however, the mechanism of p53 binding at the promoter region and p53-

dependent recruitment of co-repressors have not been fully characterized (156). This study 

suggested that mouse Myc expression was repressed by p53 in spleen, thymus and bone 

marrow upon irradiation, but the mechanism of endogenous p53 activity as a transcriptional 

regulator was not characterized. More recently, the gene encoding leukemia inhibitory factor 

LIF was identified as an endogenous p53 target in normal mouse ovaries (157). p53 

interacted with p53REs in intron 1 of both mouse and human LIF genes and activated 

transcription of LIF in vivo (157). However, the mechanism of this activation has not been 

described. In the present study, p53-dependent recruitment of acetyltransferase p300 and 

acetylation of histone H3K14 and histone H4 at Foxo3 p53RE activated expression of Foxo3 

gene in quiescent liver cells.  

 In striking concordance with p53/p73 functions, characterization of FoxO3-/- mice 

revealed a pivotal role of FoxO3 in maintaining the HSC pool (84) and in suppressing 

activation of primordial ovarian follicles before the onset of sexual maturity (85). FoxO3 

may protect quiescent cells from oxidative stress by increasing expression of ROS scavenger 

SOD2 (158) and by inducing a G2/M checkpoint through activation of GADD45 in response 

to oxidative stress (159). Despite similar outcomes of p53, p73, and FoxO3 activity in vivo, 

little is known about specific mechanisms underlying the functions of these transcription 

factors in normal quiescent cells. The results described here, demonstrate that p53 and p73 

bind and activate Foxo3 in normal quiescent hepatic cells, suggesting a new mechanism to 

amplify the effects of p53 and TA-p73 by establishing cascades of tumor suppressor-

regulated expression of genes encoding additional tumor suppressors.  
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 Cross-talk between p53 and FoxO3 also exists at the level of protein-protein 

interaction. Activation of p53 by DNA damage leads to a change in FoxO3 subcellular 

localization in MEFs (160). In return, FoxO3 protein regulates p53 proapoptotic activity in 

MEFs (161). p53, TA-p73, and FoxO3 function along the same axis in a tumor suppressor 

network (Diagram 4), as many FoxO3 target genes are also well-known p53/p73 targets 

(p21, p27, GADD45, cyclin G). The results of our study demonstrate that p53 and TA-p73 

activate expression of Foxo3 gene in normal, quiescent liver, emphasizing an additional 

cross-talk between p53 and FoxO transcription factors at the level of transcription. 

  

4. Transcriptional activity of p53 and TA-p73 changes during liver regeneration.  

 

 Proliferation of liver cells in response to 2/3 hepatectomy is initiated by signaling 

cascades that further engage additional transcription factors, allowing cells to exit 

quiescence and enter mitosis. Pre-existing transcription factors (NFkB, Stat3, and Jun/AP-

1), induced in hepatic nuclei during the first 4 hours following PH, activate early response 

genes necessary for G1-S-G2-M transitions. At the same time, pre-existing transcription 

factors that regulate genes in G0, to protect quiescent state of hepatic cells, lose their 

transcriptional activity in favor of activators of proliferation, as illustrated by the reciprocal 

activity of CCAAT enhancer-binding proteins C/EBPα and C/EBPβ during liver 

regeneration (162). C/EBPα is expressed in hepatocytes of quiescent livers and is down-

regulated through the G1-S-G2-M phases of liver regeneration, whereas the transcriptional 

activity of C/EBPβ is maintained throughout the G1-S-G2-M transition (162-164). Based on 

previous findings, it was hypothesized that transcriptional activity of p53 and TA-p73 is lost 
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during proliferative stage of liver regeneration. Thus, liver regeneration is impaired in mice 

with liver-specific knock-out (KO) of Jun (165). Regeneration of Jun KO livers is restored 

on a p53-/- or p21-/- background, suggesting that inactivation of p53-mediated transcription is 

critical for initiation of liver regeneration (165). In our work, the results show that loss of 

p53 binding to the Foxo3 gene during the first two days of liver regeneration, results in a 

significant decrease of Foxo3 expression. TA-p73 binding to Foxo3 is independent of p53 

but is also dramatically decreased during the first two days of liver regeneration, 

concomitantly with loss of p53 binding and decrease in Foxo3 expression. Thus, both p53 

and TA-p73 lose the ability to bind and regulate expression of hepatic genes during the G0-

G1-S transition.  

 Importantly, p53 and p73 binding to the Foxo3 p53RE is restored when liver 

regeneration is complete, leading to the activation of FoxO3 expression as hepatocytes re-

enter G0.  Similarly, p53 binding to Afp is restored at 7 days following PH (65). However, 

restoration of transcriptional activity of p53 is not required for termination of liver 

regeneration, as livers from p53-/- mice complete regeneration within the same time as their 

wt littermates (71). It is possible that TA-p73 compensates for the lack of p53 binding, to 

terminate proliferation of hepatocytes in p53-/- mice, since p73 binds the Afp gene and 

represses its expression during liver development in p53-/- mice (62). More studies are 

required to define functions of these transcription factors in termination of hepatocyte 

proliferation. Liver regeneration studies in p73-/- mice could not be performed due to 

developmental and inflammatory defects these mice develop at weaning age (29). 

 In addition to the role of p53 in G0-G1-S transition during liver regeneration, recent 

studies revealed p53 activity at the G2-M checkpoint in regenerating livers of Aurora A 
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liver-specific KO mice (53). PH surgery in these mice results in premitotic arrest and 

impaired G2-M transition of hepatocytes during regeneration. This phenotype is rescued by 

crossing Aurora A transgenic mice into a p53-/- background (53). This finding suggests that 

p53 protein is present in regenerating liver in a transcriptionally inactive state, or that it is 

rapidly synthesized de novo in response to the activation of cell cycle checkpoints.  Taken 

together, these results demonstrate that transcriptional activity of p53 and p73 change in 

normal resting versus cycling cells and point to a critical role of p53 and p73 in a 

mechanism that regulates cell proliferation and tissue growth in a precise temporal manner.  

 Previous studies, as well as our results, demonstrate that p53 and TA-p73 mediate 

repression of the Afp gene (68, 69), but activate expression of the Foxo3 gene in mouse 

liver. Several potential mechanisms can determine whether p53 and p73 act to activate or 

repress transcription of their target genes. A recent study by Wang and colleagues 

demonstrates that the WW core elements in p53RE (RRRCWWGYYY, where R is a purine, 

W is A or T, and Y is C or T) help to define whether p53 activates or represses transcription 

of a target gene (114). If the core is AT, AA or TT, the p53RE is activating, whereas CC, 

GG, CG, GC, TG and CA all result in repression of the target gene. The Weblogo motif of 

Foxo3 p53REs shows that activating A and T core nucleotides are present in all p53REs 

found in Foxo3 gene (Figure 6B), suggesting that the binding of p53 to any Foxo3 p53RE 

activates transcription of Foxo3. In addition, activation sites tend to have shorter spacer 

lengths between half-sites (1-13 bp), compared with repressor sites (61) (Diagram 3). Seven 

p53REs, found in Foxo3 gene, have spacer length ranging from 1-10 bp (Figure 6). 

 The position of the p53RE relative to the TSS is also important for p53-mediated 

transactivation, as more than 50% of known p53REs are located at the 5’ enhancer regions 
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of a gene, and ~25% are found within the intronic regions close to TSS (166). However, 

ChIP experiments coupled with sequencing of immunoprecipitated DNA fragments (ChIP-

Seq analysis) indicate that p53 binding sites also exist at large distances from a TSS (our 

unpublished observations). Interestingly, identified Foxo3 p53REs are found not only at the 

5’ enhancer region, where the p53/p73 binding was confirmed by ChIP (Figure 7), but also 

within the intronic regions of Foxo3 gene, suggesting that the expression of Foxo3 might be 

modulated by the binding of p53 to other Foxo3 p53REs. Additional studies are needed to 

verify this and determine if all sites contribute equally to regulation of Foxo3 under specific 

conditions. 

 The p53 homologues p63 and p73 also have complex interactions with p53, and can 

form complexes that positively or negatively affect p53’s affinity to bind specific target 

genes. A few reports suggest that the expression of p73 promoter and splice variants affect 

formation of HCC (30, 167). The relative expression of p53 and p73 isoforms in liver may 

alter the expression of their target genes. More studies are necessary to describe the 

expression and transcriptional activity of p53 and p73 isoforms in normal proliferating liver 

cells, and in liver cancer. 

 The recruitment of other transcription factors to DNA sites adjacent to p53REs might 

alter p53/p73 binding to Foxo3. In our experiments, binding of both p53 and TA-p73 to 

Foxo3 p53RE at 7 days after PH was not equivalent to the level of p53/p73 binding 

observed at T=0 expression (Figure 12), while Foxo3 mRNA levels at 7 days after PH were 

comparable with T=0 (Figure 13A), suggesting that regulatory mechanisms in addition to 

those mediated by p53 and TA-p73 may activate transcription of Foxo3. Genome-wide 

analysis of transcriptional binding motifs overrepresented in the vicinity of known p53REs 
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suggest that independent binding of other transcription factors (e.g., bHLH, Klf4, Ets2) 

might affect p53 binding to adjacent p53REs and the final outcome of transcriptional 

activation or repression of the target gene (Diagram 6) (166). Interestingly, several potential 

binding sites for bHLH HES/HERP transcriptional repressors, as well as consensus 

sequence for the Notch-docking protein RBPJ were found in the vicinity of p53RE of Foxo3 

gene (not shown here). Intriguingly, Notch, RBPJ and HES have been implicated in 

regulation of liver regeneration (168, 169). An independent study of primary human 

keratinocytes showed HES/HERP binding to the upstream region of FOXO3 gene and 

repression or FOXO3 transcription after UV-triggered activation of Notch signaling (93). It 

has been suggested that p53 regulates expression of Notch1 (106), and this study identified 

Notch1 as a potential p73 target gene by ChIP/chip (Supplementary Table 1). It is possible 

therefore that Notch-mediated transcriptional repression is linked to p53/p73 transcriptional 

activity during proliferation or stress response.  

 Another transcriptional regulator shown to cooperate with p53 in promoter-specific 

binding is E2F/Sp1 (170) (Diagram 6). E2F factors are downstream effectors of the RB 

tumor suppressor that have a pivotal role in controlling cell cycle progression. A member of 

the E2F family, E2F1, can induce apoptosis by both p53-dependent and p53-independent 

pathways (171). Importantly, E2F1 was shown to activate FOXO3 gene expression in 

human neuroblastoma cells, and two E2F1 binding sites were identified on the FOXO3 

promoter (92). E2F1, p53, and p73 are known to cooperate in regulation of cell cycle and 

apoptosis (172, 173); however, it is not known whether recruitment of E2F1 can affect 

p53/p73 binding to target genes. Intriguingly, E2F1, like p53 and p73, is acetylated by p300, 

and directed to activate pro-apoptotic genes (174, 175). Further studies are necessary to 
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describe a cross-talk between two major tumor suppressor pathways, mediated by RB/E2F 

and p53, as they converge on activation of common target genes. Foxo3 gene provides a 

good model to further investigate mechanisms of cooperative recruitment of p53/p73, E2F1, 

and RBPJ/Hes/Herp to endogenous target genes in vivo. 

 

 

 

 

Diagram 6. Modulators of the p53-mediated transcription. Partially overlapping 

or closely located REs of other transcription factors can modulate p53 transcriptional 

activity. Other transcription factors and histone modifying enzymes can bind to p53 

on p53RE and regulate p53-mediated transcription of target genes. In the case of p63 

and p73, interactions may occur through shared REs; the relative affinity may dictate 

the expression of the associated gene. Transcrption factors: E2f, Ets2, Sp1, Hes1, 

Smad, p73; p300 acetyltransferase; TFBS, transcription factor binding site. 

Modified and reproduced with permission from Nature Publishing Group (NPG): 

Daniel Menendez, Alberto Inga and Michael A. Resnick. The expanding universe of 

p53 targets. Nature Rev Cancer 2009. 
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5. The mechanism of p53- and TA-p73 -mediated activation of Foxo3 expression in the 

 quiescent mouse liver. 

 

 Post-translational and gene-specific chromatin modifications can strongly influence 

transactivation at specific promoters (166). An increasing number of p53 cofactors influence 

promoter-selective p53 transcriptional activity, altering the balance between cell life and 

death (58). Both p53 and p73 regulate transcription of target genes via recruitment of 

histone-modifying enzymes that control methylation of lysine residues of histone H3, or 

acetylate lysine residues on histone H3 and H4 (62, 65, 72, 73, 124, 176). In present study, 

several histone marks associated with activation of transcription (H3K4me2, H3K14Ac, and 

H4Ac) were detected by ChIP analysis at Foxo3 p53RE prior to liver regeneration. This 

result suggests that p53/p73-mediated activation of target genes in normal quiescent cells 

occurs via recruitment of histone acetylases and methyltransferases. Recent genome-wide 

mapping of histone acetytransferases using ChIP sequencing analysis demonstrated that 

transient binding of histone acetyltransferases and deacetylases, together with prior H3K4 

methylation, may prime genes for activation (177). Particularly, histone acetyltransferase 

p300 was highly enriched in promoter and enhancer regions identified by intergenic DNase I 

hypersensitive sites. This is consistent with another recent report that p300 binding sites can 

be used to predict functional enhancers (178). A highly homologous and functionally 

redundant binding partner of p300 acetyltransferase, CBP demonstrated, a global 

distribution pattern very similar to p300 (177).   

 Several studies showed direct interaction of p53/p73 with p300/CBP, followed by 

transcriptional activation of target genes (72, 73, 179). However, p53/p73-mediated changes 
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in histone modifications associated with activation of endogenous genes in the context of 

cell proliferation have not been reported previously. While SET domain-containing 

methyltrasferases could be implicated in p53/p73-mediated transcription, p300/CBP is the 

most likely p53/p73-binding complex to be involved in activation of anti-proliferative and 

pro-apoptotic genes (72, 73). Results of described ChIP experiments in this work 

demonstrate that p53/p73-dependent recruitment of histone acetyltransferase p300 to Foxo3 

p53RE. p300 binding to Foxo3 p53RE is decreased but not lost in livers of p53-/- mice. These 

results suggest that transcriptional activity of p73 is similar, but independent of p53, 

providing a compensatory mechanism that protects normal cells when p53 is lost. 

 As mentioned earlier, remarkable similarities of function exist between p53 and 

FoxO proteins, as they share the ability to promote apoptosis, induce cell cycle arrest, and 

support the repair of damaged DNA (180). The commonality between p53 and FoxO 

extends to include nuclear/cytoplasmic shuttling, interaction with 14-3-3 proteins, 

proteosomal degradation following ubiquitylation, and extensive posttranslational 

modification including multiple site-specific phosphorylations. Both proteins also interact 

with p300 and are acetylated, and this seems important for their activation in response to 

stress (181). The discovery that SIRT1 is able to complex with, deacetylate, and, hence, 

down-regulate both p53 and FoxO is exciting because it identifies SIRT1 as an integrator of 

cellular pathways activated in response to diverse types of stress (e.g., nutritional 

starvation/FoxO, reactive oxygen species/FoxO/p53, and UV-induced DNA damage/p53) 

(72, 182, 183).  

 Acetylation levels of H3K14 and H4, as well as p300 binding and activation of 

Foxo3 expression significantly decrease during first 24h of liver regeneration when both p53 
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and TA-p73 lose binding to Foxo3 p53RE, providing additional evidence for p53/p73-

mediated recruitment of p300 as a critical mechanism to activate expression of Foxo3 gene 

in quiescent liver. However, the upstream signaling events leading to formation of p53/p73 

complex with p300 in quiescent vs. proliferating cells requires further investigation. 

 The only upstream pathway described to control expression of FoxO3 gene is 

prolactin (PRL)-mediated signaling, which results in a strong repression of Foxo3 

expression and severe ovarian defect (184). Interestingly, prolactin has recently been shown 

to accelerate liver regeneration in rats and to increase DNA binding activity of Jun/AP-1, 

C/EBPa, HNF and STAT-3 in liver tissue within first 5-12 hours of regeneration (185). It is 

tempting to speculate therefore on a possibility of an additional, prolactin-mediated, 

regulation of FoxO3 expression during liver regeneration, and its possible link to p53/p73-

mediated signaling. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Over the past several years, mounting evidence points to a unique function of p53 

family members p53 and TA-p73 in preventing liver overgrowth and tumor development. 

However, the mechanism of p53/p73-mediated tumor suppression in normal liver remains 

unknown. Relatively low levels of p53 and TA-p73 proteins in adult hepatocytes require 

new approached to the analysis of these proteins. Recently developed ChIP, followed by 

deep sequencing of precipitated DNA (ChIP-Seq), together with the liver-specific 

conditional KO of p53 and p73 genes would provide better tools to answer vital questions. 

Which molecular mechanisms make liver a source of ‘poor seed’ in cancer development?    

Perhaps, liver-specific transcriptional targets of p53 and p73 contribute to a low 

tumorigenicity of hepatic cells. Amazing ability of liver cells to quickly repair damaged 

parts of the organ require a flexible, responsive to the upstream signaling events, on/off 

switch for a fast G0-G1 transition. In addition to its flexible upstream control, such molecular 

switch must be tightly regulated to prevent oncogenic transformation and abnormal 

proliferation of hepatocytes when damage is introduced. Previously described functions of 

p53 and p73 in cell cycle arrest, response to DNA damage, senescence and apoptosis make 

these proteins good candidates for further investigation of hepatoprotective network of 

transcription factors. In addition to studies of p53/p73 functions in quiescent vs. actively 

proliferating hepatocytes, liver regeneration model can be used to investigate role of p53 and 

p73-mediated transcription in inflammatory response, which occurs during first hours 

following PH. Inflammation processes have been previously linked to the development of 

HCC; however, molecular events that connect inflammatory response to transformation and 
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uncontrolled proliferation of hepatic cells remain elusive (186). The data presented in our 

work, as well as published results, suggest that p53/p73-medaited transcription regulates 

both inflammatory and proliferative response in hepatocytes (29). p73 may be compensating 

for p53-mediated transcription in livers of p53 KO mice, since liver regeneration in these 

mice is similar to the wt (71), and p53 is not required for binding of p73 to Afp (62) and 

Foxo3 p53RE. Using conditional, liver specific p53 and p73 KO mice for liver regeneration 

experiments will allow to dissect functions of these transcription factors in regulating 

quiescence, inflammation, cell cycle, and tissue growth in normal liver. 

 Our work identified tumor suppressor and transcription factor Foxo3 as a new target 

gene of p53 and TA-p73. The Foxo3 gene is actively transcribed in quiescent hepatocytes, 

and decreased in actively proliferating cells. The upstream signaling events that activate 

p53/p73-dependent transcription of Foxo3 remain unknown and should be an important area 

of future studies. 

 Seventeen TA-p73-bound genes in quiescent liver were found to be up- or down 

regulated at the level of mRNA in response to partial hepatectomy; however, more 

experiments are necessary to demonstrate the mechanism of p53 and TA-p73 transcriptional 

activity during liver regeneration. ChIP with antibodies detecting histone H3 and H4 

modifications, implemented in regulation of gene expression, as well as ChIP with 

antibodies against specific protein modifications of p53 and TA-p73, can be used to identify 

the mechanism of p53/p73-mediated transcription. For example, loss of histone H3 

dimethylation on Lys4 (H3K4me2), observed at the Foxo3 p53RE after PH, suggests that 

p53/p73 may recruit histone modifying enzymes (methyltransferases) to activate expression 

of hepatic target genes in quiescent liver. Very little is known about in vivo interaction of 
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p53 family members with histone methyltransferases in transcriptional regulation of tissue-

specific target genes. Methylation of p53 by Set7/9 (KMT7) methyltransferase is required 

for the binding of the acetyltransferase Tip60 to p53 and for the subsequent acetylation of 

p53 (187). Importantly, methylation of Lys369 (Lys372 in humans) of p53 by Set7/9 is 

required for the transcriptional activation of p53 target genes (188). Set7/9 also methylates 

Lys4 of histone H3 (H3K4) (189, 190); however, H3K4 is methylated by at least seven other 

methyltransferases (Set1, Ash1, MLL 1-5), none of which is known to bind p53/p73. No 

similar studies were performed in liver, to identify histone H3 methyltransferases as binding 

partners of p53 in regulation of gene expression. Only one study identified p53- dependent 

recruitment of H3K4 demethylase LSD1 to repress transcription of p53/p73 target gene Afp 

in liver (69). Sequential ChIP and co-immunoprecipitation experiments are necessary to 

identify other transcriptional partners of p53 and TA-p73. 

 ChIP analysis of p53/p73-bound chromatin at different time points following PH is 

necessary to identify other target genes, whose change in expression may be affected by the 

loss of p53 and TA-p73 binding to DNA in proliferating hepatocytes. These genes may 

provide important clues for p53/p73 functions in normal cells during different stages of cell 

cycle, particularly, at the point of mitotic exit and the maintenance of the quiescent G0 state.  

 Binding of p53 and TA-p73 to Foxo3 was detected at the end of regeneration (7 days 

post-PH), however not to the level observed in quiescent liver. At 4-7 days following PH, 

expression of Foxo3 is completely restored to the T=0 levels, thus suggesting that binding of 

other transcriptional activators, or loss of a repressor, activates transcription of this growth 

suppressor gene during termination of liver regeneration. Search for DNA-binding sites of 

other transcription factors near Foxo3 p53RE, followed by the ChIP analysis of wt vs. p53-/- 
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mouse liver, may identify other transcription factors that regulate expression of Foxo3 in 

p53-dependent manner in hepatocytes during termination of proliferation. These findings 

may provide us with the mechanism of cell cycle termination that is dysfunctional or absent 

in cancer cells. 

 Our results also demonstrate that p53 and TA-p73 bind other novel target genes in 

quiescent liver (Jak1, Pea15, and Tuba1), which may function during liver regeneration. 

Global expression analysis of genes that change expression during liver regeneration, 

coupled with the identification of p53 and TA-p73 bound genes in quiescent liver, suggests 

unique functions for p53 and TA-p73 in quiescent liver that are not executed during 

regeneration. Quiescence in other cell types, e.g., hematopoietic stem cells and ovarian 

follicles, is supported by p53 and TA-p73, respectively. However, more research using 

tissue-specific conditional p53 and TA-p73 KO mice is necessary to characterize functions 

of these tumor suppressors in normal tissues in vivo.  

 Several regulated genes, not previously reported in the context of liver regeneration, 

included pluripotency regulator Klf4, transcription factors Mxi1 and Sin3a, as well as anti-

apoptotic Bcl2 family member Bcl2l1, Cbp/p300-interacting transactivator Cited2, and 

protein phosphatase 2 regulatory subunit B56α Ppp2r5a. Forty-nine genes that change 

expression during 24 - 48 hours following PH are known p53 target genes (Figure 3); 

however, mechanisms of p53-mediated transcriptional regulation of these genes during liver 

regeneration remain to be determined. 

 Post-translational modifications (PTMs) of p53 and p73 are among the mechanisms 

that can alter DNA binding and the recruitment of co-factors by these transcription factors. 

A recent study demonstrated that fully acetylated endogenous p53 has significantly higher 
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binding to endogenous Cdkn1a (p21) chromatin, and that p53 acetylation levels correlate 

with p53-mediated transcriptional activation in vivo (125). Overall, post-translational 

modifications controlling tissue-specific transcriptional activity of p53 and p73 in normal 

cells in vivo remain unidentified. Since we showed that both p53 and TA-p73 recruit 

acetyltransferase p300 in quiescent (G0) but not proliferating hepatocytes, it would be 

interesting to determine whether DNA-binding by p53 and TA-p73 to target genes in G0 

normal hepatocytes is controlled by p300-mediated acetylation. This modification may be 

lost during liver regeneration, preventing p53 from activating G1-S checkpoint and allowing 

cell cycle entry. Other PTMs altering p53 ability to bind DNA include methylation, 

phosphorylation, sumoylation, and ubiquitination (53, 187, 191-193). It would be important 

therefore to determine post-translational modifications of p53 and TA-p73 in hepatocytes at 

different stages of the cell cycle during liver regeneration. Mass-spectrometry analysis and 

antibodies specifically recognizing modified p53 and TA-p73 can be used to determine 

PTMs of p53 and TA-p73 in such studies. PTM-specific antibodies can also be used for 

ChIP analysis to identify modifications of p53 and TA-p73, required for their binding to 

anti-proliferative target genes, e.g., Foxo3 (Diagram 7).   

 Finally, tumor profiles of p53+/-p73+/- compound mice indicate that p73 has functions 

in liver both shared with p53 and unique to p73 (32). Consistent with this, p73 has been 

shown to regulate a set of target genes independently of p53 (64). However, it remains 

unknown whether p73 always depends on p53REs to bind DNA, or if p73 has a specific 

DNA consensus site. Results of p73 ChIP/chip or ChIP/Seq analysis coupled with 

bioinformatics tools described here (MDScan, WebLogo) can be used to identify potential, 

new response elements in genes regulated by p73.  
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Diagram 7. Post-translational modifications regulate transcriptional 

activity of p53 and p73. p53 and p73 recruit acetyltransferase p300 and 

activate transcription of target gene Foxo3. Acetylation, methylation, and 

phosphorylation of p53/p73 heterotetramer may regulate its DNA binding and 

recruitment of cofactors to the promoter region of target genes. 
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APPENDIX 

 

NOTES ON SURGICAL PROCEDURES 
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 The procedure used to remove ~2/3 (65%) of liver in a mouse model of partial 

hepatectomy (PH) was performed using standard protocol, described in detail by Andreas 

Nagy and colleagues in CSH Protocols 2006; doi:10.1101/pdb.prot4384 

http://cshprotocols.cshlp.org/cgi/content/full/2006/18/pdb.prot4384. To remove 2/3 of liver 

tissue, incision is made in skin and in the abdominal wall (sham surgery stops at this point). 

After separate ligatures are applied at the base of the left lateral and median lobes to 

constrict the blood vessels and reduce bleeding, the left lateral and median lobes are resected 

(Appendix Figure 2). Various models, different techniques and limitations of hepatic 

resections in rodents is described in a review by Martins and colleagues in (39).  

 More details on the procedure of 2/3 PH in mice with on-line supplementary video 

was published by Claudia Mitchell and Holger Willenbring in (194). In addition to a very 

comprehensive protocol, this publication provides kinetics of BrdU incorporation after 2/3 

PH in adult wt C57Bl6 mice. Importantly, it also compares the extent of liver injury after 2/3 

PH in animals anesthetized with 3 different types of anesthetics: avertin, ketamine/xylazine, 

and isoflurane. The authors measured serum alanine aminotransferase (ALT) levels in mice 

after PH and found that increase in ALT levels in blood serum at 16-42 hours post-PH is 

minimal when isoflurane anesthesia is used during the surgery (194). Release of ALT to 

blood increases when liver is damaged or diseased. However, an increase in ALT does not 

indicate a non-specific inflammatory response, which may be observed in shams after the 

invasive surgery (an incision made in skin and the abdomen over the same area as done for 

PH). In our work, we observed a change in expression of tested genes in response to the 

sham surgery, performed using avertin (data not shown) and ketamine/xylazine, compared to 
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the T=0 (quiescent liver harvested without prior surgical procedures). Appendix Figure 2 

shows a significant change in Foxo3 mRNA levels in response to sham surgery at 24 hours 

and 7 days after the procedure, indicating adverse effects of ketamine/xylazine on normal, 

non-resected liver. No significant change in Foxo3 expression was observed in response to 

sham surgery using isoflurane anesthesia (Appendix Figure 3). 

 Avertin, however commonly used for 2/3 PH, is highly hepatotoxic and is associated 

with higher postoperative morbidity, an outcome that is not usually seen when other types of 

anesthetics are used (194). Ketamine/xylazine is less problematic than avertin but still it has 

more side effects (in addition to a change in gene expression, we observed longer awakening 

times and higher mortality rates, compared to isoflurane). Isoflurane anesthesia is thus the 

least toxic among the commonly used anesthetics. Isoflurane is an inhalant anesthetic that is 

widely used in veterinary medicine because of its safety and rapid recovery of the animal 

after surgery (194). However, its use requires a vaporizer, connected to the oxygen supply.  
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Appendix Figure 1. Liver regeneration in C57Bl6/129 WT mice 2 months 

of age. Liver mass recovery was measured as a ratio of liver/body weight 

(liver index) in mice after PH and Sham surgeries at indicated time points. 
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Appendix Figure 2. 2/3 partial hepatectomy model of mouse liver regeneration. 

Photographs of WT C57Bl6/129 2-month-old mouse liver before PH surgery 

(T=0) and after 2/3 of liver resection. The left lateral and median lobes are 

resected and shown separately (the median lobe is ligated and resected in two parts 

to avoid damage to the superior vena cava and the gall bladder). Fully regenerated 

liver collected at 7 days post-PH is shown in the lowest panel.  

Photographs courtesy of Sabrina Stratton. 
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Appendix Figure 3. Expression of Foxo3 changes in response to Sham surgery 

under ketamine anesthesia. Foxo3 mRNA was isolated from mouse liver tissue at 

indicated time points following the Sham surgery under ketamine or isoflurane 

anasthesia. Relative expression levels were measured by real-time PCR. Foxo3 

expression was significantly changed in livers harvested after ketamine Sham 

surgeries (*p<0.05). No statistically significant difference in Foxo3 expression 

was observed in livers from isoflurane-operated Sham mice. 
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