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ABSTRACT

Modern networking and computing systems have become very complicated and highly dy-

namic, which makes them hard to model, predict and control. In this thesis, we aim to study

system control problems from a whole new perspective by leveraging emerging Deep Re-

inforcement Learning (DRL), to develop experience-driven model-free approaches, which

enable a network or a device to learn the best way to control itself from its own experi-

ence (e.g., runtime statistics data) rather than from accurate mathematical models, just as

a human learns a new skill (e.g., driving, swimming, etc). To demonstrate the feasibility

and superiority of this experience-driven control design philosophy, we present the design,

implementation, and evaluation of multiple DRL-based control frameworks on two funda-

mental networking problems, Traffic Engineering (TE) and Multi-Path TCP (MPTCP) con-

gestion control, as well as one cutting-edge application, resource co-scheduling for Deep

Neural Network (DNN) models on mobile and edge devices with heterogeneous hardware.

We first propose DRL-TE, a DRL-based framework that enables experience-driven net-

working for TE. DRL-TE maximizes a widely-used utility function by jointly learning

network environment and its dynamics, and making decisions under the guidance of pow-

erful DNNs. We propose two new techniques, TE-aware exploration and actor-critic-based

prioritized experience replay, to optimize the general DRL framework particularly for TE.

Furthermore, we propose an Actor-Critic-based Transfer learning framework for TE, ACT-

TE, which solves a practical problem in experience-driven networking: when network con-

figurations are changed, how to train a new DRL agent to effectively and quickly adapt to

the new environment. In the new network environment, ACT-TE leverages policy distilla-

tion to rapidly learn a new control policy from both old knowledge (i.e., distilled from the

existing agent) and new experience (i.e., newly collected samples).

In addition, we propose DRL-CC to enable experience-driven congestion control for



MPTCP. DRL-CC utilizes a single (instead of multiple independent) DRL agent to dynam-

ically and jointly perform congestion control for all active MPTCP flows on an end host

with the objective of maximizing the overall utility. The novelty of our design is to utilize

a flexible recurrent neural network, LSTM, under a DRL framework for learning a repre-

sentation for all active flows and dealing with their dynamics. Moreover, we integrate the

above LSTM-based representation network into an actor-critic framework for continuous

congestion control, which applies the deterministic policy gradient method to train actor,

critic, and LSTM networks in an end-to-end manner.

With the emergence of more and more powerful chipsets and hardware and the rise of

Artificial Intelligence of Things (AIoT), there is a growing trend for bringing DNN models

to empower mobile and edge devices with intelligence such that they can support attractive

AI applications on the edge in a real-time or near real-time manner. To leverage heteroge-

neous computational resources (such as CPU, GPU, DSP, etc) to effectively and efficiently

support concurrent inference of multiple DNN models on a mobile or edge device, in the

last part of this thesis, we propose a novel experience-driven control framework for resource

co-scheduling, which we call COSREL. COSREL has the following desirable features: 1)

it achieves significant speedup over commonly-used methods by efficiently utilizing all

the computational resources on heterogeneous hardware; 2) it leverages DRL to make dy-

namic and wise online scheduling decisions based on system runtime state; 3) it is capable

of making a good tradeoff among inference latency, throughput and energy efficiency; and

4) it makes no changes to given DNN models, thus preserves their accuracies.

To validate and evaluate the proposed frameworks, we conduct extensive experiments

on packet-level simulation (for TE), testbed with modified Linux kernel (for MPTCP),

and off-the-shelf Android devices (for resource co-scheduling). The results well justify

the effectiveness of these frameworks, as well as their superiority over several baseline

methods.
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1

CHAPTER 1

INTRODUCTION

1.1 Motivations

Many algorithms and protocols have been proposed to operate networking and computing

systems and utilize their resources efficiently and effectively. Traditional methods for sys-

tem control and resource allocation can be divided into two categories: state-oblivious and

optimization-based. A state-oblivious method usually follows a pre-defined (fixed) policy

for control and resource allocation. Typical examples include shortest-path routing that

uses the hop-count as the routing metric, load-balancing routing that always splits traffic

load evenly over all the candidate paths, and round-robin scheduling that assigns tasks in

equal portions and in circular order. An optimization-based method usually consists of

two steps: 1) formulating a resource allocation problem into a mathematical programming

problem based on certain mathematical models; and 2) designing an algorithm to solve it

according to its mathematical properties (such as convex programming). Typical examples

include those well-known Network Utility Maximization (NUM) algorithms [76, 93]. We

argue that neither of these two approaches will work well for modern or future systems

(such as Software Defined Network (SDN) and edge systems), which have become or are

expected to be very complicated and highly-dynamic. A state-oblivious method usually
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leads to a simple algorithm or protocol, which, however, may suffer from very poor per-

formance (such as throughput and delay) in a highly time-variant system due to its lack of

careful consideration for runtime states and suboptimal solutions. An optimization-based

method, however, needs to have an accurate prediction for future values of some key param-

eters (such as user demands, link usages, etc) as input; and accurate mathematical models

to estimate/characterize network behavior (after applying a given resource allocation solu-

tion). Both of them are very challenging, especially in complex systems.

Take a fundamental networking problem, Traffic Engineering (TE), as an example. For

a given a set of network flows with source and destination nodes, the goal of TE is to find

a solution to effectively forward the data traffic with the objective of maximizing a utility

function. Simple and widely-used state-oblivious solutions include always routing traffic

via shortest paths (e.g., Open Shortest Path First (OSPF) [90]); or evenly distributing traf-

fic via multiple available paths (e.g., Valiant Load Balancing (VLB) [111]). Obviously,

neither of them are optimal. Better solutions could be developed if there exist accurate

and mathematically solvable models for network environment, user demands and their dy-

namics. Queueing theory has been employed to model communication networks and assist

resource allocation [69, 92, 93, 135]. However, it may not work well for those networking

problems involving multi-hop routing and end-to-end performance (such as delay) due to

the following reasons: 1) In the queueing theory, many problems in a queueing network

(rather than a single queue) remain open problems, while a communication network with a

mesh-like topology represents a fairly complicated multi-point to multi-point queueing net-

work where data packets from a queue may be distributed to multiple downstream queues,

and a queue may receive packets from multiple different upstream queues. 2) The queue-

ing theory can only provide accurate estimations for queueing delay under a few strong

assumptions (e.g, tuple arrivals follow a Poisson distribution, etc), which, however, may

not hold in a complex communication network. Note that even if the packet arrival at every

source node follows a Poisson distribution, packet arrivals at intermediate nodes may not.
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In addition, NUM [76] has been widely-applied to provide a resource allocation solu-

tion for TE by formulating and solving an optimization problem. However, these methods

may suffer from the following issues: 1) They usually assume that some key factors (such

as user demands, link usages, etc) are given as input, which, however, are hard to estimate

or predict. 2) It is hard to directly minimize end-to-end delay by explicitly including it in

the utility function since given decision variables for resource allocation in TE, it is hard to

express the corresponding end-to-end delay in a closed form with them since an accurate

mathematical model is needed to achieve this (while queueing theory may not work here

as described above). 3) Network dynamics have not been well addressed by these works.

Most of them claimed to provide a “good” resource allocation solution, which is optimal or

close-to-optimal but only for a snapshot of the network. However, most networks are highly

time-varying. How resource allocation should be adjusted or re-computed to accommodate

such dynamics has not been well addressed by these NUM methods.

Hence, we aim to study networking and computing problems from a whole new per-

spective by leveraging emerging Artificial Intelligence (AI) techniques, especially deep

learning, to develop an experience-driven approach, which enables a network or a device

to learn the best way to control itself from its own experience (e.g, runtime statistics data),

just as a human learns a skill (such as swimming and driving). Unlike state-oblivious or

optimization-based methods, the experience-driven approach does not rely on any mathe-

matical model but is expected to make wise decisions on online control with full consider-

ation for real-time runtime states.

Recent breakthrough of Deep Reinforcement Learning (DRL) [81] provides a promis-

ing technique for enabling effective experience-driven model-free control. DRL (originally

developed by DeepMind) enables computers to learn to play games, including Atari 2600

video games [81] and one of the most complicated games, Go (AlphaGo [116]), and beat

the best human players. Even though DRL has made tremendous successes on game-

playing that usually has a limited action space (e.g., moving up/down/left/right), it has not
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yet been investigated how DRL can be leveraged for system control and resource allocation

problems in complex communication networks or computing systems, which usually have

sophisticated states and huge or continuous action spaces. We believe DRL is especially

promising for control in networking and computing systems because: 1) It has advantages

over other dynamic system control techniques such as model-based predictive control in

that the former is model-free and does not rely on accurate and mathematically solvable

system models (such as queueing models), thereby enhancing its applicability in complex

networks with random and unpredictable behaviors. 2) It is able to deal with highly dy-

namic time-variant environments such as time-varying system states and user demands. 3)

It is capable of handling a sophisticated state space (such as AlphaGo [116]), which is more

advantageous over traditional Reinforcement Learning (RL) [120].

To demonstrate the feasibility and superiority of this experience-driven control design

philosophy, in this thesis, we focus on two fundamental networking problems, Traffic Engi-

neering (TE) and Multi-Path TCP (MPTCP) congestion control, as well as one cutting-edge

application, resource co-scheduling for Deep Neural Network (DNN) models on mobile

and edge devices with heterogeneous hardware. Nevertheless, designing such a DRL-based

control framework for these problems is not straightforward but quite challenging.

Direct application of the basic DRL technique, such as Deep Q-Network (DQN) based

DRL [81], to networking problems, like TE or congestion control, does not work since

they are continuous control problems; while DQN-based DRL is only capable of handling

control problems with a limited action space. Although DRL methods have been proposed

for continuous control very recently [33, 71], we show a state-of-the-art method, Deep

Deterministic Policy Gradient (DDPG) [71], does not work well. Moreover, it is quite

common that configurations of a communication network are changed over time. Thus,

when applying DRL to realizing experience-driven control, we need to carefully address

another important problem: when network configurations are changed, how to train a new

DRL agent for a new network environment? Even though DRL works well for a given
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network and path sets, it may lead to serious performance degradation if we keep using it

whenever the topology and/or path sets are changed. While transfer learning seems a good

solution to the re-configuration problem, there are still challenges that need to be addressed

when applying it to experience-driven networking: 1) In DRL, instead of learning from a

given dataset with targeting labels (values), like supervised learning, the DRL agent learns

the best control policy through interacting with the environment in a trial-and-error manner.

However, most of the previous transfer learning [7] techniques are proposed to solve the

problem in the context of supervised learning, which cannot be directly applied to DRL;

2) Although some recent work [106, 17] proposed policy distillation that aims to solve

the transfer learning problem in DRL, their methods are based on DQN and cannot be

directly applied to the tasks with continuous action space, which, however, is required by

the majority of the networking problems.

In addition to handling continuous action space, we have to address several other issues

when designing an experience-driven congestion control framework for MPTCP. First, a

straightforward congestion control solution is to use a DRL agent to perform congestion

control for each MPTCP flow independently. However, this solution may not work well

since it lacks necessary and effective cooperation among these agents, while concurrent

flows may interfere with each other due to their competition for common resources, which,

however, cannot be well addressed by independent agents. Moreover, it is quite challenging

to use DRL to dynamically handle multiple flows that may come and go at any time since a

DRL agent usually uses a deep feed-forward neural network or a deep convolutional neural

network as the function approximator for action inference, which has a fixed input size.

To enable experience-driven control for mobile and edge computing, which aims to

leverage heterogeneous computational resources (such as CPU, GPU, DSP, etc.) to ef-

fectively and efficiently support the concurrent inference of multiple DNN models on a

device, we have to consider a practical problem during the DRL training. The DRL agent

cannot be well trained only on a cloud server in an offline manner, since data (i.e., transition
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samples) for training the agent need to be collected continuously via interactions with the

mobile/edge device. On the other hand, it is also difficult to train a DRL agent only on a

mobile/edge device. As we all know, complex mathematical operations (e.g., calculating

gradients and backpropagation) are needed to be performed during the training process,

which, however, are not supported by most mobile deep learning frameworks such as Ten-

sorFlow Lite [126] and Pytorch Mobile [99]. Moreover, training a DRL agent only on a

mobile/edge device may take a long time to converge due to its very limited computational

resources.

1.2 State of The Art and Literature Gap

1.2.1 Network Control and Resource Allocation

Traffic Engineering and Network Utility Maximization

TE and NUM have been well studied in the literature. In a seminal work [76], Low and Lap-

sley proposed asynchronous distributed algorithms to solve a flow control problem whose

objective is to maximize the aggregate source utility over their transmission rates. In [93],

Palomar and Chiang, introduced primal, dual, indirect, partial, and hierarchical decomposi-

tions, focusing on NUM problems and the meanings of primal and dual decompositions in

terms of network architectures. In [92], the authors designed a congestion control system

that scales gracefully with multiple objectives, which was built on decentralized control

laws at end-systems. Xu et al. [135] proposed a new link-state routing protocol PEFT,

which splits traffic over multiple paths with an exponential penalty on longer paths, with

hop-by-hop forwarding, with the objective of achieving optimal TE. The authors of [69]

proposed algorithms to solve a NUM problem in a network with delay sensitive/insensitive

traffic, which is modelled by adding explicit delay terms to the utility function measuring

QoS. Einhorn et al. [22] proposed a RL-based decentralized approach for QoS routing and
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TE in MPLS networks. Recently, TE has been studied in the context of SDN. For example,

Jain et al. [59] presented design and implementation of Google’s SDN-based WAN, B4,

and proposed a TE algorithm based on a bandwidth function for data transmissions among

its data centers. The authors of [4] proposed approximation algorithms for TE problems

with with partial deployment of SDN. NUM, TE and/or related problems have also been

studied by quite a few works [8, 103, 127, 147] in the context of wireless networks, which

were mainly focused on wireless-specific issues such as interference, time-varying link

states, etc.

Congestion Control for Multi-Path TCP

Congestion control, as a fundamental problem in networking, has been widely studied in

the context of TCP [13, 20, 52, 134, 141]. Unlike these related works targeting at the regular

TCP, the congestion control in MPTCP is quite different. It has also been shown [96, 101]

that MPTCP may suffer from serious performance degradation when directly applying a

regular TCP congestion control algorithm separately on each sub-flow. In [53], Honda

et al.proposed a congestion control scheme, which enables an end-to-end connection that

uses flows along multiple paths to fairly compete with TCP flows at shared bottlenecks,

and in the meanwhile, maximizes the utilization of different paths. Hassayoun et al. [47]

proposed Dynamic Window Coupling (DWC), a multipath congestion control mechanism

that seeks to be fair to other flows in the network while being able to maximize its own

throughput. DWC detects shifting bottlenecks in the network and responds by dynam-

ically regrouping subflows. In [101], Raiciu et al.designed Linked Increase Algorithm

(LIA), which couples the congestion control policies running on different subflows by

linking their increase functions. The authors of [64] presented Opportunistic Linked In-

crease Algorithm (OLIA), which resolves some performance issues of LIA while retaining

non-flappiness and responsiveness. As an extension of the well-known TCP Vegas [13],

the authors of [136] proposed weighted Vegas for MPTCP, which adopts the packet queu-
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ing delay as a congestion signal, achieving fine-grained load balancing. In [96], Peng et

al.proposed BAlanced LInked Adaptation (BALIA) to generalize existing congestion con-

trol algorithms through a fluid model and strike a good performance. In [24], the authors

quantified the penalty of the coupled congestion control for links that do not share a bot-

tleneck, then designed and implemented a practical shared bottleneck detection (SBD) al-

gorithm for MPTCP, namely MPTCP-SBD, to overcome the penalty. A recent work [145]

presented MPTCPD, an energy-efficient variant of MPTCP particularly for datacenters,

which can provide energy efficiency by minimizing the flow completion time. Morevoer,

Le et al. [68] developed ecMTCP, which is an energy-efficient congestion control algo-

rithm. Dong et al. [21] designed mVeno particularly for wireless communications with

multiple radio interfaces. Raiciu et al. [102] implemented MPTCP in Linux kernel and

evaluated its performance. They mainly focused on the algorithms needed to efficiently

use paths with different characteristics, notably send and receive buffer tuning and segment

reordering. They also compared the performance of their implementation with regular TCP

on web servers.

We summarize the differences between our work and these related works in the fol-

lowing: 1) Unlike [47, 53, 69, 92, 93, 101, 135] guided by queueing models or pre-defined

policies, we develop experience-driven model-free approaches based on DRL, which learns

the best control policy based on real-time runtime states. 2) Related works [4, 59, 76] have

not explicitly addressed end-to-end delay, which, however, is one of the major concerns in

our work. 3) We consider a TE problem in general networks, which is mathematically dif-

ferent from those problems in specific networks/scenarios [4, 8, 22, 59, 103, 127, 147]. 4)

We are the first to leverage the emerging DRL for TE and MPTCP, which has been shown

to be very effective.
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1.2.2 Scheduling for Mobile and Edge Computing

Recently, there has been a growing interest on runtime optimization for DNNs on mo-

bile and edge devices. Lane et al. [65] proposed DeepX, a software accelerator for DL

model executions on mobile devices. DeepX first performs a runtime layer compression

on a given DNN model to control the memory computation and energy consumption, then

it decomposes the DNN model into unit-blocks of various types and schedules them on

heterogeneous hardware (e.g., CPU and GPU) for efficient on-device inference. Yao et

al. [139] presented a unified approach called DeepIoT to compress DNN models for sens-

ing applications. DeepIoT compresses neural network structures into smaller dense matri-

ces by finding the minimum number of non-redundant hidden elements, such as filters and

dimensions required by each layer, while keeping the performance of sensing applications

the same. Fang et al. [23] proposed NestDNN, which prunes a DNN model into a set of

descendent models, each of which offers a unique resource-accuracy trade-off. At runtime,

it dynamically selects a DNN model with the best resource-accuracy tradeoff to fit avail-

able resources in the system. Liu et al. [74] proposed a usage-driven selection framework,

called AdaDeep, to automatically select a combination of compression techniques for a

given DNN model, which leads to an optimal balance between user-specified performance

goals (e.g., latency and energy) and resource constraints.

Another line of research has addressed the problem of scheduling DNN models among

mobile/wearable devices, edge computing nodes and cloud servers. Han et al. [42] eval-

uated a variety of model optimization techniques to balance the resource usages in terms

of memory, computation and accuracy. Then they proposed a framework called MCDNN

to automatically optimize DNN models while conforming to the resource specification and

assign DNN models to run either on a cloud or on a mobile device. Kang et al. [61] pre-

sented Neurosurgeon, a system that automatically partitions DNN models at the granularity

of layers and assigns them to run on a mobile device or cloud for the best latency and en-

ergy consumption tradeoff. Zhao et al. [146] proposed ECRT, an edge computing system
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for real-time object tracking on resource-constrained devices. By intelligently partitioning

DNN models into two parts, which are executed locally on an IoT device or on an edge

server, ECRT minimizes the power consumption of IoT devices while meeting the user

requirement on end-to-end delay. Xu et al. [137] proposed DeepWear, which focuses on

applying DNN models on wearable devices. DeepWear offloads DNN inference tasks from

a wearable device to its paired hand-held device through local network connectivity (e.g.,

Bluetooth). Zeng et al. [143] proposed Boomerang, an on-demand cooperative DNN infer-

ence framework for edge systems in an Industrial Internet of Things (IIoT) environment.

Boomerang first reshapes the amount of DNN computation via an early-exit mechanism to

reduce the total runtime of DNN inference, and then it segments the DNN model between

IIoT devices and an edge server to achieve the DNN inference immediacy.

In addition, Georgieve et al. [31] presented LEO, a scheduler designed to maximize

the performance of multiple continuous mobile sensing applications by making use of the

domain-specific signal processing knowledge to distribute sensor processing tasks to het-

erogeneous computational resources (e.g., CPU, GPU, DSP and cloud). Zhou et al. [148]

proposed S3DNN, a system that supports DNN-based real-time object detection workloads

on GPUs in a multi-tasking environment, while simultaneously improving real-time perfor-

mance, throughput, and GPU resource utilization. Yang et al. [138] proposed a framework

to improve the number of simultaneous camera streams for object detection on embedded

devices without significantly increasing per-frame latency or reducing per-stream accuracy

by applying a combination of techniques, including parallelism, pipelining, and the merg-

ing of per-camera images.

Unlike those methods proposed in [23, 65, 74, 139], which applied model compression

techniques to reduce the model size and speedup model inference, we represent a com-

plementary and transparent solution, which does not change DNN models thus preserves

their accuracies. Unlike [42, 61, 137, 143, 146], which addressed the problem of offloading

DNN models (or part of models) to the cloud, we, however, focus on the on-device infer-
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ence without the help of cloud servers, and consider a mathematically different problem of

scheduling tasks on heterogeneous hardware. In addition, we study DNN inference on mo-

bile and edge devices in general here, while some related works [31, 138, 146, 148] targeted

at specific applications or models with application-specific goals and requirements.

1.2.3 Learning Methods

Deep Reinforcement Learning

DRL has won his world-wide fame due to its impressive successes on game-playing tasks

such as Go and Atari games. It has recently attracted extensive research attention from both

industry and academia. In a pioneering work [81], Mnih et al.proposed deep Q-learning

and DQN, which can learn successful policies directly from high dimensional sensory in-

puts. Their work bridges the gap between high-dimensional sensory inputs and actions,

resulting in the first artificial agent that is capable of learning to deal with a diverse array of

challenging gaming tasks. As introduced above, they introduced two new techniques, expe-

rience replay and target network, to ensure learning stability. The authors of [48] proposed

Double Q-learning as a specific adaptation of the DQN and an improvement to the earlier

work [81]. Another improvement was introduced in [108] to use prioritized experience re-

play in DQN such that important transition samples can be replayed more frequently, which

can lead to more efficient learning. In [129], Wang et al.presented a new dueling neural net-

work architecture, which includes two separate estimators: one for the state value function

and one for the state-dependent action advantage function. Fortunato et al. [28] presented

NoisyNet, a DRL agent with parametric noise added to its weights. They showed that the

induced stochasticity of the agent’s policy can be used to aid efficient exploration and illus-

trated that replacing the conventional exploration heuristics for A3C [82], DQN [81] and

Dueling [129] agents with NoisyNet yields substantially higher scores for a wide range of

Atari games. Hessel et al. [46] empirically studied multiple extensions to the basic DQN

algorithm and proposed Rainbow as a combination method, which represents the state-of-
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the-art Q-learning method for Atari games. So far, we only discuss works related to discrete

control with a limited action space. Continuous control has also be addressed in the con-

text of DRL. Lillicrap et al. [71] adapted the ideas underlying the success of DQN to the

continuous action domain, they proposed an actor-critic model-free algorithm based on the

deterministic policy gradient named DDPG. Gu et al. [33] proposed normalized advantage

functions for reducing sample complexity for continuous control. In [34], the authors pro-

posed an interesting policy gradient method Q-Prop, which uses a Taylor expansion of the

off-policy critic as a control variant. The authors of [82] proposed asynchronous gradient

descent for optimizing learning with DNNs, and showed its successes on a wide variety of

continuous motor control tasks. Haarnoja et al. [39] proposed soft actor-critic, an off-policy

actor-critic DRL algorithm based on the maximum entropy RL framework. By combining

off-policy updates with a stable stochastic actor-critic formulation, their method achieves

state-of-the-art performance on a range of continuous control benchmark tasks.

Transfer Learning

Transfer learning can be defined as the ability of a system to apply knowledge and skills

learned from previous tasks to new tasks [94], in other words, extracting the knowledge

from one or more source tasks and applying the knowledge to a target task. Traditional

transfer learning can be roughly categorized as three cases according to what to transfer.

The first is instance transfer approach [14, 18, 60], which reuses the data from the source

domain in the target domain. The second is feature-representation transfer approach [7,

11, 19], where the knowledge used to transfer across domains is encoded into the learned

feature representation. The third case is parameter transfer approach [12, 67, 109], i.e.,

target tasks and source tasks share some parameters of models. Rusu et al. [106] first

proposed policy distillation, which extended the idea of knowledge distillation into DRL.

Czarnecki et al. [17] further analyzed the policy distillation under different circumstances.

Even though, DRL has made tremendous successes, the research on the feasibility and
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effectiveness of using it in the context of quite different networking and computing prob-

lems is still in its infancy. To the best of our knowledge, we are the first to leverage DRL for

experience-driven control in networking and computing systems. Moreover, none of these

aforementioned transfer learning methods can be directly applied to the general network

re-configuration problem in the context of experience-driven control, which is one of the

target of this thesis.

1.2.4 Learning-based Control for Networking and Computing

Learning-based control methods, especially Machine Learning (ML) and Deep Learning

(DL), have recently been widely applied for networking and computing problems. To

improve the performance of congestion control, instead of manually formulating each

endpoint’s reaction to congestion signals, Winstein et al. [134] proposed to generate the

congestion control algorithms named Remy Congestion Control (RemyCC), and achieved

better performance compared with related congestion control algorithms and protocols.

Different with Remy, Dong [20] designed an learning-based congestion control method

called performance-oriented congestion control (PCC), which could continuously adjust

the data sending rate while observing the network performance. Li et al. [70] proposed an

ML-based two-stage intrusion detection framework in Software Defined Internet of Things

(SD-IOT) networks. They improved the bat algorithm for feature selection and enhanced

the random forest algorithm for flow classification. Wang et al. [130] proposed a hybrid DL

model for spatiotemporal modeling and prediction in cellular networks, based on big sys-

tem data. Shen et al. [112] presented a networking-slicing based architecture on RAN and

elaborated how ML/DL can potentially empower this architecture in the aspect of RAN slic-

ing, automated RAT selection/user association, and content placement and delivery. Bega et

al. [10] presented a DNN architecture, DeepCog, as an DL-based cost-aware capacity fore-

cast to optimize resource provisioning in network slicing. Zappone et al. [142] proposed

to use DL-based approaches to assistant traditional mathematical-oriented models and ap-
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proaches in future wireless communication networks. As a popular ML/DL technique,

RL/DRL has attracted much attention due to its effectiveness and model-free property.

Tesauro et al. [123] showed the feasibility of using online RL to learn resource valuation

estimates (in lookup table form) that can be used to make high-quality server allocation de-

cisions in multi-application prototype data center scenario. Vengerov et al. [128] combined

RL with fuzzy rulebases to perform adaptive reconfiguration of a distributed system based

on maximizing the long-term business value, solving the problem of dynamic resource al-

location among multiple entities sharing a common set of resources. Shaio et al. [110]

proposed a RL-based congestion control scheme in a high-speed network, which consists

of a long-term policy evaluator and a short-term rate selector, to jointly determine the con-

gestion threshold and sending rate. As a prior work to apply DRL for resource scheduling,

Mao et al. [78] proposed DeepRM that enables a cluster system to gradually learn the op-

timal resource scheduling policy from previous experiences. To realize automatic video

streaming adaption over HTTP, Mao et al. [79] proposed Pensieve that learns an Adaptive

BitRate (ABR) policy by REINFORCE [132] DRL algorithm. Pensieve outperforms the

best state-of-the-art ABR algorithms in terms of average quality of experience.

Unlike [10, 20, 70, 112, 134, 142], which only apply ML/DL to predict some key pa-

rameters, like flow classification and traffic amount, but still rely on mathematical-oriented

models to make control decisions. Our method, which, however, controls the network-

ing or computing systems in an model-free end-to-end manner (i.e., observe the system

state and directly derive the action decision). Unlike [110, 123, 128], which applied the

traditional RL to solve resource allocation and scheduling problems, we focus on leverag-

ing the emerging DRL method with DNNs as function approximators to deal with high-

dimensional complex system states. Moreover, different from the above mentioned work,

in this thesis, we do not only attempt to apply learning methods (e.g., DRL) to solve a par-

ticular networking or computing problem but also to discuss the experience-driven control

design philosophy.
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1.3 Contributions

In this thesis, we aim to leverage emerging DRL to develop experience-driven control

framework for networking and computing problems. More specifically, we make the fol-

lowing contributions.

• We propose a highly effective and practical DRL-based experience-driven control

framework, DRL-TE, for TE in a communication network, to jointly learn network

dynamics and making decisions under the guidance of powerful DNNs. We discuss

and show that direct application of a state-of-the-art DRL solution for continuous

control does not work well for the TE problem. Based on the analysis, we propose

two new techniques, TE-aware exploration and actor-critic-based prioritized experi-

ence replay to optimize the general DRL framework particularly for TE.

• We propose a novel Actor-Critic-based Transfer learning framework, ACT-TE, for

the re-configuration problem in TE. One of the critical insights of ACT-TE is that the

critic network of an existing DRL agent could provide knowledge for a new DRL

agent in a new environment since they belong to the same task domain. Instead of

only randomly exploring solutions at the early stage of training like most of the exist-

ing works [10, 11], we used the critic network of an existing well-trained DRL agent

to guide the training of the new agent. Furthermore, we applied the prioritized replay

buffer [12] to filter out more knowledgeable transitions that help further improve the

exploration efficiency.

• We propose the design, implementation, and evaluation of a DRL-based congestion

control framework, DRL-CC, which realizes our experience-driven design philoso-

phy on MPTCP congestion control. We, for the first time, integrate the a LSTM-

based representation learning network into an actor-critic framework for continuous

congestion control, and leverages the emerging deterministic policy gradient method

[32] to train critic, actor and LSTM networks in an end-to-end manner. In addition,
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a unique and desirable feature of our design is that we use a DRL agent to control all

(instead of a single) active MPTCP flows.

• We conduct a preliminary empirical study for inference with a simple DNN model on

an off-the-shelf smartphone, and make several interesting findings, which can serve

as a guidance for the design of an efficient co-scheduling algorithm. We present the

design and implementation of a novel experience-driven control framework, COS-

REL, for resource co-scheduling on mobile and edge devices. Moreover, We propose

a novel device-server co-training algorithm, which makes a device and a server work

collaboratively and efficiently to train the DRL agent of COSREL.

1.4 Outline

The rest of this thesis is organized as follows. We give a brief background introduction

about DRL and two state-of-the-art algorithms in Chapter 2. We first present the design,

implementation, and evaluation of the DRL-based experience-driven control framework for

the TE problem in Chapter 3. Furthermore, we consider the re-configuration problem for

experience-driven control in TE and present an actor-critic-based transfer learning frame-

work in Chapter 4. In Chapter 5, we present our DRL-based congestion control framework

for MPTCP. In Chapter 6, we conduct an empirical study for DNN scheduling over hetero-

geneous hardware and introduce our DRL-based resource co-scheduling framework. We

conclude this thesis in Chapter 7.
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CHAPTER 2

BACKGROUND ON DEEP

REINFORCEMENT LEARNING

In this chapter, we give a brief introduction to Deep Reinforcement Learning (DRL). In a

typical DRL framework, as shown in Fig. 2.1, an DRL agent interacts with an environment

(e.g., a networking or computing system) in discrete decision epochs. At each epoch t, the

agent makes an observation of the state st of the environment, takes an action at according

to its policy (e.g., a deep neural network). After executing the action in the environment,

the agent receives a reward tt. The goal of the agent is to find a control policy π to map its

state to a deterministic action or to a probability distribution over actions π : st → at, such

that the discounted cumulative rewardR0 =
∑T

t=0 γ
tr(st, at) can be maximized, where r(·)

is the reward function and γ ∈ [0, 1] is a factor to determine the relative importance of the

current reward compared with future rewards. If γ = 0, the DRL agent greedily considers

to maximize its current reward at each epoch. In contrast, if γ = 1, the DRL agent focuses

more on long-term higher cumulative reward.
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Fig. 2.1: The overview of deep reinforcement learning

2.1 Deep Q-Learning

The deep version of RL was introduced in a well-known work [81] by Mnih et al. from

DeepMind, which extends the traditional Q-learning to bridge the gap between high-dimensional

sensory inputs (e.g. raw images) and actions. A unique feature of the DRL agent in [81] is

to use a Deep Neural Network (DNN) called DQN as the function approximator. A DQN

takes a state-action pair (st, at) as input and outputs the corresponding Q value Q(st, at),

which is the expected discounted cumulative reward:

Q(st, at) = E
[
Rt|st, at

]
, (2.1)

where Rt =
∑T

k=t γ
kr(st, at). The action can be derived by applying a commonly-used

greedy policy:

π(st) = argmax
at

Q(st, at). (2.2)
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According to Q-learning, the training target value for each state-action pair can be derived

using the Bellman equation:

yt = r(st, at) + γQ(st+1, π(st+1)|θQ), (2.3)

yt = rt + γmaxa′Q(st+1, a′|θQ) (2.4)

where θQ is the parameters of the DQN. Based on the target value, the DQN can be trained

by minimizing the following loss:

L(θQ) = E
[
yt −Q(st, at|θQ)

]
. (2.5)

L(θQ) = E
[
(yt −Q(st, at|θQ))2

]
. (2.6)

Even though neural network or DNN has been used as the function approximator for

RL before, it is known that such a non-linear function approximator is not stable and may

even lead to divergence. To improve the stability of learning, Mnih et al. [81] introduced

two effective techniques: experience replay and target network. With experience relay, a

DRL agent collects and stores state transition samples into a relay buffer, and then updates

the DNN using a mini-batch sampled from the replay buffer instead of the immediately

collected transition sample (used in traditional Q-learning). By doing so, the DRL agent

could break correlations in the observation sequence, and learn from a more independently

and identically distributed past experience, which is required by most of the training algo-

rithms, such as Stochastic Gradient Descent (SGD). They proposed to use a separate target

network to estimate target values < yt >, which shares the same network structure as the

original DQN. But its parameters are slowly updated every C > 1 epochs and are held

fixed in between. These two techniques can smooth out the learning processing and avoid

oscillations or divergence.
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2.2 Deep Deterministic Policy Gradient

As mentioned above, DQN-based DRL is restricted to discrete control with a limited ac-

tion space and there is no trivial extension to continuous control, which, however, is quite

common in computer and communication networks (e.g., traffic engineering and conges-

tion control). A commonly-used approach to continuous control is policy gradient [119].

In a recent work [71], Lillicrap et al.introduced an actor-critic approach called Deep Deter-

ministic Policy Gradient (DDPG) for DRL, which leverages both DNNs and the emerging

deterministic policy gradient [115] for continuous control. The key idea behind DDPG is

to simultaneously maintain two functions: one is the parameterized actor function π(st|θπ)

used for deriving actions; and another is the parameterized critic functionQ(st, at|θQ) used

for evaluating actions. The critic function is implemented using the DQN mentioned above,

which takes a given state-action pair as input and outputs the corresponding Q-value. It can

be trained as a regular DQN, which has been introduced above. The actor function can be

implemented by another DNN, which takes a state as input and outputs the best action (that

could be continuous). As shown in [71], to update the actor network, the chain rule can be

applied to the the expected cumulative reward J with respect to the actor parameters θπ:

∇θπJ ≈ E
[
∇θπQ(s, a|θQ)|s=st,a=π(st|θπ)

]
= E

[
∇aQ(s, a|θQ)|s=st,a=π(st) · ∇θππ(s|θπ)|s=st

]
.

(2.7)

Note that both experience replay and target network can also be used together with DDPG

to ensure the learning stability.
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CHAPTER 3

EXPERIENCE-DRIVEN NETWORKING

3.1 Overview

To demonstrate the design philosophy of experience-driven networking, we first consider

a classical fundamental networking problem, Traffic Engineering (TE), i.e., for given a

set of network flows with source and destination nodes, to find a solution to effectively

forward the data traffic with the objective of maximizing a utility function. In this chap-

ter, we present a novel and highly effective Deep Reinforcement Learning (DRL)-based

model-free control framework for TE in a communication network to jointly learn net-

work dynamics and make decisions under the guidance of powerful Deep Neural Networks

(DNNs). We summarize our contributions of this chapter in the following:

• We are the first to present a highly effective and practical DRL-based experience-

driven control framework, DRL-TE, for TE.

• We discuss and show that direct application of a state-of-the-art DRL solution for

continuous control, namely Deep Deterministic Policy Gradient (DDPG) [71], does

not work well for the TE problem.

• We propose two new techniques, TE-aware exploration and actor-critic-based pri-
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oritized experience replay to optimize the general DRL framework particularly for

TE.

• We show via extensive packet-level simulation using ns-3 [87] with both representa-

tive and random network topologies that DRL-TE significantly outperforms several

widely-used baseline methods.

To the best of our knowledge, we are the first to leverage the emerging DRL for enabling

model-free control in communication networks. We aim to promote a simple and practical

experience-driven approach based on DRL, which, we believe, can be easily extended to

solve many other resource allocation problems in networking and computing systems.

3.2 Problem Statement

We describe the TE problem in this section. First, we summarize the major notations (used

in this chapter) below for quick reference.

Table 3.1: Notation Definition

Variable Definition
K The number of communication sessions
Pk The set of candidate paths of session k
E The set of links of the network
Bk Traffic demand of session k
Ce Capacity of link e
fk,j The amount of traffic of

the jth path of session k
wk,j Split ratio for the jth path of session k
xk, zk Throughput and delay of session k
s, a, r State, action and reward
pi, P (i) Priority and probability (being selected)

of transition sample i
θπ,θQ Weights of actor and critic networks π(·) and Q(·)
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We consider a general communication network with K end-to-end communication ses-

sions. We use a directed graph G(V,E) to model the network, where each vertex corre-

sponds to a node (router or switch) and each edge corresponds to a directed communication

link connecting a pair of nodes. Each communication session k has a source node sk, des-

tination dk and a set of candidate paths Pk (connecting sk with dk) that can carry its traffic

load. As mentioned above, we aim to study a TE problem seeking a rate allocation solution,

which specifies the amount of traffic load fk,j going through the jth path of Pk. Note that

once we have such a solution, then when a packet of session k arrives at sk, path j is chosen

to transmit the packet with a probability of wk,j , where wk,j = fk,j/(
∑|Pk|

j=1 fk,j), which is

known as the split ratio.

The α-fairness [117, 134] model has been widely used for NUM. According to this

model, the utility of a communication session with a steady-state throughput of x isUα(x) =

(x
1−α

1−α ). Particularly, as α → 1, in the limit U1(x) becomes log x [134]. For α > 0, Uα(x)

is monotonically increasing with x. The objective of the TE problem is usually set to max-

imizing the total utility of all the communication sessions, i.e.,
∑K

k=1 Uα(x). α can be used

to tradeoff fairness and efficiency. If α = 1, the objective is to achieve the proportional

fairness, which is widely used for resource allocation.

In order to address both throughput and delay, similar as in [134], we define a utility

function U(·) for session k:

U(xk, zk) = Uα1(xk)− σ · Uα2(zk), (3.1)

where xk and zk are the end-to-end throughput and delay of session k respectively; and

σ expresses the relative importance of delay vs. throughput. Similarly, the objective of

the TE problem is to maximize the total utility of all the communication sessions in the

network, i.e.,
∑K

k=1 U(xk, zk).

Note that we aim to consider a general communication network and show how DRL can
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enable experience-driven networking rather than targeting at a specific physical network

(such as SDN, multi-hop wireless network) or a specific scenario (such as WAN, MAN,

LAN, etc). So we try to make system model and problem statement as general as possible.

However, the proposed control framework (Section 3.3) is so flexible that it can be easily

extended for a specific network or scenario with additional constraints.

3.3 DRL-based Control Framework

In this section, we present the proposed DRL-based control framework, DRL-TE, for the

TE problem described above.

In order to utilize the DRL techniques (no matter which method/model to use), we first

need to design the state space, action space and reward function.

STATE: The state consists of two components: throughput and delay of each communica-

tion session. Formally, the state vector s = [(x1, z1), · · · , (xk, zk), · · · , (xK , zK)].

ACTION: An action is defined as the solution to the TE problem, i.e., the set of split ratios

for the communication sessions. Formally, the action vector a = [w1,1, · · · , wkj, · · · , wK,|Pk|],

where
∑|Pk|

j=1wk,j = 1.

REWARD: The reward is the objective of the TE problem, which is the total utility of all

the communication sessions. Formally, r =
∑K

k=1 U(xk, zk).

Note that the design of state space, action space and reward is critical to the success of

a DRL method. Our design well captures network states and the key components of the TE

problem without including useless/redudant information. The core of the proposed control

framework is an agent, which runs a DRL algorithm (Algorithm 1) to find the best action

at each decision epoch, takes the action to the network (e.g., through a network controller)

observes the network state, and collects a transition sample.

The TE problem is obviously a continuous control problem. As explained above, the

DQN-based DRL proposed in the well-known work [81] does not work here; so we choose
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the state-of-the-art DRL-based solution for continuous control, DDPG [71], as the starting

point for our design, whose basic idea has been introduced in Chapter 2.

Even though DDPG has been demonstrated to work well on quite a few continuous con-

trol tasks [71], our experimental results, however, show that direct application of DDPG to

the TE problem does not lead to satisfying performance (Section 3.4). We suspect this

is due to the following two reasons: 1) The DDPG framework in [71] does not clearly

specify how to explore. A simple random noise based method or the exploration meth-

ods proposed for physical control problems (mentioned in [71]) do not work well for the

TE problem here. 2) DDPG utilizes a simple uniform sampling method for experience re-

play, which ignores the significance of transition samples in the replay buffer. To address

these two issues, we propose two new techniques to optimize DDPG particularly for TE,

including TE-aware exploration which leverages a good TE solution as the baseline during

exploration; and actor-critic-based prioritized experience replay which can employs a new

method for specifying significance of samples with careful consideration for both the actor

and critic networks. Exploration is an essential and important process for training a DRL

agent because an inexperienced agent needs to see sufficient transition samples to gain ex-

perience and eventually learn a good (hopefully optimal) policy. For continuous control

problems, exploration is quite challenging because there are infinite number of actions that

can be chosen in each decision epoch and the commonly-used ε-greedy method [81] only

works for tasks with a limited discrete action space, which obviously does not work here.

DDPG generates an action for exploration by adding a random noise to the action returned

by the current actor network.

3.3.1 TE-aware Exploration

For exploration, we propose a new randomized algorithm that guides the exploration pro-

cess with a base TE solution. Specifically, with ε probability, the DRL agent derives action

as abase + ε · N ; and with (1 − ε) probability, it derives action as a + ε · N ; where abase
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is a base TE solution, a is the output of actor network π(·) and ε is an adjustable parame-

ter. ε can tradeoff exploration and exploitation by determining the probability of adding a

random noise to the action rather than taking the derived action from the actor network. ε

decays with decision epoch t, which means with more learning, more derived (rather than

random) actions will be taken. The parameter N is a uniformly distributed random noise.

The proposed control framework is not restricted to any specific base TE solution for

abase, which can be obtained in many different ways. For example, a simple solution is to

use the shortest path to deliver all the packets for each communication session, which is not

optimal in most cases but is good enough to sever as a baseline for exploration. Another

solution is to evenly distribute traffic load of each communication session to all candidate

paths. NUM-based methods can also be used to find base solutions. For example, we can

obtain a TE solution by solving the following mathematical programming:

NUM-TE:

max
<xk,fk,j>

∑
k

Uα(xk) (3.2a)

subject to:
K∑
k=1

∑
pj∈Pk:e∈p

fk,j ≤ Ce, ∀ e ∈ E; (3.2b)

xk ≤ Bk, k ∈ {1, · · · , K}; (3.2c)

|Pk|∑
j=1

fk,j = xk, k ∈ {1, · · · , K}. (3.2d)

In this formulation, the objective is to maximize the total utility in terms of throughput.

Note that it is hard to include the end-to-end delay term in the utility function since there

does not exists a mathematical model that can accurately establish a connection between

end-to-end delay and the other decision variables < xk, fk,j >. This is why end-to-end

delay has not been well addressed by most existing works on NUM. Constraints (3.2b)
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ensure the aggregated traffic load on each link does not exceed its capacity Ce, where pj is

the jth path in Pk. Constraints (3.2c) ensure the total throughput of each session k does not

exceed its demandBk, which can be estimated. Constraints (3.2d) establish the connections

between two set of decision variables < xk > and < fk,j >. If α = 1, Uα(xk) = log xk,

then this problem becomes a convex programming problem, which can be efficiently solved

by the Gurobi Optimizer [37] that were used in our implementation.

3.3.2 Actor-critic-based Prioritized Experience Replay

DDPG simply uniformly samples transition data from the experience replay. It has been

shown by [108] that an DRL agent can learn more effectively from some transitions than

others. A method called prioritized experience replay has also been introduced in [108],

which has been shown to lead to better performance on game-playing tasks when being

combined with DQN. It assigns a priority for each transition sample. Based on this priority,

transition data in the replay buffer are sampled in each epoch. However, this method was

proposed only for DQN-based DRL and has never been used with the actor-critic method

for continuous control. We extend this method to enable prioritized experience replay under

the actor-critic framework. Specifically, since an actor-critic method uses two networks

(actor and critic) to guide decision making, the priority should consist of two parts. The

first part is the Temporal-Difference (TD) error, which corresponds to training of the critic

network:

δ = y −Q(s, a), (3.3)

where y is the target value for training the critic network, which is defined in Equation (2.4).

Note that to help understand the basic idea better, we omit the subscripts/superscripts here

for clean presentation; the exact forms of these equations can be found at the formal algo-

rithm presentation. The actor and critic network are jointly trained by transition samples

in the replay buffer. The second part is related to training of the actor network, i.e., the
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Q gradient ∇aQ = ∇aQ(s, a)|s=si,a=π(si) (Equation (2.7)). Combining them together, the

priority of a transition sample is given as:

p = ϕ · (|δ|+ ξ) + (1− ϕ) · |∇aQ|, (3.4)

where ϕ is a parameter controlling the relative importance of TD error vs. Q gradient.

|∇aQ| is the average of absolute values of the Q gradient (which is a vector). A small

positive constant ξ is used to prevent the edge-cases of transitions not being revisited once

their error is zero. The probability of sampling transition i is:

P (i) =
pβ0i∑|B|
j pβ0j

, (3.5)

where the exponent β0 determines how much prioritization is used; if β0 = 0, then it

becomes uniform sampling.

3.3.3 DRL-TE Framework

We formally present the proposed DRL-based control framework for TE, DRL-TE, as Al-

gorithm 1. First the algorithm randomly initializes all the weights θπ of actor network π(·);

and θQ of the critic networksQ(·)(line 1). As mentioned above, we employ target networks

π′(·) and Q′(·) to improve learning stability. The target networks are clones of the original

actor or critic networks, whose weights θπ′ and θQ′ are initialized in the same way as their

original networks (line 2) but are slowly following updated (line 23). The update rate is

controlled by a parameter τ . In each decision epoch, the algorithm applies the TE-aware

exploration method to obtain an action first (line 6), which is explained above.

We use a prioritized replay buffer for storing transition samples. We first store the

sample into the replay buffer with maximal priority (line 8), and then sample a mini-batch

of transition samples from B (lines 10-19) to train the actor and critic networks. The priority

of transition is then updated using the method described right above (lines 16-18). Note that
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Algorithm 1: DRL-TE
1: Randomly initialize critic network Q(·) and actor network π(·) with weights θQ

and θπ respectively;
2: Initialize target networks Q′(·) and π′(·) with weights θQ′

:= θQ, θπ′
:= θπ;

3: Initialize prioritized replay buffer B and p1 := 1;
/**Online Learning**/

4: Receive the initial observed state s1;
/**Decision Epoch**/

5: for t = 1 to T do
6: Apply the TE-aware exploration method to obtain at;
7: Execute action at and observe the reward rt;
8: Store transition sample (st, at, rt, st+1) into B with maximal priority

pt = maxj<t pj;
9: /**Prioritized Transition Sampling**/

10: for i = 1 to N do
11: Sample a transition (si, ai, ri, si+1) from B where i ∼ P (i) := pβ0i /

∑
j p

β0
j ;

12: Compute important-sampling weight: ωi := (|B| · P (i))−β1/maxjωj;
13: Compute target value for critic network: Q(·) yi := ri + γ ·Q′(si+1, π

′(si+1));
14: Compute TD-error: δi := yi −Q(si, ai);
15: Compute gradient: ∇θπJi :=∇aQ(s, a)|s=si,a=π(si) · ∇θππ(s)|s=si;
16: Update the transition priority: pi := ϕ · (|δi|+ ξ) + (1− ϕ) · |∇aQ|;
17: Accumulate weight-change for critic network: Q(·)

∆θQ := ∆θQ + ωi · δi · ∇θQQ(si, ai);
18: Accumulate weight-change for actor network: π(·) ∆θπ := ∆θπ + ωi · ∇θπJi;
19: end for
20: /**Network Updating**/
21: Update the weights of critic network: Q(·) θQ := θQ + ηQ ·∆θQ , reset ∆θQ := 0;
22: Update the weights of actor network: π(·) θπ := θπ + ηπ ·∆θπ , reset ∆θπ := 0;
23: Update the weights of the corresponding target networks:

θQ
′
:= τθQ + (1− τ)θQ

′;
θπ
′
:= τθπ + (1− τ)θπ

′;
24: end for

for every transition sample (si, ai, ri, si+1) in the mini-batch, we first obtain its important-

sampling weight ω (line 12), which is used to correct the bias introduced by prioritized

replay [108]. The weight is integrated into the critic network updating in the form of

ω · δ (rather than δ only) (line 17). Priorities ensure high-error transitions are seen more

frequently. Those large steps (with large priority) can be very disruptive because of large

updating values. As suggested by [108], we import annealing weight β1 to correct this bias,
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by linearly annealing it from its initial value to 1 (line 12). For learning stability, we always

normalize ω by 1/maxjωj , so they only scale the weight update downward. We obtain the

action for the next state from target actor network π′(si+1), and the target value yi (line 13)

for training the critic network; In addition, we compute the policy gradient by the chain

rule, as described in Equation (2.7) (line 15). The weight-changes are accumulated (lines

17-18) and used to update the actor and critic networks (lines 21-22).

There are quite a few hyper-parameters in the proposed control framework. To maxi-

mize its performance, we conducted a comprehensive empirical study to find the best set-

tings for them and the best structures of the actor and critical networks. In our design and

implementation, we used a 2-layer fully-connected feedforward neural network to serve as

the actor network, which includes 64 and 32 neurons in the first and second layer respec-

tively and utilized the Leaky Rectifier [32] for activation. In the final output layer, we,

however, employed the softmax [32] as activation function to ensure the sum of output val-

ues equals one. For the critic network, we also used a 2-layer fully-connected feedforward

neural network, with 64 and 32 neurons in the first and second layer respectively and with

the Leaky Rectifier for activation. In order to sample N transitions with probabilities given

by Equation (3.5), the range [0, ptotal] is divided into N sub-ranges, and a transition is uni-

formly sampled from each sub-range, where ptotal is the sum of priorities of all transitions in

replay buffer. As suggested by [108], we used a sum-tree to implement the priority proba-

bility, which is similar to a binary heap. The differences are 1) leaf nodes store the priorities

of transitions; and 2) internal nodes store the sum of its children. In this way, the value of

root is ptotal, and the time complexity for updating and sampling is O(logNtree), where Ntree

is the number of nodes in the sum-tree. During the empirical study, we also found good set-

tings for the other important hyper-parameters: ξ := 0.01, β0 := 0.6, β1 := 0.4, γ := 0.99,

ϕ := 0.6, ηπ := 0.001, ηQ := 0.01, τ := 0.01 and N = 64.
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3.4 Performance Evaluation

We conducted extensive simulation to evaluate the performance of the proposed DRL-based

framework. We present and analyze the simulation results in this section. We implemented

the proposed framework and set up the environment in ns-3 [87] for packet-level simu-

lation. The DNNs included in the framework (i.e., the actor and critic networks) were

implemented using Tensorflow [1]. Due to the light wight of our design, we found that we

could easily run and train the proposed framework (along with the corresponding DNNs)

on a regular desktop with an Intel Quad-Core 2.6Ghz CPU with 8GB memory.

The simulation runs were performed on two well-known network topologies, NSF Net-

work (NSFNET [88]) and Advanced Research Projects Agency Network (ARPANET [3]).

Besides, we randomly generated a network topology with 20 nodes and 80 links, using

the widely-used network topology generator, BRITE [80]. For each network topology, we

assigned K = 20 communication sessions, each with randomly selected source and des-

tination nodes. For each communication session, we selected 3-shortest paths (in terms

of hop-count) as its candidate paths. The capacity of each link was set to 100Mbps. The

packet arrival at the source node of each communication session (i.e., traffic demand) fol-

lows a Poisson process (note that the packet arrivals at intermediate nodes may not follow a

Poisson process), with its mean value uniformly distributed within a window with a size of

20Mbps. In our experiments, we set the window to [0, 20]Mbps initially, and we increased

the traffic demand by sliding the window with a step size of 5Mbps for each run. We set

α := 1 and σ := 1 for the utility function to balance throughput, delay and fairness, i.e. the

objective/utility function became
∑K

k=1(log xk − log zk).

We compared our DRL-based control framework with three widely used baseline solu-

tions as well as DDPG [71]:

• Shortest Path (SP): every communication session uses a shortest path to deliver all

its packets.

• Load Balance (LB): every communication session evenly distributes its traffic load
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to all candidate paths.

• Network Utility Maximization (NUM): it obtains TE solutions by solving the convex

programming problem, NUM-TE given in Section 3.3.1.

• DDPG: For fair comparison, we replaced the DRL-TE algorithm (Algorithm 1) with

the DDPG algorithm [71], while keeping the other settings (such as state, action,

reward and the DNNs) the same.

We used the total end-to-end throughput, the end-to-end average packet delay, and the

network (i.e., total) utility value as the performance metrics for comparisons. We present

the corresponding simulation results in Figs. 3.1-3.3, each of which corresponds to a net-

work topology. Note that the numbers on the x-axis are the central values of the correspond-

ing traffic demand windows (mentioned above). In addition, we show the performance of

two DRL methods (DDPG and DRL-TE) over the three network topologies during the
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Fig. 3.1: Performance of all the methods over the NSFNET topology
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Fig. 3.2: Performance of all the methods over the ARPANET topology

online learning procedure in terms of the reward. For illustration and comparison pur-

poses, we normalized and smoothed the reward values using a commonly-used method

(r − rmin)/(rmax − rmin) (where r is the actual reward, rmin and rmax are the minimum

and maximum rewards during online learning respectively) and the well-known forward-

backward filtering algorithm [38] respectively. We present the corresponding simulation

results in Fig. 3.4. Note that for these results, the corresponding traffic demand was gen-

erated using window [10, 30]Mbps. We can make the following observations from these

results.

1) From Figs. 3.1a, 3.2a and 3.3a, we can see that compared to all the four baseline

methods, DRL-TE significantly reduces end-to-end delay on all the three topologies. For

example, on the NSF topology, when the traffic load is medium (i.e., traffic demand window

is [10, 30]Mbps), DRL-TE significantly reduces the end-to-end delay by 51.6%, 28.6%,

74.6% and 50.0% respectively, compared to SP, LB, NUM and DDPG. Overall, DRL-TE
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Fig. 3.3: Performance of all the methods over the random topology

achieves an average reduction of 55.4%, 47.1%, 70.5% and 44.2% respectively. Compared

to throughput, end-to-end delay is harder to deal with since as discussed above, it lacks ac-

curate mathematical models that can well capture its characteristics and runtime dynamics.

It is not surprising to see NUM leads to fairly poor performance since it fails to explicitly

address end-to-end delay and its design is based on the assumption that network state is

fairly stable or slowly changes, which may not be true; while simple solutions such as SP

and LB offers expected performance since intuitively, the shortest paths and load balanc-

ing (which can avoid congestions) can help reduce delay. DRL-TE unarguably delivers

superior performance with regards to end-to-end delay because it keeps learning runtime

dynamics and making wise decisions to move to the optimal with the help of DNNs.

2) Even though the objective (reward function) of DRL-TE is not to simply maxi-

mize end-to-end throughput, it still delivers satisfying performance, as shown in Figs. 3.1b,

3.2b and 3.3b. Compared to all the other methods, DRL-TE leads to consistently higher
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Fig. 3.4: Reward over the three network topologies during online learning

throughput on the NSFNST topology. On both the ARPANET and random topologies, the

throughput values given by DRL-TE are comparable to those given by LB (load balancing

is supposed to yield high throughout), but still higher than those offered by SP and NUM.

3) As expected, we can see from Figs. 3.1c, 3.2c and 3.3c that DRL-TE outperforms all

the other methods in terms of the total utility because its reward function is set to maximiz-

ing it. On average, DRL-TE outperforms SP, LB, NUM and DDPG by 7.7%, 9.1%, 26.4%

and 12.6% respectively.

4) From Figs. 3.1-3.3, we can observe no matter which method is used and no matter

which network topology is chosen, the throughput and delay basically go up with the traffic

demand; while the total utility generally go down. This is easy to understand because the

higher the traffic load, usually the higher the throughput, but the higher the delay due to

longer waiting time or even congestion, which brings down the total utility. Moreover, the

throughput does not increase monotonically, when the network becomes saturated, higher
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traffic demands may even lead to poorer throughput due to congestion and packet losses.

We also notice that DRL-TE is robust to changes of traffic load and network topology

since it performs consistently better than all the other methods across all the traffic demand

settings and all the topologies.

5) In addition, we can also observe from Figs. 3.1-3.3 that DDPG does not work very

well on these topologies. For example, compared to SP and LB, it performs generally

worse in terms of the total utility, even though it provides slightly better end-to-end delay.

To further explain why DRL-TE works better than DDPG, we also show how the reward

value changes during online learning over the three network topologies in Fig. 3.4. Clearly,

over all these network topologies, DRL-TE quickly (within just a couple of thousands of

decision epoches) reaches a good solution (that gives a high reward); while DDPG seems

to be stuck at local optimal solutions with lower reward values. Particularly, on the random

topology, we can only see minor improvement on the first few hundred epoches, then it

fails to find better solutions (actions) to improve the reward. These results clearly justify

the effectiveness of the proposed new techniques including TE-aware exploration and the

actor-critic-based prioritized experience replay.

3.5 Summary

In this chapter, we proposed to use a novel experience-driven approach for resource al-

location in communication networks, which can learn to well control a communication

network from its experience rather than an accurate mathematical model. Specifically, we

presented a novel and highly effective DRL-based control framework, DRL-TE, to solve

the TE problem. The proposed framework enables experience-driven control by jointly

learning network dynamics, and make decisions under the guidance of two DNNs, actor

and critic networks. Moreover, we proposed two new techniques, TE-aware exploration

and actor-critic-based prioritized experience replay, to optimize the general DRL frame-
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work particularly for TE. We implemented DRL-TE in ns-3, and conducted a comprehen-

sive simulation study to evaluate its performance on two well-known network topologies,

NSFNET and APRANET, and a random topology. Extensive simulation results have shown

that 1) compared to several widely-used baseline methods, DRL-TE significantly reduces

end-to-end delay and consistently improves the total utility, while offering better or com-

parable throughput; 2) DRL-TE is robust to network changes; and 3) DRL-TE consistently

outperforms DDPG, which, however, does not offer satisfying performance.
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CHAPTER 4

TRANSFER LEARNING FOR

EXPERIENCE-DRIVEN NETWORKING

4.1 Overview

Deep Reinforcement Learning (DRL) has been shown to be a useful technique for en-

abling experience-driven networking due to its capabilities of supporting model-free con-

trol, dealing with highly dynamic time-variant environments, and handling a sophisticated

state space, as demonstrated by the last chapter. However, another important problem for

experience-driven networking should be carefully addressed: when network configurations

are changed, how to train a new DRL agent for a new network environment. It is quite com-

mon that configurations of a communication network are changed over time. For example,

if a load or delay sensitive routing metric [95] is used, then the routing path between a pair

of source and destination nodes may be changed over time. Moreover, the topology of a

network may be changed over time due to node/link failures or manual re-configurations

conducted by a network administrator.

Intuitively, there are three straightforward solutions: 1) keeping using the existing

(likely a well-trained) agent; 2) training a new agent from scratch for the new environ-
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ment; and 3) fine-tuning the existing agent for the new environment. The first solution may

not work well due to lack of knowledge or necessary training for the new environment.

Some DRL agents may be able to survive minor changes (e.g. traffic load changes at cer-

tain nodes) but could not deal with significant re-configurations, such as changes of routing

paths or even the whole topology as mentioned above, which has been shown by our exper-

imental results presented later. The second solution may suffer from a long training time

and unpredictable performance, which are common issues of DRL-based solutions. The

third solution seems reasonable but is actually ineffective because it ignores the knowledge

captured by the existing agent when training the new agent. As we may realize, when a

human learns a new skill (e.g., snowboarding), his/her old knowledge and experience (es-

pecially those related to similar skills, e.g., ski) may play a key role. Thus, we believe both

old knowledge and new experience are important for learning to adapt to a new environ-

ment. Hence, both the existing agent and newly collected samples should be effectively

leveraged for training the new agent.

Even though the proposed DRL-TE works well for Traffic Engineering (TE) for a given

network and path sets, it may lead to serious performance degradation if we keep using it

whenever the topology and/or path sets are changed. As mentioned above, because they

lack necessary training or ignore the knowledge captured by the existing agent for the new

environment, the straightforward solutions may not work well for the TE problem in the

context of experience-driven networking. In this chapter, we present an Actor-Critic-based

Transfer learning framework for the TE problem using policy distillation, which we call

ACT-TE. One of the critical insights of ACT-TE is that the critic network of an existing

DRL agent could provide knowledge for a new DRL agent in a new environment since

they belong to the same task domain. Instead of only randomly exploring solutions at the

early stage of training like most of the existing works [10, 11], we used the critic network

of an existing well-trained DRL agent to guide the training of the new agent. Furthermore,

we applied the prioritized replay buffer [12] to filter out more knowledgeable transitions
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that help further improve the exploration efficiency.

Specifically, the main contributions of this chapter are summarized in the following:

• We propose a novel Actor-Critic-based Transfer learning framework, ACT-TE, for

the TE problem using policy distillation. The basic idea and design of ACT-TE can

also be used to other networking problems.

• We implement ACT-TE using ns-3 and perform a comprehensive evaluation over

three representative network topologies in terms of throughput, delay and utility.

• Extensive packet-level simulation results demonstrate the effectiveness and superior-

ity of ACT-TE over the above three straightforward baselines and several widely-used

traditional methods. More importantly, these results confirm that transfer learning

and policy distillation are the right choice for dealing with re-configurations in the

context of experience-driven networking.

To the best of our knowledge, we are the first to tackle the network re-configuration

problem using transfer learning in the context of experience-driven networking.

4.2 Problem Statement

For representation completeness, we briefly introduce the TE problem and the transfer

learning setting in this section. Note that the similar TE definition is also used in Chapter 3.

We consider a general network G with M end-to-end communication sessions, each

of which consists of a set of candidate paths P for a pair of source and destination nodes.

The policy of a DRL agent is to find a set of split ratios w for each candidate path on each

communication session. Specifically, for a communication session m with |Pm| candidate

paths, a split ratio wm,n specifies the probability of a packet to be transmitted by path n.

Note that the sum of all split ratios within the same session is 1, e.g.
∑|Pm|

n=1 wm,n = 1.
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We apply a widely used α-fairness model Uα(x) = x1−α

1−α as the utility function to eval-

uate the Quality-of-Service (QoS) of the TE problem [117, 134]. The objective of the TE

problem is to maximize the total utility function U(·) over all communication sessions,

which is defined as:

M∑
m=1

U(xm, ym) =
M∑
m=1

Uα1(xm)− κ · Uα2(ym), (4.1)

where xm and ym are end-to-end throughput and delay of session m, respectively, and κ is

used to balance the relative importance of throughput and delay.

In this thesis, our main focus is the transfer learning on network re-configurations in

the TE problem. Suppose we already have a well-trained DRL agent Q on network G, the

goal of the transfer learning is that with the guidance of the existing agent Q, a new DRL

agent can quickly and effectively adapt to a new network Ĝ, whose network configuration

is significantly different from G.

When extending our framework to other networking problems, such as congestion con-

trol or resource allocation, we only need to replace the definition of state space, action

space, and reward function. Then we can apply the proposed framework for transfer learn-

ing, i.e., applying a well-trained DRL agent to help the training of the new DRL agent in a

new environment.

4.3 Actor-Critic-based Transfer Learning Framework

We first design the state space, action space, and reward function for the TE problem de-

scribed above.

STATE: the state of a DRL agent at decision epoch t consists of two parts: 1) the path-side

state statistics, including all candidate paths of each communication session. Formally,

the path-side state statistics for a path n of the session m can be represented by Anm =

(hnm, l
n
m, j

n
m, o

n
m), in which four variables indicate the end-to-end path throughput, average
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packet delay, packet jitter and packet delivery ratio, respectively; 2) the session-side state

statistics, including all communication sessions. Formally, the session-side state statistics

for a communication session m, Bm = (xm, ym, dm), in which three variables indicate

the end-to-end session throughput, average packet delay and sending rate, respectively.

Overall, the state is defined as s = [Anm,Bm], ∀ m ∈ {1 . . .M}, ∀ n ∈ {1 . . . |Pm|}.

Note that both path-side and session-side run-time statistical information can help build

the knowledge of network traffic patterns, which is especially useful when the network

configuration is changed.

ACTION: the action indicates a set of split ratios for all the communication sessions, which

is defined as a = [wnm], ∀ m ∈ {1 . . .M}, ∀ n ∈ {1 . . . |Pm|}. As mentioned above, the

sum of a set of split ratios for a communication session m is to 1, i.e.,
∑|Pm|

n=1 wm,n = 1.

REWARD: the reward r is defined as the total utility value of all communication sessions,

r =
∑M

m=1 U(xm, ym).

In a network, each communication session consists of multiple paths, thus we included

the well-known key statistics from both path-side and session-side, such as the end-to-

end path throughput and the average session throughput. These statistics can reflect the

state of the network. We indeed have also considered other information to the state space

(such as historical statistics from past decision epochs) but observed that they did not lead

to noticeable performance gains in our experiments (and may increase the computation

overhead). As demonstrated by our experiments, the chosen statistics are sufficiently good

for characterizing the system state and action, and the DRL agent can achieve a satisfying

performance. The action is quite straightforward that determines the probability of a packet

to be transmitted by one path, and we used the α-fairness model in the reward function that

could well balance the efficiency and fairness among communication sessions. The same

definition is also used by previous work [11].

To tackle the continuous action space, we propose to use the actor-critic-based DRL al-

gorithm, specifically, the DDPG algorithm, as the experience-driven networking method to
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solve the TE problem as described in section 4.2. Suppose there already exists a DRL agent

Q, whose critic network has been well-trained by the DDPG algorithm. In this chapter, we

mainly focus on the training of a new DRL agent when the network is re-configured, In

other words, on a new network environment, we need to train a new actor network π(·) and

a new critic network Q(·) with weights θπ and θQ, respectively. For simplicity, we use the

term agent or DRL agent to indicate the new DRL agent.

As mentioned above, it is quite common that a deployment network configuration is

different from the one used to train the DRL agent, or the configuration of a communica-

tion network is changed over time. Therefore, to quickly adapt to the network environment

with a new configuration, an efficient and effective transfer method is necessary. However,

as analyzed above and confirmed by our simulation results in Section 6.4, some straight-

forward transfer methods, like directly applying an existing well-trained DRL agent to a

new network environment or directly fine-tuning an existing DRL agent in the new net-

work environment, do not work well for TE for the following reasons: 1) since a DRL

agent learns the control policy from its past experiences, a brand new network configura-

tion, which, without exploring new experience, may cause confusion to the agent; 2) the

DDPG method only uses a plain replay buffer to store and sample transitions, which fails

to distinguish more informative transitions and does not fully take the knowledge of the

existing DRL agent into consideration. To solve the transfer problem mentioned above,

we propose ACT-TE, an Actor-Critic-based Transfer learning framework for TE. ACT-TE

takes an existing well-trained DRL agent Q and a prioritized experience replay buffer B

as input, to boost the training of a new DRL agent in the network environment with a new

configuration. The framework is shown in Fig. 4.1. ACT-TE leverages new experience (i.e.,

collected with priorities from the prioritized experience replay buffer B) and old knowledge

(i.e., distilled from an existing well-trained DRL agentQ) to compute the boosted TD-error

ξ. The boosted TD-error is then used to update the critic network and the priority of the

selected transition.
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Fig. 4.1: The ACT-TE framework

As mentioned in Chapter 2.2, the critic network is a value function, which specifies the

expected discounted cumulative reward (Q-value) of a state-action pair. In other words,

the critic network discriminates how good or poor an action is for a given state. For an

existing well-trained DRL agent in its learning environment, the critic network can pre-

cisely estimate the Q-value and provide guidance to train the actor network. Because of the

generalization ability of DNNs, the critic network can still provide feedback to the actor

network even though that state-action pair has not been seen before. In our TE problem,

when the configuration of network G is changed, the critic network may not work well un-

der the new network environment Ĝ, especially lacking of the training with new transitions

collected from the new network environment. However, compared with a new agent with

randomly initialized critic network, the critic network from Q is still more informative at

the beginning of several training epochs. Similar to [106], in ACT-TE, we use the critic

network of an existing DRL agent Q to distill previous knowledge and transfer it to a new

DRL agent. Note that for simplicity, we use Q to represent the critic network of the DRL

agent as well. The boosted TD-error ξ for training the critic network is defined as:

ξi = ri + γΦi −Q(si, ai), (4.2)
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where the definition of ξi is different from the original DDPG algorithm, which only con-

siders the Q-value from critic network for the state si+1 and action π(si+1) pair. ξi is defined

as the combination of Q-values from both critic network and existing DRL agent Q:

Φi = ε · Q(si+1, π
′(si+1)) + (1− ε) ·Q′(si+1, π

′(si+1)), (4.3)

where ε is a decay variable to balance the relative importance of Q′(·) and Q. Note that

ε decreases with the training epochs, expressing the fact that with more and more new

transitions are used to train the new DRL agent, we trust more in current critic network

than the previous one from Q. The π′(·) and Q′(·) are the target networks of actor and

critic, which are introduced by [81] to improve the learning stability. The target networks

clone the structures of the actor and critic networks, their weights θπ′ and θQ′ are initialized

with their counterparts and slowly updated following their counterparts:

θQ′ ← σθQ + (1− σ)θQ′ (4.4)

θπ′ ← σθπ + (1− σ)θπ′ (4.5)

The same as Chapter 3, we extend the prioritized experience replay [108] into DDPG

by taking into consideration the gradient (Q gradient) from the critic network. The priority

of each transition is defined as the combination of TD-error and Q gradient,

pt = η · (|δt|+ φ) + (1− η) · |∇aQ|, (4.6)

where η is a trade-off hyper-parameter. |∇aQ| is the average of the absolute value of Q

gradient. φ is a small constant to avoid edge cases when TD-error is zero. The probability

of a transition i to be selected is defined as:

P (i) =
pτ0i∑
j p

τ0
j

, (4.7)
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where pi is the priority of transition i, and τ0 is a scaling factor to determine how much pri-

oritization to use. When τ0 = 0, the prioritized sampling becomes uniform sampling, i.e.,

sampling transition without priorities. The denominator indicates the sum of all priorities

(with scaling factor) of transitions in the replay buffer.

Due to the prioritized sampling manner, the prioritized replay buffer imports bias to

the training of parameters. In order to correct the training bias, Importance-Sampling (IS)

weigh ρ [108] is introduced as:

ρi =
( 1

|B| · P (i)

)τ1
, (4.8)

where τ1 is a linear annealing weight from its initial value to 1, which is used to avoid

very large updating in the training. Moreover, IS weight ρi is usually normalized over a

mini-batch ρi = ρi/maxjρj for better learning stability.

Overall, the weights of critic network θQ can be updated by the boosted TD-error ξi

with IS weight ρi:

θQ ← θQ − βQ · ρi · ∇θQξ2i , (4.9)

and the weights of actor network can be updated by:

θπ ← θπ − βπ · ∇aQ(st, π(st)) · ∇θππ(st), (4.10)

where βQ and βπ are the learning rates of actor and critic network, respectively.

We formally present ACT-TE as Algorithm 2. In order to train a new agent, we need an

existing DRL agent Q as input to our framework. Before the training, we need to initialize

all the weights of DNNs. The weights θπ of actor network π(·) and the weights θQ of critic

network Q(·) are randomly initialized. The weights θπ′ and θQ′ of target actor network

π′(·) and target critic network Q′(·) are initialized with the weights of their counterparts,

θπ′ ← θπ and θQ′ ← θQ. We can apply an exploration method during the training to select
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actions (line 3), e.g., the Ornstein-Uhlenbeck processing or the TE-aware exploration as

proposed in the Chapter 3. The transition samples are first stored into the replay buffer B

with maximal priorities and then are sampled with priorities (line 6 and line 8). The next

state si+1 is obtained from the sampled transition, and the action ai+1 is derived from the

target actor network π′(·) (line 9). The boosted TD-error then can be computed (line 10

and line 11) and used to update the transition priority (line 13). With the boosted TD-error

and computed IS weight (line 12), the weights of critic network θQ and actor network θπ

can be updated (line 15), and the weights of target networks can be updated accordingly

(line 16).

In our implementation, we split the input (i.e., state s and action a) for the critic network

into three feedforward paths: 1) the path-side statistics of input state s are filtered by a 1-D

convolutional neural network with 32 1x3 filters and followed by a 1-D maxpooling layer;

2) the session-side statistics of input state s are connected to a fully-connected (FC) layer

with 64 neurons; 3) the input action a to the critic network is directly connected to an FC

layer with 256 neurons. The outputs of above three paths are concatenated together and

then connected to a hidden FC layer with 256 neurons. The actor network has the same

structure design with critic network to extract features from the state input. The hidden

FC layer of the actor network is slightly different from the critic network. The output

path of the path-side statistics and the output path of the session-side statistics are directly

connected to two FC hidden layers, with 256 neurons each. All the layers use ReLu as

activation function except the output layer of actor and critic, which are linear and sigmoid,

respectively. Note that we also introduce batch-normalization layer and l-2 regularization

for the purpose of stabilizing training. The prioritized replay buffer is implemented by

sum-tree for efficient sampling, which is the same as [108]. The number of batch size K

is 32, the reward discount factor γ is set to 0.99, the learning rate βπ and βQ are 0.0001

and 0.001, respectively, the updating rate σ for target networks is 0.001. In addition, we set

τ0 = 0.1, τ1 = 0.9, η = 0.9.
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Algorithm 2: ATC-TE
1: Input: Existing DRL agent Q, prioritized replay buffer B, maximum training epoch
T , mini-batch size K;

2: while epoch t < T do
3: Select an action at with exploration method;
4: Execute action at and get reward rt;
5: Observe next state st+1;
6: Store transition sample (st, at, rt, st+1) into B with the maximal priority pt = pmax;
7: for i = 1 to K do
8: Sample a transition (si, ai, ri, si+1) from B with probability computed by

Equ. (4.7);
9: Estimate the action for state si+1: ai+1 ← π′(si+1);

10: Obtain estimated Q-value for the pair (si+1, ai+1) from Q′(·) and existing agent
Q: Φ← ε ·Q′(si+1, ai+1) + (1− ε) · Q(si+1, ai+1);

11: Compute the boosted TD-error by Equ. (4.2);
12: Compute the IS weight by Equ. (4.8);
13: Update the priority of transition i by Equ. (4.6);
14: end for
15: Update θQ and θπ by Equ. (4.9) and Equ. (4.10) respectively;
16: Update θQ′ and θπ′ by Equ. (4.4) and Equ. (4.5) respectively;
17: end while

4.4 Performance Evaluation

To evaluate the performance of ACT-TE, we conducted extensive simulations using the

packet-level network simulator ns-3 [87]. The DNN models (i.e., the actor network, the

critic network, and their corresponding target networks) were implemented by Tensor-

flow [1]. Due to the light weight design of our DNN models, we directly ran the simulation

and trained the DNN models on a regular desktop with Intel Quad-Core 2.6 Ghz and 8 GB

memory. In the rest of this section, we detail our simulation and analyze the simulation

results.

In our simulation, we evaluated ACT-TE on two well-studied network topologies, Ad-

vance Research Projects Agency Network (ARPANET [3]) and NSF Network (NSFNET [88]).

Moreover, we applied a widely-used network topology generator BRITE [80] to generate

random network topologies with 20 nodes and 100 links. We randomly generated 10 end-

to-end communication sessions (i.e., M = 10) for each network topology and randomly
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selected top-3 shortest paths for each communication session. The link capacity is set to

100Mbps and the propagation delay is set to 1ms. Note that the traffic demand for each

communication session is not fixed. Instead, it follows a Possion distribution with its mean

value ranging from 20Mbps to 100Mbps. We set the decision epoch to 100ms.

To investigate the transfer learning performance of ACT-TE on the TE problem, we

generated a pair of configurations for each topology: one will be used to train a DRL agent

as the existing agent Q, referred to as the old configuration; the other one will be used to

evaluate the transfer learning algorithms, referred to as the new configuration. We proposed

three simulation scenarios with different types of network configuration changes:

• For NSFNET, keeping the same network topology and the communication sessions

(i.e., with the same source and destination nodes), but changing the candidate path

set for each session.

• For ARPANET, keeping the same network topology, but changing the communica-

tion sessions with different source and destination nodes (their candidate path set is

changed accordingly).

• For random topologies, changing the entire network topology, in the meanwhile,

changing the communication sessions and the candidate path set.

For comparison, we used three widely-used traditional methods as TE solutions:

• Random Bandwidth Allocation (RND): Each communication session randomly de-

termines the split ratios of its candidate paths at each decision epoch.

• Load balance (LB): Each communication session evenly distributes the traffic load

on its candidate paths.

• Network Utility Maximization (NUM): Each communication session obtains the

split ratios of its candidate paths by solving a convex programming problem with an

optimization objective to maximize the network utility.
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Besides, we also compared our ACT-TE with three straightforward learning-based transfer

methods:

• Directly Load (LOAD): Directly applying the existing DRL agent to make decisions

without any further training in the new network environment.

• Fine-tune (TUNE): Applying the existing DRL agent, but fine-tune with new expe-

rience from the new network environment.

• Train from scratch (SCR): Training a new DRL agent from scratch without any old

knowledge.

In the simulation, for each pair of configurations, we first trained a DRL agent in the

network environment with the old configuration until it was converged (i.e., the agent can

make good decisions in that environment). Then we changed the network environment with

the new network environment and evaluated the performance of ACT-TE and other baseline

methods. For a fair comparison, we limited the number of training epochs to 2,000 in the

new network environment for ACT-TE, TUNE and SCR.

We compared three commonly-used network performance metrics for evaluation, in-

cluding the total end-to-end throughput, the average end-to-end packet delay, and the aver-

age utility value within one decision epoch. First we show the performance of a well-trained

DRL agent in the old network environment on a random generated topology. The result is

shown in Fig. 4.3 (the DRL agent is marked as DRL). As expected, the well-trained DRL

agent obviously outperforms other traditional baseline methods in terms of utility value.

This result illustrates that the agent can work well on the old configuration. Note that we

have not performed any transfer learning here. This well-trained agent will be used as an

input to our ACT-TE. We have the same observations in NSFNET and ARPANET, i.e., a

well-trained DRL agent in the old network environment works well for the TE problem. We

omit other results on the old configurations for simplicity. The simulation results of trans-

fer learning are shown in Figs. 4.2, 4.4 and 4.5, each of which shows one of the network
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changing case on its corresponding network topology. The results are presented by error

bars, which stand for the mean value± standard deviation over all the decision periods. By

summarizing these results, we can make the following observations:

1) Although the learning goal of the DRL agent (reward) is not to directly maximize the

average throughput or minimize the average delay, ACT-TE still can find feasible solutions

that significantly reduce end-to-end delay while preserving a high throughput, as shown

in Figs. 4.2, 4.4 and 4.5. For instance, on the randomly generated topology, ACT-TE

reduces the average end-to-end delay by 24.6%, 31.2% and 20.7% compared to LB, NUM

and RND, respectively. The reason is that these traditional TE solutions hardly take run-

time statistics of the network environment into consideration. The results confirm that the

Fig. 4.2: Performance of all the methods in NSFNET
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Fig. 4.3: Performance of the well-trained DRL model on the random topology

DRL and policy distillation are the right choices for dealing with the TE problem and re-

configurations in the context of experience-driven networking.

2) As expected, we can see from Figs. 3(c), 4(c) and 5(c) that ACT-TE outperforms

all other three straightforward learning-based transfer methods in terms of utility value.

Although the learning goal of SCR and TUNE is the same as ACT-TE, training with the

same number of epochs, ACT-TE can effectively and quickly find solutions to solve the

TE problem in a new network environment. For example, in NSFNET, ACT-TE achieves

14.9%, 17.9% and 23.3% more utility values compared to TUNE, SCR and LOAD, respec-

tively. It is interesting to see that TUNE does not work well in all scenarios. We suspect

this is due to the mechanism of DNNs and its stochastic gradient descent updating man-

ner. A well-trained neural network is easier to get stuck on the part of the state and action

space when facing an unkown environment. That is why the DNNs of DRL are required

to be randomly initialized at the beginning of training. However, in our framework, in-

stead of directly mimicking the weights of DNNs of the existing DRL agent, we utilized

the knowledge of the existing agent in a softer manner, i.e., learning from its Q-value in a

decayed way. With more transitions are collected during the training, we trusted more on

the judgment of the new agent, thus avoiding getting stuck on a local optimal.

3) From Figs. 4.2(c), 4.4(c) and 4.5(c), we can see that LOAD shows the worst per-
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Fig. 4.4: Performance of all the methods in ARPANET

formance among three learning-based transfer methods in terms of utility value. It is not

surprising, since LOAD directly applies the existing DRL agent to the new network en-

vironment without any further training with new experience. ACT-TE, TUNE and SCR,

instead, utilize new transitions collected from the new network environment to improve

their policies. In particular, from Figs. 4.4(a) and 4.4(b), we can find that without any

training in the new network environment, LOAD even performs much worse than tradi-

tional TE methods (i.e., the end-to-end delay of LOAD is much higher than LB but their

average throughput are almost the same). The above two observations emphasize that new

experience are necessary for the DRL agent to adapt to the new network environment.

4) From Figs. 4.3 and 4.5, we can find that although an existing DRL agent can perform



54

Fig. 4.5: Performance of all the methods on the random topologies generated by BRITE

well in the old network environment, if we keep using it when the network configuration is

changed (the entire network topology is changed in this scenario), the DRL agent suffers

from serious performance degradation, it even fails to beat the traditional baseline methods,

like LB or RND, in terms of delay and throughput on the new network environment. The

results confirm that new experience are important to a DRL agent in the TE problem.

5) According to Figs. 4.2(c), 4.4(c) and 4.5(c), we can observe that compared with SCR,

ACT-TE achieves better learning performance in terms of utility value. Note that SCR only

utilizes new experience for training, which is collected from the new network environment.

However, ACT-TE not only uses new experience, but also utilizes old knowledge from the

existing DRL agent. This is the key reason why ACT-TE can boost the training of new
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(a) Scenario 1: changing the candidate path set
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(b) Scenario 2: changing the communication session
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(c) Scenario 3: changing the entire network topology

Fig. 4.6: Performance of experiments. The results are averaged over three runs and the
shadow represent a standard deviation.

DRL agent and achieve better performance.

6) As shown in Figs. 4.2(c), 4.4(c) and 4.5(c), compared with TUNE that directly fine-

tunes the weights of an existing DRL agent in the new network environment, our ACT-TE

takes the advantage of old knowledge captured by the existing agent. Thus ACT-TE is more

effective. In particular, fine-tuning the existing agent TUNE in the scenario ARPANET

and NSFNET even leads to lower utilities value when compared with SRC. Overall, the

observations well verify that the policy distillation design of ACT-TE is effective.

7) According to Figs. 4.2(b), 4.4(b) and 4.5(b), we can see that NUM achieves the

highest throughput compared with other methods over all the network topologies. How-

ever, since the the objective function of NUM is only to maximize the throughput util-
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ity, NUM fails to find feasible solutions that can balance the performance on the network

throughput and delay. In contrast, since the learning goal (reward) consists of the through-

put and delay, the learning-based methods can find a trade-off between those two metrics.

In particular, ACT-TE outperforms all other methods expect NUM in terms of throughput,

in the meanwhile, ACT-TE finds solutions with the lowest delay.

8) In addition, we can also observe from Figs. 4.2, 4.4 and 4.5 that no matter how to

change the network configuration, ACT-TE can effectively adapt to the new environment.

From the smaller change on the path sets to the larger change on the communication ses-

sions to the change on the entire topology, the simulation results confirm that our ACT-TE

steadily achieves the best performance with the help of old knowledge and new experience.

Furthermore, we added three more test scenarios to illustrate the convergence of our

framework. In these scenarios, instead of limiting the training epochs like previous settings,

we trained each learning-based transfer method until convergence. The network topology

is randomly generated, which consists of 10 nodes and 20 links. We generated 2 com-

munication sessions and 3 candidate paths for each session. We ran simulations with all

three aforementioned network configuration changes. The corresponding results are shown

in Fig. 4.6. As we can see, ACT-TE could improve the training convergence speed when

moving to new environments. For example, in Fig. 4.6a, when changing the candidate path

set for each session, ACT-TE converges faster to adapt to the new configuration. When

training with 200 epochs, ACT-TE could achieve 30% and 53% more average utility values

compared to SCR and TUNE, respectively. Moreover, we can observe that our framework

is stable on all three re-configuration scenarios since the variance between different runs of

ACT-TE is relatively small.
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4.5 Summary

In this chapter, we proposed to solve a practical and fundamental problem for experience-

driven networking: when network configurations are changed, how to train a new DRL

agent to quickly adapt to the new environment. Specifically, we presented ACT-TE, which

uses the policy distillation to effectively train a new DRL agent to solve the TE problem in

new network environments. With the help of both old knowledge (i.e., distilled from the

existing agent) and new experience (i.e., collected from the newly collected samples), ACT-

TE can achieve the best performance compared with traditional TE methods and straight-

forward learning-based transfer methods. Based on three widely-used network topologies,

NSFNET, ARPANET and randomly generated topology using BRITE, we designed three

different re-configuration scenarios accordingly and conducted extensive packet-level sim-

ulations using ns-3. The simulation results show that 1) the existing well-trained DRL

agents do not work well in new network environments; and 2) ACT-TE significantly out-

performs both two straightforward methods (training from scratch and fine-tuning based on

an existing DRL agent) and several widely-used traditional methods in terms of network

utility, throughput and delay.
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CHAPTER 5

EXPERIENCE-DRIVEN CONGESTION

CONTROL

5.1 Overview

In this chapter, we consider to design an experience-driven congestion control framework

for Multi-Path TCP (MPTCP). MPTCP [27] was designed to make use of multiple net-

work interfaces (e.g., Ethernet, WiFi and 4G/LTE) to improve end-to-end bandwidth and

robustness, and has already become a widely-used standard protocol. MPTCP allows to

split a single TCP flow into multiple sub-flows across multiple paths. It has attracted lots

of attention from both industry and academia due to its potential on significant throughput

improvements, which are highly desired for some emerging applications that demand high

end-to-end bandwidth.

Current TCP’s congestion control does not perform well on lossy and high Round Trip

Time (RTT) links, especially on Multi-Path TCP (MPTCP) [21], which has been proposed

as a mechanism for transparently supporting multiple connections to the application layer.

Moreover, most congestion control algorithms, including those designed particularly for

MPTCP, pre-define some packet-level events as response signals, and specify a fixed con-
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trol policy with one or multiple rules for different cases. For example, halving the con-

gestion window when a packet loss is detected [52]; adjusting the congestion window by

a certain amount based on the changing rate of RTTs [13]. Such congestion control al-

gorithms may not work well in a complex and highly-dynamic network, in which many

factors (such as random loss, a large range of RTTs, lossy links, rate reshaping at gateways

or middleboxes, etc.) may affect its performance since it looks impossible to pre-define

the best or even a good rule for each possible case that may occur at runtime. Note that

traditional congestion control algorithms can be considered as heuristic algorithms for the

corresponding optimization problems, which likely lead to suboptimal (instead of optimal)

solutions. Hence, they can be categorized as optimization-based methods described above.

In this chapter, we present a Deep Reinforcement Learning (DRL) based control frame-

work, DRL-CC (DRL for Congestion Control). DRL-CC utilizes DRL to learn to take best

actions according to runtime states without relying on any accurate mathematical model or

any pre-defined control policy.

The novelty of our design is to utilize a Recurrent Neural Network (RNN), Long Short-

Term Memory (LSTM [51]), under a DRL framework for learning a representation for all

active MPTCP flows and dealing with their dynamics. We, for the first time, integrate the

LSTM-based representation learning network into an actor-critic framework called DDPG

(Deep Deterministic Policy Gradient [71]) for continuous (congestion) control, and lever-

ages the emerging deterministic policy gradient [115] to train critic, actor and LSTM net-

works in an end-to-end manner.

We implemented DRL-CC based on the MPTCP implementation in the Linux kernel.

We conducted extensive real experiments to evaluate its performance. Specifically, we

compared DRL-CC with the well-known congestion control algorithms proposed particu-

larly for MPTCP, including LIA [101], BALIA [96], OLIA [64] and wVegas [136], which

have all been implemented in the Linux Kernel [91]. Second, we tested our method un-

der different settings and cases, such as different link bandwidths, link delays, packet loss
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ratios, etc. In addition, we conducted our performance evaluation in terms of goodput,

fairness, robustness and TCP-friendliness. The experimental results well justify the effec-

tiveness and superiority of DRL-CC.

To the best of our knowledge, we are the first to address congestion control in MPTCP

using emerging DRL. In addition, the end-to-end trainable model integrating LSTM, actor

and critic networks is novel and has not been used in the context of DRL. Moreover, it can

handle a variable input size. We believe such a design may have a significant impact on

future research along this line since it can be applied to many other system control problems

with a time-varying input size, e.g., for routing in mobile ad-hoc networks, connection

requests may come and go at any time as well.

5.2 DRL-Based Congestion Control Framework

First of all, we give an overview for DRL-CC, which is illustrated in Fig. 5.1. The key

idea behind our design is to utilize a single (rather than multiple independent) DRL agent

to perform congestion control for all active MPTCP flows on an end host to maximize the

overall utility (defined by a utility function). As mentioned above, “all the active MPTCP

flows" only refer to those whose sending host is the one where DRL-CC is running. To

realize this idea, we design the architecture of DRL-CC (we will use DRL-CC and DRL-

CC agent interchangeably in the following), which consists of the following components:

• Representation Network (Section 5.2.1): It leverages LSTM to learn a representation

of current states of all active MPTCP and TCP flows in a sequence learning manner.

• Actor-Critic (Section 5.2.2): It trains an actor network and a critic network along

with the LSTM-based representation network in an end-to-end manner and derives

an action for congestion control of a MPTCP flow based on the learned representation

and the state of the target flow.
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Fig. 5.1: The architecture of DRL-CC

Next, we describe the state, action and reward of DRL-CC:

STATE: The state of a flow i at epoch t sit = [s1,1t , · · · , si,kt , · · · , s
N,Ki
t ], and st = [bi,kt , g

i,k
t ,

di,kt , v
i,k
t , w

i,k
t ], where si,kt is the state of subflow k of flow i at t; bi,kt , gi,kt , di,kt , vi,kt and wi,kt

are the corresponding sending rate, goodput, average RTT, the mean deviation of RTTs

and the congestion window size respectively; and N is the total number of both TCP and

MPTCP flows, and Ki is the number subflows of flow i. If flow i is a TCP flow, then

Ki = 1; and if flow i is a MPTCP flow, then Ki ≥ 1. Then the state at epoch t, st =

[s1t , · · · , sit, · · · , sNt ]. Here goodput can be considered as effective throughput, which only

counts those successfully received packets. We select these key parameters into the state

because they may have a significant impact on the end-to-end performance and have been

considered in the design of some related works [134]. During our testing, we found that

adding more parameters into the state does not necessarily result in noticeable performance

improvement, which, however, undoubtfully increases data collection overhead. Note that
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the values of these parameters are all measured during the past epoch (t − 1). In order to

well address interference and fairness on an end host, we consider all the flows (including

both regular TCP and MPTPC) when designing the state space. Certainly, if the flow is a

(regular) TCP flow, then there is only one subflow (i.e., Ki = 1).

ACTION: An action at epoch t at = [x1t , · · · , xkt , · · · , xKt ], where xk specifies how much

change needs to be made to the congestion window of subflow k of the target MPTCP flow.

The positive, negative and 0 values lead to increasing, reducing and staying at the same

congestion window size respectively. Note that at each epoch t, DRL-CC only takes an

action on one (target) MPTCP flow.

REWARD: the reward at epoch t, rt =
∑N

i U(i, t), where U(i, t) gives the utility of active

MPTCP/TCP flow i . Note that the proposed framework is not restricted to any particular

utility function. Many different functions (such as throughput, delay, α-fairness [117]) can

be used here to calculate the network utility. This reward should be designed according

to real needs from upper-layer applications. In our implementation, we chose a widely-

used utility function U(i, t) = log git [134], where git is the average goodput of MPTCP

flow i during the past epoch. It is known that maximizing this utility function leads to

proportional fairness, which is considered to achieve a good tradeoff between goodput and

fairness. Moreover, the reward takes into account both TCP and MPTCP flows for the sake

of TCP-friendliness.

In short, DRL-CC works as follows. The DRL-CC agent interacts with the end host by

collecting the above runtime state information st at each epoch t. The agent is periodically

queried by each MPTCP flow and there is only one querying flow at each epoch t (i.e.,

target flow). At each epoch t, the agent derives an action using the actor and critic networks

according to the representation learned by the LSTM-based network and the state of the

target flow. Then it deploys the action via the MPTCP implementation (in the OS kernel)

to the target flow.
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5.2.1 Representation Network

The representation network takes as input the states of all active TCP and MPTCP flows

(i.e., st) at each decision epoch t and generates a representation (i.e., a vector with a smaller

size), which is then used by the actor-critic method (Section 5.2.2) for deriving actions. As

mentioned above, the main difficulty is to deal with the situation in which the number of

flows may change over time. Most DNN (such as a feed-forward neural network) need to

have a fixed input size. A straightforward way to use a feed-forward neural network here

is to zero-pad the input if the actual number of flows is smaller its input size. We tested

this solution via experiments and found that it is ineffective, especially for the cases where

the number of flows is much smaller. Similarly, if the number of flows is larger, then we

have to exclude some flows, which obviously lead to poor representation learning too. We

decide to choose LSTM [51] to serve this purpose, which can have a variable input size

(length).

...LSTM

s1t

h1t

LSTM

s2t

h2t

LSTM

sNt

hNt Hidden state

 

Fig. 5.2: The representation network

As illustrated in Fig. 5.2, the states of flows are fed into LSTM one by one (one at

each step) and the representation is learned in a sequence learning manner [118] such that

the last hidden state hNt is returned as the representation. For simplicity, we denote this

representation for epoch t by ht (rather than hNt ). It is worth mentioning that this LSTM-

based representation network can be trained together with the actor and critic networks

using back propagation in an end-to-end manner, which is discussed in the next section.

This is very important since end-to-end training likely leads to better performance than
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training each part of a model separately.

5.2.2 DRL-CC Framework

At each decision epoch t, the representation ht (learned by the LSTM-based network de-

scribed above) is concatenated with the state of the target MPTCP flow and fed into the

actor-critic method as input. Then the actor-critic method leverages the actor and critic

networks to derive an action, which specifies how to adjust the congestion window size for

each subflow of the target MPTCP flow. As mentioned above, the network utility will be

calculated used as a reward signal to optimize the decision policy.

We formally present the DRL-CC framework in Algorithm 3. First the algorithm ran-

domly initialize all parameters θR of representation network R(·); θπ of actor network

π(·); and θQ of critic network Q(·). The target networks are used here to improve the

learning stability. Target networks R′(·), π′(·) and Q′(·) clone the structures of their coun-

terparts, whose parameters are initialized using their counterparts (line 2) and slowly up-

dated using a control parameter τ (line 19). τ is usually set to a very small value such that

these target networks are only slightly updated in this step. In our implementation, we set

τ = 0.001. This DRL agent will run as a daemon process, waiting for queries from MPTCP

flows. So the main body of this algorithm includes a dead loop, where et is the state of the

querying (i.e., target) MPTCP flow.

Since all the parameters of the DNNs are randomly initialized, in the early stage of

training, the DRL agent cannot totally rely on the action derived from the actor network. An

inexperienced DRL agent needs to explore sufficiently with random transition samples to

gain necessary good and bad experience, and eventually learns a good (hopefully the best)

control policy. Similar as in [71], we apply an Ornstein-Uhlenbeck process to add some

random noise to a derived action for efficient and effective exploration in this continuous

control task.

The representation of all active flows ht is derived from the representation network
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Algorithm 3: DRL-CC
1: Randomly initialize representation network R(·), actor network π(·) and critic

network Q(·), with parameters θR, θπ and θQ respectively;
2: Initialize target networks R′(·), π′(·) and Q′(·) with parameters θR′

:= θR,
θπ

′
:= θπ, θQ′

:= θQ;
3: Initialize replay buffer B;
4: Initialize Ornstein-Uhlenbeck process O for exploration;
5: while (TRUE) do
6: Derive hidden state ht from the representation network R(st);
7: Derive an action at from the actor network π(et,ht);
8: Apply the random process O to generate an action at based on at;
9: Execute action at and observe the reward rt;

10: Store transition sample (st, et, at, rt, st+1, et+1) into replay buffer B;
/**Training the three networks**/

11: Sample H transitions (sj, ej, aj, rj, sj+1, ej+1) from B;
12: Obtain representation hj+1 from R′(sj+1);
13: Compute target value for the critic network Q(·):

yj := rj + γ ·Q′(ej+1,hj+1, π
′(ej+1,hj+1));

14: Update the parameters of the critic network by minimizing the loss:
1
H

∑H
j=1 (yj −Q(ej,hj, aj))2;

15: Compute the policy gradient from the critic network:
∇aQ(e,h, a)|a=π(ej ,hj),h=R(sj),e=ej ;

16: Update the parameters of the actor network using the sampled policy gradients:
1
H

∑H
j=1∇aQ(e,h, a) · ∇θππ(e,h)|e=ej ,h=R(sj);

17: Compute the policy gradient from the actor network: ∇hπ(e,h)|e=ej ,h=R(sj);
18: Update the parameters of the representation network using the sampled policy

gradient: 1
H

∑H
j=1∇aQ(e,h, a) · ∇hπ(e,h) · ∇θRR(s)|s=sj ;

/**Updating the target networks**/
19: Update the parameters of the corresponding target networks:

θR
′
:= τθR + (1− τ)θR

′;
θQ
′
:= τθQ + (1− τ)θQ

′;
θπ
′
:= τθπ + (1− τ)θπ

′;
20: end while

R(·) (line 6), and the action for the target MPTCP flow is derived from the actor network

π(·) (line 7). Experience relay has also been utilized here to improve learning stability.

Transition samples are first stored into a replay buffer B (line 10), and then randomly

sampled to a mini-batch of H samples (line 11) for training the representation, critic and

actor networks. As introduced above, the critic network is basically a DQN. Hence, the

parameters of the critic network θQ are updated by minimizing the commonly-used squared
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error loss (line 14), where the target value yi is evaluated by applying the Bellman equation

(line 13). The parameters of the representation and actor networks θR and θπ are updated

together with the sampled (i.e., an average over the H samples) policy gradients using

the chain rule defined in Equation (2.7) (lines 15–18). From this training process, we can

see that the proposed neural network model (including the representation, critic and actor

networks) is end-to-end trainable.

In our implementation, the representation network is a single-layer LSTM unit. The ac-

tor network is a fully-connected feed-forward neural network with 2 hidden layers, which

includes 128 neurons in both layers. The Rectified Linear function is used for activation in

hidden layers and the hyperbolic tangent function is used for activation in the output layer.

The critic network has the same structure as the actor network except the output layer,

which has only one linear neuron. In our implementation, the actor and critic networks

are trained by the Adam optimizer [63], whose learning rates are set to 0.0001 and 0.001

respectively. The discount factor is set to γ = 0.90. To simplify the neural network imple-

mentation, we leveraged TFLearn [125], which provides a higher-level API to TensorFlow,

to construct the above three neural networks.

5.2.3 Implementation of DRL-CC

We implemented the DRL-CC framework on Ubuntu 16.04. We chose to use the MPTCP

v0.92 [91], which is a Linux kernel implementation of MPTCP and was built based on the

Linux Kernel long-term support release v4.4.x. The available resource of a kernel program

is strictly limited: even the floating point calculation is not allowed in the kernel. A DRL

agent, however, may need to do lots of complex mathematical calculations (e,g, computing

the gradients) for both forward passes and back propagations in the DNN training and

inference. Thus, it is impossible to run the DRL agent in the kernel. We implemented the

proposed DRL agent as a user-space process using Tensorflow [1]. The DRL agent runs

as a daemon process, which is always kept active and waits for the MPTCP flow queries.
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Every flow reserves a memory space in the kernel for their subflows, and every subflow

can fetch their congestion window size from its memory space. Whenever a MPTCP flow

queries, the DRL agent derives an action and deploys it by updating the corresponding

congestion window size for each subflow through the MPTCP implementation.

In order to be compatible to current MPTCP implementation, we implemented the pro-

posed DRL-CC agent as a pluggable program following the Linux’s specification for con-

gestion control. First, we specified the congestion handler interface tcp_congestion_ops,

which is a structure of function call pointers. Then we implemented a callback function

mptcp_drl_cong_avoid, which will be called by each subflow every time an acknowledg-

ment packet is received. Using this function, subflows can keep observing and updating

their congestion window sizes.

In addition, before the online-testing, we trained the DRL-CC agent for over 50, 000

epochs (i.e., 50, 000 transition samples) in an offline manner, using iPerf3 [58] to contin-

uously generate packets to keep the network always busy in the test environment, which

produced sufficient transition samples for training. Due to different link delays, packet loss

rates and bottleneck bandwidth settings, the offline training time varies from an hour to

several hours. For example, in the setting of the bandwidth b1 = b2 = 8Mbps, the delay

d1 = d2 = 200ms and the packet loss rate p1 = p2 = 0.5%, it took 2.5 hours to complete

the offline training process. Once it was taken online, it immediately became ready for use

without any setup latency. Note that offline training only needs to be done once and no

additional offline training is needed if the agent is rebooted. As mentioned above, even

though we used DNNs for inference in our implementation, each of which, however, has

only 2 hidden layers. According to our testing, the online inference time is really short,

about 0.5ms, which causes negligible overhead for online decision making. Just as many

other RL agents, re-training needs to be performed for DRL-CC when the network envi-

ronment changes (e.g., from a low-bandwidth and high-delay network to a high-bandwidth

and low-delay network). This is because sufficient transition samples need to be collected
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to update the DNN of the agent such that it can gain enough experience for the new envi-

ronment to make good decisions when similar situations occur. However, what is the the

best way to re-train a trained agent for a new environment is a fairly big research topic and

is out of the scope of this proposal, which will be studied in our future work.

5.3 Performance Evaluation

We conducted a comprehensive empirical study for performance evaluation under various

test scenarios. In this section, we describe the settings of our test environment, test scenar-

ios, and then present and analyze the corresponding results.

We compared DRL-CC with a few baselines, including LIA [101], BALIA [96], OLIA [64]

and wVegas [136], which are all well-known congestion control algorithms proposed par-

ticularly for MPTCP. We used their implementation in MPTCP v0.92 [91] for our experi-

ments.

We set up a test environment in our lab for our experiments. The test environment

consists of 2 laptops as client and server separately, both running Ubuntu Linux 16.04LTS.

Due to the light weight of our design, there is no need for any special device (such as GPU)

for training. We found that we could easily run and train the DRL-CC agent on a regular

laptop, which has an Intel i7-3630QM CPU and 4GB memory. Two nodes are connected

with a Gigabit switch. The server and client have two and one Gigabit Ethernet interfaces

respectively, which created two different communication links (i.e., single-link paths) for

our testing.

In the test environment, each MPTCP flow includes two subflows, which is the most

common setting for MPTCP in practise and has also been used for testing in related works [21,

96]. Similar as in [21], we controlled some key parameters of the communication links in

the test environment, such as delay, bandwidth and loss rate using netem [84], which can

emulate the communication properties of a wide area network for testing network proto-
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cols. We considered a wide range of settings in our experiments: the link delay was set

to range from 50ms to 400ms, the packet loss rate was set to range from 0.5% to 4%, and

the bottleneck bandwidth varied from 2Mbps to 16Mbps. In our experiments, all the data

packets were captured by tcpdump [124] and analyzed by wireshark [133].

We introduce our test scenarios and present the corresponding experimental results.

In the first four test scenarios, we evaluated the performance of DRL-CC in a relatively

steady environment. Specifically, 5 MPTCP flows (each with 2 subflows) were established

between the server and the client and kept active through each experiment. The MPTCP

data traffic was generated by retrieving a binary document from a simple HTTP server.

The document size ranged from 2MB to 8MB. The goodput was calculated by diving the

document size by the elapsed download time. Each number presented in the following

figures is the average goodput per MPTCP flow.
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Fig. 5.3: Scenario 1: b1 = b2 = 8Mbps, d1 = d2 = 100ms and p1 = p2 = 2%

Scenario 1: In this scenario, we show how the document size affects the goodput. We

set the bandwidth b1 = b2 = 8Mbps, the delay d1 = d2 = 100ms and the packet loss

rate p1 = p2 = 2%. We used the documents with different sizes: 2M, 4M and 8M. The

corresponding results are presented in Fig. 5.3. First, we can see that DRL-CC significantly

outperforms all the other methods in terms of goodput. For example, when the document
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size is 8M, DRL-CC outperforms LIA, BALIA, OLIA, wVegas by 313%, 279%, 272%,

198% respectively. Moreover, since there are two links (paths) between the server and

the client and each of them has a bandwidth of 8Mbps, the total end-to-end bandwidth

is 16Mbps. There are 5 MPTCP flows and each of them obtains an average goodput of

3.2Mbps (if DRL-CC is used), which means that DRL-CC makes full use of all available

bandwidth. In addition, we show the Jain’s fairness index (calculated over all MPTCP

flows) given by each algorithm in Fig. 5.3b. We can see that all the algorithms achieve

very good fairness since the corresponding indices are all close to 1. Hence, compared to

the baselines, DRL-CC leads to much higher goodput without sacrificing fairness. This

is mainly due to the way how we define the reward (Section 5.1), particularly the utility

function, which usually leads to a good tradeoff between goodput and fairness.

Since all the methods have a similar behavior with different document sizes, and in

order to have a relatively long testing time, we used the 8M document in the following

scenarios. We present the results corresponding to the next three scenarios in Fig. 5.4. In

addition, we found all the algorithms led to similarly good fairness in the other scenarios.

Due to space limitation, we omit the corresponding results and figures.

Scenario 2: In this scenario, we fixed the delay d1 = d2 = 100ms and the packet

loss rate p1 = p2 = 2%, we aimed to show the performance of all these methods with

different bandwidths by setting the bandwidth b1/b2 to 2M, 4M, 8M and 16M in different

experiments respectively. The corresponding results are presented in Fig. 5.4a. We can see

when the bandwidth is small (i.e. 2Mbps), the goodputs of all the methods are fairly low

and almost the same. When the bandwidth is increased, DRL-CC leads to sharp improve-

ments on goodput, which are much more significant than those given by the other methods.

Particularly, when the bandwith is 8Mbps, DRL-CC leads to 325%, 280%, 269% and 181%

improvements over the baselines respectively.

Scenario 3: This scenario was designed to show how the goodputs given by these

methods vary with the delay. We set the bandwidth b1 = b2 = 8Mbps and the packet



71

2 4 8 16
0

1

2

3

4

5

6

7

Bandwidth (Mbps)

P
e

r−
fl
o

w
 G

o
o

d
p

u
t 

(M
b

p
s
)

 

 

DRL−CC

LIA

BALIA
OLIA

wVegas

(a) Scenario 2: Average per-flow goodput VS.
bandwidth with d1 = d2 = 100ms and p1 =
p2 = 2%

50 100 200 400
0

0.5

1

1.5

2

2.5

3

3.5

Delay (ms)

P
e

r−
fl
o

w
 G

o
o

d
p

u
t 

(M
b

p
s
)

 

 

DRL−CC

LIA

BALIA
OLIA

wVegas
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(c) Scenario 4: Average per-flow goodput VS.
loss rate with b1 = b2 = 16Mbps and d1 =
d2 = 50ms

Fig. 5.4: Performance of all the methods over different settings

loss rate p1 = p2 = 0.5%, the delay d1/d2 was changed from 20ms all the way to 400ms.

The results are shown in Fig. 5.4b. Similar as in the last scenario, when the delay is small

(i.e. 50ms), the goodputs of all the methods are fairly high and close. When the delay

is increased, the goodputs given by all the methods drop as expected. However, DRL-

CC only experiences pretty minor degradation on goodput; while the drops of the other

methods are much more substantial. Particularly, when the delay is 400ms, DRL-CC offers

656%, 473%, 489% and 382% improvements over the baselines respectively.

Scenario 4: We designed this scenario to see how the packet loss rate affects the good-
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puts given by all the methods. We set the bandwidth b1 = b2 = 16Mbps and the delay

d1 = d2 = 50ms. The packet loss rate was set to 0.5%, 1%, 2% and 4% in different ex-

periments respectively. The corresponding results are shown in Fig. 5.4c. Similar as in

Scenario 2, when the packet loss rate is increased, DRL-CC maintains fairly statable per-

formance without a sharp degradation on goodput. However, the goodputs given by all the

baselines drop dramatically with the packet loss rate. Particularly, in the case of lossy links

with a loss rate of 4%, DRC-CC outperforms these baselines by 468%, 456%, 409% and

319% respectively.

In summary, first of all, this set of scenarios and experiments well justify the superiority

of DRL-CC on goodput. Particularly, we observe that DRL-CC significantly outperform

the baselines in those cases with high bandwidth, long delay and high packet loss rate.

Through good training, DRL-CC can find that making better use of available bandwidth

leads to much higher goodput. So it always tries to increase congestion window sizes

quickly and aggressively when detecting more available bandwidth. However, the other

methods behave much more conservatively in this case since they don’t have a mechanism

that can explicitly and quickly utilize available bandwidth. In addition, DRL-CC is more

suitable for tough network environments (e.g., lossy wireless networks) with a high delay

or packet loss rate. As mentioned before, most existing methods follow pre-defined poli-

cies to control congestion windows, which are usually too conservative, i.e, reducing or

significantly reducing window sizes once detecting long RTTs or packet losses but open-

ing congestion windows back up slowly. This certainly leads to low goodput. However,

in these cases, DRL-CC usually makes a few attempts and quickly figures out the best

ways to set up window sizes without being too conservative or aggressive. Therefore, we

can observe DRL-CC brings much more improvements in these tough cases. Last but not

the least, as mentioned above, DRL-CC features a joint congestion control over all active

MPTCP flows, which is expected to deliver superior performance over those baselines that

perform congestion control for flows independently.
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Next we introduce two scenarios, in which we tested DRL-CC in a more dynamic and

complicated environment. For example, we changed the number of MPTCP flows or even

the number of subflows over time. Note that these situations may occur in practice, e.g.

a user may open and close a website frequently over time, which leads to establishments

and terminations of multiple MPTCP flows. The number of subflows of a MPTCP may

also change due to the network state fluctuations, e.g. stepping away from a WiFi hotspot

may cause the loss of the corresponding link on a mobile phone. Note that those baselines

are not supposed to have any problem dealing with such dynamics since they all manage

individual flows separately.

Most settings in Scenarios 5 and 6 are the same as the last few scenarios. We used those

key parameters as follows: the bandwidth b1 = b2 = 8Mbps, the delay d1 = d2 = 100ms

and the packet loss rate p1 = p2 = 2%. In the following scenarios, rather than requesting a

file from server, we directly used iPerf3 [58] to continuously generate packets to keep the

network busy.

Scenario 5: In this scenario, we tested DRL-CC’s capability of dealing with the case

with dynamic establishments and terminations of MPTCP flows. During a testing period

of 150 seconds, establishments of MPTCP flows followed a Poisson process where the

lambda was set to 10; and each flow lasted for 30 seconds. The average (over time) total

goodputs of all MPTCP flows are shown in Fig. 5.5. We can see that DRL-CC is robust to

such a highly-dynamic environment. Compared to the baselines, DRL-CC can still achieve

382%, 351%, 336%, 257% improvements on total goodput.

Scenario 6: As the number of subflows of a MPTCP flow may be changed during the

running time, we considered the scenario where one of two subflows suddenly disappeared.

Specifically, a total of 5 MPTCP flows were established in the beginning. During a testing

period of 200 seconds, one of the subflows of each flow was closed via shutting down a

network interface at 60s. The corresponding results are shown in Fig. 5.6. Similar as in the

last scenario, DRL-CC can deliver robust performance in this dynamic case. Specifically,
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Fig. 5.5: Scenario 5: Average total goodput in the case with dynamic establishments and
terminations of MPTCP flows

DRL-CC outperforms those baselines by 193%, 178%, 186%, 204% respectively. In order

to show the behavior of flows and the performance of DRL-CC over time, we plot Fig. 5.7.

We can see that DRL-CC experiences a sharp drop right at the subflow termination time

60s. However, we observe that its total average goodput stabilizes at 8Mbps (maximum

possible after the termination), which shows that DRL can quickly adjust itself to the single

network interface setting at 60s, and utilize the rest of available bandwidth.
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Fig. 5.6: Scenario 6: Average total goodput in the case with dynamic terminations of
MPTCP subflows
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Fig. 5.7: Scenario 6: Average total goodput over time in the case with dynamic termina-
tions of MPTCP subflows

In summary, we conclude that DRL-CC is robust to highly-dynamic network environ-

ments. As mentioned above, our design features an LSTM-based network that can learn an

effective representation of all active flows. Unlike feed-forward neural networks or CNNs

(commonly used in DRL), our model can well handle a variable input size (i.e., the cases

with dynamic establishments and terminations of flows and subflows). We actually ob-

served that DRC-CC was able to adjust its control policy quickly and properly whenever

there was change during these experiments, which ensures good and stable overall perfor-

mance. Our results have confirmed the effectiveness and robustness of our design.

Another important property of MPTCP is its friendliness to (regular) TCP flows. If

there simultaneously co-exists both MPTCP and TCP flows in a network, MPTCP should

not bring goodput improvements for its own flows at the cost of those TCP flows. It is quite

common to have both TCP and MPTCP flows in a network since some servers/clients may

not support MPTCP.
Scenario 7: We designed this scenario to evaluate the goodputs of all active flows given

by all these congestion control methods in a MPTCP and TCP co-existing environment. In

this scenario, there were a total of 5 MPTCP flows (that used two different links (path) for

communications as described above), and 5 regular single-path TCP flows that competed
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Fig. 5.8: Scenario 7: Per-flow goodputs of regular TCP and MPTCP flows

for one of MPTCP’s links. Those key parameters were set as follows: b1 = b2 = 8Mbps,

d1 = d2 = 100ms and p1 = p2 = 2% We measured the average per-flow goodput for both

TCP and MPTCP, and presented the results on Fig. 5.8. We can see that if DRL-CC is

used, the goodput of a TCP flow is quite similar as those given by the baselines; however,

the corresponding MPTCP flows have a much higher goodput. Specifically, compared to

the best baseline LIA, the per-flow TCP goodput corresponding to the use of DRL-CC is

slightly lower but the corresponding MPTCP goodput is 106% higher. Moreover, DRL-CC

offers higher goodputs for both TCP and MPTCP flows than all the other baselines. This is

also mainly due to the way how we define the reward (Section 5.1), particularly the utility

function, which takes into account both TCP and MPTCP flows. This observation confirms

that DRL-CC is TCP-friendly.

In addition, we conducted an additional experiment in a practical wireless environment,

in which a laptop was equipped with two WiFi network interfaces and there existed asym-

metric links. Most of other settings are the same as those in the above scenarios, and there

were 5 MPTCP flows in total.

Scenario 8: In this scenario, we aimed to demonstrate how DRL-CC performs in a

practical wireless environment with asymmetric links. The bandwidth and delay were lim-
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Fig. 5.9: Scenario 8: Average per-flow goodput in the case with asymmetric wireless links

ited to b1 = 100Mbps and b2 = 10Mbps; and d1 = 5ms and d2 = 2ms respectively. We

measured the average per-flow goodput for MPTCP flows, and presented the corresponding

results in Fig. 5.9.

Since both the delay and the packet loss ratio are fairly low in this scenario, the perfor-

mance gaps between different methods are relatively smaller compared to other scenarios

but they are still noticeable. Specifically, we can see that DRL-CC still outperforms all the

other baseline methods in terms of goodput, by 9.6%, 7.7%, 8.51% and 66.5% on average

respectively. Thus, we can conclude that DRL-CC is able to make good use of available

bandwidth and perform consistently well under different network conditions such as those

with asymmetric characteristics.

5.4 Summary

In this chapter, we presented the design, implementation and evaluation of a DRL-based

framework, DRL-CC, for congestion control in MPTCP. DRL-CC utilizes a single agent

to dynamically and jointly perform congestion control for all active MPTCP flows on an

end host with the objective of maximizing the overall utility (such as goodput). DRL-CC
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features a novel end-to-end trainable DNN model for action inference, which consists of a

flexible LSTM-based representation network, a critic network and an actor network. This

neural network architecture can be used to learn an effective representation of all active

TCP and MPTCP flows to enable the above joint control, and deal with network dynamics

with time-varying flows. We implemented DRL-CC based on the MPTCP implementation

in the Linux kernel. We conducted a comprehensive empirical study to evaluate the per-

formance of DRL-CC under seven different scenarios. The experimental results have well

justify its effectiveness and superiority over a few well-known MPTCP congestion control

algorithms (including LIA, OLIA, BALIA and wVegas) in all of these scenarios in terms

of goodput and fairness; its robustness to highly-dynamic environments with time-varying

flows; as well as its friendliness to the regular TCP.
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CHAPTER 6

EXPERIENCE-DRIVEN CONTROL FOR

MOBILE AND EDGE COMPUTING

6.1 Overview

Over the past few years, Deep Neural Networks (DNNs) have become the de facto approach

for a variety of tasks (such as image classification, face recognition, object detection, ac-

tion recognition, machine translation, etc) in multiple domains including computer vision

and Natural Language Processing (NLP). With the emergence of more and more powerful

chipsets and hardware and the rise of Artificial Intelligence of Things (AIoT), there is a

growing need for bringing DNN models to empower mobile and edge devices with intel-

ligence such that they can support attractive AI applications, such as flower recognition

on a smartphone, voice-activated digital assistant, Driver Monitoring System (DMS) and

Advanced Driver Assistance System (ADAS), in a real-time or near real-time manner.

However, deploying large DNN models onto resource-limited devices is quite challeng-

ing since most commonly-used DNNs have very complex architectures with a huge number

of layers and parameters (e.g. ResNet152 [43] and Faster-RCNN [104]) and thus are known

to be computationally intensive [113] and slow (inference with most DNNs cannot be real-
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time or near real-time even with a powerful GPU server); while most mobile and edge

devices have very limited computing power and resources. When a user runs a DNN model

on a mobile device, its CPU undertakes all inference workload by default [126, 99] without

the help of GPU or other available hardware, which is obviously not efficient. In a cloud

with powerful GPU servers, it is a common practice to simply offload all DNN models to

GPUs for high-throughput and low-latency processing. However, computational hardware

on a mobile/edge device usually has much less computing power than those GPUs designed

particularly for DNNs in a cloud. Moreover, mobile/edge GPU may have to undertake other

major tasks (such as graphics); while its cloud counterpart is usually used only for DNNs.

Hence, it may not always be wise to distribute all DNN inference workload to GPUs on

a mobile/edge device. In addition to latency and throughput, energy efficiency has always

been another major concern for mobile and edge computing since most mobile devices

and some edge devices are battery-powered with limited energy resources. Moreover, as

mentioned above, AI applications with DNNs are computationally intensive thus energy

hungry. So energy efficiency should be another design goal, which, however, may further

complicate the scheduling problem.

In this chapter, we aim to develop a novel experience-driven control framework for re-

source co-scheduling, which jointly schedules multiple DNN models over heterogeneous

hardware with the objective of achieving low-latency, high-throughput and energy-efficient

inference. First of all, we perform a preliminary empirical study to gain some insights

about the right direction for DNN scheduling over heterogeneous hardware by running

some simple experiments on a Google’s Android-based Pixel smartphone. We make sev-

eral interesting findings from our preliminary study: 1) The current practice utilizing single

hardware (a CPU or GPU) for DNN inference is inefficient; and a better way is to make the

CPU and GPU work concurrently by co-scheduling tasks on both of them. 2) A straightfor-

ward scheduling method with a pre-defined fixed policy, e.g., round-robin, is neither high-

throughput friendly nor energy-efficient; hence, designing a low-latency, high-throughput
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and energy-efficient co-scheduling algorithm for DNN inference is quite challenging.

Motivated by these findings, we design and implement a novel online Co-Scheduling

framework based on deep REinforcement Learning (DRL), which we call COSREL. First

of all, COSREL achieves significant speedup over the commonly-used methods by effi-

ciently utilizing all heterogeneous computational hardware. Second, COSREL leverages

emerging DRL to make dynamic and wise online scheduling decisions for DNN models

based on system runtime state. Third, COSREL is capable of making a good tradeoff

among latency, throughput and energy efficiency. Last but not the least, COSREL makes

no change to given DNN models, and thus preserves their accuracies. In addition, training a

DRL agent for on-device inference is challenging (see Section 6.3.3). We propose a novel

device-server co-training algorithm, which makes a device and a server work collabora-

tively and efficiently to train the DRL agent of COSREL. We summarize our contributions

in the following:

1. We conduct a preliminary empirical study for inference with a simple DNN model on

an off-the-shelf smartphone, and make several interesting findings, which can serve

as a guidance for the design of an efficient co-scheduling algorithm.

2. We present the design and implementation of a novel co-scheduling framework,

COSREL, which has several desirable features. Moreover, we propose a novel device-

server co-training algorithm to train its DRL agent.

3. We well justify the effectiveness and superiority of COSREL by extensive experi-

ments on off-the-shelf mobile devices with widely-used DNN models.

6.2 Preliminary Study

In this section, through a preliminary study, we discuss the problems of the current practice,

which undertakes all inference tasks on single hardware, and the challenges associated with
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online co-scheduling on mobile and edge devices with heterogeneous hardware.

In a typical AI application scenario (e.g., image classification), a developer first designs

a DNN model for this application, trains the model in servers with training data, and then

converts the model to fit into mobile/edge devices using an on-device inference framework

(such as Tensorflow Lite [126]). When deploying the DNN model to devices, the cur-

rent practice is to specify a particular hardware, CPU (by default) or GPU (if available),

to execute the DNN inference. However, this kind of single-hardware solution does not

take advantage of heterogeneous computational resources. To utilize all available compu-

tational resources to support DNN inference, we can design a straightforward scheduling

solution, e.g., evenly distributing inference tasks to different hardware in a round-robin

manner, which, however, is shown to be inefficient. We conducted some experiments on an

off-the-shelf smartphone, Google’s Pixel 2 XL [97], which runs Android 10 on Qualcomm

Snapdragon 835 CPU and Adreno 540 GPU. We used a simple DNN model for continu-

ous image classification on this device, which mainly consists of few convolutional layers

and fully-connected layers. The basic information of this DNN model is summarized in

Table 6.1, where #Cov is the number of convolutional layers with four 3× 3× 32 and two

3× 3× 64 filters, respectively, #MaxP is the number of max pooling layers, and the #FC is

the number of fully connected layers with 1,000 neurons each.

#Input #Cov #MaxP #FC #Output
244× 244× 3 6 3 2 1000

Table 6.1: The basic information of a simple DNN

In our experiments, images kept arriving at a rate of 25 Frames Per Second (FPS),

which is a typical sampling rate of a smartphone camera. For a given observation period,

our goal is to complete as many inference tasks as possible and in the meanwhile, maintain

a low inference latency. Here, each inference task refers to the process of computing the

output from an input image using a given DNN. At the beginning of each decision epoch,

the scheduler computes an assignment for all the following inference tasks that will arrive
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within this epoch. To show the performance of different scheduling methods, we used the

following three metrics for comparisons: 1) throughput: the number of completed tasks

during an observation period; 2) inference latency (or simply latency): the elapsed time

from the arrival of a task to the end of the inference; and 3) energy efficiency index: the

average amount of energy consumption per task. We calculated the throughput and the

average inference latency of completed tasks. We measured the energy drop of the smart-

phone battery within a certain period using the Android API BatteryManage and computed

the corresponding energy efficiency index. The same measurement method has been used

in [73]. Similar energy efficiency metrics have also been used in the context of cloud com-

puting [62] and in the context of wireless communications [86, 77].

In our experiments, we evaluated three scheduling methods: running all inference tasks

only on the CPU (labeled as CPU), only on the GPU (labeled as GPU), and a straight-

forward round-robin-based co-scheduling method (labeled as Round-Robin). We set the

duration of each decision epoch to 200ms and the duration of an observation period to 10s

in our experiments. We ran the experiments for 100 observation periods and present the

average values in terms of the three metrics in Figures 6.1, 6.2, and 6.3. We make several

interesting findings from these results:
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Fig. 6.1: Average inference latency
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Finding 1: Co-scheduling DNN tasks over all computational hardware can significantly

reduce the inference latency. The current practice usually leverages single hardware, CPU

or GPU, for inference, which turns out to be inefficient due to under-utilization of available

computational resources. As we can see from Figure 6.1, by fully leveraging all com-

putational resources on the device by co-scheduling tasks, even a simple straightforward

round-robin co-scheduling algorithm significantly reduces the average inference latency.

Specifically, compared to the CPU-only and GPU-only methods, the round-robin method

significantly reduces the average inference latency by 87.7% and 46.9%, respectively. This

is because it distributes the workload to both the CPU and GPU, which improves resource

utilization and thus reduces latency. Note that the GPU-only solution yields unsatisfactory

latency because as mentioned above, mobile GPU has much less computing power than

those GPUs designed particularly for DNN inference in a cloud; and moreover, GPU is a

batch-processing hardware, which usually leads to high throughput but long latency. This

finding leads us to believe that co-scheduling tasks over all computational hardware can

significantly reduce the inference latency.
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Finding 2: A straightforward co-scheduling method does not yield satisfying through-

put. Even though it has been demonstrated that task co-scheduling can utilize both the CPU
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and GPU to reduce DNN inference latency, a straightforward method, such as Round-

Robin, does not yield satisfying throughput, which is shown in Figure 6.2. Specifically,

compared to the GPU-only method, the round-robin algorithm produces 17.5% less through-

put on average. This is because heterogeneous hardware usually results in different infer-

ence times, distributing too much workload to low-speed hardware (e.g., CPU) may hurt the

overall performance. Straightforward scheduling methods, such as Round-Robin, usually

follow a pre-defined fixed policy and ignore system state at runtime, which likely leads to

unsatisfactory performance too. Hence, we can learn that it is necessary to carefully design

an intelligent scheduling algorithm, which can fully utilize all computational resources, and

make wise online scheduling decisions based on runtime system state with the objective of

achieving low-latency and high-throughput inference.
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Fig. 6.3: Energy efficiency index

Finding 3: Achieving energy efficiency is non-trivial. As we can see from Figure 6.3,

the straightforward co-scheduling method, Round-Robin, cannot well balance the perfor-

mance and energy consumption, and thus leads to 21.6% more energy consumption per

task, compared to the GPU-only method. The CPU-only solution is not energy-efficient

either. This is because even though it may lead to a low energy dropping rate, it tends to

spend a long time to process DNN inference tasks, which is not efficient in terms of energy
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Fig. 6.4: The architecture of COSREL

efficiency index. Therefore, when designing a co-scheduling algorithm for DNN inference,

we should carefully and explicitly address energy efficiency in our design.

6.3 Design and Implementation

In this section, we first present an overview of COSREL and then describe the details of its

design and implementation.

6.3.1 Overview

Motivated by the findings described above, we propose a novel online co-scheduling frame-

work called COSREL. Figure 6.4 illustrates the architecture of COSREL, which consists

of two components:

1. State Monitor: It periodically collects runtime state of the system, and reports it to

the DRL agent for decision making.

2. DRL Agent: It is the core of COSREL, which takes the runtime state as input and

applies a DRL-based algorithm to compute a co-scheduling solution.
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COSREL works as follows: given a well-trained DRL agent, at each decision epoch, based

on the runtime state received from the state monitor, it derives a co-scheduling solution and

deploys it to the system. We will discuss how to train the DRL agent in Section 6.3.3. The

desirable features of COSREL is summarized in the following:

1. Full Utilization of Heterogeneous Hardware: COSREL fully utilizes all computa-

tional resources on heterogeneous hardware to support on-device inference of DNN

models.

2. DRL-based Online Co-Scheduling: Based on DRL, COSREL makes dynamic and

wise online co-scheduling decisions with consideration for system state at runtime.

3. Good Tradeoff among Latency, Throughput and Energy Efficiency: COSREL can

achieve low-latency, high-throughput and energy-efficient DNN inference by setting

the reward of its DRL agent properly.

4. User/Model Transparency: COSREL is transparent to users and DNN models, i.e.,

it makes no change to given DNN models and thus preserves their accuracies.

5. Complementariness to existing DL frameworks and Model Compression Techniques:

As mentioned above, COSREL can work together with any existing DL framework

and/or any model compression technique to further accelerate DNN inference.

We summarize major notations in Table 6.2 for quick reference.

6.3.2 DRL-based Co-Scheduling

In this section, we present the design and implementation of the proposed DRL agent. We

consider the following co-scheduling problem: given a set of DNN models M and a set

of computational hardware N , the co-scheduling problem seeks a co-scheduling solution,

which assigns each DNN model to one of the computational hardware. Formally, the co-

scheduling solution is given by a M × N matrix a, where M = |M|, N = |N |, and
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Table 6.2: Major Notations

Notation Description
M A set of DNN models
M The number of DNN models
N A set of computational hardware
N The number of computational hardware

st, at, rt The state, action and reward at
decision epoch t

xij The throughput of DNN model i
on hardware j

yij The average inference latency of
DNN model i on hardware j

Q(·) The deep Q-Network (DQN)
Q′(·), Q′′(·) The DQN clone and its target network
θ, θ′, θ′′ The sets of weights of Q(·),

Q′(·) and Q′′(·)

each element aij = 1 denotes that DNN model i is assigned to computational hardware j;

otherwise, aij = 0. Note that in a real system, each DNN model is loaded to all hardware

in advance. At each decision epoch, assigning a DNN model i to hardware j means that

the inference tasks associated with DNN model i are inserted into the queue corresponding

to model-hardware pair (i, j) for processing. At runtime, we run a thread for each model-

hardware pair (i, j), which keeps picking inference tasks from the corresponding queue

and running them on hardware i. All these threads run concurrently in parallel. In the

example illustrated by Figure 6.4, N = 2 and hardware 1 and 2 are the CPU and GPU

respectively; each circle represents a thread corresponding to a model-hardware pair (i, j),

which maintains a queue with tasks (of DNN model i) assigned to hardware j.

In COSREL, we propose to employ a DRL agent to solve the above scheduling problem.

At each decision epoch t, the DRL agent observes system state st; then based on its current

control policy π(·) and state st, the DRL agent computes a scheduling solution at. In

COSREL, we apply a Deep Q-Network (DQN) [81] Q(·) to deriving the control policy.

Basically, DQN (i.e., Q(·)) is a DNN that takes the current system state and an action (i.e.,

a scheduling solution) as input and outputs a continuous value, which is called Q-value.
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The Q-value can be considered as a score which tells how well to take an action a at state

st. The control policy π is defined as selecting action at with the highest Q-value at state

st, i.e., π(st) : at := argmaxaQ(st, a). We present the definitions of state and action for the

DRL agent in the following.

State: the state of the DRL agent is basically the runtime statistics, which are collected

periodically from the device. In our design, the state consists of the following three fea-

tures: 1) the length of the task queue of each model-hardware pair; 2) the inference time

of each model on every computational hardware; 3) the resource usage (in percentage) of

each computational hardware.

Note that as mentioned above, each inference task refers to the process of computing the

output from input (e.g., an image) using a given DNN. So the length of a task queue is the

number of tasks waiting in that queue for being processed by the corresponding hardware.

We only keep necessary features from the runtime statistics in our design such that we will

not introduce significant overhead to the DRL agent. We have tried different combinations

of the available features and found that the above three features are sufficient for capturing

the essence of the system state at runtime.

Action: An action of the DRL agent is rather straightforward, which is defined as a co-

scheduling solution a, which is a M ×N matrix. Each of its element aij = {0, 1} specifies

if model i is assigned to hardware j as described above.

Reward: COSREL is so flexible that it can accommodate different application-specific

and/or device-specific needs by setting its reward function properly. There are usually two

cases: the first case emphasizes performance (in terms of latency and throughput); and the

second case cares about both performance and energy efficiency.

Specifically, for those real-time AI applications (such as object detection, object track-

ing, etc) or for those edge devices with continuous power supply, the major concern of the

design is certainly performance (in terms of latency and throughput). In this case, we need

to maximize the system performance by jointly addressing both latency and throughput in
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the reward function. In our design, instead of directly maximizing throughout (which likely

leads to significant unfairness) or minimizing latency, we choose to follow the widely-used

α-fairness model [117, 134] to address both latency and throughput, and the reward is

defined accordingly as:

r =
M∑
i=1

N∑
j=1

(U(xij)− ρ · U(yij)), (6.1)

where U(·) is a utility function, xij and yij are the throughput and the average inference

latency of DNN model i on the hardware j during the last decision epoch, respectively;

and ρ is a scaling factor used to balance their relative importance and ρ := 0.1 in our

implementation. According to the α-fairness model, the utility function is Uα(x) = (x
1−α

1−α ).

For α > 0, Uα(x) increases monotonically with x. α can be used to tradeoff fairness

and performance. In our design, we choose to set α := 1, then U(x) = log x, which

is considered to make a good tradeoff between performance and fairness thus has been

widely used for resource allocation.

In addition, for those mobile devices (such as smartphones, pads and wearable devices)

that are usually battery-powered, energy consumption is one of major concerns and should

play a key role in the reward function. In this case, we can define another reward function,

which includes both performance-related factors (i.e., throughput and latency) and energy

consumption. Formally, the reward is defined as:

r =
M∑
i=1

N∑
j=1

(U(xij)− ρ · U(yij)− σ · e) (6.2)

where e is the energy consumption since the last sampling; and σ is a scaling factor and

σ := 0.01 in our implementation.

Implementation Details: We implemented COSREL on Android 10 [6], which is one

of the most popular OSs for mobile and edge devices. To collect the runtime statistics

of the system, including necessary information for state and reward, we developed a state
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monitor, which runs as daemon process in the Android system, periodically broadcasting

those information. The DRL agent registers the broadcasting and receives the information

from the state monitor. The information will be used as the input to the DQN in the DRL

agent for decision making and to form transition samples for training (which will be dis-

cussed next). We used Tensorflow Lite [126] for our implementation, which allows us to

perform DNN inference using different types of computational hardware on the Android-

based device, including CPU and GPU. Tensorflow Lite uses the Interpreter class to warp

all the functions needed by DNN inference, including configuring the hardware, loading

DNN models, executing operations with input data, and accessing results. It uses a CPU

to support inference of DNN models by default. To perform inference on a GPU, we need

to select the GpuDelegate option when initializing the Interpreter. To fully leverage

all the computational resources, we warped each DNN model as a separate thread, which

maintains a task queue and multiple Interpreter (each of them is configured for certain

hardware). At runtime, DNN inference tasks are submitted to the task queue with input

data, and our DRL agent tells which hardware are used to perform the corresponding DNN

inference. COSREL keeps running all threads to process the corresponding tasks from their

task queues.
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6.3.3 Device-Server Co-Training

A common practice for using a DNN model (e.g., a Convolution Neural Network (CNN))

on a mobile/edge device is to train the model on a (or multiple) server with given training

data, and then deploy it on the device only for inference. However, this approach does

not work for a DRL agent, i.e., it cannot be well trained only on a server in an offline

manner, since data (i.e., transition samples) for training the agent need to be collected

continuously via interactions with the mobile/edge device. On the other hand, it is also

difficult to train a DRL agent only on a mobile/edge device. As we all know, complex

mathematical operations (e.g., calculating gradients and backpropagation) are needed to be

performed during the training process, which, however, are not supported by most mobile

DL frameworks such as TensorFlow Lite and Pytorch Mobile. Moreover, training a DRL

agent only on a mobile/edge device may take a long time to converge due to its very limited

computational resources.

Hence, we propose to let the server and mobile/edge device to work collaboratively

and efficiently to train the DRL agent, which we call device-server co-training. During the

co-training process, the on-device DRL agent periodically sends transition samples to the

server, where the training algorithm performs backpropagations and updates the DQN of

the DRL agent.

For the completeness of the presentation, we formally present the device-server co-

training algorithm as Algorithm 4. According to this algorithm, we have an on-device DRL

agent with its DQN Q(·) on the device; and a clone Q′(·) of the on-device DQN and its

corresponding target network Q′′(·) on the server. First the algorithm randomly initializes

the weights of Q(·), and copies its weights to its clone Q′(·) and the target network Q′′(·)

(Lines 1 and 2). We choose a random action as the starting point. After executing the

scheduling action, the state transits to st+1, and the agent observes the reward rt from

the system. Then the DRL agent sends transition sample (st, at, rt, st+1) to the server for

updating the DQN clone Q′(·)(on the server).
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Algorithm 4: Device-Server Co-Training
Input: The number of training epochs T , the size of a mini-batch K, the

exploration ratio ε, replay buffer B, DQN Q(·) with weights θ, its clone
Q′(·) with weights θ′, and its target network Q′′(·) with weights θ′′.

1 Randomly initialize the weights θ of DQN Q(·);
2 θ′ := θ; θ′′ := θ;
3 foreach observation period do
4 Send a random action a1 to the DRL agent;
5 t := 1;
6 while decision epoch t < T do

/**Execution on the device**/
7 Receive action at from the server;
8 Execute the action and observe the reward rt;
9 Receive system state st+1 from the state monitor;

10 Send transition sample (st, at, rt, st+1) to the server;
/**Training on the server**/

11 Receive the transition sample and store it into replay buffer B;
12 Sample K transition samples (si, ai, ri, si+1) from B;
13 Compute the target value for each transition sample

yi := ri + γmaxaQ
′′(si+1, a);

14 Update the weights θ′ of the DQN clone with the loss function
L = 1

K

∑K
i=1(yi −Q′(si, ai))2;

15 Update the weights of target network θ′′ := τθ′ + (1− τ)θ′′;
16 Select an action with the ε-greedy policy

at+1 :=

{
a random action with ε probability;

argmaxaQ
′(st+1, a) otherwise;

17 Send action at+1 to the DRL agent;
18 end
19 end
20 Synchronize DQN Q(·) with its clone Q′(·): θ := θ′;

On the server, whenever receiving a transition sample from the device, the server stores

it into its replay buffer. Then the algorithm samples a mini-batch of transition samples from

the replay buffer and then calculates the target value (Line 13). The loss function used for

training is defined as the mean square error of the current output of DQN and the target

value (Line 14). The DQN clone Q′(·) can then be updated using any training algorithm

(such as Stochastic Gradient Descent (SGD)) on the server. Note that the learning objective
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here is to find the best policy π that maximizes the cumulated discounted reward over a long

decision period. We apply a soft-update to slowly updating the target network Q′′(·) with

a scaling factor τ (Line 15) and τ := 0.01 in the implementation. The target network and

experience replay buffer here are both used to improve learning stability [81, 71]. Similar

as in [81], we apply the ε-greedy policy for exploration (Line 16). Specifically, we take an

random action with ε probability, otherwise, we take an action derived by the control policy

π. ε decays as the training progresses. Note that we choose an action using the ε-greedy

policy on the server and send it to the device for execution because the server has the most

updated DQN Q′(·). To minimize the communication overhead, instead of synchronizing

Q(·) with Q′(·) in every step, we do it only once in the end (Line 20). In every step, we

only need to send the action generated using the ε-greedy policy to the DRL agent on the

device for execution. Since the DRL agent does not need the target network to derive an

action, it is deployed only on the server. The interactions between the device and the server

are only needed during the training process. Once the DRL agent is well trained, it makes

scheduling decisions based only on its own DQN Q(·).

Implementation Details: We implemented the server-side training algorithm presented

above as a training server using Flask [26] and PyTorch [100] and deploy it on a desktop

computer. As mentioned above, the DRL agent and the device-side training algorithm

were implemented using TensorFlow Lite. The training server also works as a web server,

waiting for HTTP requests from the DRL agent on the device. At the beginning of each

decision epoch, DRL agent constructs a POST request, fills in a transition sample in the

JSON format, and sends it to the server. Upon receiving the request, the server parses the

JSON string and stores the transition sample into its replay buffer.

In our implementation, we chose a two-layer fully-connect-ed neural network (with

ReLu as the activation function) to serve as the DQN, which includes 256 and 128 neurons

in the first and second layer respectively. We applied the Adam [63] algorithm to updating

the weights of DQN, and set the learning rate to 0.005.



95

6.4 Performance Evaluation

In this section, we first present the common experimental setup and then introduce the three

testing scenarios. After that, we present the experimental results and the corresponding

analysis.

6.4.1 Experimental Setup

We performed extensive experiments on an off-the-shelf device, Google Pixel 2 XL run-

ning Android 10, which has Qualcomm Snapdragon 835 CPU and Adreno 540 GPU [97].

For device-server co-training, the server side program ran on a desktop with Ubuntu 18.04,

Intel quad 2.6GHz CPU and 32 GB RAM. Similar as in our preliminary study, we set a

decision epoch to 200ms and an observation period to 10s in all the experiments. To evalu-

ate the performance of different scheduling algorithms, we used average inference latency,

throughput and energy efficiency index as the metrics, which have all been introduced in

Section 6.2.

For a comprehensive evaluation, we compared COSREL with three widely-used base-

lines:

1. CPU-only (labeled as “CPU”): This method only uses CPU for the inference of

DNN models.

2. GPU-only (labeled as “GPU”): This method only uses GPU for the inference of

DNN models.

3. Round-Robin (labeled as “Round-Robin”): This method evenly distributes DNN

inference tasks to CPU and GPU in a round-robin manner.

4. Basic COSREL (labeled as “COSREL-P”): This is COSREL, whose DRL agent

was trained using the basic reward function (Equation (6.1)).
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5. Energy-efficient COSREL (labeled as “COSREL-E”): This is COSREL, whose

DRL agent was trained using the energy-efficient reward function (Equation (6.2)).

6.4.2 Experimental Results and Analysis

To evaluate the performance of COSREL, we designed three different testing scenarios.

In the first scenario, we deployed a single DNN model on the device to evaluate whether

COSREL can fully utilize all computational hardware to speed up the DNN inference.

In the second scenario, we deployed two different DNN models on the device, aiming to

evaluate whether COSREL can effectively and efficiently utilize heterogeneous computa-

tional resources to support multiple DNN models. In the third scenario, we had two real

applications, facial expression recognition and facial landmarks detection, which consist

of three correlated DNN models. We want to evaluate if COSREL can still work well

in such a complex environment with multiple correlated DNN models and heterogeneous

computational hardware. In all these three scenarios, we trained the DRL agent for 20, 000

decision epochs. When completing the training, we tested COSREL for 100 observation

periods. Then we calculated the averages of throughput, average inference latency, en-

ergy efficiency index, and their corresponding standard deviations (shown by error bars in

Figures 6.6, 6.8, and 6.9).

Scenario 1: In this scenario, we deployed a widely-used DNN model, i.e., MobileNet [55]

to the smartphone. We set the arrival rate of images to 53FPS. From the results shown in

Figure 6.6, we can make the following observations:

1) It is not surprising to see that the CPU-only method always has the worst perfor-

mance. This is because CPU is designed for general-purpose computing, but the inference

of DNN models needs a lot of floating-point vector/matrix calculations. During the ex-

periment, when the CPU-only method was used, we observed that a long queueing delay

dominated the inference latency. Hence, compared to a GPU, it usually takes more time for

a CPU to execute the inference of DNN models. Specifically, compared to the CPU-only
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Fig. 6.6: Scenario 1: the performance of different methods with a single DNN model

method, the GPU-only method reduces the average inference latency by 72.72% and boosts

the throughput by over 3.5x on average.

2) Although GPU can accelerate the inference of DNN models, the GPU-only method,

however, is not efficient either. When too many inference tasks are assigned to the GPU, the

length of its queue increases and then the inference latency rises sharply. By co-scheduling

tasks on both the CPU and GPU, we can fully utilize all the computational resources,

and avoid abusing the GPU. As we can see from Figure 6.6(b), even a simple straightfor-

ward co-scheduling method, Round-Robin, can help reduce the average inference latency.

Specifically, the round-robin method reduces the average inference latency by 82.18% and

34.65% respectively on average, compared to the CPU-only method and the GPU-only

method.
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3) Although heterogeneous hardware can potentially speed up DNN inference, without

a carefully-designed co-scheduling algorithm, we may fail to harness the real power of

co-scheduling and parallel computing. As we can see from Figure 6.6(a), the round-robin

method delivers lower throughput than the GPU-only method. This observation confirms

that it is necessary to design an intelligent co-scheduling algorithm, which can fully utilize

all computational resources based on the system state at runtime.

4) Although the goal of COSREL-P is not directly set to minimize the average inference

latency or to maximize the throughput, COSREL-P still delivers satisfying performance in

terms of both metrics. Specifically, compared to the CPU-only and GPU-only, and round-

robin methods, COSREL-P significantly improves the throughput by 4.2x, 15.92%, and

46.06% respectively on average; and significantly reduces the average inference latency by

89.61%, 61.89%, and 41.68% respectively. These results well justify the effectiveness and

superiority of COSREL.

5) As we can see from Figure 6.6(c), both COSREL-P and COSREL-E perform well in

terms of energy efficiency. Even though energy efficiency is not directly addressed in its

reward function, COSREL-P can still offer satisfying performance. Specifically, compared

to the CPU-only and round-robin methods, COSREL-P leads to 67.52% and 6.63% less

energy consumption per task respectively on average. As energy is explicitly addressed

in its reward function, COSREL-E achieves better energy efficiency than COSREL-P with

almost the same throughput and a slight increase on average inference latency. These re-

sults illustrate that our proposed framework is flexible and can be tuned to accommodate

different needs. If energy consumption is the major concern (e.g., battery-powered mobile

devices), we can use COSREL-E. Otherwise, if the performance has the highest priority,

we can choose COSREL-P. Note that in this simple scenario, the GPU-only method of-

fers slightly better energy efficiency than COSREL. However, in the next two scenarios

(that are more realistic and complicated), COSREL leads to noticeable improvements over

the GPU-only method in terms of energy efficiency index, which can be observed from
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Figures 6.8 and 6.9.
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Fig. 6.7: Scenario 1: the reward of COSREL during the device-server co-training

6) We show how the reward of the DRL agent improves during the training in Fig-

ure 6.7. Note that we normalized the reward values for better presentation. At the very

beginning, the DRL agent has a high probability to randomly explore possible actions in-

stead of taking actions derived by the DQN. Therefore, we observed large fluctuations on

the reward. As the training progresses, the DRL agent gradually finds good solutions that

lead to larger rewards. Finally, the reward converges to relatively high values, which in-

dicates that the DRL agent is well-trained and ready for online deployment. Note that

although the DRL agent stabilizes after a certain period, there are still small fluctuations on

the reward. This is because the system is highly dynamic. Specifically, the inference time

of each DNN model and the workload on each hardware are highly time-variant, which

may affect the decision making of COSREL. However, the fluctuations are quite insignifi-

cant, which indicates that COSREL can consistently produce good co-scheduling solutions

once it stabilizes.

Scenario 2: It is quite common to have multiple DNN models on a device for sup-

porting different DL applications. In this scenario, we deployed two different widely-used

DNN models (i.e., MobileNet [55] and SqueezeNet [57]) on the smartphone. Since they

ran on the same device, they competed for the computational resources in the hardware.



100

CPU GPU Round-Robin COSREL-P COSREL-E
0

50

100

150

200

250

300

350

400

Th
ro
ug

hp
ut

(a) Throughput

CPU GPU Round-Robin COSREL-P COSREL-E
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
fe
re
nc
e 

La
te

nc
y 

(s
)

(b) Average inference latency

CPU GPU Round-Robin COSREL-P COSREL-E
0.00

0.05

0.10

0.15

0.20

0.25

En
er
gy
-E
ffi
cie

nc
y 
In
de
x 
(Jo

ul
es
/T
as
k)

(c) Energy efficiency index

Fig. 6.8: Scenario 2: the performance of different methods with multiple DNN models

We set the arrival rate of images to 25FPS in this scenario. The corresponding results are

presented in Figure 6.8. As we can see, in this scenario, both COSREL-P and COSREL-

E deliver much better performance than all the baselines in terms of both throughput and

latency. Specifically, on average, compared to the CPU-only, GPU-only and round-robin

methods, COSREL-P improves the throughput by 1.8x, 17.24% and 8.27% respectively;

and it reduces the average inference latency by 88.10%, 74.63% and 56.22%. As for en-

ergy consumption, COSREL-E turns out to be the best solution. Specifically, compared

to the three baselines and COSREL-P, COSREL-E consumes 51.91%, 2.71%, 14.10%,

10.05% less energy per task respectively on average. These results illustrate that COSREL

is capable of handling the co-scheduling problem in the case of multiple DNN models.

Scenario 3: In this scenario, we tested the performance of COSREL in a more compli-
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Fig. 6.9: Scenario 3: the performance of different methods with multiple correlated DNN
models

cated case with three correlated models. Specifically, we conducted the experiments with

two practical applications: facial expression recognition [122] and facial landmarks detec-

tion [121]. In the facial expression recognition application, a face detection DNN model

first takes an image as input and detects the human face shown in the image. Then a facial

expression recognition model is applied to classifying the detected face into 7 categories

of expressions, including angry, disgust, fear, happy, sad, surprise and neutral. In the facial

landmarks detection application, a face detection model is first applied to detecting the hu-

man face from an input image. Then a facial landmarks detection model is used to detect 5

key points from the detected face, including the positions of left and right eyes, nose, left

corner and right corner of the mouth. Obviously, two applications share a common face de-
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Fig. 6.10: The structure of the two correlated AI applications

tection model. We chose MobileNet-SSD [72]) as the backbone network for face detection

to support these two applications. The structure of the models used in this scenario is illus-

trated in Figure 6.10. Through the model decomposition and layer-wise model sharing, we

constructed a processing pipeline, avoiding duplicate inference with the backbone network

and thus improving the overall efficiency for inference. We set the arrival rate of images to

25FPS in this scenario. From the results shown in Figure 6.9, we can make the following

observations:

1) As expected, COSREL-P offers the best performance in terms of both throughput and

latency in this scenario. Specifically, on average, COSREL-P significantly improves the

throughput by 97.74%, 23.26%, 12.95% respectively and significantly reduces the average

inference latency by 88.14%, 73.38%, 64.87% respectively over the three baselines. These

results well justify the superiority of COSREL-P in terms of throughput and latency.

2) Even though COSREL-P does not explicitly consider energy efficiency, it still out-

performs all the baseline methods. For example, COSREL-P uses 42.24% less energy

per task than the CPU-only method on average. By sacrificing throughput and latency a

little bit, COSREL-E further improves the energy efficiency by 4.09% over COSREL-P.

Note that COSREL-E still outperforms all the baselines in terms of throughput and latency.

Specifically, COSREL-E improves the average throughput by 90.50%, 18.75%, 8.82% re-

spectively and reduces the average inference latency by 80.40%, 55.99%, 41.92% respec-
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tively.

These results demonstrate that both COSREL-P and COSREL-E work very well in the

complicated case with multiple correlated DNN models.

6.5 Summary

In this chapter, we presented COSREL to fully leverage computational resources on hetero-

geneous hardware using DRL to effectively and efficiently support concurrent inference of

multiple DNN models on a mobile or edge device. COSREL has several desirable features,

including full utilization of heterogeneous hardware, DRL-based online co-scheduling,

good tradeoff among latency, throughput and energy efficiency, user/model transparency,

and complementariness to existing DL frameworks and model compression techniques. We

also proposed a novel and efficient device-server co-training algorithm for COSREL. We

implemented COSREL on an off-the-shelf Android smartphone, and conducted extensive

experiments with various testing scenarios and widely-used DNN models to compare it

with three commonly-used baselines. It has been shown by the experimental results that

1) COSREL consistently and significantly outperforms all the baselines in terms of both

throughput and latency; and 2) COSREL is generally superior to all the baselines in terms

of energy efficiency.
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CHAPTER 7

CONCLUSIONS AND FUTURE PLAN

The major goal of this thesis is not to propose yet another protocol for traffic engineering or

congestion control but to promote the experience-driven design philosophy for networking

and computing. Despite emerging Deep Reinforcement Learning (DRL) seems a promis-

ing technique for enabling experience-driven control, there are still many barriers and chal-

lenges to its application. While we have discussed and solved some of them in the thesis,

many pristine and interesting research directions still lie ahead.

As aforementioned, DRL relies on DNNs to extract features from the state and derive

control actions. Therefore, designing a proper DNN structure is critical to the DRL agent.

For example, in Chapter 3, since the state space is relatively straightforward, we only apply

a common Fully-Connected Neural Network (FCNN) with 2 hidden layers to serve as the

actor and critic networks (to make decisions). However, FCNN has a fixed input size, thus

it can not deal with dynamic number of flows in MPTCP. Therefore, to handle multiple

flows that may come and go at any time, in Chapter 5, we proposed a more complicated

LSTM-based representation learning network to extract features. The results well demon-

strated its robustness to highly-dynamic environments with time-varying flows. With the

development of deep learning technologies, more and more powerful DNNs are presented.

For example, Graph Neural Network (GNN) [107, 149] has been proposed to directly op-
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erate on the graph structure. GNN retains a state that can represent information from its

neighborhood with arbitrary depth, which, we believe, is more suitable for networking

problems, like TE. It is worth investigating how to integrate these advanced DNNs with

DRL to further improve the control performance.

One of the key advantages of experience-driven control is to automatically adapt and

optimize for various of system dynamics. In practice, however, the DRL agent usually suf-

fers from performance degradation when coping with unknown (untrained) environments.

In Chapter 4, we proposed to leverage transfer learning to rapidly learn a new control policy

in a new environment with both old knowledge and new experience, which was shown to

be more effective and efficient than training from scratch or straightforwardly fine-tuning.

Some recent work [25, 36, 75] proposed meta reinforcement learning, which aims to learn

a policy that can adapt to a new environment with as little data as possible. More ex-

tremely, [30, 49] proposed zero-shot learning, which enables learning an adaptive policy

even without pre-training in the new environment. Meta learning and zero-shot learning

provide good future research directions for the environment adaptation problem.

It is also well known that DRL suffers from sample inefficient, i.e., requiring lots of

transition samples for training. Moreover, in some practical systems, deploying an action

and observing the state changes are quite slow, thus it may take a long time to interact

with the environment and collect enough transition samples. Although in this thesis, we

mostly focus on proposing new techniques to improving the training efficiency, e.g., TE-

aware exploration and actor-critic-based prioritized experience replay in Chapter 3, we can

consider this problem from other new perspectives. For example, Batch Reinforcement

Learning (batch RL) [5, 29, 66] has been proposed to learn from a fixed dataset without

further interactions with the environment. To utilize existing large datasets for networking

and computing applications, the ability of batch RL algorithms to learn offline from these

datasets has an enormous potential impact in shaping the way we build experience-driven

control frameworks for the future.
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