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ABSTRACT

P ERSON re-identification (ReID) is the task of retrieving the same person, across

different camera views or on the same camera view captured at a different time,

given a query person of interest. There has been great interest and significant progress in

person ReID, which is important for security and wide-area surveillance applications as

well as human computer interaction systems. In order to continuously track targets across

multiple cameras with disjoint views, it is essential to re-identify the same target across

different cameras.

This is a challenging task due to several reasons including changes in illumination and

target appearance, and variations in camera viewpoint and camera intrinsic parameters.

Brightness transfer function (BTF) was introduced for inter-camera color calibration, and

to improve the performance of person ReID approaches. In this dissertation, we first present

a new method to better model the appearance variation across disjoint camera views. We

propose building a codebook of BTFs, which is composed of the most representative BTFs

for a camera pair. We also propose an ordering and trimming criteria, based on the oc-

currence percentage of codeword triplets, to avoid using all combinations of codewords

exhaustively for all color channels, and improve computational efficiency. Then, differ-

ent from most existing work, we focus on a crowd-sourcing scenario to find and follow

person(s) of interest in the collected images/videos. We propose a novel approach com-

bining R-CNN based person detection with the GPU implementation of color histogram

and SURF-based re-identification. Moreover, GeoTags are extracted from the EXIF data

of videos captured by smart phones, and are displayed on a map together with the time-

stamps.

With the recent advances in deep neural networks (DNN), the state-of-the-art perfor-



mance of person ReID has been improved significantly. However, latest works in adver-

sarial machine learning have shown the vulnerabilities of DNNs against adversarial exam-

ples, which are carefully crafted images that are similar to original/benign images, but can

deceive the neural network models. Neural network-based ReID approaches inherit the

vulnerabilities of DNNs. We present an effective and generalizable attack model that gen-

erates adversarial images of people, and results in very significant drop in the performance

of the existing state-of-the-art person re-identification models. The results demonstrate the

extreme vulnerability of the existing models to adversarial examples, and draw attention to

the potential security risks that might arise due to this in video surveillance. Our proposed

attack is developed by decreasing the dispersion of the internal feature map of a neural

network. We compare our proposed attack with other state-of-the-art attack models on

different person re-identification approaches, and by using four different commonly used

benchmark datasets. The experimental results show that our proposed attack outperforms

the state-of-art attack models on the best performing person re-identification approaches

by a large margin, and results in the most drop in the mean average precision values.

We then propose a new method to effectively detect adversarial examples presented to

a person ReID network. The proposed method utilizes parts-based feature squeezing to

detect the adversarial examples. We apply two types of squeezing to segmented body parts

to better detect adversarial examples. We perform extensive experiments over three major

datasets with different attacks, and compare the detection performance of the proposed

body part-based approach with a ReID method that is not parts-based. Experimental results

show that the proposed method can effectively detect the adversarial examples, and has the

potential to avoid significant decreases in person ReID performance caused by adversarial

examples.
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1

CHAPTER 1

INTRODUCTION

Given an image/video of a person of interest, person re-identification (ReID) is

the process of identifying same person in the images/video captured by a differ-

ent camera. Re-identification is indispensable in establishing the consistent label-

ing across multiple cameras with disjoint views or even within the same camera

to connect broken trajectories or re-establish lost tracks. Person ReID is a diffi-

cult problem due to several reasons, including large variations in illumination and

target appearance, and variations in camera intrinsic parameters and viewpoint.

Person re-identification across different camera views has two main parts; (1) de-

tecting the people in the scene and (2) re-identifying them in other camera views.

Various person ReID approaches have been proposed in the past [3], which can

be classified into different categories. There have been methods based on distance

learning [4, 5, 6, 7], on feature design and selection [8, 9, 10], and on mid-level

feature learning [11, 12, 13, 14].

Porikli [15] proposed the Brightness Transfer Function (BTF) for inter-camera

color calibration. Later, Javed et al. [16] proposed Mean Brightness Transfer Func-

tion (mBTF) by projecting BTF to low subspace and computing the average appear-

ance similarity to improve the performance. Prosser et al. [17] proposed the Cumu-



2

lative Brightness Transfer Function (cBTF) to compensate the illumination change

over time. Datta et al. [2] presented the Weighted-BTF (wBTF), which weighs the

BTFs for K training images, whose background areas are close to the background of

a test image. Bhuiyan et al. [18] presented the Minimum Multiple Brightness Trans-

fer Function (Min-MCBTF) to model the appearance variation by using a learning

approach. However, it is assumed that multiple consecutive images are available

for training, which is not the case for the commonly used benchmark datasets.

In Chapter 2, we present an approach to obtain a better color calibration and

brightness transfer across disjoint camera views, and in turn to improve the person

ReID performance. Any person ReID approach incorporating color or brightness

histograms can benefit from the proposed method, since it improves the brightness

transfer. We propose to build a codebook of BTFs for a camera pair. The codebook

contains the most representative BTFs codewords for each color channel. We pro-

pose to use the Chain Code Histogram (CCH) for measuring the similarity between

two BTFs. Moreover, to improve the performance even further, we present a dif-

ferent approach to segment a person from the background in dataset images. In

addition, to avoid using all combinations of codewords exhaustively for all color

channels, and thus improve the computational efficiency, we present an ordering

and trimming criteria, which is based on the occurrence percentage of codeword

triplets.

Large camera networks are increasingly being deployed in public places such

as airports, subways, campuses and office buildings. These cameras are usually

installed across wider areas with non-overlapping fields of view (FOV) to provider

better coverage. However, with these setups, tracking of person(s) is still limited

to the areas where the cameras are installed. Thanks to the widespread use of

smart phones, crowdsourcing of videos has the potential to provide a much larger

coverage for longer periods of time. For instance, a video or image captured by
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someone at a remote location (with no pre-installed camera) can have the person

of interest in it. If it is possible to have access to large number of videos captured

at different locations over time, this would potentially allow following a person

over a much larger area for extended periods of time. However, the extremely

large amount of data captured in these scenarios makes it impossible for humans

to perform manual analysis, and necessitates autonomous analysis of data. Video

analysis enable long term characterization and modeling of the people in the scene.

Such application is required for high-level surveillance tasks and make them even

smarter [19].

In Chapter 3, different from most of the existing work, we focus on a crowd-

sourcing scenario to find and follow person(s) of interest in the collected images/videos.

We present an approach combining R-CNN based person detection with the GPU

implementation of color histogram and SURF-based re-identification. Moreover,

the GeoTags are extracted from the EXIF data of videos captured by smart phones,

and these locations are displayed on a map together with the time-stamps for a

spatiotemporal representation/visualization of the trajectory.

With the advancement of deep neural networks(DNN ) and increasing demand

for intelligent video surveillance, neural network-based methods have been ap-

plied to the person ReID problem across different camera views, achieving state-

of-the-art performance. However, it has been shown that neural networks are vul-

nerable to adversarial examples, which are carefully designed to be close to the

original input, but can easily deceive these networks. The ReID approaches em-

ploying neural network-based models inherit the vulnerabilities of DNNs. Ad-

versarial examples [20, 21, 22] have been extensively investigated in image clas-

sification [22, 23], object detection [24, 25, 26] and semantic segmentation [27, 24]

tasks. However, relatively less attention has been paid to the robustness of person

ReID models. In Chapter 4, we present an attack model that generates adversar-
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ial images of people, and demonstrate the effectiveness of this model by attacking

multiple state-of-the-art person ReID models. We also compare the performance

of the presented attack approach with other state-of-the-art attack models via an

extensive set of experiments on various person ReID benchmark datasets. One of

our goals is to demonstrate the extreme vulnerability of multiple state-of-the-art

person ReID approaches to this attack, and draw attention to the existing secu-

rity risks. In addition, we use different network models (different from the model

used by the victim ReID networks) as the source model to generate the adversarial

examples and show the effectiveness and generalizability of our attack approach.

We also analyze the effect of the perturbation budget on the attack performance.

The experimental results show that our proposed attack outperforms the state-of-

art attack models on the best performing person re-identification approaches by a

large margin, and results in the most drop in the mean average precision values.

While adversarial attacks have shown the vulnerability of DNNs, various de-

fense approaches against adversarial examples have been proposed [28, 29, 30, 31,

32]. However, defending ReID networks against adversarial attacks is still rela-

tively unexplored. In Chapter 5, we propose a new method to effectively detect

adversarial examples presented to a person ReID network by utilizing part-based

feature squeezing. Feature squeezing was proposed for detecting the adversar-

ial examples in image classification task with efficient computation compared to

other iterative methods [32]. We show that by applying the feature squeezer on

top of the body parts-based ReID model, the AE detection performance can be

further improved compared to using a network that is not based on parts. We ap-

ply two types of squeezing to segmented body parts. Experimental results show

that the proposed method can effectively detect the adversarial examples, and has

the potential to avoid significant decreases in person ReID performance caused by

adversarial examples. More specifically, we show that by detecting the adversar-
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ial examples, the mean average precision (mAP) of person ReID models can be

increased compared to not detecting AEs at all. With the PCB model, the mAP

after AE detection can reach close to 70% (compared to an mAP of 22.6 before AE

detection).

Finally, in Chapter 6, we provide a conclusion together with future work direc-

tions. The research conducted during this Ph.D. study resulted in several publica-

tions, including respected Institute of Electrical and Electronics Engineers (IEEE)

journals and international conference proceedings, listed below:

Publications

Peer-reviewed Journal Papers

• Y. Zheng, Y. Lu and S. Velipasalar, “An Effective Adversarial Attack on Per-

son Re-Identification in Video Surveillance via Dispersion Reduction,” IEEE

Access, vol. 8, pp. 183891-183902, Sep. 2020.

• M Cornacchia, B Kakillioglu, Y Zheng, S Velipasalar, “Deep learning-based

obstacle detection and classification with portable uncalibrated patterned light,”

IEEE Sensors Journal 18 (20), 8416-8425, 2018.

• M. Cornacchia, K. Ozcan, Y. Zheng and S. Velipasalar, “A Survey on Activity

Detection and Classification Using Wearable Sensors,” IEEE Sensors Journal,

vol. 17, issue: 2, pp. 386-403, Jan. 2017.

Peer-reviewed Conference Papers

• Y. Zheng and S. Velipasalar, “Part-based Feature Squeezing to Detect Adver-

sarial Examples In Person Re-Identification Networks”, submitted, 2021.

• Y. Zheng, K. Ozcan and S. Velipasalar, “A Codebook of Brightness Trans-

fer Functions for Improved Target Re-Identification across Non-Overlapping
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Camera Views,” Proc. of the IEEE Global Conference on Signal and Informa-

tion Processing (GlobalSIP), pp. 166–170, Nov. 2017.

• Y. Zheng, Zhenhua (Jimmy) Chen, S. Velipasalar and J. Tang, “Person Detec-

tion and Re-identification Across Multiple Images and Videos Obtained via

Crowdsourcing,” Proc. of the International Conference on Distributed Smart

Cameras (ICDSC), pp. 178-–183, Sept. 2016.

• Y. Zheng, K. Ozcan, S. Velipasalar, H. Shen, Q. Qiu, “Energy Efficient Track-

ing by Dynamic Voltage and Frequency Scaling on Android Smart Phones,”

Proc. of the ACM Int’l Conf. on Distributed Smart Cameras (ICDSC), pp. 1–6,

Nov. 2014.

• Y. Zheng, C. Ye, S. Velipasalar and M. C. Gursoy, “Energy Efficient Image

Transmission using Wireless Embedded Smart Cameras,” Proc. of the IEEE

Int’l Conf. on Advanced Video and Signal Based Surveillance (AVSS), pp. 62–

67, Aug. 2014.

• Y. Zheng, A. Mahabalagiri and S. Velipasalar, “Detection of Moving People

with Mobile Cameras by Fast Motion Segmentation,” Proc. of the ACM/IEEE

International Conference on Distributed Smart Cameras (ICDSC), pp. 1–6,

Oct. 29- Nov. 1, 2013.

• C. Ye, Y. Zheng, S. Velipasalar and M. C. Gursoy, “Energy-Aware and Robust

Task (Re)Assignment in Embedded Smart Camera Networks,” Proc. of the

IEEE International Conf. on Advanced Video and Signal Based Surveillance

(AVSS), pp. 123–128, August 2013.
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CHAPTER 2

IMPROVING PERSON

RE-IDENTIFICATION ACROSS DISJOINT

CAMERA VIEWS USING CODEBOOK OF

BRIGHTNESS TRANSFER FUNCTIONS

2.1 Introduction

In order to continuously track targets across multiple cameras with disjoint views,

it is essential to re-identify the same target on different camera views. However,

this is a very challenging task due to several reasons, including changes in illumi-

nation and target appearance, and variations in camera intrinsic parameters and

viewpoint.

Various person re-identification (ReID) approaches have been proposed in the

past [3], which can be classified into different categories. There have been methods

based on distance learning [33, 34, 35, 4, 5, 6, 7], on feature design and selection

[36, 8, 37, 38, 9, 39, 10], and on mid-level feature learning [40, 41, 11, 12, 13].
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Cheng and Piccardi [42] apply a cumulative color histogram transformation

and also employ an incremental major color spectrum histogram representation

while assuming that a color mapping function is known a priori. Trajectory match-

ing is employed, and height estimation and illumination-tolerant color represen-

tation are used by Madden and Piccardi [43]. Chae and Jo [44] employ a Gaussian

Mixture Model (GMM), and use a ratio of the GMMs to identify the same person.

Porikli [15] proposed the Brightness Transfer Function (BTF) for inter-camera

color calibration. Later, Javed et al. [16] proposed Mean Brightness Transfer Func-

tion (mBTF) by projecting BTF to low subspace and computing the average appear-

ance similarity to improve the performance. Prosser et al. [17] proposed the Cumu-

lative Brightness Transfer Function (cBTF) to compensate the illumination change

over time. Datta et al. [2] presented the Weighted-BTF (wBTF), which weighs the

BTFs for K training images, whose background areas are close to the background

of a test image. Bhuiyan et al. [18] presented the Minimum Multiple Brightness

Transfer Function (Min-MCBTF) to model the appearance variation by using a

learning approach. However, it is assumed that multiple consecutive images are

available for training, which is not the case for the commonly used benchmark

datasets.

More recently, Liao et al. [45] proposed Local Maximal Occurrence (LOMO) and

a subspace and metric learning method called Cross-view Quadratic Discriminant

Analysis (XQDA) for person ReID. Chen et al. [46] formulated a new view-specific

person reID framework, referred to as camera correlation aware feature augmen-

tation (CRAFT). In this framework, cross-view feature adaptation is performed by

measuring cross-view correlation from visual data distribution and carrying out

adaptive feature augmentation. Matsukawa et al. [47] proposed the GOG, which

first divides an image into horizontal strips. Local patches in the strips are modeled

using a Gaussian distribution. Köstinger et al. [48] propose an approach, referred
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to as KISSME, which is a statistical inference perspective to address the problem

of metric learning. As will be mentioned below, we evaluate the performance im-

provement provided by our proposed approach when it is used in combination

with all these four state-of-the-art approaches [45][46][47][48].

In this dissertation, we propose a novel approach to obtain a better color cal-

ibration and brightness transfer across disjoint camera views, and in turn to im-

prove the person ReID performance. As will be shown by our experimental re-

sults, any person ReID approach incorporating color or brightness histograms can

benefit from the proposed method, since it improves the brightness transfer. For

instance, most of the aforementioned methods incorporate color or brightness his-

tograms. Using our proposed method first for brightness transfer, and then incor-

porating other features and using a different distance metrics is expected to in-

crease the accuracy even further. Our experimental results support this argument

as will be discussed in detail below.

We propose to build a codebook of BTFs for a camera pair. The codebook con-

tains the most representative BTFs -codewords- for each color channel. We propose

to use the Chain Code Histogram (CCH) for measuring the similarity between two

BTFs. Moreover, to improve the performance even further, we present a different

approach to segment a person from the background in dataset images. In addition,

to avoid using all combinations of codewords exhaustively for all color channels,

and thus improve the computational efficiency, we present an ordering and trim-

ming criteria, which is based on the occurrence percentage of codeword triplets.

In this dissertation, we apply our proposed approach in combination with four

different approaches, namely CRAFT, LOMO+XQDA, GoG and WHOS+KISSME,

on the person ReID problem, and evaluate its effectiveness. The ReID performance

is compared for all methods on VIPeR, CUHK01 as well as CUHK03 datasets. In

addition, a detailed pseudocode of the proposed algorithm is presented.
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To emphasize, the goal here is not a careful selection of different image features,

or combinations of patches, or distance metrics, but instead to show the effect of

performing better color calibration and brightness transfer, on the ReID perfor-

mance when the same features and distance metric are used. The proposed ap-

proach was incorporated into four different state-of-the-art person re-identification

methods, including LOMO+XQDA and CRAFT, and an increased top rank match-

ing rate has been obtained for all methods and on all datasets, supporting the argu-

ment that the proposed method provides an improved brightness transfer across

different camera views, and any person re-identification approach incorporating

color/brightness histograms can benefit from it. Moreover, the performance im-

provement provided by the proposed method becomes more pronounced when

the training dataset size becomes smaller. Thus, the proposed method becomes

more preferable when there is not enough training data.

The rest of this chapter is organized as follows. The details of the proposed

method are described in Section 3.2. Experimental results are presented in Sec-

tion 5.4, and the chapter is concluded in Section 2.4.

2.2 Proposed Method

In order to model the variations in object appearances between different and non-

overlapping camera views, we propose to build a codebook of BTFs from a train-

ing set. The BTFs are computed by using the segmented out foreground (target)

regions. The details of how we perform this segmentation are described in Section

2.2.1.

The built codebook contains the most representative BTFs, between a camera

pair, as codewords. The codewords are obtained for each of the red, green and blue

color channels. Figure 2.1c shows three BTFs, which were extracted for Red (R),
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Green (G) and Blue (B) color channels of an example corresponding image pair

(Fig. 2.1a and 2.1b) from the VIPeR dataset [1]. When we inspected the BTFs com-

puted for different corresponding images from the same camera pair, we observed

that while some BTFs looked similar, there were others that looked quite different

as seen in Fig. 2.3. By constructing a codebook of BTFs, we are able to capture this

variation among BTFs for the same camera pair, and obtain a model representing

various illumination changes as targets move from one camera to another.

Depending on the color variation that is observed in the training set, each color

channel might have different number of codewords. A new codeword is generated

only if the newly computed BTF, between a training pair, is different enough from

the existing BTFs in the codebook. If a newly computed BTF matches to one of the

existing ones, the frequency of use of that codeword is incremented by one. Thus,

along with a BTF (codeword), the frequency of use of that BTF during training is

also saved in the codebook. The details of how each codeword is generated are

described in Section 2.2.2.

(a) (b) (c)

Fig. 2.1: (a) and (b) An example corresponding image pair from the VIPeR dataset [1],
and (c) the extracted BTFs for R, G, B color channels from top to bottom.
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2.2.1 Segmenting Persons from Background

First, we employ Normalized Cuts [49] to over-segment an image similar to [2].

In [2], the foreground model is initialized by using segments that are in the center

of the image. It then uses the minimum Euclidean distance between any segment

and the center segments, and the Bhattacharyya distance between their color his-

tograms to label the foreground regions. In this dissertation, we present a different

approach for this step. Using the fact that the person is at the center of the image,

in our approach, the segments are sorted by their minimum distance to the image

corners. Then, segments are added one by one to the background region as long

as the background is smaller than the 40% of the entire image. This way, the pro-

posed approach can remove much more, if not all, of the background compared

to the approach in [2], as shown in Fig. 2.2. In Fig. 2.2, columns (b) and (c) show

the segmented foreground regions with the proposed method and the one in [2],

respectively. Removing more of the background, especially when the background

has very different colors compared to the target, is more important to obtain better

transfer functions across a pair of camera views.

2.2.2 Codebook Construction

Brightness Transfer Functions (BTF) were proposed by Porikli [15] and have been

used for inter-camera color calibration. We follow a similar approach in order

to compute the BTF between an image pair (Iak , I
b
k), where a and b refer to two

different cameras, and k is the index of the matched image pair in the dataset. We

compute cumulative histograms of Ha
k,ci

and Hb
k,ci

for each color channel ci. Then,

the correlation matrix C is obtained between two histograms to represent the bin-

wise mutual distances. The shortest cost path, connecting the top left vertex to

the bottom right, is the original BTF defined in [15]. Figure 2.1c shows three BTFs,
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(a) (b) (c)

Fig. 2.2: Example outputs of foreground - background segmentation (a) Original im-
age, (b) segmentation result with the proposed approach, (c) segmentation result with the
approach in [2].

which were extracted for R, G and B color channels of a pair of corresponding

images (Fig. 2.1a and 2.1b) from the VIPeR dataset [1]. Codewords are generated

based on these BTFs extracted from the training set.

The steps of the algorithm for creating the codewords, for each color channel,

are outlined in Alg 1. For the first corresponding image pair, i.e. when the code-

book is empty, the BTFs computed for each channel are saved as the first code-

words cwR
1 , cw

G
1 , cw

B
1 . Then, for every incoming corresponding image pair, the

BTF is calculated, and compared to the existing codewords in the codebook. If

the newly computed BTF is different enough from the existing ones, i.e. it does not

match to any existing codeword, a new codeword is created. If not, i.e. when it

matches to an existing codeword, the frequency of use fR
cwi
, fG

cwi
orfB

cwi
of that code-
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word is incremented by one.

We use chain code histograms (CCH) to measure the similarity between two

BTFs. CCHs provide a scale and translation invariant shape descriptor for object

contours in binary images [50]. It has also been shown that printed letters can be

classified based on their CCHs [51]. Figures 2.1c and 2.3 show some example BTFs

computed between image pairs. As can be seen from these figures, BTFs can be

treated as binary images containing a curve, and CCHs can be used as a shape

descriptor. Using the pixel locations on the curve, we use eight directions, starting

from the bottom left corner, to compute the chain codes. After obtaining the chain

codes for all pixel locations, we build an 8-bin histogram of the chain codes based

on the frequency of occurrence for each direction. Two CCHs are compared by

using the dissimilarity distance in Eq. (2.1),

D = 1−

N−1∑
i=0

(ri − r̄)(si − s̄)
√√√√√√
[
N−1∑
i=0

(ri − r̄)2
N−1∑
i=0

(si − s̄)2
] ,

r̄ =
1

N

N−1∑
i=0

(ri), s̄ =
1

N

N−1∑
i=0

(si),

(2.1)

where r and s are N-dimensional feature vectors. In this case, the CCH vector

is of size 8. The dissimilarity distance in Eq. (2.1) is zero when two histograms

are identical, and it increases as the histograms start to deviate. In our proposed

method, a new codeword is created if the dissimilarity distance is greater than a

threshold ρ. As mentioned in Section 5.4, the same value for ρ was used in all of

our evaluations and experiments.

As outlined in Alg 1, while building the codebook, the frequency of codeword

occurrence and frequency of occurrence of codeword triplets (for each channel) are
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Algorithm 1 Construction of Codebook of BTFs
Initialize codebook CB=φ
for Each corresponding image pair do

for Each j = R, G, B do
Compute BTF and its CCH
if (CB = φ) then

Create first codeword cwj from BTF
f j
cw1

= 1;
else

match =0;
for Each codeword do

compare CCH distance D
if D ≤ ρ for cwi then

f j
cwi

+ +; match =1;
end if

end for
if match is 0 then

Create new codeword cwj
k from BTF

f j
cwk

= 1;
end if

end if
end for

end for

also obtained by incrementing counters every time a newly computed BTF matches

to an existing codeword. More specifically, if the BTFs of the each color channel of

the next image pair are matched to the ith, jth and kth codewords of the red, green,

and blue channels, respectively, then the triplet (i,j,k) is incremented by one. This

number is used to calculate a percentage of occurrence for different triplets.

Once the codebook is formed (during training), it is used during testing for

performance analysis. One option during testing is to exhaustively use all combi-

nations of codewords, for all channels, for image matching. However, to avoid this

combinatorial approach and improve computational efficiency, we propose a trim-

ming criteria, which is based on the occurrence percentage of codeword triplets.

The codeword triplets are rank ordered in descending order of occurrence percent-

age, and only the topN triplets for which the sum of the percentages of occurrence
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Red:

(a) 40.19% (b) 37.28% (c) 15.53%
Green:

(d) 42.18% (e) 36.21% (f) 14.40%
Blue:

(g) 46.10% (h) 31.40% (i) 15.81%

Fig. 2.3: Top three most frequently occurring BTFs for red, green and blue channels when ρ =
0.05.

reaches at least 75% are kept. This way, exhaustive combination of all possible

codewords for each channel is avoided. As presented in Sect. 5.4, we also per-

formed experiments by using all possible combinations of codewords for different

channels, and observed that this does not improve the performance significantly.

Fig. 2.3, shows top three most frequent BTFs for each color channel together

with their percentage of occurrence. Both x-axis and y-axis values are ranging

from 0 to 255 for BTF representations.

2.3 Experimental Results

As mentioned above, our purpose here is not a careful selection of different image

features, or combinations of patches, or distance metrics, but instead to show the

effect of performing better color calibration and brightness transfer, on the ReID
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performance when the same features and distance metric are used. Any target

ReID approach, which relies on appearance and color or brightness histograms,

can benefit from the proposed approach, since it provides an improved brightness

transfer. Using the proposed method first for color calibration, and then incorpo-

rating other features and using different distance metrics is expected to increase

the accuracy even further. In order to support this argument, we have performed

extensive experiments with four different state-of-the-art person ReID approaches,

namely LOMO+XQDA [45], CRAFT [46], GOG+XQDA [47] and WHOS+KISSME [48].

Before showing the performance improvement when the proposed approach is

integrated with different state-of-the-art person ReID approaches, we wanted to

perform a comparison with other BTF-based approaches first. In order to illus-

trate the effectiveness of the proposed method in performing color calibration, we

first compared the color correlation scores obtained with the proposed approach

and cBTF [17] on the VIPeR [1], CUHK01 [35], CUHK02 [52] and CUHK03 [12]

datasets. Then, we also performed person ReID evaluation on the VIPeR, CAVIAR4REID,

CUHK01 and CUHK03 datasets for comparison with the mBTF, cBTF and wBTF [2].

This experimental results section is organized as follows: First, we describe the

different datasets employed in Sec. 2.3.1. The results on color-correlation perfor-

mance are presented in Sec. 2.3.2. Sec. 2.3.3 summarizes the results of person ReID

performance comparison with other BTF-based approaches. Finally, the compar-

ison results, with four different state-of-the-art person ReID approaches, are pre-

sented in Sec. 2.3.4.

As proven by the results, the proposed method provides an improved bright-

ness transfer across disjoint camera views and improves ReID performance. For

all the experiments and comparisons below, ρ was set to be 0.05, which allowed

to have representative BTFs in the codebooks. For the VIPeR dataset, for instance,

this resulted in 8, 7 and 7 codewords for R, G and B channels, respectively. 98 code-
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word triplets were formed (non-zero frequency), and with the proposed ordering

approach, they were trimmed down to 32 triplets.

2.3.1 Datasets: VIPeR, CUHK and CAVIAR4REID

In different experiments, we have employed VIPeR, CUHK01, CUHK02, CUHK03

and CAVIAR4REID datasets. The VIPeR dataset contains 632 pedestrian image

pairs taken from arbitrary viewpoints under varying illumination conditions [1].

Each image is scaled to 128x48 pixels. CUHK01 [35] and CUHK02 [52] datasets

have 971 identities with 3884 images and 1816 identities with 7264 images, respec-

tively. CUHK03 [12] has 1360 identities and 13164 images from taken from five

disjoint camera pairs. Both manually cropped bounding boxes and automatically

detected bounding boxes, obtained using the discriminatively trained part-based

models [53], are provided. We have used the autonomously detected bounding

boxes in our experiments. CUHK03 dataset includes viewpoint variations, detec-

tion errors as well as occlusions. CAVIAR4REID [8] dataset has a total of 72 pedes-

trians, and 50 of them have both the camera views and the remaining 22 with one

camera view, with image size ranging from 17x39 to 72x144.

2.3.2 Color Correlation Comparison

We first divide the dataset into training and test sets. The training set is used to

build the codebook of BTFs for the proposed method, and obtain the cBTF for

comparison purposes. The images provided in these datasets also include some

of the background as seen in Fig. 2.1, 2.4,2.10,2.11 and 2.12, i.e. the persons are

not segmented out in the images. We first segmented the persons, as described

in Sect. 2.2.1, and obtained the codebook of BTFs and cBTF from the foreground

regions.
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After training, the transfer functions are applied to the images in the test set

coming from one camera, and then the color correlation score is calculated with

the images from the other camera. Better brightness transfer will result in higher

color correlation scores between images. Since the training set has an effect on the

BTFs, we performed 5-fold and 3-fold cross validation for these experiments. More

specifically, we divided the dataset as 20% training and 80% testing for 5-fold, and

as 33% training and 66% testing for 3-fold, and repeated the separation of dataset

randomly five times. For each image pair in the test set, we calculated the color

correlation, and averaged it over the total number of image pairs in the test set.

Tables 2.1 and 2.2 show the color correlation scores without segmenting out the

persons and when persons are segmented out, respectively. As can be seen, seg-

menting out the persons results in obtaining better codebooks for BTFs, and thus

increased color correlation scores. As shown in Table 2.2, for 5-fold validation, the

proposed method achieves 20.1%, 16.9%, 18.2% and 14.2% higher color correlation

scores than cBTF on VIPeR, CUHK01, CHUHK02 and CUHK03 datasets, respec-

tively. For 3-fold validation, the proposed method achieves 20.3%, 15.2%, 16.7%

and 19.4% higher color correlation scores than cBTF on the same datasets. An-

other observation is that, in general, the proposed method is affected less when

the training dataset becomes smaller.

Some example image pairs, and the results of applying the brightness transfer

for compensation are presented in Fig. 2.4. Columns (a) and (b) show the im-

ages of the same person from first and second camera, respectively. Columns (c)

and (d) show the transformed version of the image in column (a) by the proposed

method and cBTF, respectively. The red, green and blue channel codewords used

by the proposed method are displayed in column (e). As can be seen, the proposed

method achieves better compensation and increases the color similarity between

different camera views.
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(a) (b) (c) (d) (e)

Fig. 2.4: (a) Camera 1 view (b) camera 2 view; (c) and (d) are the compensated or color-
transferred version of (a) by the proposed method and by cBTF, respectively; (e) codewords
computed by the proposed method for the R,G,B channels (top to bottom).
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Dataset 5-folded 3-folded
Proposed cBTF Impr. Proposed cBTF Impr.

VIPER 0.2691 0.2158 24.7% 0.2957 0.2481 19.2%
CUHK01 0.3134 0.2690 16.5% 0.3456 0.3034 13.9%
CHUK02 0.3279 0.2812 16.6% 0.3837 0.3363 14.1%
CUHK03 0.3644 0.3224 13.0% 0.3691 0.3147 17.3%

Table 2.1: Improvement in color correlation scores compared to cBTF in VIPER, CUHK01,
CUHK02 and CUHK03 datesets before segmenting out persons.

Dataset 5-folded 3-folded
Proposed cBTF Impr. Proposed cBTF Impr.

VIPER 0.3494 0.2909 20.1% 0.3963 0.3832 20.3%
CUHK01 0.4062 0.3475 16.9% 0.4554 0.3954 15.2%
CUHK02 0.4405 0.3727 18.2% 0.4749 0.4069 16.7%
CUHK03 0.4081 0.3521 14.2% 0.4203 0.3520 19.4%

Table 2.2: Improvement in color correlation scores compared to cBTF in VIPER, CUHK01,
CUHK02 and CUHK03 datesets after segmenting out persons.

2.3.3 Person Re-identification Performance Comparison with BTF-

based approaches

As mentioned above, we first compared the person ReID results with the other

BTF-based approaches. To show the improvement obtained by the proposed color

calibration, and also provide a valid and commensurate comparison to the method

in [2] and the other papers included therein, we used the same distance metric

between images as in [2], which relies on histograms of RGB, HSV, and YCbCr

color features, and histograms of oriented gradients computed for each of the RGB

color channels.

We first compared our proposed method with wBTF [2], cBTF and mBTF by

using the match rate for different ranks. The results are summarized in the lower

half of Table 2.3 for the VIPeR dataset. The table also includes the results for other
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approaches, namely CPS [8], SDALF [36], PRDC [33], AdaBoost, L1 norm and

Bhattacharrya, reported in [2]. For our method, we used the ordering and trim-

ming approach described above, to end up with a smaller number of codeword

triplets. The p in the table refers to the number of test images used (out of a to-

tal of 632 images in the VIPeR dataset). Thus, the number of training images is

(632 − p) for different cases. Rows 10 and 11 show the results obtained with our

proposed codebook BTF (CB-BTF) approach, when we employ our proposed back-

ground/foreground segmentation method and the one used in [2], respectively.

These rows show the improvement obtained when background is eliminated in a

better way with the proposed approach. In multi-camera tracking scenarios, seg-

mented foreground regions are obtained after applying background subtraction.

Thus, further performance improvement can be achieved. In the table, bold num-

bers refer to the best results, and our proposed method outperforms all other meth-

ods for all scenarios involving different number of test images. Comparing rows

11 and 12, i.e. isolating our proposed FG/BG segmentation approach, shows the

effectiveness of the BTFs obtained with the proposed method compared to [2]. In

other words, using better BTFs results in improving the target-ReID performance.

We also performed experiments by using all different combinations of code-

words exhaustively (rather than trimming the triplets) for Red, Green and Blue

channels, and observed that this does not improve the performance significantly.

More specifically, when p = 316, the obtained rates were 23.82%, 48.34%, 62.09%

and 77.78% for r = 1, r = 5, r = 10 and r = 20, respectively.

Moreover, we used the Cumulative Matching Characteristic (CMC) curves to

show the improvement in the person reID performance. CMC curve represents the

percentage of images, for which the correct match is in the top r returned images.

In CMC curves, the horizontal axis is the r, and the vertical axis is the percentage.

In our experiments we randomly divided the dataset into training and test sets 10
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Methods p=316(# of test set) p=432 p=532
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

1 CB-BTF+CRAFT 52.1 81.2 89.8 95.6 43.4 75.1 86.1 90.8 35.9 66.2 80.8 87.5
2 CRAFT[46] 50.3 80.0 89.6 95.5 42.1 73.7 85.2 90.6 35.5 65.8 79.3 86.4
3 CB-BTF+GOG+XQDA 43.4 72.5 82.2 92.1 - - - - - - - -
4 GOG+XQDA 41.1 71.1 82.1 92.1 - - - - - - - -
5 CB-BTF + LOMO+XQDA 42.5 70.2 80.9 91.5 36.4 65.0 76.4 89.9 32.3 61.9 71.2 81.0

(using RGB,YUV,YCbCr)
6 LOMO+XQDA 40.9 69.6 80.7 91.5 35.8 64.9 76.4 88.9 31.9 61.7 70.8 80.9

(using RGB,YUV and YCbCr)
7 LOMO+XQDA [45] 40.0 68.2 80.5 91.1 34.2 63.0 76.4 86.8 29.8 57.9 70.0 80.6
8 CB-BTF+WHOS+KISSME 30.1 60.9 62.1 74.0 24.4 55.9 59.4 68.9 21.0 51.7 56.5 72.0
9 WHOS+KISSME 25.8 58.3 60.1 71.9 22.0 54.7 57.2 68.4 18.8 50.5 55.1 70.1

Comparison of BTF-based methods
10 CB-BTF w/prop. seg. 23.35 47.81 61.90 77.12 17.10 35.91 52.34 65.63 14.24 32.09 43.75 59.27
11 CB-BTF w/ seg. in [2] 23.01 47.17 60.58 76.70 16.93 35.84 51.63 64.49 13.75 31.85 43.67 57.69
12 wBTF [2] 21.99 46.84 59.97 75.95 15.05 35.76 50.81 64.24 13.72 31.77 42.86 57.42
13 cBTF 19.27 38.85 53.54 64.69 14.25 31.75 43.96 53.49 12.95 28.76 35.97 46.06
14 mBTF 18.81 38.47 50.90 63.58 14.12 29.70 43.91 52.34 12.63 26.24 33.09 45.75
15 CPS[8] 21.84 46.00 57.21 71.50 - - - - - - - -
16 SDALF[36] 20.00 38.00 48.50 65.00 - - - - - - - -
17 PRDC[33] 15.66 38.42 53.86 70.09 12.64 31.97 44.28 59.95 9.12 24.19 34.40 48.55
18 AdaBoost 8.16 24.15 36.58 52.12 6.83 19.81 29.75 43.06 4.19 12.95 20.21 37.73
19 L1-Norm 4.18 11.65 16.52 22.37 3.80 9.81 13.94 19.44 3.55 8.29 12.27 17.59
20 Bhattacharyya 4.65 11.49 16.55 23.83 4.19 10.35 14.19 20.19 3.82 9.08 12.42 17.88

Table 2.3: Results on the VIPeR dataset showing the percentage of images for which the
correct match is in the top r returned images. p is the number of images in the test set. Bold
numbers represent the best-score in every column.

times, and used the average of 10 trials to obtain the CMC curves. We performed a

comparison with wBTF [2] on both CAVIAR4REID and VIPeR datasets, and plot-

ted the CMC curves. Figures 2.5(a) and 2.5(b) show the CMC curves obtained on

VIPeR and CAVIAR4REID, respectively. For VIPeR, the training dataset size was

100, and for CAVIAR4REID the number of training images was only 25. As can

be seen, the proposed method outperforms wBTF, and the improvement in perfor-

mance is more pronounced when the number of training images gets smaller.

We also plotted the CMC curves for the proposed method and wBTF, with and

without segmenting out the persons from the background. The results are shown

in Fig. 2.6. As can be seen, the proposed approach is less sensitive to not segment-

ing out the persons. Fig. 2.7 shows example matching results for r = 1, obtained

with the proposed method and wBTF.

In addition to the VIPeR dataset, we used CUHK01 and CUHK03 datasets for

person ReID performance comparison of the proposed method with other BTF-
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(a) (b)

Fig. 2.5: CMC curves for the proposed method and WBTF [2] for (a) VIPeR (p = 532, #
of training images is 100) and (b) CAVIAR4REID (# of training images is 25) datasets.

Fig. 2.6: Performance comparison of the proposed method and wBTF, with and without
segmenting out the persons from the background, on VIPeR dataset with p = 316.
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(a) (b) (c)

Fig. 2.7: Sample rank 1 ReID results. (a) Query image, (b) rank 1 matching by proposed
method, (c) rank 1 matching by wBTF.

based approaches, as well as more recent state-of-the-art approaches. The results

are summarized in Tables 2.4 and 2.5, respectively, and will be discussed more in

Sect. 2.3.4.

2.3.4 Person Re-identification Performance Comparison with Re-

cent State-of-the-art Methods

In order to support our argument that different target ReID approaches can ben-

efit from our proposed approach and further extend the generalization of our

proposed method, we have performed extensive experiments with four different

state-of-the-art person ReID approaches, namely LOMO+XQDA [45], CRAFT[46],

KISSME [48] and GOG+XQDA [47]. We used VIPER, CUHK01 and CUHK03

datasets for performance comparison.

In [45], the extracted features are color description (YUV histogram) and Scale

Invariant Local Ternary Pattern (SILTP). A subspace and metric learning method

called Cross-view Quadratic Discriminant Analysis (XQDA) is also presented in

[45]. In our comparison experiments, we first performed brightness compensation
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Table 2.4: CUHK01 results

Dataset CUHK 01
Rank 1 5 10 20

CB-BTF+CRAFT 80.1 93.0 95.3 97.8
CRAFT 74.5 91.2 94.8 97.1

CB-BTF+LOMO+XQDA 65.4 85.2 91.1 95.0
(using RGB,YUV,YCbCr)

LOMO+XQDA(RGB,YUV,YCbCr) 64.1 83.9 90.2 94.7
(using RGB,YUV,YCbCr)

LOMO+XQDA 63.2 83.6 90.2 94.7
CB-BTF+GOG+XQDA 60.3 79.1 86.4 92.1

GOG+XQDA 57.2 77.9 86.2 92.1
CB-BTF+WHOS+KISSME 31.3 59.0 73.2 86.8

WHOS+KISSME 29.4 57.7 72.4 86.1
CB-BTF w/prop. seg. 15.01 28.98 42.40 65.85
CB-BTF w/ seg. in [2] 13.42 26.37 41.29 65.17

WBTF 10.93 22.19 35.51 57.83
CBTF 9.62 20.34 33.86 56.39
MBTF 8.73 19.75 33.72 55.52

Table 2.5: CUHK03 results

Dataset CUHK 01
Rank 1 5 10 20

CB-BTF+CRAFT 85.6 97.2 98.3 99.1
CRAFT 84.3 97.1 98.3 99.1

CB-BTF+LOMO+XQDA 54.7 83.8 92.3 96.3
LOMO+XQDA(RGB,YUV,YCbCr) 53.4 82.9 92.2 96.3

LOMO+XQDA 52.2 82.2 92.1 96.3
CB-BTF+GOG+XQDA 69.2 92.3 96.4 97.2

GOG+XQDA 67.3 91.0 96.0 97.2
CB-BTF+WHOS+KISSME 16.6 50.0 53.9 71.8

WHOS+KISSME 14.2 48.5 52.6 70.5
CB-BTF w/prop. seg. 12.31 23.60 38.75 59.86
CB-BTF w/ seg. in [2] 10.48 21.56 37.33 59.09

WBTF 9.29 16.84 27.24 57.06
CBTF 8.73 14.52 26.76 53.79
MBTF 8.52 12.41 24.56 52.82
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by using our constructed codebook for R, G and B channels as shown in Fig. 2.8.

We then performed feature extraction for LOMO+XQDA by using only the YUV

channels. In this case, the improvement was not significant. Then, we added

RGB and YCbCr channels into the color description, and expectedly, the perfor-

mance improved for all rank results. For instance, as seen in Tables 2.3, 2.4 and 2.5,

rank 1 results improved by 1.6%, 2.2% and 2.5% for VIPeR, CUHK01 and CUHK03

datasets, respectively.

Fig. 2.8: Experiments with LOMO framework.

Another state-of-the-art method we studied is CRAFT [46], which is a deep

learning-based approach. We used the source code that is available from the project

web site [54]. Similar to above steps, we first performed brightness compensation

by using our constructed codebook for R, G and B channels, and then applied

CRAFT on the compensated images as shown in Fig. 2.9. As seen in Tables 2.3, 2.4

and 2.5, rank 1 results improved by 1.8%, 5.6% and 1.3% for VIPER, CUHK01 and

CUHK03 datasets, respectively.

The third method we used in our experiments is GOG+XQDA [47]. Similar to

the above results, applying brightness compensation with our proposed method

before using the person ReID approach improved results for all ranks and all

datasets. As seen in Tables 2.3, 2.4 and 2.5, rank 1 results improved by 2.3%, 3.1%
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Fig. 2.9: Experiments with CRAFT framework.

(a1) (b1) (c1) (a2) (b2) (c2) (a3) (b3) (c3) (a4) (b4) (c4)

Fig. 2.10: Example Rank 1 ReID results on the VIPeR dataset. (a1)-(a4) query images,
(b1) CB+CRAFT (c1) CRAFT; (b2) CB+GOG (c2) GOG; (b3) CB+LOMO (c3) LOMO;
(b4) CB+KISSME (c4) KISSME.

and 1.9% for VIPER, CUHK01 and CUHK03 datasets, respectively.

The fourth method we used in our experiments is WHOS+KISSME [48]. When

our method is used for brightness compensation beforehand the rank 1 perfor-

mance improves by 4.3% on the VIPeR dataset. Since the performance of WHOS+KISSME

was much lower on this dataset compared to CRAFT, GOG+XQDA and LOMO+XQDA,

we have not performed a test for WHOS+KISSME on CUHK01 and CUHK03 datasets.

Figures 2.10, 2.11 and 2.12 show different example Rank 1 results, on VIPeR,

CUHK01 and CUHK03 datasets, respectively. These examples illustrate the cases,

where a base person ReID approach returns the wrong person as rank 1, whereas

using our proposed method beforehand for brightness compensation results in the

correct match in rank 1.

2.4 Conclusion

We have presented a novel approach to better model the appearance variation

across disjoint camera views, and improve the performance of any person re-
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(a1) (b1) (c1) (a2) (b2) (c2) (a3) (b3) (c3) (a4) (b4) (c4)

Fig. 2.11: Example Rank 1 ReID results on the CUHK01 dataset. (a1)-(a4) query images,
(b1) CB+CRAFT (c1) CRAFT; (b2) CB+GOG (c2) GOG; (b3) CB+LOMO (c3) LOMO;
(b4) CB+KISSME (c4) KISSME.

(a1) (b1) (c1) (a2) (b2) (c2) (a3) (b3) (c3) (a4) (b4) (c4)

Fig. 2.12: Example Rank 1 ReID results on the CUHK03 dataset. (a1)-(a4) query images,
(b1) CB+CRAFT (c1) CRAFT; (b2) CB+GOG (c2) GOG; (b3) CB+LOMO (c3) LOMO;
(b4) CB+KISSME (c4) KISSME.

identification approach that incorporates color/brightness histograms and appear-

ance models. We have proposed building a codebook of brightness transfer func-

tions, and also an ordering and trimming criteria to increase computational effi-

ciency. We have performed extensive set of experiments on different commonly

used datasets. Results have shown that the proposed method outperforms other

BTF-based approaches. Moreover, the proposed approach was incorporated into

four different state-of-the-art person re-identification methods, and an increased

top rank matching rate has been obtained for all methods and on all datasets, sup-

porting our initial argument above.
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CHAPTER 3

PERSON DETECTION AND

RE-IDENTIFICATION ACROSS

MULTIPLE IMAGES AND VIDEOS

OBTAINED VIA CROWDSOURCING

3.1 Introduction

Large camera networks are increasingly being deployed in public places such as

airports, subways, campuses and office buildings. These cameras are usually in-

stalled across wider areas with non-overlapping fields of view (FOV) to provider

better coverage. However, with these setups, tracking of person(s) is still limited

to the areas where the cameras are installed. Thanks to the widespread use of

smart phones, crowdsourcing of videos has the potential to provide a much larger

coverage for longer periods of time. For instance, a video or image captured by

someone at a remote location (with no pre-installed camera) can have the person

of interest in it. If it is possible to have access to large number of videos captured
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at different locations over time, this would potentially allow following a person

over a much larger area for extended periods of time. However, the extremely

large amount of data captured in these scenarios makes it impossible for humans

to perform manual analysis, and necessitates autonomous analysis of data. Video

analysis enable long term characterization and modeling of the people in the scene.

Such application is required for high-level surveillance tasks and make them even

smarter [19].

Given an image/video of person of interest, re-identification is the process of

identifying same person in the images/video captured by a different camera. Re-

identification is indispensable in establishing the consistent labeling across mul-

tiple cameras or even within the same camera to connect broken trajectories or

re-establish lost tracks. Person re-identification is a difficult problem due to large

variations in person’s appearance, lighting conditions and contrast across different

cameras. Person re-identification/association across different camera views has

two main parts; (1) detecting the people in the scene and (2) re-identifying them in

other camera views. The face detection method proposed by Viola and Jones [55],

and the human detection method, based on histograms of oriented gradients, pro-

posed by Dalal and Triggs [56] are two of the important works on detection. Dollar

et al. [57] proposed Integral Channel Features for pedestrian detection. Local Bi-

nary Patterns [58], multiple kernels [59] and part-based models [53] have also been

introduced for human detection.

Deep Convolutional Neural Networks (CNNs) have received a lot of attention

recently, especially after achieving very good performance in the ImageNet chal-

lenge [60]. Later, Girshick et al. [61] combined region proposals with CNNs, and

introduced R-CNN, regions with CNN features, for object detection. Then, faster

R-CNN [62] has been proposed, which focus on the speed up by pruning the hy-

pothesis in detection.
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Person re-identification has been studied by many researchers in the past few

years [63, 64, 65, 66, 67, 68, 69, 70]. Earlier research focused on taking advantage

of camera inner parameters during the matching process. Most of the existing

work relies on the appearance-based similarity between images, such as color and

texture of clothing, to establish correspondences. In general, recent approaches

focus on three aspects; (1) designing subject-discriminative [71], descriptive and

robust visual descriptors to characterize a person’s appearance [72], (2) using fea-

ture transformation which projects features between different camera-dependent

spaces, such as feature warping [73], and sparse basis expansion [74, 75], and (3)

learning suitable distance metrics that maximize the chance of a correct match-

ing [76, 77, 4].

In many of the existing works, cameras are static and background subtraction

is applied to detect moving objects. This significantly simplifies and speeds up the

detection stage. Then, focus is placed on the matching part. However, if cameras

are mobile or only single images (not videos) are available, then background sub-

traction cannot be employed. In this case, human detection needs to be performed

in the entire image, which is in general a computationally intensive process. In

this work, different from most of the existing work, we focus on a crowdsourcing

scenario to find and follow person(s) of interest in the collected images/videos.

We propose a novel approach combining R-CNN based person detection with the

GPU implementation of color histogram and SURF-based re-identification. More-

over, the GeoTags are extracted from the EXIF data of videos captured by smart

phones, and these locations are displayed on a map together with the time-stamps

for a spatio-temporal representation/visualization of the trajectory. All the pro-

cessing, including R-CNN based detection, histogram correlation and SURF-based

matching, is performed on GPU. The average processing time for the proposed de-

tection and matching algorithm is 5 ms per frame on an NVIDIA Quadro K5200
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8GB GPU. The experimental results show the promise of the proposed method.

The rest of the chapter is organized as follows: The proposed approach is de-

scribed in detail in Sec. 3.2. The experimental results are presented in Sec. 5.4, and

the chapter is concluded in Sec. 5.5.

3.2 Proposed Method

In our proposed method, we use the pre-trained Region-based Convolutional Net-

works (R-CNN) [61], implemented with Caffe [78], to detect people in images. We

refer to the image containing the person(s) of interest as the query image and the

frames in the video(s) to be examined as the candidates images. The R-CNN de-

tector, which is run on all video images, returns the bounding boxes of candidate

people regions in each image. Then, both the color histogram and SURF features

are extracted from the candidate regions to be matched with the subject(s) of in-

terest. After a match is found, GeoTag information is extracted from the matched

video to generate the spatio-temporal model for candidates, and mark their path

on a map. The overall flow diagram of the proposed method is provided in Fig. 3.1.

3.2.1 R-CNN-based Detection

We apply the R-CNN model [61] provided in Caffe for better performance in de-

tection results. A higher detection rate will provide better matching results across

different views. In our experiments, we observed that all people in the videos were

successfully detected by the R-CNN detector.

The architecture of the used R-CNN is shown in Fig. 3.2. It has 7 layers. Since

the training images for the convolutional neural network needs to be a fixed-size

of 227 × 227 pixels, all the images are resized to the required size first. As stated

in [79], in the first layer, the resized images are convolved with 96 kernels of size



34

Fig. 3.1: Flow diagram of the proposed method.

11x11x3 pixels with a stride of 4 pixel, and then max-pooling is applied in 3x3 grid.

The second layer has the same framework, with 256 kernels of size 5x5x48. Layer

3 and 4 are two convolution layers without pooling, which both have 384 kernels.

Layer 5 is similar to layer 2. Layer 6 and 7 are fully connected layers with 4096

nodes. The activation function used in convolution and fully connected layer is

Rectified Linear function. More details can be found in [60] and [61].

3.2.2 GPU Accelerated Re-identification

The process of detection and re-identification of people across many different views

can be computationally very expensive. Each region proposed by the R-CNN on

each candidate image has to be compared with the representation of person(s) of

interest in the query image to see if there is a match. In order to reduce the pro-



35

Fig. 3.2: Architecture of used R-CNN model.

cessing time of each video frame, we implemented a GPU-based parallel matching

strategy, which speeds up the detection and re-identification phase. The matching

procedure has the following steps:

1. Apply R-CNN based detection on video frames to get bounding boxes for

candidate people regions.

2. Convert candidate regions to HSV color space, compute histograms and com-

pare with the histogram of the person(s) of interest from the query image by

using color correlation.

3. If the histogram correlation score is higher than a threshold τ , apply SURF to

detect matching feature points between candidate regions and images per-

son(s) of interest.

As mentioned previously, R-CNN detection provides the coordinates of the

bounding box around candidate people regions. Then, we convert this region to

the HSV color space to reduce the effect of illumination changes. Afterwards, we
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calculate the color histograms, and compare the histograms by using color corre-

lation calculation in (3.1), where H1 and H2 are the two color histograms, N is the

total number of histogram bins, and H = 1
N

∑
iH(i).

d(H1, H2) =

∑N
i=1

(
H1(i)−H1

)(
H2(i)−H2

)√∑N
i=1

(
H1(i)−H1

)2(
H2(i)−H2

)2 . (3.1)

If the histogram correlation score is higher than a threshold τ , a matcher based

on Speeded Up Robust Features (SURF) [80] is applied to detect matching feature

points between candidate regions and images person(s) of interest. SURF is a fast,

scale- and rotation-invariant detector and descriptor, which outperforms previous

methods with respect to repeatability, distinctiveness and robustness. In this work,

a SURF-based detector and matcher is implemented on GPU to recognize the same

person from multiple different views. If the number of matched points is larger

than 50% of the smaller number of points (between the candidate region and the

person of interest), a match is declared.

3.2.3 Spatio-Temporal Model

The prevalence of smart phones not only provides large volumes of video/image

data with ever-increasing quality, but also makes GPS information, via GeoTags,

more accessible. To generate the spatio-temporal model of a person, who is matched

across different videos captured by different phones at different locations, we ex-

tract the EXIF information, and then visualize it on GOOGLEMAP API. EXIF is an

exchangeable file format that contains the metadata embedded within the video.

As shown in Fig 3.3, it includes information such as the length of the video, GPS

location, timestamp and compression rate. We use EXIFtool [81] to extract the Geo-

Tags, and obtain the location where the video was initially captured.

It should be noted that the GeoTags only provide the GPS location of the device
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Fig. 3.3: Exif information from video

when it starts recording the video. Thus, we need to estimate the distance between

the target and the device to display the location of the target. We do this by using

the bounding box sizes for people obtained at four different pre-defined distances

from smart phones. Table 3.1 provides the list of bounding box sizes obtained

at 20 ft, 40 ft , 60 ft and 80 ft from the capturing smart phone. We find the closest

bounding box size from this list and use the corresponding distance as the distance

of the target from the phone. Then, we draw a circle with this radius around the

GPS location of the device. Since the videos are obtained through crowdsourcing,

there can be another video of the same person captured around the same time. We
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Distance from camera (ft) Bounding box size
20 300 x 950
40 143 x 454
60 100 x 283
80 68 x 220

Table 3.1: Bounding box sizes for different distances from the camera.

follow the same steps for the location from another device, and use the intersection

of the circles as the location of the target. This process is illustrated in Fig. 3.4.

As mentioned above, the GPS location is only available for the first frame of the

video. Thus, to be able to track the location of a target over time, we need many

videos captured at different times, and this is when crowdsourcing comes to the

rescue. When there are enough videos obtained through crowdsourcing, it will

provide a more complete spatio-temporal picture of the trajectory of the target. It

should be noted that, the proposed approach can be applied to images as well as

videos. Since, each image has its own GPS and time-stamp information, localiza-

tion will be more precise compared to videos. To be able to use the intersection of

the circles as the location, when we have videos as the input, we used short videos

in our experiments (since GPS data is only available for the first frame).

3.3 Experimental Results

As mentioned above, all the processing, including R-CNN based detection, his-

togram correlation and SURF-based matching, is performed on GPU. The average

processing time for the proposed detection and matching algorithm is 5 ms per

frame on an NVIDIA Quadro K5200 8GB GPU.

We performed different experiments using videos captured by multiple smart

phones at different places. The targets are seen from different views (frontal, side

view etc.) in the captured videos. In the first experiment, a total of three videos
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Fig. 3.4: Determining the location of a target.

were recorded, from three different phones, capturing a target from different an-

gles, namely front view, side view and back view. Figure 3.5 shows the query

target image and the matched images, from different cameras, showing the target

from different angles. The color histogram correlation scores are shown in Table

3.2. As expected, since the query is a back view, the correlation between the query

and a candidate region with the back view is the highest. The correlation score

for the front view comes next, and the score between the query and a side view

is the smallest for the same person. This experiment also allowed us to determine

an empirical threshold for τ that allows matching the same person from different

views, and also having a discriminative power for different people. The GeoTag

locations on a map, for this experiment, are displayed in Fig. 3.6.

Experiment 1 Correlation score
Front view 0.6875
Back view 0.7124
Side view 0.4992

Table 3.2: Color histogram correlation scores obtained between back, and front and side
views in the first experiment.
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(a) (b) (c) (d)

Fig. 3.5: Detection and matching results to the query image in (a). Matched candidates
from (b) front view, (c) back view, and (d) side view.

Fig. 3.6: The GeoTag locations displayed on a map for the first experiment.

The second experiment scenario has a more complicated setup involving the

detection and matching of three different targets simultaneously. There are four

different smart phones capturing videos of these three targets from different lo-
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cations and angles. To better simulate a crowdsourcing scenario, a total of 38

videos are recorded from these four devices so that there are more videos to pro-

cess, which would provide a more complete GeoTag information over time. Each

video contains at least one target or more.

Example matching images are shown in Fig. 3.7. There is a large variation in the

distance of targets from the capturing device, which can be observed from the orig-

inal frames as well as the lower resolution of some of the detected targets. All three

candidates have been successfully re-identified across different cameras, capturing

from different angles, by histogram correlation and SURF-based matching. Table

3.3 shows example color correlation scores between the query image and all three

candidates. As can be seen, the highest correlation scores are across the diagonal.

Fig. 3.8 shows the GeoTag locations on a map for all three targets over time. Red,

green and yellow marks correspond to targets one, two and three, respectively.

Color correlation candidate 1 candidate 2 candidate 3
Query 1 0.6847 0.3975 0.1875
Query 2 0.4434 0.6685 0.2349
Query 3 0.1524 0.2569 0.7176

Table 3.3: Color histogram correlation scores between the query and candidate regions for
the second experiment.

3.4 Conclusion

We have proposed a method, which performs R-CNN based person detection and

then person re-identification via matching on GPU. A pre-trained model from R-

CNN is used to detect person candidate regions in videos. Then, both color and

SURF features are extracted for each candidate, and used for matching with the

person of interest. The GPS location in the image/video EXIF information is used

to obtain a spatio-temporal model for the path taken by the target, and these loca-



42

tions are displayed on a map. All the processing is performed on GPU, and takes

an average of 5ms to process one frame. As feature work, we will incorporate more

features to improve the re-identification.
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(a) Query image for the first target

(b) Query image for the second target

(c) Query image for the third target

Fig. 3.7: Matching results for the experiment involving the detection and matching of
three different targets simultaneously.
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Fig. 3.8: GeoTag results on the map for the second experiment.
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CHAPTER 4

ADVERSARIAL ATTACKS ON PERSON

RE-IDENTIFICATION IN VIDEO

SURVEILLANCE

4.1 Introduction

In order to continuously track targets across multiple cameras with disjoint views,

it is essential to re-identify the same target across different cameras. However, this

is a very challenging task due to several reasons including changes in illumination

and target appearance, and variations in camera intrinsic parameters and view-

point.

There has been great interest and significant progress in person re-identification

(ReID) [82, 83, 84, 85, 86, 87], which is important for security and wide-area surveil-

lance applications as well as human computer interaction systems. Fueled by the

new models, including the neural network-based approaches, proposed in recent

years, the performance of person ReID approaches has improved significantly. For

instance, the rank-1 accuracy of the state-of-the-art method on the Market 1501



46

dataset [88] is 94.8% [82], which has increased from 44.4% when the dataset was

initially released in 2015.

In this chapter, we demonstrate the effectiveness of an attack model in gener-

ating adversarial examples (AEs) for the person ReID application, attack multiple

state-of-the-art person ReID models, and also compare the performance of the pre-

sented attack approach with other state-of-the-art attack models via an extensive

set of experiments on various person ReID benchmark datasets. One of our goals is

to demonstrate the extreme vulnerability of multiple state-of-the-art person ReID

approaches to this attack, and draw the attention of the research community to the

existing security risks. In person ReID, the paired probe and gallery images are

expected to have high similarity. However, by adding human-imperceptible per-

turbations to the probe images, the models are easily fooled even when the probe

images appear the same as the original images.

Adversarial examples [20, 21, 22] have been extensively investigated recently

in image classification [22, 23], object detection [24, 25, 26] and semantic segmenta-

tion [27, 24], etc. However, relatively less attention has been paid to the robustness

of person ReID models. Bai et al. [89] proposed an adversarial metric attack, which

targets on fooling the distance metrics in person ReID systems. An early attempt

for the defense shows that a metric-preserving network can be applied to defend

against such attack. Zheng et al. [90] propose Opposite Direction Feature Attack

(OFDA) to generate adversarial examples/queries for retrieval tasks such as per-

son ReID. The idea is to push away the feature of the adversarial query in the

opposite direction of the original feature.

In this chapter, we present and employ an effective approach to generate adver-

sarial examples targeting person ReID methods. Our approach [91] is referred to as

the Dispersion Reduction (DR), and it is a black-box attack. The main idea behind

our approach is reducing the “contrast" of the internal feature map of a neural net-
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work. The intuition is that just like reducing the contrast of an image would make

the objects less recognizable or distinguishable, reducing the contrast of an internal

feature map would have a similar effect on recognizability of objects by the neural

network. In our previous work [91], we showed the transferability of the DR attack

across different tasks including object detection, classification and text recognition.

The contribution of this work includes the following: We adapt the DR attack for

the person ReID problem, and perform an extensive comparison and evaluation

on different state-of-the-art methods and multiple benchmarks. In addition, we

compare the performances of multiple attack methods. We show that making a

feature map “featureless", through dispersion reduction, is very-well suited to fool

any state-of-the art ReID model. Moreover, we use different network models (dif-

ferent from the model used by the victim ReID networks) as the source model to

generate the adversarial examples and show the effectiveness and generalizability

of our attack approach. We also analyze the effect of the perturbation budget on

the attack performance.

The rest of the chapter is organized as follows: The related works on both per-

son ReID and attack models are summarized in Section 4.2. The proposed dis-

persion reduction-based attack approach, and the methodology are described in

Section 4.3. The experimental results are presented in Section 5.4, and the chapter

is concluded in Section 4.5.

4.2 Background and Related Work

4.2.1 Review of Person ReID Methods

Various person re-identification (ReID) approaches have been proposed in the past [3],

which can be classified into different categories. There have been methods based

on distance learning [33, 34, 35, 4, 5, 6, 7], on feature design and selection [36, 8, 37,
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38, 9, 39, 10], and on mid-level feature learning [40, 41, 11, 12, 13].

Many works relied on color transformation and statistic models for person re-

identification. Cheng and Piccardi [42] applied a cumulative color histogram trans-

formation and employed an incremental major color spectrum histogram repre-

sentation. Trajectory matching, height estimation and illumination-tolerant color

representation were used by Madden and Piccardi [43]. Chae and Jo [44] employed

a Gaussian Mixture Model (GMM) for the segmented regions in a person, and used

a ratio of the GMMs to identify the same person. The Brightness Transfer Function

(BTF) and its variants have been introduced to improve the matching performance.

Porikli [15] proposed BTF for inter-camera color calibration. Later, Javed et al. [16]

and Posser et al. [17] proposed the Mean Brightness Transfer Function (mBTF)

and the Cumulative Brightness Transfer Function (cBTF), respectively. Datta et

al. [2] presented the Weighted-BTF (wBTF), and Bhuiyan et al. [18] presented the

Minimum Multiple Brightness Transfer Function (Min-MCBTF) to model the ap-

pearance variation by using a learning approach. However, it was assumed that

multiple consecutive images are available for training, which is not the case for the

commonly used benchmark datasets.

Researchers then focused on combining the features and distance metrics at the

same time. Liao et al. [45] proposed Local Maximal Occurrence (LOMO) and a

subspace and metric learning method called Cross-view Quadratic Discriminant

Analysis (XQDA) for person ReID. Chen et al. [46] formulated a new view-specific

person ReID framework, referred to as camera correlation aware feature augmen-

tation (CRAFT). In this framework, cross-view feature adaptation is performed

by measuring cross-view correlation from visual data distribution and carrying

out adaptive feature augmentation. Matsukawa et al. [47] proposed the hierarchi-

cal Gaussian Of Gaussian (GOG) descriptor, which generates discriminative and

robust features that describe color and textural information simultaneously. An
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image is first divided into horizontal strips. Then, local patches in the strips are

modeled using a Gaussian distribution. Köstinger et al. [48] proposed the KISSME,

which is a statistical inference perspective to address the problem of metric learn-

ing.

More recent works employ neural networks and achieve state-of-the-art per-

formance in person ReID. Zheng et al. [82] proposed DG-Net that encompasses a

generative module, which separately encodes a specific person into both appear-

ance and structure. It also integrates a discriminative module that shares the ap-

pearance encoder with the generative module. As a result, the high-quality cross-

id composed images are fed back to the appearance encoder online and used to

improve the model for discriminative module. Zhang et al. [84] proposed Aligne-

dReID performing automatic part alignment during learning, without requiring

extra supervision or pose estimation. By learning jointly on global and local fea-

tures, it aims to address existing drawbacks. Xie et al. [92] proposed PLR-OSNet,

which introduces Part-level resolution (PLR) into Omni-Scale Network (OSNet) [93].

It has two branches including both global and local feature representations. The

global branch adopts a global-max-pooling layer, while the local branch employs a

part-level feature resolution scheme for producing only a single ID-prediction loss,

which is in contrast to existing part-based methods.

4.2.2 Adversarial Attack Methods

Szegedy et al. [21] introduced the adversarial images, which can fool the Con-

volutional Neural Network (CNN)-based models, and cause misclassification by

adding small perturbations to the original images. In one of the earlier works,

Goodfellow et al. [94] proposed fast gradient sign method (FGSM), which gen-

erates AEs in one step. Several works extended this by iteratively updating the

AEs with multi-step attacks including the basic iterative method (BIM) [22], deep
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fool [95], momentum iterative method [23], Diverse Inputs Method (DIM) [96] and

Translation-Invariant (TI) attacks [97]. Compared with FGSM, the iterative meth-

ods generate a smaller perturbation, which makes the adversarial examples even

more imperceptible to human eye.

The transferability property of adversarial examples motivated research on black-

box adversarial attacks. To perform black-box attacks, methods have been in-

troduced [98, 99], which employ a substitute model that is trained to mimic the

target model. Gradient-free attacks use feedback on query data, i.e., soft predic-

tions [100, 101] or hard labels [102]. However, these aforementioned approaches

require feedback from the target model, which is not practical in some scenarios.

More recently, several methods have been proposed, which study the attack gen-

eration process itself. In general, an iterative attack [20, 103, 29] achieves a higher

attack success rate than a single-step attack [94] in a white-box setting, but per-

forms worse when transferred to other models. Below, we will summarize some

of these attack methods.

Gradient-based Adversarial Attack Methods

Fast Gradient Sign Method (FGSM) [94] generates the adversarial example xadv by

linearizing the loss function in the input space and performing one-step update as

follows

xadv = xreal + ε · sign(∇xJ(xreal, y)), (4.1)

where ∇xJ(xreal, y) is the gradient of the loss function w.r.t. x, sign(·) is the sign

function that constrains the perturbation in L∞ norm bound. FGSM can gener-

ate more transferable adversarial examples, however, it may not be as effective in

white-box attacks [22].

Basic Iterative Method (BIM) [22] extends FGSM by updating the gradient in a
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multi-step manner with a small step size α, which can be expressed as

xadvt+1 = xadvt + α · sign(∇xJ(xadvt , y)), (4.2)

where xadv0 = xreal. BIM clips xadvt after each update, or sets α = ε/T , with T being

the number of iterations to ensure that they are in an ε-neighbourhood of the real

image.

Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [23] integrates

momentum term into the iterative attack process. The update procedure is as fol-

lows

gt+1 = µ · gt +
∇xJ(xadvt , y)∥∥∇xJ(xadvt , y)

∥∥
1

,

xadvt+1 = xadvt + α · sign(∇xJ(xadvt , y)),

(4.3)

where gt collects the gradient information up to the t-th iteration, and µ is the decay

factor.

Diverse Inputs Method (DIM) [96] applies random and differentiable transfor-

mations to the input images with probability p and maximizes the loss function

with respect to these transformed inputs. The transformed images are fed into the

classifier for gradient calculation. Such transformation includes random resizing

and padding with a given probability p. This method can be combined with the

momentum-based method to further improve the transferability.

Translation-Invariant Attack Methods

Translation-Invariant (TI) attack methods have been proposed by Dong et al. [97]

to further improve the transferability on white-box models. The authors notice the

difference between the discriminative regions used by defenses to identify object

categories and the normal trained models. Rather than optimizing the objective

function, TI attack method uses a set of translated images to optimize the adver-
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sarial examples as

arg max
xadv

∑
i,j

wijJ(Tij(x
adv, y)),

s.t.
∥∥xadv − xreal∥∥∞ ≤ ε

(4.4)

where Tij(x) is the translation operation that shifts image x by i and j pixels along

the two-dimensions, respectively, and wij is the weight for the loss J(Tij(x
adv, y)).

Note that the TI can be integrated into any gradient-based attack such as FGSM

or DIM. For example, the translation-invariant method for fast gradient sign method

(TI-FGSM) updates as

xadv = xreal + ε · sign(W ∗ ∇xJ(xreal, y)), (4.5)

Also, the translation-invariant method for diverse inputs method (DIM) can

also be obtained by a similar approach.

4.3 Proposed Approach

In this section, we will describe the dispersion reduction-based attack on the per-

son ReID application.

4.3.1 Notation

We use xreal to denote the original query image, and f(·) to denote a deep neu-

ral network classifier. The output feature map at layer k is denoted by F, where

F = f(xreal)|k at the first time step. For each step afterwards, we calculate the dis-

persion, which is denoted as g(·), and the gradient of dispersion as ∇xrealg(Fk) to

update the adversarial examples xadv. More details will be provided in the follow-

ing section.
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4.3.2 Dispersion Reduction

For person ReID, the existing models are trained with various benchmark datasets,

which have different labeling schemes. Thus, compared to the image classifica-

tion problem, person ReID is more complicated. More specifically, treating and at-

tacking the person ReID models as black-boxes require an approach that is highly

transferable and effective at attacking different training datasets and model ar-

chitectures. The aforementioned existing black-box attacks, however, use a pre-

trained model as surrogate, which shares the same training dataset and same la-

beling scheme with the targeted models. Moreover, most existing attack methods

rely on task-specific loss functions, which greatly limits their transferability across

tasks and different network models.

In our previous work [91], we showed that Dispersion Reduction (DR) has good

transferability properties, and is successful in across task attack scenarios. DR em-

ploys a publicly available classification network as the surrogate source model,

and attacks models that are used in different computer vision tasks, such as object

detection, semantic segmentation and cloud API applications. DR is a black-box

attack. Conventional black-box attacks establish a source model as the surrogate,

for which the inputs are paired with the labels generated from the target model

instead of the ground truth labels. In this way, the source model mimics the be-

havior of the target model. Our proposed DR attack, on the other hand, does not

rely on the labeling system or a task-specific loss function, since DR only accesses

top part of the model. Although a source model is still required, there is no need

for training with new target models or querying the target model for labels. In-

stead, a pre-trained public model could simply serve as the source model due to

the strong transferability of the proposed DR attack. As shown in Fig. 4.1, the DR

attack reduces the contrast of an internal feature map, by reducing its dispersion,

so that the information that is in the feature map becomes indistinguishable, and
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Fig. 4.1: The DR attack reduces the dispersion of an internal feature map. This adversar-
ial example was generated by attacking (reducing the dispersion of) the conv3.3 layer of
VGG16 model, which also results in the distortion of the feature maps of the subsequent
layers (e.g. conv5.3) compared to the original image feature maps.

the following layers are not able to extract any useful information regardless of

what kind of computer vision task is at hand. The adversarial example, shown

in the second column of Fig. 4.1, was generated by attacking (reducing the dis-

persion of) the conv3.3 layer of VGG16 surrogate model. This also results in the

distortion of the feature maps of the subsequent layers (e.g. conv5.3). As can be

seen, compared to the feature maps of the original image, the standard deviations

of the feature maps for the adversarial image are lower after the attacked layer.

Moreover, we have analyzed the effect of attacking different convolutional lay-

ers of the VGG16 network with the proposed DR attack based on the PASCAL

VOC2012 validation set [91]. Fig. 4.2a shows the mAP value for Yolov3 and Faster
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Fig. 4.2: Effect of the DR attack when different layers of VGG16 is attacked. Attacking
the middle layers results in higher drop in the performance compared to attacking the top
or bottom layers.The drop in standard deviation of middle layers is also larger than the top
and bottom layers.

RCNN, and mIoU for Deeplabv3 and FCN. Fig. 4.2b is the plot of the standard

deviation values before and after the DR attack, together with the change. As can

be seen, attacking the middle layers of VGG16 results in higher drop in the perfor-

mance compared to attacking top or bottom layers. At the same time, the change

in the standard deviation for middle layers is larger compared to the top and bot-

tom layers. We can infer that for initial layers, the budget ε constrains the loss

function to reduce the standard deviation, while for the layers near the output, the

standard deviation is already relatively small, and cannot be reduced too much

further. Based on this observation, we choose one of the middle layers as the tar-

get of the DR attack. More specifically, in our experiments, we attack conv3-3 for

VGG16, the last layer of group A for inception-v3, and the last layer of 2nd group

of bottlenecks (conv3-8-3) for ResNet152.

The DR attack is defined as the following optimization problem:

min
x
g(f(xadv, θ))

s.t.
∥∥xadv − xreal∥∥∞ ≤ ε,

(4.6)
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where f(·) is a deep neural network classifier, θ denotes the network parameters,

and g(·) computes the dispersion. As shown in Alg. 2, our proposed DR takes

iterative steps that create adversarial examples by reducing the dispersion of an

intermediate feature map at layer k. Dispersion describes the extent to which a

distribution is stretched or squeezed, and there can be different measures of dis-

persion such as variance, standard deviation, and gini coefficient [104]. We have

chosen to use the standard deviation (denoted by g(·)) as the dispersion metric due

to its simplicity.

Given any feature map, DR iteratively adds perturbation to xreal along the di-

rection of decreasing standard deviation, and maps it to the vicinity of xreal by

clipping at x ± ε. Denote the feature map at layer k as F = f(xadvt )|k, DR attack

solves the following equation

xadvt+1 = xadvt −∇xadvg(Fk)

= xadvt − dg(t)

dt
· df(xadvt )|k

dxadv
.

(4.7)

The code is provided in [105].

Algorithm 2 Dispersion Reduction Attack
Input : classifier f , real image xreal, feature map at layer k, perturbation ε, iteration T

and learning rate l
Output: adversarial example xadv,

s.t.
∥∥xadv − xreal∥∥∞ ≤ ε

1: procedure DISPERSION REDUCTION

2: xadv0 ← xreal

3: for t=0 to T-1 do
4: Fk = f(xadvt )|k
5: Compute std g(Fk)
6: Compute gradient∇xrealg(Fk)
7: Update xadv by:
8: xadvt = xadvt − Adam(∇xrealg(Fk), l)
9: Project xadvt to the neighbour of xreal:

10: xadvt+1 = clip(xadvt , xreal − ε, xreal + ε)
11: end forreturn xadvt+1

12: end procedure



57

4.3.3 Victim ReID Models and Implementation Details of Attacks

In order to evaluate the effectiveness of our proposed adversarial DR attack, we

adapt it for the person ReID problem, and attack three different state-of-the art per-

son ReID appraoaches, namely DG-Net [82], AlignedReID [84] and PLR-OSNet [92].

For person re-identification, both DG-Net and AlignedReID use ResNet-50 [106]

as the backbone model, while PLR-OSNet employs the Omni-Scale Network as

the backbone. DG-Net reaches 94.8% and 86.0% on the rank-1 accuracy and mean

average precision (mAP), respectively, on Market 1501 dataset [88]. AlignedReID

achieves 92.6% and 82.3% accuracy [107] on the rank-1 and mAP, respectively„

and PLR-OSNet achieves 95.6% and 88.9% accuracy on the rank-1 and mAP, re-

spectively, on the Market 1501 dataset.

We used the pre-trained models for these ReID approaches, provided by the

authors on their Github pages [108, 109, 110]. During training, the images are

resized to 256×128, which is a strong baseline that can achieve higher accuracy. We

reduce the mini-batch size from 16 to 4 to save GPU memory usage on all models

and all datasets. The learning rate for DG-Net, AlignedReID and PL-OSNet is

0.0001, 0.0002 and 0.0003, respectively. All models use a decay rate of γ = 0.1,

which reduces the learning rate by a factor of 1/10 after T steps during the training.

For DG-Net T is set to 60000. For AlignedReID and PL-OSNet, T is set to and

20, respectively. More implementation details can be found in the source codes

provided by the authors [108, 109, 110].

For each dataset, the images are separated into training and testing folders. We

follow the data preparation process described in [108, 109]. After pre-processing,

we apply the TI-FGSM and TI-DIM attacks as described in [97], and detailed in the

source code on Github page [111].

For our dispersion reduction (DR) attack, we first used the pre-trained ResNet-

152 as the source model. The values of the parameters, listed in Algorithm 2, are
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as follows: ε = 4, l (learning rate)= 0.05, T = 100. The adversarial examples are

generated on the test images, and used for testing on the victim ReID models.

As mentioned above, both DG-Net and AlignedReID use ResNet-50 [106] as the

backbone model. Thus, in order to generate the adversarial examples with differ-

ent surrogate models, we have also used VGG-16 and InceptionV3, as our source

models. As discussed above, we used conv3-3 for VGG16, the last layer of group

A for inception-v3, and the last layer of 2nd group of bottlenecks (conv3-8-3) for

ResNet152, as the attack layers. We also analyzed the effects of using different ε

values, and a detailed discussion is provided in the following section.

4.4 Experiments, Results and Discussion

As mentioned above, we have used three state-of-the-art ReID methods as victim

models, attacked them with the proposed DR attack, and evaluated the perfor-

mance drop on four different datasets. Moreover, we attacked the same victim

models with two other state-of-the-art attack approaches, namely TI-FGSM and

TI-DIM [97, 111]. We compared the effectiveness of our DR attack with these other

attack methods as well. Moreover, we have used three different network models

as the surrogate source model to evaluate and compare the performance drop and

the attack effectiveness.

4.4.1 Datasets

We have employed four challenging and commonly used benchmark datasets to

demonstrate the effectiveness of the proposed attack. These datasets are Market-

1501 [88], CUHK 03 [12], DukeMTMCreID [112] and MSMT 17 [113], which are

briefly described below.
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Market-1501

Market-1501 [88] dataset contains 32,217 images of 1501 labeled persons from six

camera views. There are 751 identities in the training set and 750 identities in the

testing set. In the original study on this proposed dataset, mAP is the evaluation

criteria used to compare the algorithm performances.

CUHK03

CUHK03 [12] dataset contains 8765 images of 1467 labeled persons. In this chapter,

we use a new protocol, in which the training set and test set have 767 and 700

identities, respectively. We select the detected bounding boxes instead of labeled

bounding box results. It is a more difficult evaluation protocol for CUHK 03.

DukeMTMC-ReID

DukeMTMC-ReID [112] dataset is composed of 36,411 images of 1812 persons cap-

tured from eight cameras. There are 702 identities in the training set and 1110 iden-

tities in the testing set. The evaluation criteria is mAP, same with the Market-1501

dataset.

MSMT17

MSMT17 [113] is the largest image-based person ReID dataset introduced in 2018.

It contains 124,069 labeled images of 4101 person IDs captured from 12 different

outdoor or indoor cameras. The evaluation protocol/criteria is also same as the

Market-1501 dataset, and uses mAP.
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Approch Market1501 CUHK 03 DukeMTMC-reID MSMT 17
DG-Net (DG) [82] 86.0 61.1 74.8 52.3

AlignedReid (AR) [84] 82.3 70.7 82.8 43.7
PLR-OSNet(OS)[92] 88.9 77.2 81.2 –

TI-FGSM-DG [97, 94, 82] 51.2 31.9 48.3 32.1
TI-FGSM-AR [97, 94, 84] 58.7 29.4 49.5 30.8
TI-FGSM-OS [97, 94, 92] 55.9 32.1 51.2 -
TI-DIM-DG [97, 96, 82] 45.4 14.2 32.7 25.4

TI-DIM-AR [97] 44.9 16.5 29.4 22.6
TI-DIM-OS [97, 96, 92] 47.7 19.1 35.6 -

DR-DG (Proposed) 28.9 7.8 20.2 15.3
DR-AR (Proposed) 20.2 8.3 12.3 12.8
DR-OS (Proposed) 29.3 9.5 19.6 -

Table 4.1: mAP values of victim models, before and after attacks, on different datasets (ε
= 4). Row 1 to 3 are the results from state-of-the-art baseline methods. Row 4-12 are the
performances after attacked by different attack approaches. Lower numbers mean better
attack performance.

4.4.2 Evaluation Metric

With the same image perturbation (ε = 4), we compare performances of all the

attack methods while attacking the victim ReID approaches. The lower number

indicates more drop in ReID accuracy, and thus, better attack performance. Mean

average precision (mAP) is used as the evaluation metric. The effects of using

different ε values are discussed in Section 4.4.4.

4.4.3 Results and Discussion

In the first set of experiments, we used ResNet-152 as the source model of the

attacks. The results are summarized in Table 4.1, wherein the first three rows

show the mAP values for the baseline victim models, namely DG-Net, Aligne-

dReID and PLR-OSNet, on different benchmark datasets. The mAP values for

DG-Net are 86.0%, 61.1%, 74.8% and 52.3%, and the mAP values for AlignedReID

are 82.3%, 70.7%, 82.8% and 43.7% for Market1501, CUHK03, DukeMTMC-ReID
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and MSMST17 datasets, respectively. For PLR-OSNeT, the mAP values are 88.9%,

77.2% and 81.2% for Market1501, CUHK03 and DukeMTMC-ReID datasets, re-

spectively. These three models are regarded as the state-of-the-art ReID approaches

based on their performance. The fourth to sixth rows in Table 4.1 show the value

of the mAP after the victim models are attacked with TI-FGSM, which is a state-of-

the-art attack method. For instance, for the Market-1501 dataset, the mAP value of

DG-Net drops by 34.8 from 86.0 to 51.2, the mAP value of AlignedReID drops by

23.6 from 82.3 to 58.7, and the mAP value of PLR-OSNet drops by 33 from 88.9 to

55.9. For the CUHK03 dataset, the mAP value of DG-Net drops by 29.2 from 61.1 to

31.9, the mAP value of AlignedReID drops by 41.3 from 70.7 to 29.4, and the mAP

value of PLR-OSNet drops by 45.1 from 77.2 to 32.1. The seventh to ninth rows

in Table 4.1 show the value of mAP after the victim models are attacked with TI-

DIM, which is another state-of-the-art attack method. Compared to TI-FGSM, this

attack is more effective since it causes more drops in the mAP values for all four

datasets. For instance, for the CUHK03 dataset, the mAP value of DG-Net drops

by 46.9 from 61.1 to 14.2, the mAP value of AlignedReID drops by 54.2 from 70.7

to 16.5, and the mAP value of PLR-OSNet drops by 58.1 from 77.2 to 19.1. The last

three rows of Table 4.1 show the mAP value after the victim models are attacked

with the proposed DR approach. As can be seen, our proposed approach is the

most effective attack compared to TI-FGSM and TI-DIM, and causes the most drop

in the mAP values for all victim models and for all four datasets. For instance, for

the CUHK03 dataset, the mAP value of DG-Net drops by 53.3 from 61.1 to 7.8, the

mAP value of AlignedReID drops by 62.4 from 70.7 to only 8.3, and the mAP value

of PLR-OSNet drops by 67.7 from 77.2 to only 9.5.

Fig. 4.3 shows some example images and query results for the Market-1501

dataset. The first column shows the query images, and columns 2 through 11 show

the Rank 1 to Rank 10 returned images for that query, respectively. The first and
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third rows are for the original query images, while the second and fourth rows are

for the adversarial query images. The perturbations between the query images of

first versus second row and third versus fourth row are imperceptible to the human

eye, but the person ReID performances have been significantly impacted by the

proposed attack. Similar results for CUHK03 and DukeMTMC-ReID datasets are

shown in Fig. 4.4 and Fig. 4.5, respectively. We report the overall results for the

MSMT17 dataset in Table 4.1, and are not able to provide example images due to

the release agreement.

The examples in Figures 4.3, 4.4 and 4.5 show the effectiveness of the proposed

DR attack. In these figures, the adversarial examples, although imperceptible to

human eye, result in no matches even in Rank 10 returns. As a quantitative mea-

sure, we computed the peak signal to noise ratio (PSNR) as well as the structural

similarity index measure (SSIM) between the adversarial images (generated by the

TI-FGSM, TI-DIM and the proposed DR attack) and the original images, and cal-

culated the average on the Market1501 dataset. The average SSIM value is 0.70,

0.72 and 0.72 for TI-FGSM, TI-DIM and the DR attacks, respectively. The average

PSNR is 26, 28 and 27 for TI-FGSM, TI-DIM and the DR attacks, respectively. Since

the perturbation budget is kept the same (ε = 4) for all the attack methods, their

average SSIM and PSNR values are similar. Some example adversarial images

generated by these attacks are shown in Fig. 4.6 for qualitative comparison.

In the second set of experiments, we used two other network models, namely

VGG-16 and InceptionV3, as our surrogate source models. The goal here was to

use different network models, other than ResNet, to generate adversarial examples

and show the generalizability of the proposed DR approach. We have generated

AEs by using these different networks as the source models with the proposed DR

approach and with TI-DIM. We then used the AEs to attack DG-Net and Aligne-

dReID. In this experiment, we chose to use TI-DIM, since it has better attack perfor-



63

Fig. 4.3: Example query results on the Market-1501 dataset. First column: Query images;
columns 2 through 11: Rank 1 through Rank 10 returned images, respectively. Rows 1 and 3 are for
the original images, and rows 2 and 4 are for the adversarial query images.

mance than TI-FGSM based on Table 4.1. The results obtained with our proposed

DR attack are summarized in Tables 4.2 and 4.3 when the victim ReID method is

AlignedReID and DG-Net, respectively. As can be seen, when Resnet-152 is used

as the surrogate model, it results in the highest drop in the mAP values. This

is mostly because most of the ReID approaches use ResNet as their backbone net-

work. However, even when we use VGG-16 or InceptionV3 as the surrogate source

model, the proposed DR attack still causes significantly more drop in the mAP val-

ues compared to the state-of-the-art attack methods when they use ResNet as their

surrogate model (please see Tables 4.1, 4.2 and 4.3).

The results obtained with the TI-DIM are summarized in Tables 4.4 and 4.5,

which show the results obtained with the TI-DIM attack, with using different sur-

rogate models, when the victim ReID method is AlignedReID and DG-Net, respec-

tively. When we compare Table 4.2 with Table 4.4, and Table 4.3 and Table 4.5, it can
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Fig. 4.4: Example query results on the CUHK03 dataset. First column: Query images; columns 2
through 10: Rank 1 through Rank 9 returned images, respectively. Rows 1 and 3 are for the original
images, and rows 2 and 4 are for the adversarial query images.

be seen that the proposed DR attack still outperforms the TI-DIM as a black-box

attack even when the surrogate model is different from the target model.

Victim Market 1501 CUHK 03 DukeMTMC-reID MSMT 17
AlignedReID 82.3 70.7 82.8 43.7

Source netwrk
InceptionV3 22.5 9.9 14.6 16.2

VGG-16 23.1 9.6 14.5 14.3
Resnet-152 20.2 8.3 12.3 12.8

Table 4.2: mAP values on different datasets when AlignedReID is attacked with the pro-
posed DR approach. First row is the performance before attack. Last three rows show the
results when AEs are generated by using different network models as the surrogate models.
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Fig. 4.5: Example query results on the DukeMTMC-ReID dataset. First column: Query images;
columns 2 through 11: Rank 1 through Rank 10 returned images, respectively. Rows 1 and 3 are for
the original images, and rows 2 and 4 are for the adversarial query images.

Fig. 4.6: The average PSNR and SSI values (between the original and adversarial images)
on the Market1501 dataset for different attack methods when ε = 4.
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Victim Market 1501 CUHK 03 DukeMTMC-reID MSMT 17
DG-Net 86 61.1 74.8 52.3

Source netwrk
InceptionV3 35.2 8.9 23.2 17.6

VGG-16 31.7 8.6 22.8 18.5
Resnet-152 28.9 7.8 20.2 15.3

Table 4.3: mAP values on different datasets when DG-Net is attacked with the proposed
DR approach. First row is the performance before attack. Last three rows show the results
when AEs are generated by using different network models as the surrogate models.

TI-DIM Market 1501 CUHK 03 DukeMTMC-reID MSMT 17
AlignedReID 82.3 70.7 82.8 43.7

Source netwrk
InceptionV3 48.2 19.1 35.7 28.1

VGG-16 49.4 18.6 36.2 27.9
Resnet-152 44.9 16.5 29.4 22.6

Table 4.4: mAP values on different datasets when AlignedReID is attacked with the TI-
DIM. First row is the performance before attack. Last three rows show the results when
AEs are generated by using different network models as the surrogate models.

TI-DIM Market 1501 CUHK 03 DukeMTMC-reID MSMT 17
DG-Net 86.0 61.1 74.8 52.3

Source netwrk
InceptionV3 55.6 20.1 42.4 29.5

VGG-16 57.1 19.5 40.8 29.7
Resnet-152 45.4 14.2 32.7 25.4

Table 4.5: mAP values on different datasets when DG-Net is attacked with the TI-DIM.
First row is the performance before attack. Last three rows show the results when AEs are
generated by using different network models as the surrogate models.

4.4.4 Effect of ε on the performance

In literature, it is a common practice to fix the value of ε, and then compare the

performance degradation for different attack methods. In the experiments above,

we set ε = 4, since it results in less change in the original image, and better demon-

strates the difference between the attack methods. When ε is increased, more bud-

get is given to each attack method to make changes on the original images, and

they start to provide similar performance. A better attack should be able to pro-

vide more performance degradation with a smaller ε budget. As shown in Table 4.6
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and Fig. 4.7, our proposed DR attack can reach a given attack effectiveness by us-

ing the least budget. For instance, the proposed DR attack drops the mAP value

of DG-Net to 20.3 with an ε budget of 8, whereas TI-DIM needs a budget of 12 to

drop the mAP to 21.8.

Methods/mAP ε = 2 ε = 4 ε = 8 ε = 12 ε = 16
TI-DIM-DG 62.5 45.4 32.5 21.8 12.9
TI-DIM-AR 64.2 44.9 29.4 21.0 18.5

DR-DG 47.4 28.9 20.3 13.5 12.3
DR-AR 48.1 20.2 21.8 15.9 11.2

Table 4.6: mAP values obtained with different ε values on Market-1501 dataset while at-
tacking DG-Net and AlignedReID with TI-DIM and the proposed DR attack.

Fig. 4.7: Effect of using different perturbation budget (ε) on the attack performance.

4.5 Conclusion

Neural network-based methods have achieved state-of-the-art performance on the

person re-identification problem across different camera views. In this chapter, we

have presented a black-box and effective attack model, which is based on disper-

sion reduction, and does not rely on task-specific loss functions and label queries.

We have used the adversarial examples generated by this approach to attack three
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different state-of-the-art person Re-ID models. We have also compared the perfor-

mance of our attack approach with two other state-of-the-art attack models. The

results demonstrate the effectiveness and generalizability of the proposed disper-

sion reduction attack on three state-of-the-art person ReID models. It also out-

performs other state-of-the-art attack models by a large margin, and results in the

most drop in the mean average precision values.
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CHAPTER 5

PART-BASED FEATURE SQUEEZING TO

DETECT ADVERSARIAL EXAMPLES IN

PERSON RE-IDENTIFICATION

NETWORKS

5.1 Introduction

Person re-identification (ReID) describes the task of finding a person from a gallery

of images given a probe image of the same person. It is commonly used for track-

ing a person across different camera views. There has been great interest and sig-

nificant progress in person ReID, which is very important for security and wild-

area surveillance. With the introduction of the neural network-based approaches

in recent years, the performance of person ReID has improved significantly. For

instance, the mean Average Precision (mAP) of the state-of-the-art method on Mar-

ket 1501 dataset is 95.5%, which has increased from 44.4% when the dataset was

initially released in 2015.
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In the past few years, researchers have shown the vulnerability of DNNs against

adversarial examples. Despite the impressive performance achieved thanks to

DNNs, neural network-based ReID methods also inherit their vulnerability. Ad-

versarial examples, which are carefully crafted images with perturbations that are

imperceptible to human eyes, can drastically degrade the performance of most

DNN-based ReID approaches. In the meantime, defense approaches against ad-

versarial examples have been proposed [28, 29, 30, 31, 32]. However, defending

ReID networks against adversarial attacks is still relatively unexplored.

In this chapter, we present a new method to detect adversarial examples pre-

sented to a person ReID network by utilizing part-based feature squeezing. Fea-

ture squeezing was proposed for detecting the adversarial examples in image clas-

sification task with efficient computation compared to other iterative methods [32].

We show that by applying the feature squeezer on top of the body parts-based

ReID model, the AE detection performance can be further improved compared to

using a network that is not based on parts. We also show that by detecting AEs,

the mAP of person ReID models can be increased compared to not detecting AEs

at all. With the PCB model, the mAP after AE detection can reach closeto 70%

(compared to an mAP of 22.6 before AE detection).

5.2 Related Work

5.2.1 Person ReID

Different person ReID approaches have been proposed over the years. There have

been methods based on hand-crafted features, using attributes like appearance or

pose, and part-based features. In recent years, the best performances have been

achieved by DNN-based approaches. Zheng et al. [82] proposed the DG-Net con-

taining a generative module, which separately encodes a specific person into both
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appearance and structure. It also integrates a discriminative module sharing the

appearance encoder with the generative module. The high-quality cross-id com-

posed images are fed back to the appearance encoder online, and used to improve

the model for discriminative module. Zhang et al. [84] proposed the AlignedReID,

which performs automatic part alignment during learning, without requiring ex-

tra supervision or pose estimation. Sun et al. [87] proposed a part-based convolu-

tional baseline (PCB), consisting of several part-level features, with a refined part

pooling to eliminate the outliers and further boost the performance in ReID. Wang

et al. [114] deploy the same PCB as their visual feature streams, and estimate the

spatial-temporal probability distribution stream as the constraint. The joint two

stream approach reaches the state-of-the-art rank-1 accuracy of 98.1% on Market-

1501 and 94.4% on DukeMTMC.

5.2.2 Adversarial Attacks

Adversarial Examples

Szegedy et al. [21] introduced the adversarial images, which can fool the Con-

volutional Neural Network (CNN)-based models, and cause misclassification by

adding small perturbations to the original images. Goodfellow et al. [94] pro-

posed fast gradient sign method (FGSM), which generates AEs in one step. Sev-

eral works extended this by iteratively updating the AEs with multi-step attacks

including the basic iterative method (BIM) [22], deep fool [95], momentum itera-

tive method [23], Diverse Inputs Method (DIM) [96] and Translation-Invariant (TI)

attacks [97]. Compared to FGSM, the iterative methods generate a smaller pertur-

bation, which makes the adversarial examples even more imperceptible to human

eye. Lu et al. [91] showed that AEs generated by Dispersion reduction (DR) are

transferable, and can effectively attack different networks designed for different

tasks.
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Adversarial Attacks in Person ReID

Zheng et al. [90] proposed Opposite Direction Feature Attack (ODFA) to generate

adversarial examples/queries for retrieval tasks such as person ReID. The idea is

to push away the feature of the adversarial query in the opposite direction of the

original feature. Wang et al. [115] proposed a learning-to-misrank formulation to

perturb the ranking of the system output, which drops one of the best ReID per-

formances from 91.8% to 1.4% after being attacked. Zheng et al. [116] extended the

use of Dispersion Reduction (DR) to person ReID, and effectively attacked three

different ReID networks using four different datasets.

5.2.3 Defense Frameworks

Papernot et al. [28] provide a comprehensive summary of work on the defense

against adversarial examples. The defense work can be grouped into three broad

categories: adversarial training, gradient masking and input transformation. Ad-

versarial training introduces the discovered adversarial examples (AEs) and the

corresponding ground truth labels into the training. Ideally, the model will learn

how to differentiate the AEs from the ground truth and classify them into a new

category. However, it suffers from the high cost of generating AEs, and at least

doubles the training time due to the iterative retraining. Also, it assumes all the at-

tacks are known and used when generating the AEs, which is not realistic for real-

time scenarios. Gradient masking seeks to reduce the sensitivity of DNN models

to small changes in inputs by forcing the DNN models to produce near-zero gradi-

ents [29]. Papernot et al. [28] concluded that methods designed to conceal gradient

information are bound to have limited success because of the transferability of ad-

versarial examples. Recent studies try to reduce the sensitivity to small changes

in inputs by input transformation. Dimension reduction by using Principal Com-

ponent Analysis(PCA) [30], image filtering by training an auto-encoder [31] and
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Fig. 5.1: The adversarial example detection based on feature squeezing

feature squeezing [32] are proposed to perform different transformations on the

input data. However, much less attention has been paid to the defense of the ReID

networks.

5.3 Proposed Method

In this work, we employ feature squeezing [32], together with a part-based con-

volutional baseline (PCB) [87] ReID model and combine two types of squeezing,

(i) reducing the color depth of images and (ii) using non-local smoothing, to de-

tect adversarial examples. The structure of the proposed approach is shown in

Fig. 5.1. As will be discussed in Sec. 5.4, we have also experimented with a not

parts-based ReID network (different from PCB) for the ‘Model’ seen in Fig. 5.1,

and have shown the advantage of using the parts-based model for the detection of

adversarial examples.

The detection mechanism here is based on the idea that the robustness of DNNs

to local changes (e.g., squeezing, scale, position) does not generalize to the pertur-

bations added by AEs, which have been empirically validated by previous AE

detection works [31, 32, 117]. In other words, if a transformation is applied to an

AE, the output of the network for the original AE and its transformed version will

be very different, which is used to detect AEs as shown in Fig. 5.1.
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5.3.1 Squeezing Color Bits

Most of the images in ReID datasets use 8-bits per color channel. However, it is

difficult to tell the difference between the original images and the images using as

few as 4 bits of color depth. Thus, we have performed 4,5,6 and 7-bit squeezing

in our experiments. Since the original images are normalized, to reduce the color

depth down to i-bit (where 4 ≤ i ≤ 7), we only need to do pixel-wise multiplication

by 2i − 1 , round it, and then divide by 2i − 1 as shown in Eq. (5.1).

xsqz =
⌈
(xori ∗ (2i − 1))

⌉
/(2i − 1), (5.1)

where xsqz is the squeezed image tensor, xori is the original image tensor, and i is

the reduced bit depth (4 ≤ i ≤ 7).

5.3.2 Squeezing Variations via Smoothing

Local smoothing by a median filter is particularly effective in removing sparsely-

occurring black and white pixels in an image, while non-local smoothing is applied

over a larger area of the image [32]. We apply a variant of a Gaussian filter as non-

local smoothing.

5.3.3 Joint Detector

We perform n-bit squeezing and Gaussian smoothing as the two squeezers shown

in Fig. 5.1. First, second and third rows of Fig. 5.2 show the body partition results

of the PCB model, the partition results after 4-bit squeezing, and result of applying

a 3x3 Gaussian smoothing to the segmented stripes, respectively.

The difference between the predictions based on the original image and the
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Fig. 5.2: Body parts segmented by PCB and their squeezed versions.

squeezed image is calculated as follows:

dist(x,xsqz) = ||s(x)− s(xsqz)||, (5.2)

where x and xsqz are the original input and the squeezed input, s() is the softmax

layer of the DNN model.

We can also combine multiple feature squeezers by the maximum distance as

in Eq. 5.3.

distjoint = max(dist(x,xsqz1), dist(x.xsqz2), ...) (5.3)

Similar to [32], we use the maximum distance assuming that different squeezers

will be effective for different types of perturbations.
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5.4 Experimental Results

In the training phase of the AE detector, an optimal threshold for distjoint is deter-

mined to detect AEs. It is obvious that a lower threshold value leads to a higher

false positive rate which would be useless for many security sensitive tasks. We

set a threshold value, which makes the false positive rate less than 5%, and report

the true positive rate as the detection performance.

5.4.1 Datasets

We have employed three challenging and commonly used benchmark datasets

to demonstrate the effectiveness of the proposed AE detection approach. These

datasets are Market-1501 [88], CUHK03 [12], and DukeMTMCreID [112].

5.4.2 Victim Models

We first use two publicly available ReID models, PCB [87] and Open ReID [118],

and attack them by the AEs generated by three different attack approaches. Open-

ReID provides both Inception and Resnet50 as the backbone networks as well as

some common loss functions. PCB model can take major backbones and output

the convolutional features, with the help of refined pooling layer. It can provide a

SOTA segmentation and boost the ReID performance.

We then use both PCB and OpenReID together with feature squeezing to eval-

uate their AE detection performance. We use ResNet50, as the backbone network,

and triplet loss from Open-ReID library, since this combination achieves the best

performance on all Market-1501, CUHK03, and DukeMTMCreID datasets [118].
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Methods/mAP Market-1501 CUHK03 DukeMTMC
PCB 81.6 57.5 69.2
OR 67.9 80.7 54.6

TI-DIM-PCB 22.6 19.3 16.6
TI-DIM-OR 24.8 20.6 13.9

DR-PCB 15.4 8.1 10.8
DR-OR 11.7 10.3 9.5

MR-PCB 4.3 2.1 1.2
MR-OR 4.4 0.9 1.5

Table 5.1: The mAP values for two ReID networks before and after being attacked by three attack
methods. Results show the effectiveness of the attacks in degrading ReID performance. The lower
mAP value means better attack performance.

5.4.3 Results and Discussion

Tab. 5.1 shows the results of attacking two different victim models by AEs gener-

ated by TI-DIM [97], Dispersion Reduction(DR) [91] and Mis-Ranking(MR) [115].

For all the attacks, the perturbation threshold is set to be ε = 16 for consistency.

The first two rows of Tab. 5.1 show the baseline mAP for the victim models on

three different datasets. The mAP values for PCB are 81.6%, 57.5% and 69.2%,

and the mAP values for OpenReID (OR) are 67.9%, 80.7% and 54.6% for Mar-

ket1501, CUHK03 and DukeMTMC datasets, respectively. Rows 3-4 are the mAP

after the victim models are attacked by TI-DIM. The mAP values for PCB drop to

22.6%, 19.3% and 16.6%, while mAP values for OR drop to 24.8%, 20.6% and 13.9%

for Market1501, CUHK03 and DukeMTMC-ReID datasets, respectively. Similarly,

Row 5-8 are mAP values ater the victim models are attacked with the DR and MR

attacks. As can be seen, all of the attacks degrade the performance of person ReID

significantly.

Table 5.2 shows the AE detection accuracy when two different ReID models

(one part-based, one not part-based) are used together with a combination of two

kinds of feature squeezing. 100 AEs are generated by each of the TI-DIM, DR and
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Accuracy ReID Model Market1501 CUHK03 DukeMTMC

TI-DIM

OpenReID

4-bit 69.1 55.2 56.8
5-bit 68.7 55.1 56.6
6-bit 68.5 56.1 55.3
7-bit 69.2 55.8 55.7

PCB

4-bit 79.5 70.4 71.7
5-bit 80.1 69.9 72.0
6-bit 80.1 70.6 72.1
7-bit 80.3 68.9 71.8

DR

OpenReID

4-bit 68.2 56.9 57.4
5-bit 68.1 56.8 57.5
6-bit 66.9 55.4 57.4
7-bit 69.7 56.8 57.6

PCB

4-bit 80.2 68.9 77.6
5-bit 80.5 70.2 74.1
6-bit 81.2 68.7 74.6
7-bit 79.7 71.3 77.8

MR

OpenReID

4-bit 65.6 57.1 54.8
5-bit 64.9 57.5 53.7
6-bit 66.9 56.8 54.4
7-bit 65.1 56.9 55.0

PCB

4-bit 80.7 69.8 69.1
5-bit 79.1 64.2 69.0
6-bit 79.9 70.2 72.6
7-bit 80.0 65.5 73.9

Table 5.2: Accuracy of detecting adversarial examples generated by TI-DIM, DR and MR on
different datasets when two different ReID models are used. The best results are shown in bold.
n-bit refers to n-bit feature squeezing and Gaussian smoothing being used as two squeezers.

MR from each of the three different datasets. As shown in [32], combining bit-wise

squeezing and smoothing outperforms bit-wise squeezing alone. So, in our exper-

iments, we used 4-7 bit-wise squeezing together with the Gaussian smoothing.

As seen in Tab. 5.2, using the part-based PCB model together with feature

squeezing provides much better performance for AE detection compared to us-

ing Open ReID, which is not part-based. For instance, for the TI-DIM attack, the

best AE detection accuracies with OpenReID model are 69.2%, 56.1% and 56.8% on
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Market-1501, CUHK03 and DukeMTMC datasets, respectively. When we use the

part-based PCB model, the detection accuracy improves to 80.3, 70.6 and 72.1 on

Market-1501, CUHK03 and DukeMTMC datasets, respectively. A similar trend is

observed for the DR and MR attacks as well. Part-based PCB model increases the

best detection accuracies by 11.5%, 14.4%, 20.2% for the DR attack, and by 13.8%,

12.7%, 18.9% for the MR attack on three datasets.

Fig. 5.3: The mAP values after AE detection on the Market1501 dataset. The blue bars are the
mAP after each attack, and the orange bars are the improvement after the AE detection.

To further demonstrate the effectiveness of AE detection and its benefit on the

performance of ReID networks, we have performed an experiment similar to [32],

but for person ReID. More specifically, we generated 100 adversarial examples by

each of the three attacks in Tab. 5.2. We used these 300 AEs together with 100

original/benign input images as the probe images feeding them into a PCB and

then Open-ReID network. The results are shown in Fig. 5.3. As can be seen, with

the PCB model, the mAP after AE detection can reach close to 70%, while for Open-

ReID, the mAP can only improve to around 46%.
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5.5 Conclusion

In this chapter, we have presented a novel defense method that utilizes parts-based

feature squeezing to detect adversarial examples presented to ReID networks. We

have applied two types of squeezing together to segmented body parts to better

detect adversarial examples. We have compared the detection performance of the

proposed body part-based approach with a ReID method that is not parts-based.

We have also evaluated the mAP before and after detecting adversarial examples.

Experimental results have shown that the proposed method can effectively detect

the adversarial examples, and has the potential to avoid significant decreases in

person ReID performance caused by adversarial attacks.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Given a query image or video of a person of interest, person re-identification is the

process of identifying the same person in images or videos captured by a differ-

ent camera, or by the same camera at a different time. Person re-identification is

very important to be able to continuously track a person of interest across multiple

cameras with disjoint views. In this dissertation, we have first presented a novel

approach to better model the appearance variation across disjoint camera views,

and improve the performance of any person re-identification approach that incor-

porates color/brightness histograms and appearance models. We have proposed

building a codebook of brightness transfer functions (BTF), and also an ordering

and trimming criteria to increase computational efficiency. We have performed

an extensive set of experiments on different commonly used datasets. Results

have shown that the proposed method outperforms other BTF-based approaches.

Moreover, the proposed approach was incorporated into four different state-of-

the-art person re-identification methods, and an increased top rank matching rate

has been obtained for all methods and on all datasets, supporting our initial argu-

ment above.

Then, we have extended the person re-identification from across a set of static
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cameras to a larger scale via crowdsourcing and using the images or videos cap-

tured by people’s cellphones. If it is possible to have access to large number of im-

ages/videos captured at different locations over time, this would potentially allow

following a person over a much larger area for extended periods of time. We have

proposed a method, which combines R-CNN based person detection with the GPU

implementation of color histogram and SURF-based re-identification. The GPS

location in the image/video EXIF information has been used to obtain a spatio-

temporal model for the path taken by the target, and these locations have been

displayed on a map. All the processing was performed on a GPU.

With the significant advances in deep neural networks (DNN), and their suc-

cess in image classification and object detection tasks, researchers have proposed

DNN-based approaches for the person re-identification problem, and achieved

state-of-the-art performance. However, it has also been showed that neural net-

works are vulnerable to carefully crafted adversarial examples, and can be easily

deceived. We have presented a black-box and effective attack model, which is

based on dispersion reduction, and does not rely on task-specific loss functions

and label queries. We have used the adversarial examples generated by this ap-

proach to attack two different state-of-the-art person Re-ID models to demonstrate

the vulnerability of multiple state-of-the-art person re-identification approaches to

this attack, and draw attention to the existing security risks. We have also com-

pared the performance of our attack approach with two other state-of-the-art at-

tack models. The results demonstrate the effectiveness of the proposed dispersion

reduction attack on two state-of-the-art person re-identification models. It has out-

performed other state-of-the-art attack models by a large margin, and resulted in

the most drop in the mean average precision values.

After presenting an effective attack method, and showing the vulnerability of

the state-of-the-art person re-identification approaches, we have focused on the
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defense, and developed a method to detect the adversarial examples presented

to a person re-identification network. This method is based on parts-based fea-

ture squeezing. We have applied two types of squeezing to segmented body parts

to better detect adversarial examples. We have compared the detection perfor-

mance of our proposed body part-based approach with a re-identification method

that is not parts-based. We have also evaluated the mean average precision be-

fore and after detecting adversarial examples. Experimental results have shown

that the proposed method can effectively detect the adversarial examples, and has

the potential to avoid significant decreases in person re-identification performance

caused by adversarial attacks.

While we presented an effective attack method, as well as a defense approach

to detect the adversarial examples, there are other areas that can be investigated

as future work. The robustness of neural network-based re-identification methods

can be further explored. Cross-dataset person-identification refers to training a

model on one dataset and then testing it on different datasets. Cross-dataset trans-

ferability of the dispersion reduction attack, and its detection by the cross-dataset

person re-identification models can be further investigated. As for the crowdsourc-

ing application, more features can be explored to improve the re-identification per-

formance.
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