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Abstract

Let k be a field of characteristic 0. In this thesis, we show that the Hochschild cohomology

of the family of short Gorenstein k-algebras

sGor(N) =
k[X0, . . . , XN ]

(XiXj, X
2

i �X
2

j | i, j = 0, . . . , N, i 6= j)
, N � 2,

exhibits exponential growth. The proof uses Gröbner-Shirshov basis theory and along the

way we describe an explicit monomial basis for the Koszul dual of sGor(N) for N � 2.
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Chapter 1

Introduction

Hochschild cohomology is one of the fundamental long-studied invariants developed to

understand a k-algebra over a commutative ring k. However, there exist very few explicit

computations of the Hochschild cohomology of a commutative algebra. The Hochschild-

Kostant-Rosenberg Theorem [HKR62] computes explicitly the Hochschild cohomology of a

polynomial ring. In [BR15], Buchweitz and Roberts formulate a description of the Hochschild

cohomology of a complete intersection in the same spirit. Beyond this, however, the author is

unaware of many more examples in commutative algebra. Such computations are generally

very difficult because Hochschild cohomology is expected to grow exponentially for non-

complete intersection rings. In this thesis we show that the Hochschild cohomology of a

family of short Gorenstein rings exhibits this exponential growth (where short means the

cube of the homogeneous maximal ideal is equal to zero). More precisely, let k be a field of

characteristic 0; define the family of Gorenstein rings sGor(N) for N � 2 as

sGor(N) =
k[X0, . . . , XN ]

(XiXj, X
2

i �X
2

j | i, j = 0, . . . , N, i 6= j)
;

and for n � 0, let HHn(sGor(N)) denote the nth Hochschild cohomology group of sGor(N)

over k. We note that for N = 1 these algebras are complete intersections.

The main result of this thesis is
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Theorem (Theorem 6.2.9). For N � 3 and for all n � 2 even, there is an inequality

dimk HH
n(sGor(N)) � (N � 1)n+1

n+ 1
.

We outline the proof this theorem below.

Let k be a commutative ring and let A be a k-algebra. Although the Hochschild co-

homology of A, denoted HH•(A), is classically defined in terms of the bar complex of A,

the bar complex usually proves to be intractable for computational purposes. However,

if A is projective over k (which will be the case for us, working over the field k = k),

we have HHn(A/k) ⇠= ExtnAe(A,A) as k-modules for all n � 0 (Proposition 2.1.5), where

A
e = A⌦k A

op is the enveloping algebra of A. This allows us some flexibility in terms of the

resolution of A over Ae which we use for the computation of HH•(A). In fact, if A is a com-

mutative graded Koszul algebra, we show in Chapter 2 that this leads to the following critical

result due to Buchweitz ([Buc03]) and Negron ([Neg17]) which facilitates computations. We

define all terminology in Chapter 2.

Proposition-Definition (Proposition-Definition 2.4.6). Let A = T (V )/hQi be a commuta-

tive Koszul algebra over k; let {x0, . . . , xm} be a basis for V ; let yi = x
⇤
i , so that {y0, . . . , ym}

is a basis of V
⇤
; and let A

! = T (V ⇤)/hQ?i be the quadratic dual of A. For n � 0, the

sequence of free A-modules A⌦ (A!)n with maps @
n : A⌦ (A!)n ! A⌦ (A!)n+1

defined by

@
n(a⌦ e) =

mX

j=0

axj ⌦ (yje� (�1)neyj),
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form a complex (A⌦ (A!)•, @) satisfying

HHn(A) ⇠= H
n(A⌦ (A!)•)

for all n � 0.

Fortunately, these short Gorenstein rings are commutative Koszul k-algebras (Proposition

3.2.2) with Koszul duals

sGor(N)! =
khY0, . . . , YNi
hY 2

0
+ · · ·+ Y

2

Ni
, where Yi = X

⇤
i ,

for N � 2 (Proposition 3.2.3). Thus, the complex sGor(N) ⌦k (sGor(N)!)• serves as the

starting point of our computations.

Fix some N � 2, let A = sGor(N), and let ⌦ = ⌦k. In Chapter 3 we discuss in more

detail the structure of the complex A⌦ A
!, showing that there is a decomposition

A = k� k{X0, . . . , XN}� k{s}

(Proposition 3.1.2), where s is of degree 2. We show that this induces a decomposition of

A ⌦ A
! into complexes C(n) for n � 0, called strands, with differentials �m

(n) : C
m
(n) ! C

m+1

(n) ,

3



where

C
m
(n) =

8
>>>>>>>>>><

>>>>>>>>>>:

A0 ⌦ (A!)n�1
, m = n� 1;

A1 ⌦ (A!)n, m = n;

A2 ⌦ (A!)n+1
, m = n+ 1;

0, otherwise.

This, in turn, induces the following decomposition of the Hochschild cohomology of A:

Proposition (Proposition 3.3.5). For n � 1,

HHn(A) = H
n(C(n�1))�H

n(C(n))�H
n(C(n+1)).

For n � 1, we set HHn
(0)
(A) = H

n(C(n+1)), HHn
(1)
(A) = H

n(C(n)), and HHn
(2)
(A) = H

n(C(n�1)).

Our goal, then, is to investigate the k-vector space structure of each HHn
(i)(A) individually,

which requires a description of the k-vector space structure of A!. To this end, in Chapter

4, we compute a noncommutative Gröbner basis, or Gröbner-Shirshov basis, of the ideal

hY 2

0
+ · · ·+ Y

2

Ni:

Proposition (Proposition 4.3.2). The set

SN = { r = Y
2

0
+ · · ·+ Y

2

N , Y0r � rY0 }

is a Gröbner-Shirshov basis of the ideal hY 2

0
+ · · ·+ Y

2

Ni of khY0, . . . , YNi.

4



Given an associative k-algebra R and an ideal I ✓ R, the most important property of

a Gröbner-Shirshov basis S of I for our purposes is that S contains the necessary data for

constructing a k-vector space basis of R/I (Corollary 4.2.5). In particular, we have

Proposition (Proposition 4.3.3). The k-vector space A
!
has a k-basis consisting of all mono-

mials in khY0, . . . , YNi which are not divisible by Y
2

0
nor Y0Y

2

1
.

With the vector space structures of A and A
! made explicit, we compute HHn

(0)
(A) by

constructing a map

�n+1 : C
n+1

(n+1)
= A1 ⌦ (A!)n+1 ���������! A0 ⌦ (A!)n = C

n
(n+1)

which splits �n
(n+1)

: Cn
(n+1)

! C
n+1

(n+1)
, implying

Corollary (Corollary 5.0.7). For n � 1, we have HHn
(0)
(A) = 0.

Finally, for N � 3 and n even, we then use �n+1 to show the existence of a linearly

independent subset of HHn
(1)
(A) of size

X

d|(n+1)

'(d)(N � 1)(n+1)/d

n+ 1
,

where ' is Euler’s totient function, thus implying our main result.
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Conventions

We assume knowledge of basic commutative algebra and homological algebra, which can

be found in [Mat89] and [Wei94], respectively. For the entirety of this thesis,

• let N = {0, 1, 2, . . . };

• let k be a field of characteristic 0;

• ⌦ stands for ⌦k;

• Hom stands for Homk;

• "ideal" means two-sided ideal;

• and for a k-vector space V , V ⇤ = Homk(V, k).

In particular, if {v0, . . . , vm} is a basis of V , then v
⇤
i is the dual basis element of vi given by

v
⇤
i (vj) = �ij, where �ij is the Kronecker delta.

The free associative k-algebra on indeterminates z0, . . . , zm, denoted khz0, . . . , zmi, is iso-

morphic to the tensor algebra T (k{z0, . . . , zm}) as k-algebras, so we will use these structures

interchangeably.

The symbol N signifies the end of a numbered statement.
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Chapter 2

Hochschild Cohomology and Koszul Algebras

Hochschild cohomology was originally developed by Hochschild in his 1945 paper [Hoc45]

as a cohomology theory of associative algebras. This theory was further expanded by Cartan

and Eilenberg [CE56] and Gerstenhaber [Ger63] and since then has seen tremendous growth,

playing an significant role in many different branches of mathematics, including representa-

tion theory, noncommutative geometry, and algebraic deformation theory (see [Wit19]).

As explained in the Chapter 1, our main goal in this thesis is to exhibit exponential

growth of the Hochschild cohomology groups of the short Gorenstein rings sGor(N). To get

anywhere with this goal, though, we would like to work with a complex which significantly

simplifies computations of these cohomology groups. After establishing some general theory

about Hochschild cohomology and Koszul algebras in Sections 2.1 – 2.3, in Section 2.4 we

describe a computationally-friendly complex that computes the Hochschild cohomology of

commutative Koszul k-algebras (Proposition-Definition 2.4.6). We will show in Chapter 3

that the short Gorenstein rings sGor(N) are Koszul, allowing us to utilize this complex for

the rest of our discussion.
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2.1 Hochschild cohomology – an introduction

In this section we recall the definition of the Hochschild cohomology of a k-algebra A

with coefficients in an A-bimodule M via the bar complex of A (Proposition-Definition 2.1.3)

and then give an equivalent description in terms of derived functors (Proposition 2.1.5).

Our discussion, including the construction of the complex which computes Hochschild

cohomology, will require the notion of an enveloping algebra associated with A, defined as

follows.

Definition 2.1.1. The enveloping algebra of a k-algebra A is the k-algebra A
e = A⌦Aop. N

Remark 2.1.2. An A-bimodule M is equivalently a left A
e-module with action defined by

(a⌦ a
0) · x = axa

0 for all a⌦ a
0 2 A

e and x 2M . Conversely, a left Ae-module M is also an

A-bimodule via the actions a ·x = (a⌦ 1)x and x ·a0 = (1⌦a
0)x for all a, a0 2 A and x 2M .

For the rest of this chapter, we will use these structures interchangeably.

In particular, for a k-vector space V , A ⌦ V ⌦ A is a left A
e-module and is isomorphic

to A
e ⌦ V via a⌦ v ⌦ a

0 $ (a⌦ a
0)⌦ v. N

Proposition-Definition 2.1.3 (See [Wit19, Section 1.1]). The bar complex B(A) of A is

a sequence of left A
e
-modules Bn(A) = A

⌦(n+2)
and maps bn+1 : A⌦(n+3) ! A

⌦(n+2)
defined

by

bn+1(a0 ⌦ · · ·⌦ an+2) =
n+1X

i=0

(�1)ia0 ⌦ · · ·⌦ aiai+1 ⌦ · · ·⌦ an+2

8



for n 2 N. The augmented complex

· · ·! A
⌦(n+2) bn��! · · ·! A⌦ A⌦ A

b1��! A⌦ A
µ��! A! 0

with multiplication map µ : A⌦ A! A forms an A
e
-module resolution of A. N

For a left A
e-module M , we use the bar complex B(A) to define a complex of k-vector

spaces HomAe(B(A),M) with Homn
Ae(B(A),M) = HomAe(Bn(A),M) and differential

(b_)n := HomAe(bn+1,M) : HomAe(Bn(A),M)! HomAe(Bn+1(A),M)

given by (b_)n(f) = �(�1)nfbn+1 for all f 2 HomAe(Bn(A),M).

Definition 2.1.4. The nth Hochschild cohomology HHn(A,M) of A with coefficients in an

A
e-module M is defined as the nth cohomology of the complex HomAe(B(A),M); that is,

HHn(A,M) = H
n(HomAe(B(A),M))

for all n 2 N.

Set HH•(A,M) =
L

n2N HH
n(A,M). In the case M = A, write HHn(A) for HHn(A,A).

N

Working directly with this definition can prove difficult because the bar complex is gen-

erally quite cumbersome. Fortunately, since A is projective over k, Hochschild cohomology

9



has the following characterization which significantly expands the scope of Ae-resolutions of

A at our disposal, as we will see in Section 2.4.

Proposition 2.1.5 (See [Lod98, Subsection 1.5.8]). Let M be a left A
e
-module. Then

HHn(A,M) ⇠= ExtnAe(A,M)

as k-vector spaces for all n 2 N. N

2.2 Interlude – some linear algebra

In light of Proposition 2.1.5, we will soon see that when A is a commutative Koszul

algebra, HH•(A) can be computed using a more suitable free Ae-resolution of A (Proposition

2.4.3). However, in order to move forward, we will need the following facts about vector

spaces.

Definition 2.2.1. Let V be a k-vector space and let U be a subspace of V . The annihilator

of U is the subspace of V ⇤ defined as

U
� := {f 2 V

⇤ | f(v) = 0 for all v 2 U}. N

Proposition 2.2.2 (see [War90, Theorem 28.10]). Let V be a finite dimensional k-vector

10



space and let U be a subspace of V . Then dimk U
� = dimk V � dimk U . N

Proposition 2.2.3. Let V and W be k-vector spaces, let U be a subspace of V , let {v0, . . . , vm}

be a basis for V extending the basis {v`+1, . . . , vm} of U , and let {w0, . . . , wn} be a basis for

W . Then we have the following natural isomorphisms:

(a) V ⇠= V
⇤⇤

, and in particular U ⇠= U
��

, via vi $ v
⇤⇤
i ;

(b) V
⇤ ⌦W

⇤ ⇠= (V ⌦W )⇤ via v
⇤
i ⌦ w

⇤
j $ (vi ⌦ wj)⇤;

(c) V ⌦W ⇤ ⇠= Hom(W,V ) via vi⌦w⇤
j $ hji, where {hji} is the basis of Hom(W,V ) defined

by hji(w) = w
⇤
j (w)vi;

(d) U
� ⇠= (V/U)⇤ via v

⇤
i $ vi

⇤
.

Each isomorphism above has the following basis-free description in the specified direction:

(a0) V ! V
⇤⇤

given by v 7! ev, where the map ev : V ⇤ ! k is defined by ev(f) = f(v);

(b0) V
⇤ ⌦W

⇤ ! (V ⌦W )⇤ given by f ⌦ g 7! h, where the map h : V ⌦W ! k is defined

by h(v ⌦ w) = f(v)g(w);

(c0) V ⌦W
⇤ ! Hom(W,V ) given by v ⌦ f 7! g, where the map g : W ! V is defined by

g(w) = f(w)v;

(d0) U
� ! (V/U)⇤ given by f 7! f , where the map f : V/U ! k is defined by f(v) = f(v).

N

Corollary 2.2.4. In the setting of Proposition 2.2.3, if W = V , then under the isomorphism

V ⌦ V
⇤ ! Hom(V, V ) the identity in Hom(V, V ) corresponds to the element

Pm
i=0

vi ⌦ v
⇤
i .

This element is independent of choice of basis for V since it is the preimage of the identity

element for any basis of V . N

11



Remark 2.2.5. Proposition 2.2.3(c0) holds even if V is not finitely generated, with inverse

Hom(W,V ) ! V ⌦ W
⇤ given by  7!

Pn
i=0

 (wi) ⌦ w
⇤
i . We will use this version of the

proposition in the proof of Proposition-Definition 2.4.6. N

Definition 2.2.6. Let V be a finite dimensional vector space, let � : V ⇤ ⌦ V
⇤ ! (V ⌦ V )⇤

be the isomorphism of Proposition 2.2.3(b0), and let Q ✓ V ⌦ V be a subspace. Define the

perpendicular subspace Q
? ✓ V

⇤ ⌦ V
⇤ of Q as

Q
? = {f 2 V

⇤ ⌦ V
⇤ | �(f)(u) = 0 for all u 2 Q}. N

Note that for a subspace Q ✓ V ⌦ V , �(Q?) = Q
�, so Q

? ⇠= Q
�. In particular, we have

Proposition 2.2.7. Let V be a finite dimensional vector space and Q a subspace of V ⌦ V .

Then Q
?? ⇠= Q and dimk Q

? = dimk(V ⌦ V )� dimk Q. N

2.3 Koszul algebras

With this linear algebra toolbox in hand we are now equipped to discuss Koszul algebras.

We begin by introducing quadratic algebras, the quadratic dual, and the associated Koszul

complex. When A is Koszul, this complex of left A-modules lifts to the free resolution of A

over Ae that we seek.

Definition 2.3.1. A k-algebra A is a quadratic algebra if A = T (V )/I, where V is a finite-

12



dimensional k-vector space, T (V ) is the tensor algebra on V over k, and I = hQi for a

k-vector space Q ✓ T
2(V ) = V ⌦V . The quadratic dual A

! of a A is the k-algebra T (V ⇤)/I !

with I
! = hQ?i. N

Remark 2.3.2. If A = T (V )/hQi is a quadratic algebra, then by Proposition 2.2.7,

A
!! = T (V ⇤⇤)/hQ??i ⇠= T (V )/hQi = A.

N

Example 2.3.3. Let V be a finite dimensional k-vector space. Then the symmetric algebra

on V , S(V ) = T (V )/hu ⌦ v � v ⌦ u | u, v 2 V i, is a quadratic algebra with quadratic dual

S(V )! =
V
(V ⇤) = T (V ⇤)/hv⇤ ⌦ v

⇤ | v 2 V i, the exterior algebra on V
⇤. N

Symmetric and exterior algebras are also examples of Koszul algebras, defined below.

There are several equivalent definitions of Koszul algebras (see, for example, [PP05, Chapter

2, Section 1, Definition 1]); the following one best motivates the rest of our discussion.

Definition 2.3.4. A quadratic k-algebra A is Koszul if the left A-module k admits a free

linear resolution over A; that is, a resolution by free graded left A-modules Fi such that

Fi = A(�i)�i , where �i = �
A
i (k) is the ith Betti number of k over A for all i 2 N. N

An equivalent definition of Koszulness follows from the next construction of a complex

associated with a quadratic algebra, due to Priddy [Pri70].

13



Proposition-Definition 2.3.5 (see [PP05, Chapter 2, Section 3]). Let A = T (V )/hQi be

a quadratic k-algebra, let A
! = T (V ⇤)/hQ?i be its quadratic dual, and let tA 2 A1 ⌦ A

!

1
be

the element described in Corollary 2.2.4 corresponding to the identity in Hom(V, V ). The

sequence of free left A-modules Kn(A) = A ⌦ (A!

n)
⇤

with maps @n+1 : Kn+1(A) ! Kn(A)

defined by @n+1(a⌦f) = tA ·(a⌦f) for all n 2 N form a complex K•(A) called the generalized

Koszul complex of A. N

To see that this is indeed a complex, we will first make sense of the action tA on A⌦(A!

n)
⇤

and then show that t
2

A = 0, from which it will follow that @ squares to zero.

Proof. Let {v0, . . . , vm} be a basis of V , so that tA =
P

vi ⌦ v
⇤
i . The action of v⇤i on an

element f 2 (A!

n)
⇤ is defined as the map v

⇤
i · f : A!

n�1
! k given by (v⇤i · f)(x) := f(v⇤i x),

where the product v
⇤
i x is the multiplication in A

!. Thus, tA · (a ⌦ f) =
P

via ⌦ (v⇤i · f) for

any a⌦ f 2 A⌦ (A!

n)
⇤.

By Proposition 2.2.3(d0), we have Q ⇠= Q
?? ⇠= (A!

2
)⇤. So, by Propositions 2.2.3(a0) and

2.2.3(c0), it follows that A2 ⌦ A
!

2
⇠= Hom((A!

2
)⇤, A2) ⇠= Hom(Q,A2). Thus, we may identify

the multiplication map (A1 ⌦ A
!

1
)⌦ (A1 ⌦ A

!

1
)! A2 ⌦ A

!

2
with the map

� : Hom(V ⌦ V, V ⌦ V )! Hom(Q,A2)

sending an element ' : V ⌦V ! V ⌦V to the composition Q ,! V ⌦V '���! V ⌦V "���! A2,

where " : A1 ⌦ A1 ! A2 is multiplication. Under this identification the element tA ⌦ tA

corresponds to the identity idV⌦V and the assignment tA⌦ tA 7! t
2

A corresponds to idV⌦V 7!

14



�(idV⌦V ) = 0, implying t
2

A = 0.

Corollary 2.3.6 (see Chapter 2, Corollary 3.2 of [PP05]). A k-algebra A is Koszul if and only

if K•(A)
↵��! k! 0 is a free resolution of the left A-module k, where ↵ : A⌦ (A!

0
)⇤ ⇠= A! k

is the natural projection. N

Remark 2.3.7. The action of v⇤i on (A!

n)
⇤ in the proof of Proposition-Definition 2.3.5 is an

example of the action of a k-algebra A on its dual A⇤: for a 2 A and f 2 A
⇤, a · f : A! k

is defined by (a · f)(x) = f(xa) and f · a : A! k is defined by (f · a)(x) = f(ax).

Note that when A is commutative, these actions can be used interchangeably. N

2.4 Hochschild cohomology of Koszul algebras

We now turn our attention to the Hochschild cohomology of Koszul algebras. For a

quadratic k-algebra A, we describe a lift of K•(A) to a complex of left A
e-modules ‹K•(A)

which forms a free A
e-resolution of A when A is Koszul — thus, by Proposition 2.1.5,

providing us with an alternative route to computing the Hochschild cohomology of Koszul

algebras. We end this section with the main result of the chapter, Proposition-Definition

2.4.6, which will allow us to compute HH•(sGor(N)).

Proposition-Definition 2.4.1 ([dB94, Section 3]). Let A = T (V )/hQi be a quadratic k-

algebra, let E = A
!
, and let {v0, . . . , vm} be a basis of V . For n 2 N, let ‹Kn(A) = A ⌦

15



(En)⇤ ⌦ A and define maps dn+1, d
0
n+1

, d
00
n+1

: A⌦ (En+1)⇤ ⌦ A! A⌦ (En)⇤ ⌦ A by

d
0
n+1

(x⌦ f ⌦ y) = (x⌦ f ⌦ y) ·
 

mX

i=0

vi ⌦ v
⇤
i ⌦ 1

!
=

mX

i=0

xvi ⌦ fv
⇤
i ⌦ y,

d
00
n+1

(x⌦ f ⌦ y) =

 
mX

i=0

1⌦ v
⇤
i ⌦ vi

!
· (x⌦ f ⌦ y) =

mX

i=0

x⌦ v
⇤
i f ⌦ viy,

and

dn+1 = d
0
n+1

+ (�1)n+1
d
00
n+1

.

Then (d0)2 = 0, (d00)2 = 0 and d
0
d
00 = d

00
d
0
, implying d

2 = 0, so (‹K•(A), d) is a complex of

free left A
e
-modules. N

Proposition 2.4.2 ([dB94, Proposition 3.1]). If A is a Koszul k-algebra, then ‹K•(A)
µ��!

A ! 0 is a free A
e
-resolution of A, where µ : ‹K0(A) = A ⌦ k⌦A ⇠= A ⌦ A ! A is the

multiplication map. N

As an immediate corollary of Propositions 2.1.5 and 2.4.2, we have

Corollary 2.4.3. HHn(A) = H
n(HomAe(‹K•(A), A)) for all n 2 N. N

In order to prove Proposition-Definition 2.4.6, we will need the following propositions.

Proposition 2.4.4 (Base change). Let R and S be k-algebras with a k-algebra map R! S,

16



let M be a left R-module and let N be a left S-module. Then

HomR(M,N) ⇠= HomS(S ⌦R M,N)

as k-vector spaces via the maps f 7! f
0
, where f

0(s ⌦ x) := sf(x); and g
0  [ g, where

g
0(x) := g(1⌦ x). N

The next proposition follows from Proposition 2.4.4 and the isomorphism from Remark

2.1.2.

Proposition 2.4.5. Let V be a k-vector space. Then Hom(V,A) ⇠= HomAe(A ⌦ V ⌦ A,A)

as k-vector spaces via the maps f 7! f
0
, where f

0(a⌦ v ⌦ a
0) := af(v)a0; and g

0  [ g, where

g
0(v) := g(1⌦ v ⌦ 1). N

We are now ready to state the main result of this chapter, originally due to Buchweitz.

This result is also a corollary of a more general theorem of Negron [Neg17].

Proposition-Definition 2.4.6 ([Buc03], [Neg17]). Let A = T (V )/hQi be a commutative

Koszul algebra over k; let {x0, . . . , xm} be a basis for V ; let E = A
!
; and let yi = x

⇤
i ,

so that {y0, . . . , ym} is a basis of V
⇤
. The sequence of free A-modules A ⌦ E

n
with maps

@
n : A⌦ E

n ! A⌦ E
n+1

defined by

@
n(a⌦ e) =

mX

j=0

axj ⌦ [yj, e]

17



for n 2 N form a complex (A⌦E•
, @) isomorphic to (‹K•(A)

_
, d

_), where (�)_ = HomAe(�, A)

and [yj, e] is the graded Lie bracket given by [yj, e] = yje� (�1)neyj.

It therefore follows that

HHn(A) ⇠= H
n(A⌦ A

!)

for all n 2 N. N

Proof. Let n 2 N and let {e0, . . . , ep} be a k-basis for En. Let ↵n : A⌦En ! HomAe(‹Kn(A), A)

be the composition of the isomorphisms

A⌦ E
n ! A⌦ (En)⇤⇤ ! Hom((En)⇤, A)! HomAe(A⌦ (En)⇤ ⌦ A,A)

described in Propositions 2.4.5 and 2.2.3, mapping a⌦e 2 A⌦En to HomAe(A⌦(En)⇤⌦A,A)

via

a⌦ e 7! a⌦ e
⇤⇤ 7! (f 7! f(e)a) 7! ( a0 ⌦ g ⌦ a

00 7! a
0(g(e)a)a00 ),

so that

↵n(a⌦ e) = 'a,e, where 'a,e : A⌦ (En)⇤ ⌦ A! A, 'a,e(a
0 ⌦ g ⌦ a

00) := a
0
g(e)a a00.

Analogously, let �n = ↵
�1

n : Hom(‹Kn(A), A)! A⌦E
n be the composition of the respective

18



inverse isomorphisms, mapping  2 HomAe(A⌦ (En)⇤ ⌦ A,A) to A⌦ E
n via

 7! (f 7!  (1⌦ f ⌦ 1)) 7!
pX

i=0

 (1⌦ e
⇤
i ⌦ 1)⌦ e

⇤⇤
i 7!

pX

i=0

 (1⌦ e
⇤
i ⌦ 1)⌦ ei,

so that

�n( ) =
pX

i=0

 (1⌦ e
⇤
i ⌦ 1)⌦ ei

Let {f0, . . . , fq} be a basis for E
n+1 and consider the diagram

A⌦ E
n

A⌦ E
n+1

HomAe(A⌦ (En)⇤ ⌦ A,A) HomAe(A⌦ (En+1)⇤ ⌦ A,A)

@n

↵n

(d_)n

�n+1

For a⌦ e 2 A⌦ E
n,

((d_)n � ↵n)(a⌦ e) = (d_)n('a,e) = (�1)n+1
'a,edn+1,

so

(�n+1 � (d_)n � ↵n)(a⌦ e) =

=
qX

i=0

(�1)n+1
'a,edn+1(1⌦ f

⇤
i ⌦ 1)⌦ fi

=
qX

i=0

(�1)n+1
'a,e

 
mX

j=0

xj ⌦ f
⇤
i · yj ⌦ 1 + (�1)n+11⌦ yj · f ⇤

i ⌦ xj

!
⌦ fi
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=
qX

i=0

(�1)n+1

 
mX

j=0

xjf
⇤
i (eyj)a+ (�1)n+1

f
⇤
i (yje)axj

!
⌦ fi (by Remark 2.3.7)

=
qX

i=0

 
mX

j=0

xjaf
⇤
i

�
yje+ (�1)n+1

eyj

�
!
⌦ fi

=
qX

i=0

mX

j=0

xjf
⇤
i ([yj, e])⌦ fi

=
mX

j=0

xja

 
qX

i=0

f
⇤
i ([yj, e])⌦ fi

!
(2.4.0.1)

By Corollary 2.2.4,
P

f
⇤
i ⌦ fi is independent of choice of basis for En+1. Hence, for each

j 2 {0, . . . ,m}, so is
P

f
⇤
i ([yj, e]) ⌦ fi . In particular, we can choose {f0, . . . , fm} to be a

basis extending {[yj, e]}, so that

qX

i=0

f
⇤
i ([yj, e])⌦ fi = 1⌦ [yj, e].

Then (2.4.0.1) implies

(�n+1 � (d_)n � ↵n)(a⌦ e) =
mX

j=0

xja⌦ [yj, e] = @
n(a⌦ e)

and thus @ = �(d_)↵. Composing @ with itself yields @2 = �(d_)2↵ = 0 because (d_)2 = 0,

so (A⌦E
•
, @) is a complex; and composing ↵ with @ yields ↵@ = ↵�(d_)↵ = (d_)↵, so ↵ is

a chain map.
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Chapter 3

The Short Gorenstein Ring Case

In Proposition-Definition 2.4.6 of Chapter 2 we found that the Hochschild cohomology

of a commutative Koszul k-algebra A can be computed as the homology of the complex

(A⌦A
!
, @). In this chapter we show that the short Gorenstein rings sGor(N) for N � 2 are

Koszul algebras and further describe the structure of sGor(N)⌦ sGor(N)!. First, in Section

3.1 we give an explicit k-vector space decomposition of short Gorenstein rings (Proposition

3.1.2). Next, in Section 3.2 we show that these short Gorenstein rings are Koszul (Proposition

3.2.2) and compute their quadratic duals (Proposition 3.2.3). Finally, in Section 3.3 we

exhibit a decomposition of the Hochschild cohomology groups of short Gorenstein rings

(Proposition 3.3.5) using a decomposition of the complex sGor(N)⌦ sGor(N)!.

3.1 A decomposition of sGor(N)

The proofs of both Propositions 3.2.2 and 3.2.3 rely on the k-vector space decomposition

of sGor(N) of Proposition 3.1.2. We prove this below after restating the definition of our

family of short Gorenstein rings from Chapter 1.
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Definition 3.1.1. For N � 2, let

sGor(N) =
k[X0, . . . , XN ]

(XiXj, X
2

i �X
2

j | i, j = 0, . . . , N, i 6= j)
.

And for i = 0, . . . , N , let xi be the image of Xi in sGor(N). N

Proposition 3.1.2. Let N � 2. Then sGor(N) has a k-vector space decomposition

sGor(N) = k� k{x0, . . . , xN}� k{s}

where s = x
2

i for any i 2 {0, . . . , N}. In particular, it follows that sGor(N) is Gorenstein

since s generates the socle; and we have (x0, . . . , xN)2 = k{s} and (x0, . . . , xN)3 = 0. N

Proof. Let N � 2 and let

I = (XiXj, X
2

i �X
2

j | i, j = 0, . . . , N, i 6= j).

Since XiXj and X
2

i �X
2

j are homogeneous of degree 2, I is homogeneous with I0 = 0 and

I1 = 0. Thus,

sGor(N)0 = k[X0, . . . , XN ]0 = k, sGor(N)1 = k[X0, . . . , XN ]1 = k{x0, . . . , xN}.

By definition, sGor(N)2 is generated by the monomials xixj for i, j 2 {0, . . . , N}. The

relations generating I imply that xixj = 0 for i 6= j and that x
2

i = x
2

j for all i, j. Thus,

setting s = x
2

0
, sGor(N)2 = k{s}.
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Finally, we claim that sGor(N)k = 0 for all k � 3. To see this, let u 2 k[X0, . . . , XN ] be

a monomial with |u| � 3. It is enough to show that u = 0. If u = XiXjv for some i 6= j

and some monomial v, then u = xixjv = 0 · v = 0. Otherwise, u = X
m
i for some i and m.

Choose j 2 {0, . . . , N} such that j 6= i. Then x
2

i = x
2

j , so

u = x
m�2

i x
2

j = x
m�3

i xixjxj = x
m�3

i · 0 · xj = 0.

The above argument implies (x0, . . . , xN)2 = k{s} and (x0, . . . , xN)3 = 0.

Remark 3.1.3. Note that {x0, . . . , xN} ⇢ sGor(N) is linearly independent, so in fact this

set serves as a k-basis of sGor(N)1. N

As a corollary of Proposition 3.1.2, we have that these rings are local.

Corollary 3.1.4. For N � 2, sGor(N) is a local ring with maximal ideal (x0, . . . , xN). N

Proof. Let m ⇢ sGor(N) be a maximal ideal. By Proposition 3.1.2, (x0, . . . , xN)3 = 0. Since

m is prime, the containment (x0, . . . , xN)3 = {0} ⇢ m implies (x0, . . . , xN) ✓ m. And since

(x0, . . . , xN) is maximal, (x0, . . . , xN) = m, so (x0, . . . , xN) is the unique maximal ideal of

sGor(N).
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3.2 Short Gorenstein rings are Koszul

Our hopes of computing a lower bound on the k-dimensions of the Hochschild cohomology

of our Gorenstein k-algebras sGor(N) lie in being able to use the complex A⌦A
! described

in Proposition-Definition 2.4.6 for our computations. For this we need to establish that these

algebras are Koszul. In this section we show that these short Gorenstein rings are in fact

Koszul as local rings (defined below) and recall the result that this is equivalent to these

rings being Koszul algebras.

The original definition of a Koszul algebra is due to Priddy [Pri70]. In [HI05], Herzog and

Iyengar define the analogous notion of a Koszul module—and, in turn, of a Koszul ring—as

follows. Let R be a commutative local noetherian ring with maximal ideal m and residue

field k, let M be an R-module, and let F be a minimal free resolution of M . For every j � 0,

define

linj(F ) = 0! Fj

mFj
! · · ·! mj�i

Fi

mj+1�iFi
! · · ·! mj

F0

mj+1F0

! mj
M

mj+1M
! 0,

with differentials induced by those of F . Then M is a Koszul module if linj(F ) is acyclic for

all j � 0. And R is a Koszul ring if the R-module k is Koszul. By [HI05, Remark 1.10], a

local ring R is a Koszul ring if and only if its associated graded algebra

grm(R) =
1M

i=0

mi
/mi+1

(where m0 = R) is a Koszul algebra.
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Let N � 2 and let mN = (x0, . . . , xN) ⇢ sGor(N). By Proposition 3.1.2, sGor(N) is local

with maximal ideal mN , and since sGor(N) is graded, we have grmN
(sGor(N)) ⇠= sGor(N).

That is, explicitly, mN = k{x0, . . . , xN} � k{s}, m2

N = k{s}, and mi
N = 0 for i � 3, so we

have k-algebra isomorphisms

grmN
(sGor(N)) ⇠= k� k{x0, . . . , xN}� k{s} = sGor(N).

Thus, sGor(N) is a Koszul algebra if and only if it is also a Koszul ring.

We will employ the following theorem, due to Avramov-Iyengar-Şega, to show that the

short Gorenstein rings sGor(N) are indeed Koszul rings and therefore also Koszul k-algebras

(Proposition 3.2.2). Although the full version of the theorem provides several equivalent

conditions for a local ring to be a Koszul ring, the version of the theorem presented below

involves only the equivalence most relevant to our discussion.

Theorem 3.2.1 ([AIc05, Theorem 4.1]). Let (R,m, k) be a local ring with m3 = 0 and

rankk m2 = 1. Then R is a Koszul ring if and only if rankk(0 : m)  rankk(m/m2). N

Proposition 3.2.2. For N � 2, sGor(N) is a Koszul k-algebra. N

Proof. Let N � 2 and let mN = (x0, . . . , xN). By the above discussion, it is enough to show

that sGor(N) is a Koszul local ring in the sense of Herzog and Iyengar.

By Proposition 3.1.2,

mN/m
2

N =
k{x0, . . . , xN}� k{s}

k{s} = k{x0, . . . , xN},
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so rankk(m/m2) = N + 1. And by [AIc05, Remark 4.3], (0 : mN) = m2

N = k{s}, so

rankk(0 : mN) = 1. Since N � 2, rankk(0 : m)  rankk(m/m2), so Theorem 3.2.1 implies

that sGor(N) is a Koszul ring.

We end this section with a computation of the quadratic dual sGor(N)!. Recall from

Definition 2.3.1 that the quadratic dual of a quadratic algebra T (V )/hQi is the algebra

T (V ⇤)/hQ?i, where Q
? is the perpendicular subspace of Q with respect to the natural

pairing (Definition 2.2.6).

Proposition 3.2.3. Let N � 2. Then

sGor(N)! =
kh(X0)⇤, . . . , (XN)⇤i
h(X⇤

0
)2 + · · ·+ (X⇤

N)
2i .

N

Proof. To make the proof easier to read, set m = N + 1.

Set V = k{X0, . . . , XN} and set

Q = k{XiXj �XjXi, XiXj, X
2

i �X
2

j | i, j = 0, . . . , N ; i 6= j},

so that sGor(N) = T (V )/hQi. Note that the union of the sets

X0 = {XiXj | i, j = 0, . . . , N ; i 6= j}
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and

X = {X2

k �X
2

N | k = 0, . . . , N � 1}

forms a k-basis of Q and hence

dimk Q = |X0|+ |X| = (m2 �m) + (m� 1) = m(m� 1) + (m� 1) = m
2 � 1.

So by Proposition 2.2.7,

dimk Q
? = dimk V ⌦ V � dimk Q = m

2 � (m2 � 1) = 1.

To prove the theorem, it is enough to show that k{(X⇤
0
)2 + · · · + (X⇤

N)
2} = Q

?. By the

above, this amounts to showing that (X⇤
0
)2 + · · · + (X⇤

N)
2 2 Q

?, as it is clearly a nonzero

element.

Let r = (X⇤
0
)2 + · · ·+ (X⇤

N)
2. For all XiXj 2 X0 and all k = 0, . . . , N ,

(X⇤
k)

2(XiXj) = Yk(Xi)Yk(Xj) = 0

since i 6= j, so one of i or j must be different from k. Thus, r(XiXj) = 0 for all XiXj 2 X0.

We also have that r(X2

i ) = 1 for i = 0, . . . , N , so r(X2

k �X
2

N) = 0 for all k = 0, . . . , N � 1.

Therefore, r 2 Q
?, finishing the proof.
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3.3 A decomposition of HH
•
(sGor(N))

Having established that the short Gorenstein rings sGor(N) are Koszul k-algebras, we

now know that the complex sGor(N)⌦sGor(N)! from Proposition-Definition 2.4.6 computes

HH•(sGor(N)). In this section we further investigate the structure of this complex. In par-

ticular, we want to better understand the behavior of @n restricted to sGor(N)i⌦(sGor(N)!)n

for i = 0, 1, 2. This leads to a decomposition of sGor(N)⌦ sGor(N)! and therefore a decom-

position of HHn(sGor(N)) for all n.

First, however, we establish some conventions.

Convention 3.3.1. In this section, fix some N � 2 and let A = sGor(N). For i = 0, . . . , N ,

let Yi = X
⇤
i and let

E = A
! =

khY0, . . . , YNi
hY 2

0
+ · · ·+ Y

2

Ni
. N

Let n 2 N. For any i 2 {0, 1, 2} and a⌦ u 2 Ai ⌦ E
n, we have

@
n(a⌦ u) =

NX

j=0

axj ⌦ [yj, u]

by Proposition-Definition 2.4.6. Then axj 2 Ai+1 and [yj, u] 2 E
n+1 imply that @n(a⌦ u) 2

Ai+1 ⌦ E
n+1. Thus,

@
n(A0 ⌦ E

n) ✓ A1 ⌦ E
n+1

, @
n(A1 ⌦ E

n) ✓ A2 ⌦ E
n+1

, @
n(A2 ⌦ E

n) = 0,
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where the last equality holds since A3 = 0. Furthermore, by Proposition 3.1.2,

A⌦ E
n = (A0 ⌦ E

n)� (A1 ⌦ E
n)� (A2 ⌦ E

n),

so we have the following observation.

Observation 3.3.2. For n � 0, the map @
n : A⌦ E

n ! A⌦ E
n+1 decomposes as the sum

of the maps @n |Ai⌦En : Ai ⌦ E
n ! Ai+1 ⌦ E

n+1, i = 0, 1, 2. N

To give a precise description of the decomposition of A⌦E which follows from Observation

3.3.2, we define the following complexes of k-spaces.

Definition 3.3.3. For n � 0, let (C(n), �(n)) be the complex defined by

C
m
(n) =

8
>>>>>>>>>><

>>>>>>>>>>:

A0 ⌦ E
n�1

, m = n� 1;

A1 ⌦ E
n
, m = n;

A2 ⌦ E
n+1

, m = n+ 1;

0, otherwise,
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and �(n) the differential induced by @ on this subcomplex; that is,

�
m
(n) =

8
>>>>>>>>>><

>>>>>>>>>>:

@
n�1 |A0⌦En�1 , m = n� 1;

@
n |A1⌦En , m = n;

@
n+1 |A2⌦En+1 , m = n+ 1;

0, otherwise,

We call C(n) the nth strand of A⌦ E. N

Thus, A ⌦ E =
L

n�0
C(n), as shown in Diagram 3.3.1. Since homology commutes with

direct sums, for n � 0, we have

H
n(A⌦ E) = H

n(C(n+1))�H
n(C(n))�H

n(C(n�1)). (3.3.0.1)

Before stating this as a result, we introduce some notation that will simplify the rest of

our discussion.

Definition 3.3.4. For n � 0, let

• HHn
(0)
(A) = H

n(C(n+1)),

• HHn
(1)
(A) = H

n(C(n)), and

• HHn
(2)
(A) = H

n(C(n�1)). N

Thus, by Proposition-Definition 2.4.6 and Equation 3.3.0.1, we have
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Proposition 3.3.5. For n � 0, HHn(A) decomposes as

HHn(A) = HHn
(0)
(A)� HHn

(1)
(A)� HHn

(2)
(A). N
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A⌦ E = · · · A⌦ E
n�1

A⌦ E
n

A⌦ E
n+1 · · ·

...
...

...

C(n�2) = · · · A2 ⌦ E
n�1 0 0 · · ·

C(n�1) = · · · A1 ⌦ E
n�1

A2 ⌦ E
n 0 · · ·

C(n) = · · · A0 ⌦ E
n�1

A1 ⌦ E
n

A2 ⌦ E
n+1 · · ·

C(n+1) = · · · 0 A0 ⌦ E
n

A1 ⌦ E
n+1 · · ·

C(n+2) = · · · 0 0 A0 ⌦ E
n+1 · · ·

...
...

...

@n�1
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@n
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L
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(n�1)
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(n)

L

�n(n)

L
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�n(n+1)

L

L L L

Diagram 3.3.1: Decomposition of A⌦ E
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Chapter 4

Gröbner-Shirshov Basis Theory

In Chapter 3 we showed that the short Gorenstein rings

sGor(N) =
k[X0, . . . , XN ]

(XiXj, X
2

i �X
2

j | i, j = 0, . . . , N, i 6= j)

are Koszul k-algebras (Proposition 3.2.2) and, as such, their Hochschild cohomology can

be computed using the complex (sGor(N)⌦ sGor(N)!, @) (see Proposition-Definition 2.4.6),

where

sGor(N)! =
kh(X0)⇤, . . . , (XN)⇤i
h(X⇤

0
)2 + · · ·+ (X⇤

N)
2i

(Proposition 3.2.3).

In order to actually perform any computations, it is imperative to understand the k-

vector space structure of sGor(N)⌦ (sGor(N)!)n for n � 0. We have already made progress

on this front by showing that sGor(N) decomposes as sGor(N) ⇠= k� k{x0, . . . , xN}� k{s},

where s generates the socle of sGor(N) (Proposition 3.1.2). In this chapter we prove that

sGor(N)! has a k-basis consisting of all noncommutative monomials which are not divisible

by (X⇤
0
)2 nor by X

⇤
0
(X⇤

1
)2 (Proposition 4.3.3).

The proof of this result relies on the theory of Gröbner-Shirshov (GS) bases, which we
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recall in Section 4.2. This theory will enable us to affirmatively answer the more general

question, "Given an ideal I of the free associative algebra khY i on a finite set Y , can we find

a k-vector space basis for khY i/I?"

The contents of this chapter, except for Propositions 4.3.2 through 4.3.3, can be found

in, for example, [Bre14], [Ber78], and [BMPZ92].

4.1 Monomial orders

In order to proceed with our discussion of GS bases we will need a notion of a well-order

on the monomials of free associative algebra that respects multiplication, called a monomial

order (Definition 4.1.4).

Convention 4.1.1. For the rest of this chapter, let Y be a finite set. N

We start by defining some terminology for the set of monomials on Y and its multiplica-

tive structure.

Definition 4.1.2. The free monoid on Y , denoted by Mon(Y ), is the set of all words (or

monomials) y1y2 · · · ym (yi 2 Y ) with an associative binary operation given by concatenation

and an identity element 1 2 Mon(Y ), called the empty word.

A nonempty word u 2 Mon(Y ) is a subword (or factor or divisor) of w 2 Mon(Y ) if

w = vuv
0 for some v, v

0 2 Mon(Y ). In this case, we say that w is divisible by u or that u

divides w. If u 6= w, then u is a proper subword of w.

The degree of a nonempty word w = y1 · · · ym 2 Mon(Y ) is m and the degree of 1 is 0.
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Denote by deg(w) the degree of the word w 2 Mon(Y ). N

Remark 4.1.3. In this context, the free associative algebra on Y , denoted by khY i, is

the k-vector space on the basis Mon(Y ) with multiplication given by linearly extending the

monoid operation on Mon(Y ). N

Definition 4.1.4. A well-ordering � on Mon(Y ) is a monomial ordering if, for all elements

w,w
0
, u, v 2 Mon(Y ), w � w

0 implies w � uwv � uw
0
v. N

Our first example is a familiar one.

Example 4.1.5. Let Y = {y}. As a set, Mon(Y ) = {yn | n 2 N}, and the usual notion of

degree defines a monomial ordering on Mon(Y ): y
i � y

j if and only if i < j. N

We will use the following ordering in our computation of a GS basis for hri.

Definition 4.1.6. Given a total order � on Y , the degree lexicographical (deglex) order �dl

on Mon(Y ) is defined inductively on any w,w
0 2 Mon(Y ) as w�dlw

0 if and only if

(i) either deg(w) < deg(w0), or

(ii) deg(w) = deg(w0) and w = uzv, w0 = uz
0
v
0 with u, v, v

0 2 Mon(Y ), z, z0 2 Y , and

z � z
0. N

Proposition 4.1.7. Let (Y,�) be well-ordered. The deglex order on Mon(Y ) extending �

is a monomial ordering. N
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To get a better feel for the definition, we take a look at an example of a deglex order

extending a total order on a set of three elements.

Example 4.1.8. Let Y = {y0, y1, y2} with total order y2 � y1 � y0 and consider the

monomials w = y1y2y2y0, w
0 = y1y1y0y2, w

00 = y0y0y0, 2 Mon(Y ). Then deg(w) = 4,

deg(w0) = 4, and deg(w00) = 3, so w
00�dlw and w

00�dlw
0 by Definition 4.1.6(i). Also, with

u = y1, v = y2y0, and v
0 = y0y2, we have w = uy2v and w

0 = uy1v
0 with y2 � y1, so w�dlw

0

by Definition 4.1.6(ii). N

Assume Y = {y}. Writing a polynomial f 2 k[y] as a linear combination of monomials

in Mon({y}), we typically define the degree of f to be the power of the maximal (or leading)

monomial, denoted by bf , in this presentation. It is with respect to this degree-induced order

that we have a division algorithm for polynomials: given f, g 2 k[y], the algorithm produces

two more polynomials a and b such that g = af + b with either b = 0 or deg(b) < deg(f);

equivalently, such that b = 0 or bb � bf with respect to the monomial ordering from Example

4.1.5. By reframing things in terms of a given monomial ordering, one can generalize the

division algorithm to a free associative algebra on more than one element (Algorithm 4.2.8).

This is an indispensable tool in the construction of a GS basis.

Convention 4.1.9. For the rest of this chapter let � be a monomial order on Mon(Y ). N

Definition 4.1.10. For f = a0u0 + · · ·+ amum 2 khY i with ai 2 k⇥ and ui 2 Mon(Y ), the

support supp(f) of f is the set {u0, . . . , um} and the leading monomial bf of f is the maximal
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element of supp(f) with respect to �.

The leading coefficient of f is the coefficient of bf in the monomial presentation of f . We

call f monic if the leading coefficient of f is 1. A set S ✓ khY i not containing 1 is monic if

every element of S is monic.

For a set S ✓ khY i, define bS to be the set of all leading monomials of the polynomials

in S. N

4.2 Gröbner-Shirshov bases

Given a finitely generated ideal I ✓ khY i, one route to describing the k-vector space

structure of khY i/I is to find a subspace C ⇢ khY i such that khY i = C � I, so C ⇠= khY i/I

as k-vector spaces. If I is generated by a set S ⇢ Mon(Y ) of monomials, then the set of all

monomials u 2 Mon(Y ) such that u is divisible by some v 2 S forms a k-basis of I. Since

Mon(Y ) is a k-basis of khY i extending S, we can take C to be the subspace of khY i with

basis the set of all monomials not divisible by any of the monomials of S.

For an arbitrary ideal I, we have the following theorem.

Theorem 4.2.1 (see [Bre14, Proposition 4.3]). If I is an ideal of khY i, then the subspace

c(I) of khY i with basis all monomials of Mon(Y ) not in bI satisfies khY i = I � c(I). In

particular, every polynomial f 2 khY i has a unique representation of the form f = g+ c for

some g 2 I and some c 2 c(I). N

We can rephrase this theorem in terms of a Gröbner-Shirshov basis S for I and monomials
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irreducible with respect to S, both defined below.

Definition 4.2.2. A Gröbner-Shirshov (GS) basis is a set S of generators for I with the

property that for every nonzero f 2 I there is some g 2 S such that bf is divisible by bg. N

Definition 4.2.3. A monomial w 2 Mon(Y ) is irreducible with respect to a set S ✓ khY i

if it is not divisible by any element of bS. A polynomial f 2 khY i is irreducible with respect

to S if every monomial of supp(f) is irreducible with respect to bS. If this does not hold, f

is reducible with respect to S.

Denote by BIrr the set of all monomials in Mon(Y ) irreducible with respect to S and

denote by Irr(S) the subspace of khY i with basis BIrr. N

In this context, Theorem 4.2.1 can be stated as follows.

Theorem 4.2.4. If I is an ideal of khY i and S is a Gröbner-Shirshov basis for I, then we

have khY i = I � Irr(S). N

The following corollary will be our main tool in studying the k-vector space structure of

sGor(N)!.

Corollary 4.2.5. The k-vector space khY i/I has a k-basis consisting of all monomials in

Mon(Y ) irreducible with respect to S. N

Our reason for formulating Theorem 4.2.4 and Corollary 4.2.5 in terms of GS bases
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is because GS bases carry all the information necessary to describe bases for quotients of

free associative algebras while having the advantage of being reasonably straightforward to

construct in many cases.

The construction of a GS basis requires the division algorithm for free associative algebras

(Algorithm 4.2.8), which, in turn, requires the following notion of reduction of a polynomial.

Definition 4.2.6. Let S ✓ khY i. For elements g 2 S and u, v 2 Mon(Y ), the reduction

⇢(u, g, v) : khY i ! khY i is the k-linear map which sends ubgv to ubgv�ugv and is the identity

on all other monomials in Mon(Y ). A reduction of a polynomial f 2 khY i with respect to

S is ⇢(u, g, v) for some g 2 S and u, v 2 Mon(Y ) such that ubgv 2 supp(f). N

Let S ✓ khY i, let w 2 supp(f), let a 2 k⇥ be the coefficient of w in the presentation

of f with respect to supp(f), and assume there exists an element g 2 S such that w = ubgv

for some u, v 2 Mon(Y ). Then ⇢(u, g, v)(f) = f � augv. Since bg is the largest monomial of

supp(g), ⇢(u, g, v)(f) amounts to replacing w in f with terms that are strictly less than w.

It is in these sense that ⇢(u, g, v)(f) is a “reduction” of f with respect to S.

If S ⇢ khY i is finite, then repeated reductions of a polynomial f 2 khY i with respect

to S eventually result in reduction to 0 or to a nonzero polynomial that is irreducible with

respect to S (Algorithm 4.2.8). The following is an example of the latter.

Example 4.2.7. Let Y = {x, y, z}; let � be the deglex order on khY i extending z � y � x;

let f = x
3 + x

2
y, g = x

2 + y
2 + z

2 2 khY i; and let S = {g}. We consider a sequence of

reductions of f with respect to S. First, bg = x
2, so xbg = x

3 2 supp(f). Thus, ⇢(x, g, 1) is a
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reduction of f with respect to S and we have

⇢(x, g, 1)(f) = f � xg = (x3 + x
2
y)� (x3 + xy

2 + xz
2) = x

2
y � xy

2 � xz
2
.

Similarly, bgy = x
2
y 2 supp(⇢(x, g, 1)(f)) and

⇢(1, g, y) � ⇢(x, g, 1)(f) = (x2
y � xy

2 � xz
2)� (x2

y + y
3 + z

2
y) = �xy2 � xz

2 � y
3 � z

2
y,

which is irreducible with respect to S. N

We describe this process more generally below.

Algorithm 4.2.8 (Division algorithm). Let f 2 khY i and let S ⇢ khY i be a finite set of

monic polynomials. Set f0 = f and ⇢0 = idkhY i. For i � 0,

• if fi is reducible respect to S, let w 2 supp(fi) be the maximal monomial such that

w = ubgv for some g 2 S and u, v 2 Mon(Y ). Set ⇢i+1 = ⇢(u, g, v) � ⇢i and set

fi+1 = ⇢(u, g, v)(fi) = ⇢i+1(f).

• Otherwise, output ⇢i and fi. N

Proposition 4.2.9 (see [Bre14, Lemma 4.8]). Let f 2 khY i and let S ⇢ khY i be a finite

set of monic polynomials. Then Algorithm 4.2.8 applied to f and S terminates after finitely

many steps. In other words, there is some n 2 N such that after n steps Algorithm 4.2.8

outputs a composition ⇢n of a sequence of reductions and a polynomial fn 2 Irr(S) with

fn = ⇢n(f). N
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Proof. For i � 0, if ui is the maximal element of supp(fi) divisible by some monomial in bS,

we have · · · � ui � · · · � u1 � u0. Since Mon(Y ) is well-ordered with respect to �, this

chain must be finite, so the algorithm must terminate.

Definition 4.2.10. Call an output ⇢ of the division algorithm with input f 2 khY i and

S ⇢ khY i a terminal sequence of f . The polynomial ⇢(f) is an irreducible form of f (with

respect to S). N

Irreducible forms are not unique; they depend on choices made in each step of the division

algorithm, as shown in the next example.

Example 4.2.11. The polynomial ⇢(1, g, y) � ⇢(x, g, 1)(f) = �xy2 � xz
2 � y

3 � z
2
y from

Example 4.2.7 is an irreducible form of f = x
3 + x

2
y, which resulted from factoring the

monomial x3 2 supp(f) as xbg. If we instead choose to factor x3 as bgx, we have the reduction

⇢(1, g, x)(f) = (x3 + x
2
y)� (x3 + y

2
x+ z

2
x) = x

2
y � y

2
x� z

2
x.

Then bgy = x
2
y 2 supp( ⇢(1, g, x)(f) ), so

⇢(1, g, y) � ⇢(1, g, x)(f) = (x2
y � y

2
x� z

2
x)� (x2

y + y
3 + z

2
y)

= �y2x� z
2
x� y

3 � z
2
y,

which is irreducible with respect to S. Thus, ⇢(1, g, y) � ⇢(1, g, x)(f) is another irreducible
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form of f , different from ⇢(1, g, y) � ⇢(x, g, 1)(f). N

Fortunately, GS bases resolve this issue (Theorem 4.2.13): all terminal sequences of

reductions of a given polynomial f with respect to a GS basis S produce the same irreducible

form of f , defined below.

Definition 4.2.12. In the setting of Theorem 4.2.1, the normal form nfI(f) of a polynomial

f with unique representation f = g + c is the element c 2 c(I). N

Theorem 4.2.13 (see [Bre14, Theorem 5.3]). If S is a GS basis for an ideal I, then every

terminal sequence of f with respect to S reduces f to nfI(f). N

Example 4.2.14. Continuing in the setting of Examples 4.2.7 and 4.2.11, let us instead

consider terminal sequences of f with respect to the set S 0 = S[{h = xy
2+xz

2�y2x�z2x}.

Then ⇢(1, g, y) � ⇢(x, g, 1)(f) = �xy2 � xz
2 � y

3 � z
2
y is no longer irreducible with respect

to S
0 since bh = xy

2, so we have the reduction

⇢(1, h, 1) � ⇢(1, g, y) � ⇢(x, g, 1)(f) = (�xy2 � xz
2 � y

3 � z
2
y) + (xy2 + xz

2 � y
2
x� z

2
x)

= �y3 � z
2
y � y

2
x� z

2
x,

which is the same irreducible form of f from Example 4.2.7 and, by Theorem 4.2.13, the

same as nfhSi(f). N
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To actually construct a GS basis, we have to address the culprit responsible for the

non-uniqueness of irreducible forms: ambiguities. They are defined below.

Definition 4.2.15. Let S ⇢ khY i and let g, h 2 S such that w = bgu = vbh for some

u, v, w 2 Mon(Y ) with deg(bg) + deg(bh) > deg(w). Then (g, h)w = gu � vh is called the

(overlap) ambiguity of g and h with respect to w. N

Example 4.2.16. In the setting of our running example, xbg = x
3 = bgx for g = x

2+ y
2+ z

2,

so S = {g} has the ambiguity

(g, g)x3 = xg � gx = xy
2 + xz

2 � y
2
x� z

2
x. N

An important step in constructing a GS basis will be expanding a set of generators S to

include elements which, in some sense, eliminate all ambiguities of S. The next definition

highlights the property of ambiguities we are after.

Definition 4.2.17. Let S ⇢ khY i and g, h 2 S. An ambiguity (g, h)w with a terminal

sequence ⇢ satisfying ⇢((g, h)w) = 0 is resolvable with respect to S. N

If an ambiguity (g, h)w is not resolvable with respect to S, then we resolve it by extending

the set S to include the ambiguity; that is, we define a new set S
0 = S [ {(g, h)w}. Now,

with respect to S
0, we have the reduction ⇢(1, (g, h)w, 1) and ⇢(1, (g, h)w, 1)((g, h)w) = 0.

If we restrict our attention to sets S which are self-reduced (Definition 4.2.18), we have
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a characterization of GS bases that makes their construction feasible (Theorem 4.2.19).

Definition 4.2.18. A finite set S ⇢ khY i is self-reduced if every g 2 S is irreducible with

respect to S \ {g}. N

Theorem 4.2.19 (see [Bre14, Theorem 6.5]). Let S be a finite monic self-reduced set of

generators for an ideal I. Then S is a GS basis for I if and only if all ambiguities of S are

resolvable. N

So, by Theorem 4.2.19, we can extend a finite set of generators S of an ideal I ✓ khY i

to a GS basis for I by alternating between two processes: one which extends S until it is

self-reduced (Algorithm 4.2.20), and another which resolves all ambiguities of S (Algorithm

4.2.21).

In practice, we will use deglex as our monomial ordering on khY i.

Algorithm 4.2.20. Let �= �dl, and let S be a finite set of generators of an ideal I ✓ khY i.

Order S as S = {g0, . . . , gn} with “g0 � · · · � “gn. For i = 1, . . . , n, let Si be the union of

Si�1 and an irreducible form of gi with respect to {g0, . . . , gi�1}. If S 6= Sn, then S is not

self-reduced, and we repeat the same process, starting with Sn in place of S. N

Algorithm 4.2.21. Let S be a finite set of generators of an ideal I ✓ khY i. Set S0 = S.

For i � 0,

• if Si is not self-reduced, use Algorithm 4.2.20 to construct a self-reduced set of gener-
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ators S
0
i for I. Otherwise, set S

0
i = Si.

• For every ambiguity h of S 0
i which is not resolvable, add an irreducible form of h to S

0
i.

Let Si+1 be the set resulting from all of these additions.

If this process terminates at some finite step n, then by Theorem 4.2.19, Sn is a GS basis

for I. N

4.3 A GS basis of sGor(N)
!

Let N � 2. In this section we construct a GS basis of

sGor(N)! =
kh(X0)⇤, . . . , (XN)⇤i
h(X⇤

0
)2 + · · ·+ (X⇤

N)
2i .

To improve readability, we let Yi = X
⇤
i for i = 0, . . . , N . We also introduce the following

definition, which makes it easier to read the indices of monomials in Yi.

Definition 4.3.1. Define the function

Y⇤ :
[

n�1

{0, . . . , N}n ! khY0, . . . , YNi

by

Y⇤(i1, . . . , in) = Yi1 · · ·Yin . N
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We are now ready to prove the following proposition.

Proposition 4.3.2. The set

SN = {Y 2

0
+ · · ·+ Y

2

N , Y0 (Y
2

0
+ · · ·+ Y

2

N)� (Y 2

0
+ · · ·+ Y

2

N)Y0}

is a Gröbner-Shirshov basis for the ideal hY 2

0
+ · · ·+ Y

2

Ni of the free k-algebra khY0, . . . , YNi

with respect to the monomial order �dl induced by y0 � y1 � · · · � yN . N

Proof. Let r = Y
2

0
+ · · ·+ Y

2

N and let r0 = Y0r� rY0, so br = Y
2

0
and br0 = Y0Y

2

1
. By Theorem

4.2.19, it is enough to show that SN is self-reduced and all ambiguities of SN are resolvable.

To see that SN is self-reduced, note that the elements of supp(r) are all of degree 2 and

br0 is of degree 3, so no element of supp(r) is divisible by br0; and the elements of supp(r0)

have only one factor of Y0, so no element of supp(r0) is divisible by br.

The set SN has two ambiguities: (r, r)Y 3
0
, since br Y0 = Y

3

0
= Y0br; and (r, r0)Y 2

0 Y 2
1
, since

br Y 2

1
= Y

2

0
Y

2

1
= Y0

br0. The ambiguity (r, r)Y 3
0

is resolvable because

(r, r)Y 3
0

= (Y 2

1
+ · · ·+ Y

2

N)Y0 � Y0 (Y
2

1
+ · · ·+ Y

2

N),

which is �r0, so

⇢(1, r0, 1)((r, r)Y 3
0
) = (r, r)Y 3

0
+ r

0 = 0.

We will show that the ambiguity (r, r0)Y 2
0 Y 2

1
is also resolvable by using a sequence of
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reductions with respect to SN that will reduce it to 0. Set h0 = (r, r0)Y 2
0 Y 2

1
. Then

h0 = r · Y 2

1
� Y0 · r0

= (Y⇤(0, 0, 1, 1) + · · ·+ Y⇤(N,N, 1, 1)) �

� ((Y⇤(0, 0, 1, 1) + · · ·+ Y⇤(0, 0, N,N))� (Y⇤(0, 1, 1, 0) + · · ·+ Y⇤(0, N,N, 0))

= (Y⇤(1, 1, 1, 1) + · · ·+ Y⇤(N,N, 1, 1))� (Y⇤(0, 0, 2, 2) + · · ·+ Y⇤(0, 0, N,N)) +

+ (Y⇤(0, 1, 1, 0) + · · ·+ Y⇤(0, N,N, 0)).

For i = 2, . . . , N , we eliminate the monomial br · Y 2

i = Y⇤(0, 0, i, i) from h0 by applying

⇢(1, r, Y 2

i ) to ⇢(1, r, Y 2

i�1
) � · · · � ⇢(1, r, Y 2

2
)(h0). This reduction is well-defined since for all

j > i none of the Y⇤(0, 0, j, j) are in supp(r · Y 2

i ), so they remain unchanged after applying

⇢(1, r, Y 2

i ). Each reduction ⇢(1, r, Y 2

i ) also introduces terms Y⇤(1, 1, i, i)+ · · ·+Y⇤(N,N, i, i).

So, in all, we have

⇢(1, r, Y 2

N) � · · · � ⇢(1, r, Y 2

2
)(h0) =

= (Y⇤(1, 1, 1, 1) + · · ·+ Y⇤(N,N, 1, 1)) + (Y⇤(0, 1, 1, 0) + · · ·+ Y⇤(0, N,N, 0)) +

+ (Y⇤(1, 1, 2, 2) + · · ·+ Y⇤(N,N, 2, 2)) + · · ·+ (Y⇤(1, 1, N,N) + · · ·+ Y⇤(N,N,N,N)).

Let h1 be the polynomial above. Since br0 ·Y0 = Y⇤(0, 1, 1, 0) 2 supp(h1), we reduce h1 further
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by applying ⇢(1, r0, Y0) to obtain

⇢(1, r0, Y0)(h1) =

= h1 � r
0 · Y0 =

= (Y⇤(1, 1, 1, 1) + · · ·+ Y⇤(N,N, 1, 1)) + (Y⇤(0, 1, 1, 0) + · · ·+ Y⇤(0, N,N, 0)) +

+ (Y⇤(1, 1, 2, 2) + · · ·+ Y⇤(N,N, 2, 2)) + · · ·+ (Y⇤(1, 1, N,N) + · · ·+ Y⇤(N,N,N,N)) �

� ((Y⇤(0, 1, 1, 0) + · · ·+ Y⇤(0, N,N, 0))� (Y⇤(1, 1, 0, 0) + · · ·+ Y⇤(N,N, 0, 0)))

= (Y⇤(1, 1, 0, 0) + · · ·+ Y⇤(N,N, 0, 0)) + (Y⇤(1, 1, 1, 1) + · · ·+ Y⇤(N,N, 1, 1)) +

+ (Y⇤(1, 1, 2, 2) + · · ·+ Y⇤(N,N, 2, 2)) + · · ·+ (Y⇤(1, 1, N,N) + · · ·+ Y⇤(N,N,N,N))

Factoring the expression above yields

⇢(1, r0, Y0)(h1) =

= (Y⇤(1, 1) + · · ·+ Y⇤(N,N)) · Y⇤(0, 0) + (Y⇤(1, 1) + · · ·+ Y⇤(N,N)) · Y⇤(1, 1) +

+ (Y⇤(1, 1) + · · ·+ Y⇤(N,N)) · Y⇤(2, 2) + · · ·+ (Y⇤(1, 1) + · · ·+ Y⇤(N,N)) · Y⇤(N,N)

= (Y⇤(1, 1) + · · ·+ Y⇤(N,N))(Y⇤(0, 0) + · · ·+ Y⇤(N,N))

= (Y 2

1
+ · · ·+ Y

2

N) r.

Then, for example, the sequence ⇢(Y 2

N , r, 1) � · · ·� ⇢(Y 2

1
, r, 1) applied to ⇢(1, r0, Y0)(h1) results
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in 0, so (r, r0)Y 2
0 Y 2

1
is resolvable, completing the proof.

The next proposition follows immediately from Corollary 4.2.5 and Proposition 4.3.2.

Proposition 4.3.3. The k-vector space sGor(N)! has a k-basis consisting of all monomials

in khY0, . . . , YNi which are not divisible by Y
2

0
nor by Y0Y

2

1
. N

Definition 4.3.4. Let B(sGor(N)!) be the k-basis from Proposition 4.3.3. In particular,

for n � 0, let B((sGor(N)!)n) be the k-basis of (sGor(N)!)n consisting of all monomials of

degree n which are not divisible by Y
2

0
nor by Y0Y

2

1
. N
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Chapter 5

Computation of HH
•
(0)(A)

Having established all the necessary theory and results in Chapters 2, 3, and 4, we are

now set to begin our computation of the Hochschild cohomology of the short Gorenstein

rings

sGor(N) =
k[X0, . . . , XN ]

(XiXj, X
2

i �X
2

j | i, j = 0, . . . , N, i 6= j)

for N � 2.

Convention 5.0.1. For the rest of this thesis, fix some N � 2, let A = sGor(N) and let E

be the quadratic dual of A; that is, let

E = sGor(N)! =
khY0, . . . , YNi
hY 2

0
+ · · ·+ Y

2

Ni
, where Yi = X

⇤
i .

See Proposition 3.2.3 for the computation of sGor(N)!. Let xi and yi be the images of Xi

and Yi in sGor(N) and sGor(N)!, respectively. N

In Chapter 2 we found that since A is a Koszul algebra, the nth Hochschild cohomology

group HHn(A) is the nth homology group of the complex (A⌦A
!
, @), where, for any element
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a⌦ e 2 A⌦ (A!)n,

@(a⌦ e) =
NX

j=0

axj ⌦ [yj, e] =
NX

j=0

axj ⌦ yje� (�1)naxj ⌦ eyj.

(see Proposition-Definition 2.4.6).

In Chapter 3, we found that HHn(A) decomposes as

HHn(A) = HHn
(0)
(A)� HHn

(1)
(A)� HHn

(2)
(A)

(Proposition 3.3.5), where HHn
(0)
(A), HHn

(1)
(A), and HHn

(2)
(A) are the homologies in degree n

of the strands C(n+1), C(n), and C(n�1), respectively (see Definition 3.3.3 and Diagram 3.3.1).

And in Chapter 4 we found that the set B(E) consisting of the monomials in y0, . . . , yN

which are not divisible by y
2

0
or y0y

2

1
is a k-basis of E (Proposition 4.3.3).

In this chapter we compute HHn
(0)
(A), the homology at A0 ⌦ E

n in the strand

C(n+1) = · · · 0 A0 ⌦ E
n

A1 ⌦ E
n+1

A2 ⌦ E
n+2 · · · ,

�n(n+1) �n+1
(n+1) �n+2

(n+1)

where

�
n
(n+1)

= @
n |A0⌦En , �

n+1

(n+1)
= @

n+1 |A1⌦En+1 .

We show that for n � 1,

HHn
(0)
(A) = ker @n

(0)
= 0
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by exhibiting a splitting map �n+1 : A1 ⌦ E
n+1 ! A0 ⌦ E

n (Theorem 5.0.6), implying that

�
n
(n+1)

is injective.

We begin by fixing k-bases of A0 ⌦ E
n and A1 ⌦ E

n.

Definition 5.0.2. Let n � 0. Recall from Proposition 3.1.2 that A has a k-vector space

decomposition

A = k� k{x0, . . . , xN}� k{s},

where the element s of degree 2 generates the socle of A. And recall from Definition 4.3.4

that B(En) is the k-basis of En consisting of the monomials in y0, . . . , yN of degree n which

are not divisible by y
2

0
or y0y

2

1
.

Let B(A0 ⌦ E
n) be the k-basis of A0 ⌦ E

n defined by

B(A0 ⌦ E
n) = {1⌦ u | u 2 B(En)}

and let B(A1 ⌦ E
n) be the k-basis of A1 ⌦ E

n defined by

B(A1 ⌦ E
n) = {xi ⌦ u | u 2 B(En), i 2 {0, . . . , N}}. N

We take some time now to discuss the choices made in our definition of �n+1 (Definition

5.0.3). First, �n+1 splitting �
n
(n+1)

means �n+1 satisfies �n+1�
n
(n+1)

(1 ⌦ u) = 1 ⌦ u for all
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1⌦ u 2 B(A0 ⌦ E
n), where

@
n
(0)
(1⌦ u) = x0 ⌦ y0u� (�1)nx0 ⌦ uy0 + · · ·+ xN ⌦ yNu� (�1)nxN ⌦ uyN

= (x0 ⌦ y0u+ · · ·+ xN ⌦ yNu)� (�1)n(x0 ⌦ uy0 + · · ·+ xN ⌦ uyN).

So, to define �n+1, we can fix some index i, let �n+1(xj ⌦ w) = 0 for any j 6= i and define

�n+1(xi ⌦ w) based on whether w = yiu or w = u
0
yi or both for some u, u

0 2 B(E). To deal

with these cases individually, we define two maps

�
L
n+1

, �
R
n+1

: A1 ⌦ E
n+1 ! A0 ⌦ E

n
,

where �Ln+1
is nonzero on xi ⌦ yiu and �Rn+1

is nonzero on xi ⌦ u
0
yi, and set

�n+1 = �
L
n+1

+ (�1)n+1
�
R
n+1

.

We choose to work with the index i = 2 in order to avoid complications that arise in the

cases i = 0 and i = 1; namely, for 1 ⌦ u 2 B(A0 ⌦ E
n), the terms x0 ⌦ y0u, x0 ⌦ uy0, and

x1⌦uy1 of @n
(0)
(1⌦u) may not be elements of B(A1⌦E

n+1) since y0u or uy0 may be divisible

by y
2

0
and uy1 may be divisible by y0y

2

1
.

There are several subcases to consider for both �n+1(x2⌦y2u) and �n+1(x2⌦u0
y2). All but

one of these can be addressed by defining �n+1(x2⌦ y2u) = 1⌦u or �n+1(x2⌦u
0
y2) = 1⌦u

0.

The one exception is the case x2 ⌦ y2vy2 for some v 2 B(E) since it is unclear whether this

term in @
n
(0)
(1 ⌦ u) comes from left or right multiplication by x2 ⌦ y2. We circumvent this
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issue by considering instead the related elements x1 ⌦ y2vy2y1.

Thus, we have arrived at the following definition.

Definition 5.0.3. Define

�
R
2
, �

L
2
: A1 ⌦ E

2 ! A0 ⌦ E
1

on xj ⌦ w 2 B(A1 ⌦ E
2) by

�
L
2
(xj ⌦ w) =

8
>><

>>:

1

2
(1⌦ y

�1

2
w), if j = 2, w = y2y` with ` 6= 2; (aL)

0, otherwise;

�
R
2
(xj ⌦ w) =

8
>>>>>><

>>>>>>:

1

2
(1⌦ wy

�1

2
), if j = 2, w = yky2 with k 6= 2; (aR)

1⌦ wy
�1

1
, if j = 1, w = y2y1; (bR)

0, otherwise;

and define

�2 : A1 ⌦ E
2 ! A0 ⌦ E

1

by

�2 = �
L
2
+ �

R
2
.
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For n > 2, define

�
R
n , �

L
n : A1 ⌦ E

n ! A0 ⌦ E
n�1

on xj ⌦ w 2 B(A1 ⌦ E
n) by

�
L
n (xj⌦w) =

8
>>>>>><

>>>>>>:

1⌦ y
�1

2
w, if j = 2, w = y

2

2
vy` for some v 2 B(E), ` 6= 2; (cL)

1

2
(1⌦ y

�1

2
w), if j = 2, w = y2ykvy` for some v 2 B(E), k, ` 6= 2; (dL)

0, otherwise;

�
R
n (xj⌦w) =

8
>>>>>>>>>><

>>>>>>>>>>:

1⌦ wy
�1

2
, if j = 2, w = ykvy

2

2
for some v 2 B(E), k 6= 2; (cR)

1

2
(1⌦ wy

�1

2
), if j = 2, w = ykvy`y2 for some v 2 B(E), k, ` 6= 2; (dR)

1⌦ wy
�1

1
if j = 1, w = y2vy2y1 for some v 2 B(E); (eR)

0, otherwise;

and define

�n : A1 ⌦ E
n ! A0 ⌦ E

n�1

by

�n = �
L
n + (�1)n�Rn . N
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By definition, �Ln and �Rn map most elements of B(A1 ⌦ E
n) to 0. To see this, let n � 1

and let yiu, vyj 2 B(En) for some monomials u, v and some i, j 2 {0, . . . , N}. Then

• �
L
n (xi ⌦ yiu) = 0 if i 6= 2 and �Ln (xj ⌦ vyj) = 0 if j 6= 2;

• �
R(xi ⌦ yiu) = 0 if i 6= 2;

• �
R
n (xj ⌦ vyj) = 0 if j 6= 1, 2;

• �
L
n (xj ⌦ vyj) = 0 if j = 2 and �Rn (xi ⌦ yiu) = 0 if i = 2.

Thus, we have the following observation.

Observation 5.0.4. Let n � 2 and let 1⌦ u 2 B(A0 ⌦ E
n�1). Then

�n@
n�1

(0)
(1⌦ u)

= �
L
n

�
(x0 ⌦ y0u+ · · ·+ xN ⌦ yNu)� (�1)n�1(x0 ⌦ uy0 + · · ·+ xN ⌦ yNu)

�
+

+ (�1)n�Rn
�
(x0 ⌦ y0u+ · · ·+ xN ⌦ yNu)� (�1)n�1(x0 ⌦ uy0 + · · ·+ xN ⌦ yNu)

�

= �
L
n (x2 ⌦ y2u) + (�1)n�Rn (�(�1)n�1(x1 ⌦ uy1 + x2 ⌦ uy2))

= �
L
n (x2 ⌦ y2u) + �

R
n (x1 ⌦ uy1 + x2 ⌦ uy2). N

For n � 3, �Rn (x1 ⌦ uy1) = 0 for most u 2 B(En�1). However, we did not include this

in the above discussion because there is a catch: uy1 may not be in B(En�1) since right

multiplication by y1 might create a factor of y0y21 in uy1. Nevertheless, it turns out that

Proposition 5.0.5. For n � 3, �Rn (x1 ⌦ uy1) = 0 for all u 2 B(En�1) of the form u = vy`
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with ` 6= 2. N

Proof. There are two cases to consider:

• u = vyky` for some v 2 B(En�3), (k, `) 6= (0, 1), ` 6= 2; and

• u = vy0y1 for some v 2 B(En�3).

In the first case, the conditions on k and ` ensure that right multiplication by y1 does not

create a factor of y0y21 in uy1. Thus, uy1 = vyky`y1 2 B(En). Since ` 6= 2, �Rn (x1 ⌦ uy1) = 0

by Definition 5.0.3.

In the second case, right multiplication by y1 does create a factor of y0y
2

1
, which we

rewrite in terms of B(E); that is,

uy1 = vy0y1y1

= v

 
�

NX

j=2

y0yjyj +
NX

j=1

yjyjy0

!

= �
NX

j=2

vy0yjyj +
NX

j=1

vyjyjy0. (5.0.0.1)

Note that v is not of the form v
0
y0 for some v

0 2 B(E) since otherwise u = vy0y1 = v
0
y
2

0
y1,

implying u is divisible by y
2

0
and contradicting u 2 B(En�1). Thus, no term of 5.0.0.1 is

divisible by y
2

0
or y0y

2

1
, so all terms of 5.0.0.1 are in B(En). Hence, every term of

x1 ⌦ uy1 = �
NX

j=2

x1 ⌦ vy0yjyj +
NX

j=1

x1 ⌦ vyjyjy0

is in B(A1 ⌦ E
n), and by Definition 5.0.3, every one of these terms maps to 0 under �Rn .

Therefore, �Rn (x1 ⌦ uy1) = 0.
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After these simplifications of �n, we are now ready to prove that the map is a splitting

of �n�1

(n) .

Theorem 5.0.6. For n � 2, the map �n splits �
n�1

(n) . N

Proof. We want to show that �n@n�1

(0)
(1 ⌦ u) = 1 ⌦ u for all 1 ⌦ u 2 B(A0 ⌦ E

n�1). By

Observation 5.0.4, it is enough to show that

�
L
n (x2 ⌦ y2u) + �

R
n (x1 ⌦ uy1 + x2 ⌦ uy2) = 1⌦ u (5.0.0.2)

for all 1 ⌦ u 2 B(A0 ⌦ E
n�1). We prove that 5.0.0.2 holds first in the case n = 2 and then

in the case n � 3. For the rest of our discussion, let 1⌦ u 2 B(A0 ⌦ E
n�1).

For n = 2, u 2 B(E1) = {y0, . . . , yN}. If u = y2, then by Definition 5.0.3,

�
L
2
(x2 ⌦ y2u) = �

L
2
(x2 ⌦ y2y2) = 0,

�
R
2
(x2 ⌦ uy2) = �

R
2
(x2 ⌦ y2y2) = 0,

�
R
2
(x1 ⌦ uy1) = �

R
2
(x1 ⌦ y2y1) = 1⌦ y2 = 1⌦ u,

so 5.0.0.2 holds. If u = ym for some m 6= 2, then by Definition 5.0.3, �Rn (x1 ⌦ uy1) =

�
R
n (x1 ⌦ ymy1) = 0 and

�
L
n (x2 ⌦ y2u) = �

L
n (x2 ⌦ y2ym) =

1

2
(1⌦ ym),

�
R
n (x2 ⌦ uy2) = �

L
n (x2 ⌦ ymy2) =

1

2
(1⌦ ym),
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by (aL) and (aR), respectively. Thus, 5.0.0.2 holds.

For n � 3, there are four cases to consider:

(5.0.1) u = y2vy2 for some v 2 B(En�3);

(5.0.2) u = ykvy2 for some v 2 B(En�3), k 6= 2;

(5.0.3) u = y2vy` for some v 2 B(En�3), ` 6= 2;

(5.0.4) u = ykvy` for some v 2 B(En�3), k, ` 6= 2.

By Proposition 5.0.5, �Rn (x1⌦uy1) = 0 in Cases (5.0.2), (5.0.3), and (5.0.4). And in Case

(5.0.1), �Rn (x1 ⌦ uy1) = �
R
n (x1 ⌦ y2v2y2y1) = 1⌦ u by (eR) of Definition 5.0.3.

The values of �Ln (x2 ⌦ y2u) and �
R
n (x2 ⌦ uy2) for Cases (5.0.1) through (5.0.4) are sum-

marized in the tables below and all follow from Definition 5.0.3.

u x2 ⌦ y2u �
L
n (x2 ⌦ y2u)

(5.0.1) x2 ⌦ y
2

2
v2y2 0

(5.0.2) x2 ⌦ y2ykvy2 0

(5.0.3) x2 ⌦ y
2

2
vy` 1⌦ y2vy` = 1⌦ u by (cL)

(5.0.4) x2 ⌦ y2ykvy`
1

2
(1⌦ ykvy`) =

1

2
(1⌦ u) by (dL)

u x2 ⌦ uy2 �
R
n (x2 ⌦ uy2)

(5.0.1) x2 ⌦ y2vy
2

2
0

(5.0.2) x2 ⌦ ykvy
2

2
1⌦ ykvy2 = 1⌦ u by (cR)

(5.0.3) x2 ⌦ y2vy`y2 0

(5.0.4) x2 ⌦ ykvy`y2
1

2
(1⌦ ykvy`) =

1

2
(1⌦ u) by (dR)
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Thus, the respective values of �Ln (x2 ⌦ y2u), �Rn (x1 ⌦ uy1), and �Rn (x2 ⌦ uy2) in all cases are

u �
L
n (x2 ⌦ y2u) �

R
n (x1 ⌦ uy1) �

R
n (x2 ⌦ uy2)

(5.0.1) 0 1⌦ u 0

(5.0.2) 0 0 1⌦ u

(5.0.3) 1⌦ u 0 0

(5.0.4) 1

2
(1⌦ u) 0 1

2
(1⌦ u)

Taking the sum along each row of the above table, we see that 5.0.0.2 holds in all cases.

As a corollary to Theorem 5.0.6, we have

Corollary 5.0.7. For n � 1, the map �
n
(n+1)

is injective and therefore HHn
(0)
(A) = 0. N
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Chapter 6

The Exponential Growth of the Hochschild

Cohomology of Short Gorenstein Rings

For the rest of this chapter we fix some N � 3 (avoiding the case N = 2 — see Remark

6.2.10). In this chapter we prove the main result of our thesis, Theorem 6.2.9, which states

that the k-dimensions of the even Hochschild cohomology groups HHn(A) grow exponentially

with n. The proof proceeds as follows.

Recall from Proposition 3.3.5 that HHn(A) decomposes as

HHn(A) = HHn
(0)
(A)� HHn

(1)
(A)� HHn

(2)
(A).

In particular, HHn
(1)
(A) = H

n(C(n)), where the complex C(n) in degree n is

· · · C
n�1

(n) C
n
(n) C

n+1

(n) · · ·

· · · A0 ⌦ E
n�1

A1 ⌦ E
n

A2 ⌦ E
n+1 · · ·

�n�1
(n) �n(n)

@n�1|A0⌦En�1 @n|A1⌦En

(see Section 3.3), so

HHn
(1)
(A) =

ker �n
(n)

im �
n�1

(n)

.
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We show in Theorem 6.2.2 that for n odd,

dimk HH
n
(1)
(A) �

X

c |d | (n+1),
d even

µ(c)(N � 1)d/c

d
, (6.0.0.1)

where µ is the Möbius function (see Definition 6.2.1); and that for n even,

dimk HH
n
(1)
(A) �

X

d | (n+1)

'(d)(N � 1)(n+1)/d

n+ 1
, (6.0.0.2)

where ' is Euler’s totient function (see Definition 6.2.1). Theorem 6.2.9 then follows as a

corollary of this result.

Convention 6.0.1. For the rest of this chapter,

• let T be the tensor algebra on k{Y0, . . . , YN};

• let Mon ⇢ T be the set of monomials of T ;

• for n � 0, let Monn ⇢ Mon be the set of monomials of T of degree n; and

• let � be the degree-lexicographic order on Mon. N

Proving that 6.0.0.1 and 6.0.0.2 hold relies on the Zn+1 = h�n+1i action on T
n+1 defined

on monomials Yi0 · · ·Yin 2 T
n+1 by �n+1(Yi0 · · ·Yin) = Yi1 · · ·YinYi0 . We begin in Section 6.1

by lifting �n
(n) to a map e@n+1 : T n+1 ! T

n+1 as in the diagram

T
n+1

T
n+1

A1 ⌦ E
n

A2 ⌦ E
n+1

e@n+1

⇡n+1
(1)

⇡n+1
(2)

�n(n)
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where the surjections ⇡n+1

(1)
and ⇡n+1

(2)
are defined in Section 6.1. We show that the elements

�
n+1(O) =

8
>>>>>>>><

>>>>>>>>:

|O|�1X

i=0

�
i
n+1

(min�O), n+ 1 odd,

|O|�1X

i=0

(�1)i�i
n+1

(min�O), n+ 1 even.

for all orbits O ⇢ Monn+1

form a k-basis of ker e@n+1. Furthermore, in Section 6.2 we show that a subset L
n+1 of this

basis generates a subspace kL
n+1 which maps injectively via ⇡n+1

(1)
into HHn

(1)
(A), implying

that

dimk HH
n
(1)
(A) � |Ln+1|.

We complete the proof by showing that for n � 1, |Ln| is equal to the right-hand side of

6.0.0.1 when n is odd and the right-hand side of 6.0.0.2 when n is even.

6.1 The kernel in the free setting

We begin this section by defining the lift e@n+1 : T n+1 ! T
n+1 from the introduction of

this chapter and showing that the associated diagram commutes. We will need the following

proposition, which gives us a much simpler description of the differential @n when restricted

to A1 ⌦ E
n.

Recall from Proposition 3.1.2 that s 2 A is the element in the decomposition
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A = k� k{x0, . . . , xN} � k{s} and that yj = x
⇤
j 2 E for j = 0, . . . , N . And recall from

Proposition-Definition 2.4.6 that for a⌦ e 2 A⌦ E
n,

@
n(a⌦ e) =

NX

j=0

axj ⌦ [yj, e].

Here the bracket [yj, e] is the graded Lie bracket, given by

[yj, e] = yje� (�1)neyj.

Proposition 6.1.1. Let n � 0. For a⌦ e 2 A1 ⌦ E
n
,

@
n(a⌦ e) = s⌦ [a⇤, e]. N

Proof. Since both sides of the desired equality are k-linear in a, it is enough to show that

for i = 0, . . . , N , @n(xi ⌦ e) = s⌦ [yi, e]. Note that xjxi = 0 2 A whenever j 6= i, so

@
n(xi ⌦ e) =

NX

j=0

xjxi ⌦ [yj, e] = x
2

i ⌦ [yi, e] = s⌦ [yi, e],

completing the proof.

We now use Proposition 6.1.1 to define the lift e@n+1 and the maps ⇡n+1

(1)
and ⇡

n+1

(2)
from

the diagram in the introduction of this chapter.
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Convention 6.1.2. In order to simplify notation, for the rest of this section we will change

the notation used in the introduction and instead work with T
n, e@n, ⇡n

(1)
, and ⇡

n
(2)

for

n � 1. N

Definition 6.1.3. Let n � 1. Define the maps e@n, ⇡n
(1)

, and ⇡n
(2)

in the diagram

T
n

T
n

A1 ⌦ E
n�1

A2 ⌦ E
n

e@n

⇡n
(1) ⇡n

(2)

�n�1
(n�1)

(6.1.0.1)

as follows:

• For u 2 Monn, write u = Yiv for some i 2 {0, . . . , N} and v 2 Monn�1 and define

e@n(u) = [Yi, v] = Yiv � (�1)n�1
vYi.

• Let ⇡n
(1)

be the composition of the isomorphism T
n ! A1⌦T

n�1 given by Yiu$ xi⌦u

for u 2 Monn�1 and the map A1 ⌦ T
n�1 ! A1 ⌦ E

n�1 induced by the projection

T
n�1 ! T

n�1
/hrin�1 = E

n�1.

• Let ⇡n
(2)

be the composition of the isomorphism T
n ! A2 ⌦ T

n given by v $ s⌦ v for

v 2 Monn and the map A2 ⌦ T
n ! A2 ⌦ E

n induced by the projection T
n ! E

n. N

With the definitions above, Diagram 6.1.0.1 commutes, which we verify below.

Proposition 6.1.4. For n � 1, Diagram 6.1.0.1 commutes. N
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Proof. Since all of the maps involved are k-linear, it is enough to show that the diagram

is commutative on monomials. Let u 2 Monn, so u = Yiv for some i 2 {0, . . . , N} and

v 2 Monn�1. Then

�
n�1

(n�1)
⇡
n
(1)
(Yiv) = �

n�1

(n�1)
(xi ⌦ v)

= s⌦ [yi, v] (by Proposition 6.1.1)

= s⌦ (yiv � (�1)n�1
vyi)

= ⇡
n
(2)
(Yiv � (�1)n�1

vYi)

= ⇡
n
(2)
e@n(Yiv),

so the diagram commutes.

Our task now is to construct the k-basis of ker e@n described in the introduction. First

we recall the definition of the cyclic group Zn action on T
n and then show that e@n can in

fact be written in terms of this action.

Definition 6.1.5. For n � 1, let �n be a generator of Zn and let �n act on Yi1 · · ·Yin 2 Monn

by �n · Yi1 · · ·Yin = Yi2 · · ·YinYi1 . Extending this linearly results in an action of Zn on T
n.

We write � in place of �n whenever the degree n is clear from context.

Let Orbn be the set of all orbits of this action in Monn and let Orb =
S

n�1
Orbn. N
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Note that for any monomial u = Yi1 · · ·Yin 2 Monn, we can rewrite e@n(u) as

e@n(u) = [Yi1 , Yi2 · · ·Yin ] = Yi1 · · ·Yin � (�1)n�1
Yi2 · · ·YinYi1 = u� (�1)n�1

�nu,

so we have the following observation.

Observation 6.1.6. For n � 1, we have

e@n = id�(�1)n�1
�n = id+(�1)n�n. N

Reinterpreting e@n in terms of the cyclic group action makes clearer the form of elements

in ker e@n, as we show in the next example.

Recall from Definition 4.3.1 the function Y⇤ :
S

n�0
{0, . . . , N}n ! T defined on an

element (i1, . . . , in) 2 {0, . . . , N}n by Y⇤(i1, . . . , in) = Yi1 · · ·Yin . We introduce this function

merely to improve readability in the rest of our discussion.

Example 6.1.7. Let

O1 = {Y⇤(1, 1, 0), Y⇤(1, 0, 1), Y⇤(0, 1, 1)} 2 Orb3
,

O2 = {Y⇤(2, 2, 0, 0), Y⇤(2, 0, 0, 2), Y⇤(0, 0, 2, 2), Y⇤(0, 2, 2, 0)} 2 Orb4
,
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and let

�(O1) = Y⇤(1, 1, 0) + Y⇤(1, 0, 1) + Y⇤(0, 1, 1),

�(O2) = Y⇤(2, 2, 0, 0)� Y⇤(2, 0, 0, 2) + Y⇤(0, 0, 2, 2)� Y⇤(0, 2, 2, 0).

Then

e@3(�(O1)) =

= �(O1) + (�1)3��(O1)

= (Y⇤(1, 1, 0) + Y⇤(1, 0, 1) + Y⇤(0, 1, 1))� (�Y⇤(1, 1, 0) + �Y⇤(1, 0, 1) + �Y⇤(0, 1, 1))

= (Y⇤(0, 1, 1) + Y⇤(1, 1, 0) + Y⇤(1, 0, 1))� (Y⇤(1, 0, 1) + Y⇤(0, 1, 1) + Y⇤(1, 1, 0))

= 0,

and similarly

e@4(�(O2)) =

= �(O2) + (�1)4��(O2)

= (Y⇤(2, 2, 0, 0)� Y⇤(2, 0, 0, 2) + Y⇤(0, 0, 2, 2)� Y⇤(0, 2, 2, 0))+

+ (�Y⇤(2, 2, 0, 0)� �Y⇤(2, 0, 0, 2) + �Y⇤(0, 0, 2, 2)� �Y⇤(0, 2, 2, 0))

= (Y⇤(2, 2, 0, 0)� Y⇤(2, 0, 0, 2) + Y⇤(0, 0, 2, 2)� Y⇤(0, 2, 2, 0))+
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+ (Y⇤(2, 0, 0, 2)� Y⇤(0, 0, 2, 2) + Y⇤(0, 2, 2, 0)� Y⇤(2, 2, 0, 0))

= 0. N

We define elements of this form more generally below.

Definition 6.1.8. Define �n : Orbn ! T
n by

�
n(O) =

8
>>>>>>>><

>>>>>>>>:

|O|�1X

i=0

�
i(min�O), n odd,

|O|�1X

i=0

(�1)i�i(min�O), n even.

We write � in place of �n whenever the degree n is clear from context.

An image �n(O) of O 2 Orbn is called an orbit sum. N

We can now state the main result of this section.

Theorem 6.1.9. The k-space ker e@n has basis

B(ker e@n) :=

8
>><

>>:

{�(O) | O 2 Orbn}, n odd,

{�(O) | O 2 Orbn
, |O| even}, n even.

N

This theorem will follow from Propositions 6.1.11 and 6.1.12 below.
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For the proof of Proposition 6.1.11 we need the following general observation about

adding together polynomials of T n with disjoint supports. For a definition of the support of

a polynomial, see Definition 4.1.10.

Observation 6.1.10. Let f, g 2 T
n such that supp f \ supp g = ;. If f + g = 0, then

f = 0 and g = 0; equivalently, if f 6= 0 or g 6= 0, then f + g 6= 0. Indeed, suppose without

loss of generality f 6= 0, so then f contains a term of the form cu for some nonzero c 2 k

and u 2 Monn. Since supp f \ supp g = ;, the coefficient of u in f + g is still c 6= 0, so

f + g 6= 0. N

Proposition 6.1.11. There exists a decomposition

ker e@n =
M

O2Orb
n

ker e@n|kO.

N

Proof. For every O 2 Orbn,

ker e@n|kO ✓ kO ✓ T
n =

M

O02Orb
n

kO
0
,

so

X

O2Orb
n

ker e@n|kO =
M

O2Orb
n

ker e@n|kO.

70



Also, ker e@n|kO ✓ ker e@n for all O 2 Orbn, so

M

O2Orb
n

ker e@n|kO ✓ ker e@n.

Let f 2 ker e@n, let f =
P

O2Orb
n fO be the unique decomposition of f with respect to

T
n =

L
O2Orb

n kO, let O
0 2 Orbn, and let

f
0 =

X

O2Orb
n �{O0}

fO.

Note that supp �(fO) ✓ O for all O 2 Orbn, so e@n = id+(�1)n� implies

supp e@n(fO0) ✓ O
0
, supp e@n(f 0) ✓

[

O2Orb
n �{O0}

O,

and so

supp e@n(fO0) \ supp e@n(f 0) = ;.

Since 0 = e@n(f) = e@n(fO0) + e@n(f 0), it follows that e@n(fO0) = 0 by Observation 6.1.10. In

other words, fO0 2 ker e@n|kO0 . Since O
0 was arbitrary, f 2

L
O2Orb

n ker e@n|kO, and therefore

ker e@n ✓
M

O2Orb
n

ker e@n|kO,

completing the proof.
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Proposition 6.1.12. For O 2 Orbn
,

• if n is even and |O| is odd, then ker e@n|kO = 0;

• if n is odd or if n and |O| are even, then ker e@n|kO has basis {�(O)}.

N

Proof. Let O 2 Orbn, let d = |O|, and let f 2 ker e@n|kO ✓ kO. Note that

O = {�i(min�O) | i = 1, . . . , d},

so we can write f =
Pd

i=1
ai�

i(min�O) for some ai 2 k and

0 = e@n(f)

=
dX

i=1

ai�
i(min�O) + (�1)n

dX

i=1

ai�
i+1(min�O). (6.1.0.2)

Since �d+1(min�O) = �(min�O), 6.1.0.2 becomes

0 =
dX

i=1

ai�
i(min�O) + (�1)nad�(min�O) + (�1)n

dX

i=2

ai�1�
i(min�O)

= (a1 + (�1)nad)�(min�O) +
dX

i=2

(ai + (�1)nai�1)�
i(min�O). (6.1.0.3)

And since distinct monomials are linearly independent, it follows that

a1 = (�1)n+1
ad; ai = (�1)n+1

ai�1, i = 2, . . . , d.
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Inductively, we have

ai = (�1)i(n+1)
ad, i = 1, . . . , d. (6.1.0.4)

In particular,

ad = (�1)d(n+1)
ad. (6.1.0.5)

If n is even and d is odd, then 6.1.0.5 becomes ad = �ad. Since char k = 0, ad = 0; so by

6.1.0.4, ai = 0 for i = 1, . . . , d� 1. Thus, f = 0, and therefore ker e@n|kO = 0.

If n is odd or if n and d are even, then 6.1.0.5 becomes ad = ad. If n is odd, then ai = ad

for i = 1, . . . , d� 1 by 6.1.0.4, so

f =
dX

i=1

ad�
i(min�O) = ad

dX

i=1

�
i(min�O) = ad �(O).

If n and d are even, then ai = (�1)iad for i = 1, . . . , d� 1 by 6.1.0.5, so

f =
dX

i=1

(�1)iad�i(min�O) = ad

dX

i=1

(�1)i�i(min�O) = ad �(O).

In either case, f 2 k�(O), so ker e@n|kO = k�(O).

This completes the proof of Theorem 6.1.9.
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6.2 Bounding dimk HH
n
(A) below

In this section we establish lower bounds on the k-dimensions of HHn�1

(1)
(A) for n � 1

(Theorem 6.2.2). These bounds, in turn, imply our main result (Theorem 6.2.9). In order

to state these theorems, we must recall two important number-theoretic functions.

Definition 6.2.1. The Möbius function is the function µ : Z+ ! {�1, 0, 1} such that for

m 2 Z+, µ(m) is the sum of the primitive mth roots of unity.

Euler’s totient function is the function ' : Z+ ! Z+ such that for m 2 Z+, '(m) is the

number of positive integers `  m such that ` and m are relatively prime. N

Theorem 6.2.2. For n � 1,

dimk HH
n�1

(1)
(A) �

8
>>>>>>>>><

>>>>>>>>>:

X

c|d|n,
d even

µ(c)(N � 1)d/c

d
, n even,

X

d|n

'(d)(N � 1)n/d

n
, n odd.

N

Proof. The result will from Lemmas 6.2.6 and 6.2.8 below.

Let n � 1. For the proofs of Lemmas 6.2.4 through 6.2.8, recall the maps e@n, ⇡n
(1)

, and

⇡
n
(2)

(Definition 6.1.3); and the map �n�1 : A1⌦E
n�1 ! A0⌦E

n�2 (Definition 5.0.3); which
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are related by the diagram

T
n

T
n

A0 ⌦ E
n�2

A1 ⌦ E
n�1

A2 ⌦ E
n

e@n

⇡n
(1) ⇡n

(2)

�n�2
(n�1) �n�1

(n�1)

�n�1

We also require the following definitions.

Definition 6.2.3. For n � 1,

• let Monn
? be the set of monomials of degree n in the variables Y1, Y3, . . . , YN ; that is,

the variables Yj except for Y0 and Y2;

• let Orbn
? be the set of orbits O 2 Orbn such that O ✓ Monn

? ;

• and let

L
n =

8
>><

>>:

{�(O) | O 2 Orbn
?}, n odd;

{�(O) | O 2 Orbn
? , |O| even}, n even.

N

Note that

• ⇡
n
(1)
(kL

n) ✓ ker �n�1

(n�1)
by the commutativity of Diagram 6.1.0.1;

• L
n is linearly independent, being a subset of a k-basis of ker e@n (see Theorem 6.1.9);

• for n odd, |Ln| = |Orbn
? |; and for n even, |Ln| = |{O 2 Orbn

? | |O| even}|.

Recall from Definition 5.0.2 that B(A1 ⌦E
n�1) is the k-basis of A1 ⌦E

n�1 consisting of

elements of the form xi ⌦ w, where w is a monomial in y0, . . . , yN of degree n � 1 which is
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not divisible by y
2

0
nor by y0y

2

1
.

Lemma 6.2.4. For n � 1, kL
n

maps injectively under ⇡
n
(1)

into ker �n�1

(n�1)
✓ A1 ⌦E

n�1
. In

particular, ⇡
n
(1)
(Ln) is a k-basis of ⇡

n
(1)
(kL

n) of size |Ln|. N

Proof. Let u 2 Monn
? and write u = Yiv, where v is a monomial in the variables Y1, Y3, . . . , YN .

In particular, v is not divisible by Y
2

0
nor by Y0Y

2

1
, so v 2 B(En�1). Thus, ⇡n

(1)
(u) = xi ⌦ v

is an element of B(A1 ⌦ E
n�1), implying that Monn

? maps injectively into B(A1 ⌦ E
n�1).

Therefore, ⇡n
(1)

restricted to kMonn
?—and hence, restricted to kL

n—is injective.

Lemma 6.2.5. For n � 1, im �
n�2

(n�1)
has zero intersection with ⇡

n
(1)
(kL

n). N

Proof. Recall from Theorem 5.0.6 that the map �n�1 splits the map �
n�2

(n�1)
. The key fact

to observe from the definition of �n�1 is that �n�1 maps every monomial of the form xi1 ⌦

yi2 · · · yin 2 B(A1 ⌦ E
n�1) with ij 2 {1, 3, . . . , N} to 0. This applies in particular to every

monomial of ⇡n
(1)
(Monn

? ), implying that �n�1⇡
n
(1)
(kMonn

? ) = 0, and thus �n�1⇡
n
(1)
(kL

n) = 0.

To see that im �
n�2

(n�1)
\ ⇡n

(1)
(kL

n) = 0, let f 2 im �
n�2

(n�1)
\ ⇡n

(1)
(kL

n), so f = �
n�2

(n�1)
(g)

for some g 2 A0 ⌦ E
n�2 and �n�1(f) = 0. Then 0 = �n�1(f) = �n�1�

n�2

(n�1)
(g) = g, so

f = �
n�2

(n�1)
(g) = 0.

Lemma 6.2.6. For n � 1, we have

dimk HH
n�1

(1)
(A) � |Ln|. N
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Proof. By Lemma 6.2.5, we can write

ker �n�1

(n�1)
= im �

n�2

(n�1)
� ⇡n

(1)
(kL

n)� C
n�1

for some subspace C
n�1 ✓ A1 ⌦ E

n�1. Thus,

HHn�1

(1)
(A) = ker �n�1

(n�1)
/im �

n�2

(n�1)

⇠= ⇡
n
(1)
(kL

n)� C
n�1

.

And by Lemma 6.2.4, dim ⇡
n
(1)
(kL

n) = |Ln|, completing the proof.

Our final lemma gives us an explicit formula for |Ln|. In order to state the lemma, we

will need the following definition.

Definition 6.2.7. Let d � 1. An orbit O 2 Orbd is aperiodic if |O| = d.

Let aOrbd
? be the set of aperiodic orbits O 2 Orbd

?. N

Lemma 6.2.8 (see [Reu93, Theorem 7.1 and Corollary 7.3]). Let n � 1. Then

|Ln| =

8
>>>>>>>>><

>>>>>>>>>:

X

c|d|n,
d even

µ(c)(N � 1)d/c

d
if n is even,

X

d|n

'(d)(N � 1)n/d

n
if n is odd.

where µ is the Möbius function and ' is Euler’s totient function (see Definition 6.2.1). N
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Proof. Note that there exists a partition

{O 2 Orbn
? | |O| even} =

[

d|n,
d even

{O 2 Orbn
? | |O| = d}

and that for each d | n there is also a bijective correspondence

aOrbd
? $ {O 2 Orbn

? | |O| = d},

so we have

|Ln| = |{O 2 Orbn
? | |O| even}| =

X

d|n,
d even

| aOrbd
? |.

For d � 1, aOrbd
? is the set of aperiodic orbits of size d on the N�1 variables Y1, Y3, . . . , YN ,

so by [Reu93, Theorem 7.1],

| aOrbd
? | =

X

c|d

µ(c)(N � 1)d/c

d
.

Thus, for n even,

|Ln| =
X

d|n,
d even

| aOrbd
? | =

X

c|d|n,
d even

µ(c)(N � 1)d/c

d
.

Similarly, Orbn
? is the set of orbits on the N � 1 variables Y1, Y3, . . . , YN , so by [Reu93,
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Corollary 7.3],

|Orbn
? | =

X

d|n

'(d)(N � 1)n/d

n
.

Thus, for n odd,

|Ln| = |Orbn
? | =

X

d|n

'(d)(N � 1)n/d

n
.

This completes the proof of Theorem 6.2.2.

As a corollary to Theorem 6.2.2, we have the following theorem, our main result.

Theorem 6.2.9. For N � 3 and for all n � 2 even, there is an inequality

dimk HH
n(sGor(N)) � (N � 1)n+1

n+ 1
. N

Proof. By the decomposition of HHn(A) = HHn
(0)
(A) � HHn

(1)
(A) � HHn

(2)
(A) (Proposition

3.3.5) and Theorem 6.2.2, we have

dimk HH
n(A) � dimk HH

n
(1)
(A) �

X

d|(n+1)

'(d)(N � 1)(n+1)/d

n+ 1
.
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The totient function satisfies '(d) � 1 for all d and '(1) = 1, so taking the d = 1 term of

the above sum gives the result.

Remark 6.2.10. Note that the above lemmas hold for N = 2 as well. However, in this case

the function of n

(N � 1)n+1

n+ 1

is no longer exponential, which is why we require the assumption N � 3. N
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