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Abstract

Let K be a field of characteristic 0. In this thesis, we show that the Hochschild cohomology
of the family of short Gorenstein k-algebras

KXo, Xy] Ve

Gor(N) =
CorlN) = XX, XT - X2 iy =0, . NiZ)) 2

exhibits exponential growth. The proof uses Grobner-Shirshov basis theory and along the

way we describe an explicit monomial basis for the Koszul dual of sGor(N) for N > 2.
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Chapter 1

Introduction

Hochschild cohomology is one of the fundamental long-studied invariants developed to
understand a k-algebra over a commutative ring k. However, there exist very few explicit
computations of the Hochschild cohomology of a commutative algebra. The Hochschild-
Kostant-Rosenberg Theorem [HKR62] computes explicitly the Hochschild cohomology of a
polynomial ring. In [BR15], Buchweitz and Roberts formulate a description of the Hochschild
cohomology of a complete intersection in the same spirit. Beyond this, however, the author is
unaware of many more examples in commutative algebra. Such computations are generally
very difficult because Hochschild cohomology is expected to grow exponentially for non-
complete intersection rings. In this thesis we show that the Hochschild cohomology of a
family of short Gorenstein rings exhibits this exponential growth (where short means the
cube of the homogeneous maximal ideal is equal to zero). More precisely, let K be a field of
characteristic 0; define the family of Gorenstein rings sGor(N) for N > 2 as

K[Xo, ..., XnN] _
(Xin> XiZ_ij‘iaj:Ov"'?NJ?éj),

sGor(N) =

and for n > 0, let HH"(sGor(/N)) denote the nth Hochschild cohomology group of sGor(XN)
over K. We note that for N = 1 these algebras are complete intersections.

The main result of this thesis is



Theorem (Theorem 6.2.9). For N > 3 and for all n > 2 even, there is an inequality

(N —1)m+!

dimg HH" (sGor(N)) > e

We outline the proof this theorem below.

Let k be a commutative ring and let A be a k-algebra. Although the Hochschild co-
homology of A, denoted HH®(A), is classically defined in terms of the bar complex of A,
the bar complex usually proves to be intractable for computational purposes. However,
if A is projective over k (which will be the case for us, working over the field k = k),
we have HH"(A/k) = Extj.(A, A) as k-modules for all n > 0 (Proposition 2.1.5), where
A® = A®; A°P is the enveloping algebra of A. This allows us some flexibility in terms of the
resolution of A over A¢ which we use for the computation of HH*(A). In fact, if A is a com-
mutative graded Koszul algebra, we show in Chapter 2 that this leads to the following critical
result due to Buchweitz (|[Buc03]) and Negron (|Negl7]) which facilitates computations. We

define all terminology in Chapter 2.

Proposition-Definition (Proposition-Definition 2.4.6). Let A =T(V)/{(Q) be a commuta-
tive Koszul algebra over K; let {zq, ..., zy,} be a basis for V; let y; = xF, so that {yo,. .., Ym}

is a basis of V*; and let A' = T(V*)/(Q*) be the quadratic dual of A. For n > 0, the

sequence of free A-modules A ® (A" with maps 0" : A® (A')" — A® (A" defined by

Ma®e) =Y ar; @ (yse — (—1)"ey;),

J=0



form a complex (A ® (A")*,0) satisfying

HH"(A) = H"(A® (4)*)

for allm > 0.

Fortunately, these short Gorenstein rings are commutative Koszul k-algebras (Proposition

3.2.2) with Koszul duals

K(Yo,...,Yw)

sGor(N)' = R

where Y; = X7,

for N > 2 (Proposition 3.2.3). Thus, the complex sGor(N) ®k (sGor(N)')* serves as the
starting point of our computations.
Fix some N > 2, let A = sGor(N), and let ® = ®. In Chapter 3 we discuss in more

detail the structure of the complex A ® A', showing that there is a decomposition

A= k@k{X@,,XN}@k{S}

(Proposition 3.1.2), where s is of degree 2. We show that this induces a decomposition of

A® A" into complexes Cn) for n > 0, called strands, with differentials 5% : G?;;) — GE’:L;A,



where

Ag@ (A1 m=n—1;

A ® (AD™, m=n;

(n)
Ay @ (AN m =n+1;

0, otherwise.

This, in turn, induces the following decomposition of the Hochschild cohomology of A:

Proposition (Proposition 3.3.5). Forn > 1,

HH"(A) = H"(Cn-1)) ® H"(C(n)) ® H"(C(ns1))-

Forn > 1, we set HH{)(A) = H"(Cn41)), HH{})(A) = H"(C(), and HH{5 (A) = H™(C,—1)).
Our goal, then, is to investigate the k-vector space structure of each HH’&)(A) individually,
which requires a description of the K-vector space structure of A'. To this end, in Chapter

4, we compute a noncommutative Grobner basis, or Grobner-Shirshov basis, of the ideal

(Vg + -+ YR

Proposition (Proposition 4.3.2). The set

Sy = {r=Yi+ 4R Yir—1% )

is a Grobner-Shirshov basis of the ideal (Y¢ + -+ Y2) of k(Yy, ..., Yn).



Given an associative K-algebra R and an ideal I C R, the most important property of
a Grobner-Shirshov basis S of I for our purposes is that S contains the necessary data for

constructing a K-vector space basis of R/I (Corollary 4.2.5). In particular, we have

Proposition (Proposition 4.3.3). The K-vector space A has a K-basis consisting of all mono-

mials in K(Yy, ..., Yy) which are not divisible by Y& nor YyY72.

With the vector space structures of A and A' made explicit, we compute HH?O)(A) by

constructing a map

Vnt1 - C"nH =A@ AN 5 Ay ® (AN = ?n“)

which splits 5(n+1) G(n+1) — C(n+1) implying
Corollary (Corollary 5.0.7). For n > 1, we have HH{p,(A) = 0.

Finally, for N > 3 and n even, we then use 7,,; to show the existence of a linearly

independent subset of HH{})(A) of size

QO 1)(n+1)/d
Z n + 1 )

d|(n+1)

where ¢ is Euler’s totient function, thus implying our main result.



Conventions

We assume knowledge of basic commutative algebra and homological algebra, which can
be found in [Mat89] and [Wei94], respectively. For the entirety of this thesis,

clet N=1{0,1,2,...};

« let k be a field of characteristic 0;

« ® stands for ®y;

« Hom stands for Homy;

« "ideal" means two-sided ideal;

« and for a k-vector space V', V* = Homy(V, K).
In particular, if {vg,...,v,} is a basis of V', then v} is the dual basis element of v; given by

v} (vj) = d;j, where 0;; is the Kronecker delta.

The free associative k-algebra on indeterminates 2o, . . ., z,, denoted K(zg, ..., z,), is iso-
morphic to the tensor algebra T'(k{zo, ..., 2z, }) as k-algebras, so we will use these structures
interchangeably.

The symbol A signifies the end of a numbered statement.



Chapter 2

Hochschild Cohomology and Koszul Algebras

Hochschild cohomology was originally developed by Hochschild in his 1945 paper [Hoc45]
as a cohomology theory of associative algebras. This theory was further expanded by Cartan
and Eilenberg [CE56| and Gerstenhaber |Ger63] and since then has seen tremendous growth,
playing an significant role in many different branches of mathematics, including representa-
tion theory, noncommutative geometry, and algebraic deformation theory (see [Wit19]).

As explained in the Chapter 1, our main goal in this thesis is to exhibit exponential
growth of the Hochschild cohomology groups of the short Gorenstein rings sGor(N). To get
anywhere with this goal, though, we would like to work with a complex which significantly
simplifies computations of these cohomology groups. After establishing some general theory
about Hochschild cohomology and Koszul algebras in Sections 2.1 — 2.3, in Section 2.4 we
describe a computationally-friendly complex that computes the Hochschild cohomology of
commutative Koszul K-algebras (Proposition-Definition 2.4.6). We will show in Chapter 3
that the short Gorenstein rings sGor(N) are Koszul, allowing us to utilize this complex for

the rest of our discussion.



2.1 Hochschild cohomology — an introduction

In this section we recall the definition of the Hochschild cohomology of a k-algebra A
with coefficients in an A-bimodule M via the bar complez of A (Proposition-Definition 2.1.3)
and then give an equivalent description in terms of derived functors (Proposition 2.1.5).

Our discussion, including the construction of the complex which computes Hochschild
cohomology, will require the notion of an enveloping algebra associated with A, defined as

follows.

Definition 2.1.1. The enveloping algebra of a k-algebra A is the k-algebra A° = A® A°P. A

Remark 2.1.2. An A-bimodule M is equivalently a left A°-module with action defined by
(a®ad)-x=azxd forall a®a’ € A® and x € M. Conversely, a left A°module M is also an
A-bimodule via the actions -2z = (a® 1)z and z-d’ = (1®ad')x forall a,a’ € Aand x € M.
For the rest of this chapter, we will use these structures interchangeably.

In particular, for a k-vector space V, A® V ® A is a left A°~module and is isomorphic

to A@Vviaa®uv®d « (a®d)®v. A

Proposition-Definition 2.1.3 (See |Wit19, Section 1.1]). The bar complex B(A) of A is

a sequence of left A°-modules B,(A) = A®"*2) and maps b, : A2 — A2 defined

by

n+1

bnt1(a0 ® -+ @ Any2) = Z(—l)iao @ Qa0+ Q- @ Apga
i=0



for n € N. The augmented complex

e AR P AR AR A DS ARA LY A0

with multiplication map p: A A — A forms an A°-module resolution of A. A

For a left A°-module M, we use the bar complex B(A) to define a complex of k-vector

spaces Hom 4e(B(A), M) with Hom’i. (B(A), M) = Homu(B,,(A), M) and differential

(bv)n = HOHlAe (bn+1; M) . HOH]Ae (Bn<A), M) — HOInAe(Bn+1 (A), M)

given by (bY),(f) = —(=1)"fb,41 for all f € Homye(B,(A), M).

Definition 2.1.4. The nth Hochschild cohomology HH" (A, M) of A with coefficients in an

A¢-module M is defined as the nth cohomology of the complex Hom e (B(A), M); that is,

HH"(A, M) = H"(Hom e (B(A), M))

for all n € N.
Set HH*(A, M) = @, .y HH" (A, M). In the case M = A, write HH"(A) for HH"(A, A).

A

Working directly with this definition can prove difficult because the bar complex is gen-

erally quite cumbersome. Fortunately, since A is projective over K, Hochschild cohomology



has the following characterization which significantly expands the scope of A¢-resolutions of

A at our disposal, as we will see in Section 2.4.

Proposition 2.1.5 (See [Lod98, Subsection 1.5.8]). Let M be a left A°~-module. Then

HH"™(A, M) = Ext". (4, M)

as K-vector spaces for all n € N. A

2.2 Interlude — some linear algebra

In light of Proposition 2.1.5, we will soon see that when A is a commutative Koszul
algebra, HH®(A) can be computed using a more suitable free A°-resolution of A (Proposition
2.4.3). However, in order to move forward, we will need the following facts about vector

spaces.

Definition 2.2.1. Let V be a k-vector space and let U be a subspace of V. The annihilator

of U is the subspace of V* defined as

U :={feV*"| flv)=0forallveU}. A

Proposition 2.2.2 (see [War90, Theorem 28.10]). Let V' be a finite dimensional K-vector

10



space and let U be a subspace of V. Then dimg U° = dimg V' — dimg U. A

Proposition 2.2.3. Let V and W be K-vector spaces, let U be a subspace of V', let {vg, ..., vm}
be a basis for V extending the basis {vii1,...,vm} of U, and let {wy,...,w,} be a basis for
W. Then we have the following natural isomorphisms:
(a) V =2 V™ and in particular U = U°°, via v; <> v}*;
(b) Ve W*= (Ve W) viav; @ wj < (v; @ w))*;
(c) VeW* = Hom(W,V) via vi@w; > hj;, where {hj;} is the basis of Hom(W, V') defined
by hj;(w) = w;‘(w)vi;
(d) U° = (V/U)* via vf < ;%
Fach isomorphism above has the following basis-free description in the specified direction:
(a') V. — V* given by v — e,, where the map e, : V* — K is defined by e,(f) = f(v);
(b)) V*@W* = (Ve W)* given by f & g — h, where the map h: V @ W — K is defined
by h(v @ w) = f(v)g(w);
() Ve W* — Hom(W,V) given by v ® f — g, where the map g : W — V is defined by
(d) U° — (V/U)* given by f +— f, where the map f : V/U — K is defined by f(v) = fv).

A

Corollary 2.2.4. In the setting of Proposition 2.2.53, if W =V, then under the isomorphism
V @ V* — Hom(V, V) the identity in Hom(V, V') corresponds to the element y ", v; ® v}.
This element is independent of choice of basis for V' since it is the preimage of the identity

element for any basis of V. A

11



Remark 2.2.5. Proposition 2.2.3(c¢’) holds even if V' is not finitely generated, with inverse
Hom(W,V) — V @ W* given by ¢ — > " j¥(w;) ® w. We will use this version of the

proposition in the proof of Proposition-Definition 2.4.6. A

Definition 2.2.6. Let V' be a finite dimensional vector space, let  : V* @ V* — (V @ V)*
be the isomorphism of Proposition 2.2.3(b’), and let @ C V ® V be a subspace. Define the

perpendicular subspace Q+ C V* @ V* of Q as

Qt={feV*@V* | ®(f)(u) =0 for all u € Q}. A

Note that for a subspace Q CV @V, ®(Q1) = Q°, so Q+ = Q°. In particular, we have

Proposition 2.2.7. Let V be a finite dimensional vector space and @ a subspace of V® V.

Then Q= Q and dimg Q+ = dimk(V @ V) — dimk Q. A

2.3 Koszul algebras

With this linear algebra toolbox in hand we are now equipped to discuss Koszul algebras.
We begin by introducing quadratic algebras, the quadratic dual, and the associated Koszul
complex. When A is Koszul, this complex of left A-modules lifts to the free resolution of A

over A€ that we seek.

Definition 2.3.1. A k-algebra A is a quadratic algebra if A="T(V)/I, where V is a finite-

12



dimensional k-vector space, T'(V') is the tensor algebra on V over Kk, and I = (Q) for a
k-vector space Q C T?(V) =V ® V. The quadratic dual A' of a A is the k-algebra T'(V*)/I'

with I' = (Q4). A

Remark 2.3.2. If A =T(V)/(Q) is a quadratic algebra, then by Proposition 2.2.7,

AY=T(V™)/(QH) =T(V)/(Q) = A.

Example 2.3.3. Let V' be a finite dimensional k-vector space. Then the symmetric algebra
onV,S(V)=T(V)/(u®@v—v®u|uveV),is a quadratic algebra with quadratic dual

SV = AV =T(V*)/{(v* ®v* | v € V), the exterior algebra on V*. A

Symmetric and exterior algebras are also examples of Koszul algebras, defined below.
There are several equivalent definitions of Koszul algebras (see, for example, [PP05, Chapter

2, Section 1, Definition 1]); the following one best motivates the rest of our discussion.

Definition 2.3.4. A quadratic k-algebra A is Koszul if the left A-module K admits a free
linear resolution over A; that is, a resolution by free graded left A-modules F; such that

F; = A(—i)%, where 3; = B{4(K) is the ith Betti number of k over A for all i € N, A

An equivalent definition of Koszulness follows from the next construction of a complex

associated with a quadratic algebra, due to Priddy [Pri70].

13



Proposition-Definition 2.3.5 (see |[PP05, Chapter 2, Section 3|). Let A = T(V)/(Q) be
a quadratic K-algebra, let A' = T(V*)/(Q*Y) be its quadratic dual, and let ty € A; ® A} be
the element described in Corollary 2.2.) corresponding to the identity in Hom(V, V). The
sequence of free left A-modules K,(A) = A® (A))* with maps Opy1 : Kny1(A) — K, (A)

defined by Op41(a® f) =ta-(a®f) for alln € N form a complex Ko(A) called the generalized

Koszul complex of A. A

*

To see that this is indeed a complex, we will first make sense of the action t4 on A®(A})

and then show that t3 = 0, from which it will follow that 9 squares to zero.

Proof. Let {vg,...,v,} be a basis of V, so that t4 = > v; ® vf. The action of v} on an
element f € (A!)* is defined as the map v} - f : A\ | — k given by (v} - f)(z) := f(viz),
where the product v}z is the multiplication in A'. Thus, t4- (e ® f) = > v;a ® (v} - f) for
any a® f € A® (A))*.

By Proposition 2.2.3(d’), we have Q = Q++ = (A4})*. So, by Propositions 2.2.3(a’) and

2.2.3(c'), it follows that A, ® A, = Hom((4})*, Ay) = Hom(Q, A,). Thus, we may identify

the multiplication map (4; ® A}) ® (A; ® A}) — Ay ® A, with the map

¢ :Hom(V @ V.,V ®V) — Hom(Q, A2)

sending an element ¢ : V@V — V®V to the composition Q — VRV —— VRV —— A,,
where € : A; ® Ay — A, is multiplication. Under this identification the element ¢4 ® t4

corresponds to the identity idy gy and the assignment t4 ® 14 +— ti corresponds to idy gy —

14



®(idygy) = 0, implying t% = 0. O

Corollary 2.3.6 (see Chapter 2, Corollary 3.2 of [PP05]). A K-algebra A is Koszul if and only
if Ko(A) = Kk — 0 is a free resolution of the left A-module K, where o : A® (AL)* = A — K

15 the natural projection. A

Remark 2.3.7. The action of v} on (A)* in the proof of Proposition-Definition 2.3.5 is an
example of the action of a k-algebra A on its dual A*: fora € Aand f € A*, a-f: A—Kk
is defined by (a - f)(z) = f(za) and f-a: A — Kis defined by (f - a)(z) = f(ax).

Note that when A is commutative, these actions can be used interchangeably. A

2.4 Hochschild cohomology of Koszul algebras

We now turn our attention to the Hochschild cohomology of Koszul algebras. For a
quadratic k-algebra A, we describe a lift of K,(A) to a complex of left A°-modules K. (A)
which forms a free A°-resolution of A when A is Koszul — thus, by Proposition 2.1.5,
providing us with an alternative route to computing the Hochschild cohomology of Koszul
algebras. We end this section with the main result of the chapter, Proposition-Definition

2.4.6, which will allow us to compute HH®(sGor(V)).

Proposition-Definition 2.4.1 ([dB94, Section 3|). Let A = T(V)/(Q) be a quadratic K-

algebra, let E = A', and let {vo,..., v} be a basis of V. Forn € N, let %n(A) =A®

15



(E")*® A and define maps dyi1,d), 1, dh AR (E")* Q@A — A® (E")* ® A by

da(t0foy) =(@efoy)- (Zm@v?@l) = 20® fuf @y,
=0 1=0

di 1 (z® fQy) = (Zl@v;‘@vz) (r® fRy) =Zx®v;‘f®viy,
i=0 1=0
and
ny1 = d;ﬁ-l + <_1)n+1d2+1-

Then (d')? =0, (d")* = 0 and d'd" = d"d', implying d> = 0, so (%.(A),d) is a complex of

free left A°-modules. A

Proposition 2.4.2 (|dB94, Proposition 3.1]). If A is a Koszul K-algebra, then ﬁ.(A) SN

A — 0 is a free A®-resolution of A, where i : [A(:O(A) = AQK®RA =X A® A — A is the

multiplication map. A
As an immediate corollary of Propositions 2.1.5 and 2.4.2, we have
Corollary 2.4.3. HH"(A) = H”(HomAe(}?.(A), A)) for alln € N. A

In order to prove Proposition-Definition 2.4.6, we will need the following propositions.

Proposition 2.4.4 (Base change). Let R and S be K-algebras with a K-algebra map R — S,

16



let M be a left R-module and let N be a left S-module. Then

I‘IOHlR(]w7 N) = HOIIls(S QR M, N)

as K-vector spaces via the maps f — f', where f'(s ® x) 1= sf(x); and ¢ <= g, where

g(x):=g(1®). A

The next proposition follows from Proposition 2.4.4 and the isomorphism from Remark

2.1.2.

Proposition 2.4.5. Let V be a K-vector space. Then Hom(V, A) = Homy (AR V ® A, A)
as K-vector spaces via the maps f — f', where f'(a®@ v® d') .= af(v)d’; and ¢’ <= g, where

g =g(level). A

We are now ready to state the main result of this chapter, originally due to Buchweitz.

This result is also a corollary of a more general theorem of Negron [Negl7].

Proposition-Definition 2.4.6 (|[Buc03], [Negl7|). Let A = T(V)/{(Q) be a commutative
Koszul algebra over K; let {xq,...,xn} be a basis for V; let E = A'; and let y; = a7,
so that {yo,...,ym} is a basis of V*. The sequence of free A-modules A @ E™ with maps

o A® E" — A® E™ defined by

Iawe) = Za%‘ ® [y;, €]

J=0

17



~

forn € N form a complex (AQE®, Q) isomorphic to (K.(A)v, d"), where ()" = Hom e (—, A)
and [y;, €] is the graded Lie bracket given by [y;, e] = yje — (—1)"ey;.

It therefore follows that

HH"(A) = H"(A® AY)

for all n € N. A

~

Proof. Letn € Nand let {ep, ..., e,} beak-basis for E”. Let a,, : AQE™ — Hom e (K,,(A), A)

be the composition of the isomorphisms

A®E" = A® (E")™ — Hom((E")", A) — Homu (A ® (E")* @ A, A)

described in Propositions 2.4.5 and 2.2.3, mapping a®e € AQE™ to Hom e (AR (E")*®A, A)

via

a®e — a®e™ — (f— fle)a) = (d ®@g®d — d(g(e)a)d”),

so that

an(a®e) = pue, where . : AR (E")* @A —= A, @u.ld @g®d"):=dgle)ad"

Analogously, let 8, = o' : Hom([?n(A), A) — A® E™ be the composition of the respective
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inverse isomorphisms, mapping 1) € Home(A ® (E™)* @ A, A) to A ® E™ via

oo (feelefel) =) Ylegel)ee” » Y vleegel)®e,
=0 1=0
so that
BaW) =Y v(l@ef@1) @ e
=0

Let {fo,..., fy} be a basis for E"™ and consider the diagram

A® E" o y A® Entl

J/Oén ﬁn“rl)lx

Hom s (A ® (E")* @ A, A) @ Homue(A® (Epyp)* ® A, A)

Fora®ee A® E™,
(@) oan)(a®e) = (d)n(¢ae) = (1) paednia,

SO

(Bus10 (dv)n oay)(a®e) =

—Z (;an n+1(1®f ®1>®fz

q

=Y (D), (Z%@f Y @1+ (- 1)"“1®yj-fi*®rcj>®f¢

=0
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Q

1)t <Z z;fi(eyj)a + (—1)"+1fi*(yje)aa:j> ® fi (by Remark 2.3.7)

q m
( xjafz* yje + ( 1)n+leyj)> ® fi

q m
:szj z* y]? ®fl
Jj=

q

S

fi(lyj e D®fi) (2.4.0.1)

=0

By Corollary 2.2.4, Y f* ® f; is independent of choice of basis for E, ;. Hence, for each
j€10,...,m}, sois > f([y;,e]) ® fi . In particular, we can choose { fo,..., fm} to be a

basis extending {[y;, €]}, so that

q

S il e) © fi = 18 [y, el

i=0
Then (2.4.0.1) implies

(Burr0(d)noam)(a®e) = Z rja@ly;e] =0"(a@e)

and thus 9 = 3(d")a. Composing 9 with itself yields 9> = 3(d")?*a = 0 because (d")? = 0,
0o (A® E*,0) is a complex; and composing « with 0 yields ad = af(dY)a = (d¥)a, so « is

a chain map. O
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Chapter 3

The Short Gorenstein Ring Case

In Proposition-Definition 2.4.6 of Chapter 2 we found that the Hochschild cohomology
of a commutative Koszul k-algebra A can be computed as the homology of the complex
(A® A')9). In this chapter we show that the short Gorenstein rings sGor(N) for N > 2 are
Koszul algebras and further describe the structure of sGor(N) ® sGor(N)'. First, in Section
3.1 we give an explicit k-vector space decomposition of short Gorenstein rings (Proposition
3.1.2). Next, in Section 3.2 we show that these short Gorenstein rings are Koszul (Proposition
3.2.2) and compute their quadratic duals (Proposition 3.2.3). Finally, in Section 3.3 we
exhibit a decomposition of the Hochschild cohomology groups of short Gorenstein rings

!

(Proposition 3.3.5) using a decomposition of the complex sGor(N) ® sGor(V)

3.1 A decomposition of sGor(NV)

The proofs of both Propositions 3.2.2 and 3.2.3 rely on the K-vector space decomposition
of sGor(N) of Proposition 3.1.2. We prove this below after restating the definition of our

family of short Gorenstein rings from Chapter 1.
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Definition 3.1.1. For N > 2, let

KXo, ..., Xn]
Gor(N) = :
o) = X XT X[ =0, N £ )
And for i =0,..., N, let ; be the image of X; in sGor(N). A

Proposition 3.1.2. Let N > 2. Then sGor(N) has a K-vector space decomposition

sGor(N) = k& k{zg,...,zn} B k{s}

where s = x? for any i € {0,...,N}. In particular, it follows that sGor(N) is Gorenstein

since s generates the socle; and we have (xg, ..., zy)? = k{s} and (zo,...,zn)> = 0. A

Proof. Let N > 2 and let

I=(X;X;, X? = X7 |i,j=0,....N,i#j).

Since X;X; and X? — X7 are homogeneous of degree 2, I is homogeneous with Iy = 0 and

I; = 0. Thus,

SGOI"(N)O = k[X(), ce aXN]O = k, SGOI"(N)l = k[Xo, ce aXN]l = k{l’o, . ,J,’N}.

By definition, sGor(NN), is generated by the monomials z;z; for i, j € {0,...,N}. The
relations generating I imply that x;x; = 0 for i # j and that 2? = sz for all ¢,5. Thus,
setting s = x3, sGor(N), = k{s}.
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Finally, we claim that sGor(N); = 0 for all £ > 3. To see this, let u € K[Xj, ..., Xn] be
a monomial with |u| > 3. It is enough to show that w = 0. If u = X;X,v for some ¢ # j
and some monomial v, then & = z;2,0 = 0-7 = 0. Otherwise, u = X" for some 7 and m.

Choose j € {0,..., N} such that j # i. Then z? = 22, so

7
2 e m_3 . . P m_3 . . R
P =T L% =X 0-z; =0.

The above argument implies (g, ..., zy)? = k{s} and (zo,...,zx5)> = 0. O

Remark 3.1.3. Note that {zo,...,zy} C sGor(N) is linearly independent, so in fact this

set serves as a K-basis of sGor(N);. A

As a corollary of Proposition 3.1.2, we have that these rings are local.

Corollary 3.1.4. For N > 2, sGor(N) is a local ring with mazimal ideal (xo,...,Tn). A

Proof. Let m C sGor(N) be a maximal ideal. By Proposition 3.1.2, (xo,...,zx)* = 0. Since

m is prime, the containment (z,...,7zx)* = {0} C m implies (z,...,zx) € m. And since
(xo,...,zyN) is maximal, (zg,...,xy) = m, 80 (Zo,...,zy) is the unique maximal ideal of
sGor (V). O
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3.2 Short Gorenstein rings are Koszul

Our hopes of computing a lower bound on the k-dimensions of the Hochschild cohomology
of our Gorenstein k-algebras sGor(N) lie in being able to use the complex A ® A' described
in Proposition-Definition 2.4.6 for our computations. For this we need to establish that these
algebras are Koszul. In this section we show that these short Gorenstein rings are in fact
Koszul as local rings (defined below) and recall the result that this is equivalent to these
rings being Koszul algebras.

The original definition of a Koszul algebra is due to Priddy [Pri70]. In [HI05], Herzog and
Iyengar define the analogous notion of a Koszul module—and, in turn, of a Koszul ring—as
follows. Let R be a commutative local noetherian ring with maximal ideal m and residue
field k, let M be an R-module, and let F' be a minimal free resolution of M. For every j > 0,

define

F; m/ ' F; m! Fy m! M
— S ———— - — — — 0,

lin;(F) =0 0F, miHTE, mit Ry mitM

with differentials induced by those of F. Then M is a Koszul module if lin;(F') is acyclic for
all 7 > 0. And R is a Koszul ring if the R-module k is Koszul. By [HI05, Remark 1.10], a

local ring R is a Koszul ring if and only if its associated graded algebra
gt (R) = Pm'/m*!
=0

(where m" = R) is a Koszul algebra.
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Let N > 2 and let my = (zo,...,2x) C sGor(N). By Proposition 3.1.2, sGor(N) is local
with maximal ideal my, and since sGor(V) is graded, we have gr, (sGor(N)) = sGor(N).
That is, explicitly, my = k{zo,...,zx} ® k{s}, m% = k{s}, and m{; = 0 for i > 3, so we

have k-algebra isomorphisms

8y, (8Gor(N)) Z k@ k{zo, ..., o5} @ k{s} = sGor(N).

Thus, sGor(N) is a Koszul algebra if and only if it is also a Koszul ring.

We will employ the following theorem, due to Avramov-Iyengar-Jega, to show that the
short Gorenstein rings sGor(/N) are indeed Koszul rings and therefore also Koszul k-algebras
(Proposition 3.2.2). Although the full version of the theorem provides several equivalent
conditions for a local ring to be a Koszul ring, the version of the theorem presented below

involves only the equivalence most relevant to our discussion.

Theorem 3.2.1 (|Alc05, Theorem 4.1|). Let (R,m,k) be a local ring with m®* = 0 and

rank, m? = 1. Then R is a Koszul ring if and only if rank,(0 : m) < rank,(m/m?). A

Proposition 3.2.2. For N > 2, sGor(N) is a Koszul K-algebra. A

Proof. Let N > 2 and let my = (xo,...,xy). By the above discussion, it is enough to show
that sGor(V) is a Koszul local ring in the sense of Herzog and Iyengar.

By Proposition 3.1.2,

k{zo,...,zn} ® Kk{s}
k{s}

mN/m?V: :k{xg,...,xN},

25



so rankg(m/m?) = N + 1. And by [Alc05, Remark 4.3], (0 : my) = m% = k{s}, so
ranke(0 : my) = 1. Since N > 2, rank;(0 : m) < rank;(m/m?), so Theorem 3.2.1 implies

that sGor(N) is a Koszul ring. O

We end this section with a computation of the quadratic dual sGor(N)'. Recall from
Definition 2.3.1 that the quadratic dual of a quadratic algebra T(V)/(Q) is the algebra
T(V*)/{Q1), where Q+ is the perpendicular subspace of @ with respect to the natural

pairing (Definition 2.2.6).

Proposition 3.2.3. Let N > 2. Then

K({(Xo)", -, (Xn)")
(X5)?+---+(X3)%)

sGor(N)' =

Proof. To make the proof easier to read, set m = N + 1.

Set V' = k{Xy,..., Xy} and set

so that sGor(N) = T(V)/(Q). Note that the union of the sets
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and

X={X}-Xx|k=0,...,N -1}

forms a K-basis of ) and hence

dimg@Q = | X'|+ |X| = (m* —m)+ (m—1) =m(m —1) + (m — 1) =m? — 1.

So by Proposition 2.2.7,

dimg Q* = dim V @ V — dime Q@ = m? — (m? — 1) = 1.

To prove the theorem, it is enough to show that k{(X)? +--- + (X%)?} = Q*. By the
above, this amounts to showing that (X§)? + --- 4+ (X})? € Q*, as it is clearly a nonzero

element.

Let r = (X3)*+ -+ + (X3)? Forall X;X; € X and all k =0,..., N,

(X0 (XiX)) = Ya(Xi)Ye(X;) = 0

since i # 7, so one of ¢ or j must be different from k. Thus, r(X;X;) = 0 for all X;X; € X'.
We also have that 7(X?) =1fori=0,...,N,sor(X} — X%)=0forall k=0,...,N — 1.

Therefore, r € Q*, finishing the proof. O
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3.3 A decomposition of HH*(sGor(V))

Having established that the short Gorenstein rings sGor(N) are Koszul k-algebras, we
now know that the complex sGor(N)®sGor(N)' from Proposition-Definition 2.4.6 computes
HH*(sGor(N)). In this section we further investigate the structure of this complex. In par-
ticular, we want to better understand the behavior of 9" restricted to sGor(V);® (sGor(N)')"
for i = 0,1,2. This leads to a decomposition of sGor(N) ® sGor(N)' and therefore a decom-
position of HH"(sGor(N)) for all n.

First, however, we establish some conventions.

Convention 3.3.1. In this section, fix some N > 2 and let A = sGor(N). Fori=0,..., N,
let Y; = X and let

K(Yo,...,Yy)

E=A= .
(Vg + -+ Y5

Let n € N. For any i € {0,1,2} and a ® u € A; ® E™, we have

by Proposition-Definition 2.4.6. Then az; € A;11 and [y;,u] € E™ imply that 0"(a ® u) €

Ai—l—l ® En+1. ThUS,

(A @E") CA@E™, 0(AI®E") CA®E"™, 0(A®E") =0,
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where the last equality holds since A3 = 0. Furthermore, by Proposition 3.1.2,

AQE"= (A ®E") & (4 @ E") @ (Ao E"),

so we have the following observation.

Observation 3.3.2. For n > 0, the map 0" : A® E" — A® E""! decomposes as the sum

of the maps 0" |s,9pn: A; @ E™ — Ay @ BT i =0,1,2. A

To give a precise description of the decomposition of A® E which follows from Observation

3.3.2, we define the following complexes of k-spaces.

Definition 3.3.3. For n > 0, let (C(,), §(»)) be the complex defined by

Ay@ E™ Y, m=n-—1;
A ® E", m=n;

Ay @ E™L m=n+1;

0, otherwise,
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and d(,) the differential induced by 0 on this subcomplex; that is,

ot | Ag@En-1, m=mn—1;

m " ’A1®E"7 m=mn,
(n) —
I | gygpntr, m=n+1;
0, otherwise,
\
We call €, the nth strand of A® E. A

Thus, AQ £ = @nzo C(n), as shown in Diagram 3.3.1. Since homology commutes with

direct sums, for n > 0, we have

H*(A® E) = H"(Cny1)) ® H"(Ciny)) & H" (Clry)- (3.3.0.1)

Before stating this as a result, we introduce some notation that will simplify the rest of

our discussion.

Definition 3.3.4. For n > 0, let
- HH{)(A) = H"(C(nt1)),
. HH&)(A) = H"(C‘f(n)), and

- HH{)(A) = H"(C(n-n))- A

Thus, by Proposition-Definition 2.4.6 and Equation 3.3.0.1, we have
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Proposition 3.3.5. For n > 0, HH"(A) decomposes as

HH"(A) = HH}, (A) & HH, (A) & HH, (A).
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AR E = i S A@E P s AEr — P L AQEM ——

& (4>) [}
G(,L_Q) = e — AQ ® En—l 0 O
® @D &®
8z
Cn1) = e ——— Ay @ B A, ® E" 0
> ® 2
p W O .
Com = e Ay ® B AMQE — 0 Ay@ B
@ (&) 5P
6’71
Clnyn) = 0 Ag@ Er — ) s A @B — 5 .
® ) )
Clnta) = 0 0 A @ Bl ——— ...
(S (43} ®

Diagram 3.3.1: Decomposition of A ® E
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Chapter 4

Grobner-Shirshov Basis Theory

In Chapter 3 we showed that the short Gorenstein rings

K[Xo, ..., Xn]
(X, X;, X2~ X2[4,j=0,...,N,i #j)

sGor(N) =

are Koszul k-algebras (Proposition 3.2.2) and, as such, their Hochschild cohomology can
be computed using the complex (sGor(N) @ sGor(N)',d) (see Proposition-Definition 2.4.6),
where

k<<X0)*7 Co (XN)*>
(X5)? + -+ (X3)?)

sGor(N)' =

(Proposition 3.2.3).

In order to actually perform any computations, it is imperative to understand the k-
vector space structure of sGor(N) ® (sGor(N)')" for n > 0. We have already made progress
on this front by showing that sGor(/N) decomposes as sGor(N) = k@ k{zo,...,zn} D k{s},
where s generates the socle of sGor(N) (Proposition 3.1.2). In this chapter we prove that
sGor(N)' has a k-basis consisting of all noncommutative monomials which are not divisible
by (X¢)? nor by X (X7)? (Proposition 4.3.3).

The proof of this result relies on the theory of Grobner-Shirshov (GS) bases, which we
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recall in Section 4.2. This theory will enable us to affirmatively answer the more general
question, "Given an ideal I of the free associative algebra K(Y') on a finite set Y, can we find
a K-vector space basis for k(Y)/I7"

The contents of this chapter, except for Propositions 4.3.2 through 4.3.3, can be found

in, for example, |Brel4], [Ber78], and [BMPZ92].

4.1 Monomial orders

In order to proceed with our discussion of GS bases we will need a notion of a well-order

on the monomials of free associative algebra that respects multiplication, called a monomial

order (Definition 4.1.4).

Convention 4.1.1. For the rest of this chapter, let Y be a finite set. A

We start by defining some terminology for the set of monomials on Y and its multiplica-

tive structure.

Definition 4.1.2. The free monoid on Y, denoted by Mon(Y), is the set of all words (or
monomials) y1ys - - - Ym (y; € Y) with an associative binary operation given by concatenation
and an identity element 1 € Mon(Y'), called the empty word.

A nonempty word u € Mon(Y) is a subword (or factor or divisor) of w € Mon(Y) if
w = vuv’ for some v,v" € Mon(Y'). In this case, we say that w is divisible by u or that u
divides w. If u # w, then u is a proper subword of w.

The degree of a nonempty word w = y; « - -y, € Mon(Y') is m and the degree of 1 is 0.
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Denote by deg(w) the degree of the word w € Mon(Y). A

Remark 4.1.3. In this context, the free associative algebra on Y, denoted by k(Y), is
the k-vector space on the basis Mon(Y') with multiplication given by linearly extending the

monoid operation on Mon(Y'). A

Definition 4.1.4. A well-ordering < on Mon(Y") is a monomial ordering if, for all elements

w,w u,v € Mon(Y), w < w' implies w < uwv < vw'v. A

Our first example is a familiar one.

Example 4.1.5. Let Y = {y}. As a set, Mon(Y') = {y" | n € N}, and the usual notion of

degree defines a monomial ordering on Mon(Y'): y* < ¢ if and only if 7 < j. A

We will use the following ordering in our computation of a GS basis for (r).

Definition 4.1.6. Given a total order < on Y, the degree lexicographical (deglex) order <41
on Mon(Y) is defined inductively on any w,w’" € Mon(Y') as w <4; w' if and only if

(i) either deg(w) < deg(w’), or

(il) deg(w) = deg(w’) and w = uzv, W' = uz'v" with u,v,v" € Mon(Y), 2,2/ € Y, and

z =<7 A

Proposition 4.1.7. Let (Y, <) be well-ordered. The deglex order on Mon(Y') extending <

15 a monomial ordering. A
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To get a better feel for the definition, we take a look at an example of a deglex order

extending a total order on a set of three elements.

Example 4.1.8. Let Y = {yo,v1,y2} with total order y» < y; < yo and consider the
monomials w = y1Ya¥ato, W = YiYiYoy2, W' = YoyoYo, € Mon(Y). Then deg(w) = 4,
deg(w') = 4, and deg(w”) = 3, so w” <4 w and w” <4 w' by Definition 4.1.6(i). Also, with
U =Y, V= 1YaYo, and v’ = yoys, we have w = uysv and w’ = uy,v" with ys < y1, so w <4 W’

by Definition 4.1.6(ii). A

Assume Y = {y}. Writing a polynomial f € K[y] as a linear combination of monomials
in Mon({y}), we typically define the degree of f to be the power of the maximal (or leading)
monomial, denoted by ]?, in this presentation. It is with respect to this degree-induced order
that we have a division algorithm for polynomials: given f, g € K[y], the algorithm produces
two more polynomials a and b such that ¢ = af + b with either b = 0 or deg(b) < deg(f);
equivalently, such that b = 0 or b < fwith respect to the monomial ordering from Example
4.1.5. By reframing things in terms of a given monomial ordering, one can generalize the
division algorithm to a free associative algebra on more than one element (Algorithm 4.2.8).

This is an indispensable tool in the construction of a GS basis.

Convention 4.1.9. For the rest of this chapter let < be a monomial order on Mon(Y). A

Definition 4.1.10. For [ = agug + - - - + amuy, € K(Y) with a; € K* and w; € Mon(Y'), the

support supp(f) of f is the set {uo, ..., u,} and the leading monomial fof f is the maximal
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element of supp(f) with respect to <.

The leading coefficient of f is the coefficient of fin the monomial presentation of f. We
call f monic if the leading coefficient of f is 1. A set S C k(Y) not containing 1 is monic if
every element of S is monic.

For a set S C k(Y'), define S to be the set of all leading monomials of the polynomials

in S. A

4.2 Grobner-Shirshov bases

Given a finitely generated ideal I C k(Y'), one route to describing the K-vector space
structure of K(Y') /I is to find a subspace C' C k(Y") such that k(Y) =C & I, s0 C = K(Y)/I
as K-vector spaces. If I is generated by a set S C Mon(Y') of monomials, then the set of all
monomials © € Mon(Y") such that w is divisible by some v € S forms a k-basis of I. Since
Mon(Y) is a k-basis of k(Y') extending S, we can take C' to be the subspace of kK(Y') with
basis the set of all monomials not divisible by any of the monomials of S.

For an arbitrary ideal I, we have the following theorem.

Theorem 4.2.1 (see [Brel4, Proposition 4.3|). If I is an ideal of K(Y'), then the subspace
c(I) of K(Y) with basis all monomials of Mon(Y) not in I satisfies K(Y) = I & c(I). In
particular, every polynomial f € K(Y') has a unique representation of the form f = g+ c for

some g € I and some ¢ € c(I). A

We can rephrase this theorem in terms of a Grébner-Shirshov basis S for I and monomials
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wrreducible with respect to S, both defined below.

Definition 4.2.2. A Grobner-Shirshov (GS) basis is a set S of generators for I with the

property that for every nonzero f € I there is some g € S such that fis divisible by g. A

Definition 4.2.3. A monomial w € Mon(Y) is irreducible with respect to a set S C k(Y")
if it is not divisible by any element of S. A polynomial f € k(Y') is irreducible with respect
to S if every monomial of supp(f) is irreducible with respect to S. If this does not hold, f
is reducible with respect to S.

Denote by By, the set of all monomials in Mon(Y') irreducible with respect to S and

denote by Irr(.S) the subspace of k(Y') with basis By,. A

In this context, Theorem 4.2.1 can be stated as follows.

Theorem 4.2.4. If I is an ideal of K{Y') and S is a Grobner-Shirshov basis for I, then we

have K(Y') = I & Irr(S). A

The following corollary will be our main tool in studying the K-vector space structure of

sGor(N)".

Corollary 4.2.5. The K-vector space K(Y)/I has a K-basis consisting of all monomials in

Mon(Y") irreducible with respect to S. A

Our reason for formulating Theorem 4.2.4 and Corollary 4.2.5 in terms of GS bases
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is because GS bases carry all the information necessary to describe bases for quotients of
free associative algebras while having the advantage of being reasonably straightforward to
construct in many cases.

The construction of a GS basis requires the division algorithm for free associative algebras

(Algorithm 4.2.8); which, in turn, requires the following notion of reduction of a polynomial.

Definition 4.2.6. Let S C K(Y). For elements g € S and u,v € Mon(Y), the reduction
p(u, g,v) : K(Y) = Kk(Y') is the K-linear map which sends ugv to ugv —ugv and is the identity
on all other monomials in Mon(Y’). A reduction of a polynomial f € k(Y') with respect to

S is p(u, g,v) for some g € S and u,v € Mon(Y') such that ugv € supp(f). A

Let S C k(Y), let w € supp(f), let a € kK™ be the coefficient of w in the presentation
of f with respect to supp(f), and assume there exists an element g € S such that w = ugv
for some w,v € Mon(Y’). Then p(u, g,v)(f) = f — augv. Since g is the largest monomial of
supp(g), p(u, g,v)(f) amounts to replacing w in f with terms that are strictly less than w.
It is in these sense that p(u, g,v)(f) is a “reduction” of f with respect to S.

If S C k(Y) is finite, then repeated reductions of a polynomial f € k(Y') with respect
to S eventually result in reduction to 0 or to a nonzero polynomial that is irreducible with

respect to S (Algorithm 4.2.8). The following is an example of the latter.

Example 4.2.7. Let Y = {x,y, z}; let < be the deglex order on K(Y') extending z < y < x;
let f=a3+2%, g=2>+y*+2%2 € k(Y); and let S = {g}. We consider a sequence of

reductions of f with respect to S. First, g = 2%, so g = 2 € supp(f). Thus, p(z,g,1) is a
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reduction of f with respect to S and we have

p(z, g, 1)(f) = [ —zg = (2 + 2%y) — (2 + a2y’ + 22°) = 2%y — xy® — x2°.

Similarly, gy = 2%y € supp(p(z, g,1)(f)) and

p(1,9,y) 0 p(z, g, 1)(f) = (2°y — zy® — 22°) — (2Py + y* + 2%y) = —ay® — x2® — ¢ — 2Py,

which is irreducible with respect to S. A

We describe this process more generally below.

Algorithm 4.2.8 (Division algorithm). Let f € k(Y) and let S C K(Y") be a finite set of
monic polynomials. Set fo = f and py = idyy). For ¢ > 0,
e if f; is reducible respect to S, let w € supp(f;) be the maximal monomial such that
w = ugv for some g € S and u,v € Mon(Y). Set pir1 = p(u,g,v) o p; and set
firr = p(u, g,v)(fi) = pisa(f)-

e Otherwise, output p; and f;. A

Proposition 4.2.9 (see [Brel4, Lemma 4.8]). Let f € K(Y') and let S C K(Y') be a finite
set of monic polynomials. Then Algorithm 4.2.8 applied to f and S terminates after finitely
many steps. In other words, there is some n € N such that after n steps Algorithm /.2.8
outputs a composition p, of a sequence of reductions and a polynomial f, € Irr(S) with
fo = pu(f). A
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Proof. For i > 0, if u; is the maximal element of supp(f;) divisible by some monomial in S ,
we have -+ < u; < -+ < up < up. Since Mon(Y') is well-ordered with respect to <, this

chain must be finite, so the algorithm must terminate. O]

Definition 4.2.10. Call an output p of the division algorithm with input f € k(Y’) and
S C k(Y') a terminal sequence of f. The polynomial p(f) is an rreducible form of f (with

respect to S). A

Irreducible forms are not unique; they depend on choices made in each step of the division

algorithm, as shown in the next example.

Example 4.2.11. The polynomial p(1,g,y) o p(z,g,1)(f) = —xy* — 22% — y* — 2%y from
Example 4.2.7 is an irreducible form of f = z* + zy, which resulted from factoring the

monomial 2% € supp(f) as xg. If we instead choose to factor z° as gz, we have the reduction

p(1,g,2)(f) = (2* + 2%y) — (2° + y’x + 2°x) = 2%y — y’u — 2*u.

Then gy = 2%y € supp(p(1, g,2)(f) ), so

p(1,g.y)op(l,g.2)(f) = (%y — v’z — 2°z) — (a®y + y° + 2°y)

= —y’x — o —y’ - 2y,

which is irreducible with respect to S. Thus, p(1,g,y) o p(1,g,z)(f) is another irreducible
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form of f, different from p(1, g,y) o p(x, g, 1)(f). A

Fortunately, GS bases resolve this issue (Theorem 4.2.13): all terminal sequences of

reductions of a given polynomial f with respect to a GS basis S produce the same irreducible

form of f, defined below.

Definition 4.2.12. In the setting of Theorem 4.2.1, the normal form nf;(f) of a polynomial

f with unique representation f = g + ¢ is the element ¢ € c(I). A

Theorem 4.2.13 (see [Brel4, Theorem 5.3|). If S is a GS basis for an ideal I, then every

terminal sequence of f with respect to S reduces f to nf;(f). A

Example 4.2.14. Continuing in the setting of Examples 4.2.7 and 4.2.11, let us instead
consider terminal sequences of f with respect to the set S’ = SU{h = zy*+x2? —y*z —2°z}.

2

Then p(1,g,y) o p(x,g,1)(f) = —xy* — x2*> — y> — 2y is no longer irreducible with respect

to S’ since h = xy?, so we have the reduction

p(1,h,1) 0 p(1,9,y) 0 p(x, g, 1)(f) = (—ay® — 22 —y* = 2%y) + (xy® + 22° — y’w — 2*x)

= -y’ =2y —yir — 2,

which is the same irreducible form of f from Example 4.2.7 and, by Theorem 4.2.13, the

same as nf g (f). A
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To actually construct a GS basis, we have to address the culprit responsible for the

non-uniqueness of irreducible forms: ambiguities. They are defined below.

Definition 4.2.15. Let S C K(Y) and let g,h € S such that w = gu = vh for some

u,v,w € Mon(Y) with deg(g) + deg(h) > deg(w). Then (g,h), = gu — vh is called the

(overlap) ambiguity of g and h with respect to w. A

Example 4.2.16. In the setting of our running example, g = 2® = gz for g = 2% +y? + 22,

so S = {g} has the ambiguity

(9,9)es = 29 — gT = l"yQ +x2? - yzx — 22z, A

An important step in constructing a GS basis will be expanding a set of generators S to
include elements which, in some sense, eliminate all ambiguities of S. The next definition

highlights the property of ambiguities we are after.

Definition 4.2.17. Let S C k(Y) and ¢g,h € S. An ambiguity (g, h), with a terminal

sequence p satisfying p((g, h),) = 0 is resolvable with respect to S. A

If an ambiguity (g, h),, is not resolvable with respect to .S, then we resolve it by extending
the set S to include the ambiguity; that is, we define a new set S = S U {(g,h),}. Now,
with respect to S’, we have the reduction p(1, (g, h),, 1) and p(1, (g, h)w, 1)((g,h)w) = 0.

If we restrict our attention to sets S which are self-reduced (Definition 4.2.18), we have
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a characterization of GS bases that makes their construction feasible (Theorem 4.2.19).

Definition 4.2.18. A finite set S C k(Y') is self-reduced if every g € S is irreducible with

respect to S\ {g}. A

Theorem 4.2.19 (see |Brel4d, Theorem 6.5]). Let S be a finite monic self-reduced set of
generators for an ideal I. Then S is a GS basis for I if and only if all ambiguities of S are

resolvable. A

So, by Theorem 4.2.19, we can extend a finite set of generators S of an ideal I C K(Y)
to a GS basis for I by alternating between two processes: one which extends S until it is
self-reduced (Algorithm 4.2.20), and another which resolves all ambiguities of S (Algorithm
4.2.21).

In practice, we will use deglex as our monomial ordering on K(Y’).

Algorithm 4.2.20. Let <= <g4;, and let S be a finite set of generators of an ideal I C K(Y').
Order S as S = {go,...,9n} With go < -+ < g,. For i = 1,...,n, let S; be the union of
S;—1 and an irreducible form of g; with respect to {go,...,gi_1}. If S # S, then S is not

self-reduced, and we repeat the same process, starting with S, in place of S. A

Algorithm 4.2.21. Let S be a finite set of generators of an ideal I C k(Y). Set Sy = S.
For ¢ > 0,

e if S; is not self-reduced, use Algorithm 4.2.20 to construct a self-reduced set of gener-
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ators S for I. Otherwise, set S! = S;.
e For every ambiguity h of S} which is not resolvable, add an irreducible form of h to S..
Let S;1 be the set resulting from all of these additions.
If this process terminates at some finite step n, then by Theorem 4.2.19, S,, is a GS basis

for I. A

4.3 A GS basis of sCor(N)'

Let N > 2. In this section we construct a GS basis of

k({(Xo)", -, (Xn)")
(X5)? + -+ (XR)?)

sCor(N)' =

To improve readability, we let ¥; = X7 for ¢ = 0,..., N. We also introduce the following

definition, which makes it easier to read the indices of monomials in Y;.

Definition 4.3.1. Define the function

Y. : {0, N} = k(Y. V)

n>1

Yo(it, . in) = Yiy -
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We are now ready to prove the following proposition.

Proposition 4.3.2. The set

Sn={Yg -+ Va V(5 + -+ Yy) = (0 +--- +Yy) Yo}

is a Grébner-Shirshov basis for the ideal (Y§ + -+ Y2) of the free K-algebra kK(Y, ..., Yx)
with respect to the monomial order <4 induced by yo > y1 > -+ > yYn. A
Proof. Let r = Y@ +---+ Y3 and let ' = Yor — rYy, so 7 = Y and = YyY?2. By Theorem
4.2.19, it is enough to show that Sy is self-reduced and all ambiguities of §y are resolvable.

To see that Sy is self-reduced, note that the elements of supp(r) are all of degree 2 and
7 is of degree 3, so no element of supp(r) is divisible by 7'; and the elements of supp(r’)
have only one factor of Yy, so no element of supp(r’) is divisible by 7.

The set Sy has two ambiguities: (r, r)yos, since 7Yy = Y3 = Yor; and (r, 1’ )Y02Y12, since

FY2 = Y2Y2 = Yyr'. The ambiguity (r, 7)ys is resolvable because

(rr)ys = (Y24 +Y9) Yo = Yo (Y7 + - + Y3,

which is —1/, so

p(Lr', 1)((r,7)ys) = (r,7)ys + 1" =0.

We will show that the ambiguity (r,r’ )Y02Y12 is also resolvable by using a sequence of
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reductions with respect to Sy that will reduce it to 0. Set hg = (r,7')yzy2. Then

ho=1r-Y? =Yy
= (Y.(0,0,1,1) +--- + Yi(N, N, 1,1)) —
— ((¥4(0,0,1,1) 4+ - -- + Y,(0,0, N, N)) — (Y4(0,1,1,0) + - - - + Y5(0, N, N, 0))
= (Y.(1,1,1,1) 4 - + Ya(N, N, 1,1)) — (¥2(0,0,2,2) + - - - + Y»(0,0, N, N)) +

For i = 2,..., N, we eliminate the monomial 7 - Y;> = Y,(0,0,i,4) from hy by applying
p(1,7,Y?) to p(1,7,Y%,) o---0 p(1,7,Y?)(hg). This reduction is well-defined since for all
J > i none of the Y,(0,0, 7, ) are in supp(r - ¥;?), so they remain unchanged after applying
p(1,7,Y?). Each reduction p(1,7,Y;?) also introduces terms Y,(1,1,4,4) + - -+ Y.(N, N, ,14).

So, in all, we have

p(l,?", Y]\2[> O 0,0(1,7", }/22)(h0) =
= (Y.(1,1,1,1) + -+ Yo(V,N,1,1)) + (Y.(0,1,1,0) +--- + Y,(0, N, N,0)) +

Let hy be the polynomial above. Since 77+ Yy = Y.(0,1,1,0) € supp(hy), we reduce h; further
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by applying p(1,7’,Yy) to obtain

p(1,7,Y0)(h) =

=hy—1 Y, =

= (Yo(1,1,1,1) + -+ Ya(N, N, 1,1)) + (Y2(0,1,1,0) + - -- + Y,(0, N, N,0)) +

+ (Y.(1,1,2,2) + -+ Yi(N,N,2,2)) +---+ (Yi(1,1,N,N)+---+Y,(N,N,N,N)) —

— ((Yi(0,1,1,0) + - - + Y.(0, N, N,0)) — (Yi(1,1,0,0) + - - - + Y.(N, N, 0,0)))

= (Y.(1,1,0,0) +--- + Yi(IV, N,0,0)) + (Ya(1,1,1,1) + - - - + Yiu(N, N, 1, 1)) +

T V(L L2,2) 4 V(NN 2,2)) - + (Va(L LN, N) + - + Yo(N, N, N, N))

Y Y ?

Factoring the expression above yields

p(l,r/’Yb)(hl) =
= YLD+ +Yi(N,N)) - Y (0,0) + (Yi(L,1) 4+ +Yi(N,N)) - Ya(L,1) +
FOULD) 4 YN, N)) - Ya(2,2) 4 (VL 1) 4 1 ViV, N)) - Vo, N)

= (Va(1,1) + -+ + Yo(N, N))(Yi(0,0) + - -- + Yo (N, N))

= (Y24 -+ Y3

Then, for example, the sequence p(Y2,7,1) o---0 p(Y{, 7, 1) applied to p(1,r’, Yy)(hy) results
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in 0, so (r,7’ )YO2Y12 is resolvable, completing the proof. m

The next proposition follows immediately from Corollary 4.2.5 and Proposition 4.3.2.

Proposition 4.3.3. The K-vector space sGor(N)" has a K-basis consisting of all monomials

in K(Yy, ..., Yn) which are not divisible by Y nor by YoY72. A

Definition 4.3.4. Let B(sGor(N)') be the k-basis from Proposition 4.3.3. In particular,
for n > 0, let B((sGor(N)")") be the k-basis of (sGor(N)")" consisting of all monomials of

degree n which are not divisible by Y2 nor by Y,Y7. A
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Chapter 5

Computation of HHfy (A)

Having established all the necessary theory and results in Chapters 2, 3, and 4, we are

now set to begin our computation of the Hochschild cohomology of the short Gorenstein

rings

K[ Xo, ..., Xn]
sGor(N) = — —
(V) (XiX;, X7 = X7 4, =0,...,N,i # j)

for N > 2.

Convention 5.0.1. For the rest of this thesis, fix some N > 2, let A =sGor(N) and let £

be the quadratic dual of A; that is, let

E = SGOI‘(N)! = K(Yo, ..., Yv)

<Y02+~~~_|_y]\2[>7 where V; = X

See Proposition 3.2.3 for the computation of sGor(N)". Let z; and y; be the images of X;

and Y; in sGor(N) and sGor(N)', respectively. A

In Chapter 2 we found that since A is a Koszul algebra, the nth Hochschild cohomology

group HH"(A) is the nth homology group of the complex (A® A', 9), where, for any element
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a®ee A (A",

N

N
da®e) = Zaxj ® [y;, €] = Zaxj ® yje — (—1)"az; ® ey;.
=0 =0

(see Proposition-Definition 2.4.6).

In Chapter 3, we found that HH"(A) decomposes as

HH"(A) = HHf (A) & HHY, (A) ® HHp, (A)

(Proposition 3.3.5), where HH{) (4), HH{})(A), and HH{;)(A) are the homologies in degree n

of the strands C(,+1), C(n), and C,_1), respectively (see Definition 3.3.3 and Diagram 3.3.1).

And in Chapter 4 we found that the set B(FE) consisting of the monomials in vy, .. .

which are not divisible by y2 or yoy? is a k-basis of E (Proposition 4.3.3).

In this chapter we compute HH{;)(A), the homology at Ay ® E™ in the strand

nt1) 8t (i)
Clnt1) = » 0 y Ag@ B — A, @ B L A, @ B2
where
n . an n+1l _ an+l
5(n+1) — a |A0®E”7 5(n+1) — 8 |A1®En+1 .

We show that for n > 1,

HH{) (A) = ker 9, = 0
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by exhibiting a splitting map 7,41 : A1 ® E"™' — Ay ® E™ (Theorem 5.0.6), implying that

6’)’1

(nt1) 18 mjective.

We begin by fixing K-bases of Ay ® E™ and A; ® E".

Definition 5.0.2. Let n > 0. Recall from Proposition 3.1.2 that A has a K-vector space

decomposition

A=k®k{zg,...,zn} DB k{s},

where the element s of degree 2 generates the socle of A. And recall from Definition 4.3.4
that B(E™) is the k-basis of E™ consisting of the monomials in yo, ..., yy of degree n which
are not divisible by y2 or yoy3.

Let B(Ay ® E™) be the k-basis of A9 ® E™ defined by

B(Ay® E") = {1®@u | ue B(E")}

and let B(A; ® E™) be the k-basis of A1 @ E™ defined by

B(AiQE") ={z;®@u|ueBE"), ie{0,...,N}} A

We take some time now to discuss the choices made in our definition of v, (Definition

=

5.0.3). First, yn41 splitting df,,, ;) means 7,41 satisfies 75,4107, (1 ® u) = 1 @ u for all
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l®u e B(Ay® E™), where

Doy (1 @ u) = 20 @ you — (=1)"zo @ uyo + -+ + n @ yvu — (=1)"ry ® uyn

= (10 @ You + -+ xny @ ynu) — (—1)" (20 @ uyo + - -+ + TN @ UYN).

So, to define v,+1, we can fix some index 7, let y,41(z; ® w) = 0 for any j # ¢ and define
Yni1(T; @ w) based on whether w = y;u or w = w'y; or both for some u, v’ € B(E). To deal

with these cases individually, we define two maps

’quﬂa %?H A4 @ BT = Ay ®@ BT,

where L 11 is nonzero on z; ® y;u and 7541 is nonzero on x; ® u'y;, and set

Yot = Yoy + (1)

We choose to work with the index ¢ = 2 in order to avoid complications that arise in the
cases i = 0 and ¢ = 1; namely, for 1 ® u € B(Ay ® E™), the terms xy ® you, r¢ ® uyy, and
x1®@uy; of Ofp, (1®u) may not be elements of B(A; ® E™*1) since you or uy, may be divisible
by y2 and uy; may be divisible by yoy3.

There are several subcases to consider for both 7,11 (22 ®@you) and 7,11 (z2@u'ys). All but
one of these can be addressed by defining 7,11 (zs @ you) = 1@ u or Y11 (T2 @ U'ys) = 1@ u'.
The one exception is the case xo ® yovys for some v € B(F) since it is unclear whether this

term in Ofp (1 ® u) comes from left or right multiplication by zs ® yo. We circumvent this
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issue by considering instead the related elements z; ® yovysy;.

Thus, we have arrived at the following definition.

Definition 5.0.3. Define

757’72

on z; @ w € B(A; ® E?) by

51 @y w)
2 2 ’
7 (7 @ w) =
0,
.
Tl @wy'),
M, @w) =4 1 ~1
2 \ &g Qwy;
0,
\
and define

Y2l

IA1®E2—>A0®E1

if j =2, w = yay, with £ # 2; (a®)
otherwise;
if j =2, w = yuyp with k # 2; (a®)
if j =1, w=yuy; (b)
otherwise;

A1®E2—>A0®E1

Yo =75 + V5.
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For n > 2, define

75,75 A QE" > Ay @ E™E

onz; ®w e B(A; ® E") by

(

1@y, w, if j =2, w = y3vy, for some v € B(F), { # 2;

T (2,0W) = S Lloyy'w), if j =2, w=yyrvy, for some v € B(E), k, # 2;

0, otherwise;
\
)
1 ®wyy?, if j =2, w = yvys for some v € B(E), k # 2;
n llowy "), if j =2, w = yvyws for some v € B(E), k,{ # 2;
1 ®wy* if j =1, w = yovyoy, for some v € B(FE);
0, otherwise;
and define
Yot Al @ E" — Ay @ E"!
by

Vo =5 + (=1)" 5
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By definition, v and 4 map most elements of B(A; ® E™) to 0. To see this, let n > 1

and let y,u, vy; € B(E™) for some monomials u,v and some 4,j € {0,..., N}. Then

T (2 @ yiu) = 0if i # 2 and 4 (25 @ vy;) = 01f j # 2;
e YRz @ yu) = 0 if i # 2;

« iy @vy;) = 01if j #1,2;

e vi(x; @uy;) =0if j =2 and v (z; @ yu) =0 if i = 2.

Thus, we have the following observation.

Observation 5.0.4. Let n > 2 and let 1 ® u € B(A4y ® E"'). Then

%8&;1(1 ® u)

= (o ®@you+ -+ + oy @ynu) — (=1)" Hzo @ uyo + - - + &y D ynu)) +

+ (=) (o @ you + - + oy @ ynu) — (=1)"" (o @ ugo + - - + TN @ ynu))
= Yy (22 @ you) + (=1)" Y (=(=1)"" (21 @ uys + 72 © uyy))

= Y (T2 ® you) + Y1 (1 ® uys + T2 @ uys). A

For n > 3, vf(z; ® uy;) = 0 for most u € B(E™ ). However, we did not include this
in the above discussion because there is a catch: uy; may not be in B(E™™!) since right

multiplication by y; might create a factor of yoy? in uy;. Nevertheless, it turns out that

Proposition 5.0.5. Forn > 3, v%(x; @ uyy) = 0 for all u € B(E™™Y) of the form u = vy,
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with £ # 2. A

Proof. There are two cases to consider:

e u = vygy, for some v € B(E"3), (k,l) # (0,1), ¢ +#2; and

e u = vyoy, for some v € B(E"3).

In the first case, the conditions on k and ¢ ensure that right multiplication by y; does not
create a factor of yoy? in uy,. Thus, uy; = vyryeyr € B(E™). Since £ # 2, vE(z; @ uyy) = 0
by Definition 5.0.3.

In the second case, right multiplication by y; does create a factor of yoy?, which we

rewrite in terms of B(FE); that is,

uyr = vYoY1Y1
N N
= <— Z Yoy;¥; + Z ?/j?/j?m)
j=2 Jj=1

N N
== Doy + Y vy (5.0.0.1)
Jj=2 j=1

Note that v is not of the form vy, for some v € B(FE) since otherwise u = vyoy; = v'ydy1,
implying u is divisible by y2 and contradicting u € B(E™'). Thus, no term of 5.0.0.1 is

divisible by y2 or yoy?, so all terms of 5.0.0.1 are in B(E™). Hence, every term of

N N
T @uyy = — 21’1 @ vyoy;Y; + Z T1 & VY;Y;Yo
i=2 j=1

is in B(A; ® E"), and by Definition 5.0.3, every one of these terms maps to 0 under ~%.

Therefore, v (z1 ® uy,) = 0. O
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After these simplifications of v,,, we are now ready to prove that the map is a splitting

n—1
of (5(n) )

Theorem 5.0.6. For n > 2, the map v, splits 5851. A

Proof. We want to show that %3(761(1 @u) =1®uforal l®@u € B(4y® E"'). By

Observation 5.0.4, it is enough to show that

VE (22 ® you) + V(@1 @ uyr + 22 @ uys) = 1 @ u (5.0.0.2)

for all 1 @ u € B(Ay ® E"'). We prove that 5.0.0.2 holds first in the case n = 2 and then
in the case n > 3. For the rest of our discussion, let 1 ® u € B(Ay @ E"1).

For n =2, u € B(E") = {yo,...,yn}. If u=ys, then by Definition 5.0.3,

72L(952 ® you) = 72L($2 ® Yay2) = 0,
V(T2 ® uys) = V5 (T2 ® yay) = 0,

75(901@”91)=7§(x1®yzy1)=1®y2:1®u,

so 5.0.0.2 holds. If u = y,, for some m # 2, then by Definition 5.0.3, v2(z; ® uy,) =

YE (21 ® ymy1) = 0 and

Ve (22 ® you) = V5 (%2 @ Yoym) = (1 ® yim),

Vi (22 @ uys) = Yo (T2 @ Ymyo) = %(1 ® Ym),
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by (al) and (af?), respectively. Thus, 5.0.0.2 holds.
For n > 3, there are four cases to consider:
(5.0.1) u = yyvy, for some v € B(E™3);
(5.0.2) u = yrvy, for some v € B(E™3), k # 2;
(5.0.3) u = yyvy, for some v € B(E"3), { # 2;
(5.0.4) u = ypvy, for some v € B(E"3), k, L # 2.
By Proposition 5.0.5, v (21 ®uy;) = 0 in Cases (5.0.2), (5.0.3), and (5.0.4). And in Case
(5.0.1), vE(xy @ uyy) = vEH(x1 @ yavayoy1) = 1 @ u by (ef?) of Definition 5.0.3.
The values of v (2o ® you) and 2 (2o ® uys) for Cases (5.0.1) through (5.0.4) are sum-

marized in the tables below and all follow from Definition 5.0.3.

u Ty ® Yol YE (29 @ you)

(5.0.1) Ty @ Y3vaYs 0
(5.0.2) To Q YaYp VYo 0
(5.0.3) @5 ® oy, 1@ yovye = 1@ u by (c*)

(5.0.4) To @ YoYrVYe (1@ ypoye) = 3(1 @ w) by (db)

Uu To @ UYo %]f(@ ® uys)

(5.0.1) @ ®@yvys 0
(5.0.2) 2y @ypoy? 1@ yrvys = 1 ®@u by (cF)
(5.0.3) 22 @ yovyeys 0

(5.04) 29 ® YrvYeY2 %(1 ® YpUYp) = %(1 ® u) by (d?)

59



Thus, the respective values of v (zy ® you), vE(z1 @ uyy), and (22 @ uys) in all cases are

u (X2 @ you) (e @uyr)  y(re @ uys)
(5.0.1) 0 1®u 0

(5.02) 0 0 1®u

(5.0.3) 1®u 0 0

(5.04) F(1®u) 0 s(l®u)

Taking the sum along each row of the above table, we see that 5.0.0.2 holds in all cases. [

As a corollary to Theorem 5.0.6, we have

Corollary 5.0.7. Forn > 1, the map 5&“) is injective and therefore HH{) (A) = 0. A
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Chapter 6

The Exponential Growth of the Hochschild

Cohomology of Short Gorenstein Rings

For the rest of this chapter we fix some N > 3 (avoiding the case N = 2 — see Remark
6.2.10). In this chapter we prove the main result of our thesis, Theorem 6.2.9, which states
that the k-dimensions of the even Hochschild cohomology groups HH"(A) grow exponentially
with n. The proof proceeds as follows.

Recall from Proposition 3.3.5 that HH"(A) decomposes as
HH"(A) = HH{()(A) & HH{; (A) @ HH5) (A4).

In particular, HH{})(A) = H"(C,)), where the complex €, in degree n is

57171 sn
\ n—1 (n) N n (n) \ n+1 \
7 e(n) 7 G(n) 7 e(n) 7
n—1 n— 8"L n
— s Ay ® B! Ag@En—1 A, ® E" la1 08 Ay @ Ertl L.
(see Section 3.3), so
. ker (5?”)
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We show in Theorem 6.2.2 that for n odd,

: n pe)(N —1)%e
dimy HHP}(A) > d;ﬂ) y , (6.0.0.1)
d even 7

where p is the Mobius function (see Definition 6.2.1); and that for n even,

dim HH (4) > )
d|(n+1

pld)(N — 1) (6.0.0.2)
)

n+1

where ¢ is Euler’s totient function (see Definition 6.2.1). Theorem 6.2.9 then follows as a

corollary of this result.

Convention 6.0.1. For the rest of this chapter,
« let T be the tensor algebra on k{Yy,...,Yxn};
« let Mon C T be the set of monomials of T’;
« for n > 0, let Mon"™ C Mon be the set of monomials of T of degree n; and

« let < be the degree-lexicographic order on Mon. A

Proving that 6.0.0.1 and 6.0.0.2 hold relies on the Z, 1 = {0,41) action on T defined
on monomials Y;, ---Y;, € T" ™ by 0,,,1(Y;, -+ Y;,) =Y, -+ Y;, Yi,- We begin in Section 6.1

by lifting &7, to a map Gl Tl Tt ag in the diagram

5n+1

Tn+1 N Tn+1
n+1 +1
l“m l”&)
O)
Al ® B > AQ X Ertl
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where the surjections WE‘SI and Wzl;)rl are defined in Section 6.1. We show that the elements

(o)1
> 0}y (minL0), n+ 1 odd,
i=0
AHO) = for all orbits © C Mon™ "
|0]-1
Z (=)ol 1 (mingO0),  n+1 even.

\ =0

form a K-basis of ker 9"+!. Furthermore, in Section 6.2 we show that a subset L"*! of this

basis generates a subspace K L™™! which maps injectively via 71'?1-’)_1 into HH{,)(A), implying

that

dimy HH,, (4) > [L™].

We complete the proof by showing that for n > 1, |L"| is equal to the right-hand side of

6.0.0.1 when n is odd and the right-hand side of 6.0.0.2 when n is even.

6.1 The kernel in the free setting

We begin this section by defining the lift 9"+! : T7*+1 — T™+! from the introduction of
this chapter and showing that the associated diagram commutes. We will need the following
proposition, which gives us a much simpler description of the differential 0" when restricted
to A1 ® E".

Recall from Proposition 3.1.2 that s € A is the element in the decomposition
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A = kok{rg,...,vn} ®K{s} and that y; = 2 € £ for j = 0,...,N. And recall from

Proposition-Definition 2.4.6 that fora® e € A ® E",
N
"a®e) = Za:z:j ® [y;, €].
=0

Here the bracket [y;, e] is the graded Lie bracket, given by

n

[y, el = yje — (=1)"ey;.

Proposition 6.1.1. Letn > 0. Fora®e € A; ® E™,
Ma®e) =s®[a”, €. A

Proof. Since both sides of the desired equality are K-linear in a, it is enough to show that

fori=0,...,N, 0"(z; ® e) = s ® [y;, e]. Note that z;z; =0 € A whenever j # i, so
N
(@ @e) =Yz ®[y,e] =27 @ [y, e] = s @ [y €],
=0
completing the proof. O

1 n+1

We now use Proposition 6.1.1 to define the lift 9"*! and the maps WZLS and (5" from

the diagram in the introduction of this chapter.
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Convention 6.1.2. In order to simplify notation, for the rest of this section we will change
n

the notation used in the introduction and instead work with 7™, 5”, Ty and o) for

n > 1. A

Definition 6.1.3. Let n > 1. Define the maps 5", 71'?1), and Ty in the diagram

™ o , T
lnﬁ) lﬁm (6.1.0.1)
5ty
A @ Er L y Ay @ B

as follows:

« For u € Mon", write u = Y;v for some i € {0,..., N} and v € Mon" ! and define

() = [Y;, 0] = Yiv — (=1)" oY,

o Let T be the composition of the isomorphism 7™ — A; @ T" ! given by Yju <+ z; Qu
for v € Mon"! and the map 4, ® T"' — A; ® E™ ! induced by the projection
Tt — Tt ()=t = gt

« Let m() be the composition of the isomorphism 7" — Ay ® T given by v <> s ® v for

v € Mon" and the map Ay ® T" — Ay, ® E™ induced by the projection 7" — E™. A

With the definitions above, Diagram 6.1.0.1 commutes, which we verify below.

Proposition 6.1.4. Forn > 1, Diagram 6.1.0.1 commutes. A
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Proof. Since all of the maps involved are K-linear, it is enough to show that the diagram
is commutative on monomials. Let v € Mon", so v = Y;v for some i € {0,..., N} and

v € Mon™!. Then

5?7;—11)71-?1) (}/;U) = 68—;_1) (xz & E)
= s ® [y, 7] (by Proposition 6.1.1)
=s® (y7 — (=1)""'vy;)

= 7y (Yiv — (=1)""'oYj)

(0" (Yiv),

so the diagram commutes. ]

Our task now is to construct the k-basis of ker 0 described in the introduction. First
we recall the definition of the cyclic group Z, action on 7™ and then show that O™ can in

fact be written in terms of this action.

Definition 6.1.5. For n > 1, let 0,, be a generator of Z,, and let 0, act on Y;, -- - Y; € Mon"

by o, Y, ---Y, =Y, ---Y, Y, . Extending this linearly results in an action of Z,, on 1™.

in
We write ¢ in place of o, whenever the degree n is clear from context.

Let Orb™ be the set of all orbits of this action in Mon" and let Orb = (J, ., Orb™. A
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Note that for any monomial u =Y}, ---Y;, € Mon", we can rewrite 5”(u) as

- (_1)n_1)/i2 Y )/i1 =u-— (_1)n_10nu7

n in

so we have the following observation.

Observation 6.1.6. For n > 1, we have

o" =id —(—1)""'o, =id +(~1)"0,. A

Reinterpreting d" in terms of the cyclic group action makes clearer the form of elements
in ker 5”, as we show in the next example.

Recall from Definition 4.3.1 the function Y. : U,50{0,...,N}" — T defined on an
element (iy,...,4,) € {0,...,N}* by Y.(i1,...,1,) =Y;, ---Y; . We introduce this function

merely to improve readability in the rest of our discussion.

Example 6.1.7. Let

O = {Y.(1,1,0), Y4(1,0,1), Y,(0,1,1)} € Orb?,

Oy = {V,(2,2,0,0), Y5(2,0,0,2), Y,(0,0,2,2), Y,(0,2,2,0)} € Orb*,
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and let

AO7) = Yi(1,1,0) + Yi(1,0,1) + Y,(0,1,1),

A(O,) = Y, (2,2,0,0) — Y3(2,0,0,2) + Y;(0,0,2,2) — Y,(0,2,2,0).

Then

0°(A(01)) =

= A(01) + (=1)30A(01)

= (Y,(1,1,0) + Yi(1,0,1) + Y.(0,1,1)) — (6Y,(1,1,0) + 0Y,(1,0,1) + 0V,(0,1, 1))
= (Y,(0,1,1) 4 Yi(1,1,0) + Ya(1,0,1)) — (Ya(1,0,1) + Ya(0,1,1) + Y,(1, 1,0))

=0,

and similarly

0'(\(02)) =

= A03) + (=1)*0A(0y)

= (Y.(2,2,0,0) — Y,(2,0,0,2) + Y,(0,0,2,2) — Y.(0,2,2,0)) +
+ (0Y4(2,2,0,0) — 0Y.(2,0,0,2) + ¢Y.(0,0,2,2) — 0,(0,2,2,0))

= (Y4(2,2,0,0) — Y,(2,0,0,2) + Y.(0,0,2,2) — Y.(0,2,2,0)) +
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+(Y,(2,0,0,2) — Y.(0,0,2,2) + Y,(0,2,2,0) — Y.(2,2,0,0))

=0.

We define elements of this form more generally below.

Definition 6.1.8. Define A" : Orb™ — T™ by

¢ 0]-1
> o' (min 0), n odd,

=0
A"(0) =
|0]-1

Z (=10 (minLO0),  n even.

v =0

We write X in place of A" whenever the degree n is clear from context.

An image A\"(O) of O € Orb" is called an orbit sum.

We can now state the main result of this section.

Theorem 6.1.9. The k-space ker " has basis

_ {A0O) | O € Orb"}, n odd,
B(ker ") :=

{A0O) | O € Orb™, |O] even},  n even.

This theorem will follow from Propositions 6.1.11 and 6.1.12 below.
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For the proof of Proposition 6.1.11 we need the following general observation about
adding together polynomials of T" with disjoint supports. For a definition of the support of

a polynomial, see Definition 4.1.10.

Observation 6.1.10. Let f,g € T™ such that supp f Nsuppg = 0. If f + g = 0, then
f =0 and g = 0; equivalently, if f # 0 or g # 0, then f + g # 0. Indeed, suppose without
loss of generality f # 0, so then f contains a term of the form cu for some nonzero ¢ € k

and © € Mon". Since supp f Nsuppg = 0, the coefficient of u in f + g is still ¢ # 0, so

f+g#0. A

Proposition 6.1.11. There exists a decomposition

ker 0" = @ ker 0" |xo.

OeOrb™

Proof. For every O € Orb™,

kerd"lvo € kO C T"= P kO,

0’eOrb™

SO

Z ker5"|ko = @ ker5”|ko.

OeOrb™ 0eOrb™
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Also, ker 5n|ko C ker 9" for all © € Orb™, so

EB ker5”|ko C kerd".

0eOrb™

Let f € ker 5”, let f = 3 ocomn fo be the unique decomposition of f with respect to

T = Pocomr KO, let O € Orb”, and let

=Y. fo

0e0rb™ —{0'}

Note that supp o(fo) C O for all O € Orb", so 8" = id +(—1)"c implies

supp0"(for) C O, swppd"(f)C  |J o,
0€0rb™ —{}

and so

supp 0" (for) N supp 9" (f') = 0.

Since 0 = 9"(f) = 0"(for) + "(f"), it follows that 0"(fo) = 0 by Observation 6.1.10. In

other words, fo € ker 5”|ko/. Since O was arbitrary, f € @ e ker 5”]ko, and therefore

ker 0" C GB ker5"|ko,

0€Orb™

completing the proof. n
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Proposition 6.1.12. For O € Orb",
« if n is even and |O| is odd, then ker 9"|io = 0;

« if nis odd or if n and |O| are even, then ker 0" |xo has basis {\(O)}.

A
Proof. Let O € Orb”, let d = |0/, and let f € ker 8"|xo C KO. Note that
O = {o'(min0) | i =1,...,d},
so we can write f = Zle a;o'(min;0) for some a; € k and
0=0"(f)
d d
= a;0'(min 0) + (=1)" > ;0" (min 0). (6.1.0.2)
i=1 i=1
Since o™ (min.0) = o(min-0), 6.1.0.2 becomes
d d
Z a;o'(min;0) + (—1)"ago(minZO0) + (—=1)" Zm 10" (min0)
i=1 =2
d
= (a1 + (—1)"aq)o(min 0) + Y (a; + (=1)"a;_1)o" (min-0). (6.1.0.3)
=2

And since distinct monomials are linearly independent, it follows that

a; = (—1)n+1ad; a; = ( 1)n+1a%17 1=2,...,d.
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Inductively, we have

a; = (=)™ gy i=1,....d (6.1.0.4)

In particular,
ag = (—1)4 g, (6.1.0.5)
If n is even and d is odd, then 6.1.0.5 becomes a; = —ay. Since chark = 0, ay = 0; so by

6.1.04,a; =0fori=1,...,d—1. Thus, f =0, and therefore ker 0"|ko 0.
If n is odd or if n and d are even, then 6.1.0.5 becomes ag = aq4. If n is odd, then a; = aq

fori=1,...,d—1by 6.1.0.4, so
d d
f= Zada min Q) = adZU (min-0) = ag A(0).
i=1 i=1

If n and d are even, then a; = (—1)%aqg fori=1,...,d — 1 by 6.1.0.5, so

d
f= Z Yago'(min0) = adz o' (min0) = ag A(O).
=1 =1
In either case, f € kA(O), so ker "|o = KA(O). O

This completes the proof of Theorem 6.1.9.
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6.2 Bounding dimg HH"(A) below

In this section we establish lower bounds on the K-dimensions of HH’(”‘I’)l(A) for n > 1
(Theorem 6.2.2). These bounds, in turn, imply our main result (Theorem 6.2.9). In order

to state these theorems, we must recall two important number-theoretic functions.

Definition 6.2.1. The Mdbius function is the function p : Z* — {—1,0,1} such that for
m € Z*, u(m) is the sum of the primitive mth roots of unity.
Euler’s totient function is the function ¢ : Z* — Z* such that for m € Z*, p(m) is the

number of positive integers ¢ < m such that ¢ and m are relatively prime. A

Theorem 6.2.2. Forn > 1,

(R 1)
2 PR

n even,

cld|n,
d even

dimy HH{}J1(A) >

Z gD(d)(Nn— 1)n/d7 n odd.

\ d|n

Proof. The result will from Lemmas 6.2.6 and 6.2.8 below. O]

Let n > 1. For the proofs of Lemmas 6.2.4 through 6.2.8, recall the maps 5”, Wa), and

() (Definition 6.1.3); and the map v,_1 : A; ® E"! — Ag® E" 2 (Definition 5.0.3); which
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are related by the diagram

" - > T
l’% l“?z)
6’(’1”7*21) R 6?77711)
A0®En72 <_____:y________i Al ®En71 > AQ@E”
n—1
We also require the following definitions.
Definition 6.2.3. For n > 1,
« let Mon be the set of monomials of degree n in the variables Y7,Ys, ..., Yy; that is,

the variables Y; except for Y and Y5;

« let Orb? be the set of orbits O € Orb™ such that O C Mon?;

« and let

{AO) 10 € Orbl},
L" =

n odd;

{MO) | O € Orb}, |0 even}, n even.

Note that

. Wa)(k L™) C ker 58;11) by the commutativity of Diagram 6.1.0.1;

« L™ is linearly independent, being a subset of a k-basis of ker o (see Theorem 6.1.9);

« for n odd, |L"| = |Orb} |; and for n even, |L"| = |[{O € Orb} | |O| even}|.

Recall from Definition 5.0.2 that B(A; ® E™"™1) is the k-basis of A; ® E"~! consisting of

elements of the form x; ® w, where w is a monomial in yo,...,yy of degree n — 1 which is
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not divisible by g nor by yoyi.

Lemma 6.2.4. Forn > 1, KL™ maps injectively under Wa) into ker 58;_11) CAQE™. In
particular, 7}, (L") is a K-basis of w(y(KL") of size [L"|. A
Proof. Let u € Mon! and write u = Y;v, where v is a monomial in the variables Y7, Y3, ... Yy.
In particular, v is not divisible by Y@ nor by YyY?, so v € B(E™!). Thus, my(u) =2, @

is an element of B(A; ® E"'), implying that Mon! maps injectively into B(A; @ E"~1).

Therefore, 7y restricted to k Mon—and hence, restricted to k L"—is injective. H

Lemma 6.2.5. Forn > 1, im (5?{_21) has zero intersection with m(, (K L"). A

Proof. Recall from Theorem 5.0.6 that the map ~,_; splits the map 5&__21). The key fact
to observe from the definition of 7,,_; is that 7,,_; maps every monomial of the form z;, ®
Yip Ui, € B(A1 @ E"1) with 4; € {1,3,..., N} to 0. This applies in particular to every
monomial of 7(})(Mony), implying that y,_17(;)(kMon}) = 0, and thus 173 (KL") = 0.

To see that imé?n_fl) Ny (kL") =0, let f € im(5?n_fl) Nmiy(KL™), so f = (58;21)(9)
for some g € Ay ® E" 2 and v,_1(f) = 0. Then 0 = 7,_1(f) = %_15&’_21)(9) = g, S0

f=0"2(9) =0. 0

Lemma 6.2.6. Forn > 1, we have

dimy HHH(A) > [L7]. A
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Proof. By Lemma 6.2.5, we can write
ker 5&__11) = im 58:_21) Oy (KL™) @ cnt
for some subspace C" ! C A; ® E" . Thus,
HH{ N (A) = kerd ) /im oy 2 = afy (kL") @ C"

(1)

And by Lemma 6.2.4, dim a(}) (K L") = |L"|, completing the proof. O

Our final lemma gives us an explicit formula for |L"|. In order to state the lemma, we

will need the following definition.

Definition 6.2.7. Let d > 1. An orbit O € Orb? is aperiodic if |O] = d.

Let aOrb? be the set of aperiodic orbits O € Orb?. A

Lemma 6.2.8 (see [Reu93, Theorem 7.1 and Corollary 7.3|). Let n > 1. Then

( plo)(V — 1)
2. Ty

if n is even,

cld|n,
d even

IL"| =

Z gp(d)(Nn— D if n s odd.

\ d|n

where p is the Mébius function and ¢ is Euler’s totient function (see Definition 6.2.1). A
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Proof. Note that there exists a partition

{0 € Orb} | 0] even} = | J {0 € Orb? | O] = d}

d|n,
d even

and that for each d | n there is also a bijective correspondence

aOrb? <+ {O € Orb” | |0] = d},

so we have

L' = {0 € Orb} | |0] even}| = > [aOrb{|.

d|n,
d even

For d > 1, aOrb? is the set of aperiodic orbits of size d on the N—1 variables Y7, Y3, ..., Yy,

so by [Reu93, Theorem 7.1],

_ 1)d/c
mwﬂ:ZMﬂﬁl).
cld

Thus, for n even,

c _ 1\d/c
) = 3 Jaomd| = Y MW DT

d
d|n, cld|n,
d even d even

Similarly, Orb is the set of orbits on the N — 1 variables Y, Y3, ..., Yx, so by [Reu93,
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Corollary 7.3],

| Orb? | = Z o(d)(N — 1)n/d‘

n
d|n

Thus, for n odd,

_ 1)n/d

27 = o = 30 POE

n
dn

O
This completes the proof of Theorem 6.2.2.
As a corollary to Theorem 6.2.2, we have the following theorem, our main result.
Theorem 6.2.9. For N > 3 and for all n > 2 even, there is an inequality
dimy HH" (sGor(NV)) > % A

Proof. By the decomposition of HH"(A) = HH{,(A) & HH{})(A) © HH{,)(A) (Proposition

3.3.5) and Theorem 6.2.2, we have

p(d)(N — 1)t+/

dim HH"(A) > dimy HH}; (A4) > > —
n

d|(n+1)
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The totient function satisfies p(d) > 1 for all d and (1) = 1, so taking the d = 1 term of

the above sum gives the result. O

Remark 6.2.10. Note that the above lemmas hold for N = 2 as well. However, in this case

the function of n

(N_l)n—H
n+1

is no longer exponential, which is why we require the assumption N > 3. A
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