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ABSTRACT

Credit default swaps, a traded financial instrument that provides credit protection
in exchange for a periodic premium, is at the forefront of the exponential growth in the
credit derivatives market, which has revolutionized the way credit risk is managed in
recent years. This project offers a review into the application of option pricing theory in
the valuation of default risk under a plain vanilla analysis and introduces a theoretical
model that uses barrier options as a potential and perhaps more accurate tool for assessing

default risk and its implications for valuing credit default swaps.



CHAPTER 1

INTRODUCTION

1. A. WHAT IS A CREDIT DEFAULT SWAP?

A Credit Default Swap (CDS) is a traded financial instrument that provides
protection against credit risk in exchange for periodic premium payments. It is analogous
to an insurance contract between two parties, in which the insurance buyer pays a
premium in exchange for loss payments. The company or entity referenced in the CDS is
referred to as the reference entity, and a default by the reference entity is known as a
credit event. In the case of a CDS, the protection buyer makes periodic payment to the
protection seller in exchange for the right to sell a particular bond issued by the reference
entity for face value upon the occurrence of a credit event. The bond is referred to as the
reference obligation and the total face value of the bond that is specified in the CDS is
known as the swap’s notional principal.

An example will help illustrate the mechanics of a CDS. Suppose the protection
buyer enters into a 5-year CDS paying an annual premium of 300 basis points. The
swap’s notional principal on which protection is purchased is $100 million. Thus,
assuming there is no default, the protection buyer will then make annual payments of $3
million (0.03 x $100 million) for the next 5 years. However, in the scenario that a credit
event is triggered due to a default by the referenced entity and that the recovery rate is
30%, the protection seller will have to make a loss payment to the protection buyer in the
amount of $70 million ((1-30%) x $100 million). Thus, the protection buyer is part of the
fixed leg of the swap and the protection seller is part of the floating or contingent leg of

the swap. The diagram below is an example of a typical CDS cash flow structure.
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1. B. SETTLMENT PROCEDURES FOR CDS

After the triggering of a credit event, there are two widely used settlement
procedures to determine the loss payments on the floating or contingent leg of the swap.
The first option is physical settlement and the second option is called cash settlement. In
the case of a physical settlement, the protection buyer delivers the defaulted bond or any
deliverable obligations of the reference entity as specified in the CDS in exchange for the
total face value of the bond. In a cash settlement, a dealer poll is usually conducted to
determine the recovery rate or market value of the asset immediately after default, the
loss payment by the protection seller is then determined by subtracting the market value
of the bond from the total face value of the bond. This value is known as the loss given
default (LGD) and is calculated as total face value times (1-R), where R is the recovery

rate.
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1. C. ISDA AND ITS ROLE IN THE CREDIT DERIVATIVES MARKET

Most CDS transaction are governed and executed based on a legal framework
provided by the International Swap and Derivative Association (ISDA). Documentations
evidencing CDS transactions are based on confirmation document and legal definitions
set forth by ISDA. In May 2003, the 2003 ISDA Credit Derivatives Definitions took
effect, expanding and revising the 1999 Definitions and Supplements. The Definitions
provided a basic framework for documentation, but precise documentation remains the
responsibility of the parties involved, as a CDS is a bilateral contract.'

These Definitions were developed based on case histories of contractual disputes
and defaults in the past. Standard Credit Event languages are provided as part of the
ISDA Definitions. Credit event languages are critical in the CDS contract because it
determines the event or condition under which a loss payment will be due from the
protection seller. In the US corporate market, where the reference entity is a corporation,

the most common credit events are Bankruptcy, Failure to Pay, and Restructuring

' Glen Tasker, Credit Default Swap Primer, 2" Edition (Bank of America, 2006) 7-8




(defined in table below). Additionally, if the reference entity is a sovereign, credit events

might include Repudiation/Moratorium or even Obligation Acceleration if the reference

entity is an emerging market. In the instance that no pre-specified credit event occurs

during the life of the transaction, the protection seller receives the periodic premium

payment in compensation for assuming the credit risk on the reference entity. Conversely,

if a credit event occurs during the life of the transaction, the protection buyer receives a

form of loss payment depending on the settlement procedure of the contract

(cash/physical delivery). The protection seller receives only the accrued periodic payment

up to and including the Event Determination Date (effectively the date a credit event

occurs).2

Standard Credit Events and its definitions are listed in the table below:*

Bankruptcy

A corporation's insolvency or inability to pay its debts. Not
relevant to sovereign issuers. 2003 Definitions explicitly
require the inability to pay debts to be part of a judicial,
regulatory or administrative proceeding.

Failure to Pay

A reference entity’s failure to make due payments in the form
of interest or principal. Failure to Pay takes into account any
applicable grace period and usually sets a minimum dollar
threshold of $1 million.

Restructuring

A change in the debt obligation's terms that is adverse to
creditors, such as reduction in interest rate or loan principal,
or extension of final maturity. The US investment grade
market uses Modified Restructuring. The US high yield
market sometimes uses No Restructuring (i.e., Restructuring
does not constitute a credit event).

Obligation Acceleration

When an obligation has become due and payable earlier than
normal because of a reference entity's default or similar
condition. Obligation Acceleration is subject to a minimum
dollar threshold amount.

Repudiation/Moratorium

A reference entity’s rejection or challenge of the validity of its
obligations.

2 Glen Tasker, Credit Default Swap Primer, 2" Edition (Bank of America, 2006) 7-8)

3 1bid. 13-14




1. D. MARKET DEVELOPMENT OF CDS

Standard documentation produced by the International Swaps and Derivatives
Association (ISDA) for trading CDS in 1998 preceded the rapid growth of the CDS
market and facilitated heavy trading volume. The participants in the CDS market include
hedge funds, insurance companies, and financial institution acting as both protection
sellers and protection buyers. Aside from managing credit exposure, the main motivation
for participating in the CDS market is to the opportunity to employ significantly higher
leverage and thus achieve higher yield relative to other markets. CDS are customized
products with any maturity but are mainly traded in the in the Over the Counter market
with 5-year maturity. According to ISDA, the total notional value of debt referenced by
CDS grew from $630 million in 2001 to over $12 billion in 2005. The most liquid CDS
contracts are usually written on reference entities with credit ratings that are low
investment grade.*

Most of the growth in the market has been concentrated in the single-name CDS,
but other areas, such as the CDX credit index market, and other structured credit
products, such as synthetic collateralized debt obligations (SCDO) have grown
tremendously. The size of the single-name CDS market is estimated to be at $7.7 trillion
for 2006, compared with $1.8 trillion in 2003. The SCDO market grew to $3.9 trillion in
2006, from $639 billion in 2003, and the index market grew to $2.2 trillion in 2006, from

$319 billion in 2003.°

4 Glen Tasker, Credit Default Swap Primer, 2" Edition (Bank of America, 2006) 7-8
5 .
Ibid.




1. E. OBJECTIVES OF THE STUDY

Despite the exponential growth of the CDS market, there is no standardized
approach in its valuation. A key parameter in the valuation of CDS is the default risk or
default probability associated with the reference entity on the contract. Thus, the lack of a
universal model to estimate default risk gives rise to the difficulties in valuing credit
default swaps.

The purpose of this research paper is to provide a brief overview of the theoretical
literature in credit risk, with particular emphasis on the structural model of credit risk
introduced by Robert Merton in the 1970’s that utilizes option pricing theory to evaluate
default risk under a “plain vanilla” or simplified analysis. Building from Merton’s
framework, I then introduce a theoretical model that relaxes some of the assumptions or
limitations inherent in the Merton model. The organization of this paper is divided into
two main components. The first part of the paper offers a review into the plain vanilla
analysis of default risk and its implications in valuing CDS. The second part of the paper
introduces the theoretical model and its applications in assessing default risk and valuing

CDS.
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CHAPTER 2

LITERATURE REVIEW

The purpose of this section of the paper is to offer a review into the literature of
default risk and credit default swaps. Before the introduction of credit default swaps, the
study of default risk and credit risky instruments, such as corporate securities have
received tremendous attention in the literature. The development of the theoretical
literature in credit risk has indicated that the modeling of credit risk is divided into many
forms. Among them was the structural form, which was introduced by Robert Merton in
the 1970’s. Structural models are based on a theory of option pricing to derive a
mathematical probability that a firm will default on its debt. The concept of the model is
based on the view that the capital structure of the firm can be viewed as option positions
on the assets of the firm. For example, this approach recognizes that the limited liability
equity of a firm can be modeled as a long position on a call option on the firm’s assets.
The call option will be exercised if the assets of the firm exceed the exercise price, which
is the face value of the firm’s debt. Similarly, the firm experiences a default when the
assets of the firm drop below the exercise price, in which case, the call option will expire
worthless and the bondholders of the firm are entitled to the remaining assets of the firm.
Thus, we can estimate the default probability as the probability that the call option will
expire out of the money.

Furthermore, the model became a major focus of future studies. In light of the
Basel II accord, Jacob and Gupta (2004) presented a comparison between the
standardized approach and Internal Rating Based (IRB) approach in estimating risk

capital requirements. Under the standardized approach, Jacob and Gupta noted that
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default probability estimation and, thus risk capital requirements were based on credit
rating assigned by external rating agency. On the other hand, IRB approach focused
mainly on using some form of credit risk models to estimate default probability, which is
then used to calculate the risk requirement of banks. Using a sample of Indian firms,
Jacob and Gupta presented an application of the IRB approach using option-pricing
theory introduced by Black and Scholes (1973) and the Merton (1974) framework to
estimate default probabilities.

An alternative to the structural approach using option-based information is the
traditional approach, which uses historical accounting information to estimate default
risk. In 2006, Papanastasopoulos suggested a hybrid approach to default risk modeling
that combines accounting based information used in the traditional approach with option
based information used in the structural approach. The purpose of this hybrid approach,
as illustrated by Papanastasopoulos in a binary probit regression model, will serve to
overcome some of the shortcomings evident in the traditional and structural approach.
The results of this study indicated that although market information as used in an options
approach can be extremely useful in estimating default probability of listed firms, its
estimation and predictive power will be greatly enhanced when combined with
accounting based measures in a hybrid model.

Although there are many different forms of credit risk models, most of them can
arguably be divided into either the structural form (uses application of option pricing
theory) or the reduced form. Under the reduced form approach, default probabilities are
estimated using the market prices of risky bonds. This approach is based on the

assumption that a risky bond can be broken down into a risky component and a risk-free
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component. The price of a risk-free bond is the present value of the bond’s certain or
risk-free future cash flows. On the other hand, the price of a risky bond is the present
value of its uncertain future cash flows, which reflects default probability of the issuer
and an assumed recovery rate in the event of default. Thus, a reduced form model derives
an “implied” default probability from the price difference between a risky bond and an
equivalent risk-free bond. In practice, the reduced form model is a lot easier to implement
than the structural model, default probabilities can be readily estimated using either bond
prices or spread data gathered from the growing CDS market. Despite the advantages of
the reduced form model, there are also disadvantages. It is important to recognize that
default probabilities from reduced form models are highly dependent upon the assumed
recovery rate, which is also difficult to assess in practice. Additionally, the model might
run into a problem when market prices of debt are not readily available, such as in the
case of distressed credits.

Arora, Bohn, and Zhu (2005) presented an analysis between the structural form
and the reduced form models of credit risk. They offered a brief literature review into the
original structural model based on the basic Merton framework, and the various
extensions provided to the model. Their research is based on an empirical analysis of two
structural models, (basic Merton and Vasicek-Kealhofer (VK) models) and one reduced
form model (Hull and White (HW)) of credit risk. The VK model is a more sophisticated
extension of Merton’s model. Their research highlighted the relative value of the
structural models versus the reduced form models based on their ability to accurately
predict CDS spread. Their study also explored the ability of the models to discriminate

defaulter and non-defaulters. The conclusion of their study indicated that the HW model
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(reduced form) was more effective in explaining CDS spread than the basic Merton
model when a given firm issues a large number of bonds. However, the VK model
(sophisticated structural model), for the most part, outperformed both the HW model and
the basic Merton model in discriminating defaulters from non-defaulters and in
explaining CDS spreads. Overall, the conclusion of the study suggested that a simple
structural model is not enough, appropriate modifications to the framework can produce
significant value. On the other hand, the effectiveness of reduced form models depends to
a great extent on the quality and quantity of data available, which means many issuers,
will not be modeled well unless they have enough traded debt outstanding.

The exponential growth of the credit derivatives market in recent years,
particularly in credit default swaps have greatly expanded the amount of literature on this
subject area. For example, the increasing liquidity in the CDS market has allowed
empirical studies into the relationship between CDS spreads and credit risk. Das and
Hanouna (2006) suggested that CDS spreads are better indicator of credit risk than bond
spreads . In 2004, Hull, Predescu, and White examined the effects of credit rating
announcements on CDS spreads, and the ability of CDS spreads to anticipate credit rating
announcements. Firstly, they concluded that credit rating announcement, such as review
for downgrades contained significant information that produced changes in CDS spreads
but announcements, such as negative outlook and downgrades did not. Secondly, they
concluded that there is anticipation of all three types of credit announcement by the credit
default swap market.

The purpose of the model presented on this paper builds on the theoretical

literature conducted on default risk, particularly on addressing the shortcomings of the
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basic structural model and offers a theoretical argument on valuing credit default swaps.
As a motivation for the theoretical model presented in this paper, prior research in the
literature directly relating to its applicability was introduced by Ericsson and Reneby
(1998) and Skinner and Townend (2002). By relating to the Black and Scholes (1973)
and Merton (1974) framework, Townsend and Skinner (2002) showed how credit default
swaps appeals to put-call parity and how it can be viewed as a put option. Thus, using
linear regression containing five variables essential to option pricing theory, Townsend
and Skinner concluded that at least 3 or 4 of these variables are also important in pricing
credit default swaps. Namely, the statistically significant variables are: risk-free rate,
yield on the reference bond, maturity and volatility.

Furthermore, Ericsson and Reneby (1998) illustrated how certain ideas of barrier
contracts can be applied in the valuation of corporate securities. Following certain
assumptions, Ericssion and Reneby showed how corporate securities can be valued as a
portfolio of a barrier options by replicating payoffs of corporate securities with
combinations of the three building blocks. According to Ericsson and Reneby, the firm
can default if the asset value of the firm drops below a certain level (reorganization
barrier) or if the value of the firm is below the face value of debt at debt maturity.
Ericsson and Reneby suggested different economic and judicial ways to determine and
interpret the reorganization barrier, usually related to the value of outstanding debt, and
liquidity of the firm. Furthermore, Ericsson and Reneby suggested various payoffs for
both creditors and equity holders in the event of default based on the remaining assets of

the firm. Thus, the theoretical model presented in this paper combines the ideas

15



introduced by Skinner and Townend (2002) and Ericssion and Reneby (1998) and offers

a different perspective into the valuation of default risk and credit default swaps.

CHAPTER 3

PLAIN VANILLA VALUATION MODEL APPLICATIONS

3. A. EUROPEAN PUT AND CALL OPTIONS

A European call option is a financial instrument that gives the holder the right but
not the obligation to purchase a particular asset at a predetermined price (exercise price)
at a predetermined time in the future (maturity). For example, imagine a European call
option on a company’s stock with a strike price of $30 and a maturity date of 5 years.
Therefore, if you own or long the call option, you have the right but not the obligation to
purchase that company’s stock 5 years from now for a price of $30. Similarly, a
European put option gives the holder the right but not the obligation to sell a particular
asset at a predetermined price (exercise price) at a predetermined time in the future

(maturity).

3. B. BLACK-SCHOLES OPTIONS PRICING MODEL

One of the most widely used option pricing model is the Black-Scholes Options
Pricing Model, developed in the 1970’s. The model prices options as a function of five
key inputs:

Stock price (So)

Risk-free return rate (ry)

Variance of the stock return

Time to maturity of the contract (T)
The exercise price of the option: (X)

Nk W=

16



The derivation of the model is based on the following assumptions:

1. There exist no restrictions on short sales of stock or writing of call options.

2. There are no taxes or transactions costs.

3. There exists continuous trading of stocks and options.

4. There exists a constant riskless interest rate that applies for both borrowing and
lending.

5. Stock prices are continuous.

6. The underlying stock will pay no dividends during the life of the option.

7. The option can is a European Option that can only be exercise on its maturity date.
8. Shares of stock and option contracts are infinitely divisible.

9. Stock prices are assumed to be normally distributed and can take on any positive value
at any time.

Thus, if the assumptions hold, the model states the price of an option can be determined

using the following equation and the five inputs described earlier.
C,=S,N(d,)— Xe "N(d,)

P,=Xe "N(~d,)-S,N(~d,)

In(S,/ X)+(r+c’/2)T
d=
o T
] X -o* /2T
d2= l’l(SO/ )+(l" o /2) Zdl—O'\/T

oT

3. C. PUT-CALL PARITY

The put-call parity is a simple relationship between the call and put values that
must hold to avoid the occurrence of arbitrage opportunities. This relationship allows us
to determine the price of a call given the price of a put written on the same underlying
with the exact same terms, and vice versa. If we assume that there exist a call option

(with a current price of Cy) and a put option (with a current price of Py) written on the

% John L. Teall, FIN 396Q Coursepack (Unpublished:), 32-33
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same underlying with the same exercise price (X) and maturity date of (T), the put-call

parity formula states that the following equation must hold in order to prevent arbitrage:

Co+Xe " =P +S,

In other words, the relationship states that a portfolio consisting of one call with an
exercise price of X and a risk-free zero-coupon note with a face value equal to the
exercise price (X) must be equal to the second portfolio consisting of a put written with
the same exercise price and a share of the stock underlying both the call and put options.
Therefore, by manipulating the formula, we can calculate the price of a call if we are

given the price of a put with the exact same terms:’
-rT
C,=P,+S,—Xe
Similarly, we can infer the price of a put if we are given the price of a call with the exact

same terms:
P,=C,~S +Xe "
3. D. APPLICATION OF OPTION PRICING THEORY ON CORPORATE
SECURITIES UNDER A PLAIN VANILLA B-S ANALYSIS

In the early 1970’s, Fischer Black, Myron Scholes, and Robert Merton were the
pioneers of option pricing and they showed that options can be used to characterize the
capital structure of the firm (known as the Merton framework). By using options to
characterize the capital structure of the company, the Merton framework showed that

option pricing theory can be used to value corporate securities, such as limited liability

7 John L. Teall, FIN 396Q Coursepack (Unpublished ), 32-33
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equity and risky debt. Today, this model is widely used by financial institutions to
evaluate a company’s credit risk.®

In order to understand how option pricing can be applicable, we have to
understand the relationship between a firm’s capital structure and options. The key to the
analysis is that creditors and shareholders of a corporation can be viewed as having
positions on options written on the firm’s assets. To illustrate, consider a company that
has assets that are financed with zero-coupon bonds and equity. Suppose that the bonds
mature in five years at which time a principal payment of X is required. Furthermore,
assume the company pays no dividends. In the case that the firm performs well and the
assets are worth more than X in five years, the equity holders will choose to repay the
bondholders and keep the remaining assets of the firm.

On the other hand, if the firm performs poorly and the assets are worth less than
X, the equity holders will choose not to repay bondholders and declare bankruptcy,
leaving the bondholders with ownership of the firm. The value or the payoff for the
equity holders in five years is max(Ar-X, 0), where At is the asset value of the firm in
five years or debt’s maturity. This payoff is the same as the payoff of a European call
option. Thus, the equity holders of a corporation can be viewed as having a long position
in a European call option written on the firm’s assets with an exercise price of X or the
face value of debt. The total debt value of the firm can then be referred to as the exercise
price. On the other hand, the payoffs for the bondholders must then be min(Ar, K) in five
years, which is the same as X — max(X-Ar, 0). The second part of the payoft is the same
as a European put option. Thus, the bondholders of a corporation are viewed as having a

combination of riskless debt and a short position on a put option written on the firm’s

¥ John C. Hull, Fundamentals of Futures and Options Markets, 5™ Edition (New Jersey: Pearson), 215
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assets. This is true because the shareholders, in a sense, have the right to put the firm’s
assets on to the creditors when total debt level exceeds assets (bankruptcy).”

To summarize, if C and P are the values of the call and put options, respectively
then:

Value of equity = C
Value of debt = PV(X) — P

The value of the company’s assets must be equal to equity plus debt or Assets = C +
PV(X) — P. By rearranging the equation, we have C + PV(X) = Assets + P, which is
identical to the put-call parity relationship, where “Assets” and PV(X) is analogous to Sy
and Xe™" in the original put-call parity formula, respectively. Thus, the option positions
described suggest that corporate securities, such as limited liability equity and risky debt
can be valued using option pricing methodology, such as the put-call parity formula or
Black-Scholes Model.

3. E. ESTIMATING DEFAULT PROBABILITIES USING OPTION PRICING
THEORY

As discussed earlier, corporate securities such as limited liability equity and risky
debt can be viewed as options on the firm’s assets, and can therefore be valued using
option pricing models. Based on the Black and Scholes (1973) and Merton (1974)
framework, equity of a firm can be valued in the form of a call option on the firm’s
assets. Default probabilities can then be derived from the option price or equity value of
the firm. The model assumes that a company has a certain amount of zero-coupon debt
that will become due at a future time T. The company defaults if the value of its assets is

less than the promised debt repayment at time T. The equity of the company is a

? John C. Hull, Fundamentals of Futures and Options Markets, 5" Edition (New Jersey: Pearson), 215

20



European call option on the assets of the company with a maturity T and a strike price
equal to the face value of the debt. In the Merton framework the payment to the
shareholders at time T, is given by Er = max (At — D, 0). This shows that the equity is a
call option on the assets of the firm with strike price equal to the promised debt payment.

Using Black-Scholes Options Pricing Model, the current equity price is therefore:'?

Ey=AygN (d;) - De’" N(d>), which is equivalent to C,=S,N(d,)— Xe "N(d,)

A o’
In(—%)+(r+—-T
(D) (r 2)

d= r

: oNT
d,=d—oc T
Where:

Ey - Current market value of equity

Ay - Implied value of assets of the firm

D7 = Debt payable at the end of time horizon T

T = Time horizon

N(d;)- Standard Normal Distribution value corresponding to d1
N(d,) - Standard Normal Distribution value corresponding to d2

o 2 = Implied variance of assets

Under the Black-Scholes Options Pricing Model, the probability of the call option
being in-the-money at maturity (producing a positive payoff) is equivalent to N(d,),
which means the shareholder will decide to exercise the option. Therefore, 1-N(d,) must
be the probability that the option will expire out-of-the-money or worthless at maturity,
which means the shareholders will decide not to exercise their option. As discussed

earlier, the only situation, in which the shareholders will not exercise their option, is

1 Joshy Jacob and Piyush Gupta, Estimation of Probability of Default Using Merton’s Option Pricing
Approach: An Empirical Analysis, (Indian Institute of Mangement, 2002)
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when the asset value of the firm drops below the face value of debt, forcing the firm into
immediate default. Thus, 1 — N (d2) also represents the probability of default.
3. F. VALUING CDS POSITIONS BASED ON A PLAIN VANILLA B-S
ANALYSIS OF CDS TERMS

Imagine a very simple setting where the payoff of the CDS contract is contingent
on the default of the referenced entity, which can only occur at debt’s maturity when
asset value drops below the face value of debt. Under this framework, the CDS contract
can be valued using a plain vanilla B-S analysis. As a bondholder of a leveraged firm
under the Merton framework, he/she is holding to a risk-free component and a risky
component of debt. If the bondholder enters into a CDS contract as a protection buyer on
the referenced bond, he/she is insured against default of the debt. In other words, by
entering into the CDS contract, the bondholder has essentially removed or offset the risky
component of the bond. Thus, the value of the CDS contract is analogous to the value of
the risky component of the referenced debt. Recall that debt can be broken down into two
components, a risk-free component and a risky component (Debt = Risk-free component
+ Risky Component), where the risk-free component is the face value of debt and the
risky component of debt can be viewed as a form of put option on the firm’s assets. In
other words, the equation can be rewritten: Debt = Par — Put Option. We illustrated
earlier that under a plain-vanilla analysis, corporate securities represent option positions
on the firm’s assets, which conforms to put-call parity and can be calculated by applying

the Black-Scholes Model.
C + PV(Par) = Assets + P is analogous to C,+Xe™'" =P +S,

Where,
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C=Cy=Equity

PV(Par) = X°™" present value of the risk-free component of debt

Assets = Sy

P = Py = Risky component of debt

We can therefore assess the value of a CDS position by determining the value of the put
option under a B-S analysis.

The value of the CDS position depends on the value of the put option, which is
linked to the asset value of the firm. For example, as the value of the firm declines, or its
credit deteriorate; the value of the put option will increase in value, which will increase
the position value of the protection buyer. Thus, the value or cost to neutralize (offset) a
CDS position can be determined based on the value of the put option at a point in time. It
is important to note that under market convention, CDS prices are quoted as spreads on a
per annum basis (i.e. 200 basis points on a reference notional amount of $100 million
over 5 years, which is similar to an annuity of $2 million dollar per year for the next 5
years). However, in contrast to market convention, our analysis illustrates the value of the
put option as the value of the CDS contract in present value terms (present value of the
comparable annuity), which is equivalent to the price quoted under market convention
but in different form. Bear in mind that the value of the CDS contract will depend on the
credit events terminology on the contract, which is usually much more complicated than
this simple setting where our single credit event is restricted to default occurring only at
maturity. In reality, default can occur at any time prior to maturity, and in different ways,
such as a breach of financial covenants or technical insolvency. In order to accommodate

and incorporate the various forms and timing of default, we must extend this plain vanilla

analysis to the use of more exotic options to value corporate securities and obtain a more
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“realistic” value for the risky component of debt. The following is a list of key
assumptions in this plain vanilla analysis of CDS positions:
Key assumptions in our modeling of CDS positions
Under plain vanilla analysis:
1. Credit Event is limited to default occurring at debt’s maturity, where default is
defined as asset value dropping below face value at debt’s maturity.
2. Recovery for the reference obligation is equal to the asset value of the firm
upon default
3. Default risk or risky component of debt is equal to European put option.
4. A CDS position is analogous to the risky component of debt.
5. The payoff of the CDS is thus equivalent to the payoff of a European put option

Max (X-Ay, 0)
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CHAPTER 4

INTRODUCTION TO THEORICAL MODEL

4. A. INTRODUCTION TO BARRIER OPTIONS

Barrier options are a type of exotic options that are categorized as either knock-
out options or knock-in options. Knock-out options ceases to exist when the price of the
underlying asset reaches a certain level. On the other hand, knock-in options come into
existence when the underlying asset price reaches a particular level. The four common
types of knock-out options are down-and-out call options, up-and-out call options, down-
and-out put options, and up-and-out put options. An up-and-out call option can be
defined as a European call option that ceases to exist once the price of the underlying
reaches a certain level that is set above the asset price at inception. A down-and-out call
option can be defined similarly but with the barrier level set below the asset price at
inception. Down-and-out put options and up-and-out put options are defined similarly
with barrier level set below and above asset price at initiation, respectively. The prices of
barrier options are related to regular options. For example, the price of an up-and-out call
option plus the price of an up-and-in call option must be equal to the price of a regular
European option."' The following is the payoff structures for the various forms of barrier

options:

' John C. Hull, Fundamentals of Futures and Options Markets, 5™ Edition (New Jersey: Pearson), 434
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Types of barrier options: t<T

St = asset’s value at maturity

S¢ = asset’s value prior to maturity

S4 = lower barrier level

Su = upper barrier level
Down-and-out Call (If S¢ > Sy, then max(St -X, 0), 0)
Up-and-out Call (If S¢ <S,, then max (St -X, 0), 0)
Down-and-out Put (If S¢ > S4, then max (X- St, 0), 0)
Up-and-out Put (If S¢ < Sy, then max (X- St, 0), 0)
Down-and-in Call (If S¢ > S4, max (St -X, 0), 0)
Up-and-in Call (If S¢ <S,, then 0, max (St -X, 0))
Down-and-in Put (If S¢ > S4, then 0, max (X- Sy, 0))
Up-and-in Put (If S¢ <S,, then 0, max (X- Sy, 0))

4. B. INTRODUCTION TO MODEL

As a motivation, the purpose of the model is to capture the various timing of
default associated with corporate securities, which is ignored in the plain vanilla analysis
under the Merton’s framework that assumes default can only occur at debt’s maturity.
Instead of modeling default risk using European put options, the model uses barrier
options as a proxy to model the risk of default occurring on and prior to debt’s maturity.
In the plain vanilla analysis, default can only occur at debt’s maturity when asset value at
maturity (Ar) is below the face value of debt (X). However, default can also occur prior
to debt’s maturity, such as technical insolvency, which can occur at any point in time
when asset value drops below face value of debt. Furthermore, bondholders of leveraged
firm are usually protected through financial covenants that place certain restrictions on
the financial condition of the firm. Violations of such covenants will force the firm into
immediate default. For example, bond indentures usually include a financial covenant on

the firm’s debt ratio. A firm’s debt ratio, usually calculated as total debt/total assets, is a
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measure of the firm’s leverage. A common financial covenant in most bond indentures is
to prevent the debt ratio from going beyond a certain number. A table of possible defaults

captured by the model is provided below:

Technical A firm is considered to be technical insolvent at any point in time
Insolvency when its asset value drops below the total face value of debt.
Breach of financial | A firm is forced into immediate default when a financial covenant,
covenants such as debt ratio (total debt/total assets) is breached.

Recall that under the Merton framework and the plain vanilla analysis, the risk of
default at debt’s maturity is captured with the use of European put options. Under such an
analysis, the stockholders always have the right to “put” the assets of the firm onto the
bondholders, which is usually exercised when the firm defaults or when asset value at
maturity is below face value of debt. Thus, bondholder’s payoff is characterized as X —
max(X- Ar, 0), where X is the face value of debt and At is the asset value at debt’s
maturity. The second component of the payoff, max (X- Ar, 0), represents the default risk
of the firm, which is modeled using a European put option. In reality, as discussed earlier,
default can occur at any point prior to maturity when asset value drops below a certain
value, or in the case of technical insolvency, when it drops below face value. This value
or threshold is analogous to a barrier level (Ag), which triggers a default when it is hit.
Thus, bondholder’s payoff can now be redefined as X if there is no default and X — max
(X- Ar, 0) if default occurs when At < Ag, where A, is the asset value of the firm at any
point in time prior to maturity and Ap is the barrier level. This payoff structure is
analogous to the payoft structure of a European down-and-in put option (If S; > Sy, then
0, otherwise, max(X-ST, 0)), where as S, St, and S4 is defined similarly as A, At, and

Ag, respectively. Thus, the model assumes that if the payoff structures are the same then
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the value of the risky component of debt must equal to the value of a down-and-in put
option. The following is table of bondholder’s payoft structure under scenario #1, where
default can occur only at maturity and scenario #2, where default can occur on and prior

to maturity.

Scenario #1 X —max (X- Ar, 0)

Scenario #2 X if there is no default and X — max (X-
Ar, 0) if default occurs when At < AB

The barrier level or default threshold can be manipulated to model the different
default possibilities. The barrier level is usually a multiple of X or the face value of debt.
For example, default under technical insolvency can be modeled by setting the barrier
level equal to the face value of debt. Similarly, default under a breach of financial
covenant, such as a violation of the debt ratio can be modeled by setting the barrier level
as a multiple of X that is usually greater than 1. For simplicity, assume that bond
indentures for all leveraged firms contain a financial covenant that restricts them from
having a debt ratio of more than 0.50, which means total asset value must be at least 2x
total debt level. The firm will be forced into immediate default at any point if asset value
falls below 2x debt level. By definition, default under technical insolvency occurs when
asset value drops below total debt. However, in reality there is usually a lag or time
interval before bondholders realize that asset value has dropped. Thus, default will occur
when asset value falls below total debt level by a certain amount. In this special or
“extreme” case of technical insolvency, the barrier level is set at a multiple of less than 1.

The following table summarizes the various possibilities of default and trigger levels.
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Default possibilities: Trigger levels:

Technical Insolvency Ag=X

Breach of financial covenants Agp = multiple of X, where multiple is > 1

Special case (“extreme”) of technical
insolvency

Ag = multiple of X, where multiple is < 1

In summary, the model assumes that default can occur at any point in time prior to
maturity where events of default include technical insolvency (including special case)
and breach of financial covenants. Under this framework when default can occur at any
point prior to maturity, bondholders’ payoff is transformed from:

X —max (X- Ar, 0) ----------m--—-- - X, or X - max (X - Ar, 0) if default occurs.

The risky component of the new payoff structure is analogous to a European down-and-in
put option. Thus, under this argument, the model assumes that the value of the risky
component of debt must be equal to the value of a down-and-in put option. The following
is a table that summarizes the various events of default and bondholders’ payoff structure
under triggering (default) and non-triggering scenarios (non-default). An illustration of

the model is provided in the appendix attached to this report.

Payoff structures under Payoff structure under
Events of Default: Trigger Levels non-triggering scenario trigger scenario
(no default, A, > Ap) (default, A; < Ag)
Default can only occur at N/A X —max (X- Ar, 0) X —max (X- A, 0)
maturity (plain vanilla
analysis)
Technical Insolvency Ag=X X X -max (X - A, 0)
Breach of financial Ag = multiple of X, where X X -max (X -Ar, 0)
covenants multiple is > 1
Special case of technical Ag = multiple of X, where X X - max (X - Ar, 0)
insolvency multiple is <1

29




4. C. VALUING CDS POSITIONS UNDER BARRIER OPTIONS
MODEL/FRAMEWORK

Under this analysis, the barrier option now represents a more “realistic” value of
the risky component of debt that accommodates default occurring prior to maturity
compared to the plain vanilla analysis. This value is also equivalent to the value of a CDS
referencing the leveraged firm. Recall that under the plain vanilla analysis, the credit
event language is limited to default occurring only at maturity when asset value is below
face value of debt. Under the barrier model, key assumption #2 is relaxed and credit
event languages can now be extended to include technical insolvency and breach of

financial covenants.

CDS under analysis type: Credit Events:
Plain vanilla analysis 1. Asset value < Total debt level at
maturity
Barrier Model analysis 1. Technical Insolvency
2. Breach of financial covenants

Key assumptions in our modeling of CDS positions
Under plain vanilla analysis:

1. Credit Event is limited to default occurring at debt’s maturity, where default is
defined as asset value dropping below face value at debt’s maturity.

2. Recovery for the reference obligation is equal to the asset value of the firm
upon default

3. Default risk or risky component of debt is equal to European put option.

4. A CDS position is analogous to the risky component of debt.

5. The payoff of the CDS is thus equivalent to the payoff of a European put option

Max (X-Ar, 0)
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Under Barrier Options Model analysis:

1. Credit Events are limited to default occurring on and prior to debt’s maturity,
where default is defined as technical insolvency or breach of financial
covenants.

2. Recovery for the reference obligation is equal to the asset value of the firm
upon default

3. Default risk or risky component of debt is equal to a European down-and-in put
option

4. CDS is equal to risky component of debt.

5. CDS must be equal to value of down-and-in put options

Thus, Barrier model extended credit event languages.

4. D. LIMITATIONS OF THE MODEL

There are two main shortcomings with the current model. First, although the
current model is able to capture the various timing of default, it fails to account for the
immediate transfer of firm’s assets from equity holders to bondholders upon default.
Under the current model, bondholders payoff under a default (triggering) scenario is X —
max(X-Ar, 0), where “Ar” essentially assumes assets are transferred at debt’s maturity.
In reality, it is more realistic to assume that assets are transferred immediately from
equity holders to bondholders upon default. Secondly, the model assumptions with regard
to valuing CDS positions are not truly reflective of reality. In particular, the credit event
languages assumed in the model do not necessarily reflect market convention for

corporate CDS as illustrated in the table under section 1.C.
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4. E. EXTENSION TO MODEL

The purpose of this section is to introduce an extension to the current model in
order to accommodate the immediate transfer of assets upon default. In order to account
for the immediate transfer of firm’s assets upon default, bondholders payoff must be
adjusted to X — max(X-A, 0), where “A,” captures asset’s value at the time of default.
This payoff structure is identical to the payoff of an American down-and-in put option,
which is max(X-A,, 0) if Ai<Ap. The use of American-style barrier options incorporates
early exercise, which was prohibited in the original model that uses European-style
barrier options as a proxy for valuing default risk and CDS positions. Thus, this extended
model is able to capture both the various timing of default and the immediate transfer of
assets upon default. A mathematical illustration of the model is provided in the appendix

attached to this report.
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CHAPTER 5

CONCLUSION OF THE STUDY

The study presented in this paper examined the Merton model of credit risk and
introduced its applicability in valuing CDS positions under a plain vanilla setting.
Limitations inherent in the Merton model, particularly its failure to capture the various
forms of default timing were noted. As an alternative, a theoretical model using barrier
options as a proxy for valuing default risk is introduced to address the limitations in the
Merton model. Finally, the study concluded that the use barrier of options can possibly
offer a more accurate measure of default risk. The implications of this study suggest that
other exotic options, such as compound options or Asian-style option should be explored

in future studies of credit risk and credit risk modeling.
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APPENDIX A

MENU OF DEFAULT POSSIBILITIES

APFENDIX A
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APPENDIX B

ILLUSTRATION OF MODEL

B.1. TECHRICAL IMNZOLVECY

ARPENDIX B
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B2 SPECIAL CASE "EXTRENE") TECHHICAL INSOLVENCY
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B.3. BREACH OF FINANCIaL COVEMNANTS

Jrder greach of Minanelal covanarts, the barriar iaval s zar a5 3 mukipie of the strike rate face value of dadr)
that is graster then 1.
AcwMitiple of ¥, where muiliple iz > 1

Apa»X
EXamnke
= spneml b el wibed iy Ml
G ENUER A F: O 0%
= 3a28 3ar tha he bar s wl sy -
= el e i
= awgg 303 b3t 0%
~ ae 3nlar bz newity (T g
1 - I Miy=  TATF Mivp= 121
4= 1537 v = LM
3= 0L0:1% M= CO0SCH
"= 21207z
Wirer Ay 19 fes ifran strifie price;
“alug ¢ desr ahd-ir pt =
A 20 15T s SO [ ] T e o) Wiy )

~alue o D -3 -0 a1 = 82010718

Thieeare,

Witlug of Risky Lamponant of dald -
Walue of COS paslilon =

S2107
124161

39



APPENDIX C

EXTENSION OF MODEL
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C.2. Spectal Cage of Technlzal Ingolvency

Urcher techindcal fsaivency (speciai). the barner fewei!s sei 5 a mulivie of the sulve rate (face vaive of dabi)

AT ls fase than 1.
A8 = Muinnis af X, wisars mupis 1 < 1
Ag=X

Examni=s {Amerizarn-Siyke bamarl.;
Sesinnings;

1) ceno timesrle o runey
Sl praim R i ek ik

& Evgearty hwlsinry Sares wnn Savendvg dv il en 0 dve sy of e Gron dor gy b o posibia, wlih o e wi waily amervi fverenoed cail owliee] i mnanty

o Assets ane mensrer fierdizrely spon defakinark cecrcsed imamedizroiy wher mren s nimyersd and e wpnca s %l e mesy']

T IINE il
Cor cr ol iy = |

Path of a5521 v3las

e
.
_ - -'-\._lh
- - O
T T -
— -5 -
= I
-"-\._ _d-" -"-\.
.\---'l __a-'-- - "
L - =
—— -
Al .
et
allar e =sEla T s et = §oan
WAl 13T = A EblFR CARTARAT - < ER CAMpAnA T
Fish-Fe comparizsL= gee od e Leell = ik piva - 0.0
LoTEA gV 1TV i e O o[ 1 e R g 11 §oran
sl i 2 Ay Trk =T e elder = S ceamand i Pir - §07an

Tl

sogelh ='wa L ooy =S clisky doi - ¥

LIC+E00.00 - 4100400

41

110

Cakeulztions:

I I N 2 T ST T R M
[ ¥ I 5 Frsh uhility

q A1 L 114
. L] N 110 (1G]
| 1] z el 123
] L] L il 125
= oed I 25 2R 0- o
% LEA a7
A

-1al+mzi- 100

o ~Freealdiaarlar
% Freeoldrweryd - L

LR ITNEEE IR TR R T,

Ay il -Gy -V 1E,

T =00 s LR nam s



C.3. Breach af Financlal Covenants

Ul breach af fltanzial eoreinanis, 1ae oartar Beeiis a7 24 o muitiple of me strlis rate fface vaile of debt)

that ie gragtar an 1.
A8 = Riuttple ef ¥, witere mLmpie i3+ 1
ARuX

Exana (A paiean-Stuk bavier]:
Jussimanae

) 2R TiilAa o e
T3S i i ek nade

1) Lggeaky bt o 20 iTCeninbe 20 oekdd il B 20 o5 OF M AN f0r 03 Mol 23 possllie, Wikl moddits ey wilt inky oo et [hawm-aah0iir G2 apaian] ar inaninny

4] Assets are renrered nEmerire i0on ol (0 5 coercised Dmimedisely When BaTTer & TREICTE 20 e opnaR & i e miey
BIn-z e 1 - r
Da zrlew o= 1
et o sl veloes
Ferlod Ferlnil 1 Ferlad 2
_.."
- B _'
- Ten
- 1] o ¥
o i -
1 |
e
. o .
Mo ¥
- - -h - -
1. -
Ty
CUREFUED L SLEURITILY ANL CUs WaLUalIvHy:
Vann TF: ="l U= eanib el el - TR
S TRl = Siedine mmzoner s ey
Vik-lze v pneenr = vl = ol valr = @nen e a= o AL
[ T T Rl T o Il el M I | oL
ange shE ke ek Lac e rrdel £ sl demate -l - s U

W, ="he o romcls = e wequi + wrluz of ke cobe— § 00 40730 E {000

Ferlod 3

=l

42

CakuiErions:

=Tl R Paze Pk e Ao ey

L i P 5 | Probalilhy

1 I b LA

| F )| Il o

- r [ £ 20

L & ? i L5
fy= 10 TR R 2R e e
My =1°F %= 17
1= ¥

LR S AR I
tp== i idenadn

Fr == sldenasd e pir
LS I ] [ HEE BT
ol pale= =iy iy

™ &-17 M

T, rteersth s neebly



	Pace University
	DigitalCommons@Pace
	9-1-2007

	An Evaluation of Credit Default Swap and Default Risk Using Barrier Option
	Kevin L. Lam
	Recommended Citation



