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Inspired by recent progress in quantum algorithms for ordinary and partial
differential equations, we study quantum algorithms for stochastic differen-
tial equations (SDEs). Firstly we provide a quantum algorithm that gives a
quadratic speed-up for multilevel Monte Carlo methods in a general setting. As
applications, we apply it to compute expectation values determined by classical
solutions of SDEs, with improved dependence on precision. We demonstrate
the use of this algorithm in a variety of applications arising in mathematical
finance, such as the Black-Scholes and Local Volatility models, and Greeks.
We also provide a quantum algorithm based on sublinear binomial sampling
for the binomial option pricing model with the same improvement.

1 Introduction
Differential equations are ubiquitous throughout mathematics, science, and engineering.
Specifically, ordinary differential equations (ODEs) and partial differential equations (PDEs)
characterize continuous processes of systems arising extensively in many fields, from solid
mechanics, fluid dynamics, and electromagnetism to biology [24]. Calculations of prop-
erties of such deterministic systems, typically require numerical schemes, that is one dis-
cretizes the differential equation in order to provide an approximate value of the quantity
of interest [3].

For numerous systems arising in statistical physics, molecular dynamics, finance, and
other real-world models, the dynamics is captured by a stochastic differential equation
(SDE) [42, 50]. Given a typical SDE, a fundamental computational problem is to provide
an expected value of a random variable Y , denoted E[Y ], which is a functional determined
by the solution of the SDE. Such a computational problem has been widely studied in
mathematical finance, where the quantity Y represents the payoff in option and derivative
pricing. It is often computationally expensive to estimate E[Y ], since a scheme that
approximates the SDE is necessarily run many times to average over the randomness.
In this domain, Monte Carlo (MC) methods are basic tools with a provable complexity
analysis.
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Monte Carlo simulation, known for its flexibility and generality, refers to performing
Monte Carlo methods in simulating SDEs [39, 42]. This method makes use of randomness
to estimate E[Y ] of a SDE as introduced above. In general, Monte Carlo simulation
generates k independent approximate samples from Y by performing a chosen scheme,
and then outputs an average of those k outputs as an approximate expectation of Y .
Assuming the variance of Y is bounded by σ2, according to Chebyshev’s inequality, it
suffices to utilize k = O(σ2/ε2) samples to estimate E[Y ], where ε is the additive error
[39].

Simulating SDEs using Monte Carlo is very useful when the cost of each sample is
cheap. A typical example is the Geometric Brownian Motion (GBM) in the Black-Scholes
(BS) model [6, 7, 37], which characterizes stock prices in the financial market. Classical
algorithms are designed to directly sample from the solution of GBM, whose explicit
form is known, rather than simulating the paths of the GBM itself. Assuming the cost
of sampling the solution is ignorable, i.e. O(1), the computational complexity equals
the number of samples, O(1/ε2). However, a challenge faced by Monte Carlo occurs
when creating each sample is costly, so even quadratic dependence on ε may result in an
computational complexity significantly larger than O(1/ε2) in practice. More concretely,
we consider a general SDE without an explicit solution. To compute an approximate
solution by numerical methods, we discretize the SDE on the time interval [0, T ] with the
step size h, and perform a scheme of strong order r (which produces a random variable
Ŷ that is ε-close to Y , where ε = O(hr)) [42]. Taking the Milstein scheme with strong
order 1 as an example, i.e. r = 1, then T/h = Ω(1/ε) number of iterations is required to
produce one sample. Under this circumstance, the computational complexity of classical
Monte Carlo simulation is O(1/ε3) in total. Generally, when performing a scheme of
strong order r, the complexity can be improved to O(1/ε2+1/r). Usually, it is challenging
to perform a scheme with large r, due to the higher smoothness requirement of the SDE,
and, in practice, it is harder to implement explicit forms of higher strong order schemes
[11, 42, 43]. So the acceleration is moderate in practice.

To reduce such an expensive computational cost, multilevel Monte Carlo (MLMC)
methods have attracted very considerable attention recently, and have successfully been
applied to simulate SDEs with applications in finance [28, 29]. Recalling the goal of esti-
mating E[Y ] of a general random variable Y , given a sequence of estimators P0, Pl, . . . , PL
that approximates Y with increasing accuracy and cost, multilevel Monte Carlo aims to
estimate E[PL] by simulating a sum of E[Pl − Pl−1], with different numbers of samples
at each level l. The main improvement of multilevel Monte Carlo is from reducing the
number of samples when the variance of Pl−Pl−1 is large. By balancing the sample num-
bers and variances for different Pl − Pl−1 and summing them together, multilevel Monte
Carlo gives an optimal overall cost of estimating E[PL] that approximates E[Y ] within
the mean-squared error ε2. As described by Giles et al, multilevel Monte Carlo with a
scheme of strong order r > 1, is capable of estimating E[Y ] of general SDEs with the
overall cost Õ(1/ε2) ([29, Theorem 1]), where Õ neglects logarithmic factors. Compared
to the standard Monte Carlo simulation with the same scheme, it removes a 1/ε1/r factor
in the overall complexity. Moreover, this approach does not require the use of higher
strong order schemes, and hence avoids the smoothness requirement and the implementa-
tion difficulty as well. We note that when the samples are allowed not to be random and
independent, but based on certain lattice rules, it could lead to a O(1/εp) cost with p < 2
under certain conditions [21, 31]. In our case we assume the samples are chosen randomly
and independently, then O(1/ε2) is the best known complexity that classical algorithm can
achieve. [29] However such a quadratic dependence on 1/ε of the overall complexity that
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multilevel Monte Carlo can achieve is still far from ideal, particularly when applications
to mathematical finance are considered.

Quantum computers are expected to outperform classical computers for solving a sys-
tem of linear equations [1, 2, 13, 32, 34, 45, 58, 59] and differential equations [4, 5, 12, 14–
16, 18, 23, 46, 48, 52, 60, 61]. Quantum algorithms for certain stochastic differential
equations, such as simulating GBM of the Black-Scholes model as discussed above, have
attracted increasing attention in quantum computational finance [8, 26, 33, 53, 55]. Refer-
ence [33] claims an exponential speedup over classical algorithms to solve the Black-Scholes
PDE, but does not include a detailed complexity analysis; it uses a very different approach
to that used here, which does not seem to be easily extendible to general SDEs. For the
payoff models, using quantum-accelerated Monte Carlo methods [51] based on sampling
from the explicit solution of GBM, quantum algorithms can approximate the expected
value of the price of portfolio within error ε in complexity Õ(1/ε), a quadratically im-
proved dependence on ε compared to classical Monte Carlo simulation [41, 53, 55, 57].
However, previous quantum algorithms, that sample the explicit solution of GBM, cannot
be extended to simulate general SDEs with no explicit formula for the solution. Reference
[40] presented a practical quantum circuit for simulating the Local Volatility (LV) model,
which generalizes the GBM and does not have an explicit solution [20, 22]. However,
reference [40] did not provide a concrete complexity for simulating the LV model. In sum-
mary, quantum speedups for payoff models of general SDEs lacking explicit solutions are
far from well established.

In this paper, we provide quantum algorithms for approximating classical outputs de-
termined by general SDEs (i.e. ones with no explicit formulas for the solutions) with
computational complexity Õ(1/ε). We will apply these to several payoff models of SDEs
which arise in finance, and the outputs are the payoffs in pricing. To achieve such an im-
provement, we first propose a quantum-accelerated multilevel Monte Carlo (QA-MLMC)
method in a general setting, and then apply QA-MLMC for general SDEs. Compared to
the classical counterpart, QA-MLMC achieves a quadratic speedup in precision up to a
logarithmic factor. The main ingredient to this acceleration is the quantum speedup of the
Monte Carlo method [51]. Roughly, to approximate E[Pl − Pl−1] in the MLMC approach
as we discussed above, we only need to use Õ(1/ε) samples. We shall prove that this
speedup is preserved in the telescoping sum

∑L
l=0 E[Pl − Pl−1] to approximate E[PL]. We

remark that a somewhat similar idea was used in [51] for the special case of computing a
partition function as a telescoping product of terms, each of which is approximated using
QA-MC.

Instead of the mean-squared error considered in the classical case, QA-MLMC only
returns an approximation of E[PL] in the sense of the additive error. However, this will
not incur any unfair comparison between MLMC and QA-MLMC since the two types of
errors are almost equivalent (see Appendix A). Because of the different types of errors,
MLMC and QA-MLMC have slight differences in their assumptions. This will become
clear below when we apply QA-MLMC to solve practical problems in finance.

As discussed above, to solve a general SDE with no explicit solutions, usually we need
a discretization scheme of strong order r. Classically, to apply MLMC, a numerical scheme
of strong order r > 1 is usually sufficient to obtain a complexity of Õ(1/ε2). However, in
the quantum case, to ensure a quadratic speedup, i.e. to obtain a complexity of Õ(1/ε), we
have to apply a numerical scheme of strong order r > 2. Note that when an order r scheme
is used, the Monte Carlo method can solve the SDE with a complexity of Õ(1/ε2+1/r).
And a direct corollary of [51] shows that in the quantum case this method can be improved
to has a complexity of Õ(1/ε1+1/r). However, for the reasons discussed above we cannot
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choose r as large as we want. So QA-MLMC still has advantages over QA-MC both in
theory and in practice.

Algorithm Model Result

C
la

ss
ic

al

MC with direct sampling [7, 37] Black-Scholes model ε−2

MC with scheme of strong order r (Proposition 1) payoff models of general SDEs ε−2−1/r

MLMC with scheme of strong order r > 1 (Proposition 3) payoff models of general SDEs ε−2

MC with binomial sampling (Proposition 4) binomial option pricing model ε−2

Q
ua

nt
um

QA-MC with direct sampling [53, 55, 57] Black-Scholes model ε−1

QA-MC with scheme of strong order r (Theorem 1) payoff models of general SDEs ε−1−1/r

QA-MLMC with scheme of strong order r > 2 (Theorem 3) payoff models of general SDEs ε−1

QA-MC with binomial sampling (Theorem 4) binomial option pricing model ε−1

Table 1: Summary of the time complexities of classical and quantum algorithms for financial
models with the additive error ε, in which logarithmic factors are omitted.

As applications, we apply QA-MLMC to solving various payoff models, which satisfy
our smoothness requirements and are of great interest in mathematical finance. Examples
include the well-known Black-Scholes model that prices a variety of financial derivatives;
the Local Volatility model that generalizes the Black-Scholes model by treating volatility
as a function of the asset and the time; the Greeks that label the sensitivity of the price of
the option for hedge portfolios [37]; and the binomial option pricing model as introduced
above.

For the analytically solvable Black-Scholes model, in which QA-MC has been applied
to reduce the complexity from Õ(ε−2) to Õ(ε−1) [55], we verify QA-MLMC is able to
achieve the same quantum speedup. For the rest of the models, we establish the first
quantum acceleration to achieve the complexity Õ(ε−1), by applying QA-MLMC to the
Local Volatility model and Greeks. Table 1 compares the performance of our approaches
to classical ones for various financial models with respect to the dependence on error
tolerance ε.

Furthermore, we also study the Black-Scholes model with European and digital payoffs
in numerical experiments. We provide concrete numerical implementations of the schemes
of strong order up to 3 to test those parameters with different payoff functions, and
numerical results are in good agreement with our theoretical estimates. This provides
evidence that our complexities for MLMC and QA-MLMC are reasonable and sharp.

We also consider the binomial option pricing model (BOPM), also known as the bi-
nomial lattice model (BLM), which provides an alternative option pricing model different
from the Black-Scholes model, by constructing a binomial tree with the same expectation
and variance as the Geometric Brownian Motion [19, 37, 56]. Inspired by the binomial
structure, it is natural to simulate BOPM by performing sublinear binomial sampling, a
recently developed technique that samples a binomial tree in sublinear time [9, 25]. This
technique has been applied to construct a fast random walk, which is a specific binomial
tree, to develop fast classical and quantum algorithms for heat equation [46]. Observing
that sublinear binomial sampling provides a numerical method to output an estimate of
Y with ignorable cost per sample, we can estimate E[Y ] preserving the computational
complexity the same as the sampling complexity, neglecting logarithmic factors. There-
fore, we propose classical and quantum algorithms for BOPM, with the dependence on
precision Õ(1/ε2) and Õ(1/ε), respectively. Complementing the multilevel Monte Carlo
methods, this provides an alternative method for efficiently studying properties of struc-
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tured stochastic models in mathematical finance.
Overall, our theoretical and numerical results provide promise for potential applications

of quantum computing in computational finance.
The rest of this paper is structured as follows. Section 2 introduces the payoff problem

of SDEs that we study, and quantum-accelerated Monte Carlo for solving SDEs. Section 3
states the main theorem for the quantum-accelerated multilevel Monte Carlo method.
Section 4 applies the quantum-accelerated multilevel Monte Carlo method to the SDE
problem. Section 5 presents the Black-Scholes model as an application for estimating the
price of the option. Section 6 generalizes the Black-Scholes model to the Local Volatility
model. Section 7 introduces the Greeks as an application for estimating the sensitivity
of the price. Section 8 covers the binomial lattice model as an alternative option pricing
model. Section 9 includes a discussion and raises some open problems. Appendix A dis-
cusses the relationship between mean square error and additive error. Finally, Appendix B
presents numerical results of several schemes for the Black-Scholes model with European
and digital payoffs.

2 Payoff models of general SDEs
2.1 Problem settings
Suppose that we have a stochastic differential equation (SDE) with general drift and
volatility terms

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, (2.1)

for t ∈ [0, T ], where Xt ∈ R is an Itô process, Wt is a standard Brownian motion. The
payoff problem we are concerned with is as follows.

Problem 1. Assuming there exists an oracle OI that samples from an initial distribution
π0 to produce X0 as an initial condition, an oracle OW that samples from the Brownian
motion Wt, and an oracle OP that produces the payoff P(X) as a functional of a specific
X, and oracles Oµ and Oσ that produce µ(X, t) and σ(X, t) as functions of X and t,
respectively.

Given an evolution time T > 0, we aim to compute

E[P(XT ) | X0 ∈ π0], (2.2)

within an error ε > 0, where XT is generated by (2.1).

Problem 1 is widely investigated in mathematical finance. Different kinds of financial
models, such as option pricing and Greeks, can be formulated as Problem 1 with various
assumptions, which are introduced in detail in Section 4. Note that if π0 = δX0 , then
X ∈ π0 → X = X0, and Problem 1 is reduced to a deterministic initial value problem.

Before we proceed, it is helpful to clarify the meaning of the errors. By saying to
compute E[P] within an error ε > 0 in Problem 1, there are two different scenarios (here
the random variable Y is an estimator of E[P]):

• the mean-squared error E(Y − E[P])2 is bounded by ε2,

• the additive error |Y − E[P]| is bounded by ε with probability at least 0.99.

Most research on classical Monte Carlo simulation uses mean-squared error, whereas re-
search on the quantum-accelerated Monte Carlo method typically uses additive error. To
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reduce technical difficulty and be consistent with existing literature, we will follow this
convention, using mean-squared error in our classical algorithms and using additive er-
ror in our quantum algorithms. We note however that this still allows fair comparison
between classical and quantum algorithms, because these two types of error bounds are
indeed almost equivalent, which is elaborated in detail in Appendix A.

2.2 Monte Carlo method
For simplicity we assume that the costs of querying OI , OW , OP , Oµ and Oσ are O(1). For
our quantum algorithms, we assume that the oracles can produce coherent superpositions
corresponding to these distributions. This assumption can usually be satisfied, for example
given a classical algorithm that generates samples based on uniformly random bits; see [51]
for a discussion. In particular, note that we will not actually need to put the initial
distribution (which may be quite complicated) into superposition – the algorithm will
compute E[P(XT )] for a given starting position X0, and sampling X0 can be performed
classically. If a sample of XT generated by (2.1) can be obtained with cost O(1), the
computational complexity of solving Problem 1 equals the total number of samples required
to estimate E[P(XT )] within ε. While for general SDEs, the cost of simulating (2.1) to
calculate XT each time should be taken into account.

For instance, we consider the widely used Milstein discretization with the step size h,
giving

X̂k+1 = X̂k + µ(X̂k, tk)h+ σ(X̂k, tk)∆Wk + 1
2σ(X̂k, tk)∂Xσ(X̂k, tk)((∆Wk)2 − h), (2.3)

where k ∈ [n]0, where n = T/h. This has computational cost O(1/h) to produce a sample
X̂n that approximates XT . Based on Monte Carlo methods [39, 42], a simple estimation
for E[P(XT )] is to generate N samples, each independently outputs P(XT ), and then to
produce an average,

Y = 1
N

N∑
i=1
P(X̂(i)

n ). (2.4)

Note that the mean-squared error can be decomposed as

E|Y − E[P(XT )]|2 = V[Y ] + |E[Y ]− E[P(XT )]|2, (2.5)

which can be bounded by O(N−1 + h2). Here we let V[Y ] denote the variance of a
random variable Y . If we seek to bound the mean-squared error by ε2, then we can take
N = O(1/ε2), h = Ω(ε), so the expected computational cost equals O(N/h) = O(ε−3).
This result is first stated in [28]. In general, for high order schemes, the complexity of
classical Monte Carlo method can be bounded as follows.

Proposition 1. Let Y be an estimator of E[P(XT )] with bounded variance, based on a
numerical discretization with time step size h using a numerical scheme with strong order
r (defined in (4.2)). Then in order to achieve the accuracy of mean-squared error ε2, the
computational complexity of the Monte Carlo method is O(ε−2−1/r).

Proof. For simplicity we assume P is globally Lipschitz continuous (we refer to Section 4
for a more general analysis). To bound the mean-squared error, we only need to bound
the right hand side of the equation (2.5). Note that

V[Y ] = 1
N

V[P(X̂T )] = O(N−1), (2.6)
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and

|E[Y ]− E[P(XT )]|2 = |E[P(X̂n)]− E[P(XT )]|2 ≤ E|P(X̂n)− P(XT )|2 = O(h2r). (2.7)

Therefore
E|Y − E[P(XT )]|2 = O(N−1 + h2r). (2.8)

In order to bound the mean-squared error by ε2, it suffices to choose N ∼ ε−2 and h ∼ ε1/r,
thus the complexity becomes O(N/h) = O(ε−2−1/r).

Proposition 1 tells us that in the classical Monte Carlo method, the total complexity
can be indeed improved by using a higher order scheme, but it is bottlenecked by O(ε−2)
due to the variance of the estimator. To minimize the overall computational cost without
needing higher order schemes, we will introduce an advanced Monte Carlo approach, known
as multilevel Monte Carlo [28], in Section 3.

However before doing so, we show that quantum-accelerated Monte Carlo, as described
in [51] can give a speed up of non-multilevel methods.

2.3 Quantum-accelerated Monte Carlo method
In [51], Montanaro showed that using a quantum computer, the number of samples used
in Monte Carlo can be reduced quadratically.

Lemma 1 (Theorem 5 of [51]). Let A be a (classical or quantum) algorithm. Let v(A)
be the random variable corresponding to v(x) when the outcome of A is x. Assume that
V[v(A)] ≤ σ2, then there is a quantum algorithm that estimates E[v(A)] up to additive
error ε with success probability at least 2/3 by using

O
(
(σ/ε)(log σ/ε)3/2(log log σ/ε)

)
(2.9)

samples.

The powering lemma stated below can increase the success probability of Lemma 1 to
1− δ for any arbitrarily small δ.

Lemma 2 (Lemma 1 of [51]). Let A be a (classical or quantum) algorithm which aims to
estimate some quantity µ, and whose output µ̃ satisfies |µ− µ̃| ≤ ε except with probability
γ, for some fixed γ < 1/2. Then, for any δ > 0, it suffices to repeat A O(log 1/δ) times
and take the median to obtain an estimate which is accurate to within ε with probability
at least 1− δ.

In Lemma 1 and Lemma 2, the randomized or quantum algorithm A is used to produce
a random variable X and then compute the payoff function P(X) ∈ R. For the detailed
implementation of A, we refer to the start of Section 2 of [51] for more details.

Based on Lemma 2, the success probability of Lemma 1 can be improved to 1− δ by
using O((σ/ε)(log σ/ε)3/2(log log σ/ε)(log 1/δ)) samples. Thus, we are able to develop a
quantum-accelerated Monte Carlo method for Problem 1.

Theorem 1. Let A be an algorithm that generates a sample of numerical solution X̂n of
the SDE using a numerical discretization with time step size h using r-th order scheme in
the sense that E|X̂n−XT | = O(hr). Assume that P(X̂n) has bounded variance independent
of h. Then there exists a quantum algorithm that achieves the accuracy of additive error
ε with probability at least 0.99, with computational complexity Õ(ε−1−1/r).
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Proof. Similarly to Proposition 1, for technical simplicity we assume P is globally Lipschitz
continuous (we refer to Section 4 for analysis on more general payoff functions). By
Lemma 1 and Lemma 2, there exists a quantum algorithm that generates an estimator Y
such that

|Y − E[P(X̂n)]| < ε/2

with probability at least 0.99 using Õ(ε−1) queries to A. Furthermore,

|E[P(X̂n)]− E[P(XT )]| ≤ E|P(X̂n)− P(XT )| = O(hr). (2.10)

Hence we can choose h = O(ε−1/r) to bound |E[P(X̂n)] − E[P(XT )]| by ε/2, and the
complexity of each query to A becomes O(ε−1/r). Combining the above two estimates, in
order to bound the additive error |Y − E[P(XT )]| by ε with probability at least 0.99, the
total complexity is Õ(ε−1−1/r).

3 Quantum-accelerated MLMC
3.1 Multilevel Monte Carlo method
Heinrich [35] developed the first work on multilevel Monte Carlo (MLMC) methods for
parametric integration, then Giles [28] introduced MLMC to simulate SDEs. In the follow-
ing, we first briefly introduce this method. Then we show how to accelerate this method
using a quantum-accelerated Monte Carlo method [51]. For more about MLMC, we refer
to the survey paper [29].

Instead of focusing on SDEs, we review the idea of MLMC in the general setting. Now
let P be a random variable, our goal is to estimate E[P ], given a sequence P0, P1, . . . , PL
that approximates P with increasing accuracy, but also increasing cost. For instance, for
the SDE (2.1), P is the payoff, Pl = P(X̂nl) with nl = T/hl = 2lT . Now we have the
following telescoping sum

E[PL] =
L∑
l=0

E[Pl − Pl−1], (3.1)

where P−1 = 0. We can estimate E[PL] by using the Monte Carlo method to approximate
each term E[Pl − Pl−1]. So we obtain the following approximation of E[PL]

Y =
L∑
l=0

Yl, where Yl := 1
Nl

Nl∑
i=0

(
P

(l,i)
l − P (l,i)

l−1

)
. (3.2)

The superindex l means that the samples are generated independently.
Note that for SDE, Pl − Pl−1 comes from two discrete approximations with different

timesteps but the same Brownian path. To generate random samples P
(l,i)
l − P (l,i)

l−1 , one
method suggested in [28] is as follows. First constructing the Brownian increments for the

simulation of the discrete path leading to the evaluation of P
(l,i)
l . Then summing them in

groups of size 2 to give the discrete Brownian increments for the evaluation of P
(l,i)
l−1 .

To determine the cost, the MLMC approach considers the mean-squared error,

E(Y − E[P ])2, (3.3)

which can be decomposed as follows

E(Y − E[P ])2 = V[Y ] + (E[PL]− E[P ])2 ≤ V[Y ] + E[PL − P ]2. (3.4)
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In order to achieve E(Y − E[P ])2 ≤ ε2, it is sufficient to ensure that V[Y ] ≤ ε2/2 and
E[PL−P ]2 ≤ ε2/2. For l ≥ 0, let Cl, Vl be the cost and variance of one sample of Pl−Pl−1.
Then the overall cost and variance of Y given in (3.2) is

∑L
l=0NlCl and

∑L
l=0N

−1
l Vl.

To minimize the cost with a fixed variance ε2/2, we introduce the Lagrange multiplier
λ2 and minimize

L∑
l=0

NlCl + λ2
(
ε2

2 −
L∑
l=0

N−1
l Vl

)
. (3.5)

This leads to Nl = λ
√
Vl/Cl and λ = 2ε−2∑L

l=0
√
VlCl. The total computational cost is

2ε−2
(

L∑
l=0

√
VlCl

)2

. (3.6)

We restate the rigorous argument in [29] as follows.

Lemma 3 (Theorem 1 of [29]). Let P be a random variable and Pl be the corresponding
level l numerical approximation. Let Yl be an approximation of E[Pl − Pl−1] based on
Monte Carlo method such that the expected cost and variance of one sample is Cl and Vl
respectively. If there exist positive constants α, β, γ such that α ≥ 1

2 min(β, γ) and

• |E[Pl − P ]| = O(2−αl),

• E[Yl] = E[Pl − Pl−1], l ≥ 0, where P−1 = 0,

• Vl = O(2−βl),

• Cl = O(2γl),

then for any ε < 1/e there exists an L such that Y =
∑L
l=0 Yl has a mean-squared error

with bound E(Y − E[P ])2 ≤ ε2. Moreover, the total computational cost is
O(ε−2), β > γ,

O(ε−2(log ε)2), β = γ,

O(ε−2−(γ−β)/α), β < γ.

(3.7)

3.2 Quantum-accelerated multilevel Monte Carlo method
Recall that in MLMC, in the telescoping sum (3.1), the Monte Carlo method is utilized to
approximate each mean value E[Pl − Pl−1], in which we can obtain a quadratic speedup
using a quantum computer. To approximate the telescoping sum (3.1) via (3.2), we have
a classical algorithm to do the sampling, and thus the assumption of the existence of the
classical algorithm to do the sampling is satisfied for MLMC in Lemma 1. The proof of
the following theorem is similar to that of Lemma 3.

Theorem 2. Let P denote a random variable, and let Pl (l = 0, 1, . . . , L) denote a sequence
of random variables such that Pl approximates P at level l. Further define P−1 = 0. Let
Cl be the cost of sampling from Pl, and let Vl be the variance of Pl − Pl−1. If there exist
positive constants α, β = 2β̂, γ such that α ≥ min(β̂, γ) and

• |E[Pl − P ]| = O(2−αl),

• Vl = O(2−βl) = O(2−2β̂l),

• Cl = O(2γl),
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then for any ε < 1/e there is a quantum algorithm that estimates E[P ] up to additive error
ε with probability at least 0.99, and with cost

O
(
ε−1(log 1/ε)3/2(log log 1/ε)2

)
, β̂ > γ,

O
(
ε−1(log 1/ε)7/2(log log 1/ε)2

)
, β̂ = γ,

O
(
ε−1−(γ−β̂)/α(log 1/ε)3/2(log log 1/ε)2

)
, β̂ < γ.

(3.8)

Proof. In MLMC, we use the telescoping sum E[PL] = E[P0] +
∑L
l=1 E[Pl − Pl−1] to es-

timate E[PL]. Let Yl be the approximation of E[Pl − Pl−1] obtained by the quantum-
accelerated Monte Carlo method (see Lemma 1). By Lemma 1 and Lemma 2, for any
εl ≥ 0, to make sure |E[Pl − Pl−1] − Yl| ≤ εl with probability at least 1 − δ, we need
Nl = O((2−β̂l/εl)(log 2−β̂l/εl)3/2(log log 2−β̂l/εl)(log 1/δ)) samples. The error in approxi-
mating E[PL] with Y :=

∑L
l=0 Yl satisfies |Y −E[PL]| ≤

∑L
l=0 |E[Pl−Pl−1]−Yl| ≤

∑L
l=0 εl.

As a result, the error in approximating E[P ] satisfies the bound

|Y − E[P ]| ≤ |E[PL]− E[P ]|+ |E[PL]− Y | ≤ |E[PL]− E[P ]|+
L∑
l=0

εl (3.9)

with probability at least (1− δ)L+1. The total cost equals C =
∑L
l=0ClNl.

Choose
L =

⌈
log(2ε−1)

α

⌉
(3.10)

so that 2−αL ≤ ε/2. This ensures the first error term of (3.9) is bounded by ε/2. As
for the second term, we choose different Nl based on the values εl, β̂, γ. Choosing δ =
1/(100(L+1)), then we can make sure that the success probability is at least (1−δ)L+1 ≥
e−1/100 > 0.99.

We now split into cases to analyse and optimise the complexity of this approach. In
the following analysis, for notational convenience we just write Nl = d2−β̂l/εle. But in the
end, the cost should be multiplied by (log 1/δ)(log 1/ε)3/2(log log 1/ε) for all cases.

(a). If β̂ > γ, then choose εl = ε
2(1 − 2−(β̂−γ)/2)2−(β̂−γ)l/2. The second error term of

(3.9) is bounded by

ε

2(1− 2−(β̂−γ)/2)
L∑
l=0

2−(β̂−γ)l/2 = ε

2(1− 2−(β̂−γ)/2)1− 2−(β̂−γ)(L+1)/2

1− 2−(β̂−γ)/2
<
ε

2 . (3.11)

Also we have
Nl = 2ε−1(1− 2−(β̂−γ)/2)−12−(β̂+γ)l/2 + 1, (3.12)

where the “+1” term is caused by the ceiling function. The cost is bounded by

L∑
l=0

NlCl = O

(
L∑
l=0

(
ε−1(1− 2−(β̂−γ)/2)−12−(β̂+γ)l/2 + 1

)
2γl
)

= O

(
ε−1(1− 2−(β̂−γ)/2)−1

L∑
l=0

2−(β̂−γ)l/2 +
L∑
l=0

2γl
)

= O

(
ε−1(1− 2−(β̂−γ)/2)−1 1− 2−(β̂−γ)(L+1)/2

1− 2−(β̂−γ)/2
+ ε−γ/α

)
= O(ε−1),
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In the above, we used
∑L
l=0 2γl = O(2γL) = O(ε−γ/α) by our choice (3.10) and the fact

that α ≥ γ.
(b). If β̂ = γ, then set εl = ε/(2(L + 1)). This ensures that the error of the second

term of (3.9) is bounded by ε/2. Thus Nl = 2(L+ 1)ε−12−β̂l + 1. The cost is bounded by

L∑
l=0

NlCl = O

(
L∑
l=0

(
(L+ 1)ε−12−β̂l + 1

)
2γl
)

= O

(
(L+ 1)2ε−1 +

L∑
l=0

2γl
)

= O
(
ε−1(log 1/ε)2

)
.

(c). If β̂ < γ, then we set εl = ε
22−(γ−β̂)L/2(1−2−(γ−β̂)/2)2(γ−β̂)l/2. So the second error

term of (3.9) is bounded by

ε

22−(γ−β̂)L/2(1− 2−(γ−β̂)/2)
L∑
l=0

2(γ−β̂)l/2 = ε

22−(γ−β̂)L/2(1− 2−(γ−β̂)/2)2(γ−β̂)(L+1)/2 − 1
2(γ−β̂)/2 − 1

= ε

2(1− 2−(γ−β̂)/2)2(γ−β̂)/2 − 2−(γ−β̂)L/2

2(γ−β̂)/2 − 1
<

ε

2 .

Moreover, we have

Nl = 2ε−12(γ−β̂)L/2(1− 2−(γ−β̂)/2)−12−(β̂+γ)l/2 + 1.

The cost is bounded by

L∑
l=0

NlCl = O

(
L∑
l=0

(ε−12(γ−β̂)L/2(1− 2−(γ−β̂)/2)−12−(β̂+γ)l/2 + 1)2γl
)

= O

(
ε−12(γ−β̂)L/2(1− 2−(γ−β̂)/2)−1

L∑
l=0

2(γ−β̂)l/2 +
L∑
l=0

2γl
)

= O

(
ε−12(γ−β̂)L/2(1− 2−(γ−β̂)/2)−1 2(γ−β̂)(L+1)/2 − 1

2(γ−β̂)/2 − 1
+ ε−γ/α

)
= O(ε−1−(γ−β̂)/α).

In the above, we used equation (3.10) and

2(γ−β̂)L < 2(γ−β̂)( log(2ε−1)
α

+1) = 2(γ−β̂)2(γ−β̂)/αε−(γ−β̂)/α.

Since L ≈ α−1 log(2/ε) and δ = 1/(100(L + 1)), we have log(1/δ) = log log(2/ε) +
log(100/α) = O(log log 1/ε). Each estimation of the cost should be multiplied by
O((log 1/ε)3/2(log log 1/ε)2).

4 Quantum-accelerated MLMC for solving SDEs
Let us discuss how to apply MLMC to solve Problem 1 with stochastic differential equa-
tion (2.1).
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4.1 Preliminary
Throughout the paper we make the following assumptions on the coefficients of the SDE
and the payoff function.

Assumption 1. We assume µ and σ are globally Lipschitz continuous, i.e., there exists
a constant L such that

|µ(t, x)− µ(s, y)| ≤ L(|t− s|+ |x− y|), |σ(t, x)− σ(s, y)| ≤ L(|t− s|+ |x− y|) (4.1)

hold for all s, t ∈ [0, T ], x, y ∈ R. We further assume the initial value X0 satisfies E[Xm
0 ] ≤

Cm for constants Cm ≥ 0.

We remark that Assumption 1 implies at most linear growth of µ and σ, and there
exists a unique strong solution of SDE (2.1) [42].

We say a numerical approximation X̂k with time step size h = T/n is of strong order
r, if for any m ≥ 1, there exists a constant Cm such that

E
(

sup
0≤kh≤T

|X̂k −Xkh|m
)
≤ Cmhrm. (4.2)

One class of general high order schemes is the Taylor-Itô scheme of the general form [42]

X̂k+1 =
∑
α∈Am

fα(kh, X̂k)Iα (4.3)

where fα’s are the coefficient functions (depending on µ and σ) and Iα are multiple Itô
integrals over the time interval [kh, (k + 1)h]. For instance, we may consider the Euler-
Maruyama scheme (of strong order 1/2)

X̂k+1 = X̂k + µ(X̂k, t)h+ σ(X̂k, t)∆Wk, (4.4)

for k ∈ [n]0, or the Milstein scheme (of strong order 1)

X̂k+1 = X̂k + µ(X̂k, t)h+ σ(X̂k, t)∆Wk + 1
2σ(X̂k, t)∂Xσ(X̂k, t)((∆Wk)2 − h), (4.5)

for k ∈ [n]0, where ∆Wk are i.i.d. normal random variables with expected value zero
and variance h. We remark that there exists another kind of general high order schemes
called Taylor-Stratonovich schemes [42], which is easier to implement. We will discuss it
in Appendix B.

Assumption 2. The coefficient functions fα are globally Lipschitz continuous with respect
to x.

There exist a Taylor-Itô scheme and a Taylor-Stratonovich scheme satisfying Assump-
tion 2, which can achieve strong order r = k/2 for all k ≥ 1. We refer to [42, Section 10]
for more details.

We are also given an assumption for the final payoffs:

Assumption 3. We assume the payoff function

P = P(XT ) (4.6)

is piecewise Lipschitz continuous, i.e., there exist constants −∞ = l0 < l1 < · · · < lq <
lq+1 = +∞ and L > 0, such that

|P(x)− P(y)| ≤ L|x− y|, ∀x, y ∈ (lj , lj+1). (4.7)
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In the reminder of this paper, we consider the SDEs, stochastic schemes, and payoffs
satisfying Assumption 1, Assumption 2, Assumption 3, respectively. We remark that
our results also hold true for high-dimensional systems of SDEs, given that the payoff
function is “piecewise Lipschitz continuous” in some sense (e.g. all the discontinuous points
are jump discontinuous points and form several separable hyperplanes). For technical
simplicity, we will only focus on the analysis of SDE in one dimension in this section.

4.2 Method and theory
To solve a SDE problem, we apply the standard multilevel Monte Carlo method and regard
the Taylor-Itô scheme as the discretization subroutine [28, 29].

At the high level, we estimate the discretized path X̂k (k ∈ [n]0) for different numbers
of iterations n, and perform the quantum oracle

UP (|x〉|0〉) = |x〉|P(x)〉 (4.8)

to evaluate P(x) for any x. Setting nl = 2l for l = 1, . . . , L, we apply the quantum-
accelerated multilevel Monte Carlo

E[P(X̂nL)] = E[P(X̂n1)] +
L∑
l=1

[E[P(X̂nl)− P(X̂nl−1)]] (4.9)

to estimate E[P(XT )]. At the lower level, we divide [0, T ] by a uniform partition 0 = t0 <
t1 < . . . < tnl = T with h = T/nl = T/2l on the l-level discretization of (2.1), and perform
stochastic numerical schemes to approximate XT by X̂nl .

To estimate the complexity of QA-MLMC, we need to figure out the parameters α, β, γ
in Theorem 2.

Proposition 2. Under Assumption 1, Assumption 2 and Assumption 3, for QA-MLMC
with a numerical scheme of strong order r, we have α = r−o(1), β = r−o(1), and γ = 1.
Here o(1) refers to an arbitrarily small real positive number. Furthermore, if the payoff
function P is globally Lipschitz continuous, then the estimates on the parameters can be
improved to α = r, β = 2r, γ = 1.

Proof. The estimate on γ comes from the construction of the algorithm. At the level l, we
use a time step size T/2l to discretize the path, and compute the expectation at the final
time. The dominant computational cost comes from simulating the path, which requires 2l
time steps. At the level l+1, we halve the time step size, and the number of the time steps
is doubled. Since we are using the same numerical scheme at each level, the computational
cost of propagating a single step remains the same, thus the total computational cost at
the level l + 1 is doubled. This indicates that γ = 1. We now focus on the estimate of α
and β. We first consider the general payoff function satisfying Assumption 3.

The proof is inspired by [30]. For a sample of XT and a sample of numerical approx-
imation X̂n with time step size h, we define a linear path Λ(λ) = λX̂n + (1 − λ)XT for
0 ≤ λ ≤ 1. Let M(X̂n, XT ) ∈ {0, 1, · · · , q} be the number of the discontinuity points
along the path. Note that P is at least piecewise Lipschitz continuous, all the discontinu-
ity points are of jump discontinuity. We hereby define the maximum size of the jump to
be J , i.e.

J = max
1≤j≤q

| lim
x→lj+

P(x)− lim
x→lj−

P(x)|.

Then

E|P(X̂n)− P(XT )|
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= E
[
E[|P(X̂n)− P(XT )|

∣∣∣M(X̂n, XT )]
]

= E[|P(X̂n)− P(XT )|
∣∣∣M(X̂n, XT ) = 0]× P(M(X̂n, XT ) = 0)

+
q∑
j=1

E[|P(X̂n)− P(XT )|
∣∣∣M(X̂n, XT ) = j]× P(M(X̂n, XT ) = j)

≤ LE[|X̂n −XT |
∣∣∣M(X̂n, XT ) = 0]× P(M(X̂n, XT ) = 0)

+
q∑
j=1

[
qJ + LE[|X̂n −XT |

∣∣∣M(X̂n, XT ) = j]
]
× P(M(X̂n, XT ) = j)

= LE|X̂n −XT |+ qJP(M(X̂n, XT ) ≥ 1).

The first part is bounded by O(hr). The second part can be bounded as, for a large integer
m,

P(M(X̂n, XT ) ≥ 1)
≤ P( min

1≤j≤q
|XT − lj | ≤ hα) + P(|X̂n −XT | ≥ hα)

≤ O(hα) + E|X̂n −XT |m

hαm

≤ O(hα) +O(hm(r−α)).

In the second inequality, the first term O(hα) follows from that XT is a continuously-
distributed random variable with a bounded density due to the Picard iteration used to
establish existence and uniqueness [50] under the global Lipschitz continuous assumption.
The second term follows from the Markov inequality. Therefore we have

E|P(X̂n)− P(XT )| ≤ O(hr) +O(hα) +O(hm(r−α)) (4.10)

holds for all m, which implies α = rm/(m+ 1) = r − o(1).
The estimate of β is similar to that of α. Note that Vl = V[Pl − Pl−1], so Vl ≤

(
√
V[P − Pl] +

√
V[P − Pl−1])2. It suffices to bound E[|P − Pl|2], which is larger than

V[P − Pl]. Using the same technique of estimating α,

E|P(X̂n)− P(XT )|2

= E[|P(X̂n)− P(XT )|2
∣∣∣M(X̂n, XT ) = 0]× P(M(X̂n, XT ) = 0)

+
q∑
j=1

E[|P(X̂n)− P(XT )|2
∣∣∣M(X̂n, XT ) = j]× P(M(X̂n, XT ) = j)

≤ L2E[|X̂n −XT |2
∣∣∣M(X̂n, XT ) = 0]× P(M(X̂n, XT ) = 0)

+
q∑
j=1

[
2q2J2 + 2L2E[|X̂n −XT |2

∣∣∣M(X̂n, XT ) = j]
]
× P(M(X̂n, XT ) = j)

≤ 2L2E|X̂n −XT |2 + 2q2J2P(M(X̂n, XT ) ≥ 1).

The first part is bounded by O(h2r). The second part is bounded by O(hβ) +O(hm(r−β))
for an arbitrarily large integer m, for the same reason in estimating α. It follows that

E|P(X̂n)− P(XT )|2 ≤ O(h2r) +O(hβ) +O(hm(r−β)), (4.11)
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which implies β = rm/(m+ 1) = r − o(1).
Finally, if further the payoff function P is globally Lipschitz everywhere, then we have

P(M(X̂n, XT ) ≥ 1) = 0. It is straightforward to conclude from the previous analysis that
α = r, β = 2r.

We remark that the estimates of α and β are possibly not sharp for some of the
Taylor-Itô schemes. For example, if the payoff function P is a linear function, then α will
be exactly the weak convergence order, which is, for many numerical schemes, larger than
the strong convergence order. Nevertheless, our Proposition 2 holds true for more general
payoff functions and general high order schemes, and it suffices for QA-MLMC to achieve
speedup over classical algorithms. In Appendix B, we perform careful numerical tests
of the values of α and β under different smoothness assumptions. We observe that our
estimate for β is sharp for both Lipschitz continuous payoff function and discontinuous
payoff function, and our estimate for α is sharp for discontinuous payoff functions, while
larger α is observed for smoother payoff functions.

Proposition 2 is sufficient to determine the complexity of both classical and quantum-
accelerated MLMC for solving SDEs. We start with the classical case. A discussion about
certain numerical schemes for typical payoffs has been proposed in Section 5 of [29]. For
high-order schemes and general payoffs, we state the result as follows.

Proposition 3. Consider Problem 1 for the stochastic differential equation (2.1) under
Assumption 1, Assumption 2 and Assumption 3. Then MLMC with a numerical scheme
for SDE of strong order r estimates E[P] up to additive error ε with probability at least
0.99 in cost {

O(ε−2), r > 1,
O(ε−1−1/r−o(1)), r ≤ 1.

(4.12)

Furthermore, if the payoff function P is globally Lipschitz continuous everywhere, then the
cost can be improved to 

O(ε−2), r > 1/2,
O(ε−2(log ε)2), r = 1/2,
O(ε−1/r), r < 1/2.

(4.13)

Proof. This is a straightforward result from Lemma 3 and Proposition 2.

Proposition 3 tells that, for general SDE (2.1) and payoff function satisfying Assump-
tion 1, Assumption 2, and Assumption 3, it suffices for MLMC to use a numerical scheme
of strong order r > 1 to obtain the complexity O(ε−2) , and using a numerical scheme of
strong order 1, e.g., Milstein scheme, will lead to the complexity O(ε−2−o(1)), i.e. almost
quadratic dependence on 1/ε. We note that if the payoff function is globally Lipschitz
continuous everywhere, then it suffices to use a numerical scheme of strong order 1/2, e.g.,
Euler-Maruyama scheme, to achieve the complexity Õ(ε−2).

As a counterpart, we are ready to state our main theorem regarding the complexity of
QA-MLMC for solving SDE.

Theorem 3. Consider Problem 1 for the stochastic differential equation (2.1) under As-
sumption 1, Assumption 2 and Assumption 3. Then QA-MLMC with a numerical scheme
for SDE of strong order r estimates E[P] up to additive error ε with probability at least
0.99 in cost 

O
(
ε−1(log 1/ε)3/2(log log 1/ε)2

)
, r > 2,

O
(
ε−1/2−1/r−o(1)(log 1/ε)3/2(log log 1/ε)2

)
, r ≤ 2.

(4.14)
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Furthermore, if the payoff function P is globally Lipschitz continuous everywhere, then the
cost can be improved to

O
(
ε−1(log 1/ε)3/2(log log 1/ε)2

)
, r > 1,

O
(
ε−1(log 1/ε)7/2(log log 1/ε)2

)
, r = 1,

O
(
ε−1/r(log 1/ε)3/2(log log 1/ε)2

)
, r < 1.

(4.15)

Proof. This is a straightforward result from Theorem 2 and Proposition 2.

Theorem 3 tells that, for general SDE (2.1) and payoff function satisfying Assump-
tion 1, Assumption 2, and Assumption 3, it suffices for QA-MLMC to use a numerical
scheme of strong order r > 2 to obtain the complexity Õ(ε−1), and using a numerical
scheme of strong order 2 will lead to the complexity Õ(ε−1−o(1)), i.e. almost linear de-
pendence on 1/ε. We note that if the payoff function is globally Lipschitz continuous
everywhere, then it suffices to use a numerical scheme of strong order 1, e.g., Milstein
scheme, to achieve the complexity Õ(ε−1).

Compared with the classical MLMC, the convergence order required to achieve possibly
optimal complexity is higher. This is due to the tighter requirement on the parameters
α, β and γ. Nevertheless, once the optimal complexity is reached, QA-MLMC achieves a
quadratic speedup over the classical MLMC in terms of ε.

4.3 Generalization to the entire path dependence case
So far we have confined ourselves to the case that the payoff function P only depends on the
final value XT of the stochastic process. However, the payoff functions of some options of
widely practical interest, including Asian call and put options, are in general dependent on
the stochastic integral along the entire trajectory of Xt for any 0 ≤ t ≤ T . Furthermore, as
being discussed later in Section 7, one of the most efficient ways to estimate the sensitivity
of the portfolio involves calculating the expectation of a stochastic integral. Fortunately,
QA-MLMC can be straightforwardly generalized to this situation, and we will elaborate
it in this subsection.

We first allow the payoff function P to be possibly dependent on the stochastic integral
of the entire trajectory through the following assumption:

Assumption 4. We assume the payoff function has the form

P = P
(
XT ,

∫ T

0
f(Xt)dt,

∫ T

0
g(Xt)dWt

)
, (4.16)

where P(X, y, z) is piecewise Lipschitz continuous with respect to X, y, z, and f and g are
two globally Lipschitz continuous functions.

Such a payoff function can be transformed to only depend on the final value of another
stochastic process by extending the system to higher dimension. Precisely, let us define

Yt =
∫ t

0
f(Xs)ds, Zt =

∫ t

0
g(Xs)dWs,

then Yt and Zt, together with Xt, satisfy the system of stochastic differential equations

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt,

dYt = f(Xt)dt,
dZt = g(Xt)dWt.

(4.17)
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This can be formally written as a system of stochastic differential equations in higher
dimension, i.e.

dX̃t = µ̃(X̃t, t)dt+ σ̃(X̃t, t)dW̃t,

where X̃>t = (X>t , Y >t , Z>t ), W̃t a Brownian motion in the dimension of X̃t,

µ̃ =

 µ(Xt, t)
f(Xt)

0

, σ̃ =

 σ(Xt, t) 0 0
0 0 0

g(Xt) 0 0

. (4.18)

Define
P̃(X̃t) = P(Xt, Yt, Zt),

then

P̃(X̃T ) = P(XT , YT , ZT ) = P
(
XT ,

∫ T

0
f(Xt)dt,

∫ T

0
g(Xt)dWt

)
,

and thus estimating the expectation of P is equivalent to solving Problem 1 in terms of
X̃t and P̃. By Assumption 4, we can check that X̃t and P̃ satisfy the Assumption 1,
Assumption 2 and Assumption 3. Therefore, according to Proposition 3 and Theorem 3,
we have the following result.

Corollary 1. Consider the payoff function satisfying Assumption 4. Then, further under
Assumption 1 and Assumption 2, MLMC with a numerical scheme for SDE of strong order
r estimates E[P] up to additive error ε with probability at least 0.99 in cost{

O(ε−2), r > 1,
O(ε−1−1/r−o(1)), r ≤ 1.

(4.19)

Furthermore, if the payoff function P is globally Lipschitz continuous everywhere, then the
cost can be improved to 

O(ε−2), r > 1/2,
O(ε−2(log ε)2), r = 1/2,
O(ε−1/r), r < 1/2.

(4.20)

Corollary 2. Consider the payoff function satisfying Assumption 4. Then, further under
Assumption 1 and Assumption 2, QA-MLMC with a numerical scheme for SDE of strong
order r estimates E[P] up to additive error ε with probability at least 0.99 in cost

O
(
ε−1(log 1/ε)3/2(log log 1/ε)2

)
, r > 2,

O
(
ε−1/2−1/r−o(1)(log 1/ε)3/2(log log 1/ε)2

)
, r ≤ 2.

(4.21)

Furthermore, if the payoff function P is globally Lipschitz continuous everywhere, then the
cost can be improved to

O
(
ε−1(log 1/ε)3/2(log log 1/ε)2

)
, r > 1,

O
(
ε−1(log 1/ε)7/2(log log 1/ε)2

)
, r = 1,

O
(
ε−1/r(log 1/ε)3/2(log log 1/ε)2

)
, r < 1.

(4.22)

We next discuss several applications arising in mathematical finance.
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5 Black-Scholes option pricing model
We consider the Black-Scholes model for option pricing [6, 7, 37], which is at the core of
quantitative finance, as the first application of Problem 1.

5.1 Black-Scholes equation
The Black-Scholes model is used to price a variety of financial derivatives via a simple
and analytical solvable model using a small number of input parameters. In Black-Scholes
model, we are mainly interested in the following Geometric Brownian Motion

dSt = µStdt+ σStdWt, (5.1)

where St is the asset price, σ the velocity of the asset and µ is the risk-free interest
rate. The rate of return on the asset µ is assumed to be a constant. There are some
other assumptions on the model, which Fischer Black and Myron Scholes have thoroughly
discussed in [6]. For path-independent option, the price of option V (s, t) follows the
Black-Scholes equation

∂V

∂t
+ σ2s2

2
∂2V

∂s2 + µs
∂V

∂s
= µV (5.2)

for s > 0, t ≤ T , with a terminal condition V (s, T ) = ψ(s), where ψ is the final payoff.
The link between (5.2) and (5.1) is established by the Feyman-Kac formula. The solution
of (5.2) can be represented as the expectation of the solution of (5.1).

Lemma 4. Consider a PDE defined in (5.2) subject to a terminal condition V (s, T ) =
ψ(s). The solution V (s, t) can be written as a conditional expectation

V (s, t) = E[e−µ(T−t)ψ(ST ) | St = s], (5.3)

where St is an Itô process driven by (5.1).

Using Itô lemma, (5.1) under the condition St = s can be solved as

ST = seσWT−t+(µ−σ2/2)(T−t). (5.4)

For European options, one can analytically solve for V (s, t), which has a deterministic
expression. However, in the case of more complex payoff functions, one needs to resort to
the Monte Carlo method, which gives an approximation of V (s, t) by averaging the payoff
over samples Wt. The quantum version of the Monte Carlo method can be applied to
reduce the complexity from Õ(ε−2) to Õ(ε−1), and the examples of Black-Scholes model
for European options and Asian options are thoroughly discussed in [55].

Nevertheless, the analytical solution (5.4) can be used for benchmarking numerical
simulations to understand the scaling behavior of discretization schemes. In Appendix B,
we present some numerical tests on the Black-Scholes equation to demonstrate our theory
results. In our method, we apply discretization schemes to (5.1) to simulate random paths
of St, such as Euler-Maruyama scheme

Ŝk+1 = Ŝk + µŜkh+ σŜk∆Wk, (5.5)

and Milstein scheme

Ŝk+1 = Ŝk + µŜkh+ σŜk∆Wk + σ2

2 Ŝk((∆Wk)2 − h). (5.6)
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Here, (5.5) and (5.6) are reduced from (4.4) and (4.5) respectively. Then we estimate
E[P (ST )] with P (St) = e−µ(T−t)ψ(ST ), where the quantum oracle (4.8) can be reduced to

Uψ(|x〉|0〉) = |x〉|ψ(x)〉. (5.7)

It is worthwhile to mention that our method is suitable for general SDEs and payoff
functions.

5.2 Option pricing
Black-Scholes model provides a useful tool for option pricing, which was a longstanding
problem in finance. Briefly speaking, an option is a contract that allows the holder to buy
or sell a financial asset at a fixed price in the future. A call option is an option to buy an
asset and a put option is an option to sell it. In this subsection, we would like to present
some well-known call options as examples. Put options can be developed in a similar way.

We first consider Lipschitz continuous options. One of the famous options is European
option, in which the final payoff is given by

ψ(ST ) = (ST −K)+ := max{ST −K, 0}, (5.8)

where K > 0 is the strike price of the option. That means that if ST ≤ K, the option is
worthless, and if ST > K, the holder can buy the asset for K dollars and sell it at market
price, making a profit of ST −K. Note that the European option is path independent and
only relies on the terminal price ST , without the consideration of the whole path.

There also exist path-dependent options relying on the path {St}. One example is
Asian option, in which the final payoff is considered to be

ψ(ST ) = ( 1
T

∫ T

0
Stdt−K)+ (5.9)

with the strike K > 0. The payoff of Asian option is determined by the average of the
asset price over [0, T ].

It follows from a theorem that the classical multilevel Monte Carlo method with Euler-
Maruyama scheme achieves the complexity Õ(ε−2) for globally Lipschitz continuous op-
tions, which improves the complexity of standard Monte Carlo method Õ(ε−3). [28, 29].

We then consider piecewise Lipschitz continuous options. A typical option is Digital
option, in which the digital option (Cash-or-nothing option) gives the final payoff as the
form

ψ(ST ) = H(ST −K), (5.10)

with the strike K > 0, where H is the Heaviside function. Clearly it is a non-Lipschitz
continuous option.

For piecewise Lipschitz continuous options, classical multilevel Monte Carlo method
with Euler-Maruyama scheme achieves the complexity Õ(ε−2.5), and it can be further
improved to Õ(ε−2) by Milstein scheme and extreme paths [29].

By Theorem 3 and Corollary 2, the quantum-accelerated multilevel Monte Carlo
method can be used to obtain the following result:

Corollary 3. We consider Problem 1 given by a Geometric Brownian Motion (5.1) with
an initial condition St = s0. We are given the zeroth-order quantum oracle (5.7) for a final
piecewise Lipschitz continuous payoff P as defined in (4.6) or (4.16). Then QA-MLMC
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with a numerical scheme for SDE of strong order r estimates E[P ] up to additive error ε
with probability at least 0.99 in cost{

Õ(ε−1), r > 2,
Õ(ε−1/2−1/r−o(1)), r ≤ 2.

(5.11)

Furthermore, if the payoff function P is globally Lipschitz continuous everywhere, then the
cost can be improved to {

Õ(ε−1), r ≥ 1,
Õ(ε−1/r), r < 1.

(5.12)

For globally Lipschitz continuous P , it suffices to perform the Milstein scheme (5.6)
with strong order r = 1 to achieve the complexity Õ(ε−1). While for piecewise Lipschitz
continuous P , it requires to use a numerical scheme of strong order 5/2 to obtain the
complexity Õ(ε−1).

6 Local Volatility model
The Local Volatility model generalizes the Black-Scholes model (5.1) by treating volatility
σ as a function of the asset St and the time t [20, 22]. The Local Volatility model is a kind
of simplification of the stochastic volatility model, which assumes σ has a randomness of
its own. Differing from the analytically solvable Black-Scholes model, we are required to
simulate the SDE, as there is a lack of explicit solutions to estimate the price of the Local
Volatility model.

The Local Volatility model characterizes St by a generalized Geometric Brownian Mo-
tion as the form

dSt = µStdt+ σ(St, t)StdWt (6.1)

for t ≤ T , with an initial condition St = s0. Here µ is the instantaneous risk-free interest
rate, σ(St, t) is the instantaneous volatility of the risky asset, which is sufficiently smooth
with respect to St and t, and Wt is a standard Brownian motion. We further require (6.1)
satisfies the assumptions in Section 4.

By Feynman-Kac Formula, the SDE (6.1) corresponds to the Black-Scholes equation
that describes the price of the option V = V (s, t) by

∂V

∂t
+ σ2(s, t)s2

2
∂2V

∂s2 + µs
∂V

∂s
= µV (6.2)

for s > 0, t ≤ T , with a terminal condition V (s, T ) = ψ(s), where ψ is the final payoff.
We establish the link between (6.1) and (6.2) by Feynman-Kac Formula.

Lemma 5. Consider a PDE defined in (6.2) subject to a terminal condition V (s, T ) =
ψ(s). The solution V (s, t) can be written as a conditional expectation

V (s, t) = E[e−µ(T−t)ψ(ST ) | St = s], (6.3)

where St is an Itô process driven by (6.1).

Thus, we can estimate E[P (ST )] with P (St) = e−µ(T−t)ψ(ST ) to obtain V (s, t) for
general options.

We consider the same setting for payoffs in Section 5. By Theorem 3 and Corol-
lary 2, the quantum-accelerated multilevel Monte Carlo method can be used to obtain the
following results:
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Corollary 4. We consider Problem 1 given by a SDE (6.1) with an initial condition
St = s0. We are given the zeroth-order quantum oracle (5.7) for a final piecewise Lipschitz
continuous payoff P as defined in (4.6) or (4.16). Then QA-MLMC with a numerical
scheme for SDE of strong order r estimates E[P ] up to additive error ε with probability at
least 0.99 in cost {

Õ(ε−1), r > 2,
Õ(ε−1/2−1/r−o(1)), r ≤ 2.

(6.4)

Furthermore, if the payoff function P is globally Lipschitz continuous everywhere, then the
cost can be improved to {

Õ(ε−1), r ≥ 1,
Õ(ε−1/r), r < 1.

(6.5)

7 Sensitivity of price
Besides the price, another important factor of financial products is the risk. If two financial
products have similar expected return, the one with lower risk is usually preferable because
people would like to ensure a positive rate of return earnings under most situations and
are not willing to take a risk. One common way to reduce the risk is hedging, that
is, forming a portfolio by buying several financial products with different reaction and
sensitivity to the change of the market. For example, if there are two stocks, and one is
positively correlated with the global economy and the other one is negatively correlated,
then one may purchase both of them with a specific ratio to guarantee the return no matter
whether the global economy flourishes or declines. Correctly identifying and measuring
the sensitivity is crucial to hedging portfolios.

“The Greeks” label the sensitivity of the price of the option [37]. They are partial
derivatives with respect to the parameters such as the initial price, the starting time, the
risk-free rate and the volatility. Computing these is essential to hedge portfolios, and
therefore it is even more important than pricing the option itself. Different from the
Black-Scholes model, there’s no closed form for Greeks with general payoff functions and
coefficients in SDEs. Let u(s, t) denote E(P(XT )) where XT is the solution of SDE

dXτ = µ(Xτ )dτ + σ(Xτ )dWτ , τ ∈ [t, T ] (7.1)

with starting time t and initial condition Xt = s. Different types of Greeks are as follow:

• Delta:
∂u(s, t)
∂s

, (7.2)

• Gamma:
∂2u(s, t)
∂s2 , (7.3)

• Vega:
∂u(s, t)
∂σ

, (7.4)

• Theta:
∂u(s, t)
∂t

, (7.5)

• Rho:
∂u(s, t)
∂r

. (7.6)
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Numerical treatments of Greeks have been widely studied in e.g. [10, 27, 47, 49, 54]. A
natural way to compute the Greeks is finite difference, that is, to compute the expectation
of the payoff function with different parameters and use finite difference to approximate the
derivatives. Although finite difference approximation of derivatives suffers from numerical
instability, using common stochastic paths for both estimators in finite difference can
reduce the classical complexity. However, if the payoff function is not smooth enough,
finite difference might not be effective. Here we consider an alternative approach using
Malliavin calculus [27] to compute the Greeks. Although rigorous derivation of using
Malliavin calculus to compute Greeks is technically involved, the basic idea is simply
using an analog of calculus of variations and integration by parts formula in the stochastic
calculus setting, and the outcome formula to compute Greeks is amazingly concise thus
easy to implement. We will show how to combine it with QA-MLMC to achieve quadratic
speedup.

For expository purpose let us consider the example of computing Delta in one dimen-
sion and omit a few technical details. We refer interested readers to [27] for elaborations
and other types of the Greeks. Assume the process Xt is given by (2.1), and for simplicity
we assume that the system is autonomous, i.e. there is no explict time dependence in µ
and σ. Define another stochastic process Yt to be

dYt = µ′(Xt)Ytdt+ σ′(Xt)YtdWt, Y0 = 1. (7.7)

Under Assumption 1, Assumption 2, Assumption 3, and several further technical assump-
tions that µ, σ are C1 functions, σ is uniformly bounded away from 0 and the payoff
function P has uniformly bounded second moment, [27, Proposition 3.2] tells that Delta
can be represented via the following formula:

∂u(s, 0)
∂s

= E
[

1
T
P(XT )

∫ T

0
Ytσ
−1(Xt)dWt | X0 = s, Y0 = 1

]
. (7.8)

Notice that here we only assume the payoff function P to be piecewise Lipschitz con-
tinuous. Therefore, we can compute Delta by sampling (Xt, Yt) according to (2.1) and
(7.7), and then use QA-MLMC to compute the expectation (7.8), which is in the form of
Assumption 4. By Corollary 2, we have the following complexity estimate:

Corollary 5. Assume we are given the zeroth-order quantum oracle (5.7) for a final
piecewise Lipschitz continuous payoff P as defined in (4.16). Then by sampling (Xt, Yt)
according to (2.1) and (7.7) with a numerical scheme of strong order r and estimating
Delta via (7.8) using QA-MLMC, the Delta can be approximated up to an additive error
ε with probability at least 0.99 in cost{

Õ(ε−1), r > 2,
Õ(ε−1/2−1/r−o(1)), r ≤ 2.

(7.9)

Furthermore, if the payoff function P is globally Lipschitz continuous, then the cost can
be improved to {

Õ(ε−1), r ≥ 1,
Õ(ε−1/r), r < 1.

(7.10)

8 Binomial option pricing model
The binomial option pricing model, a.k.a. the binomial lattice model, provides a discrete
time (lattice-based) approximation to the Black–Scholes model [19, 37, 56]. The bino-
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mial model assumes that movements in the price follow a binomial distribution, which
approaches the log-norm distribution of the Geometric Brownian Motion.

Given a risk-neutral measure and an initial condition S0, we divide [0, T ] by a uniform
partition 0 = t0 < t1 < . . . < tn = T with h = T/n, and model the price of a stock in
discrete time by a Markov chain

Sk+1 = SkYk+1, (8.1)

where {Yk} k ∈ [n]0 are i.i.d. with a two points “up” U and “down” D distribution

Pr(Yk = U) = p;
Pr(Yk = D) = 1− p.

(8.2)

Under this setting, the probability of the value SN is given by

Pr(Sn = UkDn−kS0) =
(n
k

)
pk(1− p)n−k. (8.3)

Thus, we create a binomial tree with distribution B(n, p) that describes the prices over
time.

We require the conditional expectation of (8.1) matches the Geometric Brownian Mo-
tion (5.1), giving

pSkU + (1− p)SkD = E[Sk+1 | Sk] = Ske
rh, (8.4)

which is

p = erh −D
U −D

. (8.5)

Practially, we could use E[Sk+1 | Sk] ≈ Sk(1 + rh) instead, which in fact corresponds with
the expectation of the Euler-Maruyama scheme (5.5). Similarly, we require the conditional
variance of (8.1) matches the geometry Brownian motion (5.1),

pS2
kU

2 +(1−p)S2
kD

2−[pS2
kU+(1−p)S2

kD]2 = Var(Sk+1 | Sk) = S2
ke

2rh(eσ2h−1) ≈ S2
kσ

2h.
(8.6)

There are various binomial lattice models satisfying (8.4) and (8.6). The first and the
most famous model is the CRR model [19]. If we choose step size h ≤ σ2/r2 , and assume
D = 1/U , we obtain

U = eσ
√
h, D = e−σ

√
h. (8.7)

Alternatively, we can also consider an equal probabilities model, the JR model [38]. If we
choose p = 1/2 to determine U and D, we would obtain

U = e(r−σ2/2)h+σ
√
h, D = e(r−σ2/2)h−σ

√
h. (8.8)

Similar as before, we can use first-order approximations of exponential factors as values
of U and D in practice.

Now we perform BOPM to estimate expectation of option pricing E[P (ST )] The error
of approximating general Black-Scholes option prices by CCR model (8.7) is O(1/

√
n) [36],

while it can be further improved to O(1/n) for European option [44].
In general, BOPM works for various options with complexity O(n), since we need to

calculate Sn = UkDn−kS0. Even if U = 1/D, we should still multiphy U in total 2k − n
times. In general, we can apply multilevel MC to reduce the cost of BOPM. Since we are
required to choose n = O(1/ε2), its complexity is generally no better than Euler-Maruyama
scheme.
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But for the piecewise constant payoff, such as the digital option (5.10), it allows us
to develop classical and quantum algorithms that only require O(logN) time complexity.
Given S0 < · · · < Sm, we define a piecewise constant payoff by

ψ(Sn) =


ψL, Sn < S0,

ψj , Sj−1 ≤ Sn < Sj ,

ψR, Sn ≥ Sm,
(8.9)

where ψj , ψL, ψR are constant. Noting that (8.9) is a special case of Assumption 3. We
are also given a zeroth-order classical oracle

Oψ(S0, k) = ψ(UkDn−kS0), (8.10)

which outputs the final payoff (8.9). The procedure is described as follows: given S0, U ,
D, N , we can determine the criteria k∗j corresponding with Sj , by

k∗j logU + (n− k∗j ) logD + logS0 = logSj . (8.11)

When we input n, we just compare n with n∗j , and determine the payoff (8.9). Under this
setting, the complexity of (8.10) is independent on n, by avoiding n times multiplication
for calculating Sn = UkDn−kS0.

We follow Theorem 12 of [46], in which we replace the fast random walk by BOPM.

Proposition 4. We consider Problem 1 given by a Geometric Brownian Motion (5.1) with
an initial condition S0. We are given the zeroth-order classical oracle (8.10) for a final
piecewise constant payoff as defined in (8.9), which has a bounded variance independent
of h. There exists a classical algorithm that estimates E[P ]up to additive error ε with
probability at least 0.99 in cost

Õ(ε−2). (8.12)

Proof. We aim to perform n = O(1/ε2) steps BOPM (8.1) to obtain ST within error ε, and
then calculate P (ST ) as one sample of Monte Carlo simulation. Given U , D, S0 sampled
from π0 in O(1), and the oracle (8.10) for (8.9), we do the sampling procedure as follows.

Inspired by Lemma 11 and Theorem 12 of [46], we determine n by sampling a binomial
distribution B(n, p), and then compare to n∗j to determine the payoff by (8.10). The
sampling from a binomial distribution requires O(logn) expected samples and O(logn)
expected time [9, 25]. Thus, the cost of each iteration is O(logn).

By Monte Carlo simulation, we repeat the above sampling procedure O(ε−2) times.
Thus, we can estimate E[P ] with the final complexity O(ε−2 logn) = O(ε−2 log 1/ε) in
time.

Similarly, we are given a zeroth-order quantum oracle by modifying (5.7) to be

Uψ(|S0〉|k〉|0〉) = |S0〉|k〉|ψ(UkDn−kS0)〉. (8.13)

where ψ is the final payoff (8.9). The same as the procedure of (8.10), the complexity of
(8.13) is independent on N .

We follow Theorem 22 of [46], in which we replace the quantum walk by BOPM.

Theorem 4. We consider Problem 1 given by a Geometric Brownian Motion (5.1) with
an initial condition S0. We are given the zeroth-order quantum oracle (8.13) for a final
piecewise constant payoff as defined in (8.9), which has a bounded variance independent
of h. There exists a quantum algorithm that estimates E[P ] up to additive error ε with
probability at least 0.99 in cost

Õ(ε−1). (8.14)
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Proof. Inspired by Theorem 22 of [46], we apply QA-MC to the random seed used as input
to a procedure for sampling from the binomial distributions. According to Proposition 4,
the cost of each iteration is O(logn) with n = O(1/ε2), and amplitude estimation gives
the final complexity O(ε−1(log 1/ε)3/2(log log 1/ε)2) in time.

9 Discussion
We have presented quantum-accelerated multilevel Monte Carlo methods for stochastic
processes. We apply our algorithm to several applications arising in mathematical finance,
in which we classify different financial models corresponding with different payoffs in detail.
We have shown a quadratically improved dependence on precision can be achieved by our
algorithm.

This work raises several natural open problems. First, from the PDE perspective, we
only deal with parabolic PDEs as an application of simulating SDEs. However, Poisson’s
equation and elliptic PDEs can be solved by classical multilevel Monte Carlo methods [17].
Can we apply our algorithm to Poisson’s equation, elliptic PDEs, or more general PDEs?

Second, we consider several types of financial models that can be presented as a SDE
model Problem 1. However, we only consider time-independent payoffs P(XT ) that only
rely on XT . For more general time-dependent payoffs P(Xt) where Xt is the stochastic
path in time t, such as the Lookback option [29], can we achieve such a quadratic speed-up
for this general model? Furthermore, there are some financial models that can be solved by
variational inequalities, such as American option. Can we develop corresponding quantum
algorithms for such a generalization?

Finally, we aim to output a classical value for estimating the mean of a payoff (Prob-
lem 1). Can we provide other meaningful characteristics of stochastic processes, or some
processes beyond the SDE modelling by quantum computer? And can we find more prac-
tical quantum input-output models for potential applications in finance or other fields?
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A Different types of errors
Let a random variable Y be an estimator of some unknown quantity a. In this paper we
have considered two different types of errors, mean-squared error E[(Y −a)2] and additive
error |Y −a|. Here we will show that these two types of errors are indeed almost equivalent.
More precisely, we will show that, up to some absolute pre-constants in the errors and
logarithmic factors in the cost, the situation that mean-squared error is on the level of ε2

indicates that the additive error is on the level of ε with probability at least 0.99, and vice
versa.

Proposition 5. Let A be a (classical or quantum) algorithm that generates a random
variable Y to estimate some unknown quantity a. Assuming that E[|Y |2+δ] <∞ for some
δ > 0, we have:

1. If E[(Y −a)2] ≤ ε2, then there exists an algorithm which repeats A a constant number
of times and outputs Ŷ such that |Ŷ − a| ≤ 3ε with probability at least 0.99.

2. If |Y − a| ≤ ε holds with probability at least 0.99, then there exists an algorithm
which repeats A O(log(1/ε)) times and outputs Ŷ such that E[(Ŷ − a)2] ≤ 2ε2.

Proof. 1. By E[(Y − a)2] ≤ ε2 and the bias-variance decomposition

E[(Y − a)2] = E[(Y − E[Y ])2] + (E[Y ]− a)2, (A.1)

we have E[(Y − E[Y ])2] ≤ ε2 and |E[Y ]− a| ≤ ε. Since

|Y − E[Y ]| ≥ |Y − a| − |a− E[Y ]| ≥ |Y − a| − ε, (A.2)

the event {|Y − a| ≥ 3ε} is a subset of the event {|Y − E[Y ]| ≥ 2ε}. Together with
Chebyshev’s inequality, we have

P(|Y − a| ≥ 3ε) ≤ P(|Y − E[Y ]| ≥ 2ε)

≤ E[(Y − E[Y ])2]
(2ε)2

≤ 1
4 .

(A.3)

This indicates that a single sample of Y can estimate a up to additive error 3ε with
probability at least 3/4. Then by Lemma 2, it suffices to repeat A a constant number of
times to boost the success probability to 0.99. This completes the proof of the first part.

2. First, according to Lemma 2, we can construct an estimator Ŷ such that |Ŷ −a| ≤ ε
with probability at least

1− 2−2−2/δ
(
E|Y |2+δ + |a|2+δ

)−2/δ
ε2+4/δ

by repeating the algorithm A O(log(1/ε)) times. Let ψA be the indicator function of a set
A, i.e. ψA(x) = 1 if x ∈ A and ψA(x) = 0 if x /∈ A. We split the mean-squared error into
two parts,

E[(Ŷ − a)2] =
∫

(y − a)2dP
Ŷ

(y)

=
∫

(y − a)2ψ{|y−a|<ε}(y)dP
Ŷ

(y) +
∫

(y − a)2ψ{|y−a|≥ε}(y)dP
Ŷ

(y).
(A.4)
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The first integral can be bounded as∫
(y − a)2ψ{|y−a|<ε}(y)dP

Ŷ
(y) ≤

∫
ε2ψ{|y−a|<ε}(y)dP

Ŷ
(y) ≤

∫
ε2dP

Ŷ
(y) = ε2. (A.5)

By Hölder’s inequality, the second integral can be bounded as∫
(y − a)2ψ{|y−a|≥ε}(y)dP

Ŷ
(y)

≤
[∫
|y − a|2+δdP

Ŷ
(y)
] 2

2+δ
[∫

ψ{|y−a|≥ε}(y)dP
Ŷ

(y)
] δ

2+δ

=
[∫
|y − a|2+δdP

Ŷ
(y)
] 2

2+δ [
P(|Ŷ − a| ≥ ε)

] δ
2+δ

≤ 2−
2+2δ
2+δ

(
E|Y |2+δ + |a|2+δ

)− 2
2+δ ε2

[∫
|y − a|2+δdP

Ŷ
(y)
] 2

2+δ

≤ 2−
2+2δ
2+δ

(
E|Y |2+δ + |a|2+δ

)− 2
2+δ ε2

[∫
(|y|+ |a|)2+δdP

Ŷ
(y)
] 2

2+δ

≤
(
E|Y |2+δ + |a|2+δ

)− 2
2+δ ε2

[∫
|y|2+δdP

Ŷ
(y) +

∫
|a|2+δdP

Ŷ
(y)
] 2

2+δ

=
(
E|Y |2+δ + |a|2+δ

)− 2
2+δ ε2

[
E|Y |2+δ + |a|2+δ

] 2
2+δ

= ε2.

(A.6)

Therefore the mean-squared error E[(Ŷ −a)2] is bounded by 2ε2. This completes the proof
of the second part.

B Numerical Results
In this part, we test several numerical schemes of SDE on Black-Scholes option pricing
model to obtain a classical estimate of the parameters α and β in Proposition 2. We
consider five numerical schemes, including Euler-Maruyama scheme (4.4), Milstein scheme
(4.5), strong order 1.5 scheme(B.1), strong order 2 scheme(B.5) (B.9) and strong order 3
scheme(B.11). The strong order 1.5 scheme is based on Taylor-Itô expansion

X̂k+1 = X̂k + µkh+ σk∆Wk + σkσ
′
kI(1,1) + σkµ

′
kI(1,0) + (µkµ′k + 1

2σ
2
kµk)

h2

2
+ (µkσ′k + 1

2σ
2
kσ
′′
k)I(0,1) + σk(σkσ′′k + (σ′k)2)I(1,1,1).

(B.1)

Here,

µk := µ(X̂k, t), µ′k := ∂Xµ(X̂k, t),
σk := σ(X̂k, t), σ′k := ∂Xσ(X̂k, t), σ′′k := ∂2

Xσ(X̂k, t).
(B.2)

Without other notice, for any function f := f(x, t), f ′ denote the partial derivative of
function f with respect to x. I(1,1), I(1,0), I(0,1) and I(1,1,1) are multiple Itô integrals:
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I(1) =
∫ tn+1

tn
dWs1 = ∆Wk,

I(1,1) =
∫ tn+1

tn

∫ s2

tn
dWs1dWs2 = 1

2(I2
(1) − h),

I(1,0) =
∫ tn+1

tn

∫ s2

tn
dWs1ds2,

I(0,1) =
∫ tn+1

tn

∫ s2

tn
ds1dWs2 = hI(1) − I(1,0),

I(1,1,1) =
∫ tn+1

tn

∫ s3

tn

∫ s2

tn
dWs1dWs2dWs3 = 1

2(1
3I

2
(1) − h)I(1).

(B.3)

In practice, we use two independent N (0, 1) distributed random variables U1 and U2 to
approximate I(1) and I(1,0) with

I(1) =
√
hU1, I(1,0) = 1

2h
3
2 (U1 + 1√

3
U2). (B.4)

The integer strong order Taylor schemes can be conveniently derived form a Taylor-
Stratonovich expansion, and thus we use the following strong order 2 scheme [43]:

X̂k+1 = X̂k + µ̄kh+ σk∆Wk + σkσ
′
kJ(1,1) + σkµ̄

′
kJ(1,0) + µ̄kσ

′
kJ(0,1) + µ̄kµ̄

′
k

h2

2
+ σk(σkσ′k)′J(1,1,1) + µ̄k(σkσ′k)′J(0,1,1) + σk(µ̄kσ′k)′J(1,0,1) + σk(σkµ̄′k)′J(1,1,0)

+ σk(σk(σkσ′k)′)′J(1,1,1,1),

(B.5)
where

µ̄ = µ− 1
2σσ

′, (B.6)

and J(1,1), J(1,0), J(0,1), J(1,1,1), J(1,1,0), J(1,0,1), J(0,1,1) and J(1,1,1,1) are multiple Stratonovich
integrals:

J(1) =
∫ tn+1

tn
◦dWs1 = I(1) = ∆Wk,

J(1,1) =
∫ tn+1

tn

∫ s2

tn
◦dWs1 ◦ dWs2 = 1

2!(J(1))2,

J(1,0) =
∫ tn+1

tn

∫ s2

tn
◦dWs1ds2,

J(0,1) =
∫ tn+1

tn

∫ s2

tn
ds1 ◦ dWs2 ,

J(1,1,1) =
∫ tn+1

tn

∫ s3

tn

∫ s2

tn
◦dWs1 ◦ dWs2 ◦ dWs3 = 1

3!(J(1))3,

J(1,1,0) =
∫ tn+1

tn

∫ s3

tn

∫ s2

tn
ds1 ◦ dWs2 ◦ dWs3 ,

J(1,0,1) =
∫ tn+1

tn

∫ s3

tn

∫ s2

tn
◦dWs1ds2 ◦ dWs3 ,

(B.7)

J(0,1,1) =
∫ tn+1

tn

∫ s3

tn

∫ s2

tn
◦dWs1 ◦ dWs2ds3,

J(1,1,1,1) =
∫ tn+1

tn

∫ s3

tn

∫ s3

tn

∫ s2

tn
◦dWs1 ◦ dWs2 ◦ dWs3 ◦ dWs4 = 1

4!(J(1))4.
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We remark that there also exists the strong order 2 scheme derived from Taylor-Itô ex-
pansion [42]. Typically, we approximate multiple Stratonovich integrals and multiple Itô
integrals by introducing additional random variables. However, the approximation of
multiple Stratonovich integrals is simpler and requires minimal set of random variables.
That is also why we prefer high order numerical schemes derived from Taylor-Stratonovich
expansion, such as the strong order 2 scheme and strong order 3 scheme in the following.

Since we consider Black-Scholes model,

dSt = µStdt+ σStdWt, (B.8)

the strong order 2 scheme can be simplified to

X̂k+1 = X̂k + µ̄X̂kh+ σX̂k∆Wk + σ2X̂kJ(1,1) + µ̄σX̂kh∆Wk + µ̄2X̂k
h2

2
+ σ3X̂kJ(1,1,1) + µ̄σ2X̂khJ(1,1) + σ4X̂kJ(1,1,1,1),

(B.9)

where µ̄ = µ− 1
2σ

2 and we use a nice property of multiple Stratonovich integral that

J(1,0) + J(0,1) = hJ(1), J(1,1,0) + J(1,0,1) + J(0,1,1) = hJ(1,1). (B.10)

The strong order 3 schemes for general SDEs are thoroughly discussed in [43]. We
choose the strong order 3.0 scheme based on Taylor-Stratonovich expansion and the cor-
responding discretization scheme for (B.8) is as follow.

X̂k+1 = X̂k + µ̄X̂kh+ σX̂k∆Wk + σ2X̂kJ(1,1) + µ̄σX̂kh∆Wk + µ̄2X̂k
h2

2 + σ3X̂kJ(1,1,1)

+ µ̄σ2X̂khJ(1,1) + σ4X̂kJ(1,1,1,1) + µ̄2σX̂k
h2

2 ∆Wk + µ̄σ3X̂khJ(1,1,1) + σ5X̂kJ(1,1,1,1,1)

+ µ̄3X̂n
h3

6 + σ6X̂kJ(1,1,1,1,1,1) + µ̄2σ2X̂k
h2

2 J(1,1) + µ̄σ4X̂khJ(1,1,1,1)

(B.11)

where J(1,1,1,1,1) and J(1,1,1,1,1,1) are multiple Stratonovich integrals with

J(1,1,1,1,1) =
J(1)
5! , J(1,1,1,1,1,1) =

J(1)
6! . (B.12)

As for options, we consider European option and Digital option pricing. For European
option, the payoff function is

ψ(ST ) = exp(−µT ) max{ST −K, 0} (B.13)

For Digital option, the payoff function is

ψ(ST ) = 5 exp(−µT )(1 +H(ST −K)) (B.14)

where H is Heaviside step function.
Table 2, 3 and Figure 1, 2, 3, 4, 5 show our numerical results on estimating α and

β as well as the convergence performance of the errors at each layer of MLMC. The
five schemes mentioned above are tested by running respectivly 106, 106, 107, 108, 109

independent simulations with the following choice of parameters:

µ = 0.05, σ = 0.2, T = 1, S0 = 100, K = 100. (B.15)
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Option Euler Maruyama Milstein strong order 1.5 strong order 2 strong order 3
European 0.976999 1.962848 2.970166 3.964626 5.958417

Digital 0.473426 0.869393 1.452448 1.775679 NAN

Table 2: numerical estimates of β based on linear regression for five schemes

Option Euler Maruyama Milstein strong order 1.5 strong order 2 strong order 3
European 1.136214 0.979572 1.747239 1.970829 2.961041

Digital 1.023176 0.791818 1.853158 1.827618 NAN

Table 3: numerical estimates of α based on linear regression for five schemes

The numerical scalings of α and β are estimated using linear regression based on the last
four points, in which the time step size h is small enough such that the corresponding
numerical scheme has already well converged (as shown in the figures) and the numerical
errors are dominated by the leading order term.

Table 2 and Table 3 shows the estimate of β and α of these schemes respectively.
In the case of European option, the estimates of β for five schemes all approximately
equal twice the corresponding strong order, which implies that our theoretical estimate
for β in Proposition 2 is sharp for Lipschitz continuous functions. The estimates of α
with higher order schemes are approximately equal to the corresponding strong order,
which also agrees well with our theoretical estimate for α. In the case of Digital option,
other than the strong order 3 scheme (which will be discussed later), the estimates of β
are roughly equal to the corresponding strong order of the schemes, which again verifies
our theoretical results for non-Lipschitz payoff functions. We remark that, similarly to the
European option case, some of the estimates for α are larger than the strong order. This is
because our theoretical estimate for α is quite conservative that we only employ properties
of strong order, while the convergence of payoff function is more related to the weak order,
which describes the convergence order of the moments of the stochastic process. This also
implies that our theoretical estimate for α might be improvable for particular schemes and
payoff functions.

We notice that for Digital option, strong order 3 scheme cannot output the estimate
of α and β. That is because strong order 3 scheme is of pretty high accuracy. When
we compute the option price, since the expectation of ST under our parameter choices is
larger than K, the Heaviside step function H outputs 1 with extremely high probability
and the option price is nearly deterministic. The outcome of numerical experiment has
such a small variance that the influence of the increase in level l on the mean and variance
is hard to distinguish, which explains the results shown in Figure 5.

So we make some changes to the choice of parameters. We increase σ to 1.5, which
increase the randomness, and choose K to be exactly the theoretical expectation 100e−0.05.
The numerical results are shown in Figure 6. The estimate of β is 2.957982, which agrees
well with theoretical result, and the estimate of α is 2.438328, which might be estimated
more accurately by using more samplings as well as smaller time step sizes.
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Figure 1: estimates of β and α when using Euler Maruyama Scheme for European option (left) and
Digital option (right). The top two plots show the variance versus level l, and the slope gives an
estimate of β. The bottom two plots show the mean versus level l and the slope gives an estimate
of α.
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Figure 2: estimates of β and α when using Milstein Scheme for European option (left) and Digital
option (right). The top two plots show the variance versus level l, and the slope gives an estimate
of β. The bottom two plots show the mean versus level l and the slope gives an estimate of α.
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Figure 3: estimates of β and α when using Strong order 1.5 Scheme for European option (left) and
Digital option (right). The top two plots show the variance versus level l, and the slope gives an
estimate of β. The bottom two plots show the mean versus level l and the slope gives an estimate
of α.
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Figure 4: estimates of β and α when using Strong order 2 Scheme for European option (left) and
Digital option (right). The top two plots show the variance versus level l, and the slope gives an
estimate of β. The bottom two plots show the mean versus level l and the slope gives an estimate
of α.
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Figure 5: estimates of β and α when using Strong order 3 Scheme for European option (left) and
Digital option (right). The top two plots show the variance versus level l, and the slope gives an
estimate of β. The bottom two plots show the mean versus level l and the slope gives an estimate
of α.
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Figure 6: estimates of β and alpha when using Strong order 3 Scheme for Digital option with new
parameters σ = 1.5 and K = 100e−0.05. The left plot shows the variance versus level l, and the
slope gives an estimate of β. The right plot shows the mean versus level l and the slope gives an
estimate of α.
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