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Smart farming employs intelligent systems for every domain of agriculture to obtain
sustainable economic growth with the available resources using advanced technologies.
Deep Learning (DL) is a sophisticated artificial neural network architecture that provides
state-of-the-art results in smart farming applications. One of the main tasks in this
domain is yield estimation. Manual yield estimation undergoes many hurdles such
as labor-intensive, time-consuming, imprecise results, etc. These issues motivate the
development of an intelligent fruit yield estimation system that offers more benefits to the
farmers in deciding harvesting, marketing, etc. Semantic segmentation combined with
DL adds promising results in fruit detection and localization by performing pixel-based
prediction. This paper reviews the different literature employing various techniques
for fruit yield estimation using DL-based semantic segmentation architectures. It also
discusses the challenging issues that occur during intelligent fruit yield estimation
such as sampling, collection, annotation and data augmentation, fruit detection, and
counting. Results show that the fruit yield estimation employing DL-based semantic
segmentation techniques yields better performance than earlier techniques because of
human cognition incorporated into the architecture. Future directions like customization
of DL architecture for smart-phone applications to predict the yield, development
of more comprehensive model encompassing challenging situations like occlusion,
overlapping and illumination variation, etc., were also discussed.

Keywords: precision agriculture, yield estimation, deep learning, semantic segmentation, fruit detection and
localization

Abbreviations: AI, Artificial Intelligence; AVIRIS, Airborne Visible/Infrared Imaging Spectrometer; CCD, Charge Coupled
Device; CNN, Convolutional Neural Networks; CPU, Central Processing Unit; CART, Classification and Regression Trees
Classifier; CMOS, Complementary Metal-Oxide-Semiconductor; CRAID, CRanberry Aerial Image Dataset; CRF, Conditional
Random Fields; DL, Deep learning; ECa, apparent Electrical Conductivity; EM, Expectation-Maximization; FCN, Fully
Convolutional Networks; GFPN, Gate Feature Pyramid Network; GMM, Gaussian Mixture Model; GPU, Graphics Processing
Unit; HOG, Histograms of Oriented Gradient; IoU, Intersection over Union; LSTM, Long Short-Term Memory; MIL,
Multiple Instance Learning; ML, Machine Learning; MRF, Markov Random Fields; NDVI, Normalized Difference Vegetation
Index; NMS, Non-Maximum Suppression; PA, Precision Agriculture; R-CNN, Regions with Convolutional Neural Networks;
ReLU, Rectified Linear Unit; ResNet, Residual Network; RMSE, Root Mean Squared Error; RPN, Region Proposal Network;
SATD, Sum of Absolute Transformed Difference; SIFT, Scale Invariant Feature Transform; SUR, Systematic Uniform
Random; SURF, Speeded-Up Robust Features; SVM, Support Vector Machines; UAS, Unmanned Aerial Systems; UAV,
Unmanned Aerial Vehicle; UGV, Unmanned Ground Vehicle; VGG16, Visual Geometry Group16; VGG19, Visual Geometry
Group19; YOLO, You Only Look Once; ZFNet, Zeiler and Fergus Network.
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INTRODUCTION

Sustainable agriculture is required to fulfill the growing
population’s needs by properly utilizing the available resources
(Kamilaris and Prenafeta-Boldu, 2018). It can be obtained by
Precision Agriculture (PA), which is supported by advanced
sensing and image processing systems (Gongal et al., 2015),
Artificial Intelligence (AI), etc. PA was developed in the
early 1980s (Stafford, 2000). By combining modern machine
vision with Deep Learning (DL) architectures, PA gains a
revolutionary impact in various agricultural applications, such
as crop monitoring, disease detection, and intelligent yield
estimation. Among these, intelligent fruit yield estimation plays
a vital role in making the final decisions regarding harvesting and
fruit management.

Limitations of Manual Yield Estimation
In most countries, fruit cultivation is practiced in a large area
to fulfill the worldwide demand. Therefore, improved fruit yield
estimation for large orchards is required to obtain per acre fruit
production and average fruit size. It enables further activities
(i.e., marketing, harvesting, stock volumes, etc.) that can be
planned in an effective manner by the farmers. Traditionally,
fruit yield estimation has been performed by manual counting
(by agricultural scientists) and leads to low precision results,
high costs, as it requires expert observation, and higher time
requirements for estimation. Therefore, subsequent decision
making becomes a challenging task for the farmers with manual
yield estimation. Hence, there is a need for an intelligent
yield estimation system that overcomes the above-mentioned
problems. Recently, AI-based intelligent systems for estimating
fruit yield tend to provide promising results, so the problems
occurring in traditional yield estimation can thereby be avoided.
Further, it allows for digital agricultural systems. Machine
Learning (ML) and DL are the two important techniques used in
AI systems, which produces promising results in field conditions
(Gongal et al., 2015; Kamilaris and Prenafeta-Boldu, 2018).

Fruit Yield Estimation Using ML
Techniques
Before the ML era, fruit detection was done by simply capturing
images from orchards and detecting the prominent features
from the images such as size, shape, color, and texture of the
fruit using various segmentation algorithms such as K-means,
watershed, contour detection, and decision trees. ML is a subfield
of AI and popularly used by many researchers, as it replaces
the effort imparted by human intelligence. It works with a set
of algorithms and develops a trained model for (given) input
features obtained from source objects (Kamilaris et al., 2017;
Liakos et al., 2018). The model is then used to test real-time
data, which is not trained. In PA, ML is one of the most widely
used techniques for decision making related to yield estimation,
soil management, plant disease management, etc. Over the past
decade, many works (Payne et al., 2013; Yamamoto et al., 2014;
Dorj et al., 2017; Qureshi et al., 2017) have been done in fruit
yield estimation using ML techniques because of its promising

capability. Payne et al. (2013) proposed a method to segment
mango fruit pixels based on the color components RGB and
YCbCr with texture segmentation by identifying the adjacent
pixels. The results showed a squared correlation coefficient R2 of
0.91 when imaging on four sides and 0.74 for one side imaging.
Dorj et al. (2017) developed a method to detect and segment
the citrus fruits using a watershed algorithm after converting the
RGB images into an HSV color space and obtained a squared
correlation coefficient R2 value of 0.93. Some works (Stajnko and
Cmelik, 2005; Malik et al., 2016; Mehta et al., 2017) adapted
the size as a criterion to identify the object boundary. Even
though the results are promising, these methods do not work
in challenging situations such as occlusion, overlapping, and
illumination variations.

Qureshi et al. (2017) proposed a method for the precise
detection of fruits by analyzing images of mango tree canopies.
The authors applied two approaches: The first approach dealt
with identifying fruit and non-fruit pixels by applying a set of
filters on the input image. The second analyzed the boundaries
of mango fruits as an ellipse rather than a circular shape. Results
were compared against existing ML algorithms, i.e., K-nearest
neighbors (kNN) and Support Vector Machines (SVM), and
the proposed method demonstrated an F1 score of 0.68. Yasar
and Akdemir (2017) developed a method for orange detection
using Artificial Neural Networks (ANNs) by extracting the color
features obtained from an HSV color space. The detection
accuracy for the test set was 89.80%. Another work proposed by
Zhao et al. (2016) detected the fruit pixels of immature green
citrus using Sum of Absolute Transformed Difference (SATD)
method. Finally, SVM classifier was employed to eliminate the
false positives (based on textural features) and obtained the
precision and recall values of 0.88 and 0.80, respectively.

Limitations of ML Techniques
Even though ML techniques perform well in most fruit detection
tasks, they show poor results while performing yield estimation
over a large area. Because the techniques struggle to fit the model
due to poor generalization capability (Yamamoto et al., 2014;
Zhao et al., 2016). DL is a recently developed neural-network-
based hierarchical technique that provides promising results in
almost all sectors of agriculture (Kamilaris and Prenafeta-Boldu,
2018). Intelligent fruit yield estimation using DL is an important
applications of PA, which reduces the human effort considerably,
as it provides high precision results and hence improved product
(i.e., fruit) management (Koirala et al., 2019).

Fruit Yield Estimation Using DL
Techniques
DL is a hierarchical architecture as well as a self-feature learning
technique, as the layers automatically learn the features (on
its own) from the raw input data (i.e., images) and hence
it is more advantageous than the ML techniques. In all ML
techniques, before training, the features need to be extracted
from the raw input data, which is tedious and time-consuming
work (Kamilaris and Prenafeta-Boldu, 2018). The Convolutional
Neural Network (CNN) is one of the most widely used
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architectures in DL for various image recognition tasks, i.e., face
recognition, tumor detection, weed detection, etc., as it is capable
of handling the input image data by exploiting the spatial and
temporal correlation, in a superior way. The general architecture
of the CNN is shown in Figure 1. The basic CNN consists
of a stack of convolutional layers, activation functions, and
pooling layers. The convolutional layer is the primary layer in the
CNN that performs convolution (i.e., element wise dot product)
between the values of the input data and the kernel. The result is
passed through the activation function in which a non-linearity
operation is performed. To reduce the computational complexity,
the features are then passed through the pooling layers for down
sampling. Finally, at least one fully connected layer is used to
provide the dense feature map, followed by the softmax layer
in which, based on probability values, the image is classified
into a particular class (Lecun et al., 2010). Starting with LeNet
(Lecun et al., 1999), various CNN architectures were developed
over the past decade, such as AlexNet (Krizhevsky et al., 2012),
Visual Geometry Group16 (VGG16), VGG19 (Simonyan and
Zisserman, 2015), ResNet (He et al., 2015), GoogLeNet (Szegedy
et al., 2015), DenseNet (Huang et al., 2016), and SqueezeNet
(Iandola et al., 2016). Each architecture differs in terms of the
number of convolutional layers, non-linearity functions, type of
pooling operation used, etc.

In recent years, the CNN has been used for immense
applications in the agricultural sector such as disease detection
and prediction of soil organic matter (Xu et al., 2019). Torres et al.
(2020) reviewed the various CNN architectures, namely AlexNet,
VGG16, and GoogLeNet, for fruit detection, classification,
sorting, and quality control tasks. They concluded that, if the
task is more complex, the kernels as well as the number of layers
need to be increased for improved feature extraction. Wang and
Chen (2020) proposed a method to categorize the fruits by using
a deep CNN. Their architecture consists of 8 layers of CNNs
and provided an overall accuracy of 95.67%. The modification
in the architecture is that the authors used a non-linearity
function of a parametric Rectified Linear Unit (ReLU) instead
of a plain ReLU, and a dropout layer is added before each fully
connected layer. It is important to note that any success of the DL
architecture depends on the large amount of training data, as it

is a data hungry architecture. However, collecting and labeling
more training images is tedious work. Hence, Rahnemoonfar
and Sheppard (2017) proposed a simulated learning method,
in which training was performed using synthetic images, and
testing was done on real-time data. The authors used a modified
ResNet-Inception model to train the synthetic images, and the
results portrayed training and testing accuracies of 93 and
91%, respectively.

Limitations of DL Techniques
Various research studies have been performed for fruit yield
estimation using DL (Wang et al., 2013; Bargoti and Underwood,
2017; Rahnemoonfar and Sheppard, 2017; Sun et al., 2018; Torres
et al., 2020). In general, DL techniques perform well for most fruit
detection tasks. However, one of the issues associated with the
DL technique is a lower spatial resolution followed by pooling
operation, which results in a poor localization of objects present
in a particular scene. The exact location of the fruit needs to be
localized for improved prediction. Hence, in order to obtain good
accuracy in the process of automatic fruit yield estimation, DL-
based semantic segmentation architectures are now employed
widely (Tu et al., 2018).

This review paper is organized as follows: section “Intelligent
Fruit Yield Estimation” describes fruit yield estimation
employing DL-based semantic segmentation, which includes
tree sampling, different sensing technologies, data augmentation
methods, and different semantic segmentation architectures. The
various challenges that occur when developing an intelligent fruit
yield estimation system are discussed in section “Challenging
Issues in Intelligent Fruit Yield Estimation System.” Section
Conclusion concludes the paper.

INTELLIGENT FRUIT YIELD ESTIMATION

The different steps involved in developing an intelligent
yield estimation system are tree sampling, data capturing
using different sensing technologies, data augmentation,
fruit detection, counting and yield estimation using DL-
based semantic segmentation architectures, and performance
evaluation (as shown in Figure 2).

FIGURE 1 | Illustration of a typical Convolutional Neural Network (CNN).
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FIGURE 2 | Intelligent fruit yield estimation in orchards.

Tree Sampling
Before collecting images from the orchards, the initial step is to
sample the trees, which decides the number of representative
trees to be taken over the entire population. The sample selection
must be sufficient: it ultimately represents the whole orchard’s
population, and a perfect yield can thus be estimated. Based
on the survey theory, two approaches are primarily used for
sampling, namely design-based and model-based approaches.
For diverse populations, the design-based approach is adapted
for sampling, whereas the model-based approach performs
well in systems which described by the spatial positioning
of a population. Various sampling procedures for design-
based and model-based approaches include simple random
sampling, systemic sampling, a smooth fractionator, probability
proportional to size sampling, and stratified sampling, etc.
(Cochran, 1977; Wulfsohn et al., 2010).

A comparative study proposed by Uribeetxebarria et al. (2018)
compares the sampling efficiency in yield estimation of fruit
orchards using simple random sampling and stratified sampling.
The authors used the Normalized Difference Vegetation Index
(NDVI) and the apparent Electrical Conductivity (ECa) for
stratified sampling. As a result, the plot’s sampling size was
reduced by 17% compared with simple random sampling, which
improves the precision of fruit yield estimation. Table 1 shows
the various sampling methods to sample the trees in an orchard.

Data Capturing Using Different Sensing
Technology
The primary system for fruit detection is the sensing system. It
should capture the focused images in field conditions by tackling
challenging situations such as variable lighting conditions and

resolution. Figure 3 shows the different camera models presently
available in the market with various features (i.e., black and white,
RGB, thermal, etc.).

Earlier studies were performed to detect fruits in orchards
using black and white cameras. Without color, the widespread
availability of features was exploited to detect the fruits in the
canopy. After the color sensors, RGB cameras were mostly
used in all detection systems (to capture the color), which
made the detection process easier. Complementary Metal-Oxide-
Semiconductors (CMOSs) and Charge Coupled Devices (CCDs)
are prevalent technologies used as color sensors and are used
widely in all machine vision systems. CCD sensors operate by
capturing the entire frame simultaneously, whereas a CMOS
captures the images pixel by pixel. Thermal imaging has also been
used in some fruit detection works (Gongal et al., 2015). Here,
each object’s feature (i.e., branch, stem, etc.) is detected based
on temperature, as fruits have a higher temperature than the
background objects. Spectral imaging is a next-generation camera
model (i.e., multispectral and hyperspectral sensors) currently
used. It gives additional information related to spectral details
(at each color space) along with color features. Even if the fruit
color and background (such as the leaves and stem) are the
same, fruit detection can be performed using spectral information
(Feng et al., 2019).

Multispectral images have fewer broader spectral bands
(3–15), whereas hyperspectral images have a greater number
of narrower spectral bands (20–250). The Landsat-8 satellite is
an example of a multispectral imager consisting of 11 bands
with a high spatial resolution of 30 m in most bands. NASA’s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is
a hyperspectral imager with 224 bands with 0.4–2.5 µm
(Kwan, 2019).
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TABLE 1 | Various sampling methods for tree sampling in an orchard.

Sampling techniques Description Merits Demerits

Simple random sampling
(Cochran, 1977)

Randomly selecting samples
from the whole population.

Completely represent the
entire population.

Expensive and
time-consuming.

Systematic random
sampling (Mostafa and
Ahamad, 2018)

Provides an improved tradeoff
between the precision of the
estimator and the sampling
interval.

Faster than simple random
sampling.

Realization is difficult
without knowing all the
members in the population.

Stratified sampling
(Uribeetxebarria et al.,
2018)

From the whole population,
strata or sub categories are
considered. Samples are taken
from these strata randomly.

High precision and requires
smaller samples.

If the sub category is not
properly chosen, it is
challenging to represent the
entire population.

Smooth fractionator
(Gundersen, 2002)

Systemic sampling is applied to
each uniquely (based on shape,
size, texture, etc.) divided unit
from the whole population for
efficient sampling.

Robust for the
heterogeneous population.

When the population of
interest is sparsely
distributed, it is inefficient.

Cluster sampling (Hamilton
and Hepworth, 2004)

Suitable for large and complex
populations.

Minimum resources for the
sampling process.

High sampling error.

Multistage sampling
(Chauvet, 2015)

At various levels, sampling is
performed.

More flexible. Large number of errors due
to clusters in different
stages.

Probability proportional to
size sampling (Gardi et al.,
2008)

Each population has a size
before sampling, which is
proportional to the probability of
selecting a unit.

Well suited for sparsely
distributed populations.

Reduced precision when
sampling more clustered
units.

FIGURE 3 | Different types of camera models using various sensor technologies.

Bulanon et al. (2008) explored a method for citrus fruit
detection by capturing images using a thermal camera. The
temperature gradient was calculated based on the emissivity
of the fruit, relative humidity, and ambient temperature from
the captured thermal images. Finally, these data were used to
segment the fruits from the background using image processing

algorithms. The results showed that the average true positive and
false positive were 0.70 and 0.06, respectively.

Gan et al. (2018) developed a method for fruit detection based
on multi-modal imaging i.e., combining both color and thermal
images using a color thermal combined probability algorithm. It
effectively extracts the information present in both images. As a
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result, the precision and recall rate were improved for detecting
the immature green citrus fruits. Recall and precision were 78
and 86.60%, respectively, with only color images and 90.40 and
95.50%, respectively, with multimodal imaging.

Feng et al. (2019) proposed a method for detecting the apples
using multispectral dynamic imaging. Using this, the pictures
were taken at a considerably high level of contrast between
background and fruit, which improves the recognition accuracy
as 92%. Okamoto and Lee (2009) developed a method for
identifying the green citrus fruit using hyperspectral imaging.
The authors used the spectral wavelength of 369–1042 nm
for capturing pictures and obtained a detection accuracy of
70–85%. Table 2 describes the various cameras available in the
market for capturing pictures along with their resolution. The
next step is the preprocessing of images, which includes data
augmentation and resizing.

Data Augmentation
Data augmentation is a useful technique in neural-network-based
systems, as DL deals with a large amount of data. Practically, it is
complicated to collect and annotate such a large volume of the
dataset for training. However, the small dataset will lead to an
over-fitting problem, and hence the system will work well in the
training phase and will not produce accurate results during the
testing phase. Therefore, in order to increase the available dataset
to a large number, various transformations will be performed
through data augmentation steps, such as translation, rotation,
adding noise, cropping, and flipping. It will improve the network
capability to learn the deep features present in the data (Shorten
and Khoshgoftaar, 2019; Zheng et al., 2020). Figure 4 shows some
of the transformations applied to a captured image for a (sample)
mango tree from an orchard.

Kestur et al. (2019) proposed a method for estimating the
yield of mango fruit. The authors collected 40 images with a
size of 4,000 × 3,000, and it is complicated to process the
same with the original size. Hence, they used the cropping
augmentation method to generate the image patches with a

size of 200 × 200. After augmentation, the training and testing
dataset had 11,096 and 1,500 patches, respectively. The final result
showed an F1 score of 0.844 for the developed architecture with
data augmentation.

Stein et al. (2016), proposed a method for detecting the
mango fruit using anFaster R-CNN method. In this work,
the total dataset consists of 71,609 mangoes from 522 trees.
They performed the augmentation by randomly sampling the
subset of images from the original dense dataset, thereby
capturing the entire orchard block’s variability. Image using
augmentation helps to overcome the memory constraints
required for processing the images. They achieved an F1 score
of 0.881 in the test images.

Implementation Using DL-Based
Semantic Segmentation Techniques
For dense pixel-wise prediction, semantic segmentation is the
best choice, and DL is most suitable for the hierarchical
learning of data. In order to exploit its full potential, recent
researchers have combined semantic segmentation with DL
techniques, resulting in the highest precision accuracy, especially
in the domain of fruit yield estimation. Combining semantic
segmentation with DL architectures, the main objective of recent
research is to obtain a perfect counting of fruits, which reveals
the accurate yield for a specified orchard in challenging situations
such as occlusion, overlapping and illumination variations
(Payne et al., 2016; Sun et al., 2018; Guo et al., 2019).

Basically, fruit is detected by capturing image data and
transforming it into a more detailed feature space that details
every pixel present in the image. The overall DL-based semantic
segmentation architectures are divided into three groups, namely
a CNN with pixel-based prediction, fully convolution prediction,
and region-based prediction. The first group obtains the input
as an image patch and predicts each pixel into a particular class
using score vectors. The second group processes the whole image,
and prediction is performed based on score maps. In the third
group, regions are extracted from the input image, and these

TABLE 2 | Different types of camera models available on the market.

Sensors Model Resolution Sensor size References

Black and white sensor Leica Q2 8,368 × 5,584 36 × 24 mm www.leica-store.in

Nikon z7 3,840 × 2,160 35.9 × 23.9 mm www.nikon.co.in

Canon EOS 5D 4,368 × 2,912 36 × 24 mm www.canon-europe.com

RGB sensor Sony a5100 6,000 × 4,000 23.5 × 15.6 mm www.sony.co.in/

Ricoh GR III 6,000 × 4,000 23.5 × 15.6 mm www.ricoh-imaging.co.jp

Fujifilm X-E3 6,000 × 4,000 23.5 × 15.6 mm www.fujifilm-x.com

Thermal sensor Flir c2 320 × 240 128 × 96 mm www.digikey.in

Testo 871 320 × 240 Not available www.testo.com

Fluke TI450 320 × 240 Not available www.flukeindia.com

Multispectral sensor AGX710 12.3 MP 89 × 88 × 98 mm www.sentera.com

MSC-AGRI-1-A 512 × 512 5.5 × 5.5 µm www.spectraldevices.com

MSC-RGBN-1-A 512 × 512 5.5 × 5.5 µm www.spectraldevices.com

Hyperspectral sensor MC124MG-SY 4,112 × 3,008 14.2 × 10.4 mm www.ximea.com

MQ022HG 2,048 × 1,088 11.3 × 6.0 mm www.ximea.com

OCI-UAV-1000 2048 Not available www.bayspec.com
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FIGURE 4 | Random transformations intended for data augmentation.

FIGURE 5 | Fruit detection and localization using various DL-based semantic segmentation techniques.

regions are the input for the architectures. Based on the score
vector, each region is labeled as a fruit or non-fruit region.
The architectures present in each group is explained in section
“Popular Semantic Segmentation Architectures in Fruit Yield
Estimation.” Post-processing is then applied to the segmented
pixels to group the adjacent pixels to detect the whole fruit
present in a particular image. An entire process of DL-based
semantic segmentation for fruit detection is depicted in Figure 5.

Popular Semantic Segmentation
Architectures in Fruit Yield Estimation
Semantic segmentation provides a complete understanding of a
particular scene by labeling each pixel of an image to a specific
class. It is one of the essential techniques presently used in
almost such fields as agriculture, medicine, and autonomous

navigation. It plays an inevitable role in object detection and
localization tasks (for e.g., fruit detection in the orchards).
Initially, semantic segmentation was performed using various
graphical approaches such as super pixels segmentation, Markov
Random Fields (MRFs), forest-based methods, Conditional
Random Fields (CRFs), and dense CRFs. These methods tend
to find the correlations between the adjacent pixels and obtain
an inferences from them. Each pixel was labeled to a specific
class based on the inference obtained from the above-mentioned
graphical approaches (Shi and Malik, 2000; Ren and Malik, 2003;
Silberman and Fergus, 2011; Nematollahi and Zhang, 2014; Khan
et al., 2015; Yu et al., 2018).

For an improved representation of objects, the features of all
objects (present in an image) need to be distinguished clearly.
In this regard, hand-engineered features such as Speeded-Up
Robust Features (SURF) (Woods et al., 2019), Histograms of
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Oriented Gradient (HOGs) (Tan et al., 2018), and Scale Invariant
Feature Transform (SIFT) (Tu et al., 2018) were used to obtain
reasonable features from a given image. However, in these
methods, useful features need to be identified, which is a tedious
process. Results of object recognition highly depend on extracted
features; otherwise, the system will fail to give accurate results.
For a large amount of data, the above said methods struggle to
obtain complex data features.

Since the development of DL, hierarchical features have
been learned from the source objects directly with hence no
need for the above-mentioned hand-engineered feature learning
methods. The pre-trained architectures described in section
“Fruit Yield Estimation Using DL Techniques” are well suited
for object detection tasks. The disadvantage is that these
pre-trained architectures have suffered due to computational
complexity and pooling operations. The fully connected layers
present in CNNs create computational complexity, and spatial
resolution has been lost due to pooling operations. Therefore, an
improved localization of objects could not be achieved. Hence,
DL-based semantic segmentation architectures were developed
to obtain dense pixel-based prediction and improved feature
learning strategies. As a result, various architectures have been
explored for semantic segmentation by modifying and fine-
tuning DL’s pre-trained models, namely, a CNN with pixel-based
classification, FCN, SegNet, Dilated convolution, PSP Net, and
weakly supervised learning models. These architectures provide
perfect labeling to the raw input data and better detect all
objects in a particular scene (Long et al., 2014; Badrinarayanan
et al., 2017; Luo et al., 2017; Ulku and Akagunduz, 2019;
Liu et al., 2019).

CNN With Pixel-Based Prediction
In this method, image patches with a fixed size centered at each
pixel are given to the CNN. In each image patch, the pixel
labeling of a small region is not enough to make a localization-
based decision. To overcome this issue, image patch size can
be increased at the cost of more parameters calculations and
hence creates computational complexity (Yu et al., 2018). This
inefficient way of computation has been overcome by fully
convolution prediction.

Kestur et al. (2019) proposed MangoNet, an architecture that
detects and counts the fruits in an open orchard using pixel-based
semantic segmentation. The original images collected from the
orchard were converted into 200 × 200 image patches, and a
totally 11,096 images were given to the MangoNet for training.
After training, the architecture was tested with 1,500 image
patches of 200 × 200 pixels from four test images. The proposed
MangoNet achieved a pixel accuracy of 73.60% and an F1 score of
0.84. Table 3 shows some of the literature related to CNNs with
pixel-wise prediction.

Fully Convolutional Prediction
Fully Convolutional Networks (FCN)
The first semantic segmentation architecture using a deep CNN
was FCN (Long et al., 2014). Here, there are no fully connected
layers; instead, it only has convolutional layers. The pre-trained
architectures such as AlexNet, VGG16, and GoogLeNet, etc., were
transformed into a new semantic segmentation architecture by
fine tuning the fully connected layers. The FCN architecture is
shown in Figure 6. The idea behind the FCN is that creating
segmentation maps for the images of different resolutions and
hence the localization of objects can be achieved by retaining the
spatial resolution.

Liu et al. (2018) proposed a novel approach that uses one of the
semantic segmentation FCN architectures to segment fruits from
video frames. After segmentation, tracking was performed using
a Hungarian algorithm with a cost function defined by a Kalman
filter. Two fruit datasets (oranges and apples) with different
features in the sense of variations in depth and illumination, the
resemblance of color between foliage and fruit, and occlusion
were used to evaluate the proposed method. An error mean of
0.20 and 3.30%, a standard deviation of 7.80 and 4.10% and a
L1 error of 203 and 322 were obtained for the orange and apple
datasets, respectively.

Lin et al. (2019) developed a method to detect the guava
fruit using the FCN technique. The authors performed fine
tuning in the original FCN architecture by employing bilinear
interpolation and Adam optimizer with a learning rate of
0.0001. The trained FCN architecture was used to detect the
guava fruit in the field. The proposed method’s detection

TABLE 3 | CNN with pixel-based prediction literature.

Methodology Authors and year Dataset Results

Apple detection and yield
estimation using
multilayered perceptron
and CNN

Bargoti and Underwood, 2017 8,000 images of 1,232 ×
1,616 pixel, each
32 sub images of 308 ×
202 pixels obtained from
each image

F1 score was 0.791, and detection
F1 score was 0.861.
Squared correlation coefficient R2

was 0.826.

Mango fruit detection and
localization using multiple
view geometry

Stein et al., 2016 71,609 mangoes scanned
from 522 trees

Single view squared correlation
coefficient R2 was 0.81, dual view
and multi view R2 was ≥ 0.90.

Apple yield estimation using
multi-scale sparse auto
encoder feature learning
method

Hung et al., 2015 8,000 apple images of the
dataset
Image size of 1,232 ×
1,616 pixels

Squared correlation coefficient, R2

was 0.81.
Global accuracy was 92.5%,
average accuracy was 85.1%, and
F1 score was 87.3%.
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FIGURE 6 | Fully Convolutional Network (FCN).

FIGURE 7 | Encoder-decoder architecture of SegNet.

accuracy in terms of precision and recall was 0.983 and
0.948, respectively.

Encoder-Decoder Architecture
In addition to the FCN, the encoder-decoder architecture was
introduced. SegNet is one of the most popular encoder-decoder
architectures that implements transposed convolution.

The SegNet architecture is shown in Figure 7. For developing
this network, VGG16 was modified by removing the (last) three
fully connected layers and used as an encoder. The decoder
consists of 13 convolutional layers in addition to upsampling
layers. The purpose of upsampling layers is to obtain indices of
pooling layers. Bilinear interpolation was used in the upsampling

layers for obtaining the lost size of the input due to the down
sampling process (Badrinarayanan et al., 2017).

Architectures similar to SegNet were developed, namely the
Deconvolution Network (DeconvNet) (Noh et al., 2015) and
U-Net (Ronneberger et al., 2015). DeconvNet performs semantic
segmentation at the cost of high computational resources and
is very hard to train, as it has more parameters in the feature
maps. U-Net differs from SegNet in upsampling operations.
U-Net is designed to send the entire feature map to the decoder
instead of sending the pooling indices as in SegNet, thus
consuming more memory.

Hani et al. (2019) proposed a comparative study for fruit
detection and yield mapping using three architectures: U-Net,
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the Gaussian Mixture Model (GMM), and the faster R-CNN.
In the case of U-Net, 103 images of a 1,920 × 1,080 pixel size
of apple trees with different varieties, tree shapes, and growing
stages were used for training. The U-Net performed best and
produced high recall for the given dataset. The results for fruit
detection using U-Net implied that it achieves good performance
when the testing dataset is similar to the training dataset, as there
were poor generalization results for different testing set.

Dilated Convolution and Pyramid Scene Parsing
Network
Another version of semantic segmentation architecture is dilated
convolution (Chen et al., 2017), and it is also known as
atrous-convolution or holes’ algorithm (Holschneider et al.,
1989). Its operation is simply based on an undecimated wavelet
transform. Using atrous-convolution by changing the receptive
field’s dilation factor (Luo et al., 2017), the dense prediction was
obtained in the dilated convolution. In standard convolution,
the dilation rate (r) is one. By inserting zeros, the kernel size
is effectively increased (with only the same non-zero values)
without affecting the computation cost. Hence, the spatial
resolution of the feature maps can be maintained for dense
segmentation tasks.

In a deep CNN, the context information is determined
by the size of the receptive field. Ongoing through high
layers, the receptive field is smaller, so the network could not
incorporate the global context information. Zhao et al. (2017)
addressed this problem by introducing an effective global prior
representation. For obtaining discriminative features among
various objects present in a particular scene, this work introduced
a representative method to fuse information among different
sub-regions (with these receptive fields). The pyramid scene
parsing technique used the ResNet architecture with a dilated
network for an effective representation of the global context
present in an image.

Kang and Chen (2019) proposed a backbone network to
detect and segment the apples and branches in an orchard using
visual sensors attached with the robotic arm. This network used
the atrous pyramid spatial pooling and Gate Feature Pyramid
Network (GFPN) to improve the learning capacity, at all levels
of spatial resolutions. The backbone network was based on the
ResNet101 architecture, which has residual connections that
extract the depth features and avoid vanishing gradient problems
while passing through the back propagation stage. Three models
have been developed, namely DasNet-A, DaSNet-B, and DaSNet-
C. The GFPN admits only the selective features as a representative
(among different levels). It reduces the spatial shift, and gradient
values can be balanced during the steps of back propagation.

Multipath Refinement Network
The Refinement Network (RefineNet) (Lin et al., 2017) is a multi-
path networks that generates a high-resolution feature maps by
obtaining all informations from the down sampling process. It
uses residual connections in order to obtain a high-level semantic
feature map, which ensures an improved segmentation of objects.
The pre-trained architectures ResNet developed by He et al.
(2015) was used to build refinement networks. In this regard, the

ResNet is divided into four blocks, and each RefineNet block is
connected to the output of the respective ResNet block. In order
to obtain improved results, the developed multipath network
accepts input from the multiple ResNet blocks. To the best of our
knowledge, no work has yet been carried out using RefineNet, in
the domain of fruit yield estimation.

Region Based-Prediction
Regions With Convolutional Neural Networks
(R-CNN)
In the R-CNN developed by Girshick et al. (2014) the bottom-
up regions are first extracted (from the input images), and these
regions are the input to the CNN for extracting the features.
Finally, linear SVMs are used to classify the pixels into a particular
class, and improved detection and localization can thereby be
achieved for semantic segmentation. More computation time is
one of the bottlenecks of the R-CNN. Hence, researchers have
explored superior methods of detecting the object, namely the
faster R-CNN (Ren et al., 2016). This network has a Region
Proposal Network (RPN), which consists of fully convolutional
layers and provides region proposals from the input images
by predicting the boundaries of an object. Object detection
using the R-CNN will be performed. The extension of faster
R-CNN is mask R-CNN (He et al., 2017), which has an
additional unit to predict the mask of an object along with
the existing bound box recognition unit. The mask R-CNN is
best suited for advanced stages of segmentation, i.e., instance
segmentation, where each object present in an image is detected
and differentiated separately by predicting the mask (for each
distinct object).

Small (passion) fruit detection and counting was performed
by Tu et al. (2020) using a multiple-scale faster R-CNN using
RGB-Depth images. Two modules were used: the RPN and the
faster R-CNN. The first module was used to generate the object
proposals. These object proposals were fed as inputs to the second
module, which detected the fruits with bounding boxes.

Wan and Goudos (2020) proposed a method for multi-class
fruit detection using an improved faster R-CNN architecture. The
authors used three varieties of fruits: apple, mango, and orange.
The dataset consists of 820 apple images, 822 mango images, and
799 orange images of a 100 × 100 pixel size. The penalty factor
and iteration were chosen as 200 and 5,000, respectively. The
improved faster R-CNN obtained precision values of 92.51, 88.94,
and 90.73% for apple, mango, and orange fruits, respectively.
The processing speed was 50 ms/image. Compared with other
DL-based semantic segmentation architectures, such as YOLO,
fast R-CNN, faster R-CNN, YOLOv2, and YOLOv3, and the
proposed method outperformed than the other architectures
both in precision and processing speed.

Apolo-Apolo et al. (2020) developed a model for citrus fruit
detection using faster R-CNN architecture. The images from
20 sample trees were captured from the citrus orchard using
a Unmanned Aerial Vehicle (UAV). Faster R-CNN is one of
the pre-trained semantic segmentation architectures used for
training the orange dataset. Features extracted from the images
using CNN were given as input to the region proposal network.
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This network consists of stack of convolutional layers followed by
non-linearity function and max pooling layers. Object proposals
were identified using the CNN based on the object score
obtained at each position. Then, the classification, bounding box
prediction and size of the objects were estimated. The proposed
model achieved more than 90% precision and an F1 score of
more than 89%. False positives were observed in challenging
situations such as sunlight variation and immature fruits. The
standard error for fruit count using the proposed model was
6.59% against the visual count. Based on the count, yield of
the whole orchard was estimated using the Long Short-Term
Memory (LSTM) model. It is a recurrent neural network that
predicts the present data using the information obtained from
the past data which helps to identify the complex pattern of
the data. The real yield data collected from the orchard were
compared against the estimated yield. It portrayed the standard
error of 4.53%.

Single Shot Detectors
YOLO (You Only Look Once) refers to the detection of objects
in a single pipeline, and end-to-end training is performed using
a single shot detector architecture (Redmon et al., 2016). Object
detection is formulated as a single regression problem by placing
the bounding box coordinates to image pixels and then assigning
class probabilities. The input image is divided into an m x m grid,
and the specific object is detected if the center of the object comes
into the grid cell. The bounding box and the confidence score are
then predicted by each grid cell. There are five predictions made
by each bounding box, such as the center of the box coordinates
represented by the two initial predictions (i.e., x, y), the height
and width related to the whole image. Final, i.e., fifth, prediction
is the confidence score defined by the ratio of the Intersection
over Union (IoU) value of the predicted box to the ground truth
box. The model is trained with loss function, so performance can
be improved significantly over the other models. Recent works
pertaining to the R-CNN and single shot detectors are depicted
in Table 4.

Weakly and Semi-Supervised Methods
Though the above feature-based scene labeling methods perform
well, the main drawback is that they require more time and
complex for annotation of images. This problem was explored
using weakly supervised methods, and bounding box annotation
was used. Multiple Instance Learning (MIL) methods presently
explored new ways of learning class models. In this method, the
labels in training classes are a set of positive bags rather than
isolated patterns. There are (mainly) two steps in this algorithm.
First, it assigns labels to all pixels in the positive bags, and
learning is performed using a Support Vector Machine (SVM).
In the second step, based on the SVM’s learning, it reassigns the
labels to the pixels (Demiriz and Bennelt, 2001). This method
(weakly and semi-supervised methods) was formulated using
variant Expectation-Maximization (EM) algorithms. Based on
the current estimates of the parameters and conditions provided
in the observations in the expectation step, the new estimate
is calculated based on the expected value under the maximum
likelihood condition (Moon, 1996).

Bellocchio et al. (2019) proposed a method to count the fruits
using a weakly supervised method. The authors used a new
approach that employs a simple binary classifier to detect the
fruits present in an image without the use of any supervision.
Most of the semantic segmentation architecture used for object
detection and localization discussed so far requires ground truth
images, which require a more manual intervention, and this can
be avoided by the proposed method. The architecture was tested
with three different fruit datasets (apples, olives, and almonds),
and the results were compared with the various supervision-
based architectures. The authors concluded that the proposed
weakly supervised architecture provided promising results equal
to supervision techniques without any prior information such as
ground truth labeling or bounding box information.

Performance Evaluation
Usually, the segmented output is evaluated for its performance
by comparing the results with ground truth images in semantic
segmentation architectures. The widely used performance
metrics are RMSE, squared correlation coefficient R2, pixel
accuracy, recall, precision, F1 score, and IoU. The effectiveness
of these measures depend on the number of pixels classified
as true positive, true negative, false positive, and false negative
(Yu et al., 2018).

Ganesh et al. (2019) proposed a method to detect and segment
the oranges in an orchard. They measured the performance
of their proposed method by using the precision, recall, and
F1 score. Multi-modal input data, i.e., images taken with three
different color spaces, namely, RGB, HSV, and combined RGB
and HSV, were used. Among these three different (input) color
spaces, the highest F1 score of 0.88, the highest precision of 0.97,
and the lowest recall value of 0.60 were obtained in the combined
RGB and HSV color space. Poor results were obtained with the
HSV color space, as many false positives were detected.

Guava fruit segmentation using FCN architecture by Lin
et al. (2019) showed a mean accuracy of 0.893 and an IoU
of 0.806. The results were compared with SegNet and CART
(Classification and Regression Trees Classifier) architectures, and
the FCN well outperformed the other two methods. In this
method, true positive and false positives values were 255 and 4,
respectively, for the 91 test images. The precision and recall of
the entire architecture were 0.983 and 0.949, respectively. Some
of the false prediction by the proposed method was obtained due
to overlapping and illumination variations. Table 5 shows the
widely used performance metrics for measuring the effectiveness
of semantic segmentation architectures.

CHALLENGING ISSUES IN INTELLIGENT
FRUIT YIELD ESTIMATION SYSTEM

Sampling
Tree sampling is the primary step in fruit yield estimation.
Various sampling techniques as described in section “Tree
Sampling” are available for selecting the number of trees
(to sample) among the population. In the orchards, various
structures of trees are present, i.e., ranging from simple to

Frontiers in Plant Science | www.frontiersin.org 11 June 2021 | Volume 12 | Article 684328

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-684328 June 19, 2021 Time: 18:0 # 12

Maheswari et al. Yield Estimation Using Deep Learning

TABLE 4 | Literature studies for fruit yield estimation using the R-CNN and single shot detectors.

Work Authors and year Dataset Results

Citrus fruit yield and size estimation
using faster RCNN

Apolo-Apolo et al., 2020 Images taken from (sample) 20 trees of citrus grove
using a UAV during 3 consecutive campaigns

Standard error of 13.74 and 7.22%
by manual and processed model
predictions, respectively.

Orange fruit detection using faster
mask R- CNN

Ganesh et al., 2019 Original image size was 2,816 × 1,880. Sub
images of 150 were obtained with a pixel size of
256 × 256 for training. RGB and HSV multimodal
data were used.

For RGB images, F1 score and
precision were 0.88 and 0.89,
respectively.
For the mixture of RGB and HSV
images, F1 score and precision
were 0.88 and 0.97, respectively.

Apple fruit detection and counting
using U-Net, GMM, and faster
R-CNN

Hani et al., 2019 103 images of 1920 × 1080 pixel size Overall accuracy using different
architectures lies between 95.56
and 97.83%.

Citrus fruit detection using mask
R-CNN

Kim and Lee, 2018 200 images of 800 × 800 pixel size Detection accuracy was 97%

Kiwifruit detection using faster
R-CNN with Zeiler and Fergus
Network (ZFNet)

Fu et al., 2018 Training phase:
700 field images captured with a 2352 × 1568 pixel
size.
2100 sub-images with784 × 784 pixel size
Testing phase:
100 field images

Average precision during training
was 89.3%.
Occluded fruit was 82.5%.
Overlapping fruit was 85.6%.
Adjacent fruit was 94.3%.
Separated fruit was 96.7%.
Overall recognition ratio was
92.3%.

Grape detection using mask
R-CNN, YOLOv2 and YOLOv3

Santos et al., 2020 300 images with 4,432 boxed clusters and 2,020
masked clusters

F1 score of test set was 0.889,
precision was 0.92, and recall was
0.86.

Apple and pear fruit detection using
modified YOLOv2

Bresilla et al., 2019 Original images:
Apple: 5,000 images
Augmented images: 20,000

F1 score before and after
augmentation was 0.79 and 0.90,
respectively.

Mango fruit load estimation using
MangoYOLO

Wang et al., 2019 Two sets of video (with low and high frames) were
taken to assess the performance of MangoYOLO
architecture.
First test set: 110 frames and second test set is
1162 frames

R2 values of 0.665 and 0.988 were
achieved for the first and second
test set, respectively.

Apple, almond and mango
detection using faster R-CNN

Bargoti and Underwood, 2016 Training images:
Apple: 729, Almond: 385 and Mango: 1,154.
Testing images:
Apple: 112, Almond: 100 and Mango: 270.

F1 score:
Apple: 0.904.
Almond: 0.775.
Mango: 0.908.

complex structures, as shown in Figure 8. Simple random
sampling is unsuitable for complex structures, whereas it is
sufficient for simple structures. If an orchard is segregated into
clusters, it is easy to obtain a field attribute for an improved
sampling strategy based on correlation. In the case of a mango
orchard, trees with more branch terminals have the potential to
yield a higher crop load, as it produces inflorescence at the branch
terminals. Hence, an appropriate sampling strategy to choose the
number of trees in an orchard needs to consider all the factors, so
the precise results can be obtained with the developed intelligent
yield estimation system (Wulfsohn et al., 2012).

Wulfsohn et al. (2012) developed an unbiased yield prediction
estimator by evaluating a three-level systematic sampling
methods. The sampling was done on 14 commercial orchards of
different fruits, i.e., kiwifruit, apples, and table grapes, using the
unbiased estimator with three-stage sampling units. The results
showed that successful sampling was achieved with an error
rate less than 5% in six orchards and with an error rate of less
than 5–10% in five orchards, and the remaining three orchards
deviated from the error rate by 13–20%. Sampling time for each

fruit differed, taking 85–150 min for the kiwifruit, 10–100 min for
the apples, and 85 min for the table grapes. Large number of trees
for sampling leads to high costs in terms of time and money, and
small number leads to a lower precision. Hence, sampling time is
one of a critical factor that needs to be considered while taking
samples from the whole population.

Various parameters, such as the objective of the work, the
required precision, the heterogeneity present in the population,
and the entire population size, needs to be focused while applying
sampling techniques for fruit yield estimation. If said factors are
well defined and based on the chosen sampling technique, fruit
yield estimation can be accurate (Sharma, 2017).

Data Collection and Annotation
Collecting data from the fruit orchards and annotating are the
major challenges in developing a fruit yield estimation system.
Data collection should be appropriate to train the network,
as it decides the learning capability of the system. Different
sensing technology as discussed in section “Data Capturing Using
Different Sensing Technology” provides an improved method
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TABLE 5 | Performance metrics used for evaluating semantic segmentation architectures.

Performance metric Description Formulae

Root Mean Squared Error (RMSE) Measures the squared
difference between the actual
output and predicted output

RMSE = 1
m
∑m

i=1 (Ai − Pi)
2

whereAi is the actual output;
Pi is the predicted output;
m is the number of observations.

Squared correlation coefficient (R2) Measures the squared value of
the linear relationship between
two variables.

R2
= 1− MSE

var(x)

where MSE is the Mean Square Error;
var (x) is the variance of response variable x.

Pixel Accuracy (PAccuracy) Measures the number of pixels
classified correctly in each class

PAccuracy =

∑M
k=1 δ(pk ,gk )

M ,
where M is the total number of pixels present in the
test images;
δ (pk, gk) is the decision maker which is defined by

δ (pk, gk) =


1, if pk = g

k

0, otherwise


Precision (P) Corresponds to the accurate

detection of fruits
P =

∑M
k=1(δ(pk ,n)&δ(gk ,n))∑M

k=1 δ(gk ,n)

where n is the number of classes for N classes;
pk is the total pixels present in the predicted output;
gk is the total pixels present in the ground truth.

Recall (R) The architecture efficiency is
usually measured by the metric
of recall

R =
∑M

k=1(δ(pk ,n)&δ(gk ,n))∑M
k=1 δ(pk ,n)

F1 score (F1) The entire fruit detection
performance is indicated by the
F1 score, which gives the
harmonic mean value of
precision and recall.

F1 = 2
(

P R
P+R

)
where P is Precision;
R is Recall.

Intersection over Union (IoU) Measures the ratio between the
intersection and union of the
ground truth pixels and the
predicted pixels of the
segmented output for each
class of the image

IoU = GTp
⋂

Pp
GTp

⋃
Pp

whereGTp is the ground truth pixels of each class;
Pp is the predicted pixels of each class.

FIGURE 8 | Simple and complex structures of mango orchard.

of capturing tree images in single, double, and multiple views.
Factors such as natural illumination and field of view when
capturing images in an orchard will cause different effects for
various sensors. Figure 9 shows a collection of images of a mango
orchard and the corresponding image labeling.

After collecting images, image annotation (i.e., labeling) is to
be done. Both image datasets i.e., original and annotated, are
given as an input to the architecture for training. It is important
to note that the manual annotation of images is tedious work in
the development of an intelligent yield estimation system, as each
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FIGURE 9 | Data collection and annotation.

pixel must be labeled as a fruit or non-fruit pixels. To overcome
this issue, now-a-days various well established annotation tools
are now available to label images in an efficient way, namely
LabelImg, Labelbox, VGG image annotator, and Appen1,2,3,4.

Data Augmentation
Another important domains in fruit yield estimation is data
augmentation. If a dataset with a smaller size is fed to the
architecture, it leads to overfitting. Hence, the system is not suited
for real-time applications, as it gives poor (precision) results,
during the test set. Data augmentation overcomes this issue by
employing various transformation techniques, as described in
section “Data Augmentation.” It has to be done very carefully,
as it has to deal with different concerns such as view point,
occlusion, lighting, and background. These invariances need to
be considered while performing transformation techniques, in
order to increase the dataset. In image recognition tasks, one
of the issues is class imbalance, due to which the architecture is
biased toward the majority class type. This has to be overcome
by oversampling during the augmentation technique. Initially,
random oversampling is used, where images from the minority
class type are duplicated using a naïve approach until the
imbalance disappears. Followed by this traditional method,

1https://org/project/labelImg/1.4.0/
2https://labelbox.com
3https://robots.ox.ac.uk/∼vgg/software/via/
4https://appen.com

other techniques, such as synthetic minority oversampling
technique and borderline synthetic minority oversampling
techniques, are used to obtain improved normalized results
(Shorten and Khoshgoftaar, 2019).

Fruit Detection and Counting
Occlusion, Overlapping and Illumination Variation
While developing an intelligent fruit detection system, challenges
such as illumination variations, occlusion, and overlapping
need to be addressed, as they will cause poor recognition
results. Some problems were addressed using image processing
and ML techniques by Payne et al. (2016), in fruit detection
and localization tasks. Results showed that detection can be
improved by reducing the shadowing effect utilizing overcast
and/or night time imaging. Using enhanced DL architectures,
localization accuracy can be improved by detecting occluded
fruit if there is a hint in an image. In big orchards, it is
complicated to address all the issues, as above systems of
image processing and ML techniques detect fruit based only on
the color, shape, and size. Color features may not work well
in various lighting conditions, and texture-based features are
not enough to recognize the number of fruits in overlapping
conditions. These issues may result in false predictions. Hence,
a reliable system with the close cognition of human is required
for improved object detection. To some extent, DL-based
system is preferred for near optimal prediction, as it is a self-
learning architecture.
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In this context, a method was proposed by Sun et al. (2018)
to address the occlusion in a complex background and to
improve the organ detection (i.e., flower, fruit, stem, etc.) of
tomatoes using a CNN. Based on the faster R-CNN, a network
was developed using ResNet50 in the place of the VGG16
network. Finally, K-means clustering was used to enhance the
detection accuracy by adjusting the anchor (i.e., bounding box)
sizes. The developed system demonstrated improved detection
accuracy when compared with traditional systems. Still, more
works needs to be carried out in this context to achieve
improved accuracy.

Overlapping and illumination variations, among other
important issues, cause the poor detection of fruits in an
orchard. To tackle these issues, a system was developed by Guo
et al. (2019) where the background is first segmented using
contrast limited adaptive histogram equalization combined with
Otsu thresholding and morphological operations. Further, lychee
fruit detection is performed from the overlapped fruits using
the three-point definite circle theorem. Finally, a local binary
pattern SVM is employed to reduce the false positive detections.
However, more work is progressing in this area for improved
detection accuracy.

Deep Learning Architecture
DL parameters greatly influence detection accuracy. When
training DL systems, the primary learning parameters (i.e.,
weights and biases) need to be optimized for improved prediction
(Koirala et al., 2019). In addition, hyper-parameters such
as learning rate and momentum are adjusted to obtain the
optimized architecture, so as to achieve superior results during
the testing phase. It is important to note that the deeper layers
extract more abstract features than the shallower networks. As a
bonus, pre-trained networks with deeper layers provide superior
results. However, these networks require a large memory and
high amounts of computation time. When going deeper, the
number of features extracted and the time needed to process
the large volume of data are the main challenging issues
in these architectures. Thus, a tradeoff is to be maintained
between the accuracy and computational complexity in order
to provide acceptable results from machine intelligence that
matches human intelligence.

Computation Time
Computation time is an influential factor for any real-
time system. Researchers have used different CPUs (Central
Processing Units), GPUs (Graphics Processing Units), and
image resolutions for fruit detection. The training time of any
architecture depends on the batch size, the available memory, and
the type of GPU. More importance has to be given to the testing
time, as it operates on real-time data. Moreover, the complexity of
an architecture will decide the computation speed of the network.

In a comparative study, done by Hani et al. (2019) showed that
the different architectures count the fruits per image at different
times. They used three architectures, namely, U-Net, the faster
R-CNN, and the GMM. The input image patch of 224× 224 pixel
given to the U-Net takes less than 100 ms per image patch. The
original input image of 1,920 × 1,080 pixel takes less than 4.5 s

per frame. On the other hand, a faster R-CNN requires 120 ms
per image patch (500 × 500) and 46 s per frame (1,920 × 1,080).
A GMM runs at 5 frames per sec. These computations timings
were obtained with the GPU of NVIDIA Quadro M1000 used in
the proposed method. The video frames were obtained with 30
frames per sec and move at a speed of 2 m/s.

Confidence Score
The class probability score, called the confidence score, is
used whereby values between 0 and 1 are assigned for object
detection. Based on the detection of an object of a particular
class, the values can be assigned. Generally, softmax probability
is used in most of the detection tasks as a probability score.
The threshold value for the probability score has to be fixed
appropriately for improved pixel- based prediction. NMS is
one of the thresholds used for detecting a single object
by drawing bounding boxes. The greedy NMS algorithm is
generally used for assigning windows. This method chooses
the best scoring window and nominates a minimum value
for suppressing the remaining windows after calculating the
similarity between windows. The drawback is that sometimes
it suppresses the window that allows for a superior choice
for a particular object. It can be overcome by an alternative
method that replaces the objective function as a cluster exemplar.
Using that, all the similar windows are grouped and act as
a single window for object detection (Rothe et al., 2015;
Hosang et al., 2017).

Performance Evaluation
Various performance measures are used in semantic
segmentation algorithms as described in section “Fully
Convolutional Prediction.” Based on the exploration of
these measures, the F1 score is considered optimum since it
accounts for the harmonic mean of both precision and recall.
Further, IoU allows for an improved estimation of overlapping
and coincidence between the ground truth and the predicted
pixels. Pixel accuracy provides poor results when there is a
greater imbalance in the fruit or non-fruit classes (Yu et al., 2018;
Hani et al., 2019; Kestur et al., 2019).

Bargoti and Underwood (2017) proposed a method for
segmenting apples using two feature learning algorithms:
multilayered perceptron and a CNN. The authors analyzed
the architectures by adding metadata. The F1 score was used
to measure the pixel-based prediction by comparing the two
algorithms with and without metadata. The F1 score (0.839)
was reasonably improved after adding the metadata in the
multilayered perceptron.

Liu et al. (2019) developed a method for detecting kiwi
fruit using image and feature fusion by capturing images in
two different modalities (RGB and NIR). The average precision
obtained by NIR (89.2%) was higher than the RGB (88.4%)
since NIR images were less sensitive to image brightness changes
occurring due to natural illumination. Hence, the performance
metric results also depend on the way to capture the images.
Image fusion method resulted in the best average precision
(90.7%) among the all whereas the feature fusion gave the
significantly closer result of 90.5%.
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CONCLUSION

This paper reviewed the various steps involved in intelligent
fruit yield estimation, such as sampling, data collection,
annotation and augmentation, fruit detection and counting,
performance evaluation, and challenges using DL-based
semantic segmentation architectures. The DL-based systems
rectified the challenges of feature descriptors for object
detection and hand-crafted feature learning methods. The
stack of layers present in hierarchical learning improves
the prediction accuracy of fruit detection at the cost of
increased computational complexity. Transfer learning methods
in DL and publicly available datasets are advantageous;
optimized weights are used to train the architecture, and on-
site fruit detection can be performed using these optimized
networks. Accurate yield mapping for further harvesting and
marketing can be performed smartly using these intelligent
fruit yield estimation systems composed of DL-based semantic
segmentation architectures.

However, the annotation of fruit images collected from
the orchards is very tedious, time-consuming and needs
improvement. The difficulty of detecting fruits in clustered
and occluded regions need to be further explored using these
architectures. Even though DL-based semantic segmentation
architectures provide better results, a lightweight model is
yet to be developed for smart-phone applications with less
computational complexity. Future research can focus on the

remedial measures for the issues of (manual) annotation, a
comprehensive model for tackling the challenging conditions like
occlusion, overlapping and illumination variation in the field,
customization of lightweight model for android applications, etc.
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