
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/156468                    
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/467109073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/156468
mailto:wrap@warwick.ac.uk


Decision Focused Inference on Networked Probabilistic Systems:
with Applications to Food Security

Jim Q. Smith, Martine J. Barons and Manuele Leonelli
Department of Statistics, University of Warwick, UK

KEY WORDS Bayesian inference, Common Knowledge, Decision Support,

Abstract

Bayesian technologies have been progressively applied to larger and larger domains.
Here necessarily probablility judgments are made collaboratively and it is rare that one
agent owns all probability judgments in the system. So interesting new foundational
and methodological issues have arisen associated with the status of inference support by
combinations of such judgments. In this paper we review some recent work on Bayesian
inference underlying integrated decision support for huge processes. We argue that in a
surprising number of such dynamic environments it is in fact formally justified to distrib-
ute the inference between different panels of experts and then use an agreed framework to
knit these separate judgments to properly score different policies. We also briefly report
recent progress in applying this new technology to develop an integrating decision support
system for local government offi cials to use when trying to evaluate implications on food
poverty of shocks in the food supply chain if various ameliorating policies are applied.

Acknowledgement 1 This research was supported by EPSRC grants EP/K039628/1 &
EP/K007580/1 and Warwick University Food Global Priority Programme.

1. Introduction

There are now many probabilistic decision support systems for a use in a wide range
of environments. These are designed to give benchmark assessments of the effi cacy of var-
ious types of policy and to evaluate the impacts of shocks to and progressive degradation
of the processes being described in the system. Decision support systems are becoming
progressively large and often need to use sophisticated architectures and sometimes also
sophistciated numerical algorithms to be able to calculate the outputs needed by the user to
inform their decisions.

However there are many environments where decisions need to be based on several cas-
cading or parallel and multifaceted stochastic processes. Each component of these systems
can be supported by probabilistic models but the sometimes bewildering array of outputs
need to be composed to together somehow before a decision center can compare the effi -
cacy of various courses of action open to it. This paper reports some recent methodological
developments to support inference in such huge and complex environments. Many of these
have been reported in [22], [23], [24] and especially [38] where many of the detailed technical
developments used in this report are reported. We then reflect on the promise and future
challenges facing us in this field.

One author’s first exposure to this problem - in the wake of the Cherobyl disaster - was
to work with Simon French and others for RODOS [2], [39] in the development of uncertainty
handling within a support tool for a decision’s centre’s crisis management after a nuclear



accident over 25 years ago. Here various components of the description of a threatened
developing crisis - probability models of the processes at work within the nuclear plant,
probability models of the dispersion models of the contamination, of the absorption of the
contamination into water supply and the food chain and several models of health risk given
exposure - were all supported by software developed by different panels of experts. The
results of these sometimes very complex pieces of software then needed to be presented to
the decision centre to support their management of the crisis. A useful summary of how this
was achieved can be found in [27].

plant → dispersion → food chain demography
↓ ↘ � ↙ ↓

Radiation Risk inhalation → exposure → health

The architecture behind this earlier development, although sophisticated for its time,
was challenged by the prevaling culture. This meant in particular that within some of the
more complex components of the system uncertainty associated with forecasts was often not
even formally acknowledged - the associated computational demands helping to provide an
alibi for this. So any integrating architecture was forced to ignore uncertainty - at least in
some sources of the process. In fact, although the online estimation of parameters which
was often acknowledged within some of the better components of the system themselves,
this uncertainty was not usually transferred into the composite system. So decision makers
within the crisis management system were then left to fold in these uncertainties as best they
could - aided by some simple heuristics - to arrive at an integrated assessments of the likely
effi cacy of various policies to address the overall flow of the potential crisis. Statisticians and
decision analysts understand how misleading these heuristics can be [22].

However since that time there has been an enormous technological advance in the capa-
bility and speed of probabilistic expert systems that form the components of such systems.
Advances in Bayesian Networks (BNs) especially Object Orientated ones [20], Multiregres-
sion Dynamic Models [31], probabilistic emulators supported by Gaussian Processes,[19] and
a variety of other Bayesian spatio/temporal models has meant that when properly tuned -
the component probabilistic models can now produce almost instantaneously accurate ex-
pectations of arbitary functions - and especially the variances of any conditioning variables
needed to property evaluate the effi cacy of various different courses of actions. So it is timely
to next develop proper inferential methodologies that can harness this information appro-
priately and use this in a formally appropriate way to guide the evaluation of policies which
can take proper account of all the component uncertainites within such a system.

Two years ago we were charged with developing a proper inferential system that would
be both formal and feasible to address uncertainty handling in such environments. We have
recently reported this work in [22] and [38]. We are now beginning the process of applying
this methodology to a new domain. Over this time, whilst fear of the next nuclear accident
has waned and the world has become better protected through good countermeasure plans
to this threat, there has been a growing awareness of the challenges of food security both
locally and globally. This has most recently been stessed by climate change, population
explosions and the developing competition for food in second and third world countries



which is changing both demand for food and its affordability everywhere else in the world.
Consequently there is an imperative within the western world to develop a decision support
tool for local government to help them address the various threats of food poverty within
their populations. As in the nuclear example above, these types of processes are dynamic
and spatial and can be conveniently broken down into a number of separate components
each overseen by its own panel of experts. The methodological developments outlined here
have been informed by the our experience in the study of nuclear crisis management but
developed with this new application in mind.

production → supply chain → shop? demography
↘ � ↘ ↓

Food Security price → health + educ.

In the next section we present some of the special challenges in adapting foundational
statistical thinking so that methodology can be developed that can inform decision support
systems for huge systems like the two outlined above. After discarding some obvious solutions
as infeasible we propose a different solution based on a new distributed decision focused
methodology. Then in Section 3 we report some recent results about when such systems
are applicable. In Section 4 we illustrate through a toy example how the system can use
algorithms like tower rules to integrate uncertainly in practice and briefly describe how similar
methodologies extend to large systems. We conclude by discussing some of the promise and
challenges facing this development.

2. Integrating Decision Support

2.1 Some Special Features

Perhaps the most important distinction between the standard setting for Bayesian deci-
sion theory and the one encountered in our scenarios is that the decision maker is a center
rather than an individual. Even when - as in our examples - this center is constituted of in-
dividuals who largely want to act constructively and collaboratively to formally capture the
underlying processes driving the crisis it is nevertheless necessary to address this multiagent
environment as a game. In particular all rationality ideally needs to be expressed through
hypotheses that form the common knowledge base of the agent panels.

Taking this on board, a second important distinction is that typically here each agent has
expertise only about particular aspects of the problem from which the center needs to draw.
Any common knowledge base within this game must therefore capture a formal structure
that is able to represent a unanimity about who might be expert about what. In particular
it needs to capture what it might mean for the different agents to be prepared to adopt the
beliefs of the most appropriate domain expert panel. Under such conditions it will then be
rational for panels to agree to delegate their reasoning and evaluation to the appropriate
domain experts. In the next section we outline how a center’s probability distribution can
be constructed around the salient features of a probability distribution.

Thirdly it will typically be necessary within these environments for a center to be able
to justify its choices to the outside world and to be able to give a plausible explanation of
the reasons behind its choices. This is unlike many single agent systems. There the agent
makes the best probability judgments she can - using her own personal and sometimes only



partially explicable evaluations - to obtain a good outcome. Furthermore that individual is
often also free to choose what "good" might mean in her given context without needing to
justify that choice.

A center managing a crisis rarely enjoys this freedom: it will also usually need to be able
provide the rationale behind the adoption of a policy to supplement the policy itself. In such
a scenario the center will therefore need to be able to provide:

1. An agreed qualitative structure, providing a plausible description about how different
features of the development relate to one another and how the future might potentially
unfold. This structure must be transparent enough to be understood by all experts in
the systems.

2. A compelling narrative based on best evidence about what might happen within each
component of the process.

3. A plausible numerical evaluation within each component of the extent to which the
critical variables within the system might be affected by the developing environment
when the most promising mitigating policies might be applied.

As well as encapsulating all the elements above - which concern the underlying process
- any common knowledge base must, of course, also be suffi ciently rich to contain an agreed
set of policies that might be considered and an appropriate utility structure on which the
effi cacy of these different options can be scrutinized. Furthermore the Bayesian paradigm
demands that it must be possible to calculate the expected utility scores for each potential
policy applied to this huge system and to evaluate these policies accurately and quickly with
respect to a shared probability measure.

Although these challenges appear almost insurmountable, there are in fact certain factors
in our favour. The first is that a center with a remit like the ones described above is not
usually concerned that the composite system provides auditable and compelling judgments
about everything. It will typically be responsible for properly delivering and explaining only
those aspects of the process that might have a significant impact on the critical features of
any unfolding crisis within this remit. Within a Bayesian context these critical features are
defined by the attributes of a utility function specified by the center.

Of course such attributes need to be elicited. However this is one of the more straight-
forward tasks in building support. For example, in the context of evaluating countermea-
sures after an accidental nuclear release this process was successfully conducted decades ago.
There appropriate measures could be categorized into three subsets: measures of the pre-
dicted health consequences on the population, the public acceptability of any policy and the
resource implications of applying particular policies to a given scenario. Another example is
given in our most recent project: through a sequence of decision conferences a local authority
have outlined four main categories within which to assess the impact to them of food poverty
within their jurisdiction, each measured by a well defined vector of attributes. In our first
parse these factors were articulated as the effects of malnutrition or threats of malnutrition
on health, the effects on children on their academic performance, the potential for social
unrest - such as riots - provoked by the non availability of food stuffs and of course the cost
and resource implications of applying any ameliorating strategy.



There is therefore often a strong focus on a small number of measurable consequences
associated with an unfolding crisis. Now, of course, the types of description we have in mind
must be rich enough to explore the knock on effects that might happen to components of
the system when that system is stressed by abrupt changes to the physical environments
or new policy directives it might receive. We see later that the progressive impact of such
shocks can often be conveniently modelled though chains of causal relationships between the
mediating processes when the term "causal" has a precise technical meaning.

Despite the challenges presented by these causal chains it can often be shown that there
nevertheless exists a proportionately much smaller vector of variables which might signifi-
cantly impact on the utility attributes of the problem that would be the case were we using
the system to solve completely general inferential tasks. So this vastly reduces the modelling
task, gives guidance about the necessary underlying granularity in space time and type of the
integrating model and the players whose judgments will be needed in order to score different
policies. In particular it is not necessary to capture all available expert judgments for such
support but only those features that might be critical in helping to discriminate between the
potential effectiveness of one enactable policy against another.

There is a second reason to be optimistic about the feasibility of developing this sort of
support. There has been a recent vigorous development of various graphical model classes
for example object oriented Bayesian networks and these now enjoy a strong formal foun-
dational basis. These frameworks can provide an overarching structure around which to
model processes whose variables can exhibit highly heterogeneous relationships to one an-
other. Now sadly in practice for the scale of the problems we have in mind here there is
often no generic framework - and so no generic software - which is either logically capable
of faithfully expressing our underlying process or suffi ciently focused and powerful to make
calculations quickly enough to be of practical use.

However what this development has given us is new inferential axioms that provide a
way of scrutinizing and justifying in a generic way many different families of models - espe-
cially those that can be depicted by different families of graphs. Such axiomatic systems - for
example semigraphoid, graphoids and separoids [28],[30], [11], [36] have provided compelling
reasoning rules to justify qualitative hypotheses about whether or not one piece of infor-
mation is relevant to the prediction of a second given information from a third. These are
often couched in terms of rules about reasoning about irrelevance. In our context we argue
that these reasoning rules can be plausibly accommodated within the common knowledge
framework of the multiagent game discussed earlier describing the collaboration of agents in
the center. Thus let (X,Y ,Z) be arbitrary vectors of measurements in the product space
of variables defining the DM’s problem.

Definition 2 Say that the client believes that the measurementX is irrelevant for predicting
Y given the measurement Z (written Y qX|Z) if she believes now that once she learns the
value of Z then the measurement X will provide her with no extra useful information with
which to predict the value of Y .

We next assume that the centre accepts that for their problem all aspects of dependence
satisfy the semigraphoid axioms. Explicitly this means that any irrelevant operator q chosen



by the center respects two properties see [36]. The first, called the symmetry property, asks
that for any three disjoint vectors of measurements X,Y, Z :

X q Y |Z ⇔ Y qX|Z (1)

This property holds for most probabilistic and non-probabilistic methods of measuring
irrelevance, Even more compelling - see e.g. [28]. for an explanation of this - is a second prop-
erty, called perfect composition. This asks that for any four disjoint vectors of measurements
X,Y, Z,W ,

X q (Y, Z)|W ⇔X q Y |(W,Z) & X qZ|W (2)

Bayesians automatically satisfy this reasoning rule as do a host of alternative inferential
systems.

These two reasoning rules together with various statements about relevance within the
system at hand together with a finite numbers of other qualitative hypotheses can then
be used to populate a common knowledge framework belonging to a decision centre. Note
that because the widely used BN models use such reasoning rules, these rules are now well
researched and their plausibility are widely accepted as valid.

It is these properties that will allow us formally to appraise when it is or is not appropriate
to attempt to systematically integrate judgments for large scale decision support appropriate.
This allows us then to customize a given center’s semantics over a bespoke sets of hypotheses
- not necessarily expressible within in a single current generic graphical framework - but
nevertheless enjoying the same level of justifiability of more established frameworks. How
we proceed to develop such frameworks and how they can be used to guide the inference
needed by our centres is described in more detail below.

2.2 Distributivity and the autonomous elements of a supporting narrative

We call a support system which is able to use irrelevance axioms and other agreed
structural assumptions to coherently knit together the expert judgments of several different
panels with diverse expertise a integrating decision support system (IDSS). For such a system
to be formal and functional we usually need to be able to prove that the system can perform
its task in a distributed way. By this we mean that it is legitimate for each component panel
to reason autonomously about the parts of the system over which they have oversight and
that the center can then legitimately adopt the delivered judgments of the nominated expert
panel as its own. The first reason we need distributivity is that it is usually impractical,
inappropriate and often extremely time consuming to demand that panels meet to agree
numerical combinations of expert judgments - especially when no-one panel shares good
knowledge about the interface of the two areas. A second issue concerns the construction of
the narrative we have argued above is likely to be needed to support any policy choice. If
the judgments expressed within the system are not consistent with those expressed by the
particular panel which is supposedly expert in that domain then how can those judgments
be credible?

Thankfully, if an appropriate common knowledge framework is adopted by a center,
they ensure that there is no demand which implicitly allows different panels’judgments to
contradict one another and the delivery is suffi ciently rich ("adequate") for the qualitative
common knowledge structure to provide formulae and algorithms to knit together panel



quantitative donations to fully score its options, then the semigraphoid axioms enable us
to prove that this is possible in a wide range of contexts: see below. This means that it is
legitimate for each panel to autonomously populate the system with their own quantitative
local domain knowledge, sometimes supported by their own much more detailed dynamic
probability models such as Dynamic Bayesian Network [20],Multiregression Dynamic Model,
[31] or event tree [36]. As more observational, survey and experimental information becomes
available to a particular panel they can then transparently update their beliefs dynamically
using these models if necessary and continually refine their inputs to the system without
disrupting the agreed overarching structure and its quantitative narrative. Furthermore we
will see that when such distributivity is possible it is often the case that each panel need only
donate a vector of prearranged conditional expectations for scores to be calculated. This in
turn makes it possible to score each policy option almost instantaneously.

3. A Formal Integrating Decision Support System

At this point it is convenient to introduce some terminology Thus we first think of the
decision center as a rational expected utility maximizing SupraBayesian (SB). The SB takes
the agreed structural framework discussed above. It then embellishes this framework with
summaries of some predetermined conditional expectations {Πi(d) : d ∈ D} about various
quantities of interest when a policy d ∈ D might be employed - these expectations being
donated by an appropriate panel of experts Gi i = 1.2, . . . ,m - one of them panels of experts
that will inform the integrating system. SB then plans to use these inputs together with the
center’s common knowledge framework to construct the expectations Π = f(Π1,Π2, . . . ,Πm)
needed to calculate her expected utilities U(d) for each d ∈ D. The plan is then that these
scores will be approved and owned by everyone.

But are there circumstances when such a combination is formally justified? The answer
is "Yes" surprisingly often. Here is a recent theorem proving one such case. Let I0(d) be
information common knowledge to all panels, Iij(d) be information panel i brings to θj
i, j = 1, 2, . . . ,m, I+(d) , {Iij(d) : 1 ≤ i, j ≤ m} and I(d) , {Ijj(d) : 1 ≤ j ≤ m}

Definition 3 An IDSS is adequate if SB can calculate U(d) from delivered outputs, dele-
gable if for any d ∈ D ∃ a consensus that θ q I+(d)|I0(d), I(d), & separately informed if
qmj=1(θj, Ijj(d))|I0(d).

Definition 4 An IDSS is sound if adequate & by adopting the structural consensus all panel
members can faithfully adopt U(d) : d ∈ D calculated from probabilities donated by relevant
panels of domain experts as their own.

Assuming the semigraphoid axioms above we can then prove the following theorem.

Theorem 5 An adequate,delegable & separately informed IDSS is sound.

Proof. See [38]
So we have a set of conditions under which an ideal type of IDSS can be built. Fur-

thermore these conditions, whilst not always being satisfied are possible to scrutinized in
common language. Through discussing which information sets may or may not be relevant



when making inferences about different elements of the multivariate processes the center can
determine whether or not a particular framework fulfills the requirements of the theorem
above. Note in passing here that this theorem does not only concern probabilistic systems
but also any inferential system agreed by the center which satisfies the semigraphoid axioms
and which can deliver scores unambiguously - e.g. linear Bayes.

The necessity for adequacy is obvious and the condition of delegability is simply a for-
malization of the demand that each expert panel is assumed by everyone to be suffi ciently
well informed to be genuinely more expert than others in the system. The critical assump-
tion is therefore that panels are separately informed. Within a Bayesian context we can use
the usual properties of conditional independence to usefully break this condition down into a
set of two separate conditions - prior panel independence and likelhood separability - which
together are equivalent to the system being separately informed.

Definition 6 We have prior panel independence if qmj=1θj, |I0(d). Data x with likelihood
l(θ|x,d) ,d ∈ D, is panel separable over θi, i = 1, . . . ,m when

l(θ|x,d) =
m∏
i=1

li(θi|ti(x), d)

where li(θi|ti(x)) is a function. of θ only through θi and ti(x) is a function of the data x,
i = 1, 2, 3, . . . ,m, for each d ∈ D.

Those with some knowledge of Bayesian inference within BNs will recognize panel inde-
pendence in that context where different panels can have oversight of different nodes given
their parents, as simply a generalization of the global independence assumption. This as-
sumption is almost universally adopted in practical applications of BNs.

The critical assumption therefore is that the collection of data sets gives a likelihood that
separates over the subvectors of panel parameters. Of course, this is far from automatic.
Even if the system is carefully and compatibly structured it may be impossible to define the
parameter vector θ of the likelihood of a given statistical model in this way - especially in
the presence of unobserved confounders. And when vectors of observations can have missing
values then this condition is also almost inevitably violated. However there are also many
circumstances when this condition can apply. This is most common in asetting where any
observational data accommodated into the system is complete and when the underlying
dynamic structure is causal in a sense that generalizes the definitions of Pearl [30] so that
they can also apply to domain other than the simple BN. We will discuss why causal systems
often lead to distributed IDSS below.

When likelihoods are not separable then we can, of course, still approximate - for ex-
ample using techniques like Variational Bayes. Our formal framework above thengives us a
benchmark against which to judge such an approximation. Alternatively - and perhaps more
in harmony with the game theoretic basis of this type of analysis - we can instead assume
that SB imposes an admissibility protocol. This would demand that expert judgments used
in the system would only be based on information that would not give rise to ambiguity
in subsequent joint inference. Even though it might cause some divergence between public
pronouncements made by the IDSS and the private beliefs of panel members, the need for
each individual panel to explain its reasoning to outsiders strongly encourages the adoption



of such a protocol. Furthermore it has the expedient tendency of being conservative about
the accuracy with which various assertions can be made. To adopt such a protocol the center
would of course need to agree that only certain types of evidence be accommodated into the
system. However note that such protocols - and most notably those of Cochraine Library-
are currently widely used within decision support systems designed for collections of users.

3.1 Causal Hypotheses and their relationship to a distributed IDSS

Led by Pearl [30], many authors have recently set about formalizing what is actually
meant by causation by framing causal hypotheses in terms of control. All the original
work centered on causal hypotheses that could be captured through a BNs. However the
semantics have since been extended so that they can also apply to other frameworks. see
e.g. [21], [18], [12],[41], [42]. Typically these assume that there is an implicit partial order
to the objects in the system that provides the basis of a putative causal order (see eg
[33]). Using this partial order we then assume that the joint distributions of variables not
downstream of a controlled variable remain unaffected by that control whilst the effect on
downstream variables in response to this control of a causal variable to a given value is the
same as if the controlled variable had simply taken that value [38]. Many of the newest of
these generalizations apply these principles to the sorts of stochastic processes that typically
describe an unfolding threat: see [38] for a review of some of these advances.

We saw above that in most of the IDSSs needed to entertain the predicted effects of
different potential policies that might be applied to try to control the adverse affects of
a threatened crisis. In the reference above we show that if a center adopts various causal
hypotheses which exploit the generalizations of "causality" to this dynamic domain then
structural hypotheses can be articulated and if appropriate adopted into the common knowl-
edge basis of the center. In this way causal hypotheses help frame the underlying inferential
methods.

There is, however, perhaps an even more compelling reason for demanding conditions
related to causal hypotheses if an IDSS is to be valid. Note above that when we encourage
expert panels to accommodate information into an IDSS, the information they would like to
input will often arise from designed experiments. Here, within such experiment, covariates
are often controlled to take specific values. The experimenter then assumes that the parame-
ters she estimates in these experiments can be equated with parameters in the observational
system defining the development of the crisis. Furthermore she typically assumes that the
parameters of observational system will still respect the same probability law as that of the
parameters in the experiment. This point was recognized some time ago by Cooper and
Yoo [7] who developed collections of assumption which enabled formal learning of discrete
BNs where some available data came from designed experiments rather than observational
studies. They noted that if the BN was causal in the sense given above then experimental
data could be introduced in a simple way. This technology has recently since been extended
so that it also applies to other domains (see e.g. [14], [8]). It is interesting to note that, from
a methodological point of view, the panel independence assumption which is necessary to
ensure distributivity of an IDSS is in fact intimately linked and plausible only when certain
causal hypotheses can be entertained: see [10].

However again in many settings such causal hypotheses are plausible - indeed very often
made unconsciously see [38]. In particular note that if a panel designs an experirment well



then randomization and conditioning often leads to a likelihood which is a function only of
its own parameters. So in this case the likelihood trivially separates. And then it follows
trivially that the likelihood of any collections of such experiments also separates.

So, for example, it can be shown fairly straightforwardly that when there is a consensus
that quantitative causal structure is a (dynamic) causal BN or casual Chain event graph
or a causal multiprocess model & an IDSS is sound at any time t: then that IDSS remains
sound under a likelihood composed of ancestral sampling experiments as well as observational
sampling: see [38] for examples of such results. It follows that many of the IDSS frameworks
we would like to use can be designed so that they are distributive, especially if the center
is prepared to entertain the possibility of vetting some of the available evidence as too
ambiguous to be formally accommodated into the system. How we can exploit this property
is discussed below.

4. Tower Rules and Effi cient Transfer of Information

4.1 Assuming the IDSS is distributive

If an IDSS is distributive then it is often possible to prove, provided the agreed form of
the utility function has an appropriate polynomial form, that each panel often needs to de-
liver only a few conditional expectations and not whole joint distributions. This is because
the types of structural overarching frameworks embed collections of conditional indepen-
dences which lead to particular tower rules being respected: see [22]. This in turn means
that each panel often needs only deliver a short vector of conditional moments. The SB is
then able to evaluate a number of polynomials in these donations recursively to calculate the
expected utility scores of the different policies she has available to her. So the various con-
tributions needed from the different panels can be quickly elicited at any time. Furthermore
the necessary calculations can be made almost instantaneously. In particular this allows us
to hard wire into the IDSS various formulae - looking like forward expectation propagation
algorithms [9] that then can be used to make all its necessary calculations for the center. Of
course the form of these functions will be customized to the particular underlying framework
agreed across the different panels on the underlying.

Once these formulae are in place each panel is encouraged to update its inputs in light
of any new information available to it - either concerning the nature of the current unfolding
crisis or as it inputs new data from recent experiments and surveys or refines its expert
judgments. Note that whenever new data is accommodated this will require the panel to
perform a prior to posterior analysis and often in these large environments this will involve
performing new numerical analyses. However such numerical analyses routinely and trivially
can calculate the numerical values (conditional means, variances) of terms in the conditional
moments which the SB needs.

If the plausibility of some of the outputs donated by a particular panel is queried by an
outside auditor or another panelist then this request for clarification can be referred to that
panel. Because the judgments donated by this panel are its sole responsibility, it can use
any current software it owns and documentation of its underlying statistical model class to
provide a much more detailed explanation of how its evaluation has been arrived at and why
the judgments it expressed are appropriate. This facility is critical to any decision center of
the form we discuss here because it may well be that the situation as it dynamically evolves



no longer supports some of these background hypotheses. If this happens then this can be
quickly fed back to the panel so that it is able to adapt its donations in the light of this new
information.

In order to see how this process can be enacted. consider the following toy example.

Example 7 (A Tower Rule for Food) Consider the following hypothetical framework where
the effect of malnutrition on children’s educational attainment in a routine region wide state
school test of academic ability in a the population of 11 year old children. This is analo-
gous to one of the educational attributes used by a local authority to measure one deleterious
impact of food poverty within its catchment. Here we consider only two panels which the
center has as common knowledge are currently panel independent. The first, G1, has taken
the various belief inputs it needs from other panels - associated, for example, with predictions
of the economic climate that apply in the forecast period, the predicted availability of food
in the current crisis and household demography indexed by income and number of children
to determine the distribution of an index X of the level of malnutrition across the relevant
population of 11 or 12 year olds under study at the time of the next future test The second
panel, G2, is expert in determining the likely SATS performance Y over this population given
this index. Various policies d ∈ D are proposed both aimed at supplementing the diets of
this particular group of vulnerable children and in directly enhancing those children’s educa-
tion. Suppose it is commonly agreed that a marginal utility function of this attribute U is
an arbitary function of d but is a function of Y as a polynomial of degree no greater than
2. Note that this will then imply that all scores U(d) will be expressible as a function of

d,
{
mY (d) , E(Y (d)) : d ∈ D

}
and

{
σ2Y (d) , V ar(Y (d)) : d ∈ D

}
.

In this setting the nutritional expert panel G1 needs only donate

Π1 ,
{
mX(d) , E(X(d)), σ2X(d) , V ar(X(d)) : d ∈ D

}
To predict the performance index Y of these exam results G2 plans to use the simple Bayes
Linear model

Y |X, θ = θX + ε

Using this model G2 is able to calculate{
µ(d) , E(θ|d), σ2(d) , V ar(θ|d), τ 2(d) , V ar(ε|d)) : d ∈ D

}
and so the conditional expectations needed by SB which are

Π2 ,
{

E(Y |X) = µ(d)X,
E(Y 2|X) = (σ2(d) + µ2(d))X2 + τ 2(d) : d ∈ D

}
Now the standard Tower Rule gives us that for each d ∈ D

mY (d) = µ(d)mx(d)

σ2Y (d) =
(
σ2(d)m2

x(d) + τ 2(d)
)

+ σ2X(d)
(
µ2(d) + σ2(d)

)
So the center can combine the expert judgments of the two panels using these polynomial
formulae to calculate the scores it needs. Note that the delivered expert judgments here can be



associated with different levels of complexity. For example G2’s assessments Π2 could be based
on non-conjugate sampling themsleves based on many diverse forms of relevant experiments,
in which case it would usually only be possible to deliver numerical values of the required
summaries {µ(d), σ2(d), τ 2(d) : d ∈ D} and not the formulae behind their calculation. In
this example this would not matter. The scores of the competing policy options can still be
calculated trivially.

Now of course this example is absurdly simple. We have suppressed the dynamics of
the problem, the fact that the linear models used in these circumstances have a number
of covariates, that the population needs to be specified as aggregates of various different
subpopulation and that the recurrences range over many such steps. However although
such necessary embellishments lead to polynomials of much higher degree and dramatically
longer vectors of donations, the form of these polynomials and their calculability nevertheless
scales up under very general conditions. The nature and construction of these recurrences,
as a function of various types of hypotheses and assumptions, are now well documented and
discussed in detail in [22]. In the most complex scenarios these recurrences can be still often
be expressed in terms of relationships between high dimensional tensors.

5. Conclusions & Future Research

Currently we are well on the way to building a working integrating decision support
system to address issues of food poverty. We have found that most components of the system
can be plausibly structured so that each panel component is distributed. We are beginning
to discover that quite decent support can be given on the basis of a rather small scale digest
of the processes with a total of a few hundred inputs needed from our panels where some of
these inputs can be supplied in very routine and transparent ways. So, at least within this
domain, the integration of the various probability distributions is feasible and the supporting
evaluation can be made to be very quick. We are finding that the impact of judgements at
the end of the chains have the biggest impact on the scoring and so currently we are initially
concentrating on eliciting and modelling these. Rather interestingly the elicited attributes
seem to have close parallels to areas of responsibility that have been independently defined
by various local government councils. When, as here, the assessment of attributes already
has an obvious owner the elicitation of the judgments and utilities is obviously much more
straightforward.

The inferential foundational issues on which this paper focuses appear particularly in-
teresting. Firstly we see here that although the analyses we present here are designed to be
shared by many agents and observers the system is nevertheless in no sense "objective". To
set up uninformative priors and "let the data speak for itself" is clearly impossible in this
type of setting: so much strong domain knowledge and so many domain judgments would
be needed before anything sensible could be delivered by the IDSS. What we can build is in-
stead a system based on a kind of benchmark subjectivity which captures all that can be said
unambiguously: the agreed common knowledge structure collated together with all admitted
supporting information form the different expert panels. It represents the expressed shared
judgment of all participants when they trust one anther’s particular expertise and need to be
able to be confident that they can justify their choices. We would argue in fact that this is
perhaps more useful than something labelled as objective and has interesting links to Smet’s



ideas [35] of pignistic probability: a gathering of assessments based on what can be agreed
before discussions and divergence of opinions take place. Note, in particular, that casting
inference in terms of decision support places people rather than outputs from hard wired
algorithms at the center of the decision making process which we believe is most appropriate
to inference within large systems: essentially seeing this as an activity best addressed by
applied statisticians rather than machine learners. In what we describe above probability
model outputs have a vital but secondary role to the underlying decision making processes.

Secondly the sorts of formalisms we introduce here need not be conventionally Bayesian.
Any reasoning system which satisfies the semigraphoid axioms has the potential for providing
the basis of an IDSS of the type we discuss above. The main reason we have focused on prob-
abilistic systems here is simply because these are widespread and have been demonstrated to
be provenly useful over a wide range of application. However other methods based on belief
functions or linear Bayes methods [17] could, perhaps, prove even more effi cacious. The
latter option might be especially attractive because it would allow further simplifications of
the inferential structure. Only transparently justified statements would then be used within
the different panel’s accommodation of information. We are currently exploring the effi cacy
of such methods.

Finally because we have discovered that collection of polynomial equations so often de-
scribe the embellished structure of an IDSS, it appears that often techniques using computer
algebra [3],[5] provide an especially useful framework for determining the donations needed
by the different panels. Techniques borrowed from algebraic and differential geometry can
be applied both to construct bespoke effi cient algorithms for quickly computing the scores
the center might need in huge systems and also for formally studying the robustness of eval-
uations to various types of perturbations. For some recent initial work in this area see [25]
and [26].
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