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ABSTRACT
Avian haemosporidians are parasites with great capacity to spread to new
environments and new hosts, being considered a good model to host-parasite
interactions studies. Here, we examine avian haemosporidian parasites in a protected
area covered by Restinga vegetation in northeastern Brazil, to test the hypothesis that
haemosporidian prevalence is related to individual-level traits (age and breeding
season), species-specific traits (diet, foraging strata, period of activity, species body
weight, migratory status, and nest shape), and climate factors (temperature and
rainfall). We screened DNA from 1,466 birds of 70 species captured monthly from
April 2013 to March 2015. We detected an overall prevalence (Plasmodium/
Haemoproteus infection) of 22% (44 host species) and parasite’s lineages were
identified by mitochondrial cyt b gene. Our results showed that migration can be
an important factor predicting the prevalence of Haemoproteus (Parahaemoproteus),
but not Plasmodium, in hosts. Besides, the temperature, but not rainfall, seems
to predict the prevalence of Plasmodium in this bird community. Neither
individual-level traits analyzed nor the other species-specific traits tested were related
to the probability of a bird becoming infected by haemosporidians. Our results
point the importance of conducting local studies in particular environments to
understand the degree of generality of factors impacting parasite prevalence in
bird communities. Despite our attempts to find patterns of infection in this bird
community, we should be aware that an avian haemosporidian community
organization is highly complex and this complexity can be attributed to an intricate
net of factors, some of which were not observed in this study and should be evaluated
in future studies. We evidence the importance of looking to host-parasite
relationships in a more close scale, to assure that some effects may not be obfuscated
by differences in host life-history.
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INTRODUCTION
The avian haemosporidians of the genera Plasmodium and Haemoproteus are
vector-borne parasites that infect a wide range of host species (Hellgren, Pérez-Triz &
Bensch, 2009; Ricklefs et al., 2014) and have frequently switched to new host species and
new environments throughout their evolutionary history (Ricklefs, Fallon & Bermingham,
2004; Valkiūnas, 2005; Ricklefs et al., 2014; Ellis et al., 2019). These intracellular parasites
reproduce sexually in different dipteran vectors: mosquitoes (Culicidae) are vectors of
Plasmodium, and biting midges (Ceratopogonidae) and hippoboscid flies (Hippoboscidae)
are vectors of Haemoproteus (Parahaemoproteus) and Haemoproteus (Haemoproteus),
respectively (Valkiūnas, 2005; Santiago-Alarcon, Palinauskas & Schaefer, 2012).
Concerning their vertebrate hosts, Plasmodium and Haemoproteus (Parahaemoproteus)
infect birds of various orders, while Haemoproteus (Haemoproteus) is more specific and
infects birds of the order Columbiformes and some sea birds (Work & Rameyer, 1996;
Valkiūnas, 2005; Padilla et al., 2006; Levin & Parker, 2012; Levin et al., 2012).

Haemosporidians are closely connected to their hosts in interaction with outcomes
ranging from sublethal effects on the host fitness (Ortego et al., 2008; Knowles, Palinauskas &
Sheldon, 2010) to the decline and extinction of populations (van Riper et al., 1986; Atkinson
et al., 1995, 2000). These parasites can exert selective pressure on host populations
through effects on reproductive success, lifetime, and survival (Hamilton & Zuk, 1982;
Scott, 1988; Spencer et al., 2005; Asghar et al., 2015; Ricklefs et al., 2016). Therefore,
identifying the geographical distribution, host preferences, and infection prevalence of
these parasites may help the development of appropriate management strategies to
promote biodiversity conservation efforts worldwide.

Haemosporidian parasite prevalence, distribution, and richness vary widely across host
species and can be affected by several factors. Prevalence may increase with age of host,
since older individuals tend to have higher infection risk as a result of accumulated
exposure to parasites or potentially immunosenescence (Atkinson et al., 1995; Ricklefs
et al., 2005; Wood et al., 2007; Eastwood et al., 2019). However, this relationship is not
consistent among studies and is not always observed, which may be indicative that it
depends on the parasite and host species studied (Wood et al., 2007; Antonini et al., 2019).
Shape and height of birds nest may also influence haemosporidian prevalence, nest height
must be associated with the spatial feeding preferences of vectors when seeking hosts,
while its shape must determine the birds’ exposure to vectors (Cerný, Votýpka &
Svobodová, 2011; Fecchio et al., 2011; González et al., 2014; Lutz et al., 2015; Matthews
et al., 2015).

A migration strategy is another factor that may also influence haemosporidian
prevalence in birds, since migratory species are exposed to different vectors and parasites
as a consequence of their habitat change during their annual cycle (Waldenström et al.,
2002;Hellgren et al., 2013; Ricklefs et al., 2017; Slowinski et al., 2018; Pulgarín-R et al., 2019;
Soares, Latta & Ricklefs, 2019). This relationship does not occur evenly between parasites
and host species, as can be seen in studies that have observed that migratory birds can
be infected by parasites from their wintering grounds (Waldenström et al., 2002) or have
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little or no haemosporidian lineage shared with resident birds (Ricklefs et al., 2017;
Pulgarín-R et al., 2019). Likewise, the prevalence may be higher in migratory bird breeding
(Hellgren et al., 2013) or wintering areas (Pulgarín-R et al., 2019).

Environmental factors can also be related to prevalence in a bird community.
Seasonality, which involves temperature and rainfall, may influence vector infection
dynamics and hence the haemosporidian transmission (Medeiros et al., 2016; Ferreira
Junior et al., 2017;Hernández-Lara, González-García & Santiago-Alarcon, 2017a), and was
even considered an important driver of host specialization (Fecchio et al., 2019). However,
seasonality, in the same way as the host life-history traits, is not always linked to
haemosporidian prevalence, not even in the tropics (Ishtiaq, Bowden & Jhala, 2017).
Moreover, as seasonality is also associated with the breeding period of birds, a relationship
could be observed between these two variables influencing the haemosporidian prevalence,
since during bird’s breeding season may be an increase in adult susceptibility to infections,
due to changes in its behavior and immunity (Drobney, Train & Fredrickson, 1983;
Richner, Christe & Oppliger, 1995; Ardia, 2005). Besides that, juveniles born throughout
this time may also be more susceptible to infections (Cosgrove et al., 2008; Møller, 2010;
Santiago-Alarcon et al., 2011; Ferreira Junior et al., 2017; Rodrigues et al., 2020). Therefore,
many factors interact to determine the parasite prevalence in birds, revealing distinct
results in studies testing the same relationships in different communities. This makes the
knowledge of these interactions in different ecosystems valuable, to better understand the
various factors that interact and influence the dynamics of parasite-host infection in
natural environments.

Here, we tested whether the probability of an individual being infected with
haemosporidian parasites is related to (1) its individual-level traits (i.e., age and breeding
condition), which may influence the host immune defense mechanisms and individual
exposure to vectors; (2) its species-specific traits (i.e., diet, foraging strata, period of
activity, species body weight, migratory status, and nest shape), which may be linked to
differential vector exposure; and (3) climate factors (i.e., temperature and rainfall), which
might influence in vector abundance and richness. These hypotheses were tested in an area
of Brazilian Restinga, a poorly sampled phytophiosionomy for hemoparasites, and
therefore with a high potential to house new haemosporidian lineages.

MATERIALS & METHODS
Study site
The study was carried out in Barreira do Inferno Rocket Launch Center of the Brazilian Air
Force (acronym in Portuguese, Centro de Lançamento Barreira do Inferno–CLBI; 5�55′S
35�9′W), a protected area of ~1,800 ha located in Parnamirim, State of Rio Grande do
Norte, northeastern Brazil (Fig. 1). The area is in a tropical coastal vegetation region,
named Restinga, which is a type of vegetation associated with the Atlantic Rainforest
Domain (for more details about the study site, see Rodrigues et al. (2020)). Following the
local climatic data (Fig. S1), we determined as rainy season the period that goes from
March to August and, as dry season the period from September to February.
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Bird sampling
We monitored monthly the haemosporidian infection in a bird community within a 30 ha
plot (550 m × 550 m) from April 2013 to March 2015. The birds were captured following
the protocol described in Rodrigues et al. (2020). All captured birds were identified and
banded with individual aluminum bands provided by CEMAVE/ICMBio (permission
3239). Recaptured birds were not used in this study. We evaluated birds for age (adult or
young) based on their plumage, labial commissure, and cranial ossification; and the
presence of brood patch, by visual examination of the birds. We obtained blood samples
through brachial venipuncture with a sterile needle (13 × 4.5 mm) and stored the blood in
filter paper kept at 4 �C until DNA extraction.

Our use of mist-nets and banding was approved by the Brazilian biodiversity
monitoring agency (Institute Chico Mendes for Biodiversity Conservation—ICMBio,
Brazilian National Center for Bird Conservation—CEMAVE, permit 3239). We followed
standard ethical protocols for wildlife animals. Time handling the birds was kept to the
minimum, and all birds were released after banding, data, and sample collection. This
study was approved by the Ethics Committee in Animal Experimentation (CETEA),
Universidade Federal de Minas Gerais, Brazil (Protocol #254/2011).

Sampling Area
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Figure 1 Map of the study site sampled for a bird community infected by Plasmodium and Haemoproteus, Barreira do Inferno Rocket Launch
Center of the Brazilian Air Force, Parnamirim, State of Rio Grande do Norte, Brazil.We sampled 36 to 49 points per month in a cyclical way so
that all points were sampled one time at every three month. These three sample areas are indicated by the different shades of gray in the image—two
areas with 36 sample points and one area with 49 sample points. Full-size DOI: 10.7717/peerj.11555/fig-1

Rodrigues et al. (2021), PeerJ, DOI 10.7717/peerj.11555 4/21

http://dx.doi.org/10.7717/peerj.11555/fig-1
http://dx.doi.org/10.7717/peerj.11555
https://peerj.com/


Parasite detection
The parasite detection followed the protocols described in Rodrigues et al. (2020). Lineages
without previous records in the database were considered new lineages and deposited
in GenBank under accession numbers MH260577, MK291501, MK291502, MK291503,
MK291504, MK291505, MK291506, and MK291507. New occurrences of sequences
previously described were also deposited in GenBank under accession numbers
MK264392, MK264393, MK264394, MK264395, MK264396, MK264397, MK264398,
MK264399, MK264400, MK264401, MK264402, MK264403, MK264404, MK264405,
MK264406, MK264407, MK264408, MK264409, MK264410, and MK264411.

Modeling the factors predicting avian malaria prevalence
To test which factors influence the haemosporidian prevalence in the bird community, we
modeled the individual probability of infection separately for each parasite genus
(Plasmodium and Haemoproteus), as a function of individual and species-level traits of
hosts, as well as the climatic conditions. We chose to model the individual probability of
infection rather than the prevalence in host populations (see Fecchio et al., 2013) since we
have predictor variables at the individual level, which included age of host (adult or young)
and breeding condition (breeding or non-breeding). The breeding condition was
determined by the presence of a brood patch at the time of the capture. Species-specific
traits included average body mass (g), migratory status (migratory or resident), nest shape
(open-cup vs closed), diet (frugivore, nectarivore, granivore, insectivorous, omnivore, or
combinations of two or three diets), foraging stratum (ground, understory, midheight,
canopy, and combinations of two or three foraging strata), and period of activity (day or
night). We obtained the species-specific traits data from Handbook of the Birds of the
World Alive (Hoyo, Elliott & Christie, 2011) and, from Wilman et al. (2014).
The classification of the diet was made considering the food item or the combination of
food items that covered at least 80% of the total diet, based on the data fromWilman et al.
(2014), using at most three main food items per species of bird. We considered as
migratory the species of birds with some type of seasonal displacement in the area,
following the classification used by Somenzari et al. (2018). Finally, we used mean monthly
temperature and total monthly precipitation for the climatic variables (through the 24
months study), which were centered and scaled before analysis. We obtained the climate
data from a Brazilian Meteorological Database for Education and Research (INMET,
2017). Because in some cases we were unable to obtain all the individual-level traits in the
field, we removed from the dataset individuals with missing information to run the
analysis.

We accounted for different types of pseudoreplication (Hurlbert, 1984) in our dataset.
Phylogenetically related bird species, for instance, would have similar infection
probabilities (Ricklefs & Fallon, 2002; Waldenström et al., 2002), as well as individuals
captured at the same occasion (same month and same seasonality; Kim & Tsuda, 2010;
Ferreira Junior et al., 2017). Therefore, to control for such potential dependences, we used
the R package lme4 (Bates et al., 2015; R Core Team, 2016; Harrison et al., 2018) to fit
Generalized Linear Mixed Models (GLMM; Bolker et al., 2009). The infection status was
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recorded as a binary response variable (0: uninfected; 1: infected) and modeled as a
Bernoulli trial with a binomial distribution of errors and the logit link function. The hosts
individual- and species-level traits, and the climatic conditions entered as fixed factors,
without any interactions; and the temporal (season and month) and phylogenetic (order,
family, gender, species) factors entered as random factors–nested within each dimension
(temporal: month nested in season; phylogenetic: species nested in the genus, and
genus nested in the family) and crossed among dimensions. Here we used data referring to
the taxonomic classification of birds, considering that this is similar to the currently
known phylogenetic classification. The random effects were modeled affecting only the
intercept, but not the slope of the model.

The final model was obtained by backward selection of the fixed factors only–the
random structure was maintained complete in all models (Barr et al., 2013). Starting from
the full model, we used the likelihood ratio test to remove the fixed factors that do not
contribute significantly to the model fit (Crawley, 2013). The likelihood ratio test compares
the data likelihood under the full model against the data likelihood under a model with
fewer factors and was performed using an analysis of variance (ANOVA) performed by the
anova function. In each step, we removed the fixed factors that explained the small part of
the deviance. We used the r.squaredGLMM function implemented in the R package
MuMIn (Barton, 2018) to compute both the marginal and conditional R2 for the final
model; and the icc function implemented in the R package sjstats to compute the adjusted
intraclass-correlation of the random factors. The marginal-R2 gives the percentage of
variance explained by the fixed factors, while the conditional-R2 gives the total percentage
of variance explained by the full model, including the fixed and the random factors
(Nakagawa & Schielzeth, 2013). Finally, the adjusted intraclass correlation gives the
percentage of the residual variance explained by each random factor (Nakagawa, Johnson
& Schielzeth, 2017). The overdispersion test was not necessary, because an overdispersion
test does not make sense with a binary response variable (Crawley, 2013). All these
analyses were made separately for each parasite genus (i.e., Plasmodium and
Haemoproteus), but we included in the dataset only host species with at least one
individual infected by the parasite genus that was being analyzed on each occasion.

RESULTS
Overall malaria prevalence
We captured 1,466 individual birds of 25 families and 70 bird species, of which 322 (22%,
44 species) were infected by Plasmodium/Haemoproteus. All samples that screened
positive were subjected to the cytochrome b PCR, which successfully amplified infections
from 145 individuals. We obtained high-quality sequences from 117 samples. This is a
well-established methodology for detecting haemosporidians that has been successfully
applied in many other studies (e.g. Lacorte et al., 2013; Fecchio et al., 2017a; Ferreira Junior
et al., 2017; Ricklefs et al., 2017; Ferreira et al., 2020; Lopes et al., 2020; Rodrigues et al., 2020;
Soares, Young & Ricklefs, 2020), allowing us to observe the parasite prevalence and richness
in a host community and compare the identified lineages with other haemosporidian
studies around the world. Unfortunately, we were not able to collect and analyze blood
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smears from the captured birds, which would greatly enrich our findings and allow us to
assess the discrepancy between the number of positive samples and the number of
successfully sequenced lineages. We detected Plasmodium in 35 individuals of 18 species
(Table 1) and Haemoproteus infections were detected in 67 individuals of 15 species
(Table 2). Among more highly-captured species (n ≥ 7), the highest prevalence of infection
were detected in Cyclarhis gujanensis (n = 9/14, 64.3%), Tachyphonus rufus (n = 69/108,
64%), and Columbina passerina (n = 11/21, 52.4%). The majority of bird species caught
is resident in the region, but we have captured 15 migratory species of which nine were
infected (Elaenia spp. [3 species; n = 69/431], Myiarchus tyrannulus [1/4], Turdus
amaurochalinus [23/164], Schistochlamys ruficapillus [4/13], Turdus flavipes [3/13],
Cyanerpes cyaneus [1/1] and Vireo chivi [5/10]; Table S1).

Haemosporidian diversity
We recovered 27 cyt b lineages from 117 individuals, of which 18 were Plasmodium
lineages, detected in 35 birds (18 species), and 9 were Haemoproteus lineages, detected in
67 birds. Fifteen of the 117 high-quality sequences exhibited multiple infections, based on
double peaks in the chromatograms, and were removed from the dataset. Among the
Haemoproteus lineages, 3 were Haemoproteus (Haemoproteus) lineages detected in 9 birds
(2 species), and 6 were Haemoproteus (Parahaemoproteus) lineages detected in 58 birds
(13 species), as shown in Table 2. A total of eight lineages were detected here for the first
time (five Plasmodium and three H. (Parahaemoproteus)). Of the 27 lineages, 14 (52%)
were detected only once. Of the 13 lineages detected at least twice, eight (30%) were found
in more than one host species (Table 1 and Table 2). Most of the lineages detected in only
one host species were found in only one individual (14 lineages), and the remaining
lineages were found in two (2 lineages), three (1 lineage), or four (2 lineages) individuals.

Despite the higher richness of Plasmodium lineages detected in birds, there was a higher
number of birds infected by Haemoproteus (35 and 67 birds, respectively), mainly by H.
(Parahaemoproteus). The most prevalent Plasmodium lineage was BAFLA04, detected in 7
birds, being four captured at the rainy season and three at the dry season. Among the
Parahaemoproteus lineages, we highlight the lineage TARUF02, which was detected here
for the first time in 44 birds (21 at the rainy season and 23 at the dry season) and have an
apparent preference in infecting birds of the species Tachyphonus rufus. Of the total 44
birds infected by this lineage, 37 were T. rufus species, and the other seven occurrences of
this lineage were detected in seven different bird species (Table 1 and Table 2). Besides, we
recorded only two infections by other lineages in T. rufus species (PADOM11 and
BAFLA04).

Factors predicting haemosporidian prevalence
Our final dataset for prevalence analysis, after excluding individuals with missing data,
included 1,187 individual birds. Although the subgenus Haemoproteus (Haemoproteus)
and H. (Parahaemoproteus) are classified within the same genus, they are very different
concerning their vertebrate hosts and vectors (Valkiūnas, 2005), which made us consider it
important to treat these two groups differently in our study. However, as the number of
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Table 1 Distribution of Plasmodium lineages across bird species captured in Barreira do Inferno Rocket Launch Center of the Brazilian Air
Force, Parnamirim, State of Rio Grande do Norte, Brazil.

Bird species Plasmodium lineages

BAFLA03 BAFLA04 CALON01 CPCT57 DENPET03 FOGRI01 FOMEL04 H012 HYAMA01

Cantorchilus longirostris (25) 2

Coereba flaveola (114) 3 3

Cyanocorax cyanopogon (2) 1

Cyclarhis gujanensis (14)

Elaenia chilensis (244) 1 1

Elaenia spectabilis (9) 1

Formicivora grisea (10) 1

Formicivora melanogaster (9) 1

Herpsilochmus pectoralis (24)

Herpsilochmus sellowi (27)

Hylophilus amaurocephalus (29) 1

Leptotila verreauxi (9) 1

Piaya cayana (8) 1

Polioptila plúmbea (15)

Tachyphonus rufus (108) 1

Turdus amaurochalinus (156) 1

Turdus flavipes (11) 1

Turdus leucomelas (98)

Plasmodium lineages

Bird species LECOR02 PADOM09 PADOM11 PADOM17 PAMIT01 POPLU01 TUAMA01 TURNUD02 U12 Total

Cantorchilus longirostris (25) 2

Coereba flaveola (114) 1 7

Cyanocorax cyanopogon (2) 1 1

Cyclarhis gujanensis (14) 1 1

Elaenia chilensis (244) 1 1 1 5

Elaenia spectabilis (9) 1

Formicivora grisea (10) 1

Formicivora melanogaster (9) 1

Herpsilochmus pectoralis (24) 1 1

Herpsilochmus sellowi (27) 1 1

Hylophilus amaurocephalus (29) 1

Leptotila verreauxi (9) 1

Piaya cayana (8) 1

Polioptila plúmbea (15) 1 1 2

Tachyphonus rufus (108) 1 2

Turdus amaurochalinus (156) 1 1 3

Turdus flavipes (11) 1 2

Turdus leucomelas (98) 1 1

Note:
The number of individuals captured for each species is denoted in parentheses.
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birds infected by H. (Haemoproteus) was too low (n = 9), we only included in these
analyses birds infected by H. (Parahaemoproteus).

The GLMM analysis indicated that the temperature influences the probability of infection
by Plasmodium (Table S2), with the increase of one standard deviation on temperature
(0.99 �C) resulting in an increase of 1.8 in the odds of infection by Plasmodium (the odds
ratio, Table 3). However, the temperature is not an important factor influencing the
probability of infection by Parahaemoproteus and neither Plasmodium nor
Parahaemoproteus were influenced by rainfall.

The probability of infection was not influenced by any of the individual host traits
tested, such as age and breeding condition for both parasite genus. Besides, when
considering species-specific traits, only the probability of infection by Parahaemoproteus

Table 2 Distribution of Haemoproteus lineages across bird species captured in Barreira do Inferno Rocket Launch Center of the Brazilian Air
Force, Parnamirim, State of Rio Grande do Norte, Brazil.

Haemoproteus lineages

Bird species Família COTAL01 ELALB01 NYMAC01 PAPOL03 SocH3 SocH4 TARUF02 UN203 VIREO02 Total

Coereba flaveola (114) Thraupidae 1 1

Columbina passerina (21) Columbidae 4 1 5

Columbina talpacoti (14) Columbidae 4 4

Coryphospingus pileatus (5) Thraupidae 1 1

Cyclarhis gujanensis (14) Vireonidae 1 5 6

Elaenia chilensis (244) Tyrannidae 1 1 2

Formicivora grisea (10) Thamnophilidae 1 1

Myiarchus tyrannulus (4) Tyrannidae 1 1

Neopelma pallescens (27) Pipridae 1 1

Nystalus maculatus (10) Bucconidae 3 3

Pachyramphus polychopterus (7) Tityridae 2 2

Tachyphonus rufus (108) Thraupidae 37 37

Tangara cayana (67) Thraupidae 1 1

Turdus flavipes (11) Turdidae 1 1

Vireo chivi (10) Vireonidae 1 1

Note:
The number of individuals captured for each species is denoted in parentheses. SocH3, SocH4 and COTAL01 are Haemoproteus (Haemoproteus) lineages. ELALB01,
NYMAC01, PAPOL03, TARUF02, UN203 and VIREO02 are Haemoproteus (Parahaemoproteus) lineages.

Table 3 The parameters of the minimal models (binomial GLMMs) explaining the probability of infection by Plasmodium sp. and
Parahaemoproteus sp.

Parasite genus Main effects Estimate Std. Error Odds ratio Z value P value R2m R2c

Plasmodium Intercept −2.85 0.32 0.05 −8.69 2e−16* 0.08 0.24

Temperature 0.59 0.21 1.80 2.73 0.0060*

Parahaemoproteus Intercept −0.70 0.19 0.49 −3.60 0.0003* 0.43 0.43

Migratory −3.37 0.54 0.03 −6.42 4.32e−10*

Note:
Both models have the same random structure (see Tables S1–S3).
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was affected by the species migratory status (Table S3), with the odds of be infected by
Parahaemoproteus in migratory birds being 0.03 of that in non-migratory birds. However,
there was no influence on the probability of infection by any haemosporidian when
considering diet, foraging stratum, period of activity, species body mass, and nest shape.

For Parahaemoproteus GLMM the ICCadj was equal to zero for all random
factors (Table S4), and, consequently, marginal and conditional R2 were identical
(R2

m = R2
c = 0.43, Table 3). This means that the random factors do not explain anything

about the dispersion of model residuals. In this case, the GLMM collapse to a simple GLM.
For Plasmodium GLMM, otherwise, the ICCadj was also equal to zero for almost all
random factors, except for random factor ‘species’ which was equal to 0.17 (Table S4),
indicating that 17% of the residual variance is correlated within species. Thus, marginal
and conditional R2 were not identical (R2

m = 0.08, and R2
c = 0.24, Table 3) and,

therefore, the species of the birds had a small influence on the probability of Plasmodium
infection. This indicates that, apart from the other factors, birds of different species will
have different probabilities of becoming infected by Plasmodium.

DISCUSSION
What does influence avian haemosporidian prevalence? Here, we found that migratory
birds were less likely to be infected with Haemoproteus (Parahaemoproteus) when
compared to resident birds and that the probability of infection by Plasmodium was
positively influenced by temperature. By observing avian haemosporidians in a diverse
region, and exploring how ecological variables are related to parasite infection probability
in wild birds, we can compare these interactions we have found here with patterns of
interactions already observed in avian communities in different contexts, to add
knowledge that allows us to better understand infectious diseases in wild birds.

Migratory behavior of birds from CLBI had a significant and inverse association with
the probability of infection by Haemoproteus (Parahaemoproteus), but there was no effect
of migration on the probability of infection by Plasmodium. The current knowledge of
the host specificity of the parasite lineages predicts that Haemoproteus parasites tend to be
more host-specific than Plasmodium parasites (Ishtiaq et al., 2007, 2010; Dimitrov,
Zehtindjiev & Bensch, 2010). Therefore, it is possible that migratory birds are not suitable
hosts for Parahaemoproteus lineages with which they geographically overlap during their
annual cycle. This agrees with the study presented by Hellgren et al. (2007) showing
that Haemoproteus and Leucocytozoon had a significant affiliation to a single resident bird
fauna, while Plasmodium lineages showed a higher degree of infecting both resident
and migratory bird species. If that is true in the studied bird community, migrants may be
less likely to become infected by Haemoproteus in CLBI when compared to resident birds,
due to the greater specificity this parasite presents concerning its local hosts. Because
Plasmodium lineages are usually more generalist, they can probably infect migrants as well
as resident birds, which would explain why we did not find the same influence of migratory
behavior on the probability of infection by these parasites. If, on the one hand, the
migration has the potential to increase the exposure of birds to parasites by concentrating
individuals at breeding, overwintering or, migratory stopover sites (Waldenström et al.,
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2002), on the other hand, migration could make possible the escape of birds from habitats
where parasite transmission stages have accumulated, or selective removal of infected hosts
during movements (Hall, Altizer & Bartel, 2014).

Alternatively, our results might be related to the hypothesis that the selection
experienced by migratory birds in their breeding and wintering areas resulted in greater
investment in immune defense (Møller & Erritzøe, 1998). If a bird individual is negative
for haemosporidian infections, it might be because either the host individual is not
infected, the parasite is dormant in tissues and not found in the bloodstream (Valkiūnas,
2005), or that it occurs in such low intensities in the avian blood that it is not detected by
PCR screening. This former situation could be a cue that the bird was able to fight the
infection, reducing its parasitemia. In that case, migrants having greater investment in
immune defense could also have low parasitemia when infected.

Despite the absence of data about mosquitoes in CLBI to allow us to correctly evaluate
the vector-parasite-host relationship, the positive association observed between
temperature and Plasmodium prevalence may be related to the effects of temperature on
the vectors of this parasite. For avian haemosporidians, the temperature is commonly
described as an important abiotic factor influencing the parasite development and vector
breeding opportunities (Beier, 1998; Santiago-Alarcon, Palinauskas & Schaefer, 2012;
Medeiros et al., 2016; Mordecai et al., 2019). It has been demonstrated that the
development of different malaria parasites in vectors can be influenced by the climate and
is generally hampered by low increments in temperature (LaPointe, Goff & Atkinson, 2010;
Zamora-Vilchis, Williams & Johnson, 2012). Temperature also determines the rate at
which mosquitoes develop into adults, the frequency of their blood-feeding, and the
rate at which parasites are acquired (Patz et al., 2000). Garamszegi (2011) has shown that a
1 �C increase in global temperature led to a two- to three-fold increase in the average
prevalence of Plasmodium in birds. It is also demonstrated that studies made with samples
from years and localities where temperature anomalies were strongly expressed generally
detected higher Plasmodium prevalence than surveys based on samples that were less
affected by temperature anomalies (Garamszegi, 2011). Sehgal et al. (2011), in a study
conducted on Olive Sunbirds (Cyanomitra olivacea) in West and Central Africa, also
showed an association between higher temperatures and elevated Plasmodium prevalence,
with data indicating that the maximum temperature of the warmest month was the most
important indicator for elevated malaria prevalence. In contrast, Zamora-Vilchis, Williams
& Johnson (2012), in a study conducted in Australia, demonstrated that in areas with high
temperatures the birds had a higher prevalence of Haemoproteus, and relationships for
Leucocytozoon and Plasmodium were also positive but not statistically significant. Given
that, in a warmer climate, the vector abundance may increase, and the transmission of
vector-borne diseases must be higher. On the other hand, in our study the infection
probability by Parahaemoproteus lineages was not influenced by temperature and, it is
possible that biting midges, which act as their vectors, do not have their reproduction and
development as closely related to climatic factors as Plasmodium vectors. Immature biting
midges require a certain amount of free water or moisture, being able to develop in a wide
range of habitats that meet that criterion like pools, streams, marshes, bogs, beaches,
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swamps, tree holes, irrigation pipe leaks, saturated soil, animal dung, and even rotting fruit
and other vegetation (Mellor, Boorman & Baylis, 2000). With so many possible breeding
sites, Parahaemoproteus vectors are probably present in the community during the
whole year and, even if there is some reduction in their abundance due to changes in
temperature and rainfall (Mellor, Boorman & Baylis, 2000), it may be less evident for biting
midges than for mosquitoes.

Neither age nor breeding condition explained the probability of infection by
haemosporidians. Although many studies have evidenced that birds age and/or breeding
condition may influence haemosporidian prevalence (Wood et al., 2007; Ferreira Junior
et al., 2017;Hernández-Lara, González-García & Santiago-Alarcon, 2017b; Eastwood et al.,
2019), others have failed to detect such an association (Ricklefs et al., 2005;Matthews et al.,
2015). There was also no association between prevalence and rainfall or, except for
migratory behavior, any tested species-specific traits (diet, foraging strata, period of
activity, species body weight, and nest shape). It is true that many studies have shown that
different host-traits and abiotic factors are important determinants in a host-parasite
interaction (Ricklefs et al., 2005; Wood et al., 2007; Medeiros et al., 2016; Ferreira Junior
et al., 2017; Hernández-Lara, González-García & Santiago-Alarcon, 2017a; Ishtiaq,
Bowden & Jhala, 2017; Fecchio et al., 2017b; Eastwood et al., 2019). However, there are
many variations in these studies’ results, and some of them fail to detect these interactions.
Based on the mixed results found in these studies, it is possible that the relationship
between species-specific traits as well as individual-level traits and the risk of infection by
haemosporidian parasites might be location-dependent. It is important to highlight that
several factors might be working together to determine such variations we see in all
these different studies, including the host species that, as we observed, had a small
influence on the infection probability by Plasmodium. That small influence of the species
on Plasmodium prevalence could be related to factors that were not tested in our studies,
like phylogeny or co-infection with other hemoparasites. Studying haemosporidian
infections only at the community level reduces our ability to detect if some species are
more susceptible to the most common Plasmodium lineages in CLBI, for example. That is
why species-specific studies are also important and allow us to identify some relationships
that may be overshadowed in a bird community (Rodrigues et al., 2020).

The CLBI harbors a diverse community of avian haematozoan lineages distributed
among 63% (44/70) of the bird species sampled in this study and we estimated an overall
parasite prevalence of ~22%. Estimates for the prevalence of haemosporidian parasites
in bird communities from Brazil indicate a great variation both among different
ecosystems and between different sites in the same ecosystems. The estimated prevalence
in Cerrado varied from 21% to 42% (Belo et al., 2011; Fecchio et al., 2013; Lacorte et al.,
2013). In other Brazilian habitats it has also been observed a great variation in prevalence
estimates, e.g., 17.4% (Fecchio et al., 2017c) to 21.7% (Svensson-Coelho et al., 2013) in
Amazonian Region; 38.5% (Lacorte et al., 2013) to 42% (Ferreira Junior et al., 2017) in
Seasonally Dry Tropical Forest; and 12.4% to 39.6% in Atlantic Forest (Ribeiro et al., 2005;
Sebaio et al., 2010; Lacorte et al., 2013). This considerable variation in prevalence among
studies is evidence that we still have many aspects of this complex, spatially variable
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parasite–host system to understand. The avian haemosporidian parasite–host community
in northeast Brazil adds to our understanding of the distribution and diversity of avian
haemosporidian parasites and examines the ecological factors that influence host
susceptibility. However, we acknowledge that much remains to be investigated in the
parasite-host relationship in Restinga and suggest that future studies use information from
blood smears and mixed infections to extend the ability to detect and identify
haemosporidians in this bird community.

CONCLUSIONS
In this first exploration of avian haemosporidian parasites in a largely unexplored region of
Brazil, we could demonstrate that this environment harbors a high diverse community of
Plasmodium and Haemoproteus parasites. We established that migration can be an
important factor predicting the prevalence of Haemoproteus, but not Plasmodium, in
hosts. Thus, in CLBI,Haemoproteus lineages infect preferably resident birds and should be
more difficult to disperse into new environments. The other individual- and species-level
traits were not important in determining the probability of infection by Plasmodium or
Haemoproteus in our study, which indicates a great variation of the influence of these
factors on haemosporidian prevalence in different communities. The temperature, but not
the rainfall, seems to predict the Plasmodium prevalence in this bird community. This
result raises the possibility that ongoing climate change will impact the dynamics of
Plasmodium transmission, a subject that should be explored in future studies. The higher
number of birds infected by Haemoproteus lineages than by Plasmodium is an uncommon
finding in Brazil and led us to suggest that northeast Brazil must have a different
haemosporidian infection dynamics when compared to other studied regions of the
country. Further investigations in northeast biomes and sampling of the haemosporidian
vectors are needed to better understand the transmission dynamics and to elucidate the
factors promoting higher levels of Haemoproteus infection in birds of this region.
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