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The considerable search for synergistic agents in cancer research is motivated by the 

therapeutic benefits achieved by combining anti-cancer agents. Synergistic agents make it 

possible to reduce dosage while maintaining or enhancing a desired effect. Other favorable 

outcomes of synergistic agents include reduction in toxicity and minimizing or delaying drug 

resistance. Dose-response assessment and drug-drug interaction analysis play an important part 

in the drug discovery process, however analysis are often poorly done. This dissertation is an 

effort to notably improve dose-response assessment and drug-drug interaction analysis. 

 The most commonly used method in published analysis is the Median-Effect 

Principle/Combination Index method (Chou and Talalay, 1984). The Median-Effect 

Principle/Combination Index method leads to inefficiency by ignoring important sources of 

variation inherent in dose-response data and discarding data points that do not fit the Median-

Effect Principle. Previous work has shown that the conventional method yields a high rate of 

false positives (Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and, in 

some cases, low power to detect synergy. There is a great need for improving the current 

methodology. 
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 We developed a Bayesian framework for dose-response modeling and drug-drug 

interaction analysis. First, we developed a hierarchical meta-regression dose-response model 

that accounts for various sources of variation and uncertainty and allows one to incorporate 

knowledge from prior studies into the current analysis, thus offering a more efficient and 

reliable inference. Second, in the case that parametric dose-response models do not fit the data, 

we developed a practical and flexible nonparametric regression method for meta-analysis of 

independently repeated dose-response experiments. Third, and lastly, we developed a method, 

based on Loewe additivity that allows one to quantitatively assess interaction between two 

agents combined at a fixed dose ratio. The proposed method makes a comprehensive and 

honest account of uncertainty within drug interaction assessment. Extensive simulation studies 

show that the novel methodology improves the screening process of effective/synergistic agents 

and reduces the incidence of type I error.  

 We consider an ovarian cancer cell line study that investigates the combined effect of 

DNA methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell 

lines. The hypothesis is that the combination of DNA methylation inhibitors and histone 

deacetylation inhibitors will enhance antiproliferative activity in human ovarian cancer cell 

lines compared to treatment with each inhibitor alone.  By applying the proposed Bayesian 

methodology, in vitro synergy was declared for DNA methylation inhibitor, 5-AZA-2'-

deoxycytidine combined with one histone deacetylation inhibitor, suberoylanilide hydroxamic 

acid or trichostatin A in the cell lines HEY and SKOV3. This suggests potential new epigenetic 

therapies in cell growth inhibition of ovarian cancer cells.   
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Chapter 1: Introduction 

 

 In the last 25 years, 1984-2010, thousands of articles have been published in biomedical 

literature suggesting promise of a single agent or a combination of agents for treating a disease. 

Dose response assessment and drug-drug interaction analysis play an integral part in the drug 

discovery process; however, analyses in the literature are often poorly done. An effort is made 

to improve statistical techniques. Focus is on meta-analysis of independently repeated in vitro 

dose-response experiments. This work is limited to combination studies that combine two 

agents at a fixed dose ratio. 

The conventional method for dose-response assessment and drug interaction analysis is 

the Median-Effect Principle / Combination Index method (MEPCI). MEPCI uses data 

preprocessing techniques and transforms a naturally nonlinear dose-response curve into a linear 

form. The data preprocessing technique often leads to inefficiency by inducing unwanted 

correlation and deletion of data points that do not follow the theory of MEPCI. The 

conventional method ignores important sources of variation inherent in the data and uncertainty 

in parameter values. Previous works have shown the MEPCI can yield high type I error rates 

(Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and in some drug-drug 

interaction cases MEPCI can yield low power to detect synergy (Hennessey, Rosner, Bast, 

Chen, 2010). The drug development field can benefit from a statistical technique that 

minimizes errors and maximizes correct decision making, that is, a statistical techniques that 

ensures future resources are not allocated to false positives and that promising combination 

agents are not overlooked.  

The main objectives of this dissertation are to (1) develop sound predications of dose-

response relationship, (2) improve estimator accuracy and precision for inhibitory 
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concentrations, and (3) improve the screening process of effective/synergistic agents. Novel 

Bayesian parametric and nonparametric methods have been developed for meta-analysis of 

independently repeated dose-response experiments. In addition, a novel Bayesian method has 

been developed to quantitatively assess interaction between two agents combined at a fixed 

dose ratio.  

The remainder of this chapter provides a comprehensive overview of in vitro dose-

response studies, dose-response assessment, and drug-drug interaction analysis. The motivating 

ovarian cancer cell line study is also presented. Chapter 2 presents standard meta-analysis with 

the Median-Effect Principle / Combination Index Method. Step-by-step procedures are shown 

for preparing the data (data preprocessing) for application of the Median-Effect Principle / 

Combination Index Method. Analysis of the ovarian cancer cell line study is presented at the 

end of Chapter 2.  

Chapter 3 introduces the proposed Bayesian hierarchical nonlinear Emax model / 

Bayesian Effect Interaction Index method (BHNE/BEII). This method uses a parametric 

nonlinear structural model (Emax model) to characterize the relationship between inhibitory 

response and an agent’s concentration level. The Bayesian hierarchical model accounts for 

variation in the controls, variation within-experiment, variation between-experiments, and 

heteroscedasticity. Heterocedasticity is considered because often there is an apparent 

relationship between mean inhibitory response and variance. The Bayesian Effect Interaction 

Index method was developed for quantitatively assessing drug-drug interaction with honest 

accounting of uncertainty. The method bases decision making on the population level posterior 

distribution of Loewe Interaction Index.  A simulation study is reported that evaluates and 

compares the performance of the BHNE/BEII to meta-analysis with MEPCI. Application of the 

BHNE/BEII to the ovarian cancer cell line study is presented at the end of Chapter 3. 



3 

 

In the case that dose-response curves exhibit plateaus or other deviations from 

parametric models, a nonparametric (semi-parametric) regression method was developed under 

a Bayesian hierarchical framework. Bayesian hierarchical monotone regression I-splines / 

Bayesian Effect Interaction Index method (BHMI/BEII) is introduced in Chapter 4. The 

proposed method provides an alternative to parametric regression methods. A simulation study 

is presented that investigates the performance of the proposed BHMI/BEII in estimating 

population level dose-response curves and assessing drug-drug interaction. Performance is 

compared to the parametric methods BHNE/BEII and MEPCI. The ovarian cancer cell line 

study is analyzed using the nonparametric regression method BHNE/BEII. 

Chapter 5 gives concluding remarks and future directions. 

 

1.1   Combination Studies 

 For many diseases, combination therapies are the norm. Therapies are combined in 

order to target multiple disease pathways or a single pathway that require multiple agents with 

different mechanisms. An aim for drug developers is to develop a combination that is 

synergistic in nature. Synergistic agents provide a way of reducing dosage while maintaining or 

enhancing efficacy. Synergistic agents can also provide a therapeutic approach to overcome 

drug resistance. 

Candidate agents thought to be effective in treating a disease are first studied in vitro as 

single agents and subsequently in combination. The process for declaring in vitro synergy 

begins with evaluating the dose-response of each agent alone and combined. Results are 

compared via an additive model to determine the presence of synergy.  

A typical in vitro dose-response study will include independently repeated experiments.  

In each experiment, a multi-well tray is utilized with an equal number of cells plated to each 
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well. Wells are then grouped (replicates) and assigned control wells (no drug) or receive one of 

the investigating concentration levels. Typically, a small number (less than ten) of 

concentration levels are investigated. After days of treatment, viability of the cells is evaluated 

using an assay. Investigators will typically repeat independent experiments to ensure 

reproducibility. The same experimental design is used for combination studies, with the 

exception that agents may be combined using a fixed dose ratio.  

 

1.2  Dose-Response Assessment  

 Dose-response assessment involves fitting dose-response curves and estimating 

inhibitory concentrations (concentration required to inhibit some fraction of cells). In this 

dissertation, dose and concentration are used interchangeably. Regression analysis is used to 

model the relationship between response and an agent's concentration level. A general dose-

response regression model is  

�� � ����, �	 
 ��, 
and includes the following: 

•  the dependent response variable, Y 

•  the independent variable drug concentration, C 

•  the structural model relating Y and C, f(C, θ) 

•  the vector of unknown parameters denoted as θ 

•  the random error term, ɛ, reflecting omitted factors that influence response 

 

For a continuous response, common parametric structural models used are the Median-

Effect equation (Chou and Talalay, 1984),  
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��� � � �������                                                                      �1.1	 

and the Emax model (Hill, 1910; Greco, 1995; Lee et al., 2007), 

� � ��1 
 � �������                                                                  �1.2	 

The Median-Effect equation (1.1) models the response variable, fraction of cells affected fa 

with fu = 1 - fa. The Emax model (1.2) differs in that it models measured response Y and allows 

one to model the variation in the controls through the parameter E0; the Median-Effect model 

(1.1) does not allow this. The E0 in the Emax model (1.2) represents E(Y) when C = 0. In both 

models, C is the drug concentration; IC50 is the concentration producing 50% inhibition; and M 

is a Hill-type coefficient (shape parameter).  

 The Median-Effect method requires the observed data to be normalized by the control 

response (response in the absence of drug) and forces a naturally nonlinear dose-response 

relationship into a linear form through variable transformations. 

�� ��/��	 � "# $ log�����	 
 # $ log��	 � (� 
 () $ log��	                     �1.3	 

A linear regression analysis is typically less accurate than a nonlinear regression analysis (Boik 

et al., 2008; Hennessey et al., 2010) but is commonly used because of its simplicity.  

An alternative to parametric regression methods are nonparametric (semi-parametric) 

regression methods. Semi-parametric regression splines use piece-wise basis functions to 

approximate the mean response function f(C). The type of basis function employed (e.g., 

truncated polynomials, low-rank thin plate splines, natural cubic splines, B-splines, M-splines, 

I-splines) may be motivated by concern about numerical stability, ease of implementation, 

interpretability, or curve characteristics (Ruppert, Wand, and Carroll, 2003). In the context of in 

vitro dose-response curves, characteristics may be smooth and monotone.  
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1.3 Drug-Drug Interaction Analysis 

 Drug-drug interaction can occur when two or more single-agents are combined. Types 

of interactions are additive, synergistic, and antagonistic. Synergistic interaction is when the 

combined effect is greater than additive. Antagonistic interaction is when the combined effect 

is less than additive. When performing interaction analysis, it is important to clearly define 

effect and additive.  

 Current methodologies make use of additive (reference) models, algebraic formulations 

to characterize additivity. Two rival additive models are Bliss independence (Bliss, 1939) and 

Loewe additivity (Loewe and Muischnek, 1926). The Bliss independence is based on the idea 

of probabilistic independence, that is, the combined effect (e.g., fractional response) is equal to 

the product of the effect of each agent alone. Greco (1995) explains Bliss independence as two 

agents acting in such a manner that neither one interferes with the other, but each contributes to 

a common result. Loewe additivity is based on the idea of a sham experiment; that is, an agent 

combined with itself cannot interact with itself (Greco, 1995). Comparison of the two reference 

models has been the subject of many articles (Goldoni and Johansson, 2007; Greco et al, 1995; 

Lee et al., 2007). This dissertation considers the Loewe additivity model, since it has received a 

greater amount of support in the literature and is the basis of many interaction assessment 

approaches (Greco et al., 1995; Lee et al., 2007). Goldoni and Johansson (2007) also argue that 

the Loewe additivity model has slightly higher biological plausibility. 

The Loewe additivity model for two agents can be expressed as 

1 � +,-, 
 +. -. .                                                                       �1.4	 

In the numerators, dA and dB represent the doses of agent A and agent B, respectively, in 

combination, that result in a specific effect (e.g., 50% inhibition). In the denominators, DA and 

DB are the doses of agent A alone and agent B alone, respectively, resulting in the same specific 
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effect. The sum on the right hand side of the equation is referred to as the Loewe interaction 

index. In the case of additivity, the Loewe interaction index equals one. A Loewe interaction 

index less (greater) than one corresponds to synergy (antagonism) (Greco et al, 1995). 

Chou and Talalay (1984) proposed plots of the interaction index versus fraction of cells 

affected (fa) for drugs combined at a fixed dose-ratio (single-ray design). This method is 

referred to as the Combination Index method and has been addressed as the most commonly 

used method for quantifying synergy. Chou and Talalay (1984) imply that the combination 

index (CI) is equal to Loewe interaction index when the drugs obey the Median-Effect principle 

and the effects of the drugs are mutually exclusive (i.e., they have the same modes of action).  

�� � +,-, 
 +. -.                                                                          �1.5	 

If the drugs are mutually nonexclusive (i.e., they have different modes of actions), Chou and 

Talalay (1984) suggest an additional term in the sum.  

�� � +,-, 
 +. -. 
 +,+. -,-.                                                               �1.6	 

In practice, however, the additional term is rarely used and confidence intervals for the 

interaction index are constructed to perform hypothesis testing of additivity. Lee and Kong 

(2007) point out that the confidence intervals in published analysis are constructed using a 

normal assumption. Lee and Kong (2007) explain that this assumption may not be appropriate, 

considering that the interaction index takes only positive values (CI > 0). Lee and Kong (2007) 

suggest that a normal assumption on the log scale is more appropriate. The 95% confidence 

interval for CI is then constructed by  

2345log ���	 6 789,�.:;�<=>?�log���		@.                                    �1.7	                           

where  789,�.:;�  is the 97.5
th

 percentile of t-distribution with degree of freedom df. The degree 

of freedom is equal to the number of data points used to compute CI minus the total number of 
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estimated parameters involved in estimating CI. Lee and Kong (2006) use the delta method to 

approximate the variance of log(CI). It is then suggested that one concludes additivity when the 

95% confidence interval includes the value one. Synergy is concluded when CI < 1 and all 

values in the 95% confidence interval fall below one. Antagonism is concluded when CI > 1 

and all values in the 95% confidence interval lie above one.  

 

1.4 Motivating Example – Combining DNA Methylation Inhibitors and Histone 

Deacetylation Inhibitors in Ovarian Cancer Cell Lines 

 Oncologists in the Department of Experimental Therapeutics at The University of Texas 

MD Anderson Cancer Center were interested in investigating the combined effect of DNA 

methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell lines. 

The list of agents and cell lines under investigation is provided in Table 1.1. 

 DNA methylation inhibitors and histone deacetylation inhibitors are considered 

epigenetic therapies. Epigenetic mechanisms such as DNA methylation and histone 

deacetylation control gene expression without changing the DNA sequence. Methylation of 

DNA is a chemical method to silence a gene. Histone deacetylation is a structural method that 

condenses chromatin structure preventing transcription, replication, and repair (Figure 1.2). 

Both mechanisms are important for normal cellular development, but can be overly active in 

carcinogenesis. It is believed that inhibition of DNA methylation and histone deacetylation will 

result in re-expression of tumor suppressor genes and reverse oncogenesis. DNA methylation 

inhibitors and histone deacetylation inhibitors have been investigated as single agent therapies. 

They are known to induce death in cancer cells but not in normal cells. Little is known about 

the combined effect in ovarian cancer cell lines. The hypothesis is that the combination of DNA 

methylation in methylation inhibitors and histone deacetylation inhibitors will enhance anti- 
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Table 1.1 List of agents and cell lines under investigation. The first column lists two human 

ovarian cancer cell lines. The second column lists the epigenetic targets. The third column 

describes the class of agents. The fourth column lists the agents under investigation. Agents are 

investigated as single-agents alone and in combination (the different classes are paired). 

Cell Line Target Class Agents 

HEY DNA methylation DNA methylation inhibitors 5-Aza-2’-

deoxycytidine  

(decitabine) 

 

5-Azacytidine 

(azacitidine) 

   

 

histone deacetylation 

 

 

histone deacetylation inhibitors 

 

 

 

Suberoylanilide 

hydroxamic acid  

(SAHA) 

 

Trichostatin A (TSA) 

 

SKOV-3  

 

DNA methylation 

 

 

 

 

 

 

 

histone deacetylation 

DNA methylation inhibitors 

 

 

 

 

 

 

 

histone deacetylation inhibitors 

 

 

5-Aza-2’-

deoxycytidine  

(decitabine) 

 

5-Azacytidine 

(azacitidine) 

 

 

Suberoylanidlide 

hydroxamic acid 

 (SAHA) 

 

Trichostatin A (TSA) 
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Figure 1.1: Epigenetic Mechanisms. DNA methylation is a chemical method to silence genes. 

Histone deacetylation increases the affinity of the histones to bind to the DNA, preventing 

transcription. Reprinted by permission from Macmillan Publishers Ltd: Nature 441, 143-145, 

copyright (11 May 2006). 



11 

 

proliferative activity in ovarian cancer cell lines compared to the single agents. 
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 Chapter 2: Median-Effect Principle / Combination Index Method 

 

2.1 Overview 

  The Median-Effect Principle / Combination Index method (Chou and Talalay, 1984) is 

the most commonly used method for dose-response assessment and quantitative analysis of 

drug-drug interaction. The Median-Effect Principle / Combination Index method is derived 

under the mass-action law principle and provides a theoretical basis for (i) relating response 

and an agent’s concentration level and (ii) assessing interaction between two or more combined 

agents. Chou (2006) claims the popularity of the Median-Effect Principle / Combination Index 

method can be attributed to its simplicity and its ability to relate to other major biochemical and 

biophysical equations. Such equations include the Michaelis-Menten equation, Henderson-

Hasselbalch equation, Scatchard equation, and the Hill’s equation.  

 The purpose of this chapter is to provide details of the Median-Effect Principle / 

Combination Index methods and step-by-step procedures for data preprocessing and meta-

analysis of independently repeated experiments. Real data analyses are illustrated with the 

ovarian cancer cell line study.  

 

2.2 Standard Meta-Analysis with the Median-Effect Principle / Combination Index 

Method 

 

2.2.1 Dose-Response Assessment   

 The Median-Effect method addresses dose-response assessment for a single-agent and 

has been extended to two or more combined agents (Chou, 1991). The Median-Effect equation 

considers the following dose-response relationship 
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B � 11 
 � �������                                                                       �2.1	 

where Fa is the dependent response variable, fraction affected. The independent variable is C, 

the agent’s concentration. The parameters to be estimated are IC50 (concentration producing 

50% inhibition), and M known as the Hill’s coefficient. Chou (1976, 1977) simplifies the 

nonlinear dose-response relationship into a linear form by regressing logit fa on log c. 

�� C �,�1 " �,�D � (� 
 () log���	 
  E�                                                      �2.2	 

The coefficients β0 and β1 relate to the parameters IC50 and M through β0 = M * log(IC50) and β1 

= M. Interest in estimating inhibitory concentrations (ICx = the concentration producing x% 

inhibition) requires an inverse function of the coefficients from the fitted model. 

��FG � 234 C" (H�(H)D � 3100 " 3� )JKL                                                 �2.3	 

 For studies with independently repeated experiments, standard meta-analysis 

procedures perform separate analysis to each experiment and take a weighted average of the 

separate estimates. Below we provide step-by-step procedures for standard meta-analysis. Also 

given are standard data preprocessing steps, variable transformation, and model fitting 

techniques for Median-Effect analysis. 

 

 Data Preprocessing: 

1. For each concentration level, replicates are averaged within-experiment.   

2. For each experiment, divide the average responses by the average control response. 

This results in fraction unaffected (fu). 

3. To obtain fa , subtract fu from 1 (fa = 1- fu).  

4. Data points that fall outside the allowed (0, 1) range are deleted. 
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 Variable Transformation: 

1. Take the logit transformation of the dependent variable , that is, log[fa/(1- fa)] . 

2. Take the log transformation of the independent variable, that is, log (C). 

  

 Model Fitting: 

1. logit fa is regressed on log c. A separate linear model (2.2) is fit to each 

experimental data using ordinary least squares technique (OLS). OLS uses a 

numerical search procedure to find the values of β0 and β1 that minimize the least 

squares criterion Q. 

M � N C�� C �,�1 " �,�D " (� " () log���	DOP
�Q)  

2. R
2
 is used as a measure of goodness of fit (or how well the data obeys the mass-

action principle). An R
2
 < 0.81 is considered a poor fit and the experimental data are 

not considered in the meta-analysis.  

RO � ∑ C(H� 
 (H) log���	 " �� � �,T1 " �,T�UUUUUUUUUUUUUUUUUDOP�Q)
∑ C�� � �,�1 " �,�� " �� � �,T1 " �,T�UUUUUUUUUUUUUUUUUDOP�Q)

 

 The meta-analysis takes a weighted average of the separate estimates. The variance 

(standard errors squared) are used as weights. For example, a weighted average ��UUUG�V	
 is 

estimated by 

��UUUG�V	 � ∑ 1W2O���FG�X	� $ ��FG�X	YXQ)
∑ 1W2O���FG�X	�YXQ)                                                       �2.4	 
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where e indexes experiment and E is the number of repeated experiments included in the meta-

analysis. The variance of each ��FG�X	
can be approximated using the delta method (Bickel and 

Doksum, 2001; Lee and Kong, 2007). 

seO���FG�X	� � var���FG�X	�
_ ��FGO�X	

$ `var �(H��X	�(H)O�X	 
 2 $ cov �(H��X	,  (H)�X	� $ �log �100 " 33 � " (H��X	�(H)b�X	


 var � (H)�X	� $ �log �100 " 33 � " (H��X	�O
(H)c�X	 d     �2.5	 

Interval estimates of  ��UUUG�V	
 can be given by constructing the 95% confidence interval  

234 elog ���UUUG�V		 6 789,�.:;�fg>? �log���UUUG�V	��h,                             �2.6	                                         

where, by the delta method 

g>? �log���UUUG�V	�� i 1��UUUG�V	O $ g>?���UUUG�V	�
i 1��UUUG�V	O $ 1

j 1W2O���FG�)	� 
 1W2O���FG�O	� 
 k 
 1W2O���FG�Y	�d     �2.7	 

 

2.2.2 Drug-Drug Interaction Analysis   

 The Combination Index method quantitatively assesses interaction between two agents 

combined at a fixed dose-ratio (single-ray design) and can be extended to three or more agents.  

The combination index (CI) for x % inhibition is estimated by  
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��FG � ��FG,,l. $ � m1 
 m���FG,, 
 ��FG,,l. $ � 11 
 m���FG,. .                                       �2.8	 

In the numerators, ��FG,,l. is a point estimate of ��G for the combined agents (agent A + agent 

B) and ω is the fixed-dose ratio (ω = cA/cB).  In the denominators, ��FG,, and ��FG,. are point 

estimates of ��G for agent A alone and agent B alone, respectively. The estimates of the input 

parameters are computed using equation (2.3) with (H� and (H) taken from agent-specific fitted 

dose-response curves as described in Section 2.2.1.   

 For meta-analysis, one computes an estimate of CIx for each experiment. The weighted 

average ��UUUG�V	
 is estimated by 

��UUUG�V	 � ∑ 1W2O���FG�X	� $ ��FG�X	YXQ)
∑ 1W2O���FG�X	�YXQ) ,                                                        �2.9	 

where again e indexes experiment, and E is the number of repeated experiments included in the 

meta-analysis. The variance of each ��FG�X	
 can be approximated using the delta method (Bickel 

and Doksum, 2001; Lee and Kong, 2007). 
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seO���FG�X	� i var���FG�X	�
i j��FG,,l.�X	 $ � m1 
 m���FG,,�X	 dO

$ `var �(H�,,�X	�(H),,O�X	 
 2 $ cov �(H�,,�X	,  (H),,�X	� $ �log �100 " 33 � " (H�,,�X	�(H),,b�X	


 var � (H),,�X	� $ �log �100 " 33 � " (H�,,�X	�O
(H),,c�X	 d 
 j��FG,,l.�X	 $ � 11 
 m���FG,.�X	 dO

$ `var �(H�,.�X	�(H),.O�X	 
 2 $ cov �(H�,.�X	,  (H),.�X	� $ �log �100 " 33 � " (H�,.�X	�(H),.b�X	


 var � (H),.�X	� $ �log �100 " 33 � " (H�,.�X	�O
(H),.c�X	 d 
 ���FG�X	�O

$ `var �(H�,,l.�X	�(H),,l.O�X	


 2 $ cov �(H�,,l.�X	,  (H),,l.�X	� $ �log �100 " 33 � " (H�,,l.�X	�(H),,b�X	


 var � (H),,l.�X	� $ �log �100 " 33 � " (H�,,l.�X	�O
(H),,l.c�X	 d        �2.10	 

 

Hypothesis testing of additivity is performed at the 0.05 level of significance by constructing 

the 95% confidence interval for ��UUUG�V	
.   
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e��UUUG�V	 $ exp Crstu,v.wxyz{UUU|�}	 $ fg>?���UUUG�V	�D , ��UUUG�V	 $ exp Cstu,v.wxyz{UUU|�}	 $ fg>?���UUUG�V	�Dh          (2.11) 

where   

g>?���UUUG�V	� i 1
j 1W2O���FG�)	� 
 1W2O���FG�O	� 
 k 
 1W2O���FG�Y	�d                               �2.12	 

It is suggested that one concludes additivity when the 95% confidence interval includes the 

value one. Synergy is concluded when ��UUUG�V	
 < 1 and all values in the 95% confidence interval 

fall below one. Antagonism is concluded when ��UUUG�V	
 > 1 and all values in the 95% confidence 

interval lie above one.  

 

2.3 Analysis of DNA Methylation Inhibitors and Histone Deacetylation Inhibitors In 

Human Ovarian Cancer Cell Lines 

 We apply the Median-Effect Principle/Combination Index method to real data from an 

ovarian cancer cell line study. Investigators were interested in assessing effective doses of each 

agent (see Table 1.1) that inhibit 25%, 50%, and 75% of the ovarian cancer cell lines. They 

were also interested in evaluating combinations of DNA methylation inhibitors and histone 

deacetylation inhibitors that might enhance antiproliferative activites (i.e., synergistic 

interaction). 

 

2.3.1 Study Background 

 In brief, human ovarian cancer cells, HEY and SKOV3, were treated with single agent 

treatments of DNA methylation inhibitors and histone deacetylation inhibitors or their 

combinations (different classes of inhibitors are combined). The DNA methylation inhibitors 
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are AZA(0-100µM) and DAC(0-100µM) with concentration ranges shown in parenthesis. The 

histone deacetylation inhibitors are TSA(0-2µM), and SAHA(0-32µM).   

 For each agent and cell line combination, ten concentration levels were investigated 

(serial 2-fold changes) including control (C = 0). After five days of treatment, sulforhodamine 

B (SRB) assay (Skehan et al., 1990) was carried out and the number of cells surviving was 

expressed in optical density measurements (OD). Independent experiments were repeated three 

times with each experiment containing three replicates per concentration level. For combination 

studies, DNA methylation inhibitors, AZA and DAC, are combined with histone deacetylation 

inhibitors, TSA and SAHA. A single ray design is used to combine agents; that is, agents are 

combined using a fixed dose ratio.  

 

2.3.1 Results 

 Table 2.1 displays experiment-specific estimates of the parameters from the linear 

Median-Effect Principle for agents alone and combined in the ovarian cancer cell line HEY. 

Table 2.2 displays experiment-specific estimates for treated SKOV3 cells. The linear model 

(2.2) was fit to each experimental data using ordinary least squares as implemented in R with 

the function lm. An estimate of the linear model parameters, the standard errors of the 

parameters, correlation between the parameters and a measure of goodness of fit r
2
 is provided. 

An r
2
 < 0.81 is considered a poor fit and results are not considered for meta-analysis. Estimates 

of inhibitory concentrations and their standard errors are calculated using equation (2.3) and 

equation (2.7) respectively.  Table 2.3 and Table 2.4 displays the meta-analysis weighted ��UUUO��V	
, 

��UUU���V	
, ��UUU;��V	

 and their standard errors in the cell lines HEY and SKOV3, respectively.  

 Figure 2.1 and Figure 2.2 displays results from drug-drug interaction analysis for cell 

lines HEY and SKOV3, respectively. We graphically display results by plotting combination 
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index versus inhibitory levels. The blue points represent the point estimates of the weighted 

combination index ��UUUG�V	
. The black dashes represent the 95% upper and lower confidence 

limit. Synergy is concluded when ��UUUG�V	
< 1 and the 95% confidence interval falls below 1. 

Additivity is concluded if the 95% confidence interval includes the value 1. Antagonism is 

concluded when ��UUUG�V	
> 1 and the 95% confidence interval lies above.   

 For the cell line HEY, synergy is concluded for DAC+SAHA and DAC+TSA at all 

inhibitory levels. For the cell line SKOV3, synergy is concluded for DAC+SAHA at all 

inhibitory levels and DAC+TSA at inhibitory levels 30-85%.   
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Table 2.3. Meta-analysis results for concentrations that inhibit 25%, 50%, and 75% of the 

ovarian cancer cell line HEY. Estimates of ��UUUO��V	
, ��UUU���V	

, ��UUU;��V	
 and their standard errors are 

calculated using equation (2.4) and equation (2.7) respectively.   
 

  

 

 

 

 

 

 

 

 

Agent ~�F����	
 se�~�F����	� ~�F����	

 se�~�F����	� ~�F����	
 se�~�F����	� 

DAC 5.13 1.34 28.04 17.13 158.17 325.14 

AZA 3.28 0.16 6.50 0.55 12.86 2.34 

SAHA 0.88 0.004 1.85 0.02 3.82 0.11 

TSA 0.055 0.001 0.10 0.0004 0.19 0.002 

DAC+SAHA 0.0077 1.14E-6 0.10 0.0004 1.45 0.10 

(ω = 18.22)       

DAC+TSA 0.05 1.4E-4 0.53 0.022 4.15 1.71 

(ω = 366.44)       

AZA+SAHA 2.64 0.10 5.16 0.36 10.10 1.64 

(ω = 4.4)       

AZA+TSA 2.79 0.084 5.09 0.24 9.18 0.79 

(ω = 88)       
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Table 2.4. Meta-analysis results for concentrations that inhibit 25%, 50%, and 75% of the 

ovarian cancer cell line SKOV-3. Estimates of ��UUUO��V	
, ��UUU���V	

, ��UUU;��V	
 and their standard errors 

are calculated using equation (2.4) and equation (2.7) respectively.   
 

 

 

 

 

 

 

 

 

Agent ~�F����	
 se�~�F����	� ~�F����	

 se�~�F����	� ~�F����	
 se�~�F����	� 

DAC 25.25 29.23 347 247 4782 1624 

AZA 8.32 0.51 19.61 1.91 36.53 17.26 

SAHA 0.29 0.0009 0.94 0.0089 2.76 0.11 

TSA 0.022 1.13E-5 0.065 9.8E-5 0.18 0.001 

DAC+SAHA 0.95 0.0058 4.29 0.20 18.32 7.82 

(ω = 29.81)       

DAC+TSA 0.92 0.01 3.78 0.46 14.86 14.53 

(ω = 546)       

AZA+SAHA 4.91 0.33 10.58 1.65 23.33 10.65 

(ω = 16.7)       

AZA+TSA 3.17 0.34 8.70 3.43 21.90 23.77 

(ω = 306)       
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                       (a)  DAC+SAHA                                        (b) DAC+TSA 

 

                    (a)  AZA+SAHA                                          (b) AZA+TSA 

Figure 2.1 Combination index versus inhibitory levels for agents in cell line HEY.  

The blue points represent the point estimates of the weighted combination index ��UUUG�V	
. The 

black dashes represent the 95% upper and lower confidence limit. Synergy is concluded when 

��UUUG�V	
< 1 and the 95% confidence interval falls below 1. (a) For DAC + SAHA synergy is 

concluded for all inhibitory levels. (b) For DAC + TSA synergy is concluded for all inhibitory 

levels. (c) For AZA+SAHA additivity is concluded for inhibitory levels. (d) For AZA+TSA 

additivity is concluded for all inhibitory levels. 
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                       (a)  DAC+SAHA                                        (b) DAC+TSA 

                                                          

                    (c)  AZA+SAHA                                              (d) AZA+TSA 

Figure 2.2 Combination index versus inhibitory levels for agents in cell line SKOV3.  

The blue points represent the point estimates of the weighted combination index ��UUUG�V	
. The 

black dashes represent the 95% upper and lower confidence limit. Synergy is concluded when 

��UUUG�V	
< 1 and the 95% confidence interval falls below 1. (a) For DAC + SAHA synergy is 

concluded for all inhibitory levels. (b) For DAC + TSA synergy is concluded for inhibitory 

levels 30-90%. (c) For AZA+SAHA antagonism is concluded for inhibitory levels below 30%, 

additivity for inhibitory levels above 30%. (d) For AZA+TSA additivity is concluded. 
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Chapter 3: A Bayesian Approach to Dose-Response Assessment and Drug-Drug    

         Interaction Analysis 

 

3.1 Overview 

 This chapter provides an alternative Bayesian framework for dose-response assessment 

and drug-drug interaction analysis. Bayesian statistics differs from classical frequentist 

statistics. In Bayesian statistics, parameters are treated as random quantities instead of fixed 

unknown quantities. A probability distribution (prior) is used to describe the uncertainty in the 

model parameters before the data are collected. After the data are collected, a posterior 

probability distribution is computed via Bayes’ theorem. The posterior probability distribution 

acts as an updated probability distribution for the parameter conditioned on the observed data. 

Bayesian inference is based on this posterior distribution.  

 There are many advantages to working under a Bayesian framework. The Bayesian 

framework, unlike the frequentist framework, does not rely on asymptotic approximations. 

Asymptotics rely on large sample theory and may not be appropriate in a small sample (number 

of experiments) setting. Furthermore, the Bayesian framework provides a well developed 

theory for modeling hierarchical data (e.g., replicates within-experiment, experiments within-

study). In contrast, classical frequentist nonlinear mixed-effects models tend to run into 

convergence problems when the number of random-effect parameters increase.  

 This chapter introduces the methodology for the proposed Bayesian Hierarchical 

Nonlinear Emax model / Bayesian Effect Interaction Index method. The Bayesian Hierarchical 

Nonlinear Emax model / Bayesian Effect Interaction Index method is advantageous in that it 

accounts for various sources of variation and uncertainty, borrows strength across 

independently repeated experiments, and allows one to incorporate prior knowledge into the 
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current analysis, thus offering a more efficient and reliable inference. Extensive simulation 

studies show that the Bayesian Hierarchical Nonlinear Emax model / Bayesian Effect 

Interaction Index method provides an improved methodology for making population (group) 

inference. This chapter is based on the published work “A Bayesian Approach to Dose-

Response Assessment and Synergy and Its Application to In Vitro Dose Response Studies”, 

(Hennessey, Rosner, Bast Jr., Chen, 2010. Biometrics).  

 

3.2 Introduction 

 The Median-Effect Principle / Combination Index method (Chou and Talalay, 1984) is 

the most commonly used method for assessing in vitro dose-response and drug-drug 

interaction. There is a need to improve current standard analysis with the Median-Effect 

Principle / Combination Index method (MEPCI). MEPCI ignores variation inherent in the data, 

such as, variation in the controls and variation between repeated experiments. Ignoring these 

variations can lead to bias and unreliable inferences. Furthermore, standard data preprocessing 

techniques for application of MEPCI are inefficient. Standard data preprocessing techniques 

normalize averaged responses by the average control responses which can induce unwanted 

correlation. Also, if a normalized data point falls outside the allowed [0, 1] range, the data point 

is thrown away. In general, throwing away data points is not a good idea; it causes information 

to be lost. Another issue arises when MEPCI performs hypothesis testing of additivity. The 

95% confidence interval is constructed for the combination index (CI); however, the coverage 

probability of the confidence interval falls below the nominal value of 95% (Boik et al., 2008). 

This can lead to a high incidence of type I error. Reducing type I errors benefits drug 

developers by ensuring resources are not allocated to false positives, that is, combined agents 

that are declared synergistic when in fact they are additive.  
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 We developed a three-stage Bayesian hierarchical nonlinear regression model that 

accounts for within-experiment variation, between-experiments variation, variation in the 

controls, and heteroscedasticity. The model consists of a modified Hill’s model (Emax model) 

with an additive residual error on the logarithmic scale. In addition, we developed a Bayesian 

Effect Interaction Index method that allows one to assess quantitatively interaction between 

two agents combined at a fixed dose ratio. The Bayesian Effect Interaction Index method 

performs decision making based on the posterior distribution of the Loewe interaction index 

and makes honest account of uncertainty in the input parameters of the isobole equation 

(Loewe’s additive model).  

 

3.3 Bayesian Hierarchical Nonlinear Emax Model / Bayesian Effect Interaction Index 

Method 

 

3.3.1 The Model  

 The proposed model can be used for a positive continuous response of a single agent or 

a combination of two agents combined at a fixed dose ratio.  In stage 1 of the hierarchical 

model, we model the intra-experiment variation (variability within-experiment but between 

replicates). Let yijk be a positive continuous measured response for experiment i replicate j at 

the k
th

 concentration level ck. The data model is  

log(yijk) = µ ik + ɛijk 

with mean response µ ik and random error term ɛijk ~N(0, σ
2
) . The role of the error term is to 

account for variation beyond what is explained by an agent’s concentration level. This includes 

variation between replicates, measurement error, and the natural variation within a replicate. 

The log (base e) transformation is commonly used for positive data and helps to satisfy the 
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assumption of constant variance for the error terms. It follows that on the original scale 

Var(Yijk) = σ
2
µ ik where µ ik represents the mean response on the log scale. This implies a non-

constant variance (heteroscedasticity) on the original scale across dose levels and across 

experiments. This heteroscedasticity trend is commonly seen. For other heteroscedascity trends, 

other error functions may be used (e.g., σ
2
µ
θ
ik).  

 On the original scale, response follows a modified Hill’s equation (Hill, 1910), that is,  

������� � ��,�1 
 � ������,���� 

This is the Emax curve with parameters E0, IC50, and M. The parameter E0, represents the 

expected response in the absence of the drug. IC50 represents the concentration required to 

inhibit 50% of the cells and M is a shape parameter known as Hill’s coefficient. Variability 

occurs between independently repeated experiments; therefore, we allow the parameters E0, 

IC50, and M to vary across experiments (indexed by i). When fitting the model to data from a 

combination study (e.g., agent A + agent B) with a fixed dose ratio ρ = doseB/doseA, we treat 

the concentration of A as the independent variable for convenience. Inference can be in terms 

of agent A or agent B, however, because of ρ.  

  In stage 2 of the hierarchical model we model the inter-experiment variation (between-

experiment variation). We suggest Log-normal prior distributions for the parameters E0, IC50, 

and M. 

 Priors: 

��,�~LogN�����Yv , ����YvO � 

����,�~LogN�����{zyv , ����{zyvO � 

#�~LogN������, �����O � 
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The Log-normal prior distributions ensure positive values and provide a realistic skewness of 

the parameter distribution. Note that for inhibitory activities, M is positive.  

 Bayesian hierarchical models use prior distributions that themselves depend on 

parameters (hyper-parameters). A reasonable assumption is that each individual experiment 

arises from a population of experiments. The location hyperparameters, ����Yv , ����{zyv, and 

����� represent the population (group) means on the log scale. The scale hyperparameters 

����YvO , ����{zyvO , and �����O  represent the between-experiment parameter variation on the log 

scale. A prior distribution (hyper-prior) is then required for the hyper-parameters. In the third 

stage, we complete the hierarchical model by specifying the hyper-priors. We suggest the 

following hyper-priors to complete the hierarchical model. 

 Hyper-priors: 

����Yv~ ��a, d	,    ����Yv~ half-Cauchy (g) 

����{zyv~ ��b, e	,    ����{zyv~ half-Cauchy (h) 

�����~ ��c, f	,    �����~ half-Cauchy (l) 

Normal distributions are used for the location hyperparameters and half-Cauchy distributions 

for the standard deviation hyperparameters. Historical information may be available for a 

single-agent’s median inhibitory concentration and could be incorporated into the analysis at 

this stage of the hierarchy (Davidian and Giltinan, 1995). Otherwise, we set a, b, and c to an 

arbitrary value (e.g., a = 0, b = 0, and c = 0). We set d, e, and f to reflect vague (flat) priors 

(e.g., d = 1000, e = 1000, and f = 1000).  

 Choosing a hyper-prior distribution for the scale hyper-parameters ����Yv , ����{zyv, and 

����� can be an important step. It is common practice to use an Inverse-Gamma hyper-prior 

distribution for the variance (σ
2
) hyper-parameters or a Uniform hyper-prior distribution for 

standard deviation (σ) hyper-parameters. Gelman (2006) showed that excessive-shrinkage and 
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under-shrinkage can be a problem in Bayesian hierarchical models when using these hyper-

prior distributions, especially when the number of groups (e.g., experiments) is small. 

Shrinkage is the pulling of second-level parameter estimates towards the overall mean.   

 Gelman (2006) showed the half-Cauchy to have some nice properties. The half-Cauchy 

distribution is characterized by non-negative quantities, a broad peak at 0, and a fatter tail than 

that of a Normal distribution. Gelman (2006) proposed half-Cauchy hyper-prior distributions 

for standard deviation hyper-parameters when the number of groups is less than eight.  Using 

the half-Cauchy distribution involves re-parameterizing for the parameters E0,i, IC50,i, and Mi. 

Below we show the reparametrization for IC50. There is a similar reparameterization for E0,i and 

Mi.  

����,�~LogN���,���{zyv , ����{zyvO � 

��,���{zyv �  ����{zyv 
 ����{zyv $ ��,���{zyv 

����{zyv~ ��0, �O	,     ��,���{zyv~ � �0, ����� ¡yvr) � 

����� ¡yv ~ ¢>££>�0.5, 0.5	 

����{zyv � ¤����{zyv¤
f����� ¡yv

     
The reparametrization improves Markov chain Monte Carlo (MCMC) convergence by reducing 

dependence among the parameters in the hierarchical model (Gelman, 2006). Gelman 

recommends a value for h that reflects a weakly informative prior.  

  

3.3.2 Bayesian Posterior Inference    

 One may use Markov Chain Monte Carlo (MCMC) via WinBUGS (Spiegelhalter,  

2002) to simulate samples from posterior distributions of relevant parameters. Interest lies in 
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making population (group) level inference. 

 

3.3.2.1 Dose-Response Assessment  

 In dose-response assessment, a quantity of interest is the inhibitory concentration (ICx = 

the concentration producing x% inhibition). Posterior estimates of ICx require a function of the 

parameters from the fitted Bayesian hierarchical nonlinear Emax model. Population level 

inference requires parameters from Stage 3 of the hierarchical model.  For example, the g
th

 

posterior sample of ICx at the population level is constructed by the following inverse function 

where the outcome is (1-Y/E0): 

��G��	 � �{zyv��	 � 3100 " 3�) ¥¦��	§                                                   �3.1	 

The superscript (i = 1,…, N) refers to saved MCMC samples where N is the number of MCMC 

samples used for posterior inference. The Bayesian framework provides a straightforward 

method for propogation of uncertainty; that is, the uncertainty in �{zyvand �� will propagate 

into uncertainty about ICx. Informative summary statistics of ICx can include the median and 

the Bayesian 95% credible interval. The Bayesian 95% credible interval is constructed with the 

2.5 percentile and the 97.5 percentile and can be interpreted as an interval within which the 

parameter ICx lies with probability 0.95. 

 A population mean dose-response curve can be displayed graphically by using equation 

(1.2) with exponentiated posterior estimates of �Yv, �{zyv, and ��. A median-fitted response is 

recommended on the original scale because of skewness.     

 

3.3.2.2 Drug-Drug Interaction Analysis 

 In drug-drug interaction analysis, one quantitatively assesses the interaction (additivity, 

synergism, antagonism) between two agents at different inhibitory levels. The proposed 
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Bayesian Hierarchical Nonlinear Emax model / Bayesian Effect Iteraction Index method 

(Hennessey et al., 2010) integrates results from the single agents and the combined agents’ 

fitted curves and computes a posterior distribution for Loewe interaction index at a specific 

inhibitory level. For example, posterior samples of Loewe interaction index at inhibitory level 

x% (IIx) are constructed by the following function, also known as the isobole equation 

��G��	 � ��G,,l.��	
��G,,��	 
 ¨ $ ��G,,l.��	

��G,.��	 .                                                �3.2	 

In the numerators, ICx,A+B represents the concentration of agent A in the combination (agent A 

+ agent B) yielding x % inhibition; ρ = doseB/doseA is the fixed dose ratio used in the 

combination study.  In the denominators, ICx,A and ICx,B represent the inhibitory concentrations 

of agent A alone and agent B alone, respectively,  that yields the same x% inhibition. Here, the 

input parameters are considered random, and posterior estimates are generated using the 

method described in Section 3.3.2.1.  

 The Bayesian Effect Interaction Index method performs decision making based on the 

posterior distribution of IIx.  The decision rule is to conclude synergy (antagonism) if IIx falls 

below (lies above) one with high probability. Additivity is concluded in the absence of synergy 

or antagonism. The posterior probability that IIx falls below 1 is calculated by 

© � Pr���G « 1 " ¬|+>7>	 i 1� N ®¯
�Q) °��G��	 « 1 " є².                            �3.3	 

Here I[·] in equation (3.3) is an indicator function. We use 1 - є, for some small positive є (e.g., 

0.05), rather than 1, to differentiate synergy from additivity in case IIx is close to 1. We 

conclude synergy if γ exceeds some threshold. For example, we declare "Synergy" if γ > 0.80. 

The threshold 0.80 is chosen based on prior work (Hennessey et al., 2010) that showed a 

threshold of 0.80 had good operating characteristics. Other threshold values that may be 
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considered are 0.90 or 0.70. The threshold used may be context specific but ultimately one 

would want a threshold that minimizes error and maximizes correct decision making.  

 If interest is in additive agents, the posterior probability that IIx lies above 1 is also 

calculated. 

³ � Pr���G ´ 1 
 ¬|+>7>	 i )̄ ∑ ®�̄Q) °��G��	 ´ 1 
 є²  (3.4) 

We declare "Antagonism" if λ > 0.80, “Synergy” if γ > 0.80, else “Additivity” is declared. 

 

3.4 Simulation Study 

 We conducted a simulation study to evaluate and compare the performance of our 

proposed Bayesian Hierarchical Nonlinear Emax Model / Bayesian Effect Interaction Index 

method to meta-analysis with the Median-Effect Principle / Combination Index method. We 

also investigated the effect of sample size on performance. 

 First, dose-response data for three hypothetical agents were generated: agent A, agent 

B, and agent A + agent B. For each hypothetical agent, dose-response data from an Emax model 

was generated. An Emax model was used instead of the Median-Effect equation so we could 

introduce variation in the controls. Each realization included ten concentration levels (with 

serial 2-fold changes) and three (or six) independent experiments. Each experiment contained 

three replicates per dose level, yielding 30 observations per experiment and 90 (or 180) 

observations per realization. We introduced the following variation in the generated data: 

variation within-experiment (between-replicates), variation between-experiments, variation in 

the responses of the controls, and heteroscedasticity. All variations were set to values similar to 

those observed in the real data.   

 Table 3.1 contains parameter values used for generating the simulation data. For 

hypothetical agent A, the “true” population mean curve is Y = 3/(1+(C/10)
1.49

). This is an Emax  



36 

 

Table 3.1. Parameter values used for generating simulation data. The simulation considers 

three hypothetical agents: Agent A alone, Agent B alone, and Agent A + Agent B (combined at 

a fixed dose ratio ρ = 0.055).   

 Agent A alone Agent B alone Agent A+Agent B 

 

E(Y) = E0/[1+(C/ IC50)
M

] 3/[1+(C/10)
1.49

] 3/[1+(C/1.38)
1.37

] 3/[1+(C/0.69)
0.67

] 

within-experiment noise (σ
2
) 0.010 0.010 0.0100 

between-experiment noise for E0 (µ¶��   
) 0.020 0.020 0.0200 

between-experiment noise for IC50 (µ~����  
) 16.0000 0.300 0.0700 

between-experiment noise for M (µ·�  
) 0.018 0.015 0.0036 

concentrations (µM) (0, 0.39, 0.78, 

1.56, 3.125, 

6.25, 12.5, 25, 

50, 100) 

(0, 0.125, 0.25, 

0.5, 1, 2, 4, 8, 

16, 32)  

(0, 1, 2.05, 4.1, 8.2, 

16.4, 32.8, 65.6, 

131.2, 262.4) 
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model with parameter values E0 = 3, IC50 = 10, and M = 1.49. With the idea that experiment-

specific curves deviate from the true population mean curve and replicates within-experiment 

deviate from their experiment-specific mean curve, we proceed with the following: sample 

experiment-specific E0,i from a log-normal distribution to constrain values to be positive; 

sample IC50,i and Mi from a bivariate log-normal distribution to constrain positive values and to 

introduce plausible correlation between the two parameters; use a multiplicative error term to 

ensure positive data points and introduce heteroscedasticity; set the within-experiment variation 

to σ
2
 = 0.01; set the between-experiment parameter variation for IC50 to �{zyvO = 16; and allow 

for minimal variation between-experiments in the controls and the shapes of the curves 

represented by �YvO = 0.02 and ��O  = 0.018.  The same procedure is applied for hypothetical 

agent B and hypothetical agent A + agent B, with the exception that we use different parameter 

values and different between-experiments parameter variation.  

 Figures 3.1(a), 3.2(a), and 3.3(a) display the true curves with one realization from the 

simulated data for hypothetical agent A, hypothetical agent B, and hypothetical agent A + agent 

B, respectively. Realizations with three experiments are displayed but we also investigated 

realizations with six experiments to see the effect of increasing the number of experiments. 

Figures 3.1(b), 3.2(b), and 3.3(b) display the distributions of the squared errors in estimating 

population level IC25, IC50, IC75, and IC85 with fitted Bayesian Hierarchical Emax model (green 

boxplots) and meta-analysis Median-Effect Principle (blue boxplots). The color filled boxplots 

are used when three experiments per realization are considered. The color outlined boxplots are 

used when six experiments per realization are considered.  

 From Figures 3.1(b), 3.2(b), and 3.3(b), we conclude that the Bayesian Hierarchical 

Nonlinear Emax model provides a more precise estimator for IC25, IC50, IC75, and IC85 compared 

to meta-analysis with Median-Effect Principle. Precision is evaluated by the distribution of the  
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                                       (a)                                                                       (b) 

Figure 3.1 Simulation results for hypothetical agent A. (a) The simulation truth is Y = 3 / 

[1+(C/10)
3/2

]. The blue dashed curve represents the simulation truth for hypothetical agent A 

and the points represent one realization from the simulated data. (b) The distributions of the 

squared errors in estimating inhibitory concentrations with fitted Bayesian Hierarchical 

Nonlinear Emax model (BHNE) and meta-analysis Median-Effect Principle (MAMEP). The 

color filled boxplots represent when three experiments per realization are considered. The color 

outlined boxplots represent when six experiments per realization are considered.  
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      (a)                                                                    (b) 

Figure 3.2 Simulation results for hypothetical agent B. (a) The simulation truth is Y = 3 / 

[1+(C/1.38)
1.37

]. The blue dashed curve represents the simulation truth for hypothetical agent B 

and the points represent one realization from the simulated data. (b) The distributions of the 

squared errors in estimating inhibitory concentrations with fitted Bayesian Hierarchical 

Nonlinear Emax model (BHNE) and meta-analysis Median-Effect Principle (MAMEP). The 

color filled boxplots represent when three experiments per realization are considered. The color 

outlined boxplots represent when six experiments per realization are considered. 
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                                       (a)                                                               (b) 

Figure 3.3 Simulation results for hypothetical agent A + agent B. The simulation truth is Y 

= 3 / [1+(C/0.69)
0.67

]. The red dashed curve represents the simulation truth for hypothetical 

agent A and the points represent one realization from the simulated data. (b) The distributions 

of the squared errors in estimating inhibitory concentrations with fitted Bayesian Hierarchical 

Nonlinear Emax model (BHNE) and meta-analysis with the Median-Effect Principle (MAMEP). 

The color filled boxplots represent when three experiments per realization are considered. The 

color outlined boxplots represent when six experiments per realization are considered. 
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squared errors. Performance decreases with increasing inhibitory levels, but the Median-Effect 

Principle’s performance tends to decrease at a higher rate compared to the Bayesian 

Hierarchical Nonlinear Emax model. For the Bayesian Hierarchical Nonlinear Emax model, we  

find that increasing the sample size from three to six experiments reduces the median squared 

error. In some cases, the median-squared error was reduced by as much as 50%. This was not 

observed with the meta-analysis Median-Effect Principle; estimator performance did not 

improve with increasing sample size, suggesting that meta-analysis with the Median-Effect 

Principle does not provide a consistent estimator.  

 In conclusion, performance depends on a lot of factors including sample size, the 

magnitude of variation between experiments, inhibitory level, and if the parameter estimate lie 

in a flat region of the dose-response curve. Overall, the Bayesian Hierarchical Nonlinear Emax 

model provides a more reliable estimator of the population level dose-response curve.  

 We also investigated the performance of the Bayesian Effect Interaction Index method 

in drug-drug interaction analysis. Three drug interaction scenarios were considered. In scenario 

1, agent B is combined with itself (a sham experiment). By definition, an agent cannot interact 

with itself and additivity should be concluded at all inhibitory levels. In scenario 2, agent A is 

combined with agent B producing strong synergy across all inhibitory levels. In scenario 3, 

agent A is combined with agent B producing qualitatively changing interaction, that is, strong 

synergy at 5% inhibition to very strong antagonism at 95% inhibition.  

 Figure 3.4 (a) shows the simulation results for scenario 1 (sham experiment) when three 

experiments are considered. Figure 3.4(b) shows the results when six experiments are 

considered. Plotted are the percentages of the 1000 realizations that additivity was correctly 

declared. Overall, the Bayesian Effect Interaction Index with thresholds γ > 0.90 performed 

well under a sham experiment scenario. Meta-analysis with Median-Effect Principle /  
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                                       (a)                                                               (b) 

Figure 3.4 Simulation results for drug interaction scenario 1, agent B combined with itself 

(sham experiment). The simulation truth is that the interaction index has a value of one across 

all inhibitory levels and additivity should be concluded at all inhibitory levels. Plotted are the 

percentages of the 1000 realizations that additivity was correctly declared. Solid line: meta-

analysis Median-Effect Principle / Combination Index method. Dash-dot line: Bayesian 

hierarchical nonlinear Emax model / Bayesian Effect Interaction Index method using γ > 0.90 

and є = 0.05. Dashed line: Bayesian hierarchical nonlinear Emax model / Bayesian Effect 

Interaction Index method using  γ > 0.80. Dot line: Bayesian hierarchical nonlinear Emax model 

/ Bayesian Effect Interaction Index method using  γ > 0.70. (a) 3 experiments are considered 

per realization. (b) 6 experiments are considered per realization. 
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Combination Index method led to a high risk of type I error, that is, erroneously rejecting 

additivity when in fact additivity is true.  

 Figures 3.5(a) and 3.5(b) show the simulation results for scenario 2 (strong synergy 

across all inhibitory levels) when three experiments and six experiments, respectively, are 

considered. The Combination Index method and the Bayesian Effect Interaction Index method 

with γ > 0.80 and γ > 0.70 performed well under a strong synergy scenario; both methods had 

high rates of correctly declaring synergy. The Bayesian Effect Interaction Index method 

performed slightly worse when inhibition was close to 0% or 100% (i.e., a large fraction of the 

cells are alive or dead). This is rectified by increasing the number of experiments from three to 

six.  

 Figures 3.6(a) and 3.6(b) show the simulation results for the more problematic scenario, 

qualitatively changing interaction. The Median-Effect Principle / Combination Index method 

exhibits low power to detect synergy at most inhibitory levels. The Bayesian Effect Interaction 

Index method with γ > 0.80 and γ > 0.70, correctly declared synergy most of the time. The 

exception is when there are quick changes in the interaction index values and interaction is 

changing qualitatively (i.e., synergistic to additive to antagonism). Increasing the number of 

experiments from three to six improved performance over a larger range of inhibitory levels.   

 In summary, we conclude that the Bayesian Effect Interaction Index method with γ > 

0.80 maintained good operating characteristics.  

 

3.5 Application to the Ovarian Cancer Cell Lines Study 

 We apply the Bayesian Hierarchical Nonlinear Emax Model/Bayesian Effect Interaction 

Index method to real data from the ovarian cancer cell line study. We present, in detail, dose-

response assessment of the cell line HEY treated with DAC alone, SAHA alone, and a comb- 
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                                       (a)                                                               (b) 

Figure 3.5 Simulation results for drug interaction scenario 2, agent A combined with 

agent B produces strong synergy. The simulation truth is that the interaction index has a 

value less than one across all inhibitory levels. True values are shown on top axis. Plotted are 

the percentages of the 1000 realizations that synergy was correctly declared. Solid line: meta-

analysis Median-Effect Principle / Combination Index method. Dash-dot line: Bayesian 

hierarchical nonlinear Emax model / Bayesian Effect Interaction Index method using γ > 0.90. 

Dashed line: Bayesian hierarchical nonlinear Emax model / Bayesian Effect Interaction Index 

method using  γ > 0.80. Dot line: Bayesian hierarchical nonlinear Emax model / Bayesian Effect 

Interaction Index method using  γ > 0.80. (a) 3 experiments are considered per realization. (b) 6 

experiments are considered per realization. 
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                                       (a)                                                               (b) 

Figure 3.6 Simulation results for drug interaction scenario 3, agent A combined with 

agent B produces qualitatively changing interaction. True interaction index values are 

shown on top axis. The interaction index values are shown on a grid of x % inhibitory levels. 

Plotted are the percentages of the 1000 realizations that synergy (or no synergy) was correctly 

declared. Solid line: meta-analysis Median-Effect Principle / Combination Index method. Dash-

dot line: Bayesian hierarchical nonlinear Emax model / Bayesian Effect Interaction Index 

method using γ > 0.90. Dashed line: Bayesian hierarchical nonlinear Emax model / Bayesian 

Effect Interaction Index method using γ > 0.80. Dot line: Bayesian hierarchical nonlinear Emax 

model / Bayesian Effect Interaction Index method using γ > 0.80. (a) 3 experiments are 

considered per realization. (b) 6 experiments are considered per realization. 
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ination of the two agents. For each agent, ten dose levels are investigated. The investigating 

dose levels range from 0 to 100 µM for DAC alone and 0 to 32 µM for SAHA alone. When 

combining the agents, DAC concentrations ranged from 0 to 262.40 µM, and SAHA 

concentrations were 0.055 times the DAC concentrations. The value 0.055 arose from prior 

findings of the ratio of each agent’s estimated median inhibitory concentration (ρ = 0.05). We 

also provide drug-drug interaction analysis for all agents combined in the ovarian cancer cell 

line study. 

 

3.5.1 Dose-Response Assessment 

 We fit a separate model to each agent’s dose-response data. For example, for SAHA 

alone, we set a, b, and c to an arbitrary 0 value. We set d = 1000, e=1000, and f = 1000 to 

reflect vague priors. We set g = 5, h = 5, and l = 5 to reflect weakly informative priors. We 

made use of WinBUGS (Spiegelhalter, 2002) to perform the MCMC algorithm. The MCMC 

algorithm simulates samples from the posterior distribution of relevant parameters. This allows 

us to carry out posterior inference. We ran 30,000 MCMC iterations (three chain run with 

different initial values) with a thinning factor of 10 to reduce autocorrelation. We discarded the 

first 20,000 iterations (burn-in) to ensure that the samples are drawn from a stationary 

distribution. Besides making a visual assessment of goodness of fit, we assessed convergence 

from the trace plots the 3-chains with different initial values. We then plotted histograms of the 

posterior samples with their respective prior distributions to ensure the priors were not 

constraining posterior inferences. For the most part the values chosen for a, b, c, d, e, f, g, h, 

and l seem to be reasonable parameter values. The priors do not seem to be constraining 

posterior inference and there is no significant heavy tails in the posterior distri- 

bution to be concern about. 
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 The fitted dose-response curves for SAHA alone, DAC alone, and DAC combined with 

SAHA are shown in Figure 3.7. The dotted lines represent the experiment-specific fitted 

curves. The population level model is represented by the solid red line. As expected the 

population model falls between the experiment-specific fitted curves, providing a meta-analysis 

of the three experiments. Table 3.2 lists posterior medians and 95% credible intervals for IC25, 

IC50, and IC75 at the experiment level and at the population level. We note that interval 

estimates tended to be wide at the population level, because of the large uncertainty with only 

three experiments. Increasing the number of experiments would narrow our uncertainty at the 

population level; otherwise we recommend the use of the median, a more robust estimator for 

the parameters.  

 

3.5.2 Assessment of Synergy 

 Figure 3.8 and Figure 3.9 shows population posterior predicted dose-effect curves for 

each combination studies and the respective single agent studies in the cell line HEY and cell 

line SKOV3. Figure 3.10 and Figure 3.11 displays results from drug-drug interaction analysis 

for cell lines HEY and SKOV3, respectively. We graphically display results by plotting the 

posterior distributions of the Loewe interaction index (IIx) as boxplots by level of inhibition (x 

%). Asterisks indicate inhibitory levels where IIx fell below 0.95 with high probability (γ > 

0.80).  

 For the cell line HEY, synergy is concluded for DAC+SAHA at inhibitory levels 10-

90%. Synergy is concluded for DAC+TSA at inhibitory levels 15-85%. For the cell line 

SKOV3, synergy is concluded for DAC+SAHA at inhibitory levels 5-60%. Synergy is 

concluded for DAC+TSA at inhibitory levels 10-55%.   
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                             (a)  SAHA alone                                                     (b) DAC alone 

 

                                                                  ( c) DAC + SAHA 

Figure 3.7 Fitted dose-response curves for DAC and SAHA, alone and combined, in cell 

line HEY.  Experiment-specific observations are normalized with respect to their observed 

maximal control response. The fitted curves are normalized with respect to their fitted control 

effect. The dotted curves represent experiment-specific fits and the solid red lines represent the 

population level models. 
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Table 3.2. Estimates of inhibitory concentrations for DAC alone, SAHA alone, and 

DAC+SAHA (ρ = 0.055) in cell line HEY. Posterior medians and 95% credible intervals are 

provided for inhibitory concentrations at the experiment-specific and population level.  
 

 

 

 

 

 

 

 

parameter  DAC alone SAHA alone DAC+SAHA 

IC25 experiment 1 

experiment 2 

experiment 3  

population level 

3.46 (1.09, 8.35) 

2.35 (0.61, 6.15) 

1.21 (0.49, 2.78) 

2.12 (0.006, 55.5) 

0.89 (0.63, 1.21) 

0.64 (0.44, 0.92) 

0.27 (0.16, 0.44) 

0.53 (0.01, 5.57) 

0.15 (0.07, 0.29) 

0.009 (0.002, 0.035) 

0.13 (0.05, 0.27) 

0.05 (2.1E-5, 3.3) 

     

IC50 experiment 1 

experiment 2 

experiment 3  

population level 

55.98 (1.09, 8.35) 

48.23 (0.61, 6.15) 

15.77 (0.49, 2.78) 

34.81 (1.72, 773.6) 

1.82 (1.39, 2.32) 

1.41 (1.05, 1.90) 

0.71 (0.45, 1.05) 

1.23 (0.11, 12.58) 

0.71 (0.36, 1.24) 

0.01 (0.03, 0.30) 

0.68 (0.35, 1.24) 

0.37 (0.007, 19.31) 

     

IC75 experiment 1 

experiment 2 

experiment 3  

population level 

894.1 (454.7, 2.4E3) 

996.7 (484.5, 2.9E3) 

203.5 (132.37, 342.74) 

574.7 (21.59, 1.5E5) 

3.74 (3.04, 4.51) 

3.13 (2.49, 3.94) 

1.86 (1.30, 2.51) 

2.83 (0.25, 95.91) 

3.44 (1.95, 5.44) 

1.04 (0.46, 0.035) 

3.51 (2.02, 5.80) 

2.44 (0.04, 5.9E3)  
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(a) DAC + SAHA                                        (b) DAC + TSA 

 

 

(c) AZA + SAHA                                        (b) AZA + TSA 

 

Figure 3.8 Population level dose response curves for combined agents and their respective 

single-agents in the cell line HEY. Population level curves for each combination and their 

respective agents alone. Concentrations are shown on the log scale with labels on the original 

scale.  
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(a) DAC + SAHA                                        (b) DAC + TSA 

 

 

(c) AZA + SAHA                                        (b) AZA + TSA 

 

Figure 3.9 Population level dose response curves for combined agents and their respective 

single-agents in the cell line SKOV3. Population level curves for each combination and their 

respective agents alone. Concentrations are shown on the log scale with labels on the original 

scale.  
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(a) DAC + SAHA                                        (b) DAC + TSA 

 

 

(c) AZA + SAHA                                        (d) AZA + TSA 

 

Figure 3.10 Boxplots of the posterior distributions of Loewe Interaction Index versus 

inhibitory level in cell line HEY.  Asterisks indicate effect levels where IIx falls below 0.95 

(1-є) with high probability (γ > 0.80).   
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(a) DAC + SAHA                                        (b) DAC + TSA 

 

 

(c) AZA + SAHA                                        (d) AZA + TSA 

 

Figure 3.11 Boxplots of the posterior distributions of Loewe Interaction Index versus 

inhibitory level in cell line SKOV3.  Asterisks indicate effect levels where IIx falls below 0.95 

(1-є) with high probability (γ > 0.80).   
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Chapter 4 

Nonparametric Regression Method for Dose-Response Assessment  

and Drug-Drug Interaction Analysis 

 

4.1 Overview 

 The models described in the previous chapters make use of parametric structural models 

for characterizing the relationship between dose and response (e.g., Median-Effect equation, 

Emax model). In some cases, the parametric models do not fit the data. A nonparametric 

regression method can be useful in dealing with dose-response curves that exhibit plateaus or 

other local deviations from parametric models.  

 Splines have become a popular nonparametric (semi-parametric) tool in modeling 

functional data.  In this chapter, we explore the use of monotone regression I-splines for dose-

response assessment and drug-drug interaction analysis. This chapter can serve as a brief 

introduction to monotone regression I-splines and how it can be incorporated into a Bayesian 

hierarchical framework for dose-response assessment and drug-drug interaction analysis. The 

proposed Bayesian hierarchical monotone regression I-splines provide a practical and flexible 

nonparametric regression method for meta-analysis of independently repeated dose-response 

experiments. An extensive simulation study is performed to compare the nonparametric 

approach to the parametric approaches discussed in Chapter 2 and Chapter 3.  

 

4.2 Introduction to Montone Regression I-splines 

 Regression splines provide an alternative to parametric regression methods by 

estimating the mean curve using piece-wise functions (basis functions). The type of basis 

function employed (e.g., truncated polynomials, low-rank thin plate splines, natural cubic 
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splines, B-splines, M-splines, I-splines) may be motivated by numerical stability, ease of 

implementation, interpretability, or curve requirements (Ruppert, Wand, and Carroll, 2003). In 

the context of in vitro dose-response modeling, curve requirements may be smooth and 

monotone curves. Kelly and Rice (1990) proposed using cubic B-splines to estimate marginal 

dose-effect curves. Monotonicity is enforced by inequality constraints on the B-spline 

coefficients (e.g., β1 ≤ β2 ≤ …≤ βn).  B-splines have been shown to be computationally 

efficient; however, constraining inequalities on the coefficients can be quite cumbersome.  

 In this chapter, we explore the use of computationally efficient I-splines (Ramsay, 

1988) for estimating the mean dose-response curve. Constraining I-spline coefficients to non-

positive values (non-negative values) is sufficient to ensure non-increasing (non-decreasing) 

monotonicity and can be easily implemented under a Bayesian framework through prior 

distributions. 

 Consider a simple regression model 

�� � ��3�	 
 E� 
where  

���|3	 �  ��3	 ,       ��E�	 � 0.     

The function f(x) is a smooth curve that needs to be estimated from the (xi, yi). The function f(x) 

can be estimated by a linear combination of N I-spline basis functions of degree r. 

��3�	 � ∑ (P�P̧�3�	                                                             �4.1	P̄Q)  

The I-spline basis functions, �P̧�3	, are defined through their associated M-splines bases 

#P̧�3	, given by a recursion formula. 

�P̧�3|¹	 � º #P̧�»|¹	+»G
¼  

#P̧�3|¹	 � ?½�3 " ¹P	#P̧r)�3|¹	 
 �¹P " 3	#Pl)¸r)�3|¹	¾�? " 1	�¹Pl¸ " ¹P	  
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MÀ)�x|S	 � 1�SÀl) " SÀ	 , SÀ Â x Â SÀl), and 0 otherwise        �4.2	 

 has the properties of a probability density function over the interval [Sn, Sn+r] where 

S=(S1, S2, …, SN+r) is a knot sequence that partitions the range of x over which f(x) is defined. 

In the defined interval [L, U], the knot sequence is constructed with the following properties: 

1. S1 ≤ … ≤ SN+r 

2. S1 = … = Sr = L and SN+1 = … = SN+r = U 

3. N = r + T where T is the number of interior knots.  

Here, r and T are to be selected as well as the locations of the interior knots. Different 

techniques have been proposed for degree and knot location selection (Ramsay, 1998; Kelly 

and Rice, 1990; Wood, 1994; Rice and Wu, 2001; Di Mateo, Genovese, Kass, 2001); however, 

finding an optimal technique may be dependent on characteristics of the data. Figure 4.1 

displays an I-spline family of degree three associated with eight interior knots.  

 

4.3 Bayesian Hierarchical Monotone Regression I-splines / Bayesian Effect Interaction 

Index Method 

 

4.3.1 The Model  

 The proposed model can be used for a positive continuous response of a single agent or 

a combination of two agents combined at a fixed dose ratio. Let yijk be the logged measured 

response for experiment i replicate j at the k
th

 concentration level ck. The data model is  

yijk ≡ yij(ck) = fi(ck) + ɛijk 
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Figure 4.1 I-spline family of degree r = 2 associated with T = 8 interior knots. Note 

the red curve ��3	 � ∑ (P�P̧�3	P̄Q)   is a linear combination of r + T = N = 10 I-spline 

basis functions. 
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with ɛijk ~ N(0, σ
2
). Here fi(ck) are experiment specific dose-response curves that need to be 

both smooth and monotone non-increasing. One way to achieve this is via I-splines (Ramsay,  

1988). A linear combination of I-spline basis functions to estimate the mean response function 

is 

�����	 � È� 
 N (P,��P̧���	Él¸rOQ¯
PQ) . 

We include an intercept parameter αi to represent the control response, i.e., response in the 

absence of drug. The sum in the second term is a linear combination of N = K + r - 2, I-spline 

basis functions. This is a family of I-splines of degree r associated with a knot at each of K 

concentration levels. We use I-splines of degree three (i.e., integrated cubic M-splines) for the 

flexibility needed for a nonlinear curve.  In an independent study, we studied the effect of using 

a knot at each concentration level,  the effect of using fewer knots than concentration levels (T 

< K – 2), and using sample quantiles of concentration to position the knots. We found if one 

uses too few interior knots (e.g., a single interior knot at the median or two interior knots at the 

terciles), local trends may not be captured and estimates may be biased. When varying the 

number of interior knots in a real data set application, we found the best model to be a model 

with a knot at each dose level; deviance information criterion (DIC) (Spiegelhalter, 2002) was 

used to make this assessment. A knot at each concentration level provides the flexibility desired 

in curve fitting. Decreasing the number of interior knots by one or two knots is unlikely to have 

a noticeable effect. 

 Since the number of concentration levels is typically small (less than 10), smoothness 

can be controlled through a monotonicity constraint. Under the assumption of a non-increasing 

monotone dose-response relationship, I-spline coefficients are constrained to non-positive 

values. We set the following priors for the parameters αi and βn,i.   
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Priors: 

È�~��È�, �ÊO	 

(P,�~N� (�P, �JËO �,     where (P,� Â 0 for Ì � 1, … , N 

 Our model assumes each experiment arises from a population of experiments. The 

hyper-parameters α0 and β0n represent parameters from the population level dose-response 

curve. 

����	 � È� 
 N (�P�P̧���	¯
PQ)  

Population-level curves are also enforced to be both smooth and monotone non-increasing. We 

set the following hyper-priors for the hyper-parameters α0 and β0n.  

 Hyper-priors: 

È�~��0,1000	 

(�P~N� 0,1000	,     where (�P Â 0 for Ì � 1, … , N 

A vague Normal distribution arbitrarily centered around 0 is used for α0, and vague truncated 

Normal distributions are used for β0’s. We use Inverse Gamma distributions on all variance 

parameters.  

1 �OÎ ~¢>££>�0.01, 0.01	 

1 �ÊO~¢>££>�0.001, 0.001	Î  

1 �JËO ~¢>££>�0.001, 0.001	§  
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4.3.2 Bayesian Posterior Inference 

 One may use Markov Chain Monte Carlo (MCMC) via WinBUGS (Spiegelhalter, 

2002) to simulate samples from posterior distributions of relevant parameters. Interest lies in 

making population (group) level inference. 

 

4.3.2.1 Dose-Response Assessment  

 In dose-response assessment, a quantity of interest is the inhibitory concentration (ICx = 

the concentration producing x % inhibition). Posterior estimates of ICx require a function of the 

parameters from the fitted model. For example, the g
th

 posterior sample of ICx at the population 

level is constructed by finding the root of the following inverse function: 

3 " 1 
 234 ÏN (�P��	¯
PQ) �P̧���G��	�Ð � 0                                      �4.3	 

The superscript (g = 1,…,G) refers to saved MCMC samples used for posterior inference. The 

Bayesian framework provides a straightforward method for propagation of uncertainty, that is, 

the uncertainty in β0n’s will propagate into uncertainty about ICx. Informative summary 

statistics of ICx can include the median and the Bayesian 95% credible interval. The Bayesian 

95% credible interval is constructed with the 2.5 percentile and the 97.5 percentile and can be 

interpreted as an interval within which the parameter ICx lies with probability 0.95. 

 A population mean dose-response curve can be displayed graphically by exponentiating 

posterior estimates of ���	��	 � È���	 
 ∑ (�P��	�P̧��	P̄Q)  on a grid [0, cK]. A median-fitted 

response is recommended on the original scale because of skewness.     

 

4.3.2.2 Drug-Drug Interaction Analysis 

 We use the Bayesian Effect Interaction Index method (Hennessey et al., 2010) to assess 

drug-drug interaction between two agents combined at a fixed dose-ratio. The Bayesian Effect 
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Interaction Index method performs decision making based on the posterior distribution of 

Loewe Interaction Index.  Posterior samples of Loewe interaction index at inhibitory level x % 

(IIx) are constructed by the following function, also known as the isobole equation 

��G��	 � ��G,,l.��	
��G,,��	 
 ¨ $ ��G,,l.��	

��G,,��	                                                          �4.4	 

 

In the numerators, ICx,A+B represents the concentration of agent A in the combination (agent A 

+ agent B) yielding x % inhibition; ρ = doseB/doseA is the fixed dose ratio used in the 

combination study.  In the denominators, ICx,A and ICx,B represent the inhibitory concentrations 

of agent A alone and agent B alone, respectively,  that yield the same x % inhibition. Here, the 

input parameters are considered random and posterior estimates are generated using the method 

described in Section 4.3.2.1.  

  The Bayesian Effect Interaction Index method performs decision making based 

on the posterior distribution of IIx.  The decision rule is to conclude synergy (antagonism) if IIx 

falls below (lies above) one with high probability. Additivity is concluded in the absence of 

synergy or antagonism. The posterior probability that IIx falls below 1 is calculated by 

© � Pr���G « 1 " ¬|+>7>	 i 1¢ N ®Ñ
�Q) °��G��	 « 1 " є²,                            �4.5	 

where I[·] is an indicator function. We use 1 - є, for some small positive є (e.g., 0.05), rather 

than 1, to differentiate synergy from additivity in case IIx is close to 1. We conclude synergy if 

γ exceeds some threshold. For example, we declare "Synergy" if γ > 0.80. The threshold 0.80 is 

chosen based on prior work (Hennessey et al., 2010) that showed a threshold of 0.80 had good 

operating characteristics. Other threshold values that may be considered are 0.90 or 0.70. The 
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threshold used may be context specific, but ultimately one would want a threshold that 

minimizes error and maximizes correct decision making.  

 If interest is in additive agents and synergy is not present, the posterior probability that 

IIx lies above 1 is calculated. 

³ � Pr���G ´ 1 
 ¬|+>7>	 i )Ñ ∑ ®Ñ�Q) °��G��	 ´ 1 
 є²  (4.6) 

We declare "Antagonism" if λ > 0.80 else “Additivity” is declared. 

 

4.4 Simulation Study 

 We conducted a simulation study to evaluate the performance of our proposed Bayesian 

Hierarchical Monotone Regression I-splines in estimating population-level dose-response 

curves. Performance was compared to parametric methods such as the Median-Effect Principle 

(Chou and Talalay, 1984) and to the Bayesian hierarchical nonlinear Emax model (Hennessey et 

al., 2010).  

 We performed simulations for two scenarios: (1) dose-response follows an Emax model 

and (2) dose-response deviates from an Emax model.  For each scenario, we generated dose-

response data where each realization include three independent experiments and ten 

concentration levels (with serial 2-fold changes). Each experiment included three replicates per 

dose level yielding 30 observations per experiment and 90 observations per realization. We 

included the following variation in the generated data: variation within-experiment (between-

replicates), variation between-experiments, variation in the responses of the controls, and 

heteroscedasticity. All variations were set to values similar to those observed in the real data.  

 For Scenario 1, we generated dose-response data for two hypothetical agents, agent A 

and agent B, for which the true dose-response relationship is characterized by an Emax model. 

We generated dose-response data for agent A for which the true response curve is Y = 
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3/[1+(C/10)
3/2

]. This is an Emax model with parameter values E0 = 3, IC50 = 10, and M = 3/2. 

With the idea that experiment-specific curves deviate from the true population mean curve and 

replicates within experiment deviate from their experiment specific mean curve, we proceeded 

with the following: sample experiment specific E0,i from a log-normal distribution to constrain 

values to be positive; sample IC50,i and Mi from a bivariate log-normal distribution to constrain 

positive values and to introduce plausible correlation between the two parameters; use a 

multiplicative error term to ensure positive data points and introduce heteroscedasticity; set the 

within-experiment variation to σ
2
 = 0.01; set the between-experiment parameter variation for 

IC50 to �{zyvO = 16; and allow for minimal variation between-experiments in the controls and the 

shapes of the curves represented by �YvO = 0.02 and ��O  = 0.018. The same was done for agent B 

with the exception that we used different parameter values and smaller between-experiments 

variation represented by �{zyvO  = 0.30.  

 Figures 4.2(a) and 4.3(a) display the true curves for hypothetical agent A (Fig. 4.2a) and 

agent B (Fig. 4.2b) for one sample realization of simulated data. Figure 4.2(b) and 4.3(b) are 

the distributions of the squared errors in estimating IC25, IC50, IC75, and IC85 with fitted 

Bayesian Hierarchical Emax model (green boxplot), Bayesian Hierarchical Monotone I-splines 

(red boxplot), and Median-Effect Principle (blue boxplot). From the boxplots of the squared 

errors, we conclude that the Bayesian Hierarchical Emax model performs the best under 

Scenario 1; however, not much is lost by using the nonparametric Bayesian Hierarchical 

Monotone I-splines model. We find that performance decreases with increasing inhibitory 

levels, but the Median-Effect Principle’s precision tends to decrease at a higher rate compared 

to the Bayesian Hierarchical Emax model and the Bayesian Hierarchical Monotone I-splines. 

The same trend is observed for hypothetical agent B, but at a smaller magnitude associated with 

smaller between-experiment variations.  
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      (a)                                                                    (b) 

Figure 4.2 Simulation results for Scenario 1 hypothetical agent A. (a) The simulation truth 

is that response follows an Emax model Y = 3 / [1+(C/10)
3/2

]. The red dashed curve represents 

the simulation truth for hypothetical agent A, and the points represent one realization from the 

simulated data. (b) The distribution of the squared errors in estimating inhibitory concentrations 

with fitted Bayesian Hierarchical Emax model (green boxplot), Bayesian Hierarchical 

Monotone I-splines (red boxplot), and the Median-Effect Principle (blue boxplot).     
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      (a)                                                                    (b) 

Figure 4.3 Simulation results for Scenario 1 hypothetical agent B. (a) The simulation truth 

is that response follows an Emax model Y = 3 / [1+(C/1.38)
1.37

]. The red dashed curve 

represents the simulation truth for hypothetical agent B, and the points represent one realization 

from the simulated data. (b) The distribution of the squared errors in estimating inhibitory 

concentrations with fitted Bayesian Hierarchical Emax model (green boxplot), Bayesian 

Hierarchical Monotone I-splines (red boxplot), and the Median-Effect Principle (blue boxplot).     
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In Scenario II, we generated dose-response data for which the true response deviates from an 

Emax model. Specifically, we generated dose-response data for agent C, such that the true 

response curve is a weighted sum of two Emax models (double sigmoid model) Y = 0.90* 3/[1 + 

(C/10)
3/2

] + 0.10*3/[1 + (C/50)
3/20

], and for agent D, such that the true response curve is an 

asymmetric sigmoid model (Richard’s function) Y = 3/[1 + (C/5)
1.37

]
1/2

. Figures 4.4(a) and 

4.5(a) display the true curves for hypothetical agent C (Fig. 4.4a) and agent D (Fig. 4.5a), 

respectively, for one realization of the simulated data. The double-sigmoid model provides a 

slight deviation from the Emax model Y = 3 / [1+(C/10)
3/2

]. The asymmetric sigmoid model 

provides a large deviation from the Emax model Y = 3 / [1+(C/5)
1.37

]. From Figure 4.4b and 

Figure 4.5b we conclude that the Bayesian Hierarchical Monotone I-splines provides a gain in 

performance over parametric methods when there is a deviation from a parametric Emax model.  
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                                    (b)                                                                     (c) 

Figure 4.4 Simulation data for Scenario 2 hypothetical agent C. (a) Simulation truth for 

agent C under Scenario 2 where response deviates from an Emax model. The blue dashed curve 

represents the simulation truth for hypothetical agent C where response follows a weighted sum 

of two Emax models (double-sigmoid model) Y = 0.90*3/ [1+(C/10)
-3/2

] + 0.10*3/ [1+(C/50)
-

3/20
]. The points represent one realization from the simulated data. (b) The distribution of the 

squared errors in estimating inhibitory concentrations with fitted Bayesian Hierarchical Emax 

model (green boxplot), Bayesian Hierarchical Monotone I-splines (red boxplot) and the 

Median-Effect Principle (blue boxplot). 
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                                    (b)                                                                     (c) 

Figure 4.5 Simulation data for Scenario 2 hypothetical agent D. (a) Simulation truth for 

agent C under Scenario 2 where response deviates from an Emax model. The blue dashed curve 

represents the simulation truth for hypothetical agent C where response follows a Richards 

function Y = 3/ [1+(C/5)
1.37

]
1/2

. The points represent one realization from the simulated data. 

(b) The distribution of the squared errors in estimating inhibitory concentrations with fitted 

Bayesian Hierarchical Emax model (green boxplot), Bayesian Hierarchical Monotone I-splines 

(red boxplot) and the Median-Effect Principle (blue boxplot). 
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Chapter 5 

Concluding Remarks 

 

 The work presented in this dissertation makes an original contribution to the fields of 

biostatistics, drug discovery, and toxicology. The main contributions of this dissertation are (1) 

parametric and nonparametric regression methods that make sound predictions of in vitro dose-

response relationships, (2) a more precise method to estimate inhibitory concentrations, and (3) 

a novel method that improves the screening process of effective/synergistic agents and reduces 

the incidence of reaching false positive conclusions.   

 It is important to assess in vitro dose response and drug interaction correctly. This is 

because there is a potential risk of toxicity in humans and animals when drugs are administered. 

It is shown that the conventional method, the Median-Effect Principle/ Combination Index 

Method, leads to inefficiency by ignoring important sources of variation inherent in dose-

response data and discarding data points that do not agree with the Median-Effect Principle.  

Rouder and Lu (2005) suggest that unmodeled variability can lead to problematic inference. 

This is in agreement with our simulation study that showed analyses with the Median-Effect 

Principle/Combination Index Method yield a high incidence of type I error and in some cases, 

low power to detect synergy. This can result in resources being allocated to agents with 

undesirable interaction and promising agents being over looked. 

 In Chapter 3 we proposed a novel methodology for dose-response assessment and drug-

drug interaction analysis. The proposed Bayesian Hiearchical Nonlinear Emax model / Bayesian 

Effect Interaction Index method accounts for various sources of variation and uncertainty, 

enabling a more efficient and reliable inference. The proposed Bayesian Hiearchical Nonlinear 

Emax model consists of a modified Hill’s model (Emax model) with an additive residual error on 
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the logarithmic scale. Both the Emax model and the Median-Effect equation conform to the mass 

action law principle. The Median-effect equation is a simpler form for relating dose and 

response; however, ignoring the variation in the control response could render problematic 

inference on the median inhibitory concentration, IC50. We use an Emax model instead of the 

Median-Effect equation (2.1), because the Median-Effect equation assumes that the control 

response is fixed and equal to one.  The Emax model does not assume the control response is 

equal to one and allows one to model the variation in the controls through the parameter E0.  

 Simulation studies show that the Bayesian Hierarchical Nonlinear Emax model provides 

a more reliable estimator of the population-level dose-response curve; the Bayesian hierarchical 

nonlinear Emax model provides a more precise estimator for IC25, IC50, IC75, and IC85 compared 

to meta-analysis with the Median-Effect Principle. We find performance depends on the 

magnitude of variation between experiments, the level of inhibition, and if the parameter 

estimate lies in a flat region of the dose-response curve or requires extrapolation beyond the 

investigating dose levels. For the Bayesian Hierarchical Nonlinear Emax model, we find that 

increasing the sample size from three to six experiments reduces the median squared error as 

much as 50%. This was not observed with meta-analysis Median-Effect Principle. Performance 

with the Medan-Effect Principle did not improve with increasing sample size, suggesting that 

meta-analysis with the Median-Effect Principle does not provide a consistent estimator.  

 The proposed Bayesian Hierarchical Nonlinear Emax model method also allows for a 

priori knowledge to be incorporated into the current analysis. We address a priori knowledge, 

because information about a single-agent’s median inhibitory concentration can often be 

extracted from previous studies or literature. We did not jointly model the single-agents and the 

combination, however, this can be done to borrow strength across agents.  



71 

 

 In Chapter 3 we also introduced the Bayesian Effect Interaction method. The Bayesian 

Effect Interaction method allows one to quantitatively assess interaction between two agents 

combined at a fixed dose ratio. The proposed method bases decision making on the posterior 

distribution of Loewe interaction index and makes a comprehensive and honest accounting of 

uncertainty. The Bayesian Effect Interaction Index method with threshold γ > 0.80 and γ > 0.90 

displayed good operating characteristics under an additive drug combination scenario (sham 

experiment). This was not observed for the Median-Effect Principle, which yielded a high 

incidence of type I error, that is, rejecting additivity when, in fact, additivity is true. Additivity 

agents may be meaningful to drug developers interested in no interaction. 

 The Bayesian Effect Interaction Index method with threshold γ > 0.70 and γ > 0.80 

displayed good operating characteristics under a strong synergistic interaction scenario. The 

more problematic scenario was when the interaction was quantitatively changing, that is, the 

values of the interaction index changed significantly over a narrow range of inhibitory levels. 

Most of the time, the Bayesian Effect Interaction Index method was able to declare synergy 

correctly, but performance declined as the interaction qualitatively changed from synergy to 

additivity to antagonism. Increasing the sample size (number of experiments) from three to six 

improved the interaction analysis over a larger range of inhibitory levels. We recommend 

increasing the number of experiments if it would improve prediction from in vivo or clinical 

studies.  

 Boik et al. (2008) proposed a related nonlinear mixed-effects model. Their model 

differs from ours in several ways. They consider a single experiment with replicate multi-well 

trays performed simultaneously. A random tray effect is only considered on the control 

response parameter E0; IC50 and M are considered fixed effects. Our model considers 

independently repeated experiments that are subject to between-experiment variation. We 
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model the between-experiment variation by allowing the parameters E0, IC50, and M to vary 

across experiments. For drug interaction analysis, Boik et al. (2008) proposed the MixLow 

method. The MixLow is also based on Loewe additivity, but relies on asymptotics for 

inference. Asymptotics rely on large sample theory and may not be appropriate in a small 

sample (number of experiments) setting. Our proposed method does not rely on asymptotics 

and may be more appropriate.  

 The aforementioned methods make use of a parametric structural model (e.g., Median-

Effect equation, Emax model) to characterize the relationship between response and dose. In 

some cases the parametric models do not fit the data. In Chapter 4, we provided an alternative 

non-parametric regression method. The proposed Bayesian Hierarchical Monotone Regression 

I-splines can be useful in dealing with dose-response curves that exhibit plateaus or other local 

deviations from parametric models.  
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Appendix A 

WinBUGS Code for Bayesian Hierarchical Nonlinear Emax model 

 

 In the data list, one would include the vector of measured responses (Y), the vector of 

unique concentration levels (conc), a pointer for looping over replicates (offset), the number of 

experiments (I), and the number of concentration levels (K).  

 

model{ 

   for(i in 1:I){ # loop over experiments  

      for(k in 1:K){ # loop over concentration 

         for(l in offset[(i-1)*K+k]:(offset[(i-1)*K+k+1]-1)){#replica 

            Y[l]~dlnorm(mu.lognormal[i,k], tau.lognormal) 

         } 

         mu.lognormal[j,k]<-log(mu[j,k])-(1/(2*tau.lognormal)) 

         mu[i,k]<-exp(logEmaxHEY[i])/(1+ pow((conc[k]/               

                     exp(logIC50[i])),exp(logm[i]))) 

      } 

      logEmaxHEY[i]~dnorm(theta.logEmax[i],tau.logEmax) 

      logIC50[i]~dnorm(theta.logIC50[i],tau.logIC50) 

      logm[i]~dnorm(theta.logm[i],tau.logm) 

 

      theta.logEmax[i] <- mu.logEmax + xi.logEmax*eta.logEmax[i] 

      theta.logIC50[i] <- mu.logIC50 + xi.logIC50*eta.logIC50[i] 

      theta.logm[i] <- mu.logm + xi.logm*eta.logm[i] 

   } 

   tau.lognormal~dgamma(0.01,0.01) 
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   mu.logEmax~dnorm(0, 0.001) 

   mu.logIC50~dnorm(0, 0.001) 

   mu.logm~dnorm(0, 0.001) 

    

   xi.logEmax~dnorm(0, tau.xi.logEmax) 

   xi.logIC50~dnorm(0, tau.xi.logIC50) 

   xi.logm~dnorm(0, tau.xi.logm) 

 

   tau.xi.logEmax <- pow(prior.scale.logEmax, -2) 

   tau.xi.logIC50 <- pow(prior.scale.logIC50, -2) 

   tau.xi.logm <- pow(prior.scale.logm, -2) 

 

   for(e in 1:I){ 

      eta.logEmax[e]~dnorm(0, tau.eta.logEmax) 

      eta.logIC50[e]~dnorm(0, tau.eta.logIC50) 

      eta.logm[e]~dnorm(0, tau.eta.logm) 

   } 

 

   tau.eta.logEmax~dgamma(.5, .5) 

   tau.eta.logIC50~dgamma(.5, .5) 

   tau.eta.logm~dgamma(.5, .5) 

 

   sigma.logEmax <- abs(xi.logEmax)/sqrt(tau.eta.logEmax) 

   sigma.logIC50 <- abs(xi.logIC50)/sqrt(tau.eta.logIC50) 

   sigma.logm <- abs(xi.logm)/sqrt(tau.eta.logm) 
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   tau.logEmax <- 1/(sigma.logEmax*sigma.logEmax) 

   tau.logIC50 <- 1/(sigma.logIC50*sigma.logIC50) 

   tau.logm <- 1/(sigma.logm*sigma.logm) 

} 
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Appendix B 

WinBUGS Code for Bayesian Hierarchical Monotone Regression I-splines 

 

 In the data list, one would include the vector of log (base e) transformed measured 

responses (logY), the design matrix for the I-splines (I), the number of basis used to estimate 

mean function (Nbasis), a pointer for looping over replicates (offset), the number of 

experiments (E), and the number of concentration levels (K).  

 

model{ 

   for(e in 1:E){  # Loop over Experiments 

      for(k in 1:K){  # Loop over Concentration 

         for(l in offset[(j-1)*10 + k]:(offset[(j-1)*10 + k + 1]-1)){  

            logY[l]~dnorm(mu[j,k],tau.y)    

         } 

         mu[j,k]<- alpha[j]- beta[j,1]*I[k,1] - beta[j,2]*I[k,2] -    

                       ...- beta[j,N]*I[k,Nbasis]  

      } 

   }  

   for(experiment in 1:E){ 

      alpha[experiment]~dnorm(alpha0,tau.alpha) 

   } 
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   for(experiment in 1:E){ 

      for(N in 1:Nbasis){  

         beta[experiment,N]~djl.dnorm.trunc(beta0[N], tau.beta[N], 

                              0.0, 1.0E-6) 

      } 

   } 

   alpha0~dnorm(1.0,1.0E-3) 

   for(N in 1:Nbasis){ 

      beta0[N]~djl.dnorm.trunc(0.0,1.0E-3,0.0,1.0E-6) 

   } 

   tau.y~dgamma(1.0E-3,1.0E-3) 

   tau.alpha~dgamma(1.0E-3,1.0E-3) 

   for(N in 1:Nbasis){ 

      tau.beta[N]~dgamma(1.0E-3,1.0E-3) 

   } 

} 
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