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Metamaterials for simultaneous 
acoustic and elastic bandgaps
Waiel Elmadih1,2*, Dimitrios Chronopoulos1,3 & Jian Zhu4

In this work, we present a single low-profile metamaterial that provides bandgaps of acoustic and 
elastic waves at the same time. This was done by ensuring impedance mismatch in two different 
domains, the fluid domain where the acoustic waves propagate and the solid domain where the 
elastic waves propagate. Through creatively designing the metamaterial, waves of certain nature 
and frequencies of interest were completely blocked in the solid and fluid domains simultaneously. 
The simulation results showed bandgaps with acoustic waves attenuation below 5 kHz and elastic 
waves attenuation below 10 kHz. The acoustic and elastic dispersion curves of the metamaterials 
were calculated for various designs with various diameters and neck lengths, and the bandgaps were 
calculated. These parameters can be used as means for tuning both the acoustic and elastic bandgaps. 
A representative design of the metamaterial was manufactured on a laser powder bed fusion system 
and the dynamic performance was measured at various points. The measurements were carried 
out using a dynamic shaker setup and the dynamic performance was in good agreement with the 
numerical modelling results. Such metamaterials can be used for simultaneous acoustic and elastic 
attenuation, as well as saving in space and material consumption, in various fields including building 
construction, automobile, aerospace and rocket design.

With their broad range of properties, metamaterials have been serving as a lightweight solution for many 
dynamic, static and electromagnetic applications. Through harnessing certain topologies of the micro- and 
macro-structures of the material, metamaterials can create bandgaps of either acoustic waves, elastic waves or 
electromagnetic waves independently. There exist a chance for creating metamaterials that exhibit various band-
gaps of different waves at the same time. The acoustic and elastic bandgaps are concerned with different types of 
waves as their names suggest. The acoustic bandgaps are formed by acoustic waves; these waves are oscillations of 
pressure travelling through a fluid. The elastic bandgaps are formed by elastic waves; these waves are formed by 
disturbances travelling through a solid. Both elastic and acoustic bandgaps are formed by the destructive interfer-
ence of their  waves1–3. When a wave travels from one medium to another of less local impedance, for example, an 
acoustic wave changing its speed when moving from a thin neck to a larger cavity, some of the waves get reflected. 
When a reflected wave is in phase with the travelling wave, both waves interfere destructively with each other. 
This destructive interference of the reflected wave and the travelling wave results in the creation of bandgaps.

The realisation of structures that have bandgaps has been made available through additive manufactur-
ing (AM) which is a manufacturing method that can construct complex parts from a CAD model. Many AM 
techniques exist of which the most common are extrusion-based  AM4, laser powder bed fusion (LPBF)5 and 
 stereolithography6. These techniques have been used to develop various bandgap structures by incorporating 
Bragg-scattering and internal resonance capabilities within the geometry of the designed structures. Warmuth 
et al.7 designed and manufactured lattices made from connected struts and demonstrated elastic bandgaps above 
50 kHz. Lucklum et al.8 used strut-based lattices to create structures with three-dimensional (3D) elastic bandgaps 
in the millimeter scale. Kruisova et al.9 built ceramic lattices and experimentally demonstrated the existence of 
one-dimensional (1D) elastic bandgaps. Multimaterial lattices have also been investigated by Ampatizids et al.10 
who built a composite lattice made of a Nylon-12 part attached to a flat composite sheet; they demonstrated 
with experiment the existence of 1D bandgaps below 10 kHz. Liu et al.11 developed lattices, made of solid cores 
and a coating of silicone rubber, and managed to obtain elastic bandgaps at much lower frequencies than that 
of Warmuth et al.7, Lucklum et al.8 and Ampatizids et al.10 through building an internal resonance mechanism 
within the lattice. Recent work by Lucklum et al.12 also employed an internal resonance mechanism and showed 
that lattices could have 3D elastic bandgaps at low-frequencies. Cubic lattice structures with internal resonances 
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were developed and tested by Elmadih et al.13 who conclude that their design can obtain 3D elastic bandgaps of 
wide- and low-frequency range. On the acoustic side, Abueidda et al.14 demonstrated with a dynamic simula-
tion that triply periodic minimal surface (TPMS) lattices can have acoustic bandgaps. TPMS lattices were also 
featured in the elastic bandgap work of Elmadih et al.15 and the mechanical work of Maskery et al.16. Bilal et al.17 
presented an architecture metamaterial with vibration attenuation capabilities of airborne sound and vibration 
simultaneously. Hsu et al.18 designed and simulated a crystal strip waveguide with acoustic bandgaps. Lazcano 
et al.19 localised the acoustic modes in a lattice structure to develop acoustic bandgaps. Jiang et al.20 designed 
and simulated an architected 3D foam with acoustic and elastic bandgaps.

Metamaterials with acoustic and elastic bandgaps are essential for producing compact, lightweight and effi-
cient sound and vibration isolation solutions for use in space rockets, cars, machines and buildings. This will lead 
to massive savings in time and effort associated with machine assembly and building construction. This means 
that the capabilities to provide vibration and acoustic isolation can now be superior to the conventional ones by 
using the presented metamaterial design. This design can be embedded within the structure of the part rather 
than having to use two separate bulky mechanisms; one for vibration isolation and one for acoustic isolation. 
For example, to reduce the noise and vibration radiated from a wall, a designer would have to develop and use 
a membrane-plate/porous metamaterial for sound isolation and a phononic crystal for mechanical vibration 
 isolation21–23, seperately; this design would be complicated, expensive and bulky. The intrinsically lightweight 
nature of metamaterials will provide extra savings in mass in comparison to conventional designs, thus allowing 
for higher mobility and flexibility in manufacturing and building construction. For instance, these metamaterials 
can be used for reducing acoustic and mechanical vibration waves arising from electric motors that are used to 
power airplanes. They can also be used for isolating the workpiece and end effector from noise and perturbations 
during manufacturing and measurement processes.

In this work, we present a cubic metamaterial design inspired by the Primitive form of the TPMS lattice, 
featured in various mechanical and vibration  work15,24–26, with verified acoustic and elastic bandgaps. The micro-
structure of the metamaterial consists of a unit cell, shown in Fig. 1, with a fluid domain where the acoustic 
waves propagate and a solid domain where the elastic waves propagate. The fluid domain is shaped as a cubic 
resonator of neck length L and and neck diameter d . The solid domain of macrostructure of the metamaterials 
is a single cubic lattice with a unit cell size C . The manufacturing of such a unit cell can be made easily through 
various forms of AM techniques, for example, L-PBF27, two-photon  lithography28, and fusion deposition model-
ling (FDM)4. Details of the computation, manufacturing and experimental testing methods are provided in the 
Methods section towards the end.

Results and discussions
The metamaterial unit cell shown in Fig. 1 was designed using Computer-Aided Design (CAD). For the acoustic 
absorption to be effective, an interconnected pore is needed within the design to allow for the passing of air. That 
is why the design of the metamaterial is an open-pore  structure29. The dimensions of the geometrical features of 
the unit cell are expressed as ratios in reference to the unit cell size in Table 1.

Each unit cell was meshed using a finite element modelling (FE) package using the proper couplings between 
the fluid and solid parts. The FE approach was used because it can simulate complex geometrical features more 
accurately with higher computation efficiency than finite difference time domain (FDTD)30 method, plane wave 
expansion (PWE)31 method and wavelet  method32,33. Bloch’s theorem and periodic boundary conditions were 
used to compute both acoustic and elastic dispersion curves of the metamaterial. At first, the acoustic disper-
sion curves of the metamaterial were modelled using the governing equation of acoustic wave propagation in 
the frequency domain (see Methods section). Then, the elastic dispersion curves were computed by solving the 
eigenvalue equations constructed from the general harmonic equation of the infinite metamaterial. The acoustic 
and elastic response of the finite metamaterial was simulated using the FE package. A metamaterial with a finite 
length was additively manufactured using LPBF and the experimental elastic response was obtained.

The modelling of the bandgaps used the FE method while ensuring convergence of the results with respect 
to the mesh density per unit cell. The fluid part and the solid part were designed and assembled in CAD. The 
linear x−,y− , z− and pressure degrees of freedom (DoF) of the converged mesh lattice were extracted using 

Figure 1.  Design of the metamaterial unit cell.
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ANSYS modelling software. The converged mesh lattice is the lattice model that has sufficient number of mesh 
elements that produce accurate results. The linear DoF are associated with the solid part while the pressure DoF 
are for the fluid part.

The dispersion curves of the acoustic and elastic wavebands are presented in Fig. 2 for a metamaterial with a 
diameter to cell size ratio ( d/C ) of 0.5 and a neck length to unit cell size ratio ( L/C ) of 0.2. The acoustic frequency 
results are normalised to the unit cell size C and speed of sound in the fluid vf  , while the elastic frequency results 
are normalised to the unit cell size C and the longitudinal wave speed in solid vs . The y−axis in Fig. 2 represents 
the wave vector; with Γ being the center of the irreducible Brillouin zone of the simple cubic lattice with coordi-
nates (0,0) and X being the center of the face in a simple cubic lattice with coordinates ( π/C,0). The wave vector 
could then be used to get the wavenumber at the critical points Γ and X of a metamaterial by substituting the 
value of the length of the unit cell C in meters to get the wave number in units of  m−1. From the results provided 
in Fig. 2, it can be seen that the metamaterial has multiple acoustic and elastic bandgaps at various frequencies.

Table 1.  Dimensions of the main geometrical features of the unit cell normalised to the unit cell size C. 

Design d/C L/C

Design 1 0.25 0.1

Design 2 0.5 0.1

Design 3 0.75 0.1

Design 4 0.25 0.2

Design 5 0.5 0.2

Design 6 0.75 0.2

Design 7 0.25 0.3

Design 8 0.5 0.3

Design 9 0.75 0.3

Figure 2.  Acoustic and elastic dispersion curves of the metamaterial with annotations of the first bandgaps. The 
parameters used for the modelling are d/C = 0.5, L/C = 0.2 and a Poisson’s ratio = 0.33.
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A useful metric for evaluating elastic and acoustic bandgaps is the relative bandgap width. The relative 
bandgap width gives an idea about the width and the position of the bandgap in terms of frequency. The relative 
bandgap is expressed as a percentage and is calculated as the quotient of the width of the bandgap to the mid-
frequency of the bandgap. The first acoustic bandgap, appearing in Fig. 2, starts from a normalised frequency 
of 0.2911 to 0.6354 and has a relative bandgap width of 74%, while the first elastic bandgap spans a relative 
bandgap width of 27.4% from 0.1926 to 0.2538. Within the tested normalised frequency range from 0 to 1.88 
in the acoustic frequency case and from 0 to 0.5 in the elastic frequency case, a total of five acoustic bandgaps 
and three elastic bandgaps exist in the presented metamaterial, respectively. These bandgaps can be tuned to a 
frequency of interest through the selection of the appropriate solid and fluid materials, as well as the unit cell 
size. For example, for a metamaterial manufactured from Nylon12 on a laser powder bed fusion (LPBF) system 
with a unit cell size of 30 mm, the longitudinal wave speed in solid is 1322.8 m  s−1 and the speed of sound in air 
is 346.25 m  s−1. Using the results from Fig. 2, the first acoustic bandgap for this metamaterial is from 3.36 kHz to 
7.33 kHz and the first elastic bandgap is from 7.92 kHz to 9.84 kHz. To computationally verify the existence of 
these bandgaps, a simulation has been set up to depict the elastic and acoustic attenuation achievable with the 
presented metamaterial. The metamaterial shown in Fig. 3 has a unit cell size of 30 mm and was modelled with 
the properties of Nylon 12 for the solid domain and the properties of air for the fluid domain. A total of seven unit 
cells were used in the simulation, thus constructing a 7 × 1 × 1 metamaterial with a total finite length of 210 mm as 
shown in Fig. 3. The transmission of the acoustic and elastic waves has been attenuated in frequency regions that 
correspond well with that of the bandgaps of the metamaterial as can be seen in Fig. 4. On the elastic simulation 
side, a longitudinal harmonic force of 1 N was applied perpendicular to the solid surface of the metamaterial. 

The vibration modes of the nearly flat wave branches (see Fig. 2) that split the first two elastic bandgaps do 
not get activated with longitudinal excitation. Thus, the two elastic bandgaps are merged into one bandgap in 
the simulation of the longitudinal elastic response of the metamaterial shown in Fig. 4a. On the acoustic side, 
radiation boundary conditions were used on the fluid openings in the direction of no tessellations (see Methods 
section). At first, an incident wave was sent through the fluid opening along the direction of tessellation of the 
metamaterial as shown in Fig. 3. We also show with the acoustic simulation in Fig. 4b that applying rigid wall 
boundary conditions on the fluid openings in the opposite direction to the direction of tessellation does not 
interfere with the existence of the acoustic bandgap. When radiation boundary conditions are used, there is no 
reflection at the fluid openings of the metamaterials. This allows the acoustic waves to travel to the outer envi-
ronment of the metamaterial and, thus, less overall acoustic pressure will be recorded as can be seen in Fig. 4b. 
This means that the metamaterial can be used to attenuate elastic and acoustic vibrations in any application that 
has an open or closed fluid setup.

In addition to the unit cell size, solid material and fluid material, the geometrical features of the metamaterial 
can be used to control the width and position of the bandgap frequency range. Figure 5 shows the change in the 
acoustic and elastic bandgaps of the metamaterials when different d/C and L/C ratios are used in the construc-
tion of the metamaterial. These bandgap results were calculated from the dispersion curves of the metamaterials 
modelled with the parameters shown in Fig. 5.

The various geometrical parameters of the metamaterial can be used for tailoring the acoustic and elastic 
bandgaps for use in applications of known frequencies of interest. In general, a metamaterial with a higher d/C 
ratio has a wider elastic bandgap of lower starting frequency than its counterparts of lower d/C ratio. The lower 
starting frequency is mainly due to the lower dynamic stiffness of metamaterials of higher diameter opening. This 
is analogue to findings found in other  publications34–36 where internal resonators are used to hinder wave propa-
gation. In internal resonance, the lower the stiffness of the internal resonance mechanism, the lower is the starting 
frequency of the bandgap. However, not all internal resonance bandgap metamaterials are suitable for broad 

Figure 3.  Illustration of the receiving and sending ends in acoustic simulation (top) and elastic simulation 
(bottom) of a finite-length metamaterial.
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isolation frequency, unlike the broad bandgaps presented in this work, and only a hand full of  publications12,13,37 
showed capabilities to provide broad elastic bandgaps at lower frequencies but with no reference to its acoustic 
capabilities. The acoustic bandgap frequency ranges of the metamaterial presented in this work have a wider 
bandgap when a lower d/C ratio is used as can be seen in Fig. 5a.

The elastic experimental response of the metamaterial was measured using a dynamic shaker and a set of 
piezoelectric accelerometers. The transmissibility was calculated as the logarithmic scale of the output response 
to the input response multiplied by a factor of 20 and is presented in Fig. 6 (see Methods section). It can be seen 
that the response of the structure is close to or much higher than 0 dB away from the frequency ranges of the 
bandgaps. At the bandgap, the experimental response gets as low as − 90 dB. This behaviour is similar to that 
shown by the simulation results with a damping factor of 0.02. However, in the simulation, the two bandgaps 
are shown as if they were merged into one wide bandgap. This is due to the nature of the simulation in which the 
mode shape between the end of the first bandgap and the start of the second bandgap was not sufficiently excited. 
In the cross-receptance results, the average attenuation along the bandgap saw a much lower response than the 
longitudinal one. The attenuation within the bandgap was proportional to the spatial periodicity (number of unit 
cells) between the excitation point and measurement point. Within the bandgap, the cross-receptence response 
has an average of − 31 dB at the first unit cell. This average response is even lower at the fourth unit cell, due to 
further destructive interference of the travelling waves occurring between the first and the fourth unit cells, and 
is equal to − 38 dB. At the end of the structure, at the seventh unit cell, further destructive interference occurs 
due to the periodicity and the average response gets as low as − 46 dB.

These results provide a new set of metamaterial structures that are capable of producing acoustic and elastic 
attenuation frequency regions. These attenuation regions are made available through the bandgap mechanisms 
designed within the presented metamaterial to design quieter, more stable and more damage resistant mecha-
nisms. Stability is particularly important in precision engineering and machine design where the workpiece is 
required to stay stable during manufacturing so that parts are made more precisely and more accurately. The 
damage resistance capability is particularly important in building construction where excitations from nearby 
traffic and rotary components can lead to creep propagation and failure of the construction in the long-term. 
Simultaneously, the use of the acoustic-blocking capabilities of the metamaterial will also lead to quieter living 
spaces for humans and animals.

The attenuation of vibration and noise is essential for the performance of machines and buildings as well as 
the comfort of the occupants and workers. In this work:

• We presented a new metamaterial that can develop bandgaps of both acoustic waves and elastic waves. This 
was done using a finite element method employed for modelling the acoustic and elastic dispersion curves 
of the metamaterial.

• The acoustic and elastic bandgaps can be tailored to meet certain frequency ranges of interest through the 
selection of the appropriate material, cell length, neck length and diameter.

• The most significant bandgaps are the first acoustic bandgap and first elastic bandgap, due to their broader 
frequency ranges and higher mid-frequency in reference to the other bandgaps demonstrated by the same 
metamaterial.

• A material with a higher diameter to cell size ratio results in a wider first elastic bandgap and a narrower first 
acoustic bandgap, and vice versa. This can be used as a tool that gives more design freedom when tailoring 
the metamaterial for isolation of noise and vibration in an application of interest.

• Experimental results further verified the existence of the elastic bandgap in the presented metamaterial.
• These results can be used in manufacturing and building constructions as compact and lightweight solutions 

for high attenuation of acoustic and vibration waves.

Figure 4.  Simulation results of the ability of the metamaterial to transmit (a) elastic waves and (b) acoustic 
waves.
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• Future work will include testing the acoustic response of the metamaterial using an acoustic impedance tube 
of suitable size and characteristics.

Methods
Acoustic dispersion curves. Acoustic wave propagation occurs mainly in the air (the fluid domain of the 
lattice). In reference to acoustic energy lost through harmonics of the solid material, the losses caused by the 
fluid that moves within the interconnected pores of the metamaterial is much higher. This energy loss is due to 
viscous boundary layer effects; since air is a viscous fluid, energy is lost through friction with the solid walls of 
the  pores29. In its reduced form, the governing equation of acoustic wave propagation is obtained  using14

where ρa is the density of the acoustic media, p is the acoustic pressure, ωa is the angular frequency of the acoustic 
wave and va is the speed of sound in the fluid medium. The tessellation of the unit cell was assumed along one 

(1)∇ ·

(

−1

ρ
∇p

)

+
ω2
ap

v2aρa
= 0,

Figure 5.  The change in the (a) acoustic and (b) elastic bandgaps of the metamaterial at various d/C and L/C 
ratios with illustrations of the cross-sectional view of the single unit cell. The bandgap is represented with a pair 
of identical lines, with the bottom line denoting the start frequency of the bandgap and the top line denoting the 
end frequency of the bandgap.
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direction using Floquet periodic boundary  conditions38, while wave propagation is allowed in three-dimensions 
(3D) using 3D mesh nodes for the metamaterial. Radiation boundary conditions were used on the fluid openings 
that are in opposite direction to the tessellation direction as in Fig. 7. This provides an accurate dynamic simula-
tion of an infinite boundary of fluid away from these surfaces, thus ensuring acoustic waves are not reflected at 
these surfaces and negatively affecting the acoustic transmission results.

The periodic boundary conditions can be approximated using

where p(x) is the pressure at position x , p(x + C) is the pressure at the position obtained by a shift equal to the 
size of the unit cell C , i denotes the imaginary unit and kx is the wavenumber along the direction of tessellation. 
By substituting Eq. (2) into Eq. (1) and extracting the stiffness and mass matrices of the unit cell from the FE 
model, we arrive at the eigenvalue problem

(2)p(x + C) = p(x)eikxC ,

(3)Ka − ω
2
aMa = 0,

Figure 6.  Experimental response of the manufactured metamaterials in (a) the longitudinal direction (solid 
line), in comparison to simulation with 2% damping factor (dashed line), and the cross-receptence response 
after the first (b), fourth (c) and seventh (d) periods of the metamaterial.

Figure 7.  Radiation boundary conditions applied to the unit cell.
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where Ka is the acoustic stiffness matrix and Ma is the acoustic mass matrix. Ka and Ma are constructed for 
predetermined values of the wavenumber to sweep the edges of the irreducible Brillouin zone of the metamate-
rial from kx = 0 to kx = π/C . By solving the eigenvalue problem in Eq. (3), constructed by each pair of Ka and 
Ma , we get the frequencies of the waves propagating in the metamaterial which can be plotted in the form of 
acoustic dispersion curves. The absolute acoustic frequency fa , plotted on the x− axis of the dispersion curves, 
is normalised to the unit cell size C and the speed of sound in the fluid medium vf  using.

Elastic dispersion curves. The elastic dispersion curves of the metamaterials were modelled using similar 
wave propagation and periodic boundary conditions to that used for modelling the acoustic dispersion  curves10. 
The general undamped equation of motion under no force excitation is obtained using

where K and M are the harmonic stiffness and mass matrices, respectively and q̈ is the derivative of the displace-
ment q . Equation (5) substitutes Eq. (1) as the governing equation for modelling the elastic dispersion curves. 
Using similar Floquet boundary conditions, the pressure p in Eq. (2) is swapped for the displacement q to approxi-
mate periodic boundary conditions. The frequencies of the elastic waves propagating within the metamaterial 
are obtained by solving the eigenvalue problem

where Ke is the elastic stiffness matrix and Me is the elastic mass matrix. The elastic dispersion curves are then 
plotted alongside the acoustic dispersion curves. The normalised elastic frequency is plotted on the x−axis using.

where fe is the absolute elastic frequency and vs is the speed of wave propagation in the elastic medium.

Finite simulation of acoustic and elastic waves. A metamaterial with a finite length was modelled 
using free-free boundary conditions. The relative acoustic pressure response was calculated using.

where the subscripts o and i denote the output and input, respectively. On the elastic simulation side, a harmonic 
force of 1 N was applied perpendicular to the solid surface of the metamaterial at the input as in Fig. 4. The elastic 
transmission was calculated using.

where a is the acceleration at the output o and input i.

Manufacturing and experimental testing. A metamaterial with a finite length was manufactured on a 
LPBF system using Nylon-12 as a building material. The properties of Nylon-12 are presented in Table 2.

The LPBF system used a laser power of 21 W with a scan speed of 2500 mm  s−1 and hatch spacing of 0.25 mm. 
The nominal spot size of the laser and layer thickness was 0.3 mm and 0.1 mm, respectively. The metamaterial 
was manufactured successfully and is shown in Fig. 8.

To measure the experimental response, a dynamic response setup was assembled comprising a dynamic shaker 
(Modal Shop Shaker K2007E01), a junction box (Polytec VIB-E-400), an impedance head (PCB 288D01) and 
three accelerometers (PCB 352C65). Two sets of measurements were taken, longitudinal and cross-receptance. 
During the measurement process of the longitudinal response, the excitation signal was sent up through the 
bottom of the metamaterial as shown in Fig. 8. An accelerometer is placed between the dynamic shaker and the 
metamaterial to record the acceleration at the input. An accelerometer was attached to the top surface of the 
metamaterial to record the acceleration at the output. During the measurement process of the transfer-receptance 
response, the output accelerometer was affixed to the side of the metamaterial to record the transverse response. 
Three different positions were used when recording the data, after the first unit cell, third unit cell and seventh 
unit cell. This is to depict the evolution of the attenuation region through the metamaterial. All measurements 
were recorded in m  s−2 with a normalised frequency resolution of 3.4 ×  10–5. The magnitudes of each measurement 

(4)Normalised acoustic frequency = fa · C · v−1
f

(5)Kq+Mq̈ = 0,

(6)Ke − ω
2
Me = 0,

(7)Normalised elastic frequency = fe · C · v−1
s ,

(8)Relative pressure response = log

(

po

pi

)

,

(9)Elastic transmission = 20log

(

ao

ai

)

,

Table 2.  Material properties of LPBF Nylon-12.

Density 1000 kg  m-3

Young’s modulus 1.75 GPa
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were averaged over 24 spectral sweeps and the longitudinal and cross-receptance responses were then calculated 
in dB using Eq. (9).

Received: 16 April 2021; Accepted: 23 June 2021
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