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Abstract

Identifying authoritative influencers related to a geographic area (geo-influencers) can

aid content recommendation systems and local expert finding. This thesis addresses

this important problem using Twitter data.

A geo-influencer is identified via the locations of its followers. On Twitter, due to

privacy reasons, the location reported by followers is limited to profile via a textual

string or messages with coordinates. However, this textual string is often not possible

to geocode and less than 1% of message traffic provides coordinates. First, the error

rates associated with Google’s geocoder are studied and a classifier is built that gives

a warning for self-reported locations that are likely incorrect. Second, it is shown that

city-level geo-influencers can be identified without geocoding by leveraging the power

of Google search and follower-followee network structure. Third, we illustrate that

the global vs. local influencer, at the timezone level, can be identified using a classifier

using the temporal features of the followers. For global influencers, spatiotemporal

analysis helps understand the evolution of their popularity over time. When applied

over message traffic, the approach can differentiate top trending topics and persons in

different geographical regions. Fourth, we constrain a timezone to a set of possible

countries and use language features for training a high-level geocoder to further

localize an influencer’s geographic area. Finally, we provide a repository of geo-

influencers for applications related to content recommendation. The repository can

be used for filtering influencers based on their audience’s demographics related to

location, time, language, gender, and ethnicity.
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Chapter 1

Introduction

Consider that there is a crisis in some portion of the world. Using social media, the

problem is to identify relevant influencers, what these influencers are saying, and

the reactions from the ordinary populace. Examples from the past include the 2014

annexation of Crimea by Russia, the 2011 Arab Spring, and others. To solve the

problem it is necessary to characterize the influencer’s followers’ geographic spread.

More broadly, this analysis is important for (i) content recommendation, (ii) local

expert finding, and (iii) location-aware influence maximization.

This research utilizes the Twitter platform. As an illustration, here are some of

the more popular social media platforms based on the number of scholarly articles

from Google Scholar: (i) Twitter 7.59M, (ii) Facebook: 6.69M, (iii) Reddit 1.74M,

(iv) Instagram 1.63M, (v) Foursquare 0.048M.

Twitter is an ideal platform for fast-spreading news. Twitter users are forced to be

brief with a message character limit of 280 characters. In comparison, on Reddit users

are engaged in longer conversations and thus have more data for natural language

processing applications such as sentiment analysis. While other platforms, such as

Facebook, have safeguards that do not allow connecting to a user without a user’s

permission; Twitter is set up as a broadcasting platform where one user can quickly

subscribe to any other.
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1.1 Terminology

• Twitter user = can be an influencer or a follower.

• Influencer = a user with followers; generally at least 500 followers.

• Geo-Influencer = influencer whose followers are concentrated in a geographic

area. The size of the geographic area depends on the feature used to quantify

the localization. Using time-based features geographic area is at the timezone.

Using location-based features the geographic area could be at the city-level.

• Follower = a user that displayed an interest in an influencer through a follow.

• Ordinary Follower = one who has between 20 and 100 friends, less than 500

followers, not verified by Twitter, without a URL, and that does not generate

over five tweets per day since created.

• City-Community = made up of ordinary followers that reside in the city. Ver-

ified via Tweet-based Home Location (THL), Self-reported Home Location

(SHL), or connection to a known city-level geo-influencer.

1.2 Twitter Challenges

Twitter users generate around 500 million daily tweets. Twitter has an Application

Programming Interface (API) that allows collecting a portion of this data. The API

has limits on number of calls allowed. Twitter does not allow researchers to share

the collected data beyond the unique message and profile identifiers (others would

have to collect on these ids to get the full dataset).

2



Most users are mindful of their privacy and as a result, try to report little or no

personal information. If personal information is reported, it is done at a very high

level, such as by reporting a textual string that may or may not contain their actual

name and city-level location. A lot of these users are passive readers that do not

generate message traffic (about one-fourth of all users have never posted a message).

If a Twitter user is known, their messages, followers, and friends can be collected.

The Twitter API limits are such that it is not possible to collect all of Twitter by

querying each user separately1. As a result, the social network graph is usually

inferred from message traffic. If a user A, that generated the message, mentions user

B, form a link between A and B. Around 1% of tweets can be collected using the

free API.

Some messages contain coordinates but they are usually less than 1% of the

Twitter stream. A more popular option is to utilize the textual self-reported location

of the user that generated the message. The self-reported location needs to be

geocoded. About two-thirds of all Twitter users are English speakers and for this

reason, the geocoder and scenario usually revolve around English speakers. If the

scenario involves a non-English speaking country it may be hard to find a good

geocoder for that particular language.

Due to these challenges, a lot of works report collecting vasts amounts of data

over many years to obtain a meaningful social graph. Furthermore, a lot of the

message traffic is coming from bots (legitimate automated accounts) while around

1The current rate limit for “GET followers/ids” is 1 request per minute. There are over 300
million Twitter users which would equate to a collection lasting over 300 million minutes.

3



one-fourth of all Twitter users have never posted a single message. There is thus a

danger in that the social graph may be more of a representation of what the bots

are discussing vs. the ordinary populace. One may remove those that generate more

than n daily messages, but the issue remains in that a lot of silent consumers and

those that could not be geocoded will be lost.

1.3 Thesis and Contributions

In this research, we illustrate how targetted collection can be performed to identify

influencers based on a geographic area of interest. The influencer’s followers are

studied for characterizing the influencer and for forming communities representative

of ordinary users from the geographic area. The benefits are that the collection can

occur faster and can capture a lot of users that are silent or hard to geocode.

On Twitter, when a user x follows a user y, it means that the user x will receive

an update from Twitter whenever y posts a message. In a way, each follower is

casting a vote for a particular influencer. The popularity of a user is a measure of

how many others this user can reach and potentially influence.

When many followers are aggregated they can collectively provide useful infor-

mation about the influencer. There are features, such as p1% have a self-reported

location that can be geocoded to ‘New York NY’ (related to location), p2% of fol-

lowers speak English (related to language), and there are also subtle features such

as p3% of followers whose creation time is during a specific hour h (related to time).

4



While the influencer’s followers can help characterize the influencer, the influ-

encer can in turn be used to characterize the followers. This is important because

many followers will lack location information. Those followers that do not have loca-

tion information, can be assigned a location based on other followers. This method

will work, provided that the influencer is serving a small geographic area (a geo-

influencer). For example, local traffic, local businesses, local news, and others are

examples of such influencers. Geo-influencers cater their content to a specific geo-

graphic area and as a result, their followers tend to consist of users that are from

or near the same geographic area. Following a local police department and local

traffic serves as a strong indicator of the user’s location even if the user does not

list a valid self-reported location. Vice versa, an influencer with a global-like reach,

with followers scattered globally, is not going to be useful for this task. Therefore,

it is important to differentiate an influencer with a global following vs. a more local

geo-influencer.

For characterizing the influencer we consider (i) location, (ii) language, and (iii)

time-based features. An important novel finding of our research, is that (i) the influ-

encer’s follower localization can be characterized using only their temporal features

and (ii) targetted collection leveraging Google search can identify geo-influencers

without geocoding.

Our research has collected and utilized Twitter, but is applicable to social media

in general. Social media typically involve users that can publish content and where

the users can follow each other (followers and followee relations). As a result, if

an approach is developed and works over one social network, it should work over

5



another social network provided that the same variables exist. Typically, every social

network has a timestamp for when users post and when users create their accounts.

For this reason, even though we did not collect data from Reddit, Facebook, etc. we

believe that the approach is applicable to these other social networks (because their

structure, their user base, and their features are similar enough to the ones explored

in our research).

Chapter 2 analyzes geocoding performance on users from the USA. Questionable

locations are identified by comparing the coordinates from user’s messages to the

geocoded coordinates from the self-reported location. Our research illustrates that

Google’s Geocoder is not well suited for data in the domain of Twitter. We show

how additional parameters from the geocoder can be used to identify improperly

geocoded locations and improve the geocoder. This helps identify 35% of locations

that are improperly geocoded, mostly due to noisy locations being matched to a

street-level address.

In Chapter 3, we propose a method for identifying city-level communities and

associated geo-influencers. The method utilizes automated Google search queries to

get a set of initial city-level geo-influencers. The followers of these geo-influencers

are used for forming city-level communities. The follow connections from commu-

nities are utilized for identifying additional geo-influencers. Geo-influencers can be

separated from more national types by analyzing if the influencer is connected to

a single city-level community vs. multiple city-level communities. TF-IDF model

where the terms are influencers can be used to generate a ranked list of influencers

for each city-level community. The method is tested on 64 cities from the USA.
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Chapter 4 proposes several ways for computing central location from influencer’s

followers. This central location is used to evaluate the method in Chapter 3. A means

by which a repository of geo-influencers can be established is proposed. Chapter 4

illustrates queries that are problematic for Google. Other factors such as the follower

sample size and query result order are examined. The chapter also illustrates that

the followers of multiple geo-influencers are better aligned to the city, and hence

result in a better city-level community.

In Chapter 5, we show how temporal features can be used for inferring the degree

of localization for both social media users and message traffic. When applied over

message traffic, the approach can differentiate top trending topics and persons in

different geographical regions. Our analysis can help discover whether (and where)

an influencer’s followers are localized, even in the absence of geospatial tags. We

demonstrate how several temporal features can be utilized for distinguishing local vs.

global influencers. For global influencers, spatiotemporal analysis helps understand

the evolution of their popularity over time. We can also infer the number of followers

that were gained in a specified period, which assists in estimating link creation times.

Thus, temporal features can assist in deducing and utilizing information about the

numbers and locations of influencers’ followers.

In Chapter 6, location information is incorporated for building a geocoding solu-

tion off of country region labels from temporal and language data. In the first step,

of the proposed three-step approach, influencer’s followers’ creation times are used

to create a time distribution to predict the time zone’s Coordinated Universal Time

(UTC) offset. The influencer is skipped if a UTC cannot be predicted with high
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confidence. In the second step, the followers’ language features are used to constrain

set of countries associated with the UTC offset. After all influencers are processed

and associated with regions, in the third step, a modified TF-IDF model is trained

on region labels and associated followers’ self-reported locations. The TF-IDF model

learns popular ways that Twitter users refer to locations within the region in their

native language. The multilingual TF-IDF model can then be used to infer the region

of influence, for a new influencer, from influencer’s followers locations.

Using the methods proposed in this paper, a repository of geo-influencers can

be maintained. Chapter 7 shows an application related to content recommendation,

whereby influencer is recommended using (i) the geographic locations, (ii) language,

(iii) gender and (iv) ethnicity. A visualization, utilizing all of the main features

proposed in the thesis, is presented, based on Kibana and ElasticSearch.

8



Chapter 2

Customizing an existing Geocoder for the Twitter Domain

Address geocoding, or simply geocoding, is the process of converting a human-

readable, text-based description of a location, into a pair of (latitude, longitude)

coordinates. Human language is complex, which makes geocoding service a non-

trivial task. Geocoding is typically done via a public search engine (API service)

through Google, Bing, Yahoo, and others. Geocoding services are designed to handle

precise street-level addresses and their performance is, typically, tested for street-level

addresses [18]. In this chapter we explore how well the Google’s geocoder performs

in the domain of Twitter.

We show that Google’s geocoder makes mistakes due to the domain difference

between social media and search engine queries. On social media, users are mindful

of their privacy and hence are not likely to disclose their exact address. In contrast,

search engine queries are not visible to the world and precise address is desired.

Consequently, search engine users, searching for a business name, try to be as precise

as possible.

Publicly available search engines, in particular, Google’s geocoder, are prone to

make mistakes. For example, the query ‘New York, New York’ gets associated with

coordinates for ‘New York New York Casino’ in Las Vegas, NV. This happens due to

the reason that, in the context of a search engine query, ‘New York, New York’ must
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have had a higher click-through rate when a casino comes up vs. New York City.

Similarly, ambiguous queries such as ‘nowhere’, ‘worldwide’, and ‘my house’ produce

coordinates to a matching street-level business address, which are mostly erroneous.

Due to lack of alternatives, researchers utilize Google’s geocoder for processing

self-reported textual locations on Twitter. In this chapter, we evaluate this geocoder

for geographical inconsistencies and errors and how to avoid or minimize them.

Our approach utilizes users that have both: (i) coordinates in messages and

(ii) a self-reported location that produces coordinates via Google’s geocoder. For

these users, it is possible to determine error based on the distance between the

geocoded self-reported location and the coordinates from messages. The average

and standard deviation of the error are used to get the expected range for those self-

reported locations that geocode and don’t geocode well. This allows us to generate

labels automatically and utilize them as training data for a binary classifier. We

need a classifier because there are many users without coordinates in messages and

thus the error measure between geocoder and message coordinates cannot be always

computed. The final classifier gives a warning for 35% of locations; under 20% of

users with such locations are confirmed using message coordinates (illustrating that

they do indeed have poor performance).
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2.1 Related Research

Recent literature reviews have focused on identifying popular research topics using

Twitter [1, 2]. Karami et al. [1] performed topic modeling over 18,849 unique ab-

stracts published between 2006 to 2019. Utilizing Latent Dirichlet Allocation (LDA)

they categorized research into the most popular research topics: sentiment analy-

sis, social network analysis, big data mining, topic modeling, and content analysis.

Disease surveillance, tourism, politics, disaster management are some of the topics

they discovered that require understanding location and that make it into the top

40 topics discovered.

There are three types of Twitter-related locations: user home location, tweet

location, and mentioned location [3]. Our focus is on home location which comes

from the self-reported location field in the user’s profile. This field can be available

for more than a third of the underlying users [4]. Having it for a large sample of

Twitter population, makes it suitable for multiple applications, for example analyzing

population demographics [5], user’s spatial proximity [6], election polls [7], and flu

affected areas [8].

To be useful, each self-reported location needs to be converted to latitude and

longitude. To convert the location information to coordinates, researches often rely

on a single geocoding service such as Google [5, 7]. A combination of services, can give

higher confidence, for example when all report (latitude and longitude) coordinates

within a short distance of each other [4, 6]. Gazetteer solutions such as GeoNames

[9, 10] and custom parsers, to match on the city and state names, are other options

11



[8, 11].

The issue with the self-reported location field is that it can have ambiguous or

irrelevant information such as ‘Planet Earth’ [4, 16]. Basic preprocessing, often via

hand curated dictionaries, involves removing locations that are (i) vague (‘France’)

and (ii) ambiguous (‘Earth’) [5, 6]. More advanced preprocessing involves breaking

the string into address components, fixing each component for misspelling, abbrevi-

ation, and incorrect address format [12].

For validation of a geocoder, coordinates of the self-reported location are com-

pared against the central location in user’s messages. Typically users with messages

that contain GPS coordinates are utilized. The coordinates are aggregated across

a user’s tweets where the most frequent city or the geometric median serves as the

user’s home location [3]. Researchers have reported that the user’s home location

from the self-reported field does not correlate well to the location inferred from tweets

[4, 13]. It has been argued that the user-declared profile locations differ from the

physical locations that are being tweeted from and hence cannot be used as useful

proxies for the physical locations [4]. This is due to both – the self-reported loca-

tions having erroneous or incomplete information [13] and due to tweets that contain

coordinates irrelevant to the user’s home address [14].

It was also shown, that self-reported locations have a poor correlation with the ex-

pected population distribution. Researchers used self-reported locations as a Google-

query, aggregated the returned location info by counties, and compared against 2000

US census data. Their findings showed that the Twitter population is a highly

non-uniform sample of the population with mid-west underrepresented and more
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populous counties over-represented [5].

However, there is evidence that the online communities correlate well with the

network formed with geographic proximity. For example, researchers used network

density and social distance to show that smaller networks are more socially clustered

and extend a smaller physical distance [6]. A more recent paper illustrated that

spatial proximity and geographic factors do affect online interactions [17].

In our study, we illustrate that some of the errors are due to the geocoder itself

in that it attempts to match a home location not only on geographic name but also

on establishment and business name. Hence, the discrepancy between self-reported

locations and expected population distributions, observed in previous studies, may

partially stem from these geocoding errors.

2.2 Data

Our data consists of 1,038,826 Twitter users with 131,925 unique nonempty self-

reported locations. Each user had (i) a self-reported location that geocoder associ-

ated with the contiguous US and (ii) tweets contained either single point coordinate

(coordinate geo-tag) or bounding box coordinates (place-tag). Place-tag is currently

the default policy for associating geographic information with a tweet [15]. The

bounding box coordinates from place-tag were transformed into a single point at the

center. Point coordinates were available for 491,365 users.

For geocoding, we utilized a Python implementation for Google Maps Geocoding
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V3 API1. Google allowed a maximum of 2500 queries per 24 hours so the geocoding

results were collected over many weeks. Geocoder’s region was set to ‘US’ and

language to ‘EN’.

2.3 Error Measure

We refer to the home location from coordinates in tweets as Tweet-based Home

Location (THL) and the geocoded self-reported location in the user’s profile as Self-

reported Home Location (SHL). For each user its THL was computed using the

geometric median over geo in user’s tweets. The error for each user u is the distance

in miles, computed using Vincenty’s formula [19], between THL and SHL:

ED(u) = distance(THL(u), SHL(u)) (2.1)

Three popular measures were used to measure the overall error across a group of

users U [20]; the mean, median, and the proportion of users with error under 100

miles (note: higher values are better for ACC@100 while lower values are better for

MeanED and MedianED):

MeanED =
1

|U |
∑
uεU

ED(u) (2.2)

MedianED = medianuεU{ED(u)} (2.3)

1https://developers.google.com/maps/documentation/geocoding
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ACC@100 =
|{uεU |ED(u) ≤ 100}|

|U |
(2.4)

2.4 Categorizing Locations via Error Analysis

As a preprossing step we manually labeled 100 examples of geocodable and 50 exam-

ples of impossible to geocode strings. The impossible to geocode strings are mostly

concepts that do not refer to an address, such as ‘my house’, ‘the internet’, ‘every-

where’, etc. Table 2.1 and 2.2 show sample of strings for each. The last row in each

table shows the average and standard deviation across the three error measures.

The last row of Table 2.1, shows that 75 − 89% (using average +/- 1 standard

deviation of ACC@100) of users are within a 100-mile radius of geo from tweets.

We checked that each maps to the expected city i.e. the geocoder provides accurate

coordinates for these queries. Despite string being accurately geocoded, some of the

coordinates from messages do not align because they may be from places visited that

are far from the user’s real home location.

Table 2.2 shows strings that are not possible to geocode since most refer to

popular concepts instead of a physical address. From last row, we expect less than

3.5% (using average +/- 1 standard deviation of ACC@100) of users be within a

100-mile radius of geo in their tweets.

Looking at the ACC@100, the number of users, and expected error rates allowed

us to look at specific locations more closely and put them into one of four categories.

The expected best and expected worst error rates give the ACC@100 range for how
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Table 2.1: Expected Error for Accurately Geocoded Strings (last row computed over
100 examples)

Location Users MeanED MedianED ACC@100

Los Angeles, CA 22431 436.21 9.89 0.79

New York, NY 15375 344.08 5.08 0.81

Chicago, IL 13788 229.53 6.11 0.81

Houston, TX 11676 186.95 7.09 0.83

Los Angeles 11380 302.02 9.89 0.86

Washington, DC 10500 300.96 1.48 0.8

... ... ... ... ...

Average±STD 205.1±.29 9.94±25.68 0.82±0.07

Table 2.2: Expected Error for Impossible to Geocode Strings (last row computed
over 50 examples)

Location Users MeanED MedianED ACC@100

Earth 3125 3065.99 1308.67 0.00352

Worldwide 1277 2583.70 1231.46 0.00235

Everywhere 1042 1986.65 1251.54 0.02303

Global 850 2353.39 1229.36 0.03412

Planet Earth 722 2342.93 1544.00 0.0277

Hogwarts 574 3385.79 2141.28 0.01568

... ... ... ... ...

Average+/-STD 2657.75+/-1334.2 1968.74+/-1787.29 0.016+/-0.019
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an accurately vs. inaccurately geocoded location is expected to behave. An example

of each location category is shown in Table 2.3.

• Category 1: high ACC@100 (≥ 0.75 using lower bound for well-formed loca-

tions) and many users. Generally, it is a well-formed self-reported location that

is accurately geocoded. Example: ‘New York, NY’.

• Category 2: low ACC@100 (≤ 0.035 using upper bound of impossible to

geocode locations) and many users. Generally, a popular human concept that

is not possible to geocode such as Earth, Worldwide, and others.

• Category 3: average ACC@100 (near 0.5) and many users. Usually ambiguous

that may be associated with multiple geographical places or a popular concept.

For example New York, USA may refer to the state or the city. Disneyland is

associated with the park in CA, but users may mention it as a popular concept

without residing close to it.

• Category 4: low/high ACC@100 (near 0 or 1) and a few users. Given a small

number of users it is hard to categorize individual locations as clearly right

or wrong, i.e. we expect a poorly geocoded location to occasionally have high

ACC@100 and vice versa.

Fig. 2.1 shows the ratio between Category 1 vs. Category 2 locations as the

minimum number of users increases up to one-hundred. The figure illustrates that

there are more training data points for Category 1. There are more category 1

locations with the ratio going from 10 to 1 for ten users to 20 to 1 for one-hundred
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Table 2.3: Location Category Examples

C Location to Google Mapping Users ACC@100

1 Los Angeles, CA to 22431 0.79484

Los Angeles, CA, USA

2 Earth to 15612 S Keeler Terrace, 3125 0.00352

Olathe, KS 66062, USA

3 New York, USA to New York, NY, USA 9010 0.57469

3 Disneyland to 1313 Disneyland Dr, 168 0.58333

Anaheim, CA 92802, USA

4 Ocean Drive Miami, FL to 1 0

Ocean Dr, Miami Beach, FL 33139, USA

4 Somewhere, Fishing to 1305 Snell Isle 1 1

Blvd NE, St. Petersburg, FL 33704, USA

users. Locations associated with Category 1 and Category 2 will be used in the next

section as training data for a classifier.

2.5 Classifier for Identifying Poor Geocoding

Google’s geocoder will attempt to geocode queries such as ‘my house’ by matching to

a business name. Such self-reported locations are common on Twitter due to the user

being purposely ambiguous to preserve privacy. The classifier utilizes features, such

as overlap between query and geocoder’s associated address components, in order to

make a prediction of whether Google’s geocoder should be trusted.
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Table 2.4: Google Geocoder Output
Additional Google Geocoder Output besides Coordinates

Output Type Description

address Each component consists of the component type, short name,

components and long name. Example types are country, ADM1 (state),

ADM2 (county), locality (city), street number, route,

neighborhood name, postal code, and others.

formatted address Full address matched by Google, may not include all of

the address components (for example county usually omitted).

address Describes what the address is associated with, example values:

type point of interest, university, restaurant, and others.

Google Geocoder Output for query ‘New York, New York’

Output Type Output Value

coordinates lat: 36.1023715, lng: -115.1745559

address street number: 3790, route: South Las Vegas Boulevard

components locality: Las Vegas, ADM2: Clark County, ADM1:

Nevada, country: United States, postal code: 89109

formatted address 3790 S Las Vegas Blvd, Las Vegas, NV 89109, USA

address type casino, establishment, lodging, point of interest

Table 2.5: Top 10 Most Frequent Address Type (Left) and Component (Right)

Address Type Ratio Address Component Ratio

political 0.6298 country 1

locality 0.566 administrative area level 1 1

establishment 0.3101 locality 0.9639

point of interest 0.3068 administrative area level 2 0.9481

store 0.0563 postal code 0.5652

food 0.0511 route 0.3348

neighborhood 0.04 street number 0.3027

restaurant 0.0395 administrative area level 3 0.2005

university 0.0249 neighborhood 0.1827

route 0.0246 postal code suffix 0.1308
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Figure 2.1: Category 1 are locations with a high accuracy where at least 75% of users
post messages with coordinates that are within 100 miles of coordinates geocoded
from the self-reported location. Category 2 has low accuracy where less than 3.4%
of users match.

2.5.1 Features

Table 2.4 shows additional output, Google’s geocoder produces, besides the latitude

and longitude coordinates, and gives as an example, the output for query ‘New York,

New York’. Notice that for the query, the street number in address components as

well as the address types: (i) casino, (ii) establishment, (iii) lodging are indicative

of an address that is a street level address (which could be used to assign a lower

confidence for this prediction).

Across all of the locations in our dataset, there were a total of 73 unique address

components and 116 unique address types. Table 2.5 shows the top 10 address

components and address types that account for the biggest ratio of all locations.

The address types of store, food, restaurant should not represent a plausible location

that most Twitter users will associate themselves with, but surprisingly over 5% of

locations in our dataset are some sort of a store (indicating potential errors).

20



After looking at all address components, our expectation was that most Twitter

users will report a location that is associated with: (i) political entity, (ii) zip, or

(iii) university address type (as these are large enough to be reasonable locations to

associate with). A location with one or more of these attributes is classified as a

high-level location; otherwise, it is classified as low-level (street-level).

(a) Category 1

(b) Category 2

Figure 2.2: Top – Large ratio of Category 1 locations associated with a high-level
address (as in city-level). Bottom – Large ratio of Category 2 locations (impossible
to geocode) are associated with low-level (as in street-level). The chart confirms that
majority of properly geocoded locations are not at street-level.
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Fig. 2.2 (top) shows that the majority of category 1 locations get associated

with a high-level location type. This is especially true as the minimum number of

users that utilize location increases. For locations with number of users ≥ 100, the

high-level location type captures 99.6% (843 out of 846) of category 1 locations.

Conversely, Fig. 2.2 (bottom) shows inaccurately geocoded locations captured

by category 2 are associated with low-level location type. The overall trend does not

decrease, but the number of associated mistakes is small because the number of cat-

egory 2 locations is small (only 43 locations used by at least 100 users). Examples of

locations that do get associated with a high-level location type: Midwest to Midwest

WY, Nederland to Nederland CO, Nowhere to Nowhere OK, Moon to Moon PA, and

others where a popular concept matches a city name.

A number of additional features were proposed based on overlap between query

and geocoder association. All of the features proposed are summarized below:

• F1: Political Entity = political address type without a street number address

component. The political address type refers to recognized divisions of a phys-

ical territory; locality, neighborhood, colloquial area, sub-locality, and others.

• F2: Zip = postal code address type

• F3: University = university address type

• F4: Text Overlap = returns percent character overlap between textual self-

reported location and textual address associated by the geocoder.

• F5: City/State exact = returns true if tokens from the query can be combined
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to match city and state address component exactly, false otherwise.

• F6: Populous City = for unique cities with a population over 50K, it is assumed

that city name may be known to most human users such that the state need

not be spelled out. Location matched to 2016 US census data using city and

state that Google associates with the query string.

2.5.2 Classifier

Accurately geocoded locations (TRUE label) are those with ACC@100 ≥ 0.75 (cat-

egory 1). Impossible to geocode locations (FALSE label) are those with ACC@100

≤ 0.035 (category 2) (each self-reported location used by at least fifty users). The

classifier utilizes the proposed features for predicting when Google’s geocoder will

perform poorly.

For the classifier, we considered Näıve Bayes and Decision Tree (using gain ratio,

information gain, and Chi-square interaction detector (CHAID)). Classifier trained

using 5-fold-cross-validation utilizing the RapidMiner software package. Fig. 2.3

shows, the best performing classifier, Decision Tree using the CHAID criterion.

2.5.3 Performance

Table 2.6 compares the performance using three error measures proposed for locations

that pass and fail classifier. Out of 131,925 self-reported locations in our dataset,

46,091 or 35% were classified as low confidence (Google geocoder’s output should not
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Figure 2.3: Decision Tree Classifier for Identifying Geocoding Errors

Table 2.6: Geocoding Performance over Users

Location Set MeanED MedianED ACC@100

Fail Classifier 1705.12 879.45 0.1969

Pass Classifier 237.1 6.3 0.8027

be trusted for these). Under 20% of users with such locations are confirmed using

message coordinates (illustrating that they do indeed have poor performance). In

contrast, for those locations that pass the classifier, over 80% of users are confirmed

via message coordinates.

The rules of the classifier illustrate that it is important to consider whether a

location that is matched by the geocoder contains both the city and state as this

is less ambiguous than a city name by itself. Google’s geocoder is limited by the

amount of API calls it can freely make daily and thus matching using a rule-based

approach (using locations that contain a known city/state or city/country) is an

option for a high precision/low recall solution.
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2.6 Conclusions

The research has explored various types of geocoding errors and has established ex-

pected error rates for well and poorly geocoded locations in the context of Twitter.

These measures were used to develop a classifier for whether the commercial off-the-

shelf geocoder is performing as it should on Twitter data. In our dataset, close to

35% of self-reported locations geocoded using Google resulted in a warning. Under

20% of users with such locations were confirmed using message coordinates, illus-

trating that the Geocoder does exhibit a poor performance for these locations. In

contrast, for those locations that pass the classifier, over 80% of users are confirmed

via message coordinates. In the next chapters, for those users whose location cannot

be determined from textual self-reported location, other features will be described

for inferring location.
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Chapter 3

Identifying Local Influencers and City-Level Communities

3.1 Background

User’s popularity on Twitter can be measured by how well the user is recognized by

others, such as through others’ mentions and follows. Understanding the location

of popular users is needed for content recommendation and other use cases. For

example, an advertising agency, that is performing a city-wide promotion, will be

interested in users that serve important roles within that city such as the city’s mayor.

Generating crime statistics across cities could require focusing on local fire, police,

and other emergency related influencers. Tracking sports could require tracking local

football, basketball, baseball, and others relevant to the city of interest.

The standard approach first geocodes a large number of users using each user’s

self-reported location. Second, the users whose locations map to within x miles of

the city of interest are used to establish the city-level community. As has already

been noted in Chapter 2, the biggest obstacle to this approach is the lack of a good

geocoding solution.

In contrast, our approach does not require geocoding and instead leverages the

power of Google search along with the follow structure on Twitter. We found that

querying for (city, state, plus keyword ‘Twitter’) is likely to return Twitter influencers
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that are specific to the city (geo-influencers). The geo-influencer’s followers form the

basis of a city-community. The benefit is that many of the followers may not contain

a geocodable self-reported location, but make it in as part of our approach (this

is because following a geo-influencer serves as a strong indicator of the follower’s

location). Following a local police department and local traffic updates serve as a

strong indicator of the user’s location even if the user does not list a geocodable

self-reported location field.

The Term Frequency-Inverse Document Frequency (TF-IDF), where the Term

Frequency measures the number of follows by the community, is used to produce

a ranked list of most popular geo-influencers. In this way, by fusing the power

of Google for finding initial geo-influencers and the crowd-sourcing power of the

underlying Twitter community, we can associate hundreds of additional city-level

geo-influencers and use these to further refine the city-community. A ranking of

national-level influencers are those with followers across multiple city-level commu-

nities.

3.2 Related Research

There is a great amount of research related to Twitter user’s activity, popularity, and

influence [21]. Activity measures actions that a user takes (such as tweets, retweets,

mentions, and replies); influence measures whether user’s actions are capable of

affecting other users’ actions in the network; and popularity measures how well the

user is recognized such as through others users’ mentions and follows. In this research,
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we are focusing on popularity through other user’s follows. This work is related

to Location-Aware Influence Maximization (LAIM) [22, 23], where the goal is to

identify top k users to maximize the expected number of influenced users in a specific

geographical area.

Multiple features can be used to establish a community of users with some features

in common [24]. For example, (i) structure-based features where two users both

follow the same influencer [25-28], (ii) activity-based features such as how frequently

and during what times the user is active [29-31], (iii) content-based features such as

the type of users, topics, URLs being mentioned [32-34], and (iv) communication-

based features such as retweet, reply, and mention [35, 36].

The second step is to associate users with a geographical area (usually at the city-

level). The user’s location may be geocoded from the self-reported profile location

or aggregated from coordinates in the user’s tweets [3]. For a user without location

information, the median of user’s friends’ location can be used [13, 37].

Finally, once the communities and the underlying geographical locations are

known, the ranking of the users for each geographical area can be done using tradi-

tional graph metrics such as degree centrality [38], custom measures that for example

punish spammers [39], and variations on PageRank [40-42].

A recent paper, that is most directly related to our research, explores the problem

of identifying relevant geo-influencers across three US cities: Boston MA, Bristol CT

and Seattle WA [42]. Their network was built using social activity based interactions
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retweet, reply, and mention present in over five billion tweets. They relied on self-

reported profile location information for extracting a ranked list of influential users

whose location is within 100km of the city of interest. The ranking was performed

via several modified PageRank based algorithms. They showed that self-reported

locations were needed for filtering out global users that are not from the area such

as @YouTube. However, it was also shown that limiting users within x miles of the

location of interest would filter out other important users, such as @Patriots, that

had a strong local connection spanning beyond 100 km.

We propose a novel way of performing a targeted collection that results in a

community of users for each city location. For each city, the communities stem from

an initial pool of influential users identified via automatic Google searches. Our

approach does not rely on any location information. In this way, each community

may contain passive readers that do not tweet and users with no location information.

Most importantly our city communities are made up of followers of geo-influencers

that are known to be associated with the city of interest. A modified TF-IDF measure

results in ranked lists that perform well against hand-labeled data including data

from [42], but the overall collection requirements are magnitudes smaller.

3.3 Approach

Given a city of interest and a list of other cities from which to distinguish, our

approach will follow the process outlined in Fig. 3.1. The figure shows four main

steps: (1) Google search to discover known geo-influencers for each city, (2) ordinary
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Figure 3.1: Top N geo-influencers extracted from K Cities

followers of geo-influencers from step 1 are used to establish a city community, (3)

collect friends of the city community from step 2, and (4) a modified TF-IDF measure

is used to identify geo-influencers from step 3. In our work, we define ‘an ordinary

follower’ as one who has between 20 and 100 friends, less than 500 followers, not

verified by Twitter, without a URL, and that does not generate over five tweets per

day since created. An influencer is simply a user with at least 500 followers.

Steps 1-3 shown on the left side of Fig. 3.1 are repeated for each city after which

step 4, illustrated on the right, is applied. Each component of the process from Fig.

3.1 is described in more detail in the subsections below.

Step 1: Google Queries for getting the Initial Geo-Influencers– Given a

query that consists of (city, state, ‘Twitter’) (and an optional keyword such as

‘Sports’) Google returns a list of URLs. In the first 100 Google hits, our interest is

in the following URL structure: ‘https://twitter.com/’ + screenname + ‘?lang=en’.

We record the screenname and the associated URL hit number. In this manner,
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Google search associates influencers with a city. In our work, the top ten influencers

are used. By utilizing optional keywords, such as ‘News’ or ‘Sports’, we can focus on

the geo-influencers by topic. For example, the query ‘Syracuse, NY Twitter News’ re-

sults in the top three news-related influencers: @SyracuseUNews, @syracusedotcom,

and @NewsChannel9.

Step 2: Initial Geo-Influencers to City Community– Twitter API is used to

collect followers of initial geo-influencers; thus forming the basis of the city commu-

nity. According to a 2016 Twitter SEC filing, approximately 8.5% of all Twitter

users are bots [43]. Bots have many connections and post many messages. Thus, to

avoid/minimize bots we focus on ordinary followers (one of the criteria is not posting

over five messages a day). To focus on the users that are interested in a single city,

we also ensure that city-communities are disjoint, i.e., no user belongs to two or more

communities.

Step 3: City Community to Additional Geo-Influencers– Twitter API is

used to collect friends of users that make up the city community; users with over 500

followers form a pool of additional ‘potential’ geo-influencers; potential because in-

fluencers which are popular across multiple cities may be included (TF-IDF measure

helps filter these out).

Step 4: Ranking via TF-IDF– As mentioned earlier, traditional approaches find

the influencers using network based methods, such as the degree centrality or PageR-

ank. In our research, we apply TF-IDF, which is intended to reflect how important

a word is to a document in a corpus. To apply TF-IDF measure it was critical to

have well defined city communities (those consisting of users that are from the city).
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For each city, a document is made up of all potential geo-influencers that the city

community has made a connection to. The process shown on the left in Fig. 3.1

builds such a document for each city.

Let C represent the set of all cities, community(cv) return the set of ordinary

followers that make up the community for city cv, and friends(ow) return the set of

influencers that the user ow follows:

• C = {c1, c2, ..., ck}

• community(cv) = {o1, o2, ..., om}

• friends(ow) = {u1, u2, ..., un}

Term frequency for user ux and community cv corresponds to total friend con-

nections to user ux within community divided by total friend connections:

TF (ux, cv) =

∑
oεcommunity(cv)

|uxεfriends(o)|∑
oεcommunity(cv)

|friends(o)|
(3.1)

As an example, given community(c1) = {o1, o2, o3} where friends(o1) = {u1, u2},

friends(o2) ={u2, u3}, and friends(o3) = {u1, u2, u3}: TF(u1, c1) =(1+0+1)/(2+2+3)

= 2/7, similarly TF(u2, c1) = 3/7 and TF(u3, c1) = 2/7.

Inverse document frequency is given by the total number of cities divided by the

number of cities user ux has a connection to (cities where that user is mentioned

more than once):

IDF (ux) = log

(
|C|∑

cvεC
|{TF (ux, cv) > 0}|

)
(3.2)
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As an example, given another community(c2) = {o4} where friends(o4) = {u1,

u4}: IDF(u1) = log(2/(1+1)) = 0 and IDF(u4) = log(2/(0+1)) = log(2).

Combining formula 1 and 2 gives a formula for ranking a potential influencer ux

for community cv:

TF − IDF (ux, cv) = TF (ux, cv) ∗ IDF (ux) (3.3)

3.4 Data

Using the data from the 2016 Census Bureau we focused on known cities in the

USA. We built a set of cities by initially starting with the most populous city and

incrementally adding other most populous cities as long as they were at least 30

miles apart from cities already in the set. This ensured that the selected cities were

geographically spread apart. The set so obtained contained 264 (city, state) pairs.

The process in Fig. 3.1 was used to generate three datasets based on three

different keywords that made up the Google query: (i) Twitter, (ii) Twitter News,

and (iii) Twitter Sports. Out of 264 cities, only 64 cities contained at least ten geo-

influencers for each search type. Followers of geo-influencers were used to establish

each city community. The followers that simultaneously follow many geo-influencers

were prioritized. It was required that each city community have at least 100 and at

most 1000 users. Fig. 3.2 shows the collection process for the network associated

with each city and the corresponding maximum network size.

In addition to the three datasets described above, we obtained the fourth dataset
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Figure 3.2: Collection process from initial influencers to city-level community to a
new set of influencers (drawn to scale)

where the city community is made up of users whose self-reported locations were

verified via geocoder (using Google Maps API1) to within 10 miles of city’s (latitude,

longitude). For this dataset, ordinary followers were selected from the followers

of major news outlets: ABC, Politico, PBS, WSJ, Fox News, Reuters, CNN, and

MSNBC. For each city community, we collected at least 100 users but at most 1/500

of the city’s population. Out of the 64 cities covered by the other three datasets,

only 19 cities provided a large enough sample size. These 19 city communities across

the four datasets were: Charlotte NC, Washington DC, Wichita KS, Tucson AZ,

Denver CO, Madison WI, San Diego CA, Syracuse NY, Lansing MI, Toledo OH,

Boston MA, Columbia MO, Chicago IL, Springfield MO, Rochester NY, Lubbock

TX, Atlanta GA, Topeka KS, and Albany NY.

Comparing results from the first three datasets showed the effect of differing

queries, i.e., how the resulting communities differ in geo-influencer ranking. The

1https://developers.google.com/maps/documentation/geocoding
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Table 3.1: Dataset Statistics across 19 Cities that occur within each dataset. The
total number of users across the 19 city-communities is shown as well as the average
number of users per city-community and the associated standard deviation.

Set Seed Type Avg Stnd Total

D1 Google using Twitter 692.21 203.52 13152

D2 Google using Twitter News 728.95 198.35 13850

D3 Google using Twitter Sports 516.32 324.30 9810

D4 Major National News 726.79 944.03 13809

fourth dataset allows us to compare how the city community generated via geo

information differs from community based on follow connections to Google identified

influencers. Table 3.1 summarizes the four datasets collected across these 19 cities.

Table 3.1 shows the number of users, average, and standard deviation per community.

From the table, we see that Dataset 4 has a high standard deviation, i.e., due to

bigger samples for bigger cities. Dataset 3, related to ‘Twitter Sports’, has a smaller

community than the more general topics: ‘Twitter’ and ‘Twitter News’.

3.5 Evaluation

3.5.1 Impact of Keyword in Google query on Final Rank

We analyzed the first three datasets. The ground truth, in this case, are the geo-

influencers using Google search. Each dataset contained 640 geo-influencers across

64 cities (1920 for all three datasets). Venn diagram in Fig. 3.3 (left) shows 79 out

of 1920 or 4.1% of geo-influencers associated by Google overlap across three search
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Figure 3.3: Seed Twitter User Overlap (left) vs. Top Ranked User Overlap (right)
across 64 cities for the three search types). While the initial queries produce an
initial set of influencers (seed) that differ (shown on the left), the resulting influencers
that are extracted from city-level communities formed from seed have quite a bit of
overlap (shown on the right). This illustrates that the method is robust in that
different influencers can be used as a seed to get to the same end result (as long as
the initial influencers are indeed local to the city of interest).

types with more overlap between Twitter and Twitter News. Ranked list via TF-

IDF, Venn diagram of Fig. 3.3 (right) shows a more significant overlap, 297 out of

1914 or 15.5% of users. The figure shows that on average more than half of ranked

geo-influencers overlap (with Twitter and Twitter News being most aligned). This

illustrates that different initial geo-influencers can lead to similar final rankings.

3.5.2 Performance against Google Ranked Geo-Influencers

Google is driven by those webpages that a user is most likely to click on while the

number of followers drives Twitter’s popularity. In the majority of cases we have

found that there is an overlap between Google associated users and top-ranked users

via TF-IDF, especially as n increases. We calculated the ratio of overlap between
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Figure 3.4: Percent of Google geo-influencers confirmed by each query type as the
ranked list grows in size. Followers of major news that were verified via geocoder
follow similar influencers as returned from Google.

the two as:

Overlap(X(cv), Y (cv, d, n)) =
|X(cv) ∩ Y (cv, d, n)|

|X(cv)|
(3.4)

Where X(cv) refers to a set of known geo-influencers that are associated with city

cv from Google and Y(cv, d, n) refers to top n ranked influencers stemming from the

TF-IDF measure for city cv and dataset d.

The top ten geo-influencers across three Google search types are combined pro-

viding a larger set to compare against (24.58 geo-influencers on average). Fig. 3.4

shows, for each dataset, the average percent of Google geo-influencers confirmed by

each query type as the ranked list grows in size. The metric is averaged across 19

cities that are present in each of the four datasets. Despite each dataset representing

slightly differing communities, due to having been formed using different seeds, we

see that they all confirm a similarly large portion of geo-influencers that were deemed

relevant by Google with generic Twitter search type working the best.
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Table 3.2: Overlap for Geo-Influencers from Google vs. Dataset

Search Type (X) D1 D2 News D3 Sports D4 News

Twitter 0.69 0.62 0.37 0.55

Twitter News 0.71 0.74 0.47 0.61

Twitter Sports 0.12 0.12 0.28 0.08

all 0.43 0.42 0.33 0.34

In a similar fashion, Table 3.2 shows the top 30 geo-influencers using TF-IDF vs.

top ten geo-influencers for each Google search type. The last row is a combination

of the top ten Google geo-influencers across datasets D1-D3, also used in Fig. 3.4.

Ratios in bold highlight the best aligning datasets. It could be argued that each

dataset simply confirms the same initial seed that was used to establish the dataset.

D4 was established, to illustrate that communities established without leveraging

Google would also confirm them. Communities from D4 were established from self-

reported locations of followers following major news influencers and hence did not

utilize Google in any way. Despite this D4 had a high overlap for Twitter News

search type (0.61, this overlap helps confirm that the proposed approach can work

in a similar fashion as the one that relies on geocoding).

Next, we focus on Google geo-influencers that do not make it into ranked lists

even for very large n. For instance, for n=1000 there were 67 such geo-influencers.

We checked each of the 67 geo-influencers by hand. 37 out of 67 geo-influencers were

found accurate, but all had fewer than 500 followers to be considered by our method.

These referred to local high schools, local businesses, small local sports teams related

to tennis, volleyball, and others. To incorporate these geo-influencers, we would need

to change our threshold for influencer from 500 to 100 followers.
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Next, examples of Google geo-influencers that were found inaccurate. @City-

ofToledo has never tweeted, with 105 followers, being in the fourth search result for

the query ‘Toledo OH Twitter’ (this is probably due to close overlap in keywords

with @city of toledo the first search result and official city account). Some influ-

encers have a national follower base, but are associated with a single city such as

@RiddellSports associated with ‘Chicago, IL Twitter Sports’. Google search results

fluctuate over time with about two-thirds of the 67 accounts no longer recommended

after the search was repeated about a month later. Hence verification is still recom-

mended for optimal results when establishing initial geo-influencers from which each

city community is to be established.

3.5.3 Communities via Location vs. Google Seed

Dataset D4 was established using followers of major national news outlets whose

self-reported location could be associated with the city of interest. The issue with

self-reported locations is that less than a quarter of all users had locations that could

be geocoded. Also, we found geocoding errors for example ‘Salem’ was associated

with ‘Salem, MA’, but often the location referred to Salem which is in India. As a

result, we focused on high confidence locations that specify both city and state, but

such locations were challenging to find for smaller cities despite collecting on millions

of users.

The benefit of datasets D1-D3 is that they were assembled much quicker than
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D4 and they covered many more cities with more users per city. For users in D1-

D3, over 64 city communities, the percent of users with the non-empty self-reported

location was only 28.2%. For those users that did specify their location, on average

41.6% contained the city name associated by our method, thus illustrating that these

communities are well structured.

3.5.4 City Level Evaluation

Evaluation in [42] listed ground truth for Boston MA via these 20 geo-influencers: (i)

News = wcvb, bostondotcom, cbsboston, 7news, bostonherald, (ii) Sports = redsox,

celtics, nhlbruins, thebostonpride, bostoncannons, (iii) Gov = marty walsh, cityof-

boston, bostonpolice, bostonfire, masddot, and (iv) University = bu tweets, harvard,

mit, berkleecollege, northeastern (influencer cbsboston renamed to wbz). The top

five for the best performing ranked list from [42] contained: Patriots, BostonGlobe,

OnlyInBOS, RedSox, and NHLBruins (so in their approach the last two matched the

ground truth). For our approach, table 3.3 shows the top 30 geo-influencers (those

in bold match the ground truth).

Our approach carries as many as four matches in the top five and as many as

twelve matches in the top thirty geo-influencers. This compares favorably to the

results reported in [42]: two matches in the top five and eleven matches in the top

thirty influencers. None of our ranked lists incorporate high-level influencers such as

@YouTube. Furthermore, our approach allows targeted city collection which results

in an overall network being orders of magnitude smaller. As was shown in Fig. 3.2
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Table 3.3: Top 30 Geo-Influencers extracted from each Dataset

D1 D2 News D3 Sports D4 News

marty walsh boston25 cityofboston visitbostoncity

cityofboston 7news hiddenboston cityofboston

bostondotcom wcvb wcvb bostondotcom

bostontweet bostondotcom marty walsh marty walsh

mbta bostonpolice eatboston bostontweet

onlyinbos onlyinbos bostondotcom mbta

7news massstatepolice bostontweet bostonmagazine

bostonpolice bostonglobe mbta bostonfire

bostonmagazine mbta bostonmagazine 7news

massgovernor cityofboston boston25 bostonpolice

wcvb marty walsh massstatepolice mayortommenino

hiddenboston massgovernor massdot massdot

boston25 bostonmagazine 7news eatboston

bostonglobe bostontweet bostonfire bplboston

massstatepolice wbz massgov wcvb

bostinno 985thesportshub theimproper bostonglobe

bostonpwd nhlbruins bostonpolice massgovernor

nhlbruins scottzolak bosbizjournal massgov

stoolpresidente jerry remy wbz boston25

edelman11 stoolpresidente mbta alerts massstatepolice

wbz wilfork75 massema bostonparksdept

theimproper hiddenboston mbtatransitpd bostinno

bostonfire justamasshole eaterboston theimproper

redsox lowellsunnews massgovernor hiddenboston

celtics celtics harveywcvb wbz

bos311 edelman11 universalhub visitma

universalhub bostinno mayortommenino universalhub

bostonbtd theimproper bostinno onlyinbos

jerry remy toucherandrich 985thesportshub bostoncalendar

bostonherald nesn fredtoucher bostonschools
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Table 3.4: From each Dataset Top Geo-Influencers containing keyword Celtics

D1 D2 News D3 Sports D4 News

celtics: 25 celtics: 25 bdcceltics: 149 celticsblog: 304

celticslife: 525 celticslife: 115 nbcsceltics: 199 nbcsceltics: 386

celtics: 226 celticslife: 424

r bostonceltics: 261 bdcceltics: 483

celticsviews: 293 celtics: 975

celticsfanclub: 596

there are at most 100,000 users collected per city.

A number of geo-influencers overlap across the four datasets. This again rein-

forces that similar results can be achieved via differing city communities as long as

those communities are local to the city. What differentiates communities is that

the ranking will be slightly tilted towards the query. For example, Table 3.4 shows

geo-influencers, and the position in the ranked list of 1000, that contain the key-

word ‘Celtics’ (a popular basketball team associated with Boston). As expected, D3

produces the most sports related influencers (because query also contained ‘sports’).

3.6 Geo-Influencer Collection Runtime

Typically it is assumed that the social graph has already been collected and then

different algorithms use its structure and various features in an attempt to identify

the most important nodes. The algorithms are evaluated based on accuracy and

runtime. We noticed that the algorithm runtime is negligible compared to the data

collection time i.e. it is not uncommon for a researcher to have spent a year collecting

the dataset, a dataset that cannot be fully shared with others (only unique ids can
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be shared and crawling on ids can take about as long as starting a new collection

from scratch), and the dataset may not work all that well for a scenario that targets

a certain demographic.

Up to 1% of all Twitter message traffic can be collected using the unfiltered stream

of tweets (from our experiments around 4 million tweets a day). This may seem like

a lot of data, but for a specific use-case such as the 2014 annexation of Crimea by

Russia, there might not be that many messages from the area of interest. The method

proposed in this chapter is useful for identifying influencers and corresponding user

communities from a particular geographic area. As an illustration, we show the

expected collection times for three methods:

• M1: using the union of followers from multiple geo-influencers

• M2: using followers of a well-known influencer (national or global like)

• M3: using message traffic

For influencers, the self-reported locations of the followers are analyzed. For

message traffic, the self-reported locations of the users that generated the message

are analyzed. For this illustration, we are interested in forming communities for

cities: Syracuse and Buffalo of USA. The users whose self-reported location matches

one of the cities are recorded. Each self-report location is turned to lowercase and it

is checked whether the city name is present within it.

The geo-influencers associated with a city are found via automated Google search.

All of the Twitter influencers identified in the top 100 URLs by Google are utilized.
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All of the followers for these geo-influencers were collected for each city; for

Buffalo2, a total of 2767322 were processed vs. 1165345 for Syracuse3 (some followers

repeat across geo-influencers, number of unique followers were 1774172 vs. 566815,

respectively). The collection time was 29.3 hours for Buffalo and 13.16 hours for

Syracuse. Fig. 3.5 shows the number of unique followers that contain the city name

in their self-reported location per 25000 followers for the two communities. The

number of new followers with Syracuse in their self-reported location plateaus at

around 20K. While the followers that contain Buffalo in their self-reported location

continue to rise to 55K.

Using influencer’s followers it takes around 110 seconds to process 5000 followers4.

So theoretically, 3.92 million followers can be collected and processed daily. There are

other factors impacting collection such as how quickly one can perform preprocessing

and writes to a database which is why our collection times are a little different.

For method M2, using global/national like influencer, @NPR is used with 7.054M

followers collected. This influencer was chosen because it is popular in the USA (a

more global influencer like @CNN will perform worse as it will capture a smaller

2Followers collected over Buffalo geo-influencers (28 total): DAErieCountyNY, NWSBUF-
FALO, BfloBizFirst, SPECNewsBuffalo, WBFO, BPDAlerts, RedandBlack716, BFLO CC, Buf-
falo Schools, SURJBuffalo, markpoloncarz, USACE Buffalo, BuffaloSewer, BuffaloBills, MobBuf-
falo, BuffaloSabres, wnymedia, IIBuff, news4buffalo, BuffaloNiagara, ECDOH, WGRZ, TheBuf-
faloNews, MayorByronBrown, buffalo ny, BuffaloEats, FBNY WNY, WKBW

3Followers collected over Syracuse geo-influencers (28 total): VisitSyracuse, SPECNewsCNY,
Cusememes, LO Syracuse, SyracuseAirport, dailyorange, CNYCentral, syrbasketball, SyracusePo-
lice, NYSFair, CuseWBB, chrsbakr, AndrewDonovan, SyracuseOn247, Cuse Tennis, SyracuseU,
Stephen Bailey1, Cuse MBB, NewsChannel9, BenWalsh44, OnondagaCounty, Cuse, CuseFootball,
AdrienneSmithTV, SyracuseUNews, syracusedotcom, syracuseITC, Syracuse1848

4https://developer.twitter.com/en/docs/twitter-api/v1/rate-limits:
GET followers/ids returns 5000 follower ids per minute, GET users/lookup can be used to process
900*100 ids per 15-minute interval or 100 followers per second. 60 seconds to collect 5000 followers
ids plus 50 seconds to process ids gives 110 seconds.
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Figure 3.5: There is a large ratio of followers extracted with self-reported location
matching the city of interest. Theoretically to process 25K in followers should take
approximately 10 minutes. In this way in a relatively short time, in under 24 hours,
a community of users that is representative of the city can be extracted. There is
higher confidence in these users because they are known to follow a geo-influencer
associated with the city as well as having the city in their self-reported location.

Table 3.5: Average Number of Users (per hour) Matching City of Interest

users using method/collection time Syracuse Buffalo

method M1 based on geo-influencers 21240/13.16=1614 56774/29.3=1938

method M2 based on global influencer 1872/64.3=29 3994/64.3=62

method M3 based on message traffic 283/57.36=5 1048/57.36=18

percentage of users for the cities in the USA). For message traffic a total of 10

million messages were collected (around 4 million messages daily). Table 3.5 shows

how many users were extracted using each method divided by the total amount of

time needed to perform the collection (time in hours). There is a much higher ratio

of users for the city of interest from a collection that is focused on geo-influencers

using method M1.

Method M1 results in 21240 users for Syracuse and 56774 users for Buffalo.
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In comparison using message traffic to generate the same communities would re-

quire 21240/5/24=177 days and 56774/18/24=131 days respectively. For Syracuse,

method M1 is 1614/5 = 322x and 1614/29 = 56x faster than method M2 and M3.

For Buffalo, method M1 is 1938/18 = 107x and 1938/62 = 31x faster than method

M2 and M3.

In a separate large collection of users based on followers of verified influencers

(tracked by Twitter’s @verified) we collected 373 million profiles. This collection

took over a year to complete. Across 373 million users, 42448 and 92276 contained

Syracuse and Buffalo in their self-reported locations, respectively. This shows that

the proposed M1 method can quickly identify roughly half of all Twitter users. The

additional benefit in method M1 is that there is higher confidence in these users

because they are known to follow a geo-influencer associated with the city as well as

having the city in their self-reported location.

Having identified the users that are representative of the demographic area, up

to 3200 messages per user can be collected in a relatively quick amount of time5.

This will provide a larger set of relevant data than using the alternative methods we

discussed. For example for Syracuse the 21240 users can be used to collect 15,206,890

messages and for Buffalo the 56774 users can be used to collect 54,913,648 messages.

This is much more messages than can be collected in a day using the method M3

and these messages will be relevant to the geographic area of interest. The message

creation times can be used to filter to the period of the incident that is wished to be

analyzed. The messages can then be used with Natural Language Processing (NLP)

5GET statuses/user timeline allows 900 requests per minute with each request providing up to
3200 Tweets (there is an additional limit to at most 100,000 requests per 24 hours)
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to characterize and summarize the situation.

3.7 Conclusions

We have presented a novel method that utilizes geo-influencers for establishing city-

level communities and then to identify additional geo-influencers, in a process that

can repeat several times. Geo-influencers are at the city-level such as related to the

city’s mayor, local news, local police, and others. The initial set of geo-influencers

is established via automatic Google queries. The followers of these influencers make

up the resulting city-level communities; they have an interest in the city and for this

reason, continue to follow updates related to the city posted by these geo-influencers.

Our method does not require a geocoder to identify users that are local to a city.

We have confirmed that the majority of geo-influencers that Google finds relevant

are confirmed via city-level communities built using a geocoder as well as through

manual inspection. Communities, made up of users that reside in the city, allowed us

to rank thousands of influencers based on how influential they are in a given city. By

targeting specific cities our approach can outperform comparable approaches while

having an overall network and collection requirements that are orders of magnitude

smaller.
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Chapter 4

Evaluating City-Level Communities using Location Data

4.1 Introduction

Chapter 3 proposed a method for identifying city-level communities and associated

geo-influencers. The method works via: (i) automated Google search queries to get

an initial set of city-level geo-influencers, (ii) the followers of these geo-influencers

used for forming city-level communities, (iii) the follow connections from communities

used for identifying additional geo-influencers. TF-IDF model, where the terms are

influencers, generates a ranked list of local influencers for each city-level community.

The method was tested using 64 cities of the USA. We have confirmed that there is

an overlap between influencers that Google finds relevant and the ones identified via

city-level communities built using a geocoder. In this chapter, we perform a more

comprehensive evaluation that checks whether the central location from influencer’s

followers matches the city the influencer is associated with.

From related research, there are numerous approaches for generating a ranked

list of location-aware influencers, but evaluation of these is typically performed by

human annotators and is thus limited to small datasets. In this research, we fuse

information from associations made by Google, links from the Twitter social network,

and attributes from user profile information for automatically generating labels. This
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allows us to perform an evaluation that covers thousands of location-aware influencers

across 763 cities within the USA.

The evaluation can be automated by checking if the city (associated via Google

or TF-IDF ranking) of the geo-influencer matches the central location (via location

features) from influencer’s followers. The features proposed can be used to charac-

terize known influencers in a type of repository that captures the geographic area

they serve.

Different ways for assigning a central location are illustrated on (i) Members of

Congress for whom the label is the state that the congressman is known to serve

and (ii) influencers associated with a city via Google search. The initial set of

influencers extracted using Google are evaluated using (i) query (certain queries

such as those that contain a city matching a person name are found to be more

ambiguous), (ii) number of associated followers (a large enough sample of followers

is needed to calculate the central location), and (iii) based on URL position (URLs

Google recommends first may have higher confidence).

Important findings of this research are that for cities in the USA: (i) 94.33% of

initial influencers returned by Google had their central location match the city being

queried, (ii) city-level community that is based on the intersection of followers of

multiple city-level geo-influencers is better aligned to the city, and (iii) a classifier

for differentiating city-level geo-influencers in the USA vs. national and foreign in-

fluencers is possible without a geocoder dedicated to other languages. The approach

described in this chapter should be applied to verify that the geo-influencers and the

resulting city-level communities for the USA from chapter 3 are accurate.

49



4.2 Related Research

Location-Aware Influence Maximization (LAIM) aims to rank influencers based on

the underlying geographic population [44, 45]. The content posted by these influ-

encers can be analyzed for understanding preferences of the underlying population

which can aid in personalized recommendations and targeted advertisement [47]. The

followers of influencers can be used for forming communities and understanding how

they differ in overall depression [48], crime [49], happiness [50], and other factors.

The current state of the art is to geocode available self-reported locations and

infer the rest from friends’ locations [52]. Most researches choose to focus on US

and English based tweets with user location aggregated at the city, county, and state

levels [53]. Language and time zone features are important for differentiating foreign

country users [9, 54].

Identifying location-aware influencers typically involves (i) collecting network,

(ii) reducing the network to nodes matching the geographic location of interest,

and (iii) extracting most important nodes via graph-based measures. Challenge

of this approach is that it involves a large collection, sometimes involving billions

of messages, that covers a geographical area much larger than is of interest. The

method also misses passive users and overexposes itself to actively talking bots [55].

The geographical area of interest is typically specified via a region bounded by

some radius R [22, 42]. The users whose home location falls within this radius

are then part of the community. Once a community that is representative of the

geographical area is established traditional measures such as closeness centrality,
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and more recently variations on the PageRank algorithm, are used to extract the

most important influencers [21].

The outputs of competing influencer ranking algorithms can be compared via

measures such as Spearman’s correlation, Kendall’s Tau, and Rank Biased Overlap

(RBO) [56]. The evaluation of whether an influencer is actually within the geograph-

ical area of interest is often neglected. Most often the influencers are assumed to be

within the geographical area of interest based on their self-reported location or some

other heuristic.

Diffusion model is used for estimating how the influence propagates through the

network using Independent Cascade, Linear Threshold, Triggering, or Time Aware

models [44]. Simulations helpful for understanding the overlapping effect between

followers [57]. Models help evaluate the best set of influencers to trigger a large

cascade of further adoptions of a new behavior based on a contagion process [58,

59]. These simulation models may contain mistakes if the influencer is not from the

geographical area of interest.

The evaluation of whether an influencer is actually within the geographical area

of interest is often limited to manual human efforts. For example, ground truth may

consist of influencers that are discovered by human annotators and the algorithm is

evaluated based on the percent of ground truth influencers identified [42, 46]. Such

evaluations contain human bias and are limited to at most dozens of influencers

across a handful of locations.
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4.3 Assign Central Location (ACL)

This section describes the approach for automatically assigning a central location to

each influencer. Our focus is on high confidence self-reported locations that contain

both the city and state abbreviation [11]. Let set C represent 763 US cities as possible

values for the central location1 and F (u) represent set of followers associated with

influencer u. D(F (u), c) gives the ratio of self-reported locations from followers of

influencer u that map to city c:

D(F (u), c) =
followers mapping to city c∑763
k=1 followers mapping to city ck

(4.1)

A lowercase city-state string represents each city c (without whitespace or punc-

tuation), example ‘newyorkny’. Each follower’s self-reported location is turned to

lowercase with punctuation and whitespace stripped out. The preprocessed location

is utilized if it matches one of the cities in set C. Examples of self-reported locations

that map to city ‘newyorkny’: ‘NewYorkNY’, ‘New York, NY :)’, ‘New York,NY’.

D(F(u), c) values form a distribution over all cities. As an example top three values

for influencer @ChicagoTribune correspond to: ‘chicagoil’: 0.553, ‘washingtondc’:

0.026, and ‘newyorkny’: 0.019. The central city c location for influencer u is given

by:

C1(u) = c∗ where D(F (u), c∗) = max
c∈C
{D(F (u), c)} (4.2)

1Cities are from US Census Bureau, are representative of all states plus DC, and have a popu-
lation of over fifty thousand (some exceptions such as Burlington largest city in VT)
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C2(u) = c∗ where D(F (u), c∗) (4.3)

= min
c∈C
{

763∑
k=1

V (ck, c) ∗D(F (u), ck)}

C3(u) = c∗ minimizes V (c∗,
763∑
k=1

L(ck) ∗D(F (u), ck)) (4.4)

where V (c1, c2) is the Vincentry’s distance [19] between coordinates associated with

city c1 and ck; L(ck) gives the latitude and longitude associated with city ck.

C1(u) gives the city c that captures the largest ratio of influencer u’s followers.

C2(u) gives the city c with the smallest average measure (distance between city and

neighbor times frequency associated with neighbor) across all city neighbors. C3(u)

is the city c whose coordinates are closest to the average latitude and longitude.

Let L(u) specifies latitude, longitude coordinates at the center of the geographic

area that the influencer u is supposed to serve. In future sections, such a label can

come from the city that Google associates with an influencer, state associated with

a member of Congress, or a city using TF-IDF measure. The error distance (ED)

is the Vincenty’s distance from the coordinates in label L(u) to computed central

location C(u) (where C(u) can be C1(u), C2(u), or C3(u)):

ED(u) = distance(L(u), C(u)) (4.5)

Across a set of influencers U we can calculate corpus level metrics (1) Mean

ED, (2) Median ED, and (3) ED@X; percent of influencers confirmed by followers

within X miles of central location; precisely defined below. Median ED is usually
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less sensitive than Mean ED for wildly inaccurate predictions. For ED@X, X = 0

corresponds to exact city matches whereas X = 100 considers city matches within

100 miles2.

MeanED =
1

|U |
∑
u∈U

ED(u) (4.6)

MedianED = median
u∈U

{ED(u)} (4.7)

ED@X =
|{u ∈ U |ED(u) ≤ X}|

|U |
(4.8)

4.4 Verification using Members of Congress

Influencers consisting of 463 members of Congress were used to test the ACL process.

At most 500K followers were sampled per influencer. In the dataset so obtained

our goal was to check whether the central location computed from Congressman’s

followers matches the home state that the Congressman is known to serve. For

example, if a Congressman is known to represent the state of Nebraska will his

followers be concentrated around the same state. The central location for each

influencer comes from the ACL process using (i) city distribution and assigning

state from the associated city centroid or (ii) directly computing state centroid from

state distribution (by aggregating 763 cities into 50 states + DC). Table 4.1 shows

performance using ED@0 and Mean ED.

2X=100 is a popular distance for categorizing mismatch between the user’s self-reported location
and location inferred from messages [3]
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Table 4.1: Percent of Congressmen whose followers confirm home state. For each
central location calculation (ED@0, Mean ED) are shown.

Distribution C1 C2 C3

city 20.3%, 789.82 27.65%, 483.02 4.54%, 596.51

state 53.35%, 389.38 33.69%, 452.35 6.05%, 595.74

city (DC off) 93.3%, 72.43 61.99%, 227.72 9.72%, 563.32

state (DC off) 90.06%, 188.43 66.31%, 227.5 6.91%, 558.23

The first two rows show performance that is penalized due to the majority of

members being associated with DC. For example, the C1 column in the first row

had 368 out of 463 members (79.5%) associated with DC, but the other 93 out

of 95 members (97.9%) were accurately associated with the Congressman’s home

state. Similarly, C1 column in the second row had 203 out of 463 members (43.3%)

associated with DC with the other 246 out of 260 members (94.6%) being accurate.

DC is a reasonable point of influence for members of Congress, but we experimented

with whether the home state can be retrieved if DC is not an option.

The last two rows show performance if Washington DC is removed from the fre-

quency distribution. The best results were using C1 with city distribution where the

home state was matched for 433 out of 463 members. In-depth analysis of 30 Con-

gressmen that did not match their home state showed that either they had a large

national following (such as Speaker Ryan, Senator Sanders, and Senator Warren) or

were mixed with a neighboring state (for example @senatormenendez, @billpascrell,

@frankpallone, @repchrissmith, @replobiondo, @replancenj7, @usreprodney, @rep-

tommacarthur, and @repbonnie represent the state of NJ but most of the followers

associated with the state of NY).
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This section confirms our hypothesis that location-aware influencers can be iden-

tified by the location that captures the biggest percent of the influencer’s followers.

We observed that C1 performs the best using city distribution. It is important to

consider C2 since it compares the city to every other city within the distribution.

When C2 matches C1, it means that locations outside of C1 are either clustered

around it or do not carry enough weight to shift it. For this dataset, there was a

significant discrepancy between C1 and C2 because the Congressman’s influence was

often divided between DC and Congressman’s home state. C3’s poor performance

highlights that a simple mean of coordinates is not well suited for this problem

(C3 was tested on other datasets with similarly poor results and as a result is not

mentioned in future sections).

4.5 Features

Geocoded location, time zone, and language are often described as the most im-

portant features for differentiating between users [9, 54]. Geocoded location and

language were utilized (timezone not used as it became a private field in 2018). In

all 20 features were proposed as shown in Table 4.2.

Features have discriminatory characteristics for identifying city vs. global influ-

encers, as evident from values associated with @ChicagoTribune (a city influencer)

and @CNN (a global influencer) which will be applied in a classifier in Section 4.9. As

described in section 4.3 the influencer’s followers’ self-reported locations were used

for generating a frequency distribution over 763 cities. This distribution was used
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Table 4.2: Proposed Features

F Description CNN vs ChicagoTribune

F1, Centroid based on most frequent city (C1), (losangelesca, stlouismo)
F2 Centroid based on mean coordinate (C2), vs. (chicagoil, chicagoil)

F3 Vincenty’s distance between (C1, C2) 1589.4 mi vs. 0 mi

F4 Number of followers that the influencer has 41275970 vs. 1069351

F5 Number of followers collected 991992 vs. 1060039

F6 Followers from F5 with non-empty location 451897 vs. 414695

F7 Followers from F6 mapping to one of 763 cities 43717 vs. 144580

F8 Percent of followers with non-empty 9.7% vs. 34.9%
locations used in distribution: F7/F6

F9, C1 and C2 radius: average Vincenty 1440.8, 895.6 mi vs.
F10 distance from centroid to all other city 314.3, 314.3 mi

sensors within distribution

F11, Ratio of followers captured by city 5.8%, 0.6% vs.
F12 centroid C1 and C2, respectively. 55.3%, 55.3%

F13, Follower sample ratio mapping to centroid: 0.56%, 0.058% vs.
F14 F8*F11, F8*F12 for C1, C2. 19.3%, 19.3%

F15, Ratio of followers captured by city/Ratio 1.8, 2.5 vs.
F16 of population captured by city where city is 25.5, 25.5

associated with C1 and C2, respectively

F17 P-value from Kolmogorov-Smirnov test 0.562 vs. 0.789

F18 ratio captured by English language 81.6% vs. 90.7%

F19 most frequent non-English language Spanish vs. Spanish

F20 ratio captured by F19 4.5% vs. 3.5%

for calculating C1 and C2 which serve as F1 and F2 features.

City distribution, user profile information, and centroids used for calculating

features F3-F14 as shown in the table. Distribution of the population was obtained

by dividing the population of a city by the population across all 763 cities (using

US Census populations). 763 city distribution and population distribution used for

calculating features F15-F17. Finally, the preferred follower’s profile language used to

generate a language distribution over all influencer’s followers for features F18-F20.
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4.6 Approach

Figure 4.1: Establishing and continuously updating a repository of influencers.

Our proposed solution for building and continuously updating a repository of

geo-influencers is illustrated in Fig. 4.1. The process extends the approach from

previous chapter via the Repository and ACL process (highlighted in yellow). The

required inputs are the geographic regions of interest over which influencers will be

collected. A city-level location is the smallest geographic area considered since this

is a popular choice among Twitter users [51].

Larger geographical areas can be formed from cities along recognized political

boundaries; cities make up fifty states, states combined into nine divisions, and

divisions combined into four regions of US. Examples of system input would then

be Syracuse NY vs. Buffalo NY (city), NY vs. PA (state), Mountain vs. Pacific

(divisions), and Northeast vs. Midwest (regions). This section describes experiments

with city and state as regions. R1 to RN geographic regions with N>1 are expected

so as to be able to apply the TF-IDF measure. The main processes from Fig. 4.1

are described below:
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• Initial Influencers: Twitter influencers from automatic Google searches related

to cities making up the geographic regions.

• Assign Central Location (ACL): the central location assigned to each influencer

based on the distribution exhibited by the influencer’s followers, see section 4.3.

• Repository: stores centroids from ACL and additional features such as percent

of followers captured by the centroid, average radius, and others, see section

4.5. Repository also stores whether influencer is local or global to country of

interest using classifier from Section 4.9.

• Query: repository queried for local influencers whose C1 centroid matches the

geographic region of interest. Each query can contain additional inputs such

as the minimum percent of followers associated with the region.

• Communities and Additional Influencers: Followers of influencers from regions

R1 to RN form communities C1 to CN, respectively. Influencers that these

communities follow are ranked via TF-IDF. Top influencers from TF-IDF go

through the ACL process and stored in the repository for future reference.

Additional influencers refine communities associated with each geographic region

and the whole process shown in Fig. 4.1 can repeat.

4.7 Analyzing Geo-Influencers Recommended by Google

Initial influencers stem from automatic Google searches. As an example, Table 4.3

shows screennames extracted from top five URLs associated with query ‘Syracuse,
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Table 4.3: Top Ranked URLs via Google Search for ‘Syracuse, NY Twitter’

Hit URL Influencer

0 https://twitter.com/syracuse1848?lang=en syracuse1848

1 https://twitter.com/syracuseu?lang=en syracuseu

2 https://twitter.com/hashtag/syracuse?lang=en

3 https://twitter.com/syracuseunews?lang=en syracuseunews

4 https://twitter.com/syracusedotcom syracusedotcom

NY Twitter’. The order of returned URLs is recorded. It was expected that the

influencers extracted from first web hits will have a higher correlation to the city

queried. Fig. 4.2 shows the number of influencers extracted per URL using the

top 100 URLs. Queries performed across 763 city state pairs where the number of

influencers per city ranged from 1 to 33. Over these cities, there were a total of 14092

influencers, 13050 remained after removing influencers associated with multiple city

queries or whose followers had no location information.

Figure 4.2: Number of Twitter Users extracted via Google using top 100 URLs

Next, a maximum of one million followers was collected for each influencer. In-

fluencer’s followers’ self-reported locations were used to generate a distribution and

60



Table 4.4: Average Performance across Google’s Queries

Error Measure C1 C2

Mean ED 53.89 +/- 164.63 63.17 +/- 150.64

Median ED 19.74 +/- 160.63 16.81 +/- 133.23

ED@0 0.69 +/- 0.32 0.66 +/- 0.29

ED@100 0.95 +/- 0.12 0.92 +/- 0.13

compute centroids as described in Section 4.3. Error distance (4.5) computed between

coordinates associated with the city queried vs. the central location coordinates from

influencer’s followers. Across all influencers ED@0 was 73.58% for C1 and 70.11%

for C2. The subsections below examine the performance based on the query type,

the follower sample size, and URL order.

4.7.1 Performance based on Query Type

Mean ED, Median ED, ED@0, and ED@100 were calculated across the influencers

associated with each city query. Table 4.4 shows the average and standard deviation

for C1 and C2 centroids across queries. It is time consuming to analyze thousands

of influencers via manual validation, but with the error measures proposed, we can

quickly focus in on those queries that are problematic for Google.

Out of 763 queries, only fourteen queries had ED@100 under 50%. Thus most

of Google’s city-influencer associations are confirmed by the central location from

influencer’s followers. The problematic queries are described below.

One type of mistake stems from matching influencer not on location but based on
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screenname, description, or user specified name. Example of cities with human names

are Lawrence MA (out of 8 influencers, city from query matched 0% of self-reported

locations, but matched 100% of names example Jennifer Lawrence) and Anderson

IN (out of 27 influencers, city from query matched 7% of self-reported locations,

but matched 96% of names example Anderson Cooper). Contrast this to Trenton

NJ where out of 27 influencers, the city from query matched 78% of self-reported

locations but matched only 52% of names.

Another mistake is related to state abbreviations that can be interpreted as a

preposition (‘OR’ and ‘IN’). Nine out of fourteen queries faced this challenge: Gary

IN, Albany OR, Anderson IN, Lafayette IN, Salem OR, Springfield OR, Gresham

OR, Hillsboro OR, and Medford OR. Spelling out the state name might help these

queries, i.e. Oregon instead of OR. The state name should not be spelled out for all

queries because Google has more data for more common queries. For example, in

the previous chapter we saw that typing out ‘New York, New York’ causes Google’s

search to favor results associated with a casino in Nevada of the same name. This

is again observed in that for ‘New York, New York Twitter’ @NYNYVegas was

the second URL recommended, i.e., spelling out the state name might also bring

unintended results.

Finally, there were city names that are not unique to a single state. For example,

there are 34 states with Springfield cities. Table 4.5 shows specific instances where

the wrong influencer was matched to query Albany OR and associated true location.

62



Table 4.5: Google Mistakes for Query ‘Albany, OR Twitter’

Albany OR Associated Influencers True Loc

albanyairport, albanysym, dutchmenpgcbl, reinventalbany Albany, NY

naschoolupdates, newalbanyohio Albany, OH

ahshuskies, ahuskiebaseball Albany, MN

albanyassociate, albanymusicuk, thealbanyse8 UK

4.7.2 Performance based on the follower sample size

As described in Section 4.3 the central location is computed from influencer’s follow-

ers’ self-reported location distribution. For a small number of followers, there might

not be enough locations to generate a proper distribution and associated centroid.

Fig. 4.3 (top) shows ED@0 error for C1 and C2 centroid as influencers with an

increasing number of followers are considered. The figure illustrates that at least 500

followers are needed to get a large enough sample for computing the centroid. Be-

cause most of the influencers are associated with city level locations they, in general,

cater to a smaller audience: 20% had 500 and 54% had 2000 followers or less.

4.7.3 Performance based on Query Result Order

First web hits have a much higher click-through rate. As a result, it was tested

whether the influencers that are in the top results (low hit number) would have a

higher accuracy in being associated with city query.

Fig. 4.3 (bottom) shows ED@0 error for C1 and C2 on influencers grouped by

hit number 0 to 29. Top 30 web hits were chosen because each had a good sample of
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Twitter influencers ranging from 387 to 490. The figure shows that the results remain

about the same for influencers that appear in top vs. later web results. A possible

explanation is that for ambiguous queries Google will have poor results across the

board.

(a) Influencers grouped by number of followers

(b) Influencers grouped by URL position from Google search

Figure 4.3: Top – Performance based on Follower sample size. 500 or more followers
provide a good sample for centroid calculation. Bottom – Results from top 30
URLs illustrate that influencers in top web search results have similar performance
as influencers in later web results.
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4.7.4 Forming Optimal Communities

The higher the concentration of followers associated with a geographic city the better

they are for establishing a city community. As an example, Table 4.6 (top) shows

five influencers recommended by Google for Syracuse, NY (each confirmed by their

respective C1 centroid). Out of these @syracusedotcom has the highest concentration

of followers associated with the city (70.1%) and is thus the best for establishing the

associated city community. Table 4.6 (bottom) shows the percent of followers from

Syracuse NY that follow a pair of influencers. Despite @cuse mbb having only 21.5%

of its followers from Syracuse, the table shows it can be used to improve percentages

associated with followers extracted from other influencers. In this way, if a researcher

wanted to focus on users from Syracuse that are interested in basketball and news,

then followers of @cuse mbb and @syracusedotcom could be chosen to establish the

city community with 73% of followers mapping to Syracuse.

A user that follows two geo-influencers has a higher chance of being from the city

than the one that follows a single geo-influencer. We analyzed the percent gain over

all possible pairs of influencers, where both influencers were associated by Google

with the same city and confirmed by C1 centroid from the ACL process. There

were 15951 pairs that produced 500 or more mutual followers across 492 cities. On

average the pair had an 11.1% gain over a single influencer. 3275 pairs had 90−98%

percent of followers matching city of interest across 137 cities. Focusing on these

pairs would lead to better city communities. It is not recommended to use three or

more influencers because the overlap in followers may be too small.
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Table 4.6: Percent Followers mapping to City for Single vs. Pair of Geo-Influencers

Percent Followers of a single Geo-Influencers mapping to City

Influencer Number Followers %C1

syracusedotcom 87334 70.13

sucampus 10238 53.23

gosyracuseu 2495 45.65

cuse 138595 41.63

cuse mbb 261805 21.49

Mutual Followers of Two Geo-Influencers better aligned to city

Influencer Pair Mutual Followers %C1

syracusedotcom + @cuse mbb 2784 73

sucampus + @cuse mbb 415 55

gosyracuseu + @cuse mbb 396 67.5

cuse + @cuse mbb 3250 48.7

4.8 Classifier for City-Level Geo-Influencers

In this section, we generate a classifier for differentiating US city-level geo-influencers

vs. influencers that are from foreign countries or have more global influence. Our

approach illustrates that it is possible to differentiate the two types by only geocoding

the locations associated with the USA.

Our dataset contained a total of 8740 influencers: 350 global influencers vs. 8390

US city geo-influencers. 8390 geo-influencers are obtained from Google and TF-IDF

ranking. The city that the geo-influencer is associated with is verified by C1 cen-

troid from the ACL process, the associated city name is also within the influencer’s

self-reported location, and each influencer had at least 500 followers (to ensure a

large enough sample size as discussed in Section 4.7.2). 350 global influencers ob-

tained via manual Twitter searches: 250 influencers are popular worldwide such as
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webmd, spacex, twittersports; 100 influencers came from foreign countries such as

(screenname: country): ttcnotices: Canada, dailysabah: Turkey, vesti news: Russia,

live hindustan: India, greateranglia: UK, and others.

Numeric features F3-F18 from Table 4.2 were normalized to between 0 and 1

range. Nearest Neighbor (k=20), Gaussian Näıve Bayes, Decision Tree, Random

Forest, and Support Vector Machines (SVM) with a linear and radial kernel were

tried as classifiers with 3 fold cross validation3. Unbalanced classes were handled

by providing weights to SVM and random forest classifiers; global influencers were

weighted 0.999 vs. 0.001 for city influencers (i.e. an incorrectly classified global influ-

encer penalized classifier 1000 to 1 to ensure that all global influencers are accurately

classified). We also tried to balance out the dataset by random over-sampling of the

minority class. SVM and Nearest Neighbor were the only classifiers which classified

all global influencers accurately. Fig. 4.4 shows average accuracy for these classifiers

using an increasing number of features (drop in accuracy is due to the USA geo-

influencers being classified as global/foreign) . Features ranked through Recursive

Feature Elimination (RFE) with linear SVM.

All three classifiers have peak performance when using the top four ranked fea-

tures: F8 (percent followers mapping to US distribution), F13 (ratio of followers from

sample mapping to C1 centroid), F7 (number of followers to US distribution), and

F3 (distance between C1 and C2). Classifier performance using these four features

illustrates that it is possible to differentiate US city vs. global influencers without

having to geocode locations outside of the USA.

3Scikit-Learn package utilized for implementation: https://scikit-learn.org/
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Figure 4.4: USA vs. Foreign Country classifier. Overall performance across three
classifier peaks using top four ranked features.

The results are intuitive in that influencers associated with a city c in a country x

should (i) have a higher overall concentration of followers going to this country x (nec-

essary for filtering out influencers associated with foreign countries) and (ii) should

exhibit an above average concentration of followers associated with the specific city

c (necessary for filtering out global influencers that may have a high concentration

of followers in country x but whose influence spreads over many cities).

These are important results to consider because geocoding locations all around

the world is difficult. For a specific country of interest, our recommendation is to

focus on well-known cities within this country for forming a frequency distribution as

was described in section 4.3. City influencers can then be extracted using a classifier

and by focusing on those influencers verified by the C1 centroid. As the repository

continues to grow in size the classifiers are expected to continue improving.
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4.9 Conclusions

Our research proposed an automated evaluation for a targeted collection of influ-

encers and corresponding city-level communities. The approach, described in this

chapter, should be applied to verify that the geo-influencers and the resulting city-

level communities for the USA from chapter 3 are accurate.

The evaluation showed that Google does occasionally make mistakes for queries

involving ambiguous city names (those that appear along with multiple states or

that match popular human concepts). Our evaluation process allowed us to quickly

identify these errors without having to review thousands of influencers manually.

Queries with fewer than 50% of influencers within 100 miles of the expected centroid

(ED@100) were manually verified to be challenging for Google. The performance

was about the same for influencers in top vs. later web results, i.e. web hit number

does not play a significant role in how well influencer is associated with city query.

Finally, it was shown that at least 500 followers are needed to have a large enough

sample from which to compute the central location.

The method allowed to automate an evaluation covering thousands of influencers.

Larger geographical areas were specified by aggregating multiple cities for a state-

level evaluation. It was also illustrated how multiple influencers with a geographically

local audience could be used to form city communities better aligned to the location

of interest. Finally, a classifier was proposed for differentiating the USA vs. global

and non-USA influencers; this classifier is possible without a geocoder dedicated to

other languages.
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The methods described here are useful for generating and maintaining a repos-

itory of city-level influencers for the USA or other English-speaking countries (this

is because the evaluation is still reliant on a gecoder that can process English-based

locations). In the next chapter, we describe an approach that works worldwide by

categorizing influencers using time-based features.
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Chapter 5

Inferring Degree of Localization and Popularity of Twitter

Topics and Persons using Temporal Features

5.1 Introduction

Previous chapters have focused on improving geocoding and leveraging Google search

for associating influencer with a city. In this chapter, we illustrate an alternative

approach for how the creation times can be used to infer geo-information.

On Twitter, every user and every message has a creation timestamp. For a group

of users or a group of messages, the creation times can be used to help determine

whether the group is concentrated in a single time zone or is spread out more globally.

The Coordinated Universal Time (UTC) offset1 can be identified for a group that

is from a specific time zone. For a global group (such as the followers of a global

influencer), the daily changes in followers can be inferred and used for studying the

influencer’s evolving popularity.

The time-based features discussed have applications related to (i) local expert

finding in social networks, (ii) inferring when followers joined an influencer, and (iii)

1UTC is the time standard used globally, defined by the International Telecommunication Union
Recommendation (ITU-R TF.460-6); it is a refinement of previous time standards such as Greenwich
Mean Time. For instance, the UTC offset is -5 for the time zone that includes the northeastern
USA.
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understanding popular trending topics from message traffic relevant to a specific

geographic area. The methods in this paper maintain user’s privacy because the

location inference is at the timezone level.

When performing Twitter data collection need to consider Twitterbots, a software

program that sends out automated posts on Twitter [43]. There are malicious and

benign bots. Malicious bots threaten the security of other users [60] by posting

malicious URLs along with hot trending topics [61]. Such accounts are actively

being blocked by Twitter. Examples of benign bots are job postings, weather, news,

and traffic updates. Such bots do not violate the rules of Twitter and are allowed to

operate. The issue is that the bots can generate a lot of message traffic compared

to real users. For example, Tasse et al. [15] find that job-posting bots constitute a

growing portion of the public geotags. For analysis over message traffic, to reduce the

impact of bots, it is recommended to focus on a single, most recent, message per user.

For analysis over influencer’s followers, it is recommended to consider each follower’s

tweet frequency (number of messages posted by follower divided by the number of

days elapsed since account creation). Our analysis is focused on influencers that have

been verified by Twitter to be legitimate but in general followers-friends ratio, tweet

frequency, number of times added to favorites, and other features such as screen

name length are used for identifying real influencers [62].

The rest of the chapter is structured as follows. Section 5.2 reviews prior research

related to local expert finding. Section 5.3 shows how group creation times can be

used in a time distribution and how this distribution can be used for predicting the

UTC offset. Section 5.4 analyzes the temporal distribution of message traffic. Section
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5.5 analyzes the variations in the number of followers and illustrates how those can

be used for understanding daily followers gained. This is useful for link inference

and understanding evolving popularity of global influencers. Section 5.6 describes a

classifier for the discrimination of local vs. global influencers. Finally, Section 5.7

presents our conclusions and future research directions.

5.2 Related Research

The problem of finding authoritative users is known as expert finding; this is a well-

studied problem with research going back over a decade, and has gained popularity

within the information retrieval community since it was included in the TREC en-

terprise track [63]. A recent survey by Husain et al. [64] reports that a majority of

the expert finding systems were used in: (i) the academic domain (research collab-

orations), (ii) enterprise (experts for offering formal help related to development),

(iii) medicine (medical experts), (iv) online knowledge sharing communities, (v) on-

line forums, and (vi) social media (finding experts from various social networks like

Twitter and Facebook).

Expert finding methods assume that individuals’ published documents are rele-

vant to their expertise with different degrees of a match, and they focus on modeling

the associations between these documents and candidate experts.

Lappas et al. [65] give an early survey on expert finding in social networks, which

typically involves (i) using text content posted by expert candidates and (ii) using

the expert candidates’ online social connections. Two best-known algorithms that
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exploit link structure to find authorities are based on PageRank [66] and Hyperlink-

Induced Topic Search (HITS) [67].

Weng et al. [40] proposed TwitterRank which employs the Latent Dirichlet Allo-

cation (LDA) model to detect the topics of individuals based on their tweets. Then,

for each topic, it builds a weighted graph based on the topical similarity between

two users and then employs a PageRank algorithm to find topic-specific influential

users.

Romero et al. [68] designed an algorithm similar to HITS named Influence Passiv-

ity algorithm to quantify the influence of users in a Twitter network. This algorithm

utilizes both the structural properties of the network as well as the diffusion behavior

among users. Pal et al. [69] proposed an attribute-based approach for identifying

experts and potential experts in community question answering. Fifteen features

were extracted from the Twitter graph and tweets posted by the users, to estimate

their levels of expertise on various topics. Clustering (based on the Gaussian mixture

model) was used to determine experts, maximizing the likelihood of the data given

a number of Gaussian components.

Ghosh et al. [70] proposed a system called Cognos, which represents each user

by the metadata of Twitter lists that contain the user, then ranks users based on

the similarity score between each user and a topical query. Cognos tends to choose

users that are contained in many lists and whose metadata contains the query. The

authors show that their system can identify top users for a particular topic better

than graph based approaches.
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Separately, research efforts have addressed the task of finding local experts with

specialized knowledge focused around a particular location. Local experts are im-

portant for many applications such as answering local information needs [71].

Li et al. [73] proposed applying points of interest (POI) as a possible catego-

rization of expertise related to a particular geographic location. Example ‘Chinese

Restaurants’ in Los Angeles is a POI topic. High-ranking candidates should be able

to answer questions about the locations or the category of locations in the topic. The

time user reported being at a POI is seen as an important feature in that frequent

visits result in greater familiarity with the location in question [74].

Niu et al. [75] introduced a learning-based method to find local experts on Twit-

ter. They defined multiple classes of features that could impact a user’s local ex-

pertise, such as tweet content features (e.g. the TF-IDF score of a topic keyword

in the candidate’s tweets) and local authority features (e.g. the distance between

the candidate and the query location). Authors found it best to retain only the first

check-in during a repeated activity (a user posting multiple times about a newly

served dish during the same meal is an example of the same venue during which the

user remains in an unchanged location and activity).

A recent review by Yochum et al. [76] analyzes systems that recommend items

(such as venues, places, travel routes, activities, friends, or social media) to users

while considering geographical preferences. They analyzed 178 journal papers in this

area from 2001 to 2018. They found that Foursquare, Gowalla, Brightkite are popular

social media sites since these are Location-based Social Networks (LBSNs). LBSN

websites are where users share their locations by checking-in so there is no need to
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geocode, geoparse or geotag. Twitter used in about 4.5% of publications vs. 46.6%

over these three LBSN sites. Twitter is typically used for getting the popularity

of points of interest or locations by extracting from messages with coordinates: (i)

construct an ordered sequence of relevant text; (ii) map to the popular points of

interest using latitude and longitude; and (iii) generate time sequences of point of

interest visits.

Several research papers rely on geotagged tweets or text-based Location Indicative

Words (LIW). Singh et. al. [79] focused on tweets with GPS coordinates that

contained the words ‘flood’, ‘water’, and ‘Baarh’ for flood event detection. Luceri

et. al. [77] propose a deep learning architecture that aims to infer the geo-tag of

a generic user’s tweet by leveraging the geo-tags shared by other users on Twitter.

This work is similar to inferring a user’s location based on friends’ self-reported

locations [13], but instead of using self-reported locations, it focuses on those friends

that have generated a message with precise coordinates. To preserve privacy, the

authors recommend either to stop producing messages with geo-tags or to purposely

alter the geoinformation so that it is outside of the user’s actual location. Paule et.

al. [80] perform geotagging of tweets using weighted majority voting of geotagged

tweets whose content is most similar. This increases available geotagged tweets

with improved performance demonstrated in New York and Chicago. In papers that

attempt to identify topical experts typically the GPS coordinates and place mentions

associated with messages are utilized. Inkpen et al. [81] develop a city, province,

and country classifier for monitoring places mentioned in Twitter messages.

The issue with focusing only on tweets with GPS coordinates or POI information
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is that they make up a small portion of the Twitter API stream [3, 10]. Geocoding the

message’s author self-reported location is complicated. Jurgens et al. [10] reported

that using popular gazetteer solutions GeoNames, DBPedia, GeoLite, and Google’s

geocoder were able to each geocode under 4% of users using self-reported location

[10].

Multiple surveys have been written related to Twitter user geolocation [3, 10].

Jurgens et al. [10] reimplemented some of the state-of-the-art models, tested and

trained them using their own constructed dataset to ensure fairness of comparison,

and found significant performance issues. Mourad et al. [72] proposed a guide for a

standardized evaluation of Twitter user geolocation. Analysis of fifteen models and

two baselines illustrated that the choice of effectiveness metric can lead to diverging

conclusions. Due to the high levels of noise and the data collection restrictions

imposed by the Twitter API the user geolocation remains an unsolved research area.

Other features useful for identifying locations are the time zone and UTC offset

[86, 87]. Zannettou, et al. [88] used time zone information to understand the audience

targeted by tweets from Russian-linked accounts. But due to privacy reasons, Twitter

has made these fields inaccessible in 2018.

Twitter does not keep track of any time information other than identifying when

a user or a message was created. Data for link creation times between users and their

followers are not stored, although it can be extracted by performing multiple scans

of the Twitter network. For example, Kwak et al. [85] collected daily snapshots of

the online relationships of 1.2 million Korean-speaking users for 51 days as well as

all of their tweets to estimate popularity dynamics.
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This research proposes new time-based features based on user and message cre-

ation times. Creation times over influencer’s followers are used for predicting the

time zone’s UTC offset and associated geographic area that the followers belong

to. When applied over message traffic, the approach can differentiate top trending

topics and persons in different geographical regions. The degree of localization (“lo-

calness”) is an important concept, with ongoing work in formalizing the notion [54].

Our time-based features are successfully applied in a classifier for predicting local vs.

global influencers. The resulting classifier can be applied as a post-processing step

for verifying that the local expert is indeed local. The new time-based features are

not just limited to inferring location, but can also be used for inferring link creation

times for studying the evolution of influencer’s popularity.

5.3 UTC Offset Prediction based on Account Creation

This section describes how the time zone’s UTC offset is predicted from a set of

creation times. The creation times can come from a set of users or a set of messages.

Subsection 5.3.1 describes the dataset; the creation times come from a group of users

whose self-reported location is in common and where the location’s UTC is known.

Subsection 5.3.2 describes how a time distribution is formed and how it is used to

predict the UTC offset. Subsection 5.3.3 describes experiments to find the optimal

parameter values used in the proposed approach.
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5.3.1 UTC Offset Dataset

Over 373 million user profiles were analyzed and user groups were chosen based on

self-reported location in common. All self-reported locations were turned to lowercase

with punctuation and spacing stripped out. Of particular interest are those self-

reported locations that match (i) (City, Province) or (ii) (City, Country Name) in

English from GeoNames. The city, country pairs are checked to be unique in that

there are no other cities within the country with the same city name. The population

of all cities considered in is over five thousand. Major well-known city names are

included (without the country name) provided the city is unique and has a population

of over 1 million. Each self-reported location had to be used by at least 250 unique

users to ensure a large enough sample size.

The resulting dataset, denoted DUTC , consists of 12,271 groups. Table 5.1 shows

the five most popular locations, the number of users making up each group that use

the location, and the UTC offset associated with the location, denoted as UTCL,

using equation (5.1).

UTCL(loc) =
1

3
UTC(tmz(loc)) +

2

3
DST (tmz(loc)) (5.1)

GeoNames is used to get the location’s time zone2 via function tmz. UTC and

DST functions are used to obtain the UTC offset during standard and daylight

saving time, respectively; these are equal in time zones where daylight saving is not

observed. Daylight saving time is typically observed for eight months of the year and

is thus given a larger weight.

2download.geonames.org/export/dump/timeZones.txt
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In our dataset, UTCL takes 42 possible values ranging from -9.9 to 13.53. There-

fore, the corresponding UTC offset interval for our dataset is [-10, 14) (UTC offset -12

and -11 exist, but belong to sparsely populated islands and therefore not of interest).

Table 5.1 describes the attributes of the five largest user groups in the dataset.

Table 5.1: Five biggest user groups in UTC Offset Dataset
Location Group Size UTCL Country

london 2065562 0.667 GBR

losangelesca 1768898 -7.333 USA

newyorkny 1425330 -4.333 USA

chicagoil 1173340 -5.333 USA

parisfrance 1026459 1.667 FRA

5.3.2 Sleep Cycle and UTC offset Determination

The following procedure is used to identify the UTC offset in the geographic area

from which the creation times originate. Given a set of creation times:

1. Creation times to Time Distribution:

(a) The hour from each creation time is used to generate a histogram, with

24 bins corresponding to 24 hours.

(b) Time distribution refers to a normalized histogram; f(t) used to denote

the relative frequency of creation times within tth hour.

2. Preprocessing:

(a) The 24-hour time distribution is duplicated to generate a 48-hour distri-

bution.
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(b) The distribution is smoothed by computing the moving average of n = 5

consecutive points.

3. Sleep cycle identification:

(a) If there are four intersection points (between f(t) and the p = 33 per-

centile), per 48 hours, the sleep cycle is identified as a single continuous

segment between two consecutive intersection points where the first has a

negative and the second a positive slope.

(b) A quadratic function is fitted over sleep cycle: f(t) = c0 + c1× t+ c2× t2.

If c2 > 0, its minimum is considered to be the group’s Potential Sleep

Time (PST), subtracting 24 if needed, so that PST ∈ [0, 24).

4. UTC offset computation:

(a) Given a PST ≥ 14 the transformation PST-24 is applied to transform

PST from [0, 24) range to the UTC range [-10, +14).

(b) Linear regression on known data is used to express the UTC offset as a

linear function of PST, using Equation (5.2) at the end of this section

based on Fig. 5.3.

As an illustration, Fig. 5.1 shows the f(t) formed from creation times corre-

sponding to users associated with locations (a) ‘london’ and (b) ‘losangelesca’. The

data (blue lines) is noisy, and to achieve smoothness we compute moving averages

(with n = 5 consecutive points), depicted by green lines.The orange line corresponds
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(a) self-reported location ‘london’ (b) self-reported location ‘losangelesca’

Figure 5.1: Normalized 48-hour histograms using creation times of users from (a)
‘london’ and (b) ‘losangelesca’ are shown. The blue curve shows the original time
distribution, and the green curve represents the moving average (with n = 5). The
orange line corresponds to the threshold below which the potential sleep cycle is
identified from the green curve. The mins between the two charts are 7-9 hours
apart matching expectation in that the time difference between the two locations is
8 hours.

to the threshold below which the potential sleep cycle is identified from the green

curve.

It is assumed that the regions around the minima (in the smoothed curve) corre-

spond to a nocturnal period when many residents of the region sleep, and hence are

not active on social media. This region, expected to be an 8-hour period (a third of

the 24-hour cycle) is identified using the threshold p = 33% in Fig. 5.1). The por-

tion of the smoothed curve below the threshold can be approximated by a quadratic

function. Minimum of the quadratic used to predict the UTC offset; confidence in

which increases with the coefficient of determination R2 and the magnitude of the

power coefficient c2 (c2 close to zero associated with a flat like sleep cycle with not as

clear a minimum). We record (i) the predicted UTC offset, (ii) the power coefficient
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c2, and (iii) the coefficient of determination R2.

The next subsection addresses the selection of parameters for the moving average

n and the percentile p threshold, and describes the linear regression leading to the

computation of UTC.

5.3.3 Parameter Determination

Instead of using the entire |G| creation times of the group, we use a method akin to

bootstrapping [82]). Random samples of size M are drawn from G, N times, and

for each sample, the PST is calculated. Over N trials, the average PST is denoted

µG(PST ), and σG(PST ) denotes the standard deviation.

These estimates depend on the choices of the sample size M , the number of sam-

ples N , the size of moving average window n, and the sleep cycle threshold percentile

p. We performed multiple experiments, with values of M = [100, 250, 500, 1000],

N = 100, n = [1, 2, ..., 7, 8] and p = [20, 25, 30, 33, 35, 40, 45]. Linear regression was

performed for PST vs. UTCL using least squares estimation, as shown in Fig. 5.3.

To measure the performance of selected values of the parameters Recall, Precision,

and F1 measures were calculated:

Recall =
# of user groups where PST-estimate calculated

the number of user groups
,

P recision =
# of correct UTC predictions

# of UTC predictions
,

F1 =
2× Precision×Recall
Precision+Recall

.
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(a) F1 for n and p (b) Precision for p and M

(c) Precision for n and M (d) Precision for group size x and M

Figure 5.2: Variation of ability to predict UTCL (t1 = 0.5) with parameter values:
(a) F1 vs. moving average window width n, for different values of percentile p, fixing
M = 250; (b) Precision vs. percentile p, for different sample sizes M , fixing n = 5
which yielded the best F1 score; (c) Precision vs. n for different values of M , fixing
p = 33 which yielded the best F1 score; and (d) Precision vs. group size x for different
values of M , using sampling with replacement, and fixing p = 33 and n = 5.

Predictions that were more than t1 = 0.5 away from UTCL were marked as

incorrect. The following observations emerge from Fig. 5.2:

• Fig. 5.2(a) shows F1 for different values of p and n for M = 250 and t1 =

0.5 over all groups in the UTC offset dataset. It can be seen that the best

performance with F1 = 68.14% is achieved using p = 33 and n = 5.
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• Fig. 5.2(b) confirms that p = 33 is the best performing using precision for

four different values of M . This value of p is also an intuitive choice because,

as mentioned earlier, about a third of the 24-hour period is expected to be

devoted to sleep. Smaller percentile (p < 30) reduces the associated sleeping

cycle and it is harder to fit a parabola and to get a good UTC offset prediction.

On the other hand, if p is too high (p ≥ 40) then points that are outside of the

sleeping cycle will be incorporated causing the performance to suffer.

• Fig. 5.2(c) shows that n ∈ [2, 5] exhibit high precision for all values of M . From

this figure, we conclude that any choice of n ∈ [2, 5] is reasonable to smooth

out irregularities, preserve high precision, but is not too high to delete the sleep

cycle from the time distribution. However, considering both, the precision and

F1, we conclude that n = 5 is the best choice.

• When using sample size M the group size needed to be at least M because we

have used sampling without replacement. Sampling with replacement allows

to better understand whether improvement comes from a bigger sample size

or a bigger group size. Fig. 5.2(d) shows performance for sampling with re-

placement across different M values as the group size increases (using n = 5

and p = 33). We conclude that performance is not affected by M , although

performance improves with group size.

The plot in Fig. 5.3 uses M = 250, n = 5, p = 33, and group size equal

to at least 1000. Using these parameters the relationship between predicted PST

and actual UTC is shown. A linear relationship can clearly be observed, using
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Figure 5.3: Result of linear regression performed on data points with known geolo-
cation, plotting UTCL against µG(PST ), with M = 250, n = 5, p = 33, and group
size exceeding 1000.

UTCP = −1.0335 × PST + 3.9955 with overall R2 = 0.9774; this is approximated

as follows:

UTCP = −1.0× PST + 4.0 (5.2)

5.4 Temporal Analysis of Message Traffic data

In this section, we illustrate that time-based features can be used for associating

persons and topics with a geographic area. The time-based approach is confirmed

using message traffic with coordinates.

Our focus is on understanding the spatiotemporal aspects of the Twitter social
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graph, connecting senders of messages and users mentioned in the messages. We

explore the geographical distribution of senders of messages who mention an individ-

ual, thereby evaluating the extent to which an influencer (mentioned in the messages)

has global influence. This is often accomplished by analyzing message traffic data,

since the full follower-followee graph cannot be directly collected due to limitations

imposed by the free Twitter API. Messages with coordinates and place mentions

or self-reported locations of the users can be used to filter out users that are near

a specific geographic area; in this manner, influential individuals and communities

belonging to a certain geographic area can be identified.

5.4.1 Message Traffic Dataset

We collected five days of message traffic data in the first week of December 2020 for

a total of 18.67 million messages. This dataset is denoted as Dmess. Preprocessing

consisted of turning each message to lowercase and tokenizing using NLTK library’s

TweetTokenizer. For each message, the hour was extracted from its creation time.

Each token was associated with a set of hours from the set of messages in which the

token appears. Tokens that were at least three characters in length and appeared in

over 500 messages were retained, resulting in a total of 23,747 tokens.

Messages that contain location coordinates provide ground truth against which

we can evaluate UTC-based predictions. Such messages comprised only 0.71% of all

messages in our dataset, consistent with other literature suggesting that the number

is less than 1% [10]. In our dataset, there were 6,632 messages with point coordinates
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Table 5.2: Token labels using messages with geolocation tags
Token Label NA SA AF EUR AS OC Total

@realdonaldtrump NA SA 537 47 19 603

@joebiden NA SA 142 14 6 162

#oath4ssr AS OC 18 2 30 50

@narendramodi AS OC 1 0 47 48

#gfvip AF EUR 0 35 0 35

@pmoindia AS OC 0 1 33 34

@thehill NA SA 25 2 0 27

@jairbolsonaro NA SA 27 0 0 27

@nytimes NA SA 21 3 3 27

@llinwood NA SA 24 1 1 26

and 126,765 messages with a place coordinate (bounding box).

Among 23747 tokens, as many as 20252 were contained in at least one message

with coordinates. For each token, we record the number of messages that came

from the Americas (longitude ≤ -25), Europe/Africa (-25 < longitude ≤ 65), and

Asia/Oceania (longitude > 65). For coordinates specified using a bounding box, both

the longitude components had to be associated with the same region. A token was

assigned a label based on the region which captured the biggest ratio of messages.

Among the 20252 tokens with coordinate information, we found that 11955 were as-

sociated with the Americas, 4991 with Europe/Africa, and 3306 with Asia/Oceania.

Table 5.2 shows examples of ground truth generated in this fashion that contain topic

or person mentions (NA SA = Americas, AF EUR = Europe/Africa, and AS OC =

Asia/Oceania). The number of messages with coordinates are shown for each region

and token. The region that captures the most messages is chosen as the label. For

example, for @realdonaldtrump the NA SA is the label since 537 messages are from

it vs. only 47 and 19 for the other regions.
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5.4.2 Predicting Region of Token

We extracted the hours (from the creation time) associated with all messages in

which each token appears. The set of hours was used to obtain a time distribution

and corresponding: (i) predicted UTC offset, (ii) coefficient of the quadratic term,

c2, and (iii) coefficient of determination R2 (using the approach in Section 3.2). As

before, a large value of R2 implies greater confidence in the fitted polynomial, and a

large c2 indicates greater localization of influence.

(a) Americas (b) Europe/Africa (c) Asia/Oceania

Figure 5.4: Top trending tokens (topics and persons) for the (a) North and South
America, (b) Europe and Africa, and (c) Asia and Oceania. These were identified
using UTC prediction from time curve over message creation times containing the
token.

The NLTK library contains a list of stop-words, such as ‘the’ and ‘has’, which

are used worldwide. Their temporal distributions are flat and associated c2 is close
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to zero. For example, we found that for stop-words the largest c2 was smaller than

0.001. To further refine our dataset, we considered c2 ≥ 0.001. The result was

that not only stop-words but other global topics and persons such as #covid19 and

@YouTube were removed.

Out of 23747 tokens in the dataset, 16744 contained a sleep cycle that could be

used to predict a UTC offset. Based on predicted UTC offset the token was assigned

one of three regions: (i) North and South America (UTC ≤ −2), (ii) Europe and

Africa (−2 < UTC ≤ 4), and (iii) Asia and Oceania (UTC > 4). The number of

tokens associated with each region was (i) 9618, (ii) 3012, and (iii) 4114 respectively.

Of the UTC predictions, 15087 had R2 ≥ 0.85 of which 8487 had c2 ≥ 0.001. Among

these 8487 higher confidence predictions 4135, 1416, and 2936 belonged to each

region, respectively.

As an illustration, Fig. 5.4 shows the top fifty words in a word cloud for each

geographic region, focusing on higher confidence tokens that start with # or @

(designating topics or persons).

5.4.3 Evaluation

For each token, one of the three regions using UTC prediction is compared with the

ground truth, and the accuracy of prediction is recorded as the ratio of correct versus

total predictions, for each region.

Table 5.3 shows the results for the three regions. The first column shows the type
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of restrictions placed on a token, based on (i) R2 of the polynomial over correspond-

ing sleep cycle, (ii) power coefficient c2 from polynomial, (iii) number of minimum

messages, x, used to build ground truth, and (iv) whether a collection is limited

to persons/topics (@/#). The accuracy of predictions for each region is shown in

columns 3-5 (the respective number of predictions per region is shown in the second

column).

Table 5.3: Performance over Message Traffic
Restriction Predictions NA SA AF EUR AS OC

None 9271, 2825, 2602 94.56 76.14 87.78

R2 ≥ 0.85 8611, 2426, 2360 95.4 80.3 89.58

R2 ≥ 0.85, c2 ≥ 0.001 4008, 1327, 1976 98.6 89.9 95.29

R2 ≥ 0.85, c2 ≥ 0.001, x ≥ 5 3304, 810, 967 99.21 91.98 98.24

R2 ≥ 0.85, c2 ≥ 0.001, x ≥ 10 2270, 380, 533 99.69 94.47 98.69

R2 ≥ 0.85, c2 ≥ 0.001, @/# 261, 61, 137 98.08 81.97 97.08

Table 5.3 illustrates that the approach using temporal distribution is successful.

The first row, with no restriction, illustrates that if a sleep cycle is found and a UTC

prediction is made it generally has good accuracy. The accuracy is high, particularly

for those tokens which have ground truth assembled from more messages (larger x)

and with high confidence UTC predictions (high R2 and c2).

About 13% of the tokens that were labeled using UTC did not have any message

traffic with coordinates. A bigger collection could be explored, but there is reason to

think that some tokens just won’t get a geo-tag assigned. Fewer than 1% of messages

contained geo-tags, and 38% of the tokens had fewer than 5 geo-tagged data points;

a prediction based on such a small sample is not made with high confidence. On the

other hand, time is available for all messages and each token appeared in at least 500
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messages giving us greater confidence in the corresponding time distribution. This

illustrates the usefulness of our approach.

Another alternative would be to utilize the self-reported locations of the users

that wrote the messages, but this would require a complex geocoding solution that

can handle the different ways persons refer to locations in various languages. Using

time distributions is hence a better solution for quickly understanding important

keywords in message traffic as they pertain to a geographic region of interest.

5.4.4 Comparison against Baseline based on Google Trends

In a recent paper, Zola et. al. [78] attempt to estimate worldwide Twitter user

locations without relying on geolocation target labels (no geotagged tweets or user

location profiles and no access to geographic dictionaries). Their dataset consisted of

744,830 tweets written by 3,298 users from 54 countries. The location of each user was

manually verified. Their approach focuses on nouns (like sites, events, people), which

are expected to have a spatial context that is helpful for user location estimation.

Each noun was associated with a geographic region based on Google Trends (Google

Trends identifies nouns that are trending in various cities). For each user, clustering

is used to identify the most probable centroid from coordinates associated with each

city. Because no geoinformation is used, the problem is more complex; their approach

correctly predicts the ground truth locations of 15%, 23%, 39%, 58%, 70%, 82% of

the users for tolerance distances of 250, 500, 1000, 2000, 4000, and 10000 km. Our

method also does not utilize any geoinformation, relying only on creation times as
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the feature, and hence it was appropriate to compare our approach against the one

based on Google Trends.

In [78] the authors utilize the following approach:

1. Part of Speech Tagging used to identify a set of nouns for each user.

2. Pytrends Python module is used to associate a noun with a list of cities. Google

gives each city a weight, from 0 to 100, based on how popular the noun was

(based on how many search queries, originating from that city, contained that

noun). Cities with scores of zero are given scores of one so that a non-zero

value is present for each city.

3. Google geocoder Python module (used to get lat, long of each city)

4. Scikit-learn Python library (used to get the centroid) the best method is based

on K-means and Density-Based Spatial Clustering of Applications with Noise

(DBSCAN)

5. Centroid is compared to the known location of a user. Median, Mean, and

ACC@x (is a user within x kilometers of predicted centroid) are recorded across

all users.

We attempt to apply Google Trends to our dataset. In our method we also

utilize Pytrends. Pytrend is an unofficial library supporting Google Trends. In

function interest by region() in file pytrends/request.py we change the code so that

the Pandas data frame is returned immediately after collecting JSON response from

Google. We find that Google, at the ‘City’ resolution, does return coordinates for
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each city, it is just that Pytrends did not accurately capture this information. In this

way, it is not necessary to geocode each city name with steps (2) and (3) combined

(this reduces the potential for introducing errors due to additional geocoding).

There are other differences in that we are focused on all tokens (not just nouns)

and we already have three predefined regions that the world is broken up into (so

the accuracy will be judged based on how well a region is predicted as was done

in previous section). Google Trends ranking is used to predict a region for a token

using:

1. For each token, we record the set of cities A that came from the Americas

(longitude≤ -25), set of cities B that came from Europe/Africa (-25< longitude

≤ 65), and set of cities C that came from Asia/Oceania (longitude > 65).

2. For each set of cities in A, B, C the cumulative score across the cities in each set

are recorded. The cumulative score is based on the ranking returned by Google

Trends (Google gives each city a weight based on how popular the token was

in the city, weight is from 0 to 100).

3. A token is assigned to a region that captured the biggest cumulative score.

Because our problem involves large geographic regions it is also appropriate to

utilize the ‘Country’ resolution vs. only ‘City’. Each country is given the average

latitude and longitude of its cities3.

When using Google Trends by region, it can be used to focus on trends that were

3https://github.com/apanasyu/GoogleTrends
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Table 5.4: Different time ranges result in very different top 10 country ranking, for
keyword @realdonaldtrump, using Google Trends.

1 month 3 month 1 year 5 year all

(KE, 100) (CA, 100) (US, 100) (US, 100) (US, 100)

(CA, 17) (NO, 100) (CA, 84) (CA, 84) (CA, 72)

(US, 9) (IE, 93) (CN, 35) (CN, 35) (IE, 31)

(GB, 4) (US, 59) (IE, 34) (IE, 34 ) (SH, 31)

(AF, 0) (NL, 54) (NZ, 30) (NZ, 30) (NZ, 29)

(AL, 0) (DE, 22) (SH, 30) (SH, 30) (PR, 23)

(DZ, 0) (GB, 21) (AU, 21) (AU, 21) (AU, 21)

(AS, 0) (PL, 17) (GB, 17) (GB, 17) (KE, 19)

(AD, 0) (IN, 4) (NO, 16) (NO, 16) (CR, 16)

(AO, 0) (AF, 0) (KE, 14) (KE, 14) (SG, 16)

formed over a predefined time in the past. These are the predefined time ranges:

past 1 hour, 4 hours, day, 7 days, 90 days, 12 months, 5 years, all (2004-present)

(Google Trends does not allow one to enter a custom date range i.e. it has to be

one of these values). Table 5.4 shows that the trends will result in very different

country rankings depending on the time range utilized. The set of country codes in

the top three results across the three time frames in Table 5.4 are: KE = Kenya, CA

= Canada, US = United States, NO = Norway, IE = Ireland, and CN = China. We

choose to focus on 1-year time frame since this is the default option.

The number of requests to Google Trends is limited. For example, Python

Pytrends library states that 60 seconds of sleep between requests is recommended

in avoiding the limit (we have verified that the limit is around 1440 requests, which

greatly reduces the amount of data that can be collected daily). In our evaluation,

we have focused on 3183 tokens that had R2 ≥ 0.85, c2 ≥ 0.001, x ≥ 10 and 459

tokens that are limited to persons/topics (@/#) (the results for these presented in
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the previous subsection in second to last and last row, respectively, of Table 5.3).

Table 5.5 and Table 5.6 show the results for the three regions at city and country

levels for the 459 tokens and 3183 tokens respectively. The first column shows the

type of restrictions placed on Google Trends. Restrictions considered were (i) using

only the location with the highest ranking, (ii) using the top three locations, (iii)

using locations with a weight ≥ 50, and (iv) using all locations. The last row shows

the results using our approach based on message creation times. The second column

shows the number of predictions made for each region. The precision of predictions

for each region is shown in columns 3-5. The final column is the total number of

predictions.

Table 5.5: Performance over 459 Twitter Persons and Topics (@/#)
Restriction Predictions NA SA AF EUR AS OC Total

City using top 1 1, 3, 5 100 100 100 9

City using top 3 1, 3, 5 100 100 100 9

City using weight ≥ 50 1, 3, 5 100 100 100 9

City all 1, 3, 5 100 100 100 9

Country using top 1 161, 28, 52 95.03 92.86 100 241

Country using top 3 161, 28, 52 95.65 92.86 100 241

Country using weight ≥ 50 161, 28, 52 95.03 92.86 100 241

Country all 161, 28, 52 95.03 92.86 100 241

Our Approach using Time 261, 61, 137 98.08 81.97 97.08 459

Table 5.5 shows that, out of 459 tokens, City Google Trends only produced 9

results while Country Google Trends produced 241 rankings. These tokens contained

symbols @ and # which on Twitter have special meaning, but these are not as

common when using the Google search engine. As a result, Google does not have

enough information for trend analysis for these tokens.
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Table 5.6: Performance over 3183 popular tokens with at least 10 coordinates
Restriction Predictions NA SA AF EUR AS OC Total

City using top 1 2188, 360, 491 78.29 84.72 83.1 3039

City using top 3 2188, 360, 491 80.94 87.5 84.73 3039

City using weight ≥ 50 2188, 360, 491 84.32 90.83 84.11 3039

City all 2188, 360, 491 90.81 94.17 89 3039

Country using top 1 2267, 365, 525 64.49 76.16 88.76 3157

Country using top 3 2267, 365, 525 55.32 75.07 88.38 3157

Country using weight ≥ 50 2267, 365, 525 59.51 78.9 87.62 3157

Country all 2267, 365, 525 56.64 94.79 80.76 3157

Our Approach using Time 2270, 380, 533 99.69 94.47 98.69 3183

Table 5.6 is more informative since the 3183 tokens consist of more common

keywords and that tend to be associated with a geographic area. Google Trends has

information on most of these with 3039 at the city resolution and 3157 at the country

resolution. At the city resolution, it is seen that as more cities are considered the

precision is gradually going up i.e. performance using just the top city is the worst.

On the contrary, the performance using Country Google Trends has better overall

performance when using only the top Country. This could be because there are a

lot of separate countries in Europe and Africa continent and as a result, this region

tends to be heavily favored when using all countries. When looking at precision

across all regions our proposed time-based method performs the best with 98.9%

overall precision vs. the best results via Google Trends at 69.88% at the country

resolution and 90.92% at the city resolution.

Other caveats:

One might need to adjust Google Trends based on population. For example,

when resolution is at the country level the keyword ‘pizza’ is given a weight of 100
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for the USA and 99 for Canada. If adjusting for population and number of Twitter

users present in the USA vs. Canada, it seems that the USA should be weighted

more. Also, the regions are based on the popularity of search areas where Google is

used, but Google and Twitter do not have the same popularity around the world.

Google trends seem to be case insensitive i.e. ‘day’ and ‘DAY’ both return the same

results.

Country Google Trends always returns a ranking for 250 countries (with most

countries given a weight equal to zero). When the resolution is at the city level Google

will return only the top x cities. For the 3183 tokens the average was x = 68.78 +/-

one standard deviation of 26.07 (so statistics are not provided for all cities in the

world).

City Google Trends associates tokens with city locations with city names and

coordinates available. We recorded all unique city names and coordinates, associated

by City Google Trends, over 3183 tokens, into set AllCity (5229 cities recorded).

Next, each city name from set AllCity was fed to Google Trends and the top city

result and its coordinates were recorded. Distance in miles was computed between

the coordinates of a city query vs. the top city via Google Trends. As an illustration,

Table 5.7 shows example city tokens and the top city association and the distance

between the two.

Across 5229 city queries, 440/5229 = 8.4% produced no results. Out of 4789

queries with results, the average distance between city query and city via Google

Trends was 362.03 miles +/- 1334.97. ACC@100 was at 87.57% illustrating that

the majority of cities get matched up to a city within 100 miles. However, it is
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Table 5.7: Example Google Trends top City vs. Known City Query
Query City (coordinates) Top Trends City (coordinates) Distance

Barcelona (41.385064, 2.173404) Barcelona (41.3850639, 2.1734035) 0

Houston (29.760427, -95.369803) Bellaire (29.7057858, -95.4588299) 6.5426

Chicago (41.878114, -87.629798) Norridge (41.9633641, -87.827284) 11.7575

New York (40.712784, -74.005941) Albany (42.6525793, -73.7562317) 134.4946

Rochester (41.064765, -86.215833) Rochester (44.0121221, -92.4801989) 378.8369

important to highlight that Google Trends is not the same as geocoding i.e. Chicago

using geocoder would not get matched up to Norridge, it is just that there were many

queries containing Chicago from that location. Similarly, a query such as ‘Moscow’

will not get associated with Moscow Russia because users there will most likely utilize

the Cyrillic alphabet. Cities that are popular travel destinations will also be affected.

In summary, Google Trends is an interesting dataset that could be complementary

to the time features proposed. The time features were illustrated to perform better

for the proposed task, but Google Trends does have interesting properties. The

limitations of Google Trends are related to (i) unavailability of data for certain

tokens such as popular Twitter topics/persons, (ii) Google Trends is restricted to

about 1400 queries per 24-hour period, and (iii) it is not possible to customize the

date range over which trends are formed.
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5.5 Evolving Popularity: Inferring Daily Changes in Num-

ber of Followers

It is important to understand how an individual’s influence changes with time; this

can help predict future influence as well. To predict the future one must first un-

derstand the past. In the context of Twitter, the corresponding problem involves

estimating the rate at which an influencer has gained their existing followers over

a given time period. In this section, we propose a novel algorithm to address this

problem, using the creation times of an influencer’s followers.

To find the number of followers an influencer has gained on a daily basis (i.e.,

within a span of 24 hours) during a period of d days, one would need d+ 1 daily col-

lections. Since this is a time-expensive proposition and because Twitter API doesn’t

allow one to go back in time, we propose an alternative method for approximating

daily gains for an influencer, and compare it with an approach based on Meeder, et

al. [84].

5.5.1 Dataset: Stable, Global, Growing Influencers

Each Twitter user’s profile contains the number of followers that the user currently

has. By collecting user’s profile multiple times we can get a sense for how the number

of followers is changing. Let ψ(i, t) represent the number of followers of influencer i

at time t. Let ψ(i, t0, t1) = ψ(i, t1)− ψ(i, t0) represents the number of new followers

i gains during the time interval [t0, t1]; the number of followers stated in influencer’s
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profile at t1 minus the number of followers stated in influencer’s profile at t0.

Twitter keeps track of popular influencers via @verified. There are over 300K

verified influencers as of this writing. Our focus is on global stable verified influencers

that continue to gain followers; to this end, we collected data on influencers that met

the following criteria. The influencer:

1. having greater than a million existing followers, i.e., ψ(i, t) > 106;

2. gaining at least a thousand followers within 24 hours,i.e., ψ(i, t0, t1) ≥ 103

where t0 and t1 are 24 hours apart;

3. the gain in the number of followers is less than 1% of the overall existing follower

base, i.e., ψ(i, t0, t1) ≤ (0.01× ψ(i, t0));

We ensured that the above criteria were met over three ψ(i, t0, t1) collections

performed in December 2020. Let U0 contain all verified Twitter influencers. For

each influencer i in U0 we computed ψ(i, t0 = d0, t1 = d1) where d0 and d1 are 24-

hours apart. Influencers that met the three criteria from above form the set U1.

For each influencer i in set U1 we ensured that the three criteria were again met

using ψ(i, t0 = d2, t1 = d3) where d2 and d3 are 24-hours apart to obtain set U2.

The process is repeated again using ψ(i, t0 = d4, t1 = d5) yielding the final set U3

consisting of 600 influencers.
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Data collected for each Influencer

The data collected is used to illustrate that ψ(i, t0, t1)’s, where t0 and t1 are 24

hours apart, can be predicted using the creation times. Using an instance of the

Twitter API we collected the first 50K followers for each influencer i ∈ U3. Twitter

API instance is used to record the profile metadata and store them to allProfile =

{allprofile(t, i) : i ∈ U3, t refers to the time of collection}. Profile collection is re-

peated every 5 minutes with the list of collection times given by PC.

Another Twitter API instance collects followers. The follower collection, unlike

profile metadata, cannot be performed quickly across all influencers. The time when

influencer i’s followers are collected is recorded as Followerst(i).

Once the followers for all influencers are collected: given an influencer i, PC

is used to find a the closest time to Followerst(i) (which we refer to as t1) and to

Followerst(i)−24 hours (which we refer to as t0). Recall ψ(i, t0, t1) = ψ(i, t1)−ψ(i, t0),

in this case ψ(i, t0, t1)=allProfile(t1, i)-allProfile(t0, i).

In this way, we have ψ(i, t0, t1) over the same period that the followers were

collected for all users in U3. In the rest of the chapter, we refer to ψ(i, t0, t1) over all

users in U3 as the actual 24 hour follower gain, a24.

The followers and the a24 over all users in U3 make up our dataset that is denoted

as D600. Table 5.8 shows ten influencers from our dataset ordered by the highest a24.
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Table 5.8: Follower gain for selected influencers over 24 hours
Influencer Follower at t0 Follower at t1 a24=Gain

joebiden 22009684 22057780 48096

bts twt 31718727 31766383 47656

bts bighit 26238967 26280220 41253

arianagrande 80458070 80494729 36659

elonmusk 41178206 41208685 30479

bighitent 18527632 18553608 25976

kamalaharris 13553348 13577323 23975

narendramodi 64532998 64556393 23395

iamcardib 15913538 15935631 22093

nasa 42743031 42763315 20284

5.5.2 An Algorithm to Estimate Follower Gain

Meeder et al. [84] observed that the followers of an influencer are returned by Twitter

in a list that is in the order of following time i.e. most recent follower first.

Dataset D600 for each influencer contains 50K followers. For a specific influencer,

let L = [l0, l1, l2, . . . , l49999] be the list of creation times of its followers. We select

the first 24 × n values from this list for generating 24 rows of size n each, denoted

as L1, L2, . . . , L24. Each Li is used to generate a time distribution of the creation

times. For example, in Fig. 5.5, we have plotted 24 such distributions, using n = 600

for the influencer @CNN. In this figure, for each distribution, the hour during which

the frequency peaks is highlighted in red. We observe that each distribution has a

peak and the peak shifts by an hour. Fig. 5.5 is drawn for @CNN but a similar

behavior is observed for most global influencers. In the following, we describe the

novel algorithm to estimate an influencer’s daily follower gains.
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Figure 5.5: 24 time distributions where each time distribution formed from n = 600
followers of @CNN for a total of 24×600 = 14400 followers. Distributions are plotted
one above the other (L1, L2, . . . , L24). For each distribution the hour during which
it peaks is highlighted in red.

Representing Cyclical Nature of Time

In the 24-hour clock, shown in Fig. 5.6, each hour can be represented using sine and

cosine values of the angle the hour-hand makes with the vertical straight line from

the center to the 24th hour. The angle for an hour h in degrees is given as 360×h
24

.

For example, the angle for 2 O’clock is 360×2
24

= 30o and 2 O’clock is represented as

(sin 30o, cos 30o) = (0.5, 0.866). Similarly 5 O’clock is expressed as (sin 75o, cos 75o)
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Figure 5.6: Left – 24-hour clock; illustrates the computation of the cosine similarity
between two hours. Right – Each curve is computed using cosine similarity between
the peak time in the first time distribution vs. itself and peak times over remaining
23 time distributions for various n as described in the text (all graphs for @CNN ).
The red curve is optimal in that the peaks are in the order of the hours on the clock.

= (0.965, 0.258). The cosine similarity between (0.5, 0.866) and (0.965, 0.258) is

0.707. If we plot the cosine similarities of (sine, cosine) representation of a specific

hour A, with (sine, cosine) representations of hours A, (A+1), (A+2), . . . , we obtain

a smooth cosine curve (see red plot on the right of Fig. 5.6). The vector of the above

cosine similarities is denoted as V1 and is called the optimal vector.

Now consider the peak hour in each distribution of @CNN in Fig. 5.5. If we

compute and plot the vector V2 of cosine similarities between (sine, cosine) repre-

sentations of these hours with the representation of hour 7 (where the peak occurs

in the first distribution), we obtain the brown curve in Fig. 5.6. Likewise, vectors

of cosine similarities resulting from sample sizes given by n = 100, 200, 300, 400,

and 500 are shown. The similarity between V1 and V2 can be computed using ρ, the

Pearson Correlation Coefficient.
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We are interested in the size of n that results in temporal distributions that peak

exactly one hour apart for all 24 hours (or as close to it as possible). For example,

in Fig. 5.6, the curve associated with n = 600 is closest to the ideal red curve. The

key idea is to try different values of n and calculate the associated V2 vectors. The

vector V ∗2 with the highest correlation against V1 and associated n∗ are obtained.

The number of followers gained over 24 hours is predicted as p24 = 24×n∗. A formal

description of the algorithm is provided below.

The Algorithm

Input to the algorithm is the list, L, of an influencer’s followers and the precomputed

optimal vector V1. Next, n is chosen from a minimum of 10 to a maximum of

b |L1|
24
c. For each n, 24 time distributions are generated and from each, the hour

during which the time distribution peaks is recorded. V2 is generated using cosine

similarity between the peak hour in first time distribution vs. peaks across all 24

time distributions. V1 and V2 are compared using the Pearson Correlation Coefficient

ρ. The sample size n∗ that resulted in the highest correlation coefficient is returned.

The predicted 24 hour followers turn over, p24, is given as 24× n∗.

Algorithm 1: infer24HF(L1):

Input: List L1 of follower creation times;

Output: Predicted 24 Hour Follower Gain, associated

Pearson Correlation, and number of unique peaks;

bestN, maxP, maxH = 0, 0, 0;
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V1 = vector of cosine similarities between

hour 0 and hours [0, 1, 2, ..., 23];

for n in [10, 15, ..., |L1|/24]:

Split first 24*n elements of L1 into 24 bins of size n;

Record the hour with most elements for each of 24 bins;

V2 = vector of cosine similarities between

hour in bin 1 and hours in each bin;

P = Pearson Correlation between V1 and V2;

if P > maxP:

bestN = n;

maxP = P;

maxH = number of unique peaks across bins;

Return bestN*24, maxP, maxH;

end

5.5.3 Evaluation

For each influencer in D600, we compute p24 and compare it to known follower gain

a24, using the comparison measure diff(p24, a24) = max(p24/a24, a24/p24)-1.

Fig. 5.7 shows the scatter plot of p24 versus a24 for all influencers in D600. The

scatter plot is color-coded: green dots represent influencers with diff≤ 0.25, and red

dots represent large differences with diff> 1.0. The Pearson correlation coefficient

between p24 and a24 vectors is ρ = 0.967, a high value that shows that the proposed
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Figure 5.7: Scatter plot of Inferred vs. Actual number of followers gained by 600
influencers over a 24-hour time period (Pearson correlation coefficient = 0.967); 238
points (green) differ by < 25%, 195 points (orange) differ by < 50%, 126 points
(blue) differ by < 100%, and 41 points (red) differ by ≥ 100%.

method makes accurate predictions.

We compare our algorithm against two baselines. Meeder et al. [84] provide

a method for estimating when a user had followed the influencer. Given a list of

followers’ creation times L1 for influencer i, the follow time for a follower at index

j is approximated by max(L1[j :]) (max gives the most recent creation time at in-

dices greater than or equal to j). For our problem we are interested in the number

of followers gained over 24 hours so that the datetime max(L1[j :]) is as close to

the datetime that is 24 hours before the follower collection took place (given by
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Followerst(i) minus 24 hours). Effectively we are trying to utilize the method pro-

posed by Meeder to estimate the index j that would satisfy this requirement. The

method should work for those influencers that are likely to be followed by brand new

users immediately after their account creation.

Followerst(i) gives time t for influencer i’s followers collection. Let LM [j] =

(t− creation time of the jth follower of the influencer, for j = 0, 1, . . . ).

Baseline 1:

Traverse the list, LM , in reverse order and find the first index j, such that LM [j] ≤

24 hours. If such a j exists, then return j + 1, denoted as p
(B1)
24 ; else return |LM |.

Baseline 2:

For each j, such that LM [j] ≥ 24 hours calculate LM [j]
j+1

; Find the minimum ratio,

which will approximate the average number of seconds that elapse per new follower;

Return p
(B2)
24 = 86400

ratio
(since there are 86400 seconds in 24 hours).

As before, we can calculate the correlation coefficient between the vectors of p
(B1)
24

and a24 and between p
(B2)
24 and a24 over all influencers. In addition, median error

and MSE can be computed, where diff(predictions, a24) is the error that is to be

minimized. Table 5.9 shows how our approach compares against baseline predictions

based on these measures. Correlation values of all three approaches are high, with

slightly better values obtained by our approach. In terms of median error and MSE,

our approach performs much better than the baselines.
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Table 5.9: Performance of three algorithms to predict influencers’ gains
Approach Correlation Median Error MSE

Baseline 1 (p
(B1)
24 ) 0.962 0.620 0.665

Baseline 2 (p
(B2)
24 ) 0.964 0.541 0.510

Our 0.967 0.298 0.252

5.5.4 Rationale for Proposed Algorithm and its Limitations

If we consider a group of users that acted during a specific hour h (such as posting

a message or following another), then we are likely to observe a maximum near that

same hour in their creation time distribution. This behavior has been confirmed,

as discussed below, by analyzing time distribution for users grouped using the time

that they have posted a message.

We utilize the dataset Dmess. We take all messages that contain a specific token.

For example, for token ‘@youtube’ there were 13704 messages. Next, we separate the

messages (containing that token) by the hour of message creation time. In this way,

24 groups of users are formed where each user group is known to have been active

during a specific hour (the hour during which the message was generated). For each

user group, we construct the creation time distribution.

Fig. 5.8(a) shows a heat map for the 24 time distributions generated for token

‘@youtube’. Notice that a global concept ‘@youtube’ will have a pattern down the

diagonal like an Identity Matrix (‘@youtube’ considered global because c2 < 0.001);

the same analysis was performed using stopwords such as ‘the’ and ‘you’ and they

also observe this pattern. The pattern is due to a unimodal distribution that peaks

near the same hour as the hour during which the users were most active in generating
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the messages. Intuitively if a person had the time for creating their Twitter account

in the morning then this person is likely to be active on the Twitter platform during

the same morning hours in the future (there is thus a correlation between the creation

times and activity times).

(a) Messages with ‘@youtube’ (b) Messages with ‘trump’

Figure 5.8: Heat maps showing 24 time-distributions from users’ creation times where
users are binned by the hour that they generated messages containing tokens: (a)
‘@youtube’ (global) and (b) ‘trump’ (local). For a global token like ‘@youtube’ we
see that if a user was active in posting a message during hour h, then the user was
likely to have created their account near the same hour h. For token ‘trump’ a sleep
cycle is observed (period of inactivity hours 5-11).

The distinction between global and local influencers is illustrated by comparing

Fig. 5.8(a) vs. Fig. 5.8(b). Fig. 5.8(b) focuses on a more localized token ’trump’

that clearly has a period of inactivity, a sleep cycle, during hours 5-11 (token has

c2 > 0.001 and during the collection period it was heavily discussed in the Americas).

The concepts observed over message analysis apply to studying the influencer’s

followers. We do not know when a user followed an influencer, but because the
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followers are in sequence of follow time this indicates which followers must have

followed earlier on. Algorithm 1 attempts to find a batch of followers of size n that

results in a unimodal distribution, which indicates that the followers are likely to

have followed the influencer during the same hour as their account creation. When

24 batches, of size n, each peak during a different hour in sequence, it gives confidence

that the follower gain around the 24-hour time period has been accurately identified

(as has been illustrated in Fig. 5.5 for followers of @CNN and like the Identity

Matrix in Fig. 5.8(a)).

Algorithm 1, for this reason, is well suited for global influencers that are gaining

followers around the clock. In contrast, the heat maps for localized influencers show

no strong peaks during some hours of the day. The approach, presented above, also

cannot be relied upon for influencers that are gaining no more than 50 followers a

day, because the average hourly batch will be too small to generate a meaningful

time distribution.

There will be periods during which an influencer gains no followers and even

loses followers. We can reason only about followers that the influencer currently has,

i.e., we cannot know which followers an influencer might have had in the past. If

the influencer has lost many original followers, then the signal in the data will be

obscured by considerable noise; ρ will be small since the peaks will not cover all hours,

and the order might not be perfect. Hence we have chosen to focus on influencers

that have a large stable following and that are continuing to increase their follower

base. It is preferable to pay close attention to ρ and to stop making inferences after ρ

goes below some threshold. It is also recommended to compare the modified baseline
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based on Meeder et al. [84] as an additional check against our method.

5.5.5 Studying the Evolution of Popularity

To study an influencer’s evolution of popularity we need to find how many followers

the influencer has gained over multiple days. In an earlier subsection, we have shown

that we can estimate an influencer’s follower gain over past 24 hours. The same

technique can be repeatedly applied to study the gains over a longer time span.

To understand the evolution of an influencer’s popularity, we first find its follow-

ers’ creation time list, Lt, obtained at time t. Unlike the list in the previous section

that contained only 50K followers, this list consists of all available followers of the

influencer.

Say we have an influencer with 10 million followers. We could send the whole

list to Algorithm 1, but it is not reasonable for the influencer to have gained 10

million followers in 1 day, and so to reduce computation we send a smaller more

reasonable list. The feature wSize sets the threshold for the maximum number of

followers to send to Algorithm 1 (this threshold can be increased or decreased based

on influencer’s popularity).

Using the first wSize followers between indices [0, wSize− 1] of Lt, Algorithm 1

calculates the number of followers gained between t and t − 1, denoted as pt24. The

next wSize followers between indices: [pt24, wSize+ pt24− 1] will calculate pt−124 (gain

between t − 1 and t − 2). The next wSize followers between indices: [pt24 + pt−124 ,

wSize+ pt24 + pt−124 − 1] will calculate pt−224 (gain between t− 2 and t− 3). The daily
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gains returned as list: [pt24, p
t−1
24 , pt−224 , ....] successively going backward in time.

Using this approach with wSize = 50000, Table 5.10 illustrates the number of

followers gained in the last 10 days by two examples of qualitatively different kinds

of influencers: @MrBeastYT and @NPR. The table also contains the associated cor-

relation values (suggesting the degree of confidence), and the maximum number of

unique hours captured by the peaks for each calculation from Algorithm 1. We ob-

serve that @MrBeastYT consistently adds more followers than @NPR. @MrBeastYT

also has higher unique hours and higher correlation, suggesting greater confidence in

these predictions. This is reasonable since a more popular influencer will have more

hourly followers, and consequently, the time distribution will be formed using more

data points.

Table 5.10: Comparison of numbers of followers gained (p24
t-d) over each of 10 days

by two influencers, along with correlation values maxP and the number of hours
maxH spanned by the followers in each 24-hour period

@MrBeastYT @NPR

period t-d p24
t-d maxP maxH p24

t-d maxP maxH

t-1 12480 0.989 20 1680 0.759 18

t-2 12120 0.993 21 1560 0.944 18

t-3 14400 0.98 22 1440 0.678 20

t-4 9480 0.98 22 1800 0.847 16

t-5 10800 0.989 23 1440 0.91 20

t-6 12960 0.934 20 1320 0.944 17

t-7 10800 0.981 21 1560 0.834 19

t-8 11520 0.978 22 1680 0.972 20

t-9 11520 0.979 21 1440 0.948 21

t-10 10440 0.984 22 1560 0.967 21

The evolution of popularity for these two influencers can be visualized using

Fig. 5.9, generated by repeatedly taking n = 200 followers at a time. The x value
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Figure 5.9: Daily follower gains from the proposed method are shown as black tick
lines on top for @NPR and on the bottom for @MrBeastYT. The cosine similarity
curve, as described in text, has a periodicity that predictions from the proposed
method can capture. We can thus visually verify that the proposed method is making
meaningful predictions going backwards in time beyond a single day.

corresponds to the index of the last follower in the sample [n, 2n, 3n, . . . ]. Time

distribution is formed over followers using indices [x − n : x] and the hour during

which time distribution peaks is recorded. The cosine similarity between the first

peak hour vs. the sequence of all peak hours is recorded.

The cosine similarity curve has a periodicity (it starts at 1 goes to -1 and then

back to 1). The predicted pt−d24 from Table 5.10 are shown using black tick lines

at the top of the chart for @NPR and the bottom for @MrBeastYT. For example

for @MrBeastYT the black tick lines appear at [pt24 = 12480, pt24 + pt−124 = 24600,

pt24 + pt−124 + pt−224 = 39000, . . . ]. Visually we can see that the black ticks correspond

to the periodicity of the curve for each influencer. In this way, another way to think

about our method is in being able to capture the lengths of the periods in Fig. 5.9,

which happen to correspond to the past number of daily followers gained.

115



5.6 Global vs. Local Influencer Classifier

In this section, we consider the problem of classifying local versus global influencers.

For this, we generate a labeled dataset with 680 local and global influencers. The

features are based on sleep cycle analysis (from Section 3.2) and peak analysis (from

section 5.2). The resulting classifier illustrates that the features proposed in this

chapter are well suited for the task.

5.6.1 Dataset

The method from [83] is used to generate a list of global and local influencers. Au-

tomated Google search queries are utilized to get top Twitter influencers associated

with the 100 most populous US cities. The followers of the top influencers are used

to generate communities representative of each city. A modified TF-IDF algorithm

is used to rank influencers based on whether they have a strong connection to a sin-

gle city community (local) vs. multiple communities (global). Each influencer was

verified manually by reading the influencer’s description and other profile meta-data.

In this manner, 680 influencers were identified out of which 558 were local and 122

were global.

5.6.2 Features

Given a new influencer, we collect the list Lt, of up to 50K followers. Next, Algorithm

1 is applied over Lt to generate features: p24, maxP , and maxH (F0 to F2 listed
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below). In the following, the temporal distribution, resulting from the first p24

followers in Lt is denoted as p24Dist.

1. F0 = p24; if p24 < 500, p24 = 500.

2. F1 = maxP : the associated ρ.

3. F2 = maxH; the maximum number of unique hours with peaks.

4. A quadratic is fitted over sleep cycle in p24Dist (as described in section 3.2):

F3 =

 c2 if sleep cycle exists and quadratic is parabolic

0 otherwise.

5. F4 = std(p24Dist), the standard deviation associated with p24Dist.

6. F5= the fifth Fourier Coefficient (we tried the top 10 Fourier Coefficients4

associated with p24Dist, but the final classifier did not find others significant.

A time distribution with a quadratic will need to be represented using higher

order Fourier Coefficients, F5 > 0. Conversely, a simple linear function can be

represented using fewer coefficients so that F5 == 0.

5.6.3 Results – Local versus Global Classification

We use four families of classifiers:

1. Support Vector Machine (SVM) with the dot, radial, and polynomial kernels,

4Complex Fourier transform was used with the SciPy mathematical Python library. The real
coefficients corresponding to the cosine terms recorded.
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Figure 5.10: Decision Tree Classifier for differentiating local vs. global influencers
based on the features from account creation times of their followers. The number of
local (L) and global (G) influencers predicted using each branch shown for each leaf
node.

2. Näıve Bayes,

3. Decision Tree; using information gain with max depth = 5, and

4. Random Forest; the number of trees ≤ 10, each tree uses information gain with

max depth = 5.

Cross-validation with K = 5 was employed. Accuracy is averaged over 5 itera-

tions. Decision Tree gave the best results with an average accuracy of (96.91±1.08)%,

followed by the Random Forest (96.18 ± 0.86)%, and Näıve Bayes (96.18 ± 1.27)%;

SVM performed poorly for all three kernels. The Decision Tree Classifier is shown

in Fig. 5.10.

We used information gain to rank the features. Top four features and their

associated weights are:(i) F1: 1, (ii) F4: 0.983, (iii) F2: 0.972, (iv) F3: 0.956 (the

weight for F5: 0.058 so it is not as significant).
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As we have seen in the previous section, a sample of followers from a global

influencer can lead to a time distribution that is unimodal, and for this reason, it is

important to take a sample determined by Algorithm 1. Algorithm 1 searches for the

optimal curve that is achieved if the peaks from time distributions are in sequence

and contain all 24 hours; if the ρ (F1) is low and if a small number of hours (F2) are

covered this indicates a local influencer.

If F4 (std(p24Dist)) is low then the spatial distribution is flat and belongs to a

global influencer; which is consistent with observations made in the previous sections.

The information gain identified that F3 (c2) less than 0.001 should be the cutoff for

a global influencer (this exact value was also confirmed from analysis of stop words

using message traffic in Section 5.4). Finally, if the time distribution is represented

using only low order Fourier coefficients so that F5 = 0 this means this is more of a

flat line simple time distribution associated with a global influencer.

This classifier is intuitive and over the whole dataset achieves 665/680 = 97.79%

accuracy. The followers of influencers that the classifier predicts as local can be used

for predicting UTC offset related to local expert finding in social networks. While

the followers of global influencers can be used for inferring daily follower gains and

analyzing how their popularity has evolved.

5.7 Conclusions

In this chapter, we have illustrated an approach for how creation times can be used in

time series analysis. The creation times can stem from a group of messages or account
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creation times. It was illustrated that the distribution of creation times that stem

from a single time zone will be approximately parabolic, with a minimum during the

night time for that time zone. Regression with a quadratic function can be used to

predict the UTC offset associated with the time zone. By examining message traffic,

this information was utilized to identify trending keywords over multiple geographic

areas of interest. In addition, by analyzing the set of followers of any influencer, we

showed that this information can be utilized to determine how strongly localized is

the range of influence of an influencer. This is useful for Location-Aware Influence

Maximization (LAIM) and local expert finding in social networks.

We also illustrated that a follower sample exists such that the peaks from mul-

tiple time curves occur in sequence. Analysis of variations of the wave pattern in

the distribution of peaks provides information regarding the periodicity with which

followers were gained. This is useful for understanding how an influencer’s popularity

has evolved over time, as well as for inferring link creation times.

Finally, the proposed time-based features were utilized for creating a local vs.

global type classifier. The classifier is important because the UTC offset predic-

tion should be applied for local influencers whereas the analysis for how influencer’s

popularity evolved works for global influencers.
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Chapter 6

Application 1: Multilingual Geocoder based on labels using

Time and Language Features

6.1 Introduction

As has been shown in Chapter 2, it is inherently difficult to build a universal geocod-

ing solution that can handle various languages and their associated alphabets, popu-

lar slang, and purposely ambiguous phrases on Twitter. In a step towards a univer-

sal geocoding solution, Chapter 5 showed that time-based features could be used for

identifying whether the user group is from a particular timezone. A timezone spans

a large geographic area, but the language features can constrain the set of possible

countries. In this chapter, the proposed approach is illustrated by categorizing 320K

Twitter influencers. High confidence influencer predictions are used as training data

for an improved geocoder. This geocoder automatically learns popular ways that

Twitter users refer to locations within the country and can handle foreign alphabets.

6.2 Influencers-Dataset

In this dataset, user groups are binned by the influencer they follow. The influencers

for the dataset were chosen from the special Twitter @verified. It tracks all influencers
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that have passed an internal Twitter check (after Twitter performs a special check

the influencer is identified via a special blue badge). In this dataset, collected in the

spring of 2019, there are 320,166 influencers. Due to Twitter API limits, for each

influencer only a single API call was made which returned at most 5000 followers.

The ground truth consists of the country associated with the self-reported location

reported by the influencer. It is checked whether this country can be used as a

label, based on whether this country matches (i) the most frequent country from

self-reported locations of followers and (ii) whether it is contained within the set

of countries that would be predicted using followers’ time and language features.

It is shown that time and language features can be used to improve the precision

of the country labels. The country label and the associated influencer’s followers’

self-reported locations are used for training and illustrating a multilingual geocoder.

6.3 Incorporating Language

We utilize language to further improve the performance of the time-based classifier

proposed in section 5.3. Given a time distribution associated with a user group we

can compute UTCP (equation (5.2)). Let U1 equal the set of countries whose cities

have a time zone that observes UTC offset in the range [UTCP − t1, UTCP + t1],

where t1 is a preselected threshold. For example, the set of countries [TLS, PLW,

JPN, MNP, FSM, GUM, IDN, AUS, PRK, RUS, KOR, PNG], correspond to UTC

range ∈ [8, 10].
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Our next step is to incorporate language information to constrain the set of pos-

sible countries for the selected UTC offset range. Initially, the CIA World Factbook

was utilized for this purpose. But for some countries, the languages from CIA World

Factbook did not align with the languages used on Twitter. For example, English is

the most popular language in India for communication, but it does not make it into

popularly spoken languages (instead Hindi, Bengali, and others are listed).

We utilized language preferences, a user-selected option, which is available for

more than 99% of collected users on Twitter. In our dataset, there are 76 unique

language codes associated with 143 countries, each language was used by at least 100

users, collected over 373 million user profiles.

Given a user group, the users’ language preferences are used to generate a lan-

guage distribution, i.e., we calculate:

gG(`) =
# of users of language ` in G

|G|

for all 76 languages. The language distribution for all countries was also calculated,

i.e.,

hc(`) =
# of users of language ` in country c

# of all users in country c

for all 143 countries.

Using cosine similarity gG(`) is compared with hc(`) for all 143 countries. Let U2

be the set of countries whose language distributions have a similarity score greater

than threshold t2. Finally, let U3 = U1 ∩ U2 that is, U3 equals the set of countries

common to both sets U1 and U2.
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Table 6.1 shows how the language distributions helps narrow down the list of

possible countries for different thresholds t2. Recall that for each user group in the

UTC offset dataset its location and therefore its country is known. For each user, if

this country is in set Ui then the prediction is marked correct, incorrect otherwise.

In Table 6.1 the first three columns are the median number of countries associated

with U1, U2, and U3.

Table 6.1: Language helps constrain the set of possible countries from UTC while
improving precision for higher cosine similarity, t2

U1 U2 U3 P R t2
19 143 17 89.02 100.00 0.05

19 140 17 89.14 99.87 0.15

19 127 12 89.54 99.42 0.25

19 115 8 89.75 99.18 0.35

19 108 7 90.07 98.80 0.45

19 102 7 90.23 98.58 0.55

19 99 6 90.32 98.38 0.65

19 91 6 90.27 98.23 0.75

19 83 5 90.26 97.84 0.85

19 70 4 90.34 96.01 0.95

It can be seen that our final prediction, identified by the set U3, has good accuracy

and a much smaller set of possible countries then initial U1. From table, values from

0.85 to 0.95 work well for t2.

6.4 Illustration over Influencers-Dataset

The prediction methods, discussed in previous sections, are shown in a pipeline in

Fig. 6.1. As an application, the pipeline is applied over Influencers-Dataset. The

goal is to identify geo-influencers and accurately associate them with the country
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that most of their followers are from. We are interested in high confidence influencer

predictions because these in turn can be used as training data for a multilingual

geocoder that will be presented in the following section.

Figure 6.1: Pipeline for predicting region of the world using time and language
features. The top layer shows input, the middle layer output, and the bottom layer
the name of the process. Each step sends its output as input to the next step.

One data point is the influencer’s self-reported location. Another data point

is the ratio of followers’ self-reported locations belonging to a particular country.

The expectation is that for geo-influencers the country associated with the self-

reported location will match the most frequent country from influencer’s followers.

Self-reported locations that match a known GeoNames entry are utilized as described

in section 5.3.1.

A problem with self-reported location information from followers is that the la-

beled location focuses on the Latin alphabet with foreign city names appearing as

they would be referred to by an English speaker (Moscow instead of Moskva in Cyril-

lic). Therefore, English-speaking users are incorporated more often than non-English

speakers. Using the following steps we aim to test the different stages from Fig. 6.1

to help with this imperfect baseline:
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1. Step 1a (S1a) – Get rid of influencers whose followers’ time distribution does

not exhibit a U-shaped parabola.

2. Step 1b (S1b) – Get rid of those influencers which are classified as global.

3. Step 2 (S2 t1) – UTCP computed and used to obtain the set of possible coun-

tries U1.

4. Step 3 (S3 t2) – Reduce the set U1 to set U3 by constraining to countries that

have cosine similarity above t2.

Steps S1a and S1b should reduce the dataset to focus primarily on geo-influencers

whose followers are concentrated in a single time zone. Steps S2 t1 and S3 t2 help

identify and correct instances where the baseline is making poor predictions that do

not match using countries based on time and time+language features, respectively. If

the top-ranked country from the baseline is within the set of countries it is returned

as a prediction otherwise the second top country is used and so on.

There were 100,712 influencers with a self-reported location that could be resolved

using GeoNames. The country that the influencer associates themselves with is used

as ground truth. For example, @BBCNews has a self-reported location ‘London’

which is associated with GBR using GeoNames. Ordering by the most frequent

country from followers’ self-reported locations, the top five countries and associated

percent of self-reported locations are USA: 28.15%, NGA: 10%, IND: 6.3%:, GBR:

5.92%, and KEN: 4.81%. Thus, USA is the top prediction used in baseline, but this

does not match the set of possible countries from S2 t1 and so NGA is used as it

is the second best prediction; NGA has the same UTC as GBR and is thus within
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the set of possible countries using time features. Language features from S3 t2 can

further constrain the prediction to the expected result, GBR.

In the above, we have described a procedure that results in a set of possible

countries making up U3. We also consider a point estimate prediction where a single

country with the best cosine similarity is returned for a narrow UTC range t1 = 0.25

(this point estimate is denoted as S3 Point in Table 6.2).

Table 6.2 shows how the baseline is constrained using each step of the pipeline.

The second column shows precision across all influencers (100,712) and the fourth

column shows precision across influencers not associated with the USA (37,908).

Table 6.2: Different Stages of Pipeline Improve Baseline Precision
All P Count Foreign P Count

Baseline 86.34 100708 65.71 37904

S1a 86.23 95500 65.61 36087

S1b 89.98 71643 76.97 28725

S2 1 90.23 70544 77.39 28018

S2 0.5 90.95 65708 78.98 25845

S2 0.25 92.23 60387 79.43 20753

S2 1+S3 0.95 91.49 64940 78.15 23315

S2 0.5+S3 0.95 92.78 57584 80.86 19721

S2 0.25+S3 0.95 94.54 50978 80.94 13395

S2 0.25+S3 Point 97.2 35518 86.59 6587

Table 6.2 illustrates that as time and language constraints are added the precision

improves. Removing influencers that don’t pass the sleep cycle test surprisingly

doesn’t help (row S1a), but getting rid of influencers with noisy PST predictions (row

S1b) results in a big jump in precision.UTC offset information further constrains the

baseline (rows S2 t1). The highest precision is achieved when both UTC and language

information are used.
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6.5 Training Geocoder with Support for Foreign Languages

As already noted, the issue with the baseline Geocoder was that it handles only

English based locations that have a match to GeoNames. Our proposed approach is

to use the high confidence influencer predictions from the previous section as training

data for an improved geocoder. This geocoder will automatically learn common ways

persons refer to locations in their native tongue.

This new geocoder is based on a TF-IDF model, where the country is the docu-

ment and the terms are the self-reported locations of the influencer’s followers. It is

possible to apply this model because if the influencer and their followers belong to the

same country, then the followers’ locations will capture common ways persons refer

to locations within that country. TF-IDF vectors are generated using the Gensim

package in Python1.

Focusing on the top K TF-IDF features per country it is possible to verify that

the model is generating reasonable vectors. Fig. 6.2 shows the top three features

for several countries. These strings capture typical ways persons refer to locations

within that country which can serve as useful features for geocoding type classifiers.

The model also helps confirm that the countries, with which the influencer’s followers

were associated with, are indeed relevant.

Given a new influencer, the self-reported locations associated with the influencer’s

followers form a new document. A TF-IDF vector is built using self-reported loca-

tion frequencies and the IDF component previously computed over the corpus of

1https://radimrehurek.com/gensim/
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Figure 6.2: Top three TF-IDF location features automatically learned from country
documents. The benefit of this model is that it learns popular ways of referring
to the country’s locations in different languages and will include common phrases,
abbreviations, and so on.

D documents. Cosine similarity is then used to return the country vector that is

closest to the TF-IDF vector. Because the TF-IDF vectors may be very large, we

recommend utilizing Latent Semantic Analysis (LSA) to reduce dimensionality to at

most 500 terms (from literature 50-500 is recommended as a standard [89]). Fig. 6.3

highlights the overall approach.

In Table 6.3, the performance of the TF-IDF model is shown against the baseline

from the previous section. TF-IDF model has a higher precision than original baseline

with a clear jump in precision for foreign countries. This improved geocoder can be

used to generate labels across additional influencers (that could not be predicted
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Figure 6.3: The process by which TF-IDF model is learned from geo-influencers
associated with a country and used for predicting other geo-influencers.

using the original baseline). The additional labels can be verified using time and

language features and the TF-IDF model can be further improved. The process

can repeat until the process converges, that is, when the TF-IDF model no longer

improves.

Table 6.3: TF-IDF model performance for Different Stages of Pipeline
All P Count Foreign P Count

Baseline 86.34 100708 65.71 37904

TF-IDF model 88.44 100711 81.75 37907

6.6 Conclusions

This chapter showed an application by which the geographic region can be labeled

using only time and language features. The benefit of our approach is that these

time and language features are universal and can be used across the whole Twitter-

sphere. The labels have been used to train a high-level geocoder that has multilingual
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support. The benefits are that the common ways that Twitter users report their lo-

cations are captured by this geocoder. The drawback to our method is that it works

at a high level for predicting regions of the world at the country level or larger.

We envision that the features proposed will be utilized for augmenting with other

features as part of information fusion.
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Chapter 7

Application 2: Repository of Influencers for Content

Recommendation

7.1 Introduction

As discussed in previous chapters, a repository of location-aware influencers may be

of interest for content recommendation and for studying location related communities

from influencer’s followers. This chapter describes the repository collected as part of

this research, the features, and the visualization we employ. The repository consists

of over three hundred thousand verified influencers that are tracked by @verified.

For each user, the location information, time, and language features are recorded as

was described in chapters 2, 5, and 6, respectively. Additionally, other demographics

such as gender and race are considered.

7.2 Related Research

Popular variables associated with demographics are geographical location [5], age

[90], gender [91], education [92, 93], income [94], ethnicity [95], and others. Typi-

cally, due to privacy concerns, these variables are not specifically stated. However,

by fusing information with other sources, it is possible to characterize a group of
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users with a certain level of confidence. For example from the US Census Bureau’s

Genealogy Project which publishes the frequency of popular surnames with their

distribution per race/ethnicity, it is possible to characterize the percent of users that

belong to a certain ethnic group [95]. A lot of the approaches deal with English-

speakers [96].

Many additional variables may be inferred from online connections a user has

that apply to any language. For example followers of @ESPN and @SportsCenter

are more likely to be male, followers of @PlayStation are more likely to be kids, and

followers of @ParentsMagazine are likely to have kids [97]. Political orientation may

be discovered by whether the user is connected to known political representatives

[98]. Timezone and language can be used for differentiating between countries. Our

goal is to focus on those demographic features that can be used to characterize a large

portion of the global population. Our repository focuses on self-reported location,

gender, race, language, and time of the day their account was created.

7.3 Setting up the Repository

Implementation utilized Ubuntu 16.04 as the OS, Python 3.5 as the programming

language, and MongoDB 3.6.5 as the NoSQL database. ElasticSearch and Kibana

were used to search and visualize data of interest.

Fig. 7.1 illustrates the collection process for a single Twitter influencer. Each

component from Fig. 7.1 is described below.
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Figure 7.1: Collection Process.

• Influencer to Follower IDs: influencers are identified from @verified. For each

influencer, up to 5000 followers are collected.

• IDs to User Objects: Fig 7.2 is a Snapshot of our database. Database stores

all followers and all influencers collected in tables ‘userInfo’ and ‘followerInfo’

respectively. Example of User Object from userInfo table shown in Fig 7.3.

Figure 7.2: Database holding Twitter User Objects for 322 thousand influencers and
373 million followers.

• User Object to Demographics: User’s textual location is matched against

GeoNames city/country pairs, the self-reported name is matched against names

with known gender and ethnicity. The associated demographic info, for all
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Figure 7.3: Example fields for Twitter User Object corresponding to @BillGates

followers and all influencers, is stored in tables ‘userInfoDemographics’ and

‘followerInfoDemographics’, respectively. If gender is present it is given by

‘pctFemale’ and ‘pctMale’; race given by ‘pctapi’: Asian, ‘pctblack’: African

American, ‘pctwhite’: Caucasian, ‘pcthispanic’: Hispanic.

• Demographics to Distributions: all influencer’s followers with gender, race, lo-

cation, language, time information are used to form corresponding frequency

distributions. These distributions can then be used to understand the influ-

encer’s influence over the ordinary population by analyzing the percent of in-

fluencer’s followers within certain gender, language, and so on.

ElasticSearch is utilized for loading and exploring data that is relevant to a specific

scenario. Thus while MongoDB holds all of the data, ElasticSearch is used to search

for a specific demographic. The end-user can utilize the Kibana visualization to form

custom queries and zoom in and out on the map. Fig. 7.4 shows the visualization

dashboard over followers for influencer @CNNEE (CNN Espanol) (similarly any one
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of the 320K influencers can be visualized).

7.4 Features used in Repository

7.4.1 Location

Chapter 2 described an approach for geocoding a user’s textual location. The rules of

the classifier developed illustrated that it is important to consider whether a location

that is matched contains both the city and state as this is less ambiguous than a city

name by itself. Because Google’s geocoder is limited, by the number of API calls

it can freely make daily, we focused on matching locations that contain a known

city/state or city/country for a high precision/low recall solution. For our task, it

is better to focus on high precision locations given that verified influencers typically

have thousands of followers which generally provides a large enough sample (as seen

in section 4.7.2) to accurately pinpoint the influencer’s city location.

GeoNames data is processed by (i) verifying each city entry to have a population

above five thousand (806 entries were filtered out) and (ii) removing duplicate entries

that refer to the same city by taking the most recent entry or one with the highest

population (981 entries removed).

For each city, the City + Country Name, Country ISO, Country FIPS, and Coun-

try ISO3 are recorded as query strings. For example, for London UK these are the

possible strings: ‘londongbr’, ‘londonuk’, ‘londonunitedkingdom’, ‘londongb’. For

the United States, we also search for City + State Name or State Abbreviation;
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Figure 7.4: Visualizing influence by demographic. Understanding the influence of
@CNNEE.
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Table 7.1: Countries with most and least cities from GeoNames

Top 20 Country to City Bottom 20 Country to City

United States 7113 Saint Martin 1

India 3189 Sao Tome and Principe 1

Germany 2780 Guernsey 1

Russia 2525 Saint Kitts and Nevis 1

France 1972 Saint Barthelemy 1

Italy 1919 Saint Pierre and Miquelon 1

Brazil 1854 Jersey 1

Mexico 1725 Seychelles 1

United Kingdom 1603 Cook Islands 1

Spain 1302 Tonga 1

Philippines 1160 British Virgin Islands 1

China 842 Gibraltar 1

Australia 816 Palau 1

Romania 755 Grenada 1

Japan 739 Faroe Islands 1

Turkey 714 Antigua and Barbuda 1

Poland 661 Dominica 1

Ukraine 641 Barbados 1

Netherlands 484 Aland Islands 1

Colombia 484 Macao 1
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for example ‘uticany’, ‘uticanewyork’. The country name is utilized for cities with

a population over 100K: ‘syracuseunitedstates’, ‘syracuseus’, ‘syracuseusa’ (fips and

iso equal in this example). This is done for cities where there is no other city with

population over 100K (example ‘arlingtonus’ is not allowed since it can refer to Ar-

lington TX or Arlington VA which both have a population over 100K). There are also

cities such as New York City which have ‘City’ as part of the name, but that users

may choose not to spell out; we allow city name variations with following tokens

removed: ‘municipality’, ‘village’, ‘city’, ‘charter’, ‘township’, and ‘town’.

In all, there were 47119 unique cities and 156037 corresponding representations.

Each follower’s self-reported location is turned to lowercase with punctuation and

whitespace stripped out. Follower’s preprocessed location is utilized if it matches one

of the 156037 corresponding representations. Table 7.1 shows the number of unique

cities associated with each country.

In all 225 countries are represented. For each influencer, locations over all follow-

ers are used to form a location distribution. The cities in location distribution can be

aggregated to generate a country distribution. Location and country distributions

are used to identify influencers serving a specific region of the world.

7.4.2 Gender

Social Security Administration (SSA) provides popular female and male names1.

The data contains the name, gender, and frequency. A specific name can be used

1https://www.ssa.gov/oact/babynames/names.zip
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as a female and a male example from file: Emma, F, 19738 and Emma, M, 14. The

frequency for gender divided by total frequency gives a percentage for how likely a

particular name is to be male vs. female. Given frequencies for Emma, P(Emma,

F) = 99.93% and P(Emma, M) = 0.071% as probabilities for female and male,

respectively. Some names are on the borderline: Temiloluwa 55%, Carroll 45.5%,

and Arley 57.3% (male probability).

This dataset consisted of 29910 names. For each Twitter follower, the first token

of the name field is utilized. The token is converted to lowercase with punctuation

stripped out. If it is contained within the names dataset then it is assigned a gender

probability. For each influencer, the male and female probabilities over followers are

added up and divided by the number of followers with name information.

7.4.3 Ethnicity

The Census Bureau identifies the last name to race mapping. The 2010 dataset

provides Surnames Occurring 100 or more times with 162254 surnames2. We use the

following four race categories: Non-Hispanic White Alone (White), Non-Hispanic

Black or African American Alone (Black), Non-Hispanic Asian and Native Hawaiian

and Other Pacific Islander Alone (Asian) and Hispanic or Latino origin (Hispanic)

(there are two more categories, but those have too few data points, see reference

[99]). For each Twitter follower, if the self-reported name contains two tokens then

the second token of the name field is utilized. The token is converted to lowercase

with punctuation stripped out. If it is contained within the surnames dataset then

2https://www2.census.gov/topics/genealogy/2010surnames/names.zip
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Table 7.2: Top 20 Languages Across the Dataset

language code follower count overall percent

en 244313028 64.7

es 33680216 8.92

ja 13899866 3.68

ar 11024275 2.92

pt 10550007 2.79

fr 10374538 2.75

tr 9024648 2.39

ru 7717812 2.04

engb 5279311 1.4

none 4495906 1.19

id 4373498 1.16

de 4154066 1.1

it 3094860 0.82

zhcn 2942235 0.78

nl 1965084 0.52

ko 1340514 0.35

vi 1154730 0.31

pl 959457 0.25

th 933313 0.25

sv 753957 0.2

zhtw 613812 0.16

it is utilized. For each influencer, the ethnicity probabilities over followers are added

up and divided by the number of followers with ethnicity information.

7.4.4 Time and Language

The time distribution over influencer’s followers is generated as described in Section

5.2. The language field is available for 98.81% of users. Table 7.2 shows the top 20

languages over 373116407 users. The table shows that about 64.7% of users prefer
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English, 8.92% prefer Spanish, 3.68% prefer Japanese, and so on. For each influencer,

the ratio of followers preferring a specific language is recorded. Influencers who target

a specific country such as Spain are expected to have an above average number of

Spanish speakers.

7.4.5 DBPedia

DBPedia is a large publicly available resource that is used for leveraging external

data related to Twitter users. We are interested in those DBPedia pages that have

a matching Twitter screenname. Sometimes this will be part of infobox data, other

times this data can be predicted. Reference [100] is an example of a recent paper

that attempts to match DBPedia pages to Twitter screennames. For training and

test data, they try the top-ranked Twitter profile (if any) returned by Twitter when

queried with the DBPedia entity name. 893,446 DBPedia entities were matched to

630,767 Twitter candidates and a Deep Neural Net (DNN) used to align 169,748 of

these. For evaluation, their gold standard is made of those DBpedia pages where the

Twitter screenname is explicitly stated consisting of 56,133 alignments from English

DBpedia entities (40,967 persons, 15,166 organizations).

We utilize SocialLink latest Gold and latest predicted mappings that had a score

of 0.75 or greater (75% or higher confidence). Out of these influencers, 44450 appear

in our dataset (12,771 from gold and 36,029 from predicted, some influencers appear

in both lists).

DBPedia uses a Virtuoso RDF triple store that requires SPARQL queries. If a
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Table 7.3: DBPedia Categories of Interest

DBPedia ID label Number of Values

P27 country of citizenship 224

P569 date of birth 9245

P172 ethnic group 213

P1412 languages spoken, written or signed 141

P21 sex or gender 8

P19 place of birth 9245

P140 religion 124

P69 educated at 5660

P735 given name 6222

P734 family name 10420

P106 occupation 1207

P641 sport 194

P54 member of sports team 5143

P136 genre 649

page exists on Wikipedia such as: ‘https://en.wikipedia.org/wiki/Oprah Winfrey’ it

is also available on DBPedia ‘http://dbpedia.org/page/Oprah Winfrey’ (unique id

being ‘Oprah Winfrey’). A Python client library called Wikidata3 was used.

Each DBPedia page is represented by Q#. Each result contains the label, de-

scription, claims, and references. The first step was to collect all claims for each

DBPedia page that had a link to a Twitter influencer. The frequency of all unique

claims was recorded with some of the items of interest from Table 7.3.

Each item listed points to a separate DBPedia page. For example, there are is

a separate page for each country, where each page provides additional information

such as the country’s coordinates, population, inception date, and other information.

In this way, for each influencer, we attempt to collect all categories shown in Table

3https://github.com/dahlia/wikidata
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Table 7.4: For each Feature, the Average and Standard Deviation are computed
across 320K influencers. This sets a threshold for influencers that capture above the
average demographic. Number of influencers recommended for each demographic
feature shown in last column.

Feature AVG STD T = AVG+STD Influencers

Gender Male 61.69% 16.37% 78.06% 61988

Gender Female 38.34% 16.35% 54.69% 46935

Ethnicity White 60.39% 17.89% 78.28% 19179

Ethnicity Black 10.95% 5.09% 16.04% 26256

Ethnicity Hispanic 13.65% 16.26% 29.92% 33010

Ethnicity Asian 11.72% 15.03% 26.75% 33300

7.3 and then for each category we collect additional information that characterizes

the category. This leads to a rich set of additional data available for influencers that

are popular enough to be described on Wikipedia.

7.5 Example Rankings by Demographic Group

This section illustrates how the repository can be used for content recommendation

for a certain demographic; where the demographic is based on gender, ethnicity,

language, location, or a combination of these.

For each demographic feature, our approach is to (i) for each influencer to record

the percent of followers that fall into the demographic, (ii) record the average and

standard deviation of the percent across all influencers, and (iii) set threshold equal

to average plus one standard deviation. Table 7.4 shows the computed thresholds

for demographic features related to gender and ethnicity.
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Table 7.5: Top 10 Most Popular Influencers for each Gender.

Top 10 Influencers with over 78.06% Followers being male

screenName followers name %Male

narendramodi 47235007 Chowkidar Narendra Modi 81.39

SrBachchan 37091473 Amitabh Bachchan 80.41

BeingSalmanKhan 36816795 Salman Khan 81.18

SportsCenter 35437313 SportsCenter 78.58

realmadrid 31984155 Real Madrid C.F. 85.34

akshaykumar 30511248 Akshay Kumar 78.97

FCBarcelona 29627195 FC Barcelona 85.0

imVkohli 29436203 Virat Kohli 83.95

sachin rt 29057313 Sachin Tendulkar 84.32

PMOIndia 28895265 PMO India 83.17

Top 10 Influencers with over 54.69% Followers being female

screenName followers name %Female

justinbieber 105481835 Justin Bieber 64.03

TheEllenShow 77630706 Ellen DeGeneres 62.09

ArianaGrande 62676030 Ariana Grande 59.2

KimKardashian 60662411 Kim Kardashian West 57.68

selenagomez 57579185 Selena Gomez 58.51

jimmyfallon 51109039 jimmy fallon 55.94

MileyCyrus 42505219 Miley Ray Cyrus 58.68

NiallOfficial 39292796 Niall Horan 62.67

Harry Styles 33315825 Harry Styles. 79.25

Louis Tomlinson 33232768 Louis Tomlinson 67.75

145



Gender– The gender was computed for 185078761 out of 373116407 (49.6%) of users.

Across all users 57.6% were male. Across all influencers on average 61.69% of follow-

ers were male with a standard deviation of 16.37% (threshold = 61.69%+16.37% =

78.07%). The last column shows that there were 61988 influencers whose audience

is over 78.07% male. Top ten influencers exceeding this threshold and ordered by

the number of followers shown in Table 7.5 (top). Similarly, 46935 influencers whose

audience is over 54.69% female, with the corresponding top ten influencers shown in

Table 7.5 (bottom).

Ethnicity– For ethnicity, 125780191 out of 373116407 (33.71%) users had, as a

second token in their name, a surname that maps to a known ethnicity. Of these

56.54% were White, 18.21% Hispanic, 13.98% Asian, and 10.27% Black. Table 7.4

shows the computed thresholds for each ethnicity across influencers’ followers. Using

these thresholds the top influencers for each ethnicity shown in Table 7.6.

Location– There are over 200 countries. For each influencer, the country distri-

bution is formed from self-reported locations of the followers that mention city and

country. There are a total of 36980202 out of 373116407 (9.91%) followers listing such

well-formed locations. The known countries are used to generate a distribution that

can be used to focus on specific influencers. As an example, Table 7.7 (top) shows

the top ten influencers associated with Indonesia (in repository 1663 influencers had

over 50.0% of their followers from Indonesia).

Language– Language information is available for over 98.8% of followers and is thus

a powerful feature since there is a large sample size of followers with the field. Table

7.7 (bottom) shows the top ten influencers whose followers are 50% or more Spanish.
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Table 7.6: Most Popular Influencers for each Ethnicity.

Top 6 Influencers with over 78.28% Followers being Caucasian

screenName followers name %Caucasian

lorenzojova 3819516 Lorenzo Jovanotti 79.13

repubblica 2857050 la Repubblica 78.6

SPIEGELONLINE 2529707 SPIEGEL ONLINE 78.76

beppe grillo 2470978 Beppe Grillo 79.78

MarroneEmma 2469369 Emma Marrone 80.44

radiodeejay 2278769 Radio Deejay 81.63

Top 6 Influencers with over 16.04% Followers being African American

screenName followers name %Black

Oprah 42164712 Oprah Winfrey 16.51

KevinHart4real 35194359 Kevin Hart 16.12

LilTunechi 34235040 Lil Wayne WEEZY F 19.82

wizkhalifa 34028999 Wiz Khalifa 16.51

chrisbrown 30245761 Chris Brown 19.24

aliciakeys 30023640 Alicia Keys 18.01

Top 6 Influencers with over 29.92% Followers being Hispanic

screenName followers name %Hispanic

shakira 51127526 Shakira 35.82

Louis Tomlinson 33232768 Louis Tomlinson 33.29

realmadrid 31984155 Real Madrid C.F. 31.11

pitbull 26128582 Pitbull 31.71

ricky martin 20383994 Ricky Martin 56.29

AlejandroSanz 19516691 Alejandro Sanz 71.78

Top 6 Influencers with over 26.75% Followers being Asian

screenName followers name %Asian

narendramodi 47235007 Chowkidar Narendra Modi 78.17

BillGates 47177430 Bill Gates 33.24

iamsrk 38104866 Shah Rukh Khan 73.74

SrBachchan 37091473 Amitabh Bachchan 76.75

BeingSalmanKhan 36816795 Salman Khan 72.79

akshaykumar 30511248 Akshay Kumar 73.73
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Table 7.7: Top 10 Influencers from Indonesia (top), speaking Spanish (bottom)

Top 10 Influencers with over 50% Followers from Indonesia

screenName followers profile location %IND

agnezmo 17649171 Los Angeles 91.41

radityadika 15734925 Jakarta Selatan, DKI Jakarta 97.6

detikcom 15102845 Jakarta, Indonesia 95.31

LunaMaya26 11651186 INDONESIA 94.23

cinema21 11444672 Jakarta, Indonesia 94.94

jokowi 11384071 Jakarta 93.13

sherinasinna 10781243 92.03

Metro TV 10395864 UT:-6.186977, 106.759125 93.43

SBYudhoyono 10086130 95.0

afgansyah reza 9926114 Indonesia 94.47

Top 10 Influencers with over 50% Spanish Followers

screenName followers profile location %Spanish

CNNEE 17232226 En todas partes 50.74

TwitterLatAm 14948461 América Latina 54.1

juanes 11599148 52.2

PaulinaRubio 11209842 50.29

CHAYANNEMUSIC 9290096 Miami, Florida 54.63

SofiaVergara 8990538 51.63

muyinteresante 8368847 Spain 65.47

werevertumorro 8330870 México, DF 58.89

AristeguiOnline 8275955 México, DF 60.07

CarlosLoret 8033311 México, DF. 56.09

The location and description fields of these influencers match Latin America, Mex-

ico, Spain - locations with mostly Spanish speaking audiences. There were 22067

influencers with over 50.0% of their followers preferring Spanish.
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Table 7.8: Verified vs. Unverified number of messages (top) vs. followers (bottom)

Verified vs. Unverified Users number of messages posted

Range Pct Unverified (avg, std) Pct Verified (avg, std)

[0,0] 24.627 (0.0, 0.0) 0.143 (0.0, 0.0)

[0,10] 52.125 (1.88, 2.63) 0.668 (3.58, 3.28)

[10,100] 20.663 (36.73, 24.57) 2.466 (52.19, 26.43)

[100,1000] 15.390 (370.92, 243.46) 14.997 (500.69, 260.57)

[1000,10000] 9.999 (3412.65, 2293.9) 47.675 (4365.28, 2518.2)

[10000,100000] 2.793 (24997.56, 17105.79) 31.976 (27613.0, 18946.36)

[100000,1000000] 0.094 (165696.91, 88231.33) 2.257 (193657.95, 124088.35)

[1000000,Inf] 0.0002 (1481857.94, 1334891.99) 0.0394 (2604262.9, 4528258.8)

[0, Inf] 100 (1264.22, 8248.86) 100 (16381.72, 109704.1)

Verified vs. Unverified Users number of followers

Range Pct Unverified (avg, std) Pct Verified (avg, std)

[0,0] 15.815 (0.0, 0.0) 0.0012 (0.0, 0.0)

[0,10] 55.163 (2.72, 2.86) 0.0722 (8.05, 2.67)

[10,100] 29.49 (34.9, 23.94) 0.729 (42.23, 27.67)

[100,1000] 14.903 (305.88, 205.6) 7.3415 (587.87, 250.8)

[1000,10000] 1.928 (2409.18, 1767.89) 41.253 (4361.78, 2504.94)

[10000,100000] 0.158 (24420.97, 17754.61) 36.922 (33291.61, 22652.99)

[100000,1000000] 0.0105 (218116.84, 151487.27) 11.663 (294429.2, 208785.86)

[1000000,Inf] 0.0003 (1862548.7, 1183416.8) 2.057 (3374510.0, 5580356.3)

[0, Inf] 100 (170.97, 4921.16) 100 (117889.54, 936335.99)
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7.6 Verified vs. Unverified User Comparison

In this section, the differences between verified (over 322 thousand users) vs. unveri-

fied (over 373 million users) are analyzed. The average number of messages, friends,

and followers that a user has are analyzed. In previous chapters, it was claimed that

most Twitter users are silent consumers of information. Table 7.8 (top) shows the

percent of users that are posting a specific rate defined by the range (min, max)

for unverified vs. verified users. From Table about 1/4 (24.63%) never posted any

content, about 1/3 (33.01%) posted less than 1 message, 1/2 (52.12%) posted 10 or

less, and so on. On average, the verified users post 16381 vs. 1264 messages for

unverified users.

In a similar fashion, the average number of followers for verified vs. unverified

users is shown in Table 7.8 (bottom). In section 4.7.2 it was shown that at least

500 followers are needed to get a large enough sample for computing the central

geographic location that the influencer serves. Using at least 500 influencers 3.581%

of verified vs. 97.077% of unverified users are lost (thus a vast majority of verified

users pass this threshold). The table shows that verified users have a lot more

followers on average 117889 vs. 171 for unverified users.

Fig. 7.5 is a depiction using ranges from Table 7.8 differentiating verified vs.

unverified over (i) the total number of messages (top chart), (ii) the total number of

followers (middle chart), and (iii) the total number of friends (bottom chart). Fig.

7.5 bottom shows that a good portion of verified users is also engaged in following

others (forming friend connections).
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Figure 7.5: Comparison of Verified vs. Unverified users using: (top) number of
messages posted, (middle) total followers, and (bottom) total friends.
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In summary, verified influencers are more likely to have more messages, more

followers, and more friends. Given that most users are passive and do not generate

much message traffic supports our argument for focusing on follower-followee link

structure and profile metadata for mapping influence.

7.7 Conclusions

The social media site that is Twitter is a big data challenge. Twitter generates

500 million messages on a daily basis. It can be a daunting task to figure out how

to collect the information that corresponds to the specific demographic of interest.

This chapter presented a tool for quickly identifying influencers serving a specific

demographic. This is important for content recommendation where we can identify

influencers based on the composition of their audience using gender, ethnicity, lan-

guage, location, or a combination of these. Also, by focusing on the followers of these

influencers a community that is representative of the population of interest can be

quickly established.

152



Chapter 8

Conclusions

The main theme of our research is in understanding the geographic spread of a

group; where the group can be made up of Twitter users or messages. We have

explored (i) location - improving geocoding by customizing an existing geocoder as

well as training a high-level geocoder with multilingual support, (ii) time - predicting

whether a group is local or global and the associated UTC offset, (iii) inferring

location - leverage Twitter network connections to known geo-influencers (users that

cater their content to a specific geographic area).

Google search was leveraged for identifying an initial set of geo-influencers related

to a city of interest; it was shown that the geo-influencers’ followers are representative

of the city’s users (i.e. most of the followers are physically located in the city).

Location features are necessary for city-level geocoding, but time and language can

also help reason about the geographic spread. Research showed that using only time-

based features is enough to associate top trending topics and persons with different

geographical regions. The new time-based features are not just limited to inferring

location, but can also be used for inferring link creation times and for studying the

evolution of influencer’s popularity.

By maintaining a repository of geo-influencers it is possible to quickly leverage,

as a starting point, those influencers within the geographic location of interest vs.
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having to discover them in a time-intensive collection from scratch (this targetted

collection is 100x faster). It was also shown how the repository can be used for filter-

ing influencers based on their audience’s demographics related to location, language,

gender, and ethnicity. This research is important because it enables multiple appli-

cations, each of which were shown in our research: (i) content recommendation, (ii)

community detection, (iii) inferring the location of users based on the link structure

to geo-influencers, and (iv) studying the evolution of influencer’s popularity. Main

portions of the code are hosted on GitHub1.

1https://github.com/apanasyu
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[12] Matci, Dilek Küçük, and Uğur Avdan. “Address standardization using the
natural language process for improving geocoding results.“ Computers, Envi-
ronment and Urban Systems (2018).

[13] Jurgens, David. “That’s What Friends Are For: Inferring Location in Online
Social Media Platforms Based on Social Relationships.“ ICWSM 13.13 (2013):
273-282.

[14] Malik, Momin M., et al. “Population bias in geotagged tweets.“ People
1.3,759.710 (2015): 3-759.

[15] Tasse, Dan, et al. “State of the Geotags: Motivations and Recent Changes.“
ICWSM. 2017.

[16] Prasetyo, Philips., et al. “On analyzing geotagged tweets for location-based
patterns.“ Proceedings of the 17th International Conference on Distributed
Computing and Networking. ACM, 2016.

[17] Laniado, David, et al. “The Impact of Geographic Distance on Online Social
Interactions.“ Information Systems Frontiers(2017): 1-16.

[18] Singh, Sushant K. “Evaluating two freely available geocoding tools for geo-
graphical inconsistencies and geocoding errors.“ Open Geospatial Data, Soft-
ware and Standards 2.1 (2017): 11

[19] Vincenty, Thaddeus. “Direct and inverse solutions of geodesics on the ellipsoid
with application of nested equations.“ Survey review 23.176 (1975): 88-93.

[20] Miyazaki, Taro, et al. “Twitter Geolocation using Knowledge-Based Methods.“
Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on
Noisy User-generated Text. 2018.
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