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DYNAMIC CHEMICAL SHIFT IMAGING FOR IMAGE-

GUIDED THERMAL THERAPY 

Brian Allen Taylor, B.S. 

Supervisory Professor: R. Jason Stafford, Ph.D.  

Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive 

means to provide temperature imaging for guidance in thermal therapies.  The most 

common method of estimating temperature changes in the body using MR is by 

measuring the water proton resonant frequency (PRF) shift.  Calculation of the complex 

phase difference (CPD) is the method of choice for measuring the PRF indirectly since it 

facilitates temperature mapping with high spatiotemporal resolution.  Chemical shift 

imaging (CSI) techniques can provide the PRF directly with high sensitivity to 

temperature changes while minimizing artifacts commonly seen in CPD techniques.  

However, CSI techniques are currently limited by poor spatiotemporal resolution.   

This research intends to develop and validate a CSI-based MRTI technique with 

intentional spectral undersampling which allows relaxed parameters to improve 

spatiotemporal resolution.  An algorithm based on autoregressive moving average 

(ARMA) modeling is developed and validated to help overcome limitations of Fourier-

based analysis allowing highly accurate and precise PRF estimates.  From the determined 

acquisition parameters and ARMA modeling, robust maps of temperature using the k-

means algorithm are generated and validated in laser treatments in ex vivo tissue.  The use 

of non-PRF based measurements provided by the technique is also investigated to aid in 

the validation of thermal damage predicted by an Arrhenius rate dose model.   
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Chapter 1: Introduction 

1.1 Thermal Therapies 

Thermal therapies generally encompass all treatments based on the transfer of 

thermal energy out of or into the body.  The overall objective of these therapies is to 

deliver a desired thermal dose to a target while minimizing the dose to normal tissues (1).  

The use of thermal energy in medicine is not a new concept.  During the reign of the 

Roman Empire, facilities were created which contained hot baths in addition to the use of 

dry and humid heat to treat diseases.  An Egyptian papyrus, dated at approximately 3000 

BC, described the use of heat in surgery and is possibly the earliest manuscript known in 

thermal therapy.  In the nineteenth and twentieth centuries, “fever therapy” was 

investigated to improve the immune response in certain pathologies (2). 

The more modern discipline of thermal therapies came mostly from laboratories 

in the 1970s that were interested in radiation biology and how temperature affects the 

radio-sensitivity of cells (3).    A number of cell culture and in vivo tumor model studies 

showed a cell-killing effect at temperatures above 41 °C (4).  It was also found that the 

exposure time to kill cells was shorter when higher temperatures were used.  In the 

1980s, key studies were reported that assessed the efficacy of thermal therapies (4-7).  

The concept of thermal dosimetry was also introduced (8).   

Although there were modest improvements in the ways to deliver heat into 

tissues, the enthusiasm for these treatments dwindled in the 1990s.  According to a 

review published in 2006 by Habash (1),  
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“The problem that was faced by the thermal-therapy 

community at that juncture was unrealistic thermal goals 

because of lack of adequate equipment for delivering thermal 

treatment and inability to measure the treatment delivered.  A 

combination of the above difficulties is still a challenge to the 

design and implementation of successful clinical trials.”  

Since the publication by Habash, there have been improvements in the delivery and 

monitoring of these therapies (3).  However, Habash’s review underscores the importance 

of monitoring in order for thermal therapies to be effective.   

Thermal therapies are typically divided into three categories.  In the low 

temperature range, cryotherapy is used to freeze tissue with the goal of necrosis (9). 

Hyperthermia is used where the temperature at a region of the body or the whole body is 

raised to temperatures up to approximately 45 °C for an extended period of time (minutes 

to hours) (10).  Another category is thermal ablation where very high temperatures 

(typically >50 °C) are used to destroy tissue in a conformal setting (3).   

   The main biological rationale for thermal therapies is based on cell-killing (4).  

Studies have shown that protein denaturation is the most likely mechanism that causes 

permanent damage to tissue (4, 11-14).  When proteins denature, they are prone to 

aggregation.   Without any molecular chaperones to aid in refolding the proteins, these 

aggregated proteins can affect the structure and function of many macromolecules that 

are vital for the cell’s survival (4, 15).   

   The aggregation of proteins caused by hyperthermic temperatures is thought to be 

key to cells being more sensitive to radiation (12) and the efficacy of using both radiation 
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and thermal therapy is higher the closer the two are given in time.    If there is a delay of 

radiation after thermal treatment, heat shock protein levels are higher and more proteins 

are repaired and less aggregated making the cells more insensitive to radiation (16).  

There is also an additive effect using hyperthermia and radiation.  Cells which are 

hypoxic, have low pH values, and are in the S-phase in the cell cycle are sensitive to heat 

and are relatively resistant to radiation.  Hyperthermia can also increase the blood 

perfusion into cells thereby decreasing hypoxia and making the cells more radiosensitive 

(17).    

 Hyperthermia has also been shown to increase the efficacy of some drugs, 

including chemotherapeutic drugs (18).   Drugs that have chemical, rate-limiting 

reactions are expected to be more efficient at higher temperatures due to thermodynamic 

principles.  For example, cisplatin alkylates DNA at a higher rate at higher temperatures, 

thereby increasing its efficacy (19).  As with radiation therapy, the increase in blood flow 

in the tumor causes increased drug uptake and concentration which can aid in cell-killing 

(18).   

 Hyperthermia has been studied used as an adjuvant in gene and immuno- 

therapies.  Gene therapy is defined as a treatment where genetic material is infused to 

cells to modify cellular function.  In cancer treatment, the material must affect cells 

associated with the tumor and not in normal tissue.  It must also not drastically affect the 

immune system in the infected patient.  Studies have shown that gene-infected cells are 

more sensitive to hyperthermia.  The increased temperature is expected to open the pores 
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of blood vessels to allow more genetic material to reach the tumor cells.  It also increases 

the protein production in the affected cells and enhances the immune system’s ability to 

send the infected cells to the tumor (20-23). 

 In hyperthermia, it is important to note the narrow temperature ranges that are 

needed for combination treatments with radiation and chemotherapy (24).  This makes 

the accurate and precise monitoring of temperature in vivo very important.  If a certain 

temperature is needed as an adjuvant to a therapy and going too high or too low in 

temperature can affect outcomes, then it is very important to have precise and accurate 

monitoring.   

The goal of thermal ablation is to destroy a lesion using a high dose of thermal 

energy (above 50 °C) in a minimally-invasive way without damaging vital nearby 

structures.  While protein denaturation does occur in this higher temperature range, and at 

a faster rate than seen in hyperthermia, the main effect seen in these therapies is 

coagulative necrosis.   This has been studied as an alternative or adjuvant to conventional 

surgery and can be used in conjunction to other treatments, such as chemotherapy and 

radiation therapy, to treat localized disease.  It can be a repeatable procedure and may be 

suited for patients who are not good candidates for open surgery.  There are also various 

modalities to deliver heat to the target including focus ultrasound (FUS), radiofrequency 

(RF) applicators, microwaves, and lasers.  The rapid heating of tissues to ablative 

temperatures requires fast monitoring in order to control the treatment, conform to the 

target and minimize thermal dose to critical normal structures (3).   
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In thermal therapies, it is important to model and determine where the thermal 

damage has occurred to verify that the target lesion has been successfully treated.  Thus, 

damage prediction models have been developed to aid in treatment verification.  In one of 

the seminal papers on thermal damage, Henriques studied the thermal damage in pig skin 

(25).  He showed that the thermal damage from the denaturation of proteins follows an 

Arrhenius rate process.  The rate process can be described as a rate-of-formation kinetic 

model of reaction products in a biochemical reaction.   Briefly, molecules like proteins in 

their native state, C, must reach an energy barrier, Ea, to be activated, C*, at a rate ka.  

Some will relax back to the native state while some will denature at rate kd.  This 

denaturation rate can be described as  

*G

RT
d

RT
k e

N

−∆

=
h

      (1.1) 

where R is the universal gas constant (8.315 JK
-1

mol
-1

 or 2.0 cal
 
K

-1
mol

-1
), T is the 

temperature, N is Avogandro’s number, and ħ is Plank’s constant.  The speed of the 

reaction is governed by Gibb’s free energy of formation, ∆G*.  ∆G*= ∆H*-T ∆S* where 

∆H* is the enthalpy of activation and ∆S* is the entropy of activation.  ∆H* has an 

activation energy, Ea, where ∆H* = Ea – nRT and n is the order of the reaction.  Ea>>RT, 

thus 

* * * aEH S H

RT R RT RT
d

RT
k e e Ae Ae

N

−−∆ ∆ −∆

= = =
h

    (1.2) 

kd can be expressed by a first-order Bernoulli differential equation where  
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[ ] [ ]d

d C
k C

dt
− =                (1.3) 
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ττ deA
tC

C
t

RT

Ea

∫
−

=







=Ω

0

)(

)(

)0(
ln            (1.4) 

where A is the frequency factor and T(τ) is the temperature in degrees Celsius as a 

function of time, τ (26).  Henriques selected rate coefficients so complete cellular 

damage is indicated by an Ω value of unity.  Subsequent studies followed the one 

reported by Henriques and investigated parameters for various temperature ranges and 

tissues (27).   

 Almost 40 years later, Separato and Dewey proposed a method of measuring 

thermal dose as an unit of time at 43 °C (8).  The cumulative time equivalent at 43 °C, t43, 

can be described as  

 ( )
tRt

ft

t

T ∆=∑
=

−

0

43

43      (1.7) 

where tf is the final time point, T is the average temperature at time interval t∆ , and R is 

a constant (R=0.25 below 43 °C and R=0.5 at 43 °C and above).    

 The dependence of accurate and precise temperature measurements are evidently 

seen in these models.  Not only does the temperature need to be ascertained but also the 

temperature history over several time points.  This makes temperature monitoring very 
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important to accurately determine if and where thermal damage has occurred.  A 

temperature error of 1 °C over several minutes can cause the estimated thermal dose to be 

different than what was actually delivered.  This may cause an over-treatment or under-

treatment of the target.  In addition, rapid monitoring is especially needed for high-

temperature ablations to assure that temperatures are high enough to ablate the target as 

well as to make sure nearby critical structures receive nonlethal thermal doses.  This calls 

for accurate and precise methods to measure temperature noninvasively to aid in assuring 

that an acceptable thermal dose is delivered.  This is where image-guidance becomes 

important.   

1.2 Image-Guidance of Thermal Therapies 

Image-guidance has been shown to be critical in thermal therapies by providing 

localization, planning, and post-treatment verification.  In addition, image-guidance 

provides the potential for real-time monitoring during treatment delivery which can help 

better conform thermal doses to the target while avoiding nearby critical structures and 

healthy tissue  (28).   

Ultrasound (US) (29), computerized tomography (CT) (30), and magnetic 

resonance (MR) (31) are imaging modalities which are capable of temperature feedback 

during thermal therapy procedures.  Of these three modalities, MR has the desired 

properties of providing adequate localization, planning, and post-treatment verification 

using its wealth of soft-tissue contrast mechanisms without the use of ionizing radiation.  

MR can provide fast imaging in any plane.  Most importantly for temperature monitoring, 
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MR is fundamentally temperature sensitive since both the relaxation properties and 

chemical environment of the spin system are tied to thermally dependent processes (32).  

As a result, magnetic resonance temperature imaging (MRTI) is recognized as a primary 

way to non-invasively provide rapid, quantitative temperature imaging in various tissues 

in order to provide useful thermal dosimetry and monitoring for thermal therapy 

procedures (33).   

The most commonly employed quantitative MRTI method is based on the proton 

resonant frequency (PRF) shift (34-36), which has been established and validated as a 

technique for monitoring temperature changes for feedback and control of thermal 

therapies in a variety of anatomical sites (37).  A fast complex phase difference (CPD) 

method (38) has been the preferred method to estimate the PRF shift indirectly.  A major 

advantage of CPD techniques for PRF-based thermometry is its high spatial and temporal 

resolution (~1.5x1.5x4 mm
3
, <5 sec (39)).  However, there are several well-known 

limitations in this technique.  Intravoxel lipid contamination (40, 41), inter- and intra-

scan motion (42), tissue susceptibility changes (43) and static magnetic field drifts (44) 

are artifacts that are commonly encountered.     

An alternative to CPD methods is a direct method of measuring PRF shift via 

chemical shift imaging (CSI) techniques (45-48), which has several advantages over CPD 

techniques.  One is that the water proton resonant frequency is measured separately from 

other resonances whereas CPD measures the mixture of frequency components in each 

voxel resulting in a variable response.  This immediately relieves the problem of 
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intravoxel lipid contamination, which requires saturation or suppression techniques in 

CPD.  Also, the lipid signal can be used as an internal reference to account for field drifts, 

susceptibility and motion since it is relatively insensitive to temperature (37).    

Researchers have developed CSI techniques to reduce artifacts seen in CPD 

techniques.  However, these studies have constrained themselves in both sensitivity and 

spatiotemporal resolution by using interleaved shots to increase the spectral bandwidth to 

adequately sample the MR signal and keep peaks such as lipid unaliased in the spectra 

(45-47).  In addition, high receiver bandwidths are often used to shorten the echo-

readouts, and as an additional benefit, increases the spectral bandwidth to avoid aliasing.  

Use of these high bandwidths decreases the SNR and reduces the sensitivity of these 

techniques (45-47).  A high echo-train length (ETL) has also been used to implement 

Fourier-based spectral analysis, which also degrades spatiotemporal resolution (46, 47).   

 The proposed research is intended to build upon and address areas involved in 

image acquisition and frequency estimation that has limited CSI techniques for MRTI.  

We propose that by carefully undersampling the MR signal, which causes aliasing of the 

lipid peak, we can allow lower receiver bandwidths to maintain a higher SNR at higher 

spatiotemporal resolutions than previously reported.  In addition, it is hypothesized that, 

even with these relaxed parameters, the spatial, temporal and spectral resolutions 

currently used for temperature monitoring will not be severely degraded using advanced 

spectral processing techniques.  Traditionally, 32 or greater samples have been acquired 

so frequency estimates can be reliably performed using a fast Fourier transformation 
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(FFT) (45-47).   The increased number of samples comes at a cost of spatiotemporal 

resolution.  Time-domain, frequency domain, and z-domain (via the z-transform) 

approaches to spectral estimation have been shown to accurately measure frequencies 

with limited amounts of data when a priori information of the signal is known (49).  It has 

been recognized that an ideal NMR signal is characterized as an autoregressive (AR) 

process and a noisy NMR signal as an autoregressive moving average (ARMA) process 

(50).  It is expected that an ARMA modeling approach will be more robust than Fourier 

transformation since the model accounts for both exponential decay and noise (50).   The 

autoregressive property of the signal can be used to directly model the parameters of the 

signal including the PRF of each specimen in the signal.   Other parameters, such as the 

amplitude and damping factor (apparent spin-spin relaxation time, T2*) of each peak can 

be simultaneously determined (50-54).   

There are several potential advantages of implementing the proposed acquisition 

parameters and spectral processing algorithms (ARMA modeling).  One possible 

advantage is increased sensitivity to temperature changes compared to CPD techniques.  

By collecting more echoes during the same repetition time (TR) period as the single-echo 

CPD (38), this technique could potentially produce more accurate temperature estimates 

with lower uncertainty.  Additionally, the technique not only provides the ability to 

remove lipid signal across the volume without suppression or saturation pulses, but also 

provides the potential opportunity to use lipid as an internal reference for artifact 

suppression for increased accuracy and precision.   
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There also lies the opportunity with a model-based methods of observing both the 

T1-W images and T2* maps from each chemical specimen in addition to the PRF thereby 

providing multi-parametric monitoring of the treatment target.  This potentially 

culminates into an enhanced MRTI technique compared to what is now available.  In 

addition, all of this can be performed without dramatically sacrificing spatiotemporal 

resolution, which is critical for monitoring thermal therapies.   

 

1.3 Hypothesis and Specific Aims 

The hypothesis of this work is that through the use of a multi-gradient echo 

acquisition coupled with model-based spectral processing algorithms, CSI-based 

temperature maps utilizing this method can be generated with higher accuracy and 

precision compared to standard CPD techniques without sacrificing spatiotemporal 

resolution.  The specific aims of this work are to: 

1) Develop, validate and characterize via simulation a model-based spectral 

analysis algorithm for detection of water and lipid spectral frequencies with ≤ 

1.0 °C accuracy and uncertainty. 

2) Investigate the influence of various MR acquisition parameters on the 

sensitivity of detecting water and lipid frequency changes at high 

spatiotemporal resolutions for temperature imaging 
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3) Combine these approaches to acquisition and processing in order to develop 

and validate 2D temperature mapping techniques for generating more accurate 

and precise temperature estimates compared to CPD in phantom and ex vivo 

tissues. 

To accomplish these goals, a model-based spectral processing algorithm was 

developed to accurately measure the PRF of each peak in a spectrum using a constrained 

number of echoes to maintain spatiotemporal resolution.  This technique was validated 

using simulation over a range of SNR values and physiologically relevant water/lipid 

spectral parameters.  An appropriate range of acquisition parameters providing highly 

sensitive PRF estimates in a rapid acquisition with adequate spatiotemporal resolutions 

were determined (Chapter 4).  Heating experiments were performed in a water/lipid 

phantom as well as ex vivo bone marrow, brain, kidney, liver, and prostate tissue to 

validate the accuracy and precision of the temperature measurements as well as measure 

the dependence of T2* and T1-W amplitudes as a function of temperature (Chapter 5).  

Finally, a mapping algorithm that utilizes the k-means clustering algorithm was 

developed and validated to effectively provide a means by which to map water and lipid 

spectral parameters separately to aid in temperature mapping (Chapter 5).     
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Figure 1-1 Approach for rapid MR temperature imaging 

Data collected from a high spatiotemporal resolution MGE acquisition was processed via ARMA modeling 

to calculate multiple spectral parameters (PRF, T2*, amplitude).  These parameters were inputs to a k-

means clustering algorithm to separate chemical species such as water and lipid which were used to create 

highly accurate and precise temperature images.   
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Chapter 2: Magnetic Resonance Temperature Imaging 

2.1 Introduction 

MR is a fundamentally temperature-sensitive modality since the relaxation 

properties of a spin system and local chemical environment are fundamentally 

thermodynamic processes (32).  Therefore, multiple temperature-sensitive parameters are 

available; however, not all are equally useful for guiding thermal therapies.  In this 

chapter, temperature-sensitive MR parameters will be reviewed.  Focus will be given to 

the use of the proton resonant frequency (PRF) shift for temperature imaging, the 

dominant technique, via complex phase difference (CPD) and chemical shift imaging 

(CSI) techniques.   

2.2 The Temperature Sensitivity of Intrinsic MR Parameters 

There are a number of MR parameters intrinsic to tissue that can be exploited for 

temperature measurements.  Chief among them at clinical field strengths are diffusion of 

water, proton density of water, T1 and T2 relaxation times, magnetization transfer, and the 

PRF shift.  

2.2.1 MOLECULAR DIFFUSION OF WATER 

In MR, the diffusion coefficient, D, is used to describe the thermal Brownian 

motion of molecules (55).  The relationship of D to temperature is  

( )aE D
kTD e

−
≈                (2.1) 
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where Ea(D) is the activation energy of the diffusion of water.  From differentiation, the 

temperature dependence of water diffusion can be described as 

 
( ) ( )

2

aE D
a kT

E DdD
e

dT kT

−

=     (2.2) 

Therefore, if two diffusion measurements, DT and DT+∆T, are made at temperatures T and 

T+∆T, then the temperature change will be  

2

( )

T T T

a T

kT D D
T

E D D

+∆ −
∆ =  

 
    (2.3) 

where it is assumed that Ea(D) does not change with temperature.    

 In the clinical application of MRTI, the temperature sensitivity is quite high at 

about 2%/°C (33).  However, the temporal resolution is relatively low and measurements 

can be highly sensitive to motion.  Line-scan (56) and single shot echo-planar imaging 

(EPI) (57) has helped in reducing imaging time and in reducing artifacts due to motion.  

Also the use of the diffusion coefficient is independent of field strength.   

A compounding factor is observed when physiological changes occur in the tissue 

during the thermal delivery.  For instance, edema, protein denaturation and thermal 

coagulation can change the diffusion coefficient and these events are difficult to isolate 

from temperature changes (58).  It is also important to note that diffusion can be 

anisotropic such as in white matter tracts in the brain and muscle fibers.  Therefore, for 

accuracy, the tensor that describes the anisotropic diffusion needs to be measured which 
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increases the imaging time. It has been noted in a recent review that temperature 

measurements in adipose tissue using the diffusion coefficient is difficult due to the low 

values in lipid and different sensitivity compared to soft tissues (33).  Lipid suppression 

is recommended when diffusion measurements are used to estimate temperature changes.   

2.2.2 PROTON DENSITY 

The temperature-dependence of the proton density (PD) stems from the fact that it 

depends linearly on the equilibrium magnetization, M0, determined by the Boltzmann 

distribution where  

( )2 2

0

0 0 0

0

1

3

N I I B
PD M B

kT

γ
χ

µ
+

∝ = =
h

   (2.4) 

N is the number of spins, γ is the gyromagnetic ratio (42.58 MHz/T for hydrogen 

protons), ħ is Planck’s constant, I is the quantum number of the spin system (1/2 for 

hydrogen protons), B0 is the magnetic flux density, µ0 is the permeability of free space, k 

is the Boltzmann constant, T is the temperature (in Kelvin), and χ0 is the susceptibility.  

Note that χ0 and T has an inverse relationship.  This is known as the Curie law.    

Therefore, the change in susceptibility can be related to the temperature in PD-weighted 

images.  Note that the PD does not change with temperature but the ratio of parallel and 

antiparallel spins, which will show as a change in susceptibility (33), is temperature 

dependent.  The temperature sensitivity of PD is inversely proportional to temperature 

and ranges around -0.30 ± 0.01 %/°C from 37 to 80 °C (59).  This is a relatively low 

temperature sensitivity that requires high SNR.  To isolate effects from changes in T1, 
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very long repetition times are needed, which yields lower spatiotemporal resolution (60).  

If lower TRs are needed, it may be difficult to isolate changes in PD with the relaxation 

times (61).   

2.2.3 SPIN-LATTICE RELAXATION TIME (T1) 

The temperature-dependence of T1 has been well known from NMR studies (62) 

and was one of the earliest parameters used for MRTI (63-67).  Essentially, in tissues T1 

depends primarily on dipolar interactions during rotational and translational motion of 

molecules.  This molecular motion is temperature-dependent thus T1 can be a means to 

measure temperature.  T1 can be described by the following first-order Arrhenius rate 

process where  

1( )

1( )
aE T

kTT T e
−

∝      (2.5) 

and Ea(T1) is the activation energy of the relaxation.  It is known that T1 and temperature 

dependence are tissue dependent.  Generally, the temperature dependence of T1 can be 

described as  

               ( ) ( ) ( )11 ref refT T T T T Tα= + −                  (2.6) 

where Tref is a reference temperature and α is the temperature sensitivity (dT1/dT).  α has 

been measured in several tissues with difference values including 0.97 %/°C in adipose 

tissue (65) and 1-2 %/°C in soft tissue (63, 64, 66-68).   
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 Although measuring T1 requires a longer imaging time, the change in T1 can be 

shown to be related to the change in signal from spin echo or gradient echo images.  

Generally, the signal, S, can be described as 

1

1

( )

0
( )

1
( ) ( )sin

1 cos

TR
T T

TR
T T

e
S T M T

e

θ
θ

−

−

−
∝

−
       (2.7) 

where θ is the flip angle.  The signal decreases with increasing temperature due to 

increasing T1 and decreasing M0.  By taking into account the small nonlinear temperature 

dependence of M0, the change in S as a function of temperature can be described as 

1

dS dS S

dT dT T
α= −      (2.8) 

which takes into account both the decrease in M0 and the increase in temperature or vice 

versa.  Therefore, by neglecting the small T2 (or T2* for gradient echo acquisitions) 

temperature dependence and weighting in T1-W images, the change in signal in T1-W 

images as a function of temperature can be described as  

( )
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TR edS
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−
= − −

− −
   (2.9) 

It is important to note that changes in tissue properties, such as coagulation, can cause 

changes in S which will affect temperature measurements (69). 
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2.2.4 SPIN-SPIN RELAXATION TIME (T2) 

As with T1, there is an increase in T2 relaxation time with increasing temperature.  

In observing the signal from a T2-W image with increasing temperature, there can be a 

large sigmoidal decrease that can even remain during cooling of the tissue (70).  This is 

an important characteristic of irreversible tissue damage which is useful to define the 

outcome of a thermal treatment.   Therefore, although T2 may not be good quantitative 

means to measure temperature changes, it often plays a role in treatment verification in 

high-temperature thermal ablations.   

2.2.5 MAGNETIZATION TRANSFER (MT) 

Generally, MT techniques use spectrally-selective RF pulse to saturate protons 

bound to macromolecules which are normally not visible in MR due to very short T2 or 

T2* values.  During the RF pulse, the bound, saturated protons enter the primary pool of 

water protons or transfer the magnetization to the primary pool (71).  These exchanges 

are temperature dependent.  For example, MT-weighted signals were determined to be 

tissue dependent, with some tissues showing relatively no change in signal such as in 

adipose tissue and brain.  In tissues where a change in signal was seen with temperature, 

effects on MT-W images were nonlinear with either increasing signal (muscle, heart, 

prostate, liver) or decreasing signal (blood)  (72, 73).  These variances in temperature 

sensitivities do not make MT a readily reliable method for MRTI. 
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2.2.6 PROTON RESONANT FREQUENCY (PRF) SHIFT  

2.2.6.1 Physical Basis 

Temperature sensitivity of the PRF was first reported by a group led by Pople in 

1958 (35) and later by Hindman (34).  The temperature dependence in the PRF arises 

from the hydrogen bonding between hydrogen protons and oxygen nuclei in water.  In 

tissue, water is the most abundant compound that contains hydrogen protons.  When 

temperature increases, the increased kinetic energy of the water protons result in a longer 

hydrogen bond with other water molecules and a shorter covalent bond between the 

hydrogen and parent oxygen atoms.  This results in the proton lying in closer proximity to 

the oxygen’s electron cloud, thereby changing the proton’s chemical shift, σ (Figure 2-1).  

The PRF, f, can then be expressed as a function of the chemical shift where 

                                             ( )0 1f Bγ σ= −                   (2.10) 

γ is the gyromagnetic ratio (42.58 MHz/Tesla for hydrogen atoms) and B0 is the applied 

magnetic flux density.  The chemical shift, σ, theoretically is related to the electronic 

structure around the nucleus.  Usually empirical approaches are used to describe the 

chemical shift since theoretical calculation requires extensive knowledge of the electron 

density in the ground and excited states of the molecule as well as the excitation energies.  

Generally, the chemical shift is the contribution of the electrons surrounding the nucleus 

as well as other surrounding molecules around the nucleus (74).    
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Figure 2-1 Illustration of temperature effects on the PRF 

As temperature rises, the hydrogen bonds (green line) between hydrogen and neighboring oxygen atoms 

stretch, bend and break.   This causes the hydrogen to move closer to its own oxygen’s electron cloud 

making it better shielded and changing the chemical shift, σ. 

 

2.2.6.2 Temperature Sensitivity of the PRF 

Measuring the PRF shift as a function of temperature or measuring the distances 

between two spectral peaks to measure temperature has long been used in NMR in the 

field of analytical chemistry. When compared to other MRTI-based parameters, the 

temperature sensitivity coefficient of the water PRF is relatively the same for different 

tissues is close to pure water which has a temperature sensitivity coefficient (TSC) of  
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-0.010 ppm/ºC (34).   Many studies have been performed in vivo to measure the 

temperature sensitivity of the PRF.  McDannold presented a thorough review of the TSC 

of the PRF using both CPD and CSI techniques.  Most TSC values in several tissues have 

been found to be between -0.009 to -0.010 ppm/°C (75).  This corroborates what 

Hindman reported initially in pure water (TSC=-0.01 ppm/°C) (34).   However, some in 

vivo studies have measured values above and below this range.  Peters et al. stated a 

possible reason for the discrepancies is due to the temperature-induced changes in the 

bulk magnetic susceptibility (76).  This can also be affected by the orientation of the heat 

source in relation to the magnetic field.  Electrical conductivity of tissues can also change 

the temperature dependence (77).   

In fatty tissue, De Poorter et al. measured an overall TSC of -0.0097 ppm/°C with 

a susceptibility constant of -0.0013 ppm/°C giving a corrected field shift of -0.0088 

ppm/°C (43).  In a separate study by a different investigator, when using lipid (bulk 

methylene) as an internal reference, the TSC of the difference was measured and found to 

be around -0.00852 ppm/°C (37).   A study using a line scan echo-planar spectroscopic 

imaging (LSEPSI) technique on a mayonnaise and lemon juice phantom also found a 

similar TSC when using bulk methylene as an internal reference (45).  

 Ex vivo tissues have shown little change in sensitivity when compared to in vivo 

tissues (75, 78, 79).  It is also important to note that the sensitivity does not change when 

tissues coagulate, which is in contrast to what is seen in T1-based MRTI (37).  This is 

crucial for safety at high-temperature ablations to be able to measure temperature after 
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damage has occurred to assure temperatures do not reach excessive levels to prevent 

charring of tissue.   

There is also growing interest in trying to use CSI for absolute temperature 

estimations.  Currently, MRTI methods are most often used to measure changes in 

temperature and not absolute temperature.  Absolute temperature estimation is an 

established method in NMR experiments.  For instance, in a sample tube, the shift 

between ethyl (-CH2-CH3) or methyl (-CH3) protons to the hydroxyl (-OH) protons is 

commonly used in the NMR setting.  For MR, the goal is to quantify water, lipid and/or 

metabolite peak locations and their relative differences between water between them to 

make absolute temperature measurements. There have been studies where N-

acetylaspartate and water was used to measure temperature in the brain with low spatial 

and temporal resolution (80, 81).  However, there are many factors that can affect the 

distribution of the metabolite, lipid and water chemical shifts including intravoxel 

temperature variations, pH, magnetic ion concentration, blood-oxygen level dependent 

(BOLD) effect, J-coupling effects and susceptibility (37).  According to a recent review 

of MRTI, the “feasibility of absolute temperature imaging has not yet been established; 

further detailed investigations will be required for that” (37).    This is a highly-desired 

diagnostic imaging capability to detect highly metabolic or inflamed lesions which can be 

at a higher temperature compared to the baseline temperature.   
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2.2.6.3 Complex Phase Difference Techniques for Measuring the PRF 

A fast CPD method (38) has been the preferred method to estimate the PRF shift 

indirectly.  To estimate the temperature change in a voxel, the difference between the 

current phase image, Φ, and the reference image, Φref, can be related to the TSC 

described as 

                                                         
02

ref
T

B TEπ α γ

Φ−Φ
∆ =

⋅ ⋅ ⋅ ⋅
                                        (2.11) 

where α is the TSC (ppm/°C) and TE is the echo-time (ms).   

In CPD techniques with sufficient SNR (≥5), the uncertainty in the CPD image, 

σ∆φ ,can be expressed as 
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where A is the magnitude signal, σ is the noise of the magnitude signal, which is assumed 

to be approximately Gaussian distributed, and SNRA is the signal-to-noise ratio of the 

magnitude image  (82).  A contrast-to-noise ratio in the phase difference image, CNR∆φ, 

can then be defined by 
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assuming a spoiled gradient-echo acquisition.  Note that this is essentially the product of 

the TE (which is proportional to ∆φ) and the SNR.  The dependence of TE on the phase 
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difference constrains the CNR∆φ  to be optimal at TE=T2*, which can be shown by 

differentiation of equation 2.13 (82).   

 A major advantage of the CPD technique for PRF-based thermometry is its high 

spatial and temporal resolution (~1.5x1.5x4 mm
3
, <5 sec (39)).  Typically, fast 

temperature imaging can be achieved with GRE acquisitions (38) or EPI (83).  As stated 

above, the optimal TE for CNR in CPD is at the T2* of the tissue.  As a result, standard 

GRE acquisitions have a relatively long TR which lowers spatial and temporal resolution.  

If higher resolutions are needed, echo shifts are applied with TR<TE at an expense of 

SNR (41).  Alternatively, the use of EPI allows for longer TEs without sacrificing 

resolution or SNR.  Techniques using balanced steady-state free-precession (bSSFP) have 

also been studied for PRF-based temperature mapping.  This is accomplished by 

measuring a linear fit along several TEs acquired.  However, the phase behavior was 

found to be highly nonlinear with this technique so simple phase to frequency mapping is 

not feasible (48).   

 Although CPD techniques are advantageous when high spatial and temporal 

resolution is required, there are several well-known limitations of this technique.  

Intravoxel lipid contamination (40, 41), inter- and intra-scan motion (42), tissue 

susceptibility changes (43) and static magnetic field drifts (44) all cause artifacts that are 

commonly encountered with CPD techniques.    

It is important to remember that the PRF shift is a function of temperature due 

primarily to changes in the hydrogen bonds between water molecules.  These hydrogen 
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bonds are absent for protons in lipid molecules, which are covalently bonded.  Therefore, 

the temperature sensitivity of lipid tissue is a stronger function of the macroscopic 

susceptibility.  The presence of lipid can alter the phase in CPD acquisitions which, in 

turn, can affect temperature estimates.  Common practice to address this is to simply 

suppress the lipid signal (40, 41).  Although lipid signal is suppressed, however, it does 

not correct susceptibility effects that lipid can have on the nearby water molecules.  The 

effect of a mixed water and lipid environment cannot be handled completely with 

suppression because lipid is still physically present in the tissue and can have an effect on 

temperature estimation in the voxel via susceptibility effects.   

 As with most imaging techniques, intra-scan and inter-scan motion is another 

common issue that must be addressed with CPD approaches.  Intra-scan motion is motion 

during the acquisition which results in view to view k-space errors seen as image blurring 

and ghosting.  Imaging times can be decreased to reduce intra-scan motion but at an 

expense of SNR.  Inter-scan motion is a more difficult problem to handle since images 

are subtracted to obtain temperature estimates.  It is important to note that motion not 

only effects the spatial registration between scans but also the magnetic field which 

changes the phase leading to errors in temperature estimation (33).   Multiple strategies 

have been developed in an effort to overcome artifacts from inter-scan motion.  For 

respiratory motion, gating with mechanical respiration has been successful but this, of 

course, is invasive (84).   Gating with free-breathing has been used but it is challenging 

when there is irregular breathing (85).  The use of navigator echoes has also been studied 
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as well as referenceless thermometry which estimates the background phase in the treated 

area by fitting a polynomial extrapolated from unheated regions (86).  These studies have 

had limited success but according to a recent review of MRTI, “motion is the most 

prevalent problem for temperature monitoring with PRF phase mapping (CPD) and the 

main reason that has impeded its acceptance for clinical applications in areas that are 

subject to motion” (33).   

 Macroscopic susceptibility changes in tissue can also affect the accuracy of 

temperature estimates with the CPD technique (43).  Susceptibility does change with 

temperature, but when compared to the PRF as a function of temperature, this effect is 

four to five times smaller in magnitude.  It has been approximated as being linear with 

0.0026 ppm/°C for pure water and 0.0016 ppm/°C in muscle (43).  It has been found 

though that the temperature dependence of the susceptibility is tissue-dependent (87) as 

well as the orientation and geometry of the heating source (76).  One possible method to 

correct for susceptibility effects is to measure the PRF response to temperature in a 

chemical specimen that is not sensitive to temperature changes.  Lipid is such a specimen.  

It is expected that lipid will experience susceptibility effects in the voxel.  Therefore, 

using lipid, or any covalently-bonded proton, as an internal reference to correct for 

susceptibility is a possible means to improve temperature measurements (37).   

 Field drift is yet another effect that must be considered when the PRF is used for 

MRTI.  Temporal drifts in the local magnetic field due to increased gradient duty cycles 

and eddy currents can change the PRF (88).  Simple corrections are often possible by 
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using a reference phantom at a fixed temperature (44).  More elaborate corrections are 

also possible using multiple reference phantoms to estimate the linear shifts across the 

image (89).  A method that calculates the apparent diffusion coefficient (ADC) and PRF 

has also been proposed to correct for field drift (90).  As with susceptibility, lipid or 

another internal covalently-bonded proton reference can be used to aid in correcting for 

field drifts (37).   

2.2.6.4  Chemical Shift Imaging Techniques for Measuring the PRF 

An alternative to the indirect CPD method is a direct method of measuring PRF 

shift via chemical shift imaging (CSI) techniques (45-48).  CSI has several advantages 

over CPD techniques.  One is that the water proton resonant frequency is measured 

separately from other resonances whereas CPD measures the mixture of frequency 

components in each voxel resulting in a variable response.  This immediately relieves the 

problem of intravoxel lipid contamination seen in CPD.  Also, the lipid signal can be 

used as an internal reference to account for field drifts, susceptibility and motion since it 

is relatively insensitive to temperature (37). Therefore, CSI would be particularly useful 

in areas with high lipid content, such as bone marrow, breast, and head and neck lesions 

(45).  In addition, it may be useful in patients with fatty-liver for minimally-invasive 

treatments of liver lesions (91).  It is also important to note that areas with little or no 

lipid can also benefit from CSI-based temperature imaging since directly measuring the 

water PRF can potentially result in higher sensitivity given appropriate SNR with 

adequate spectral analysis techniques (45, 53).  Therefore, researchers have worked to 
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develop CSI techniques that increase the sensitivity and spatiotemporal resolution while 

maintaining the ability to reduce artifacts seen in CPD.  However, as mentioned in the 

previous chapter, these studies have limitations for multiple reasons.    

Magnetic resonance spectroscopic imaging (MRSI) was proposed for MRTI 

before the CPD technique was introduced (46).  However, the acquisition time needed for 

the desired spectral resolution (with or without suppression) was deemed impracticable 

for MRTI.  For example, MRSI measurements using a small 32 x 32 matrix with a 

spectral bandwidth of 10 ppm at 1.5T and a spectral resolution of 0.01 ppm (1 °C) 

required 26 minutes per acquisition.   

One approach to overcoming some of the time limitations of the MRSI approach 

is to use echo planar spectroscopic imaging (EPSI) techniques.  These techniques have 

been proposed for temperature monitoring and prior studies have demonstrated that 

temperature changes can successfully be monitored, lipid can be used as an internal 

reference when present, and artifacts due to motion can be reduced (47).  Although this 

method was demonstrated to be considerably faster than conventional MRSI, initial EPSI 

acquisitions still required 3 minutes to acquire a low spatial resolution temperature image 

(5 x 5 mm
2
) on a 3.0T system.  This is because the technique used 4 interleaved shots of 

16 echoes (5.2 ms echo-spacing, total of 64 echoes) to achieve an effective echo-spacing 

of 1.3 ms to avoid aliasing of the lipid signal due to a narrow spectral bandwidth.  Data 

interleaving resulted in a spectral bandwidth of 769 Hz (12.04 ppm) with a spectral 

resolution of 12.0 Hz (0.188 ppm).  In addition, spectra from the EPSI technique can be 
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degraded by instability in the magnetic field and motion during the phase-encoding 

process of the acquisition (37). 

McDannold, et al. applied a line scan EPSI (LSEPSI) technique (92) to address 

limitations to previous CSI-based MRTI techniques (45, 93).  LSEPSI is a combination 

of EPSI with a voxel-selective technique for column scanning (92).  This method 

substantially improved the spatial and temporal resolution.  Specifically, in an in vivo 

breast scan at 1.5T, a 32 x 32 cm
2
 FOV was acquired in 4.2 seconds with a spatial 

resolution of 5 x 5 x 5 mm
3
.  However, this spatial resolution is still considered quite 

poor compared to CPD methods (39).  Thirty two echoes where acquired with a high 

receiver bandwidth of ±64 kHz, which limited the SNR.   

As stated in chapter 1, major contributors to the low spatiotemporal resolution in 

these studies include interleaved echo trains and high receiver bandwidths to decrease the 

echo-spacing to avoid aliasing of the lipid peak.  In addition, high ETLs were used in 

Fourier-based approaches to calculate the PRF.  The high ETL degrades the 

spatiotemporal resolution.  In the next chapter, we present an approach that will allow 

spectral aliasing of lipid peaks to negate the need of interleaving echo trains and allow 

reduced bandwidths for higher SNR. To further aid in increasing spatiotemporal 

resolution and sensitivity, a model-based approach to calculate the PRF using 

undersampled data will be presented.  The combination of these acquisition and post-

processing techniques will be used to test our hypothesis.  
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Chapter 3: Theoretical Background for Dynamic 

Chemical Shift Imaging  

3.1 Introduction 

In this chapter, the theory and background of the acquisition strategy, spectral 

processing, and mapping are presented.  First, gradient-echo imaging will be introduced 

along with details of the acquisition implementation for rapid CSI.   Next, spectral 

processing of CSI data will be overviewed.  In this context, the detailed theory of 

autoregressive moving average (ARMA) modeling will be presented.  Finally, details will 

be outlined on how these spectral parameters, specifically the PRF for temperature 

imaging, are mapped to images using a k-means clustering algorithm.  

3.2 Rapid CSI from a Multi-Gradient Echo Acquisition:  From 

Theory to Implementation 

Fundamentally, several conditions must be met in order to image the spatial 

distribution of hydrogen protons for MRTI.  A strong magnetic field, B0, is needed in 

order to align a small majority of protons with the field.  Radiofrequency (RF) pulses at 

the resonance frequency, ω, are used to tip the spin population.  As the population relaxes 

back to equilibrium with the magnetic field, a small voltage is measured in an RF-tuned 

receiver coil which is perpendicular to B0.   

In the laboratory frame of reference in the absence of gradients and relaxation 

effects, the signal from a 3D spin system, ρ(x,y,z), in a given volume, V, can be described 

as  
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To spatially localize the signal, gradients are used that spatially vary the magnetic field 

over the sample.  

For an acquisition in the axial plane, the z-direction is assigned as the slice-

selection direction.  A gradient is applied in this direction in conjunction with the 

bandwidth-limited RF excitation pulse.  This creates a planar distribution of spins 

described by 
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where z0 is the center of the slice and ∆z is the slice thickness.  The z-dependence in ω 

can be related to the magnetic field, B0, and the slice encoding gradient, Gz, where 

0( )z zB G zω γ= +      (3.3) 

After the RF pulse, the spins in I can be localized spatially using gradients and encoded 

in k-space.  The relationship between a location in k-space at time, t, and the gradients in 

the x and y directions is given by 

0

( ) ( )

t

k t G dγ τ τ= ∫      (3.4) 
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In the collection of data in k-space, a phase encoding gradient moves collection of data to 

one line in k-space.  This is followed by a frequency encoding gradient that is applied 

during the signal readout.    

 Mathematically, the signal at a location in k-space, S(kx,ky) can be given by 

dydxeeyxkkS yx
kiykix

yx ∫∫
−−∝ ππρ 22

),(),(    (3.5) 

It is important to note that this equation gives the spatial frequency domain of the spin 

distribution and a 2D Fourier transform can be used to represent the data in the spatial 

domain (74).   

 Figure 3-1 displays the pulse sequence diagram for a fast gradient echo 

acquisition typically used for standard CPD MRTI.  A small flip angle RF pulse is used 

during encoding of the slice selection gradient, Gz.  The polarity of Gz is then switched to 

account for de-phasing of the transverse magnetization.   The frequency encoding 

gradient, Gx, is turned on to move across k-space.  Gy is then applied for the phase 

encoding before the positive gradient of Gx encodes the signal.  A Gz gradient is then 

applied to dephase residual transverse magnetization.  
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Figure 3-1 Pulse sequence diagram for a fast gradient-recalled echo (FGRE) acquisition 

This represents a balanced pulse and gradient schematic for a high spatiotemporal CPD acquisition.  Note 

that one echo is collected per TR.   

In this research, the fast gradient-recalled echo (FGRE) acquisition was modified 

to provide multiple echoes per TR for encoding the chemical shift (Fig. 3-2). As with 

FGRE, the sequence is compatible with parallel acquisition techniques, such as SENSE, 

to increase the speed of acquisition (94) and can acquire images in interleaved slice 

acquisition mode or in a sequential slice acquisition mode with RF spoiling to cancel out 

any residual transverse magnetization before the next TR period by modulating the phase 

between successive RF pulses.  Note that the TR is kept constant so there is no loss in 
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spatiotemporal resolution compared to CPD from a FGRE acquisition.  The ETL and ESP 

are set in order to collect the selected number of echoes within the TR.   

 

Figure 3-2 Pulse sequence diagram of a 2D unipolar MGE acquisition 

The phase encoding gradient only pulses once per echo train.  The frequency-encoding gradient can be 

implemented in bipolar or unipolar mode.  In the unipolar sequence shown above, when each echo is 

acquired in a positive gradient readout, the free induction decay (FID) is sampled.   

 

The sequence can be run using unipolar readout gradients with time-optimized 

rewinder (i.e. flyback) gradients as shown in Figure 3-2 or using bipolar readout 

gradients.  In bipolar gradient mode, negative polarity readout data is time reversed in k-

space prior to image reconstruction by Fourier transformation.  Also in bipolar gradient 

mode, N/2 spectral ghosting caused by timing errors between the positive and negative 

readouts can be corrected by applying a calculated linear phase shift to the images 

reconstructed from every other echo time (95).  The moments of the signal are calculated 
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in k-space.  The phase shift is measured by the differences in the moment between odd 

and even echoes in the bipolar readout (Figue 3-3).   

 

Figure 3-3 Differences between bipolar and unipolar readout gradients with N/2 correction  

Bipolar and unipolar readout acquisitions were performed on an agar phantom.  Due to timing errors 

between odd and even echoes, the bipolar readout gradient is susceptible to N/2 ghosts (top left).  These 

timing errors can be corrected by calculating the phase change in k-space (top right).  Unipolar readout 

gradients are immune to these errors but using unipolar gradients comes at an expense of larger ESP and 

lower SNR (96).     
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We made two fundamental changes in the conventional acquisition strategy for 

fast CSI acquisitions.  First, the echo-spacing (ESP) parameter was increased in order to 

facilitate use of lower readout bandwidths to provide higher SNR.  In the case of previous 

3.0T CSI acquisitions, restraints on the ESP have usually resulted in the use of multiple 

interleaved echo-trains in order to avoid aliasing (47).  Because of the relaxed ESP 

associated with this technique we can acquire multiple echoes within one TR acquisition 

thus increasing the spatial and temporal resolution compared to previous CSI acquisitions 

for MRTI.  This causes aliasing of the lipid peak.  However, in MRTI we are only 

interested in the change in the lipid PRF and not the absolute position when measuring 

temperature changes.   

The second modification was to collect only the number of echoes that would fit 

into the TR period of our standard CPD MRTI sequence.  The artifacts associated with 

this undersampling required innovative processing in order to resolve the lipid signal as 

outlined in the following section. 

To increase sensitivity, uncertainties in the PRF as a function of acquisition 

parameters need to be determined.  It is important to note that in PRF mapping, the 

frequency difference, which is directly proportional to temperature, is not constrained to 

TE=T2*, in contrast to CPD.  For an homogenous voxel, 

                               ( )
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which means that the sensitivity of measuring frequency changes is directly proportional 

to the SNR of the source image from a gradient echo acquisition.  This gives an image 

metric where the sensitivity of the frequency changes can be measured and verified using 

the spectral analysis technique as described in the next section.   

3.3 Spectral Processing of CSI Data  

In many 2D, high spectral resolution, low spatiotemporal resolution CSI 

techniques, several chemical shifts including water, lipid, and metabolites such as choline 

and N-acetyl aspartate (NAA) are mapped by adding a spectral dimension to the k-space 

data to encode chemical shifts.  For example, EPI gradients allow signal readouts which 

encodes one spatial dimension and the spectral dimension at the same time.  In 1983, Sir 

Peter Mansfield, Nobel Laureate in Medicine for the development of MR, proposed EPI 

for 2D CSI with a hybrid projection reconstruction method to bypass Fourier transforms, 

which were slower computationally at that time (97).   

Several studies have been done to build on what was proposed by Mansfield.  

Initial implementations suffered from poor gradient performance and artifacts arose from 

the convolution of spectral and spatial information.  Posse et al. improved this by 

improving the orthogonalization of the spectral and spatial information to reduce artifacts 

seen in 2D CSI (98).  Rapid acquisition and relaxation enhancement (RARE) (92, 99, 

100) and LSEPSI (101) have also been investigated to improve the spatial, temporal and 

spectral resolution for spectroscopic inquiry.  Parallel imaging (102, 103) and 

compressed sensing (104, 105) techniques have also been implemented to improve the 
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spatiotemporal resolution of these otherwise low spatiotemporal, high spectral resolution 

CSI techniques.   

There are several methods to quantify spectra in various domains, including the 

frequency domain, time domain and z-domain.  Originally, MR signals were calculated 

using continuous wave (CW) spectroscopy.  These spectra were recorded by scanning the 

frequency axis, which measured the intensity of the signal as a function of frequency 

(106).  Currently, MR spectra are obtained in the time domain with post-processing 

typically by deconvolution of the resonance frequencies into the frequency domain via 

Fourier transformation.  The time-domain acquisition reduces scan time and increases 

SNR compared to CW spectroscopy (107).    

The Fourier transform (FT) is the most common method to measure MR spectra 

by transforming the MR signal from the time domain to the frequency domain.  

Generally, the transform can be represented as  

∫
∞

∞−

−= dtetfF
tiωπω 2)()(        (3.7) 

where ω is the frequency, t is time, and f(t) is the time-domain function.  The FT is 

bijective and invertible meaning that the signal can be measured in one domain and 

transformed to another.  Although the FT is commonly used, assumptions in Fourier 

analysis impose restrictions on the quality of the spectra.  In a discrete signal, the FT can 

be represented as  
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where An is the discrete representation of the spectra from the time domain signal ak.  As  

seen in this equation, the spectra is dependent on the number of samples N.  The spectral 

resolution is inversely proportional to N (108).  In rapid CSI for temperature imaging, N 

needs to be relatively small to maintain high spatial and temporal resolutions.  By using 

the FT, this comes at a cost of degraded spectral resolution to measure changes in the 

PRF (Fig. 3-3).  In addition, if the data in the time domain has non-zero values at the end 

of the acquisition, this causes apodization of the spectra, which can degrade peaks, 

especially secondary peaks such as lipid.   
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Figure 3-4 The effects of the number of samples on spectra using FFT 

The spectral resolution is directly proportional to the number of samples in the signal.  In this case, the lipid 

peak is more difficult to discern with a lower number of samples.  Spectral resolution can be improved by 

collecting more samples.  This typically comes at a tradeoff of decreasing spatiotemporal resolution. 

It is important to note that the FT doesn’t make assumptions in the model that 

describes the data (see equation 3.6).  The only constraints on the signal is that the 

integral of ( )f t  from -∞ to ∞ exists and that any discontinuities in f(t) are finite (108).  

Although this makes FT useful for a variety of applications, it has a disadvantage of not 

incorporating prior knowledge of the signal.   In addition, the FT is assumed as a single 

sum, where in practice the signal has signal and noise components (50).   

 Several time-domain methods have been developed to analyze spectra.  The main 

goal of these methods is to minimize the differences between the measured data and the 

signal model through a non-linear least squares problem.  This depends on the particular 

algorithm being able to find a global minimum in the data and avoid errors from finding 

local minima.  Generally, the risk of not finding the optimal solution using these methods 
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increases when initial conditions are away from what is acquired in the signal.  This often 

requires heavy user interaction in order to manually obtain starting values for these 

algorithms (109).  Interactive algorithms such as variable projection (VARPRO) (110) 

and the advanced method for accurate, robust and efficient spectral fitting (AMARES) 

(111) are common MR quantification tools.  VARPRO uses the Levenberg-Marquadt 

(LM) algorithm (112), which was later replaced by AMARES when reviewers cited 

greater flexibility.  Baseline errors can also be handled with time-domain methods with 

user interaction (109).   

 Visualization of spectra and fitting results are best shown in the frequency domain 

(113).  Compared to time-domain methods, frequency-domain methods have fewer model 

parameters that need to be fitted.  In this domain, methods can be separated as non-

iterative and iterative methods.   The most widely used quantitative method in this 

domain is frequency-selective area under the peaks.  However, with this method it is 

difficult to discern overlapping peaks and high baseline signals.  Additionally, low SNR 

can degrade the ability for quantification (113).  Singular value decomposition (SVD) 

methods have also been developed, where only regions along a specific frequency are 

used for analysis, resulting in faster processing times (114).  In iterative processes, non-

linear least squares techniques via algorithms such as the LM algorithm (112) have been 

used.  Specifically, with the LM algorithm deGraaf and Bovee used the algorithm to 

obtain in vivo proton spectra in the brain using prior knowledge of metabolites from in 

vitro metabolite solutions (115).  In addition, mixed Lorrentzian-Gaussian (or Voight) 
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models were developed to fit the signal in the frequency domain.  In both time and 

frequency domain, algorithms are shown to be computationally expensive and/or requires 

a priori knowledge of the spectra (116).    

There are also “black-box” techniques where little interaction is needed from the 

user which makes it attractive for rapid temperature imaging (50).  These methods use the 

z-transform where 

∑∑
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 and δ is the Kronecker delta function.  Although these methods are commonly 

characterized as time-domain methods, it is important to note that analysis is performed 

in the z-domain where the frequency-domain is a subspace where 1)}({ =tfZ .  

Theoretically, in a MR signal containing water and lipid, x(t), can be represented 

discretely as a sum of damped complex exponentials convoluted with a comb function, 

that is,  

                                                                                                                                  

(3.10) 

where CW,L is the complex amplitude for water (W) and lipid (L), respectfully,  fW,L is 

PRF, T2W,L* is the apparent spin-spin relaxation time, TE is the echo time and n is the 

number of echoes.  By taking the z-transform, equation 3.10 can be represented as 
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(3.11) 

Equation 3.11 can be rewritten as 

                                                                                                                                   (3.12) 

Note that this can also be represented as a geometric series where 

                                                                                                                                     (3.13)           

(49).  Therefore, the poles of X(z) can provide the frequency and T2* information for 

water and lipid.  The complex amplitude of each exponential can be calculated using the 

residue evaluated at each pole  (51, 52).  In general, equation 3.13 in the presence of 

noise can be expressed as an autoregressive moving average (ARMA) process described 

as 
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Finding the coefficients, αn and βn, involves solving a set of overdetermined equations.  

One method to approximate the coefficients was proposed by Belkic using the Pade’ 

approximant (PA) based on a technique originally developed by Henri Pade’ (51, 117, 

118).   While the PA is able to process low TE signals and expand to non-Lorentzian 

spectra, it has limitations at low SNR.  In addition, the PA demonstrates low performance 
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with a low number of poles and zeros, especially if it less than the number of samples 

(119).     

Another analysis method is to use an iterative method which will potentially 

converge to a more accurate and precise solution compared to analytical methods (120).  

Thus, we propose a hybrid approach using Prony’s method (120) and the iterative 

Steiglitz-McBride (SM) algorithm (121).  Both algorithms are used in applications such 

as digital filter design and communications and a detailed treatment of both algorithms 

can be found in (120).  The reasoning to use these algorithms include the minimal 

interaction required by the user (50), relatively rapid processing time compared to non-

linear least squares methods (53), and performance in the presence of noise (121, 122).   

Here the algorithms will be explained to show how these can be used to calculate the 

coefficients and provide frequency, T2* and amplitude content for water and lipid.  

 Equation 3.14 can be represented as  

( ) ( ) ( )b t h t a t= ∗                                                     (3.15) 

since, as in Fourier theory, the convolution in the time-domain is a product in the z-

domain.  In matrix form, equation 3.15 is 
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(3.16) 

 

where N is number of chemical species and K is the number of echoes, and  xn are the 

samples in the time-domain.  In Prony’s method, h(t) is partitioned and an error term, e, is 

added where  

(3.17)                                                                                                                                      

 

H1 contains N-1 rows, H2 is a column vector with K-N-1 terms, H3 is the remaining (K-N-

1) x N matrix and α* is simply a column vector of the denominator coefficients.  This 

separates the interdependence of α and β terms in order to find the solution.  First, the α 

terms are found by taking the pseudo-inverse to minimize e, that is, 
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where t is the transpose operator and # denotes the pseudo-inverse operation.  Once α* is 

calculated, β can be simply calculated by  

1Hβ α=      (3.19) 
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 Unlike Prony’s method, which works by minimizing the error in the 

overdetermined set of equations, the SM algorithm seeks to iteratively minimize the error 

between a model estimate (xd) and the measured signal (x).  The algorithm uses an initial 

estimate (from Prony’s method) and quickly iterates to a solution.  Briefly, the algorithm 

takes the first N columns of the matrix 

 iH Hα α= ⋅      (3.20) 

 where H is the K x K-N+1 matrix as described in equation 3.16 and α is the initial 

estimate.  This partitioned matrix is denoted as Hα′ .  Knowing that   

1d i i ix x e H H H eα αα β+ ′= + = = +    (3.21) 

As in equation 3.18 the error term, e¸ can be minimized where  

( )#

1i i iH H Hα αα β+ ′=      (3.22) 

and 

( )#

dH xαβ ′=       (3.23) 

Therefore, combining equations 3.22 and 3.23 gives  

( ) ( )# #

1i i i i dH H H H xα α αα + ′ ′=      (3.24) 

which provides an iterative solution.  Once α is known, β can be calculated again by 

using equation 3.19.   
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 Once coefficients, α and β, are known, the poles can be calculated as roots of the 

denominator in equation 3.14.  If ρ1 and ρ2 denote the poles for water and lipid, 

respectively, then the PRF of water or lipid (in ppm) can be expressed as   
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     (3.25) 

where ∆t is the time between echoes, γ is the gyromagnetic ratio and B0 is the applied 

magnetic flux density.  In addition, the T2* value of water or lipid can be expressed as 
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Finally, the complex amplitude of water and lipid can be computed separately using 

where 
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3.4 CSI Mapping using the k-means Algorithm 

An important area of research in MR currently is the mapping of MR-detectable 

nuclei with different chemical shifts.  The techniques for accomplishing this range from 

mapping multiple metabolites which is commonly used in various sites including brain, 

prostate and breast (123) to several techniques that are used to separate lipid-based 

chemical shifts from images to avoid obscuring underlying pathologies.   This is a multi-

faceted problem that involves not only separation of chemical shifts spectrally but also 

accurately mapping these parameters into images.  The accurate mapping of chemical 

shifts is necessary in MRTI so appropriate temperature sensitivity coefficients can be 

applied to measure temperature (i.e. water must correctly be identified in order to 

measure temperature changes and lipid must be indentified accurately to use as an 

internal reference).  

Essentially clinical CSI data for metabolic inquiry are currently processed by 3D 

FFT with filtering and/or zero-filling of the k-space data or by spectral modeling.  For 

example, one method used exponential line broadening, Fermi filtering in the spatial 

domains to reduce truncation, and water suppression through low-pass filtering of the 

spectra in the time-domain (98).  In addition to the processing of the spectral data, special 

consideration is needed for mapping the chemical shifts spatially.  For instance, 

corrections are needed for field inhomogeneities and gradient eddy currents.  Typically, 

data with unsuppressed water signal is acquired in order to calculate the field map to 
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correct for field inhomogeneities.  The water signal can also be used to scale the relative 

concentration of other chemical shifts. 

In CSI techniques for lipid and water separation, acquisitions and mapping 

strategies are different since a limited number of chemical shifts are known a priori.  The 

motivation to separate the chemical shifts in lipid-water imaging is that the low T1 of 

lipid makes it bright on many clinical imaging protocols.  This can hide underlying 

processes such as contrast-enhancement of tumors, edema, and inflammation.  There is 

also interest in knowing the lipid content in organs such as liver as well as using lipid 

images to distinguish certain tumors such as lipomas.  There are multiple techniques to 

either remove lipid from the images or create “water-only” or “lipid-only” images.   

One of the first techniques introduced to remove lipid from images is a chemical 

shift selective (CHESS) acquisition (124).  In these acquisitions, a saturation pulse is 

centered at the dominant lipid peak frequency and the pulse flips the lipid protons 90° 

into the transverse plane.  The RF pulse is immediately followed by a crusher gradient to 

spoil the transverse magnetization of lipid.  The imaging acquisition is then acquired 

leaving little time for lipid to recover longitudinal magnetization thus suppressing the 

lipid signal in the image.  However, this technique is sensitive to inhomogeneities in the 

static magnetic field and in the RF pulse (B1), which can either leave lipid unsuppressed 

or suppress water. 

Another method is to selectively excite the water instead of suppressing the water 

peak.  These methods can excite protons in a particular spatial or spectral region.   The 
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basic mechanism for these methods is to use RF pulses at specific intervals where lipid 

magnetization is flipped onto the longitudinal axis while signal is collected from the 

flipped water protons.  As in CHESS sequences, these acquisitions are sensitive to field 

inhomogeneities.  The use of multiple pulses can also require longer TRs which will 

increase imaging time.  Unlike CHESS, it is relatively insensitive to inhomogeneities in 

B1 (125).    

Short TI inversion recovery (STIR) (126) is yet another method to suppress lipid 

to visualize underlying pathologies.  This method takes advantage that non-enhancing 

tissue containing water has a longer T1 than lipid.  An inversion pulse is implemented 

followed by a time interval (TI) allowing the lipid magnetization to relax to the transverse 

plane.  Then an imaging acquisition is implemented, albeit with lower water SNR.  An 

advantage is that it is insensitive to field inhomogeneities and therefore it can be used in 

large or off-centered FOV situations.   

Instead of selectively suppressing or exciting chemical shifts, there is a class of 

techniques based on the phase behavior between water and lipid.  An early approach to 

phase-sensitive lipid-water separation was developed by Dixon (127) and thereby the 

techniques are commonly termed “Dixon Methods.”  By assuming a constant PRF 

difference between water and lipid, Dixon proposed that collecting images at two specific 

TEs can create images where lipid and water are in-phase and out-of-phase.  By adding or 

subtracting these images, “water-only” or “lipid-only” images could be created.   This is 

called a “two-point Dixon method.”  However, this method is sensitive to B0 
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inhomogeneities.  To address this, Glover (128) modified Dixon’s method to obtain three 

echoes at specific TEs where the phase shifts between lipid and water were 0, π, and –π.  

By using phase-unwrapping algorithms, field inhomogeneities can be removed.  Both 

methods, by Dixon and Glover, are insensitive to B1 inhomogeneities and can be used in 

a variety of sequences including fast spin echo (FSE), GRE, and steady-state free 

precession (SSFP) (129).    

Several methods have also been developed to improve on these early Dixon 

methods.  It was noted that three-echo Dixon techniques were redundant and that 

methods are available to acquire field mapping with two echoes (130, 131).  It was also 

shown that lipid suppression is possible with one echo at variable TEs (132).  One 

method by Xiang used a region-growing algorithm instead of phase-unwrapping in 

conjunction with an asymmetric TE acquisition with an analytical solution for water and 

amplitudes (133).  In addition, Ma et al. introduced a FSE method with phase-sensitive 

partial Fourier reconstruction in addition to a rapid two-point FSE acquisition using 

interleaved images (134).   Ma also created a phase correction, region-growing algorithm 

that relies on the spatial gradient of the phase (135).  In this algorithm, the direction of 

the phase is calculated by the magnitude and phase of surrounding voxels.  Recently, 

Dixon methods were used in conjunction with diffusion-weighted imaging for whole-

body detection of cancer metastasis (136).  Iterative decomposition of water and lipid 

with echo asymmetry and least squares estimation (IDEAL) is another phase-sensitive 

lipid-water separation technique that uses a least-squares approach of the multi-echo data 
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to calculate the amplitudes of water and lipid (137).  By assuming equivalency of the 

water and lipid T2*, T2* estimates have been made with IDEAL (138).  In addition, 

multiple peaks of lipid have been mapped given the a priori information of the PRFs and 

amplitudes via calibration (139). 

In each of these CSI techniques, certain assumptions are made in order to 

constrain the model to approximate a certain parameter.  For example, the chemical shift 

between water and lipid in these methods are assumed to be relatively constant.  In the 

presence of temperature changes, this is not the case.  This assumption is made in order to 

accurately approximate another parameter which is most often the relative magnitude of 

each chemical shift. 

As shown above, the PRF, T2* and amplitude of multiple peaks are calculated 

without making assumptions such as a constant PRF shift between water and lipid or 

equivalent T2* in water and lipid.  Here we present a k-means clustering algorithm to 

identify these peaks and reconstruct these parameters into images with water-only and 

lipid-only field maps, T2* maps and T1-W imaging.  K-means clustering and other 

clustering algorithms such as the fuzzy c-means algorithm are powerful techniques that 

have been used to segment MR data typically from standard imaging techniques such as 

apparent diffusion coefficient (ADC), T1, T2, and PD-weighted images as well as 

functional MR data (140-143).  In this work, we investigate how this algorithm can take 

the multi-parametric data to segment and map different chemical shifts such as lipid and 

water without relying on assumptions made in many CSI techniques.  With proper 
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mapping, temperature changes can be accurately measured along with providing multi-

parametric visualization of the spectral data. 

The k-means algorithm is an automated and computationally rapid clustering 

algorithm that was first proposed by Lloyd in 1957 although he did not publish his work 

until 1982 (144).  The term “k-means” was first coined by MacQueen in 1967 (145).  It 

has a variety of applications in machine learning and statistics to partition data based on 

defined variables.   

Given a set of measurements (x1, x2, …, xn) where each measurement is a D-

dimensional real vector, the k-means algorithm partitions the n observations into k 

clusters given that k<n by minimizing an objective function, S, where   

      ∑∑
= =

−=
k

j

n

i

ji cxS
1

2

1

     (3.29) 

and ji cx − is the Euclidean distance between data point, xi, and it’s cluster centroid, cj.   

 First, random k clusters are assigned to all n observations and centroids are 

calculated for each cluster.  Data points are then assigned to the nearest centroid.  Every 

data point assigned to a certain centroid is assigned to the same cluster.  Then, new 

centroids are calculated from the new clusters.  This process continues iteratively until 

the centroid calculation converges for each centroid such that cj=cj-1.  Figure 3-4 shows 

graphically in two dimensions the functions of the algorithm.  All spectral processing and 

mapping was implemented using MATLAB (MathWorks, Natick, MA). 
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Figure 3-5 Schematic of the K-means algorithm 

The algorithm assigns random clusters from the observations and centroids are calculated for each k 

cluster.  Observations are then assigned to the nearest centroid.  Then, new centroids are calculated from 

the new clusters.  This process continues iteratively until the centroid calculation converges by for each 

centroid. 
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Chapter 4: Spectral Parameter Estimation and 

Acquisition Parameter Analysis from a 

Rapid Multi-Gradient Echo Acquisition 

4.1 Introduction 

This chapter thoroughly reports the results on the spectral processing and 

acquisition parameters that are needed for accurate and precise temperature imaging.  

First, spectral processing via a filtered Fourier method will be tested, which will outline 

limitations in Fourier-based techniques for measuring spectra with a low number of 

samples.  Next, results from experiments testing the ARMA model as described in 

section 3.3 will be presented (specific aim 1).  The measurements from the ARMA 

model will be used to find suitable acquisition parameters for accurate and precise 

temperature imaging (specific aim 2).  At the end of this chapter, there is a discussion to 

place these results in context for temperature imaging. 

4.2 Spectral Analysis using Fourier Windowing 

4.2.1 MATERIALS AND METHODS 

We investigated the assumption that, with careful selection of spectral filters, a 

windowed FFT technique could possibly provide accurate water and aliased lipid peak 

locations.   A simulated signal containing water and lipid at physiologically relevant 

frequencies was generated.  The amplitude of the lipid component was set to be one-tenth 

the amplitude of water.  For temperature monitoring using lipid, it was assumed that the 

optimal location of the aliased lipid peak would be equidistant from the resonant water 

peak and its N/2 spectral ghost to minimize contamination of the lipid peak from water 
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sidelobes.  The relation between the echo-spacing and the frequency difference between 

water and lipid was analytically determined. 

In addition, we used the Lorentz-Gauss transform which increases spectral SNR 

and resolution by combining a Gaussian window and a positive exponential filter (146).  

The Gaussian window, g(n), is defined as 
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                                        (4.1) 

where N is the total number of samples and σ is the ratio of the length between the two 

points of inflection on the Gaussian to the length of the entire window.   To find a 

suitable σ for this window, the frequencies and amplitudes of the lipid and water peaks as 

well as the sidelobes were measured at different σ values.  The optimal setting would be a 

standard deviation that produces the lowest error in water and lipid frequency estimation 

in simulation.   

To increase spectral SNR for the FFT approach, a positive exponential filter, 

exp(n/T2
*
), was used where the apparent spin-spin relaxation (T2

*
) can be quickly 

estimated.  Using simulation, the frequencies and magnitudes of the peaks were recorded 

with and without this filter using the T2* of water-only, lipid-only and a calculated T2* of 

the signal.      

The product of both windows and the signal was zero-filled and Fourier 

transformed to create the simulated spectrum.  The location of the maximum value of 



58 

 

each peak was calculated along with a moment calculation around each peak.  These 

values were compared to a Gaussian fit of the peaks as done by McDannold et al (45) and 

also to frequency estimates from the Steightliz-McBride (SM) algorithm which is 

described in the following section.  The time to calculate each spectrum using the 

windowed Fourier method as well as the SM algorithm and Gaussian fitting of the peaks 

were also recorded. 

4.2.2 RESULTS 

The relative distance of the lipid peak from the water peak and the N/2 ghosts at 

physiologically relevant frequency differences were simulated to help determine the best 

echo-spacing (ESP) for the acquisition prior to obtaining experimental data.  By 

assuming that the lipid peak needs to be equidistant from the water and N/2 peaks at 

different frequencies, the optimal ESP was determined to be: 

                         

0

3

4 w l

ESP
Bδ γ−

=     (4.2) 

where w lδ −  is the frequency difference of the water and aliased lipid peak (in ppm), γ is 

the gyromagnetic ratio of hydrogen protons (42.58 MHz/T), and B0 is the static magnetic 

field strength (in Tesla). 

Simulations also demonstrated that the windowed Fourier spectral analysis using 

the Gaussian window would be able to suppress spectral sidelobes while maintaining 

water and lipid signal.  The lipid peak with a physiologically relevant magnitude (10% of 



59 

 

water) becomes more pronounced than the water sidelobes at a standard deviation of 0.73 

and the sidelobe to lipid ratio continues to decrease below this value.  The uncertainties in 

w lδ −  from 3.3-3.7 ppm decrease as σ approaches 0.4 then the uncertainties increase as σ 

increases.  Therefore, σ = 0.4 was used in the experiments involving the windowed 

Fourier method.   

Effects of the exponential window in simulation are shown in Table 4-1. The 

lowest relative lipid and water peak magnitudes are seen when the T2* of lipid is used for 

the window.  However, the uncertainty in w lδ −  was smallest (0.00144 ppm) when this 

value was used.  No matter which of the three T2* values were used, the exponential 

window decreased the uncertainty in w lδ − .  

Table 4-1  Effects of the exponential window on CSI spectra (53) 

Relative Lipid Magnitude Relative Water Magnitude Lipid/Water Magnitude Ratio Error in δW-L (ppm)

No Window 0.181 0.154 0.225 0.00554

Water T2* 0.404 0.373 0.207 0.00159

Lipid T2* 1.000 1.000 0.191 0.00144

Calculated T2* 0.248 0.218 0.217 0.00198  

The effects of the exponential window at different T2* values at a frequency difference between lipid and 

water of 3.5 ppm.  If the lipid T2* can be determined, it introduces the largest signal as well as the lowest 

error in frequency estimation using a fast moment calculation. 

Table 4-2 shows the uncertainty of w lδ −  using a moment calculation with various 

values of spectral zero-filling, using the maximum value of each peak in a 1024-point 

spectrum, the SM algorithm’s calculation, and in the Gaussian fits.  The error shown is 

the root-mean-squared error over a simulated w lδ −   of 3.3-3.8 ppm.  The time to calculate 
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one spectrum was also recorded to reflect the relative speed of each technique, which is 

variable depending on the processing speed of the computer system being used.  The SM 

algorithm produced the lowest uncertainty of w lδ − , with only a small increase in 

processing time relative to Fourier-based processing.  This time also was less than the 

time required for fitting a Gaussian to each spectrum.  The moment calculation 

demonstrated the trade-off between accuracy and processing time.  In the experiments 

with short acquisition times, a moment calculation using 1024 points was used in the 

windowed Fourier calculations since only a small improvement in resolution (0.7 x 10
-4

 

ppm) was seen with a greater processing time (1.5 ms/spectrum) at 2048 points.  

Processing was on a 4Gflop CPU processor.   

Table 4-2  Processing computing performance in simulation (53) 

Processing Method Uncertainty in δW-L (10
-4

ppm) Processing Time (msec/voxel)

Moment

512 23.0 10.8

1024 20.1 11.1

2048 19.4 12.6

Peak Maximum 23.6 10.6

Steiglitz-McBride 0.02 16.6

Gaussian Fit 15.8 59.2  

The uncertainty for various processing methods with processing times in msec/voxel in these calculations.  

The processing times are to demonstrate the relative speed of each method.  In this study, images were 

masked where only voxels with high signal relative to noise are processed.  
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Figure 4-1  The effects of the Lorentz-Gauss transform on MFGRE-CSI spectra 

(a) Unfiltered FFT in the phantom calibration ROI at 23.5 °C (dashed line) and 37.8 °C (solid line) with the 

presence of N/2 ghosts and sidelobes. (b) FFT spectrum with N/2 correction and Gaussian window (σ=0.4) 

applied resulting in minimization of sidelobes and N/2 ghosts with a mean reduction of peak magnitude of 

50.5%.  (c) FFT spectrum with the same N/2 correction and Gaussian window with an addition to the 

exponential window ( 30.9
TE

mse ) which increases both lipid and water peak magnitudes to 84.8% of the 

unfiltered peak magnitudes.  Reprinted with permission from the American Association of Physicists in 

Medicine, (53). 

4.3 Frequency, T2* and Amplitude Estimation with ARMA Modeling 

4.3.1 MATERIALS AND METHODS 

 The SM algorithm was tested, using Prony’s method as an initial estimate, on 

simulated signals for one- and two-peak systems.  In the one-peak system, acquisition 

parameters included spin lattice relaxation time (T1), which was set at 500 ms, and 

T2*=60 ms.  The TR was fixed at 70 ms to maintain consistent temporal resolution.  The 

minimum TE was set to 2 ms, with an echo-spacing of 3.3 ms.  The two-peak system 

added a lipid signal that had 25% of the amplitude of the water peak.  For the lipid peak, 

T1=300 ms and T2*=30 ms (74).  A flip angle of 37° (the Ernst angle for lipid signal (74) 

was used.  All other parameters were the same as those in the one-peak system.  To 
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simulate noise in both systems, Gaussian noise was added to real and imaginary channels 

of the complex time domain signal.  The SNR was defined as the amplitude of each 

spectral component divided by the standard deviation of the magnitude noise.  Using ten 

samples at SNR=2 and ETL=4, the standard deviation of the water PRF was 0.6174 ppm.  

If we want 95% confidence that the mean is off by at most 0.01 ppm, then the number of 

samples needed is  

2 2

9, / 2 2.262 0.6174
19504

0.01

t
n

e

α σ  ⋅ = = =  
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   (4.3) 

Therefore, to obtain the measurement uncertainty, we performed 20,000 random trials at 

each SNR value (147).  Accuracies and uncertainties of the spectral parameters (chemical 

shift, T2* and complex amplitude) were calculated using the SM algorithm for an ETL of 

up to 16 echoes to determine, as a function of SNR, how the number of acquired echoes 

at a fixed ESP affected the accuracy and precision of the measured spectral parameters.    

 The Cramer-Rao lower bound (CRLB) was used to provide a comparative 

theoretical basis of the uncertainty independent of the spectral processing technique.  

This was used to test the performance of the algorithm in terms of precision.  The CRLB 

is defined as the minimum achievable variance for an estimator (148, 149).  The CRLB 

for this model (the sum of complex damped exponentials) has been analytically defined 

in a one peak system and can be numerically determined for a multi-peak system as 

described by Kumaresan and Tufts (54).  Detailed background and theory on the CRLB 

can be found in appendix A.   
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If an MR signal with only one peak is present, then the minimum uncertainty in 

the PRF, given by the CRLB, can be defined as   

0
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and SNRA is the SNR of the first echo (54).   

The uncertainties of the amplitudes, chemical shifts, and T2* values using the SM 

algorithm were compared to the CRLBs to ascertain the precision of the algorithm in the 

presence of noise.  Correlation coefficients between simulation values and the CRLBs 

were calculated for each parameter in both the one- and two-peak systems. 

The effects of ESP and T2* were simulated in the one-peak system with ETL=16.  

The uncertainty values for the chemical shift, T2*, and amplitude from 20,000 

measurements were determined as a function of ESP and T2* and represented on surface 

maps.   

 We also performed simulations to measure the sensitivity of detecting secondary 

peaks in noise.   In these simulations, the signal parameters were the same as those in a 

two peak system with an ETL=16, but the amplitude of water was changed to correspond 

to SNR for water of 10-50.  Measurements of sensitivity were made at different 
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secondary peak SNR levels to determine at which SNR the secondary signal could be 

detected.  This enabled the effects from water SNR, lipid SNR, and lipid/water ratios to 

be analyzed. 

4.3.2 RESULTS 

Precision of the SM algorithm on simulated data demonstrated a high correlation 

between the uncertainties in chemical shift and amplitude and the CRLB values for 

SNR>5 and ETL>4.  When uncertainties approached the CRLB, the algorithm performed 

near optimum at the theoretical lower bound of the uncertainty for the given model.  

Figure 4-2 displays the uncertainties in the signal-peak model using the SM algorithm for 

the chemical shift, T2*, and amplitude estimates as a function on of SNR for ETL of 4-16 

echoes.  Solid lines represent the CRLBs for each simulation.  As expected, he 

uncertainty of the estimates decreased as the SNR and number of echoes increased.  T2* 

measurements generally showed lower correlation (slightly higher uncertainty than the 

CRLBs), primarily at lower SNR values, than other spectral parameters.   This effect was 

expectedly exacerbated when using truncated ETLs (<8) which yield a reduced TEmax.  

For example, the uncertainty of measured T2* from simulations began to exceed the 

CRLBs at SNR<10 for ETL=8 and SNR<30 for ETL=4 (Figure 4-2).  Table 4-3 shows 

the correlation coefficients between the simulated data and the CRLBs.  In agreement 

with Figure 4-2, the chemical shift and amplitude showed very high correlation 

coefficients (Pearson’s R
2
>0.9990), with the correlation of the T2* measurements 

between simulation and the CRLBs decreasing as the number of echoes decreased. 
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Figure 4-2  Single-peak simulation and CRLB results  

Simulation and CRLB results for 4 (crosses), 8 (squares), 12 (triangles), and 16 (circles) echoes. This 

simulation used 20,000 trials. Estimates for chemical shift achieved an uncertainty at the CRLB for SNR≥5 

for each ETL (4–16 echoes) (a). The uncertainties in T2* for ETL=16 achieved the CRLB for all SNRs >5 

(b). As the ETL decreases, the uncertainty diverges from the CRLB. For instance, at ETL=8, the 

uncertainty is higher than the CRLB at SNR<10.Compared with the chemical shift (a) and T2* (b), the 

uncertainties of the amplitudes in the simulation and their CRLBs are less dependent on the number of 

echoes (c).  Reprinted with permission from the American Association of Physicists in Medicine, (150). 

 Table 4-3  Correlation coefficients between simulation and the CRLB in an one-peak signal  

Number of Echoes Chemical Shift T2* Amplitude

4 0.9997 0.7919 0.9996

8 0.9997 0.8886 0.9998

12 0.9996 0.9944 0.9999

16 0.9994 0.9996 0.9999
 

 

Correlation coefficients between simulation and the CRLB in a water-only signal over multiple echo-train 

lengths.   The uncertainties in chemical shift and amplitude have a very high correlation with the CRLB, as 

does the uncertainty in T2* at ETL=16. However, correlation between the uncertainties in T2* and the 

CRLB decreases as the number of echoes decreases.  Reprinted with permission from the American 

Association of Physicists in Medicine, (150). 
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The measured uncertainty of the chemical shift and T2* estimates demonstrated 

an inverse proportionality to the ETL, as expected from the derivation of the CRLBs (54).  

For SNR = 20, the dependence of the chemical shift and T2* on the number of echoes had 

a relationship of N
-1.01 

(Pearson’s R
2 

= 0.990) and N
-1.02 

(Pearson’s R
2
 = 0.980), 

respectfully, where N is the number of echoes.  The amplitude estimates exhibited less 

dependence on the number of echoes with a N
-0.22  

relationship (Pearson’s R
2
 = 0.982).  

Simulations also showed agreement between the spectral parameter uncertainties 

and the CRLBs in a two peak model representing water and lipid.  Figure 4-3 is a plot of 

the uncertainties and corresponding CRLBs for a simulated two-peak model of water and 

lipid for ETL=16.  Corresponding correlation coefficients are shown in Table 4-4.  

Uncertainties in the chemical shifts of both water and lipid signals approached the 

CRLBs and maintained high correlation coefficients.  As observed in the one-peak 

simulation of water, T2* values diverged more from the CRLBs than did other spectral 

parameters.  Uncertainties in the lipid chemical shift and T2* values were demonstrably 

higher, even for the same SNR.   Uncertainty in the amplitudes showed little difference 

between water and lipid.  This result was consistent in a range of water and lipid 

concentrations.  Further, as seen in the one-peak model, the uncertainty of each peak’s 

spectral parameters increased as the number of echoes decreased. 
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Figure 4-3  Simulation and CRLB results for a two-peak signal of water and lipid  

This simulation used 20,000 trials. Estimates for the chemical shift of both water and lipid achieved an 

uncertainty at the CRLB (a).  The uncertainties in T2* for both peaks reached their CRLBs. The T2* of lipid 

(30 ms) was set to half of that of water (60 ms) (b). The CRLB for the amplitudes of both water and lipid 

were similar when represented as relative uncertainties (c). The uncertainties provided by the algorithm had 

a similar result.  Reprinted with permission from the American Association of Physicists in Medicine, 

(150). 

 

Table 4-4  Correlation coefficients between simulation and the CRLB in a two-peak signal 

Water Fat

Number of Echoes PRF T2* Amplitude PRF T2* Amplitude

4 0.9753 0.5813 0.9997 0.9530 0.4811 0.9968

8 0.9758 0.6667 0.9999 0.9566 0.5495 0.9984

12 0.9810 0.7294 0.9999 0.9721 0.6811 0.9994

16 0.9886 0.9638 0.9999 0.9551 0.8435 0.9999
 

Correlation coefficients between simulation and the CRLB in a lipid-water signal over multiple echo-train 

lengths.   As with the one-peak (water only) signal, the uncertainties in chemical shift and amplitude have a 

high correlation with the CRLB for both water and lipid. The uncertainties in T2* correlate less with the 

CRLB as the number of echoes decreases.  Reprinted with permission from the American Association of 

Physicists in Medicine, (150). 



68 

 

Surface maps illustrated the impact of T2* and ESP on a one-peak model with 

ETL=16 (Figure 4-4).  Generally, the uncertainties were lower as T2* increased and the 

ESP decreased.  Areas below the black line in Figure 4-4 (a-c) indicate areas where the 

TE of the last echo (TEmax) was larger than the simulated T2*.  As expected, if collected 

echoes had TE values greater than the value of T2*, then the uncertainty of that estimate 

increased.     

 

Figure 4-4  ESP and T2* effects on the uncertainty 

Surface maps demonstrate the effects ESP and T2* (for a single-peak signal at SNR=20) have on the 

uncertainties for chemical shift (a), T2* (b), and amplitude (c). Areas below the black line represent where 

the ETL TEmax>T2*.  This causes an increase in uncertainty, which is more evident on (b) and (c). ESP>1.0 

ms can provide low uncertainties as long as the ESP is short enough not to sample above the T2* of the 

tissue.  Reprinted with permission from the American Association of Physicists in Medicine, (150). 
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In addition to precision, we also used simulations to test the accuracy of the SM 

algorithm.  Table 4-5 summarizes the measured accuracy of the estimates provided by the 

SM algorithm in a simulated water signal at SNR=20.  These estimates are presented as 

the root-mean squared error (RMSE).  The algorithm maintains high accuracy for the 

chemical shifts (<0.01 ppm) and amplitudes (<1.0%) for an ETL of 4-16.  This was 

consistent down to SNR=5.  T2* values also maintained high accuracy but increased to 

≥1% (0.6 ms) for ETL<5 at SNR=20.  For each parameter, the accuracy decreased with 

decreasing ETL and SNR, as expected.  Accuracies in the two-peak signals for the lipid-

water simulation are summarized in Table 4-6.  The RMSE values were higher for the 

water parameters in the lipid-water signal than those for the parameters of water in the 

water-only signal.  However, accuracy was high for both chemical shift and amplitude, 

<0.01 ppm and <1%, respectfully, for ETLs of 4-16.  At ETL≤6, the RMSE of T2* was ≥ 

6% for the longer T2* peak (water).  As expected, T2* measurements required a larger 

ETL to lower the bias when the ESP was fixed.   

The sensitivity of second peak detection in noise was also investigated using 

simulations.  Using lipid as a model for the second peak, it was observed that the 

sensitivity of locating the secondary peak depended on the relative SNR between the 

peaks as well as the individual SNR of each peak.   In a model with a simulated water 

signal and SNRs of 10-50, the simulated lipid peak was consistently detectable down to 

an SNR of 2.64 ± 0.48 for lipid/water amplitude ratios of  >0.05.   
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Table 4-5  Parameter accuracies in a water signal at a SNR of 20 

Number of Echoes Water PRF (ppm) Water T2*  (% Error) Water Amplitude (% Error)

4 0.000185 5.65 0.0402

5 0.000136 1.03 0.0402

6 0.000105 0.493 0.0382

7 0.0000844 0.246 0.0364

8 0.0000724 0.194 0.0347

12 0.0000429 0.107 0.0301

16 0.0000316 0.0760 0.0282
 

Accuracies (root-mean squared error) determined through simulation of 20,000 independent trials with a 

water signal at a SNR of 20.  High accuracy is achieved for the chemical shifts and amplitudes from four to 

sixteen echoes.  T2* values also has high accuracy but increases to > 1% (0.6 ms) at ≤5 echoes.  Reprinted 

with permission from the American Association of Physicists in Medicine, (150). 

 Table 4-6  Parameter accuracies in a water/lipid signal at a SNR of 20  

Number of Echoes Water PRF (ppm) Water T2* (% Error) Water Amplitude (% Error) Lipid PRF (ppm) Lipid T2* (% Error) Lipid Amplitude (% Error)

4 0.0083 42.1 0.425 0.0077 16.6 0.932

5 0.0067 38.4 0.322 0.0066 0.426 0.785

6 0.0047 6.52 0.227 0.0047 0.347 0.478

7 0.0027 0.474 0.136 0.0027 0.302 0.281

8 0.0021 0.225 0.106 0.0021 0.263 0.219

12 0.00047 0.113 0.0395 0.00048 0.166 0.0887

16 0.00018 0.0802 0.0293 0.00021 0.131 0.00715  

Accuracies (root-mean squared error) determined through simulation of 20,000 independent trials with a 

water/lipid signal at a water SNR of 20.  The accuracy of chemical shift is within 0.01 ppm and that of 

amplitude is within 1% RMSE for ETLs of 4–16. At ETL≤6, the RMSE for both T2* values is high, 

especially for the longer T2* peak (water).  Reprinted with permission from the American Association of 

Physicists in Medicine, (150). 

4.4 Analysis of Acquisition Parameters 

4.4.1 FLIP ANGLE 

4.4.1.1 Materials and Methods 

It is expected that for a homogenous voxel, the lowest fσ ∆  should occur at the Ernst 

angle defined by 
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since SNRA is highest at this angle in a gradient echo acquisition.  To validate this, an 

agarose phantom (1.5 % w/v) was made with distilled, de-ionized water to minimize 

variation in the metal ion content of the water, which can lower relaxation times and 

affect SNR measurements.  Another phantom (agarose 1.5 % w/v) was made with 90% 

lemon juice and 10% mayonnaise to create homogenous lipid-water spectra throughout 

the phantom.  A plastic vial of vegetable oil was also scanned on the 1.5T clinical 

scanner.  The phantoms were stored in the MR scanner room overnight so their 

temperature would be equalized to that of the room.  The T1 and T2* values were 

estimated in a 3 x 3 voxel ROI in each phantom.  An MGE acquisition was performed 

(ETL=16 echoes; minimum TE (TE0)=2.0 ms; ESP=3.3 ms; TR=69 ms; rBW=244 

Hz/pixel; acquisition matrix=128x128; voxel volume=1.6x1.6x4.0 mm
3
; 5 sec/image; 

parallel imaging acceleration factor=2).  The flip angle was varied from 5° to 90° in 5° 

increments.  Assuming a one-peak model for the pure water and lipid phantoms, 

frequency maps were made and fσ ∆ as well as SNRA were measured in the same ROI 

where the T1 and T2* measurements were made.  The SNRA measures as a function of 

flip angle were compared to theory using the T1 and T2* measurements in both water and 

oil phantoms (SNR of a spoiled gradient echo acquisition, SNRA).  In addition, the 

uncertainty in ppm was plotted against 1/SNRA.  The slopes were compared where 

1/SNRA is the variable and the slope is the proportionality which is a product of all the 

constants in the equations 4.4 and 4.5.  In the SNRA and uncertainty plots, measurements 
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and theory were compared using a Student’s t-test assuming equal variances (F-test 

verified).  A two-peak model was used in the lipid-water phantom with separate field 

maps created for water and lipid and fσ ∆  of each field map was measured.  For each 

phantom, the uncertainty of the T2* and amplitude maps were measured as well.  

4.4.1.2 Results 

Figure 4-5 displays the uncertainties in the PRF (ppm), T2* (ms), and amplitude 

(CoV) as a function of flip angle in the pure water agarose phantom.  The Ernst angle was 

calculated to be 31.8 ± 0.3° (T1 = 409.5 ms) in the ROI where the uncertainty 

measurements were made.  Generally, as SNRA increased, the uncertainty of each 

spectral parameter decreases, as expected.  Figure 4-6 contains the measurements from 

the vegetable oil, which had a measured Ernst angle of 74.2 ± 0.4° (T1=52.2 ms). 
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Figure 4-5 Flip angle dependence on uncertainty and SNRA measurements in an agarose phantom 

Uncertainties in the PRF (ppm), T2* (ms), and amplitude (CoV) were measured as a function of the flip 

angle.  SNRA was also measured at flip angles between 5 - 90° at 5° increments.  Generally as SNRA 

increased, the uncertainty in each parameter decreased. The Ernst angle was measured as 31.8 ± 0.3°. 
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Figure 4-6 Flip angle dependence on uncertainty and SNRA measurements in a vegetable oil 

Uncertainties in the PRF (ppm), T2* (ms), and amplitude (CoV) were measured as a function of the flip 

angle.  SNRA was also measured at flip angles between 5 - 90° at 5° increments.  As with the agarose 

phantom, as SNRA increased, the uncertainty in each parameter decreased. The Ernst angle was measured 

as 74.2 ± 0.4°, which is expectedly higher than what was measured in the agarose phantom due to a shorter 

T1 (52.2 ms). 

Figure 4-7 displays the SNR of water and oil as a function of flip angle in addition 

to the SNR dependence in the uncertainty.  Using the calculated T1s and T2*s (409.5 ms 

and 63.4 ms for water, 52.2 ms and 25.4 ms for oil), the calculated SNR matched the 

measured values (p=0.14 and p=0.43 for water and oil, respectively).  The bottom plots 

measures the uncertainty in ppm as a function of 1/SNR which is shown in equation 4.23.  



75 

 

Using ESP=3.3 ms, ETL=16, and measured T2*, the constant from equation 4.4 was 

compared to the slope of the measured data.  Again, there were no statistical differences 

showing that the uncertainty follows what is predicted by CRLB analysis (p=0.24 and 

p=0.09 for water and oil, respectively).    

 

Figure 4-7 SNR and uncertainty measurements in phantom with comparison to CRLB theory 

Top:  Using the calculated T1 and T2* values, the calculated SNR matched the measured values (p=0.14 

and p=0.43 for water and oil, respectively).  Bottom:  The bottom plots measures the uncertainty in ppm as 

a function of 1/SNR which is shown in equation 4.4.  Using controlled acquisition parameters and T2* 

measurements, there were no differences between the measurements and CRLB analysis.    
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Figure 4-8 displays the parameter uncertainties in the lipid-water (mayonnaise-

lemon juice) phantom.  At flip angles of 30° and above, the uncertainties of each 

parameter stayed relatively constant. 

 

 

Figure 4-8 Flip angle dependence on uncertainty and SNRA measurements in a lipid-water phantom 

Uncertainties in the PRF (ppm), T2* (ms), and amplitude (CoV) were measured as a function of the flip 

angle.  Generally, uncertainties were lowest at higher flip angles.  This data suggests that higher flip angles 

are needed when lipid and water are both present in the voxel.   
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4.4.2 ECHO-SPACING 

4.4.2.1 Materials and Methods 

In the Fourier approach, large spectral leakage, manifested as sidelobes, made the 

echo spacing become confined to a small range so peaks do not overlap.  The ARMA 

modeling approach may allow more flexibility in the echo spacing allowing even lower 

bandwidths and, therefore, higher SNR.  Experiments were performed to determine the ESP 

that reduces the uncertainty without peak overlapping.  To test this, the lipid-water phantom 

(1.5% w/v) was scanned on a 1.5T clinical scanner with the echo-spacing varying from 

3.3 to 4.3 ms (ETL=16 echoes; minimum TE (TE0)=2.0 ms; TR=69 ms; FA=30°; 

rBW=244 Hz/pixel; acquisition matrix=128x128; voxel volume=1.6x1.6x4.0 mm
3
; 5 

sec/image; parallel imaging acceleration factor=2) at room temperature. fσ ∆ values of 

water and lipid were recorded as a function of ESP in a 3x3 ROI.  Data analysis 

determined the low values of fσ ∆  in both water and lipid while discerning ESP values to 

avoid due to peak overlapping. 

Simulations were also performed to ascertain the effects of SNR on the precision 

when the peaks are close together due to increasing ESP.  Using the same simulation 

protocol as in the SM algorithm simulation study, the ESP was varied from 3.4 to 4.2 ms 

as a function of SNR.  The uncertainties in the water and lipid PRF were determined.   

4.4.2.2 Results 

The uncertainties in temperature (using -0.0097 ppm/°C for water and -0.0088 

ppm/°C for the difference PRF) are shown at various ESP values (Figure 4-9).  The 
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uncertainties remain under 1.0 °C for water and 2.0 °C for when lipid is used as a 

reference at ESP of 3.3 to 3.8 ms.  At 3.9 ms and above, uncertainties increase largely 

due to the inability to precisely ascertain the lipid peak.  Note that the uncertainty in the 

water peak does not go above 1.0 °C except at 4.0 ms where the value is 2.1 °C.  At 4.1 

ms, the uncertainty in the water peak PRF goes to 0.9 °C although the lipid PRF 

uncertainty is relatively high at 7.5 °C.    

Figure 4-10 shows the uncertainties in the T2* and amplitude for each peak.  As 

with the PRF, the peak overlaps affect the secondary peak (in this case lipid) more 

compared to the dominant peak (in this case water). 

 

Figure 4-9 Influence of ESP on the precision of temperature estimates 

Uncertainties in temperature are shown as a function of ESP.  The water PRF relatively maintains precision 

indicating that the dominant peak can still be detected precisely even when peaks overlap.  The precision of 

the secondary peak, which is lipid in this case, loses precision.  From this plot, the uncertainty of the lipid 

PRF becomes quite high when the ESP is 3.9 to 4.3 ms.  Error bars represent the standard deviation of the 

measurements. 
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Figure 4-10  Influence of ESP on the precision of T2* and amplitude estimates 

Uncertainties in T2* (left) and amplitude (right) are shown as a function of ESP.  As with temperature, the 

water relatively maintains precision.  The precision of the secondary peak, lipid, loses precision.  From 

these plots, the uncertainty of the lipid parameters becomes high when the ESP is 3.9 to 4.3 ms and, thus, 

should be avoided if precise lipid estimation is needed in areas where water is dominant (such as the liver).  

Error bars represent the standard deviation of the measurements. 

 

 Figure 4-11 shows the influence of the ESP and SNR on the PRF uncertainty.  As 

SNR increases, the ability to ascertain the water and lipid PRF increases even if the peaks 

are close together.  Therefore, if two peaks are close together due to the actual physical 

properties of the signal or an ESP where lipid aliases over water, higher SNR can 

distinguish the two peaks.   
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Figure 4-11  PRF precision as a function of SNR over variable ESP 

As SNR increases, the precision of the PRF estimates increases.  Even at an ESP where the lipid aliases 

into the lipid peak (4.2 ms), the water PRF can be measured with high precision.  Therefore, if ESP values 

are chosen that may cause the lipid to alias to the water, higher SNR is needed to precisely measure the 

primary peak PRF.    
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4.4.3 ECHO TRAIN LENGTH 

4.4.3.1 Materials and Methods 

When SNR is high, then the ability to reduce the ETL is possible to either 

increase spatiotemporal resolution or increase the number of imaging planes.  To test this, 

the agar water and lipid-water phantoms were scanned on a 1.5T clinical scanner 

(minimum TE (TE0)=2.0 ms; ESP=3.3 ms; TR=69 ms; FA=30°; rBW=244 Hz/pixel, 

acquisition matrix=128x128; voxel volume=1.6x1.6x4.0 mm
3
; 5 sec/image; parallel 

imaging acceleration factor=2) with ETL values of 4, 8, 12, and 16.   

In addition, a second series of scans were obtained with the agar phantom using 

similar acquisition parameters except that the TR was adjusted where it would be the 

minimally allowed TR for a given ESP and ETL.  The TR values chosen for ETL values 

of 4, 8, 12, and 16 were 14.1, 28.0, 41.0, and 54.0 ms, respectively.  These resulted in 

acquisition times of 0.9, 1.8, 2.6, and 3.5 seconds, respectively.   The uncertainties of the 

PRF, T2* and amplitude were measured as a function of ETL. 

4.4.3.2 Results 

At a constant TR, the uncertainty in the measurement of each spectral parameter 

was found to be inversely proportional to the ETL (Figure 4-12).  This is expected since 

the more samples obtained, the more likely the ARMA model can approximate the signal.  

Interestingly, even at an ETL of 4, the uncertainty was less than 0.01 ppm which is 

consistent what was seen in simulation (see Table 4-5).  As long as the T2* extends the 

longest TE (see Figure 4-4), the precision of the T2* measurements increases with ETL 
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much as what is expected with exponential fitting of magnitude data.  Also note that the 

dependence in the amplitudes is comparably less dependent on ETL in regards to PRF 

and T2*.  This is also consistent to what was seen in simulation (see section 4.3.2).   

 

Figure 4-12  Influence of ETL on the precision of spectral estimates in a water phantom 

Uncertainties in PRF (top left), T2* (top right) and amplitude (bottom) are shown as a function of ETL.   At 

a constant TR, the uncertainty in the measurement of each spectral parameter was found to be inversely 

proportional to the ETL.  This is consistent with the simulations (150).    

 

 In the presence of lipid, the precision of each parameter stayed relatively constant 

at ETL values of 8, 12, and 16.  When 4 echoes were used, the uncertainty of each 
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parameter increased.  For temperature imaging, it appears that 8 echoes or more could 

possibly be used in planes where lipid and water are present in the same voxels.   

 

 

Figure 4-13  Influence of ETL on the precision of spectral estimates in a lipid-water phantom 

Uncertainties in PRF (top left), T2* (top right) and amplitude (bottom) are shown as a function of ETL in a 

lipid-water phantom.   The uncertainty in the PRF is relatively constant from 8-16 echoes which suggest 

that 8 echoes could possibly be used in voxels with lipid and water for temperature imaging.  There is 

higher uncertainty, however, in the amplitude estimates at 8 echoes.      

 



84 

 

Figure 4-14 shows the uncertainty in the spectral parameters when a shortened TR 

is used to increase the temporal resolution and maintain spatial resolution.  Compared to 

the constant TR, the uncertainties were higher due to lower SNR.  The uncertainties in 

the PRF at ETLs of 4 and 8 were statistically different (p<0.01 ppm and p=0.02, 

respectfully).   When compared to the same ETL, all the T2* and amplitude uncertainties 

where statistically different (p<0.01).  As an illustrative example of how SNR plays a 

factor in the uncertainty, Figure 4-15 shows the constant TR case compared to the shorter 

TR acquisition where SNR losses due to the change the TR are accounted for.   

 

Figure 4-14  Influence of ETL on the precision of PRF, T2*, and amplitude estimates 

Uncertainties in PRF (top left), T2* (top right) and amplitude (bottom) are shown as a function of ETL.   At 

the shortest TR for the given ETL, the uncertainty in the measurement of each spectral parameter was 

found to be inversely proportional to the ETL.  This dependence is higher than when a constant TR was 

used.  The T2* of the phantom was 63.4 ms.     
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Figure 4-15  Uncertainties in the amplitudes with SNR compensation 

At a shorter TR, the SNR of the acquisition will be lower.  If the SNR of the constant TR acquisitions are 

decreased by compensating for the difference in TR, then it matches what was measured in the lower TR 

acquisitions.  In other words, the lower TR acquisition suffers an SNR loss and this directly increases the 

uncertainty, as expected.  In the amplitude estimate, the uncertainty in the lower TR scans are due purely 

from a difference in SNR. 
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4.4.4 PERFORMANCE OVER VARIABLE T2*  

4.4.4.1 Materials and Methods 

To test the precision of the temperature estimates over a range of T2* values, seven 

agar phantoms were created with varying concentrations of superparamagnetic iron oxides 

(SPIOs) which effectively changes the T2* of phantom (151).  The T2* of each phantom was 

determined via exponential fitting using a standard SPGR sequence with varying TE.  Using 

the determined acquisition parameters and spectral processing algorithms, field maps were 

made from all seven phantoms scanned (ETL:4-16; minimum TE (TE0)=2.1 ms; ESP=3.3 

ms; TR=69 ms; FA=30°; rBW=244 Hz/pixel, acquisition matrix=128x128; voxel 

volume=1.6x1.6x4.0 mm
3
; 5 sec/image; parallel imaging acceleration factor=2).  fσ ∆  

SNRA was measured in a 3 x 3 voxel ROI in each phantom.  φσ ∆  was be measured in each 

ROI as well at each echo.  Both fσ ∆ and φσ ∆  will be divided by the TSC to represent the 

uncertainty in temperature.  A Student’s t-test with equal variances (F-test tested) was 

employed to test for differences in the two precision values.  If fσ ∆ < φσ ∆  for each ROI , then 

the proposed technique will show increased sensitivity at that T2* value.  Using the SNR of 

the first echo and the measured T2*, the CRLB was also calculated. 

 

4.4.4.2 Results 

Table 4-7 displays the uncertainty in the CSI and CPD measurements (the lowest 

over all the echoes) in each phantom.  The CSI technique at least matched the CPD 

technique in terms of uncertainty and actually performed better at 6.4 and 21.2 ms 
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(p<0.05).  In every case, the CSI measurements matched the CRLB at the 95% 

confidence interval.  Note that the CPD measurement was at the echo of least uncertainty.  

As will be discussed in the next chapter, the T2* changes with temperature so the TE 

chosen for CPD methods may not be optimal over the entire course of treatment.  In the 

CSI method, we measured high precision without constraining to specific TE values (see 

equations 2-13 and 3-6).0  This data also supports published data obtained in ex vivo 

kidney tissue (53), which investigated the noise characteristics between CPD and this CSI 

technique.   

Table 4-7  Noise characteristics of CSI and CPD over a range of T2* values 

T2* CRLB (°C) 
Unc. CSI 

(°C) 
Unc. CPD 

(°C) p-value  

6.4 1.52 1.21 ± 0.39 2.13 ± 0.74 0.03 

12.9 0.21 0.20 ± .02 0.24 ± 0.07 0.24 

14.6 0.17 0.18 ± .02 0.23 ± 0.09 0.21 

21.2 0.11 0.11 ± 0.02 0.20 ± 0.06 0.02 

47.1 0.07 0.07 ± 0.01 0.10 ± 0.05 0.18 

51.6 0.07 0.06 ± 0.02 0.09 ± 0.04 0.25 

63.4 0.07 0.07 ± 0.01 0.09 ± 0.03 0.38 

 

The CSI technique at least matched the CPD technique in terms of uncertainty.  At 6.4 and 21.2 ms, the 

uncertainty with the CSI technique was lower when compared to CPD.  Each CSI noise measurement 

encompassed the CRLB at the 95% confidence interval while this was not always the case with CPD.   
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4.5 Discussion    

What makes this work different from previously published work (37, 45-48, 152) is 

not the sequence itself, but rather the approach taken in setting acquisition parameters, 

the efficient use of the imaging time and data generated, and the approach to post-

processing of the low resolution, aliased spectral data.   

 Our simulations and results from phantom studies demonstrate that processing 

algorithms discussed in this study can measure these frequency shifts with a high degree 

of accuracy even when the lipid peak is aliased, and that the SM algorithm is useful in 

overcoming the limitations of conventional windowed Fourier-based methods.  The 

relaxation of the ESP constraint gave us the ability to use lower receiver bandwidths 

allowing higher SNR.  Also, while only a few echoes were used, the relaxed ESP helped 

maintain reasonable spectral resolution.   Additionally, the frequency difference between 

water and lipid is well known in the range of temperatures used for thermal therapy, so 

the ESP can be determined and ued to avoid problems with N/2 ghosts associated with 

bipolar readout gradients and aliasing the lipid peak too close to the water peak.   

  Another assumption we made was that we could accurately monitor peak shifts 

using only 16 echoes.  While this could be accomplished using windowed Fourier 

techniques and peak finding routines, we applied a non-Fourier technique based on 

ARMA analysis of the data in order to provide a more robust method for finding peaks, 

as well as estimating the T2* and amplitude for each peak.  This is in contrast to well-
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known lipid-water separation techniques where peak amplitude quantification is of 

primary concern (128, 135, 137).  

We observed robust performance of the SM algorithm in accuracy, uncertainty, 

and secondary peak detection across a range of SNR values for a very low number of 

echoes.  The use of minimal samples represented as a rational polynomial in the z-

domain, which has been shown to converge exponentially as the number of echoes 

increases (118), is important because this allows the acquisition either to run faster with 

less computational overhead or to facilitate the acquisition of multiple slices within the 

same TR period.  For example, using the minimum TR possible with an ETL=8 and 

ESP=3.3 at 1.5T, acquisitions could be performed in less than two seconds.  Three slices 

could be encoded in less than six seconds. 

In addition to choosing a low number of echoes, the choice of other acquisition 

parameters, such as the ESP, can affect the accuracy and precision of the measurements. 

We have shown that choosing ESPs that extend TEmax past the T2* of the tissue increases 

the uncertainty in the measurements (Figure 4-4).  In low T2* tissues or where there is 

low SNR in the later echoes, those echoes should be dropped since an increase in 

uncertainty has been observed.  For instance, in a signal with a T2*=10 ms, TEmax=51.2 

ms and SNR=20, sampling 16 echoes gave an uncertainty of 0.0154 ppm whereas 

sampling 8 echoes reduces the uncertainty to 0.0044 ppm.  Therefore, for signals with 

low SNR (<5) at the later echoes, it is better to exclude those echoes and proceed with a 

lower ETL than to include them.   
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Theoretical calculation of the CRLB demonstrates that the uncertainty is inversely 

proportional to the SNR, a relationship corroborated by simulation and phantom 

measurements.  Therefore, MR acquisition parameters, such as the flip angle, should be 

chosen to increase the SNR of the peak of interest.  For instance, in a one-peak system, 

the flip angle that provides maximum SNR is the Ernst angle.  For two-peak systems in 

which information from both peaks is desired, acquisition parameters should be tailored 

to help increase the SNR of the secondary peak, which was assumed here to be the 

smaller of the two.  If TR is fixed for optimal timing, the flip angle could be used to 

provide optimal modulation of the secondary peak signal.   

Given adequate SNR, the acquisition used in this work could provide T2* maps of 

8-10 slices in a single breathhold (<20 s) using ETL=8, while also providing inherent 

lipid suppression.  A recent study in liver constrained the solution of the estimated tissue-

based T2* for water by assuming equivalent T2* values for water and lipid, owing to a 

heavy iron overload (138).  The authors concluded that this assumption may not be 

reasonable.  The technique investigated here could potentially be used to separate these 

T2* values directly, without any assumptions on the chemical shift or T2* equivalency, 

thereby allowing identification of separate T2* values for water and lipid.  Another 

potential application is quantitating the distribution of superparamagnetic iron oxides 

(SPIOs) (153).  These particles have been suggested for use in thermal therapy, and such 

therapies could potentially benefit from the temperature imaging capabilities of our 
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technique as well (154).   Our data shows that precision can be maintained through a 

wide range of SPIO concentrations.  

Our simulations and phantom experiments also show that for the same imaging 

time and parameters, this technique is more precise than current CPD techniques over a 

wide range of SNR  values because it maintains better accuracy and precision across a 

variety of T2* values and thus improves sensitivity of temperature imaging (Fig. 4-16).  

Therefore, our data supports the hypothesis for increased accuracy and precision 

compared to CPD.   
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Figure 4-16 The uncertainty in temperature versus imaging SNR for a signal containing 25% lipid  

The simulation (n = 20,000 samples) for evaluating the uncertainty in the signal for water using the SM 

algorithm (circles) is compared with CRLB results (solid line). Note that our algorithm stays close to the 

CRLB over a wide range of SNRs. For reference, the CPD results are shown for an optimal TE (TE=T2*) at 

the same bandwidth as the 16-echo sequence (black diamonds) and at one half this bandwidth (white 

diamonds) as would more likely be used. This case also assumes that the CPD can perfectly remove the 

influence of the lipid signal, which is unlikely; thus, it stands as a "best case" scenario for CPD against our 

technique. As can be seen, in addition to providing lipid-water separation, the fast CSI approach easily 

outperforms the CPD approach across a large range of imaging SNR values for the same imaging time.  

Reprinted with permission from the American Association of Physicists in Medicine, (150). 
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Chapter 5: Fast CSI Temperature Measurements in 

Phantom and Ex Vivo Tissues  

5.1 Introduction 

The MR acquisition strategies and spectral processing algorithms discussed in 

chapter 4 were applied to thermal therapies in phantom and ex vivo tissues.  The overall 

goal in this chapter is to show the increased accuracy and precision compared to 

calculating the complex phase difference (CPD) as well as to show the advantages of this 

technique for multi-parametric monitoring.  First, calibrations of the PRF shift with 

temperature change in a lipid-water phantom as well as ex vivo canine bone marrow, 

brain, prostate, kidney and liver tissues were performed.  These calibrations will be 

reported and discussed with emphasis on how the presence of lipid can affect the water 

PRF shift.  Next, the temperature responses of R2* and signal amplitude are measured in 

these tissues.  These parameters, which are simultaneously measured with temperature, 

are investigated for their usefulness in thermal therapy monitoring.     

5.2 PRF Calibration in Phantom 

5.2.1 MATERIALS AND METHODS 

A phantom containing 50% lemon juice and 50% mayonnaise (by volume) (45) 

was used in order to test the temperature monitoring capabilities of the MGE acquisition 

and SM algorithm in voxels containing homogenous lipid and water signals.  The mixture 

was contained in a 50 ml plastic vial and placed in a calorimeter consisting of two 

insulated cups.   A fluoroptic temperature monitoring fiber (M3300, Luxtron, Santa 
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Clara, CA) was placed in the phantom and the entire apparatus was placed in an 8-

channel high resolution brain array (MRI Devices, Waukesha, WI) for imaging on a 1.5T 

clinical MR scanner (Excite HD, GE Healthcare, Waukesha, WI).  The fluoroptic fiber 

was localized using T1-W images.  For this calibration experiment, the acquisition time 

was slowed to 10 seconds per acquisition to reduce the number of images acquired during 

the entire 15 minutes of continuous scanning.  The MGE acquisition used a parallel 

imaging acquisition (SENSE) with an acceleration factor of 2.  The minimum TE was set 

to 2.6 ms with an ESP of 3.3 ms (303 Hz spectral bandwidth) for the 16 acquired echoes.  

The TR was 140 ms and the acquired voxel volume was 0.78 x 1.6 x 3.0 mm.  The flip 

angle was set to 60° to increase the lipid signal.  The receiver bandwidth to achieve the 

desired ESP was ±41.7 kHz (325 Hz/pixel) with a matrix size of 128 (phase encodes) x 

256 (frequency encodes).  After acquisition of 3 baseline scans, 300 ml of 90°C water 

was poured through a tube into the calorimeter.  The imaging plane was chosen so that 

the flowing water in the image was in the frequency encode direction to avoid artifacts in 

the phase-encode direction associated with the aliasing from the SENSE-parallel imaging 

acquisition. In addition, the volume of water used was limited to keep the water signal 

from appearing in the coronal slice we were monitoring. 

 A 2x2-voxel region of interest (ROI) was selected at the point in the image at the 

end of the fluoroptic probe.  The SM algorithm was also employed to estimate the water 

and bulk methylene PRF shifts.  Peak shifts estimated by the technique were plotted 

against the temperature measured by the fluoroptic probe in order to calculate the 
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temperature sensitivity coefficient in ppm/°C.  Linear fits were calculated for the plot 

using least-squares regression.     

Maps were created using the CPD method at the echo time close to the lipid T2* 

(TE = 32.6 ms).  A Student’s t-test was used to find statistical significance between the 

temperature readings from these three methods and the fluoroptic fiber’s measurements.   

5.2.2 RESULTS 

Temperature calibration curves for the lipid-water phantom experiment using the 

SM algorithm are shown in Figure 5-1.  The temperature sensitivity coefficients 

calculated for each curve were -0.0096 ± 0.0003 ppm/°C (Pearson’s R
2
 = 0.995) and -

0.0007 ± 0.0005 ppm/°C (Pearson’s R
2
 = 0.436) for water and lipid, respectively.  The 

temperature sensitivity coefficient based on the difference between the lipid and water 

peaks was  -0.0088 ± 0.0005 ppm/°C (Pearson’s R
2
 = 0.994) and this value is similar to 

published data when the water PRF accounted or corrected for susceptibility (37, 43, 45).   
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Figure 5-1 The temperature calibration curves of the lipid-water phantom  

The lipid and water curves are shown in (a) and the difference between the two peaks, 
w lδ −

, in (b).  A 

strong linear dependence can be seen in the water peak and the difference between the peaks.”  The 

temperature sensitivity coefficients calculated for each curve were -0.0096 ± 0.0003 ppm/°C (Pearson’s R
2
 

= 0.995), -0.0007 ± 0.0005 ppm/°C (Pearson’s R
2
 = 0.436) and -0.0088 ± 0.0005 ppm/°C (Pearson’s R

2
 = 

0.994) for water, lipid and the difference in the PRF values, respectively.  Reprinted with permission from 

the American Association of Physicists in Medicine, (53). 
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Temperature measurements with and without using a lipid reference as well as the 

CPD measurements were obtained (Fig. 5-2).  The calculations were performed using the 

same ROI where the calibration data was measured.  During the calibration, the hot water 

poured into the calorimeter caused a large shift in the mixture’s water and lipid resonance 

frequencies.  This caused the RMSE for the CPD and water CSI temperature readings to 

be 21.3 °C and 20.3 °C, respectfully.  These two measurements were significantly 

different when compared to the fluoroptic fiber measurements (p<0.0001).   However, 

when lipid was used as an internal reference the temperature remained accurate when 

compared to the fluoroptic fiber measurements.  The RMSE between the lipid-referenced 

CSI and the fluoroptic fiber was 0.44 ± 0.34 °C.  There was no statistically significant 

difference between the CSI using lipid as a reference and the fluoroptic fiber 

measurements over all the time points. 
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Figure 5-2 The measured change in temperature in the lipid-water phantom over time  

Field shifts from the pouring water causes the CPD (∆T(∆φ)) and CSI (water frequency only, ∆T(δW)) to be 

21.3 °C and 20.3 °C, respectfully.  The CSI using lipid (∆T(δW-L)) as a reference corrects this error.  

Reprinted with permission from the American Association of Physicists in Medicine, (53). 

 

5.3 PRF Calibration in Ex Vivo Tissue 

5.3.1 MATERIALS AND METHODS 

Canine bone marrow, brain, kidney, liver and prostate tissue were treated with a 

water-cooled applicator housing a 980-nm laser fiber with a 1-cm diffusing tip powered 

by a 15 W diode laser source (BioTex Inc., Houston, TX) on a clinical MR scanners at 

1.5T (Excite HD, GE Healthcare, Waukesha, WI) and 3T (TwinSpeed Excite HD, GE 

Healthcare, Waukesha, WI).  A fluoroptic temperature probe (M3300, Luxtron, Santa 
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Clara, CA) was inserted in order to provide an absolute measurement of temperature.  In 

each ablation, the multi-gradient echo (MGE) acquisition was used (1.5T: ETL=16 

echoes; minimum TE (TE0)=2.0 ms; ESP=3.2 ms; TR=69 ms; FA=30-40°; rBW=244 

Hz/pixel, acquisition matrix=128x128; voxel volume=1.6x1.6x4.0 mm
3
; 5 sec/image; 

parallel imaging acceleration factor=2. 3T: TE0=2.1 ms; ESP=1.8 ms; rBW=325 

Hz/pixel). Echoes were acquired with identical polarity gradients separated by flyback 

rewinder gradients.   

A 2 x 2-voxel ROI adjacent to the sensitive region of the fluoroptic probe was 

chosen and the PRFs were measured as a function of temperature to calculate the 

temperature sensitivity coefficient (TSC).  The water PRF was measured for all tissues.  

For bone marrow, water and bulk methylene proton resonances were measured at 1.5T 

while terminal methylene and methyl peaks were included in studies at 3.0T.  Slope, 

intercept, and correlation coefficient measurements were calculated for each temperature 

sensitivity calibration using linear least-squares regression analysis.  The temperature 

estimates using the calculated TSC were correlated to the fluoroptic probe measurements.  

Estimates were also compared to CPD-measured water PRF calibration using a paired 

two-tailed Student’s t-test.   Estimated uncertainties (noise) from each calculated 

parameter in bone marrow were measured as the standard deviation and compared with 

the calculated CRLB for the acquisition, which represents the theoretical lower bound of 

the uncertainty (54, 150).  Temperature uncertainties calculated from the measured TSC 
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and PRF uncertainties were compared to temperature uncertainties from the complex-

phase difference using the echo from the MGE acquisition with the least uncertainty.    

5.3.2 RESULTS 

In bone marrow, water, bulk methylene, terminal methylene and methyl peaks 

were resolvable at 1.5T and 3.0T. Figure 5-3 demonstrates representative modeled 

spectra from ex vivo bone marrow observed using the spectral parameters derived from 

the SM algorithm at 1.5T (a) versus the unfiltered FFT spectrum (with 1024 zero padded 

interpolation) and the modeled spectra at 3.0T (b).  The SM algorithm rapidly and 

accurately located water and lipid chemical shifts despite the low spectral resolution of 

the acquisition, which caused large sidelobe contamination in the Fourier analysis.  

Although spectral apodization techniques could be employed with the FFT technique, the 

tradeoff is one of spectral resolution versus sidelobe interference.  In (b), as temperature 

rises, the water peak shows a notable shift in the PRF compared to the three lipid peaks.  

Spectra obtained from a point resolved spectroscopy (PRESS) (TE/TR: 144/2000) 

acquisition show the unaliased lipid peaks and the water peak (c). 
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Figure 5-3 Representative measured bone marrow spectra from 16-echo MGE and PRESS  

At 1.5T (a) a 4-peak ARMA modeling (solid) versus unfiltered FFT (1024 point interpolation) (dashed).  

As previously confirmed (17), ARMA peak locations do not suffer from truncation artifacts.  At 3.0T (b) 

four-peak model at 17.0°C (solid) and 42.5°C (dashed) demonstrates temperature dependent water PRF and 

temperature independence of lipid peak PRFs.  For comparison, a spectrum from a PRESS acquisition is 

shown in (c).    

As expected, excellent correlation with fluoroptic temperature measurements 

were observed in the water PRF but not in the lipid PRF.  The data in Table 5-1 

quantifies temperature relationships observed during calibrations at 1.5T over the 

temperature range of 17.2 to 57.0 °C.  Figure 5-4 demonstrates the change in the water 

(squares) and bulk methylene (diamonds) PRF as a function of fluoroptic temperature 

measurement at 1.5T.  The TSC of the difference between the water and lipid PRF values 

in both calibrations were found to be statistically equivalent (-0.87x10
-2

 ± 2.7x10
-6 

ppm/°C (R
2
=0.942), -0.87x10

-2
 ± 4.6x10

-4 
ppm/°C (R

2
=0.961) and -0.85x10

-2
 ± 3.2x10

-4
 

(R
2
=0.920), 0.17 < p < 0.99).  Using these TSC values, the RMSE between the 

temperature estimates and the fluoroptic probe was 0.39 ±0.21°C (Range: -0.29 – 0.90 

°C) for calibration 1, 0.96 ± 0.25°C (Range: -0.54 – 1.13 °C) for calibration 2 and 0.54 ± 

0.13 °C (Range: -0.84 – 0.93 °C) for calibration 3.  If the temperature measurements were 
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made using water PRF without lipid correction along with the TSC of the water PRF 

only, the RMSE values were 1.03 ±0.12 °C (Range: -1.36 – 1.69 °C), 2.11 ± 0.24 °C 

(Range: -1.41 – 2.69 °C) and 1.31 ± 0.31°C (Range: -1.22 – 2.91 °C) for calibrations 1, 2 

and 3, respectively.  The CPD RMSE was 2.34 ± 0.25 °C, which was statistically 

different from the CSI measurements (p<0.001). 

Table 5-1  Measured PRF temperature sensitivity coefficients from three bone marrow calibrations 

at 1.5T 

 

Chemical Shift  

Temperature 
Sensitivity Coefficient  

[ppm/°C] (R
2
)  

Water 
-1.07x10

-2
 ± 1.0x10

-4
 

(0.981) 
-1.11x10

-2
 ± 2.4x10

-4
 

(0.974) 
-0.98x10

-2
 ± 1.3x10

-4
 

(0.969) 

Bulk Methylene 
-0.20x10

-2
 ± 1.0x10

-4
 

(0.438) 
-0.24x10

-2
 ± 1.5x10

-4
 

(0.738) 
-0.12x10

-2
 ± 1.1x10

-4
 

(0.440) 

Difference 
-0.87x10

-2
 ± 2.7x10

-4
 

(0.942) 
-0.87x10

-2
 ± 4.0x10

-4
 

(0.961) 
-0.85x10

-2
 ± 3.2x10

-4
 

(0.920)   

  

  

The difference is between the water and bulk methylene PRFs which is consistent between calibrations and 

agrees with lipid-water phantom data (45, 53). 
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Figure 5-4 Temperature calibration curves for one bone marrow calibration at 1.5T   

The temperature sensitivity coefficients (TSCs) of the water (squares) and lipid (diamonds) PRFs were -

0.98x10
-2

 ± 1.3x10
-4 

(R
2
=0.969) and -0.12x10

-2
 ± 1.1x10

-4 
(R

2
=0.440), respectfully.  By taking the 

difference of the two PRFs as a function of temperature, the TSC was -0.85x10
-2

 ± 3.2x10
-4

 (R
2
=0.920).   

 

The temperature measurements from the CSI technique compared to the true 

temperature calculated by the fluoroptic probe in calibration 1 are shown in Figure 5-5.  

The slopes of the regression lines for the water-bulk methylene temperature readings and 

the water PRF were 0.999 ± 0.021
 
ppm/°C (R

2
=0.987) and 0.988 ± 0.072

 
ppm/°C 

(R
2
=0.942) with intercepts at 0.03°C and 1.01°C, respectfully.  For comparison, the solid 

line shown has a slope of unity.  If the difference in the water PRF alone was used for 

temperature monitoring, it would tend to overestimate the temperature (p<0.001). 
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Figure 5-5 Temperature measurements from the CSI technique compared to the true temperature 

calculated by the fluoroptic probe.   

The RMSE for the susceptibility-corrected temperature readings and the water PRF readings were 0.393 °C 

and 1.031 °C.  The slopes of the regression lines for the water-lipid temperature readings and the water 

PRF were 0.999 (R
2
=0.987) and 0.988 (R

2
=0.942) with intercepts at 0.030°C and 1.014°C, respectfully.   

For comparison, the line shown in the figure has a slope of unity. 

 

The measured uncertainties in the spectral parameter estimations made using the 

2-peak model at 1.5T are summarized in Table 5-2.  Values in parentheses are the 

calculated theoretical uncertainty for the acquisition provided by the CRLB.  The 

measured uncertainties agree with the CRLB at the 95% confidence interval.    Using the 

calculated TSC values, the temperature uncertainty was calculated as 0.58 ± 0.09 °C 

when the difference of the water and lipid PRF values was used for temperature 
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measurements.   Comparably, the uncertainty in the CPD was measured as 1.46 ± 0.19°C 

using the echo from the acquisition with the least uncertainty (TE=14.8 ms) (p<0.01).   

Table 5-2   Measured uncertainties in the estimated spectral parameters in bone marrow at 1.5T   

Parameter Water (CRLB) Bulk Methylene (CRLB)

PRF (ppm) 0.00355 ± 0.00054 (0.004) 0.00191 ± 0.00035 (0.002)

T2* (ms) 2.27 ± 0.51 (2.22) 0.48 ± 0.14 (0.57)

Amplitude (CoV) 0.023 ± 0.009 (0.018) 0.017 ± 0.004 (0.015)  

The CRLB is within the 95% confidence interval in each of the parameters.   

 

The mean spectral parameter estimations measured at 3.0T resulting from 

application of a 4-peak model in bone marrow are also summarized in Table 5-3.  The 

TSCs of these peaks over a temperature range of 18.4 to 57.2 °C are shown in Table 5-4.  

As with the 1.5T calibrations, the water-bulk methylene TSC was statistically equivalent 

(p=0.11).  Using the temperature sensitivity of the difference in the water and bulk 

methylene PRF, the RMSE values compared to the fluoroptic probe were 0.19 ±0.06°C 

and 0.59 ± 0.24°C for the two calibrations.  Using CPD with a TE of 9.1 ms, the RMSE 

was 1.89 ± 0.15°C.  This was statistically different from the CSI RMSE (p<0.001).  The 

noise in the temperature estimates using bulk methylene as an internal reference was 

measured at 0.78 ± 0.08 °C.  The noise in the temperature estimates were higher, 2.87 ± 

0.05 °C and 3.21 ± 1.12 °C, when using the lower SNR terminal methylene and methyl 

protons, respectively, as internal references.  Using the mean of all three lipid peaks as a 

reference, the uncertainty was lower at 1.00 ± 0.02 °C. Using the water peak only with its 

measured TSC, uncertainty was 0.91 ± 0.38 °C.  Uncertainty in the CPD was measured as 
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1.93 ± 0.70°C using the echo with the least uncertainty (TE=9.1 ms) (p<0.01 when 

compared to CSI with lipid as a reference). 

Table 5-3  Measured PRF, T2* and amplitude values with associated uncertainties for water, bulk 

methylene, terminal methylene and methyl protons using a four-peak model at 19 °C    

 

Chemical Shift PRF (ppm) T2* (ms) Amplitude (Normalized) 

Water 4.6856 ± 0.0091 56.2 ± 8.9 0.575 ± 0.054 

Bulk Methylene 1.1856 ± 0.0074 9.5 ± 0.2 1.000 ± 0.014 

Terminal Methylene 2.0285 ± 0.0044 3.6± 0.4 0.297 ± 0.014 

Methyl 0.8631 ± 0.0153 18.1 ± 0.7 0.369 ± 0.062 

 
Peaks were identified in the expected locations (155).  The water T2* is within range of previous T2 

measurements in bone marrow (156). 

 

Table 5-4  Measured PRF temperature sensitivity coefficients from multiple protons at 3.0T   

Chemical Shift                TSC [ppm/°C] (R
2
)   

Water -1.03x10
-2

 ± 1.4x10
-4

 (0.978) -1.28x10
-2

 ± 2.3x10
-4

 (0.981) 

Bulk Methylene -0.15x10
-2

 ± 0.9x10
-4

 (0.904) -0.42x10
-2

 ± 3.1x10
-4

 (0.972) 

Terminal Methylene -0.19x10
-2

 ± 2.7x10
-4

 (0.211) -0.44x10
-2

 ± 4.4x10
-4

 (0.487) 

Methyl -0.70x10
-2

 ± 3.1x10
-4

 (0.618) -0.84x10
-2

 ± 4.7x10
-4

 (0.816) 

Water – B. Methylene -0.88x10
-2

 ± 3.0x10
-4

 (0.917) -0.86x10
-2

 ± 2.3x10
-4

 (0.964) 

  
As with the 1.5T calibrations, the difference between the water and bulk methylene PRFs are consistent to 

literature (45, 53).  Temperature sensitivities of terminal methylene and methyl protons are also listed.   

 

Table 5-5 displays the TSC of each of the tissues along with the temperature 

range measured in the calibration.    All TSC are within the 95% confidence interval of 

what has been measured in soft tissue (-0.0097 ppm/°C with an exception of -0.0098 

ppm/°C for brain (157)).  In calibrations, where the temperature exceeded the break point 

for thermal damage, there were no shifts in linearity. 
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Table 5-5  Temperature sensitivity coefficients in various non-fatty tissues   

Tissue Type 
Temp. Range 

(ºC) 

Temp. Sensitivity 

(ppm/ºC) (R
2
) 

Brain 25-59 -0.0102 + 0.0005 (0.998) 
Prostate 32-59 -0.0099 + 0.0004 (0.995) 

Kidney 35-54 -0.0103 + 0.0006 (0.994) 
Liver 35-51 -0.0098 + 0.0002 (0.984) 

 

TSC values were within the expected values in soft tissues.  There were no shifts in linearity in the PRF.   

 Table 5-6 displays the RMSE and uncertainty of each tissue using CSI and CPD.   

CSI had lower RMSE and uncertainty compared to CPD which supports our hypothesis 

of greater precision and accuracy using the CSI technique. 

Table 5-6  Temperature accuracy and precision in various non-fatty tissues   

Tissue Type 
CSI RMSE 

(ºC) 

CPD RMSE 

(ºC) 

p-value CSI Unc. 

(ºC) 

CPD Unc. 

(ºC) 

p-value 

Brain 0.96 + 0.14 1.69 + 0.24 0.01 0.23 + 0.11 0.56 + 0.14 0.03 

Prostate 0.24 + 0.09 1.09 + 0.40 0.02 0.20 + 0.09 0.66 + 0.10 0.02 

Kidney 0.29 + 0.05 2.03 + 0.67 0.01 0.28 + 0.24 0.86 + 0.17 0.02 

Liver 0.58 + 0.16 1.25 + 0.10 <0.01 0.32 + 0.08 0.88 + 0.11 <0.01 

In support of our hypothesis, the accuracy and precision in temperature measurements in non-fatty tissues 

were statistically higher with CSI compared to CPD. 

5.3.3 DISCUSSION 

In calibration experiments at 1.5T and 3.0T in tissues containing lipid, PRF TSC 

values consistent with previous studies (43, 45) were observed when the difference 

between the water and bulk methylene PRFs are used for temperature estimation.  In fatty 

tissue, De Poorter et al. (43) measured an overall TSC of -0.0097 ppm/°C with a 

susceptibility constant of -0.0013 ppm/°C giving a corrected field shift of -0.0088 

ppm/°C, which is consistent with results reported here.   McDannold et al. (45) measured 
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similar TSC values in a mayonnaise-lemon juice phantom which was designed similarly 

to our phantom study.  As expected, using water PRF shift alone did not result in 

consistent temperature sensitivities due to varying degrees of susceptibility and drift 

between experiments.  For example, at 3.0T in bone marrow the water PRF was highly 

linear with temperature (R
2
=0.981).  However, its TSC was approximately 15-19% 

higher in one calibration than what was seen at 1.5T.  When the difference between the 

water and bulk methylene was taken to effect to correct for susceptibility, the TSC was 

measured as -0.0086 ± 0.0002 ppm/°C, within the 95% confidence interval of the 

measurements taken at 1.5T. Using the measured TSC by taking the difference between 

water and bulk methylene protons, we measured accurate temperature readings in each 

experiment (0.44 °C in phantom; 0.96 °C, 0.39 °C, and 0.54 °C in bone marrow at 1.5T; 

0.19 °C and 0.59 °C in bone marrow at 3.0T).  It is very important to note that this 

susceptibility effect on the temperature sensitivity of lipid-containing tissue is 

independent of whether or not lipids are suppressed.   In addition, although the RMSE 

and uncertainty were lower compared to single-echo CPD, one could reduce the 

acquisition time and/or bandwidth (to increase SNR) to improve accuracy and precision 

with CPD techniques.  This would not, however, account for susceptibility or field drift 

effects that were seen in the water PRF measurements.  

The phantom and bone marrow study exemplifies the advantage of having a lipid 

peak as a reference when relatively large susceptibility or field shifts occur.  There was 

no large susceptibility shifts seen in the non-fatty tissue in brain, prostate, kidney and 
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liver compared to the bone marrow.  This may be due to the interfaces in the cortical 

bone and the added susceptibility from the high lipid content in the marrow.   From these 

measurements, there appears to be an increased susceptibility effect from the presence of 

lipid which makes measurements difficult with CPD.     

To our knowledge, no MR thermometry study has investigated the temperature 

sensitivity of multiple lipid peaks simultaneously with this level of spatiotemporal 

resolution. It was found that although the terminal methylene peaks and methyl peaks 

could be resolved in bone marrow at 1.5T, the uncertainty was on the order of 0.03-0.08 

ppm making calibrations difficult to ascertain with confidence.  At 3.0T, each of the four 

peaks had sufficient SNR and spectral resolution for precise measurements so that the 

temperature dependence of each component of the lipid peak could be analyzed.  When 

using lipid for an internal, temperature independent, reference, highest accuracy and 

precision was demonstrated with bulk methylene for PRF-based reference thermometry.  

This was primarily due to a smaller uncertainty in the measurement and is likely due to 

the higher SNR of bulk methylene compared to the other lipid protons.   

In many lesions in fatty tissue, the primary component will be water, especially in 

the center of the lesion.  If no lipid is present, we expect high precision with temperature 

measurements as seen in our simulation outlined in chapter 4.  However, toward the 

borders of the lesion voxels may contain lipid.  It is important that lipid is taken account 

for in order to accurately measure the temperature, identify the borders of the ablative 

region, and verify if the entire lesion received an adequate thermal dose.   Also, 
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extrapolating the lipid field map into the lesion, much like what has been done with 

referenceless thermometry (158), could possibly be performed to improve temperature 

estimates in bone lesions and warrants investigation. 

As in our simulations, our phantom and ex vivo data support our hypothesis that 

this CSI technique provides higher precision and accuracy compared to the CPD 

measurements.  However, as seen in the bone study, it is important to identify the peaks 

correctly in order to apply the appropriate TSC.  The next chapter will address this by 

evaluating an algorithm which identifies water and lipid peaks and maps their spectral 

parameters to aid in improving temperature imaging. 

 

5.4 Multi-Parametric Analysis in Ex Vivo Tissue 

5.4.1 MATERIALS AND METHODS 

Canine bone marrow, brain, kidney, liver and prostate tissue were treated with a 

water-cooled applicator housing a 980-nm laser fiber with a 1-cm diffusing tip powered 

by a 15 W diode laser source (BioTex Inc., Houston, TX) on clinical MR scanners at 

1.5T (Excite HD, GE Healthcare, Waukesha, WI) and 3T (TwinSpeed Excite HD, GE 

Healthcare, Waukesha, WI).  A fluoroptic temperature probe (M3300, Luxtron, Santa 

Clara, CA) was inserted in order to provide an absolute measurement of temperature.  In 

each ablation, the MGE acquisition was used (1.5T: ETL=16 echoes; minimum TE 

(TE0)=2.0 ms; ESP=3.2 ms; TR=69 ms; FA=30-40°; rBW=244 Hz/pixel, acquisition 

matrix=128x128; voxel volume=1.6x1.6x4.0 mm
3
; 5 sec/image; parallel imaging 
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acceleration factor=2. 3T: TE0=2.1 ms; ESP=1.8 ms; rBW=325 Hz/pixel).  Echoes were 

acquired with unipolar gradients separated by flyback rewinder gradients.  ROIs (2 x 2 

voxels) were chosen in areas that reached ablative temperatures (≥54 °C) with each pixel 

processed individually.  Using the calculated TSC values from water (and bulk methylene 

PRF, if present, as an internal reference), the changes in the PRFs were converted to 

temperature changes and added to the baseline temperature provided by the fluoroptic 

temperature probe; thereby providing absolute temperature readings.  

In at least five ROIs in each tissue type, the water R2* was measured.  As will be 

shown in the results, each plot of R2* displayed an inflection point.  Blinded by the 

temperature and thermal dose data, data points were labeled as 0 before the inflection 

point and 1 after the inflection point with respect to time on the R2* plot.  The inflection 

point was defined as the point after a local maximum or minimum R2* with five 

consecutively decreasing or increasing values after the local maximum or minimum.  

Next, binomial logit analysis was used to fit the data as a function of thermal dose.  The 

probability, P, of the logit curve is defined as  

      
1

1
P

e
α β+ Ω

=
−

                                 (5.1) 

where α and β are coefficients determined by the fit.   

The dose was calculated from the Arrhenius rate model for thermal damage where  
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( )

0

aEt

RTAe dτ τ
−

Ω = ∫      (5.2) 

A is the frequency factor, Ea is the activation energy, R is the universal gas constant 

(8.315 JK
-1

mol
-1

)  and T(τ) is the temperature in degrees Celsius as a function of time, τ 

(26).  A and Ea values were chosen to predict protein denaturation (A: 3.1 x 10
98

 s
-1

, Ea: 

6.3 x 10
5
 J mol

-1
) (25).  Ω≥1 signified tissue damage and this threshold has been used in 

previous studies (159, 160).  The dose was recorded where the probability of the fit 

equaled 0.5 (also known as LD50).  The fraction of damage cells (C(τ)/C(o), equation 

1.4) was also calculated.  The purpose of this measurement was to characterize the signal 

change as a function of thermal dose to determine if the changes occurred where damage 

was expected to occur.  The slopes of lines were measured before and after the inflection 

point with respect to temperature and compared using a two-tailed Student’s t-test with 

equal variances (as determined by an F-Test). 

5.4.2 RESULTS 

Figure 5-6 displays the logit fits for each of the tissues along with a logit fit for all 

the tissues combined.  Table 5-7 also shows the LD50 with uncertainty.  In each case, an 

Ω of 1 was within the 95% confidence interval for LD50.  In the formulism by Henriques 

(25), this value was used to signify irreversible damage by protein denaturation.   
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Figure 5-6 Logit fits for bone marrow, brain, liver, prostate and kidney tissue 

Using binomial logit analysis, the probability of 0.5 that a R2* change occurred were at thermal dose values 

known to cause irreversible damage as shown by Henriques (25).  The black line is the logit fit.  The blue 

solid and dashed lines are the LD50 values and the standard error, respectively.  The circles are binary data 

points for the curve fitting.  Note that there are several binary points beyond Ω=2 (Range: 0-1.49x10
7
).  N 

is the number of binary points.  This shows that the R2* changes are occurring where damage is expected to 

occur.  

Table 5-7  Measured LD50 values for various tissues with associated confidence intervals   

Tissue LD50 (Ω) 95% CI α (A.U.) β (A.U.) C(τ)/C(0) [1-exp(-ΩLD50)] 95% CI p-value

Bone 0.77 (0.47,1.07) -4.18 ± 1.09 5.41 ± 2.23 0.54 (0.37,0.66) 0.03

Brain 1.10 (0.92,1.27) -3.20 ± 0.50 2.91 ± 0.72 0.67 (0.60,0.72) <0.001

Liver 0.85 (0.62,1.08) -6.40 ± 1.05 7.56 ± 2.11 0.57 (0.46,0.66) 0.01

Protate 0.97 (0.83,1.11) -3.50 ± 0.60 3.61 ± 0.95 0.62 (0.56,0.67) <0.001

Kidney 1.07 (0.92,1.22) -2.73 ± 0.35 2.55 ± 0.52 0.66 (0.60,0.70) <0.001

Combined 1.01 (0.94,1.08) -3.26 ± 0.25 3.24 ± 0.37 0.64 (0.61,0.66) <0.0001  

The dose threshold of Ω=1.0 was within the 95% confidence interval for each tissue.  C(τ)/C(0) represents 

the fraction of cells that are damaged.  The p-values calculated from the logit fit shown that the fits were 

statistically significant in each case.   
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As an example of the signal change in lipid tissue, the R2* values and signal 

amplitudes of water and each lipid in bone marrow were plotted along with the Arrhenius 

rate estimate for irreversible tissue damage as a function of temperature in Figure 5-7.  

The slope between 17 °C and 54 °C was 2.8 ± 0.1 %/°C
 
(R

2
=0.965).  At 54 °C and above, 

the slope was -1.6 ± 0.2 %/°C (R
2
=0.917).  Each of these slopes were statistically 

different from one another (p<0.0001).  For bulk and terminal methylene there is an 

asymptotic decrease in R2* until Ω approached unity.  There was also a change in the 

methyl R2* slope as Ω approached unity.  In the amplitude measurements, a shift in the 

slope can be observed in the water peak.  At temperatures where Ω <1, the slope was 0.4 

± 0.1 %/°C (R
2
=0.824).  At temperatures where Ω ≥1, the slope was -1.0 ± 0.2 %/°C 

(R
2
=0.905).  In the lipid peaks, the temperature response reduced in the bulk methylene, 

terminal methylene and methyl peaks by 75%, 88% and 80%, respectively, at the same 

temperature region. 
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Figure 5-7 Temperature response water R2* (a) and amplitude (b) as well as the lipid R2* (c) and 

amplitude (d) of bone marrow at 3.0T 

 The dashed line in each plot represents the Arrhenius dose model calculation (A: 3.1 x 10
98

 s
-1

, Ea: 6.3 x 

10
5
 J mol

-1
) (25).  Changes in the slope can be seen when the Arrhenius dose, Ω, approaches 1.0, which 

signifies damage to the tissue. 

 

Figure 5-8 demonstrates what was typically seen in non-lipid tissue.  This is a 

case from brain tissue.  Table 5-8 lists temperatures where the break points occurred 

according to Arrhenius rate model analysis along with the slopes between these 

temperatures.  In all tissues except prostate, there was a statistically significant 

(p<0.0001) change in the R2* slope when damage is predicted to occur.  This was more 

evident when compared to the amplitude slopes.  
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Figure 5-8 The water R2* (a) and amplitude (b) temperature response of brain tissue at 3.0T   

As with the bone marrow, changes in slope can be seen when Ω approaches 1.0.  The break points in the 

parameters were seen at 57.1 ± 1.2 °C.  This corresponds to temperatures where phase changes are seen in 

the protein state.   

Table 5-8  Temperature break points (Ω >1) with linear regression slopes above/below these points. 

                                 R2* Slope (%/°C)        Amplitude (%/°C)

Tissue Temperature at Ω=1 37 ° to Break Point (BP) Above BP 37 °C to BP Above BP

Bone 54.2 ± 1.2 2.8 ± 0.1 %/°C
 
(R2=0.965) -1.6 ± 0.2 %/°C (R2=0.917)** 0.4 ± 0.1 %/°C

 
(R

2
=0.824) -1.0± 0.2 %/°C (R2=0.905)**

Brain 57.1 ± 1.2 5.5 ± 0.4 %/°C
 
(R2=0.945) -4.3 ± 0.6 %/°C (R2=0.792)** -0.4 ± 0.1 %/°C (R2=0.799) -1.0 ± 0.2 %/°C (R2=0.803)*

Liver 52.2 ± 0.4 0.7 ± 0.3 %/°C
 
(R2=0.852) -1.2 ± 0.1 %/°C (R2=0.894)** -0.8 ± 0.3 %/°C (R2=0.874) -0.9 ± 0.2 %/°C (R2=0.924)

Prostate 57.0 ± 1.0 0.2 ± 0.1 %/°C
 
(R2=0.872) 0.4 ± 0.1 %/°C (R2=0.565) -0.4 ± 0.2 %/°C (R2=0.851) -0.5 ± 0.1 %/°C (R2=0.944)

Kidney 57.0 ± 0.4 2.1 ± 0.5 %/°C
 
(R2=0.625) -1.0 ± 0.4 %/°C (R2=0.717)** -0.7 ± 0.3 %/°C (R2=0.823) -0.7 ± 0.1 %/°C (R2=0.857)  

* p<0.05,** p<0.001 compared to slope before the break point 

5.4.3 DISCUSSION  

 With this fast CSI technique, other parameters (peak-specific R2* (1/T2*) and T1-

W amplitude) can also be measured to provide an important opportunity to look at 

changes as a function of temperature.  Estimated spectral parameters were evaluated as a 

function of the higher temperatures that would be encountered during ablative therapy 

delivery using the calibrated PRF shift of water-bulk methylene or water alone.  It is 

important to note that we did not see changes in linearity in the PRF at high temperatures 

(see Figure 5-4), which is consistent to previous studies where high linearity was found 
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up to 80 °C (37).  In this analysis, we did see changes in linearity of R2* and amplitude 

data during heating (60, 72).   We have previously noted significant changes in the 

temperature dependence of these parameters in the range where the Arrhenius rate model 

predicts damage (25, 26) thereby demonstrating that it could be a useful dosimetry tool.  

For example, when the temperature history results in Ω≥1, there was a consistent, sharp, 

measureable change in the slope of the R2* of water versus temperature.   

The molecular mechanisms for these changes are not exactly clear and 

understanding the relationship between the dynamics and structure of proteins and the 

surrounding water is a current challenge (161).  Possible theories to these changes due to 

the protein denaturation include the change in the dipolar coupling between water 

molecules and denatured proteins (162).  Additionally, release of water in the hydration 

layers of the denaturing proteins may explain the decrease in R2* (161).     

Water and lipid R2*-corrected amplitudes also exhibited similar non-linearities in 

the same temperature ranges as seen in Figure 5-7 and 5-8.  These changes were more 

evident than measuring changes in the overall T1-W signal (from the first echo of the 

acquisition), which has also been shown here and previously to be non-linear with 

temperature in this range, presumably due to irreversible protein conformation changes 

(72).  It is important to note that these changes in slopes were seen with and without R2* 

correction over physiologically relevant temperatures (37 °C and above).   

Therefore, it appears that using the multiparametric spectral estimates may return 

information on physical tissue changes taking place, such as conformational phase 
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transitions of proteins, which directly influence the proton chemical macroenvironment 

and, thereby, relaxation as observed in R2* mapping and T1-W signal changes.  These 

observations warrant further investigation in vivo and in other tissues, particularly in the 

presence of heat sensitization agents which might be used to lower the therapeutic 

window as direct validation of protein denaturation and it may be extremely useful in the 

investigation of thermal approaches to ablation as well as drug delivery or enzyme 

activation.   
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Chapter 6: Spectral Parameter Mapping with the k-

Means Clustering Algorithm 

6.1 Introduction 

As seen in the previous chapter, the CSI technique accurately and precisely 

determines the PRF, T2* and amplitude of each peak.  These parameters can be inputs 

into the k-means algorithm to help distinguish peaks since each spectral peak will be 

differentiated by at least the PRF and the other parameters may aid in improving the 

sensitivity and specificity of peak identification for 2D mapping of temperature for 

interventions.  The algorithm will be explained and parameters will be tested using a 

highly-controlled mathematical phantom.  After suitable parameters are found, they are 

used in the analysis of data from several ex vivo and in vivo tissues. 

6.2 Processing Strategy  

First, the image is partitioned to equal-sized regions (4x4, 16x16, 32x32 voxels, 

etc.).  In each voxel in the regions, the primary PRF, T2* and amplitude values are 

mapped to a 3D plot where T2* values and amplitudes are normalized.  The centroid of 

all the points in the plot is then calculated as well as the sum of distances between the 

points and the centroid.   The same calculations are made again using 2 centroids via the 

k-means algorithm.  If the sum of distances are less with the two centroids and the 

centroids are at distances apart where water and lipid is expected to be (3.3-3.8 ppm), 

then the clusters are designated water or lipid (see Figure 6-1).  This process continues 

for each region in the image.   
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After the entire image is processed, the ranges of water and lipid centroids are 

recorded.  On the frequency axis in the 3D plot, the range of PRFs is expanded by a 

constant, g, to account to regions experiencing slightly higher or lower magnetic flux 

densities.  Each voxel is then recalculated using a 2-peak ARMA model.  If both peaks 

fall within the PRF regions, then the spectral parameters are mapped.   Expansions on T2* 

and amplitude values were not utilized since these values can vary due to relative 

concentration of each chemical specimen.  Finally, any voxel remaining was calculated 

with a 1-peak ARMA model with peak identification determined by the PRF and T2* 

ranges described above.   Figure 6-1 shows a schematic of how the algorithm works on a 

mathematical phantom, which is described in the next section. 
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Figure 6-1 Mapping using k-means 

The image is separated into regions.  First, regions that contain both water and lipid are located.  The 

spectral information from those areas is used to train the algorithm to look for primary and secondary peaks 

to create maps of each chemical specimen.   
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Figure 6-2 Representation of two regions analyzed by the k-means algorithm using the mathematical 

phantom – step 1 

The red region represents an area with water only.  The green region contains water and lipid.  When the 

centroid is calculated from the primary peaks, the sum of distances between the data points and the centroid 

can aid in determining if one or two peaks are present.  Frequency expansions can be added to increase the 

range of PRF values the algorithm will seek for primary and secondary peaks.   
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6.3 Testing of the CSI k-means Clustering Algorithm Using a 

Mathematical Phantom 

6.3.1 MATERIALS AND METHODS 

To test the algorithm in highly controlled conditions, a mathematical phantom 

was developed in MATLAB (MathWorks, Natick, MA) and is shown in Figure 6-3.  In 

the phantom, areas of water, lipid and mixed water/lipid were created within different 

sized regions.  Large areas of each water/lipid combinations were also created to 

determine how the algorithm handles large areas of only one chemical shift, which is 

commonly seen in vivo.   

 

Figure 6-3 Mathematical phantom design 

The phantom contains areas of water, lipid and mixed water/lipid voxels under varying sizes.  The phantom 

was designed to work under varying areas of water and lipid. 

Three metrics were used to measure the performance of the algorithm.  If a peak 

was identified in the voxel then the voxel is counted as positive.  If no peak is identified 

then the voxel is counted as negative.  The sensitivity of identifying the correct peak was 
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defined as the true positive rate (tested positive/ true positive).  Specificity was defined as 

the true negative rate (tested negative/ true negative).  The Dice similarity coefficient 

(DSC) (163) was also used.  Given two images, A and B, where A is the true image and B 

is the measured image, the DSC is the metric of how the two images overlap where 

BA

BA
DSC

+

∩
=

2
     (6.1) 

 The sensitivity, specificity, and DSC were measured as a function of field 

inhomogeneity across the FOV, size of the regions, expansion in the frequency axis on 

the 3D plots and SNR.   Each mapping experiment went through 5 trials.  The field 

inhomogeneity was incorporated into the phantom spatially by multiplying the signal by a 

complex exponential that smoothly varied as a function of position on the x-y plane.  The 

field inhomogeneity was measured from 0.2 to 4.0 ppm.  Region sizes by powers of 2 (4, 

8, 16, 32, 64, 128) were measured at a field inhomogeneity of 1.13 ppm and a frequency 

expansion of 0.1 ppm.  Frequency expansions up to 1.0 ppm were evaluated at the same 

SNR at a 1.13 ppm field inhomogeneity.  When suitable frequency expansions and region 

sized were determined, the sensitivity, specificity and DSC were measured as a function 

of SNR.    

6.3.2 RESULTS 

Figure 6-4 displays the sensitivity, specificity, and DSC as a function of field 

inhomogeneity across the entire FOV for the water and lipid maps.  The specificity and 
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DSC for water and lipid was greater than 0.999 up to a field inhomogeneity of 1.42 ppm.   

Sensitivity measurements for the water and lipid maps were above 0.999 up to 2.83 ppm.   

 

Figure 6-4 Sensitivity, specificity and DSC results as a function of field inhomogeneity 

Both water and lipid maps maintained high sensitivity (>0.999) up to a field inhomogeneity in the FOV to 

2.83 ppm.  Specificity and DSC values for each peak were at the same high values to 1.42 ppm.  Each 

measurement decreased at higher field inhomogeneities.   Error bars were on the order of 0.001 so they 

were not shown on the figure.   

  

The size of the regions used in algorithm appears to have an effect on the 

sensitivity, specificity and DSC.  Figure 6-5 shows the values for water and lipid as a 

function of region sizes.  As seen in this figure, sizes between 8x8 to 16x16 maintained 

high sensitivity, specificity and DSC values.  Under 8x8 voxels, errors occurred in the k-

means algorithm due to a low number of data points.   
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Figure 6-5 Sensitivity, specificity and DSC results as a function of region size 

High sensitivity, specificity and DSC values were measured at regions sizes of 8x8 and 16x16.  At higher 

region sizes each metric decreased in value.  Most errors at these larger region sizes stemmed from 

misidentified regions of after the range of PRF values were identified.  A lower number of water and lipid 

centroids increased the likelihood that peaks were identified due to a lower-sampled range of values.  The 

k-means algorithm still separated out the peaks effectively as outlined in Figure 6-3.  In this figure the field 

inhomogeneity was 1.13 ppm. 

 

 At 0.1 ppm and above, the sensitivity, specificity and DSC values of the maps 

were highly linear with the amount of frequency expansion allowed as shown in Figure 6-

6.   Using linear least-squares regression analysis, the water specificity and DSC curves 

were -0.0499 ± 0.0003 ppm
-1

 + 0.9984 ± 0.0018 (R
2
=0.9497,) and -0.0061 ± 0.0002 ppm

-

1
 + 0.9998 ± 0.0007 (R

2
=0.9501), respectively.  The sensitivity was measured as 1.0 from 

0.1  to 1.0 ppm.   Interestingly, the sensitivity at ppm=0 was 0.719 ± 0.001 showing that 
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some voxels containing water were missed if no frequency expansion was used.  For the 

lipid maps, the specificity and DSC curve fits were  -0.0778 ± 0.0005 ppm
-1

 + 0.9977 ± 

0.0024 (R
2
=0.9973) and -0.2067 ± 0.0008 ppm

-1
 + 0.9774 ± 0.0037 (R

2
=0.9993),  

respectively.  From 0 to 1.0 ppm, the sensitivity of the lipid map was above 0.998 even 

when there was no frequency expansion.   

 

Figure 6-6 Sensitivity, specificity and DSC results with a frequency expansion in the 3D plots 

Sensitivity was not affected as long as there was some expansion in the frequency axis to look for voxels 

that had PRF values outside of the range the algorithm calculated in regions with water and lipid.  In the 

maps, if g=0, then some water voxels were missed since their PRF values lied just outside the range which 

was calculated in the image.  However, as g increases then the specificity and DSC decrease.  In this plot, 

the field inhomogeneity was 1.13 ppm with a 16x16 region size.   
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 Figure 6-7 shows the sensitivity, specificity and DSC as a function of SNR.  As 

SNR increases, each metric asymptotically approached 1.0.  At SNR≥10, each parameter 

was at 0.95 or above.   For mapping of two chemical shifts, a SNR of 10 and above 

should produce high sensitivity and specificity.  For this plot, there was a field 

inhomogeneity of 1.13 ppm with a 0.1 ppm frequency expansion.   

 

Figure 6-7 Sensitivity, specificity and DSC results at low SNR 

The DSC values and sensitivity of the mapping algorithm asymptotically approached 1.0 at a SNR of 

approximately 10.  Specificity was high even at low SNR of 5.  SNR values of 10 and above are sufficient 

for sensitive and specific mapping under moderate field inhomogeneity (~1.0 ppm).   
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 Table 6-1 summarizes how each parameter affects the sensitivity, specificity and 

DSC of the mapping algorithm.  It can be noted that each parameter, with the exception 

of the frequency expansion, approaches unity as the limit approaches zero (field 

inhomogeneity, region size) or infinity (SNR). 

Table 6-1  Parameter dependence on the algorithm’s sensitivity, specificity and DSC 

Parameter Change  Sensitivity Specificity DSC 

Field Inhomogeneity  ↑ ↔ then ↓ ↔ then ↓ ↔ then ↓ 

Region Size ↑ ↔ then ↓ ↔ then ↓ ↔ then ↓ 

Freq. Expansion ↑ ↔ ↓ ↓ 

SNR ↑ ↑ then ↔ ↑ then ↔ ↑ then ↔ 
 

Most parameters showed an asymptotic behavior toward unity as the parameter approached zero or infinity.  

Generally, a low field inhomogeneity, region size and frequency expansion with high SNR is near-optimal 

conditions for the k-means mapping algorithm. 

 

6.4 Demonstration of the k-means Mapping Algorithm in an In Vivo 

Swine Liver Model 

6.4.1 MATERIALS AND METHODS 

To test this algorithm with a near-realistic clinical scenario of a liver ablation, the 

MGE acquisition was utilized on swine being examined in a MR protocol study.  The 

animals used in this study were handled in accordance with the Institutional Animal Care 

and Use Committee.  For each pig, three axial slices were obtained through the liver (16-

echoes, TR/TE0/ESP=500/1.8/3.0 ms, flip angle=45/, receiver bandwidth = 244 

Hz/pixel, acquisition matrix = 128 x 128, acceleration factor = 2, voxel size = 1.6 x 1.6 x 

4.0 mm
3
, acquisition time = 32 s). 
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Based on our simulation results, region sizes of 16x16 voxels were used with a 

frequency expansion of 0.1 ppm.  The PRF, T2* and amplitude were all input parameters 

for the k-means cluster analysis.  Images where then qualitatively compared to lipid-

water images generated using a two-point, region growing, Dixon technique (FSPGR, 2-

echoes, TR/TE1/TE2=175/1.8/4.3 ms, flip angle=80/, receiver bandwidth = 244 

Hz/pixel, acquisition matrix = 256 x 224, acceleration factor = 2, voxel size = 1.3 x 1.3 x 

8.0 mm
3
, acquisition time = 22.4 s/image) (135).  Note that there was a difference in 

spatial resolution between this technique and two-point Dixon technique which made 

direct, quantitative, voxel by voxel comparisons difficult to ascertain.  There was also 

breathing between the two acquisitions which also makes voxel-based comparisons 

difficult.  Therefore, the generated images were qualitatively examined based on accurate 

mapping of known lipid-water tissues as well as the algorithms performance as predicted 

by simulations. 

6.4.2 RESULTS 

Figure 6-9 displays images processed by our technique with comparison to the 

Dixon-processed images.  PRF, T2* and amplitude maps were created of water and lipid 

(bulk methylene).  Note that the Dixon technique identified intra-peritoneal organs (liver, 

stomach, spleen) as lipid.  Using the MGE acquisition incorporated with the SM and k-

means algorithms the organs were correctly mapped into the water image.  One error seen 

in our mapping routine is an area of susceptibility on the anterior portion of the spleen.  

Figure 6-10 displays an axial slice where the k-means algorithm and Dixon technique 
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matches well.  Motion between the two scans limited the ability for quantitative 

comparison on a voxel-by-voxel basis.   

 

 

Figure 6-8 CSI mapping in porcine in vivo with artifact in Dixon imaging 

PRF, T2* and amplitude maps of lipid and water were created using the MGE acquisition with the SM and 

k-means algorithm.  In addition, a Dixon-based method using a robust region-growing algorithm is shown 

(135).   In this axial slice, the liver, spleen and stomach were mapped to the lipid image.  The k-means 

algorithm correctly mapped these organs to the appropriate water image.  Three slices were collected and 

the Dixon technique mapped the organs to the appropriate map as did the k-means algorithm. 
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Figure 6-9 CSI mapping in porcine in vivo 

PRF, T2* and amplitude maps of lipid and water using the MGE acquisition with the SM and k-means 

algorithm in addition to Dixon-based lipid-water images.  Qualitatively, there is good agreement between 

the two types of processing paradigms.  Quantitative voxel-based measurements using Dixon as the true 

standard was not possible due to respiratory-based motion between the scans.  Some errors can be seen in 

the k-means approach inside the stomach presumably due to low SNR. 

 

 Figure 6-10 presents an example where our simulations predicted lower 

specificity and DSC due to field inhomogeneity, which led to the misidentification of 

liver tissue as lipid.  At the interface between the liver and subcutaneous tissue there was 

a measured field inhomogeneity of approximately 1.8 ppm. As seen in Figure 6-5, there 

should be lower specificity (i.e., fewer true negatives) in the water map, which is seen in 

Figure 6-10.  From the errors introduced from this field inhomogeneity areas with similar 

magnetic flux densities as liver (i.e., skin) was also incorrectly mapped as lipid.  This 

shows that although efficient mapping is possible, certain conditions can affect the 

efficacy of the algorithm.  
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Figure 6-10 Effects of high field inhomogeneity in vivo 

A 1.8 ppm field shift was measured between the liver and muscle just posterior to the liver.  This 

inhomogeneity caused lower specificity between distinguishing water and lipid in CSI images as predicted 

by our simulation.  The Dixon method correctly identified the liver as water-based tissue in contrast to 

Figure 6-8.   
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6.5 Demonstration of Thermal Therapy in Brain In Vivo 

6.5.1 MATERIALS AND METHODS 

We examined the feasibility of using the multi-parametric nature of the technique 

for guiding MR thermal therapy interventions in a large animal model by using the MGE 

acquisition to guide the application of laser induced thermal therapy in a canine brain in 

vivo using a 1.5T scanner.  The animal used in this experiment was handled in 

accordance with Institutional Animal Care and Use Committee requirements.  A water-

cooled applicator containing a laser fiber (Biotex Inc., Houston, TX) with a 1-cm 

diffusing tip (808 nm) was inserted into the right hemisphere of the canine brain using 

MR guidance.  Treatment was delivered using an exposure of 3.5 W/cm
2
 for 180 seconds 

under continuous MGE monitoring (16-echoes, TR/TE0=69 ms/2.1 ms, flip angle=30/, 

receiver bandwidth = 244 Hz/pixel, acquisition matrix = 128 x 128, acceleration factor = 

2, voxel size = 1.6 x 1.6 x 4.0 mm
3
, acquisition time = 4.4 s/image).  The ESP was 3.3 

ms, giving a spectral bandwidth of 303 Hz.  Using the PRF map from the SM algorithm, 

the shift in the PRF was measured to detect temperature changes (37) using a temperature 

sensitivity of -0.0098 ppm/°C (157).  In addition, T2* maps and T2*-corrected T1-W 

images (signal extrapolated to TE=0 ms) were created from the data and analyzed to 

demonstrate the potential usefulness. 

6.5.2 RESULTS 

The MGE acquisition (ETL=16) with SM algorithm processing was applied to 

monitor a laser-induced thermal therapy in canine brain in vivo.  Figure 7(a) shows the 
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water proton field map, which is the source of the temperature images, and Figigure 7(b) 

displays the temperature map.  The SM algorithm calculated the noise in the temperature 

map as 0.34 ± 0.09 °C in an unheated region contralateral to the therapy site.  This is in 

excellent agreement with the calculated CRLB (SNR=39.5, T2*=42.0 ms) of 0.35 °C.  

Using the CPD of a single echo from the same acquisition at TE= T2* (which is the 

optimal value for CPD), the uncertainty approximately doubled to 0.69 ± 0.18 °C (p<0.01 

when compared to CSI).  Unlike the CPD technique, the sensitivity of the CSI technique 

is inherently driven by the SNR of the acquisition and is independent of the echo-time 

used (apart from the impact on SNR).  Figure 7(d) is the T1-W image, corrected for T2* 

decay from our knowledge of the T2*, which was also calculated at each time point.  

During treatment delivery, an anomalous artifact arose in the temperature images that 

correlated with a hyperintense area seen near the laser source on the T1-W images.  This 

was suspicious for an acute hemorrhage induced by the treatment.  The suspected 

hemorrhage was confirmed by a post-treatment T1-W SPGR acquisition [Figure 7(e)].  

An image of the calculated T2* for water [Figure 7(c)] shows a clearly hypointense 

lesion.   
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Figure 6-11 Multi-parametric monitoring in LITT in canine brain in vivo  

The water PRF map of a canine brain used to create the temperature maps had a temperature sensitivity 

coefficient of -0.0098 ppm/°C (a). The temperature map for the thermal therapy in the canine brain (b). The 

noise calculated in an unheated region contralateral to the therapy site was 0.34±0.09 °C. Using CPD at 

TE=T2*, the uncertainty increased to a mean of 0.69±0.18 °C. A T2* map generated by the SM algorithm 

(c). The T1-W images with T2* correction simultaneously calculated at each acquisition along with the 

temperature maps (d). During treatment, a hyperintense area developed near the laser source, raising the 

suspicion of a treatment-induced hemorrhage (indicated by an arrow). The hyperintense lesion, clearly 

shown on (c), was confirmed as a treatment-induced hemorrhage on a posttreatment T1-W SPGR 

acquisition (e).  Reprinted with permission from the American Association of Physicists in Medicine, 

(150). 
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6.6 Demonstration of Thermal Therapy in Prostate In Vivo 

6.6.1 MATERIALS AND METHODS 

Laser-induced thermal therapy was performed in a canine prostate in vivo.  As 

with previous experiment, this experiment was approved by the Institutional Animal Care 

and Use Committee.   Two water-cooled interstitial lasers tuned to 980 nm (Biotex Inc., 

Houston, TX) were placed into the prostate from the anterior surface of the canine.  The 

anesthetized animal was placed in a 1.5T clinical scanner with a 12-channel torso coil.    

Treatment was delivered under continuous MGE monitoring (16-echoes, TR/TE0=69 

ms/2.1 ms, flip angle=30/, receiver bandwidth = 244 Hz/pixel, acquisition matrix = 128 

x 128, acceleration factor = 2, voxel size = 1.9 x 1.9 x 4.0 mm
3
, acquisition time = 4.4 

s/image).  The ESP was 3.2 ms.  The SM and k-means algorithms were used to identify 

water and bulk methylene peaks to create temperature maps.  The precision of the 

temperature estimates were recorded using the CSI and CPD techniques (TE=24.5 ms).  

The mean time it took to process one acquisition was also recorded.   

6.6.2 RESULTS 

Using the k-means algorithm with the parameters found in the mathematical 

phantom analysis, lipid and water was adequately separated.  No lipid was found in the 

prostate itself so the differences in the water PRF map were multiplied by -0.0097 

ppm/°C to calculate temperature.  Using CSI, the uncertainty in the temperature map 

was 0.7 ± 0.2 °C whereas the CPD uncertainty was measured at 1.4 ± 0.3 °C (p=0.02).  

The time to process one acquisition was 33.2 ± 5.2 seconds. 
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Figure 6-12 Water, lipid and temperature maps in canine in vivo 

Water and lipid were separated which some error in the rectum due to susceptibility (air/tissue interfaces) 

and low SNR. The temperature maps were created using the difference of the water PRF map.  The noise in 

the CSI maps was roughly half of what was seen in CPD (0.7 ± 0.2 °C for CSI and 1.4 ± 0.3 °C for CPD 

(p=0.02)). 

6.7 Regional CSI for Real-Time Mapping 

6.7.1 MATERIALS AND METHODS 

To increase the temporal resolution while using computer processors which would 

make the processing easily accessible, a user-defined regional k-means algorithm was 

created.   The parameters and code is the same as in the full FOV algorithm.  However, 

with this algorithm the user defines a ROI to process that region alone.  Note that in 

interventions we are usually focused only on the area of intervention.   

The algorithm was tested on ex vivo bone marrow tissue as well as in vivo 

prostate.  These tissues represent some of the more difficult areas to map due to 

heterogeneous lipid and water content.  Mapping was done using data from laser-induced 

thermal treatments on ex vivo bone which was previously described in section 5.3.1.  The 

difference between the fluoroptic probe readings and CSI or CPD readings were also 
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measured.  Temperature was calculated using bulk methylene as an internal reference (-

0.0087 ppm/°C).   

In another canine, treatment was delivered using an endorectal high-intensity 

focused ultrasound (HIFU) device (Insightec, Inc., Hefei, Isreal).  Again, in a 1.5T 

scanner, monitoring was done under continuous MGE acquisitions (16-echoes, 

TR/TE0=69 ms/1.9 ms, flip angle=30/, receiver bandwidth = 244 Hz/pixel, acquisition 

matrix = 128 x 128, acceleration factor = 2, voxel size = 1.9 x 1.9 x 5.0 mm
3
, acquisition 

time = 4.4 s/image).  In order to run in real-time, the SM and k-means algorithms were 

adapted where processing could be performed in real-time (< 5 secs) by allowing the user 

to define a ROI to make the maps.  Water and lipid PRF maps were created in a region 

encompassing the prostate and times to process were recorded. 

6.7.2 RESULTS 

Figure 6-13 shows the mapping in a small ROI around the heating region in bone.  

Note that water and lipid were detected throughout the marrow parenchyma.  There was a 

low area of SNR due to the laser fiber placement which accounts for the voxels being 

absent in the center of the images.  A fluoroptic probe was in this specimen.  The RMSE, 

using the fluoroptic probe measurement as the true measurement, was 0.54 ± 0.13 °C for 

CSI and 1.75 ± 0.42 °C for CPD (p=0.04).  The uncertainty was measured as 0.68 ± 0.09 

°C using bulk methylene as an internal reference and the uncertainty was 1.98 ± 0.18 °C 

(p<0.01).   The time to process one acquisition was greatly reduced compared to full 

FOV processing at 4.3 ± 0.2 seconds, which is adequate for real-time guidance. 
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Figure 6-13 Water, lipid and temperature maps in canine bone marrow ex vivo 

Water and lipid were separated in the bone marrow. The temperature maps were created using bulk 

methylene as an internal reference.  As seen in the measurements in chapter 5, the RMSE was lower in CSI 

(0.54 ± 0.13 °C for CSI and 1.75 ± 0.42 °C for CPD (p=0.04)).   

 

Areas of water, lipid and mixed voxels were seen in the in vivo prostate images 

analyzed by the regional CSI algorithm.  As with the bone, image processing time was 

rapid at 4.7 ± 0.5 seconds per acquisition.  Figure 6-14 shows the water and lipid PRF 

maps as well as a map of where water and lipid is both present.  For verification, a FFT 

of voxels in each area were processed to confirm that there as indeed water and/or lipid 

peaks in those areas.   
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Figure 6-14 Water and lipid PRF maps in canine prostate in vivo 

Areas of water and lipid were identified and confirmed by processing spectra manually in each area.  One 

area of error found was in the rectal area under the prostate which is an area of low SNR.   
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6.8 Discussion 

The primary aim of the research described in this section was to take advantage of 

the wealth of multi-parametric data in order to provide robust mapping without requiring 

certain constraints (i.e., constant chemical shift between lipid and water, equivalent T2* 

between chemical shifts) which can affect the accuracy and precision of temperature 

mapping.    

In the post-processing of many CSI acquisitions, assumptions are made in order to 

map a certain parameter.  For example, in Dixon methods in addition to IDEAL (see 

section 3.4) there is typically an assumption that the chemical shift between water and 

lipid is constant.  This is used in order to image the amplitude to either look at water-only 

images or calculate the fraction of lipid in the image.  In PRF-based temperature imaging, 

the assumption of a constant chemical shift difference between water and lipid does not 

hold since the water PRF shifts with temperature.  This shift, particularly at high 

temperatures, can lead to errors in the image separation.  In addition, field maps are 

typically generated, which have been used to estimate temperature changes.  This, 

however, does not give an independent map of the lipid field in order to correct for 

susceptibility, field drift and motion.  

 The choice of the k-means algorithm for mapping is multi-faceted.  In addition to 

its known robustness in segmenting data it is computationally inexpensive, which is 

important since this needs to be implemented in near-real time for MR interventional 

procedures.  It can be parallelized in order to decrease the processing time.  The regional 
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processing method presented can also be implemented since in interventional procedures 

the site of the intervention is the primary point of interest and not the entire image. 

The purpose of the mathematical phantom studies was to provide a highly-

controlled setup in order to test the performance of the algorithm.  From these 

simulations, we were able to choose appropriate parameters, such as PRF ranges and 

region sizes, to increase the sensitivity and specificity of the technique.  Also, it was very 

useful to determine extrinsic (algorithm-based) and intrinsic (subject-based (SNR, 

inhomogeneity) parameters to show when the algorithm will fail.  As an example, Figure 

6-11 showed a misidentification of liver tissue as lipid.  This was caused by field 

inhomogeneties which were shown to have lower specificity as seen in Figure 6-4.  In 

this case, the large field inhomogeneity was highly localized to areas around the liver, 

which will make it difficult to properly map.  In situations with field inhomogeneities 

across the FOV, the image can easily be separated into 2-4 images in which each image 

will presumably have a lower field inhomogeneity.  This should work as long as lipid and 

water is present in each section of the image. 

Our in vivo data in the canine brain highlight some of the potential advantages of 

multi-parametric monitoring for thermal therapy procedures because both physiologic 

(temperature) and anatomic (T1-W, T2* maps) information are available.  In this case, a 

treatment-induced hemorrhage was monitored during treatment.  In CPD techniques, the 

optimal echo time is given by the T2* of the signal (38).  Magnitude images are, 

therefore, contaminated by the T2*-weighting of the signal (exp(-TE/T2*)) which can 
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obscure T1 changes in the image.  This would make it difficult to observe the hemorrhage 

and, more importantly, determine when it occurred during treatment.  The T2* correction 

with this technique allowed us to view a T1-W image at effectively TE=0, which, in this 

case, allowed visualization of hyperintensity that was not seen on the magnitude images 

at TE=T2*.  This example shows that this technique can be performed in vivo and shows 

increased precision compared to CPD.  Accuracy in each in vivo experiment could not be 

measured due to the lack of an invasive temperature probe in the heated region.   

One of the challenging areas in which to map the PRF is in bone marrow.  Figure 

6-13 demonstrates the ability to accurately and precisely measure the temperature in these 

areas.  Currently, CPD-based MRTI is a challenge due to heavy lipid content.  As seen in 

the PRF calibrations, this CSI technique is particularly useful in lipid-containing tissues 

in addition to tissues with no lipid, such as brain and kidney.  The method is also useful 

to map lipid around the prostate, which may be used to approximate the field in the 

prostate.   
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Chapter 7: Conclusions and Future Directions 

7.1 Concluding Remarks 

Robust spectral processing and mapping algorithms have been developed, 

validated and applied to a MGE acquisition in order to provide CSI-based temperature 

imaging at higher spatiotemporal resolutions than what was previously available.  In 

previous techniques, the acquisition and processing strategies were limited by avoiding 

spectral aliasing and by collecting enough samples to implement Fourier-based analysis 

as seen in high spectral resolution CSI (45-47).  This degrades the spatiotemporal 

resolution by requiring interleaved shots, especially at 3.0T, to reduce the echo-spacing.  

A high number of samples (32 or higher) also requires a longer acquisition time.  In 

addition, receiver bandwidths are raised which reduces the SNR, and thus sensitivity, of 

the technique (45-47).   

After investigating the limitations of filtered Fourier methods, we researched 

alternative methods to accurately and precisely determine the spectral parameters from a 

low number of samples that could be translated into a rapid CSI acquisition.  The ARMA 

model was deemed as an appropriate model since, unlike Fourier techniques, accounts 

not only for the PRF but also relaxation and noise.  By incorporating this model, PRF, 

T2* and amplitudes were measured accurately and precisely over a wide range of ETL 

and SNR values.   

Another important contribution in this investigation was the incorporation of the 

CRLB not only to validate the model but also to use it to theoretically determine the 
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sensitivity as a function of extrinsic and intrinsic acquisition parameters.  Using CRLB 

analysis, it was found that the sensitivity depends on more parameters than what is seen 

in CPD techniques (equations 4.2-3).  Unlike another CRLB derivation for PRF-CSI, 

which looks only at the precision of the temperature estimate using lipid as a reference 

(164), this CRLB analysis provides theoretical estimates of the PRF as well as T2* and 

amplitudes for each peak in the spectra.  Details on the CRLB can be found in Appendix 

A.  In both one-peak and two-peak models, measured uncertainties in phantom, ex vivo, 

and in vivo tissues agreed well with what was predicted by the CRLB. 

Another important finding in the ARMA approach was the remarkable precision 

and accuracy even when the number of peaks in the model is underestimated.  This 

appears to be due to the analysis being performed in the z-domain.  The information is 

concentrated in poles in z-space, as seen in Figure 7-1.  When one peak is chosen for the 

model, the algorithm gravitates to the dominate peak thus giving an accurate estimate for 

that peak.     
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Figure 7-1  Z plot using a one and two peak ARMA model 

The zeroes (o) and poles (X) for a one-peak (blue) and two-peak (red) ARMA model estimated by the SM 

algorithm.  A two-peak model was simulated.  When a one-peak model was applied to the simulated signal, 

the pole was calculated to be approximately where the two-peak model calculated to be.   This shows that 

even if the number of peaks is underestimated, the primary peaks are still calculated with high accuracy.   

Overall, in terms of the first specific aim of developing, validating and 

characterizing via simulation a model-based spectral analysis algorithm, we found that 

the SM algorithm provided higher precision compared to CPD (Figure 4-16) and high 

precision/accuracy (<1.0 °C) over a wide range of ETL and SNR values.   This is in 

support of our hypothesis. 

Using our CRLB analysis, we found that the SNR is directly proportional to the 

precision and accuracy of the spectral processing algorithm.  Thus, we investigated the 

acquisition parameters that maintain high SNR in addition to acquisition parameters to 
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avoid for accomplishing the goal of accurate and precise temperature imaging.  After 

several phantom experiments, we achieved the SNR that provided uncertainties that were 

predicted using our CLRB analysis as well as simulations.  Thus, we showed that the 

MGE acquisition can provide the SNR and parameters necessary to use the ARMA 

model for temperature estimation, which also supports our hypothesis.    

In tissues with multiple chemical shifts, it is very important to accurately identify 

the chemical shift in order to apply the correct, chemical shift-dependent, TSC for 

accurate temperature imaging.  By taking advantage of the multi-parametric data, we 

utilized a clustering algorithm with high sensitivity and specificity while maintaining 

reasonable processing times for real-time implementation.  This k-means algorithm has 

also been adapted to work with images across an entire FOV or in a smaller ROI defined 

by the user.   

With highly sensitive and specific mapping, we were able to measure temperature 

changes and TSC values in a variety of phantoms and tissues.  In cases where a 

temperature probe was used to compare between the CSI and CPD temperature estimates, 

the CSI method had statistically higher accuracy and precision, which supports our 

hypothesis.   

In addition to higher precision in non-fatty tissues, an important and interesting 

finding was the TSC measurements when bulk methylene was used as an internal 

reference.  If lipid is present in the tissue, the lipid susceptibility effect corrections are 

necessary in order to give more accurate measurements.  This is an important finding 
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when CPD is used in certain organs, such as breast, bone marrow and, in some cases, 

liver.  Basic suppression of lipid or selective excitation of water for PRF-based 

temperature measurements will not suppress the effects from lipid since water will still 

experience susceptibility from the lipid.  As seen in this work, correcting for the 

susceptibility by using lipid as a reference provides higher accuracy and should be 

considered when monitoring therapies in fatty tissues. 

In addition to the findings in support of our hypothesis, another important finding 

was discovered by measuring additional parameters calculated by the ARMA during 

thermal ablations.  This technique provided the unique opportunity to explore changes in 

peak-specific T2* and T1-W amplitude simultaneously with PRF-based temperature 

imaging at higher spatiotemporal resolutions than what was previously available.  We 

found statistically significant changes when Arrhenius rate dose model analysis predicted 

thermal damage to the tissue.  This could possibly be useful in verifying thermal damage 

in ablations during delivery.  Another potential use is to measure differences in these 

curves in the presence of adjuvant therapies such as chemical ablations or irradiation.   

Overall, through rigorous simulations and thermal treatments performed in 

phantoms as well as ex vivo tissues with CSI and CPD measurements, the increased 

precision and accuracy supports our hypothesis that through the use of a multi-gradient 

echo acquisition coupled with model-based spectral processing algorithms, CSI-based 

temperature maps can be generated with higher accuracy and precision compared to 

standard CPD techniques without sacrificing spatiotemporal resolution.     
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7.2 Future Directions 

This research has opened doors for new investigations not only in thermal 

therapies but also in other MR applications such as image-guided chemical ablations, T2* 

mapping, and dynamic contrast enhancement.  In terms of thermal therapies, there are 

several avenues for future work.  One is extrapolation of the lipid PRF map into water-

only areas to help correct for susceptibility, field drift and motion.  One excellent 

example would be in thermal treatments of the prostate.  If the lipid PRF map can be 

fitted by a polynomial plane, it can be used as an internal reference instead of relying on 

the changes in the water PRF alone.  This is done much the same way as referenceless 

thermometry is done with CPD-based temperature imaging (86, 158, 165). 

Another area of research is the ability of using this technique for absolute 

thermometry.  One unanswered question in MR temperature imaging is if the differences 

between water and lipid PRF values provide absolute temperature.  One current problem 

with this is a wide variation in the PRF difference between water and lipid.  Authors have 

cited several causes such as BOLD and J-coupling effects that affect the measurement in 

vivo (37).  This leads to yet another potential area of research in mapping with more than 

two peaks.  While the k-means algorithm used in this research focused on bulk methylene 

and water, the algorithm can be further investigated to higher order models to account for 

more peaks such as terminal methylene and methyl peaks.  One possible means to 

accomplish this is to look for these subsequent peaks after the primary lipid peak has 

been identified.   
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In light what was seen in our multi-parametric studies, more studies need to be 

done in vivo to provide simultaneous temperature, T2* mapping and T1-W imaging to 

validate the non-linearities seen in ex vivo tissues.  This must be correlated with histology 

to confirm damage as seen from the thermal dose and T2*/T1-W parametric imaging.  The 

goal of this work is to see if the T2* and/or T1-W imaging helps validate thermal damage 

during the delivery and, as mentioned above, if adjuvant treatments change the T2*/T1-W 

temperature sensitivities that are correlated with damage.  In addition, in some tissues a 

shift has been measured around 41 °C which corresponds to lipid bilayer disruption 

(166).   

From a computational standpoint, work is still needed to improve the computing 

performance of the spectral processing and mapping algorithms to facilitate use in real 

time for interventional procedures. Theoretically, a parallel implementation on a stand-

alone or portable workstation, which can be easily adapted to the MR scanner, is 

currently possible.  For example, implementation of the algorithms on a single graphics 

processing unit (GPU) can, at best, achieve a speed up factor of 125 (i.e., reduce the 

processing time by a factor of 125). 

The current implementation of the codes must be thoroughly profiled to find the 

computing bottlenecks and the degree of parallelism inherent to this part of the current 

algorithms must be critically evaluated.  The peak performance and speed up gains could 

be dramatically affected by the amount of inter-core communication needed by the 
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algorithm.  The possibility exists that completely different algorithms may perform better 

on these parallel computing architectures.   

Another major factor to consider is the programming language for the 

implementation.  We currently use MATLAB (MathWorks, Natick, MA) for our spectral 

and image processing.  Therefore, the quickest implementation would be to explore 

Mathwork's planned GPU support and determine if the future GPU support would be 

amenable to the goals of the project.  As an alternative, several of the national lab code 

projects have begun work implementing their open source software on GPU 

architectures.  Parallel implementation with respect to one of these code bases has several 

potential advantages and drawbacks.  For example, one code’s parallel interface hides 

low-level commands from the user and casting the algorithms in terms of its interface 

would allow future portabilty to both GPU and CPU clusters.  The CPU cluster 

environment could also be used as a fail safe for algorithms that fail in the GPU 

environment. In this situation, remote visualization capabilities would have to be 

incorporated.   It is important to note that the SM and k-means algorithms must be coded 

in C++ or be found in some other scientific computing library if it is to be implemented 

in many parallel coding structures.  The development of these codes in other languages is 

possible and is a focus of future work. 

Another application of this CSI technique is the monitoring of chemical ablations 

since many chemicals used in these procedures have MR-detectable chemical shifts.  To 

demonstrate the feasibility for providing unique information for MR-guided chemical 
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ablations, we used the MGE acquisition (16-echoes, TR/TE0=70 ms/2.1 ms, ESP=3.3 ms, 

flip angle=60/, receiver bandwidth = 244 Hz/pixel, acquisition matrix = 128 x 128, 

acceleration factor = 2, voxel size = 1.6 x 1.6 x 4.0 mm
3
, acquisition time = 4.5 s/image) 

and the ARMA modeling to monitor the injection of 2 ml ethanol in an ex vivo bovine 

liver sample.   Ethanol is a agent used in interventions because it induces coagulation 

necrosis of tissue by protein denaturation, cellular dehydration and small vessel 

thrombosis (167).  The location and the relative concentration of the ethanol were 

determined by locating the methyl (CH3) peak versus the water peak.  Changes in the 

chemical shift, T2*, and amplitude of both the water peak and the ethanol-methyl peak 

were measured over time in a ROI. 

Figure 7-2 contains the pre and post T1-W images obtained with a fast spin echo 

(FSE) sequence in addition to T1-W amplitude made from measurements taken during 

real-time monitoring of the percutaneous injection.  Figure 7-2(a) shows the T1-W FSE 

image used to localize the needle.  Figure 7-2(b) displays the water amplitude image 60 

seconds into the ethanol injection, while Figure 7-2(c) illustrates a map of the amplitude 

of the ethanol peak overlaid on a T1-W amplitude image of water at the same time point.  

The region where the ethanol signal was located by the SM algorithm corresponds well 

with intra-treatment, T2*-corrected, T1-W images calculated using the measurements 

from the SM algorithm [Figure 7-2(b)] and the post-treatment T1-W FSE image [Figure 

5(d)].  Figure 7-2(e) illustrates the spectrum provided by our algorithm for an averaged 

signal over an ROI before and after the ethanol was percutaneously injected into the ex 
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vivo liver sample.  The methyl (CH3) peak from the ethanol is located 3.72 ppm away 

from water.  Note the similar aliasing as seen with the lipid-water phantom.  Figure 7-3 

illustrates the observed changes in the chemical shift (a), T2* (b), and amplitude (c) of the 

untreated liver, treated liver, and the methyl peak of ethanol over time.  The frequency 

difference between the water and methyl group had an uncertainty of 0.021 ppm. The 

chemical shifts in all three ROIs moved in the same direction after the injection, 

indicating changes from field drifts or susceptibility. The T2* value for ethanol steadily 

decreased [Fig. 7-3(b)], whereas the T2* of the liver tissue decreased to a value of 

approximately 24 ms, which is  27% lower than the value before the injection.  Figure 7-

3(c) shows that a 39% reduction in the T1-W amplitude for water recovered by 16% as 

the ethanol diffused from the region.   

Noise estimates in the liver tissue were 0.0022 ± 0.0005 ppm, 0.861 ± 0.272 ms, 

and 1.46 ± 0.24 % for the chemical shift, T2* and amplitude, respectively.  The chemical 

shift and T2* noise measurements, which encompassed the calculated CRLBs at the 95% 

confidence level, were calculated as 0.0023 ppm for the chemical shift and 0.902 ms for 

T2*.  At the measured SNR (40.0) and T2* (30.7 ms), the CRLB of the amplitude 

measurement was 0.34%.  The mean amplitude noise estimates did not match the CRLB 

at the 95% confidence level. 
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Figure 7-2  CSI monitoring of chemical injection of ethanol  

T1-W FSE acquisition used to localizing the injection needle (a). Image of the amplitude of water provided 

by the SM algorithm demonstrates a decrease in signal where the ethanol was injected (b). Map of the 

amplitude of the ethanol peak overlaid by a T1-W image for the amplitude of water (c). The ethanol was 

located by detecting the presence of the methyl peak.  Good correlation exists between areas of damage 

shown by a posttreatment T1-W FSE acquisition (d) and measurements calculated with the SM algorithm 

for amplitude (b) and chemical shift (c) Spectral parameters in the liver before (dashed line) and after (solid 

line) the ethanol was percutaneously injected (e).  Reprinted with permission from the American 

Association of Physicists in Medicine, (150). 
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Figure 7-3  Changes in spectral parameters over time during injection of ethanol  

The evolution of the chemical shift (a), T2* (b), and amplitude (c) for water (triangles) and ethanol’s methyl 

peak (squares) over the entire treatment time. A susceptibility shift can be seen in the water chemical shift 

in (a). The T2* for water decreased by 27% after the introduction of ethanol. (b). A 39% reduction in the 

T1-W amplitude for water recovered by 16% as the ethanol diffused from the region (c).  Reprinted with 

permission from the American Association of Physicists in Medicine, (150). 

 

Another area of future work is in the monitoring of nanoparticles that are used in 

conjunction to thermal therapies.  For instance, T2*-lowering superparamagnetic iron 

oxide (SPIO) particles have been coated with gold at a thickness where it absorbs light in 

the visible range (~808nm) to deliver thermal therapies (154).  The SPIO cores were 

added to the gold since gold is not MR-detectable but the SPIO cores give effective T2* 

contrast.  With the multi-parametric capabilities of our CSI technique, we can use the T2* 

to possibly determine the concentration of nanoshells to plan the treatment and use the 

PRF to measure the temperature during the treatment.  This CSI technique can also be 

used to determine if the increase in susceptibility from the SPIOs affect the temperature 

sensitivity coefficient of water.   In addition, this technique has the potential to monitor 



157 

 

release of gadolinium from temperature-sensitive liposomes (168).  These liposomes 

release a T1-shortening gadolinium compound which could be monitored by the T1-W 

imaging provided by the CSI technique while at the same time, monitoring temperature 

changes via the PRF.    

Along the same lines of gadolinium release, the simultaneous T1-W imaging and 

T2* mapping makes this technique attractive for simultaneous dynamic contrast 

enhancement (DCE) and dynamic susceptibility contrast (DSC) imaging.  As an example, 

Figure 7-3 shows maps when a double-bolus of gadolinium was injected into the canine 

brain under MGE monitoring.  The measurements over time are shown in Figure 7-4.  

Although for now the spatiotemporal resolution is lower with this method compared to 

other DCE methods, the use of fewer echoes as well as parallel imaging or undersampled 

reconstruction methods may increase this resolution for efficient estimation for 

simultaneous DCE and DSC measurements.       
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Figure 7-4  PRF, T2* and T1-W imaging during contrast injection 

The multi-parametric imaging provided by this technique allows simultaneous T1-W imaging and T2* 

mapping while compensating for the field inhomogeneities by calculating the field map.  The green box 

displays a spectrum in normal canine brain parenchyma and the red box displays a spectrum from a 

transmissible verneal tumor (TVT).  In addition to the changes seen in the images, a shift in the PRF and 

broadening of the linewidth due to T2* changes are seen when the gadolinium passes the blood-brain 

barrier. 
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Figure 7-5  PRF, T2* and T1-W measurements during contrast injection 

The PRF, T2* and T1-W amplitude of water was measured in 30 consecutive MGE acquisitions over 150 

seconds. Upon injection of contrast, there is a PRF shift as well as a decrease in T2* and an increase is the 

T1-W signal.   
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Appendix A:  The Cramer-Rao Lower Bound for a Sum 

of Complex, Damped Exponential 

Functions 

 The Cramer-Rao lower bound (CRLB) (148, 149) provides the lower bound on 

the uncertainty of parameter estimates from a certain model.  In this research, the model 

can be described discretely as  
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where N is the number of samples.  The CRLB states that for any unbiased estimate of β, 
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where I is the Fisher information matrix defined by 
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From these equations, we see that a model can approximate parameters that contain a 

lower bound in terms of uncertainty as shown in equation A-3.  The key to this analysis is 

to calculate and invert I in order to ascertain the lower bounds.  Note that I represents the 

natural logarithm of the likelihood function and E represents the expectation value. i and j 

represent each variable approximated by the model.  This will result in a 4Mx4M matrix 

there are four parameters that are to be approximated.  The matrix structure is as follows. 
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where T denotes the transpose of the matrix.  Along the diagonal, Iii can be expressed as 
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The non-diagonal elements describe the system where peaks interact with each other 

where 
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(54).  Once I is inverted, the elements in the diagonal can be multiplied by (σ/Ci)
2
 for the 

CRLB of αi and Ci and  (σ/2πCi)
2
 for fi.  For example, when M=1, the diagonal of I

-1
 can 

be described analytically to derive the CRLB for each parameter where 
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This analytical solution with M=1 was verified using Mathematica (Wolfram Research, 

Inc., Champaign, IL).   
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