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Abstract
A novel solution to the smoothing problem for multi-object dynamical systems is proposed and evaluated. The systems of
interest contain an unknown and varying number of dynamical objects that are partially observed under noisy and corrupted
observations. In order to account for the lack of information about the different aspects of this type of complex system,
an alternative representation of uncertainty based on possibility theory is considered. It is shown how analogues of usual
concepts such as Markov chains and hidden Markov models (HMMs) can be introduced in this context. In particular, the
considered statistical model for multiple dynamical objects can be formulated as a hierarchical model consisting of condi-
tionally independent HMMs. This structure is leveraged to propose an efficient method in the context of Markov chain Monte
Carlo (MCMC) by relying on an approximate solution to the corresponding filtering problem, in a similar fashion to particle
MCMC. This approach is shown to outperform existing algorithms in a range of scenarios.

Keywords Possibility theory · Markov chain Monte Carlo · Simulated annealing · Multi-target tracking

1 Introduction

We consider the problem of performing inference for multi-
object dynamical systems under partial, corrupted and noisy
observations. This class of problems, known as multi-target
tracking in the engineering literature (Fortmann et al. 1980;
Mahler 2003; Vo et al. 2014), arises in many applications,
e.g. bio-imaging (Chenouard 2014), robotics (Mullane et al.
2011) and surveillance (Benfold and Reid 2011), which can
all benefit from principled inference solutions in different
ways: i) when the number of objects is too large to be treated
by hand, ii) when the phenomena of interest take place on
extended periods of time or, conversely, when an immedi-
ate response is needed, iii) when the data available about
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each object are scarce and iv) when it is difficult to tell one
object from another. One of the main difficulties with the
considered type of system is that the number of objects is not
known a priori and might vary in time due to a birth-death
process. Also, objects are observed under multiple perturba-
tions: i) each object might or might not be detected, ii) if
an object is detected then its state is only partially observed
and the observation is subject to noise and iii) observations
not related to any object, referred to as false alarms, are also
received. Themain taskwhen inferring the number of objects
in a given system as well as their respective state is to solve
the data association problem, that is, to estimate whether
or not observations at different time steps originate from
the same object. Each of the above-mentioned perturbations
incurs a significant increase in the size of the set of all possible
data associations, making it highly combinatorial. Due to this
combinatorial nature, the task of estimating the current state
of all objects based on all previous observations, referred to
as multi-object filtering, is a difficult problem. It has been an
active research topic for several decades and continues to be
challenging in spite of the ever-increasing available computa-
tional resources (Fortmann et al. 1980; Vo et al. 2014). In this
article, we aim to tackle the even harder problem of multi-
object smoothing, that is, our objective is to keep evaluating
the likelihood of data associations at previous times in light
of newly received data. This is an important problem in prac-
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tice since the elicitation of objects’ trajectories and origins is
fundamental for the evaluation of the objects’ identities and
of the associated situational awareness. Indeed, knowing the
current state of each object is not sufficient in many situ-
ations and maintaining an up-to-date estimate of their past
trajectories is often crucial. For instance, in defence applica-
tions, if an object labelled as “ally” crosses path with another
object labelled as “enemy”, then being able to tell one from
the other at a later time can be more critical than having an
accurate estimate of their state at that time.

In the context of filtering, one of the most natural ways of
improving the trajectory estimates over the last few time steps
is referred to as fixed-lag smoothing, where a sliding window
made of a given number of time steps is updated based on the
latest observations. The advantage with fixed-lag smoothing
is that the computational cost can easily be tuned by select-
ing an adequate lag. However, since our objective is to elicit
particular events that might have taken place at arbitrary time
steps, we consider instead a “batch” alternative where a user-
defined time window of interest is fixed. It would be possible
to extend our approach in order to make it suitable for online
estimation, e.g. by running the proposed MCMC chain over
a fixed lag for some or all iterations of a suitable online esti-
mation algorithm in order to further explore the set of data
associations; this extension is kept for future work. Further
generalisations of our approach could consider smoothing
on an infinitely growing time interval; however, this would
require improving the current understanding of the statistical
properties of multi-object systems (Houssineau et al. 2019b)
in order to leverage the corresponding forgetting properties.

Defining a standard statistical model for representing
multiple objects requires setting a number of probability dis-
tributions and parameters to characterise the different aspects
of the problem, including highly uncertain phenomena such
as false alarms. Such models also usually ignore the dis-
parity between the different objects of interest in terms of
behaviour and detection profile. In this article, we consider
an alternative representation of uncertainty (Houssineau
et al. 2019a; Houssineau 2018b), based on possibility the-
ory (Dubois and Prade 2015), that allows for acknowledging
the lack of information about the different aspects of multi-
object dynamical systems with the objective of increasing
the robustness to misspecification of the derived solutions.
The considered representation of uncertainty has links with
imprecise probabilities (Walley 1991) and Dempster–Shafer
theory (Dempster 1967; Shafer 1976).

Our motivation for using possibility theory in this work
stems from the provided ability to assess the consistency
between a model and an observation via the marginal likeli-
hood rather than the associated fitness of the model as with
probability theory. The difference is that greater uncertainty
in the model yields greater consistency but smaller fitness.
This notion of consistency can be related informally to a

model-based spatio-temporal distance between observations,
and is key when exploring the set of all possible data associ-
ations.

The use of MCMC to solve data association problems has
been previously explored in Oh et al. (2009) as well as in
Vu et al. (2014), Jiang et al. (2015) and Jiang and Singh
(2018). The approach considered in these articles is based
on local proposals in the set of data association, with Vu
et al. (2014), Jiang et al. (2015) and Jiang and Singh (2018)
additionally considering the estimation of the object’s trajec-
tories. The objective in this article is to show that a suitable
trade-off can be found between proposing global moves and
maintaining a reasonable probability of acceptance of each
move. This result is achieved by leveraging the efficiency
of an approximate multi-object filtering method. The use
of MCMC in discrete spaces is discussed more generally
in Zanella (2019). MCMC has also been used in conjunc-
tion with, or as a replacement of, sequential Monte Carlo
in the context of filtering for single-object systems (Gilks
and Berzuini 2001) and multi-object systems (Khan et al.
2005; Septier et al. 2009; Carmi et al. 2012; Maroulas and
Stinis 2012; Bao and Maroulas 2017); however, this type of
approach is less directly related to the method proposed in
this article.

Overall, the contributions of the articles are as follows: i) a
full multi-object model is defined in the context of possibility
theory, building up on the components of single- and multi-
object models of Ristic et al. (2020) andHoussineau (2018a);
ii) a possibilistic analogue of the scalable solution to multi-
object filtering ofHoussineau andClark (2018) is introduced;
iii) the tools of possibility theory are used to define a suitable
structure on the set of data associations; and iv) a new effi-
cient MCMC-based solution for the multi-object smoothing
problem is introduced and its performance is demonstrated.

The proposed statistical model for representing multi-
object systems is described in Sect. 2. This is followed by the
presentation of the proposed method for exploring the set of
data association in Sect. 3, before considering an extension
of this approach in Sect. 4. The performance of the proposed
method is then assessed on simulated data in Sect. 5.

2 Model

We consider a fixed number K of time steps and assume
without loss of generality that time steps take integer val-
ues between 1 and K . At each time step k ∈ {1, . . . , K }, a
set of observations Zk is received, containing both object-
originated observations and false alarms. Each observation
in the set Zk is an element of an observation set Z, which
is assumed to be a subset of RdZ , where dZ is the number of
components of each observation, e.g. dZ = 3 for a radar mea-
suring range, azimuth and Doppler shift. In order to model
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that an object might not be detected, we introduce the nota-
tion φ for the empty observation, that is, an object for which
detection has failed is associated with the empty observation
φ. We assume, as is standard, that an object cannot gener-
ate more than one observation at each time step. Therefore,
denoting Z̄k = Zk ∪{φ} the set of observations at time k aug-
mented with the empty observation for any k ∈ {1, . . . , K },
any sequence of observations generated by an object through
the K time steps of the scenario can be seen as an element of

OK = Z̄1 × · · · × Z̄K \ {φ}K

where the sequence of observation containing empty obser-
vations only is not considered. Elements of OK are also
referred to as observation paths or simply as paths. Multi-
object data association can then be seen as the problem of
determining the probability for all the paths in a given subset
of OK to be the true paths of objects in the system under
consideration; i.e. we are interested in the joint detection and
tracking of all objects. Another standard assumption about
multi-object systems is that each observation cannot origi-
nate from more than one object; as a consequence, not all
subsets of OK are considered feasible and we focus on the
setA of subsets ofOK such that for any set A ∈ A, any two
different observations paths o and o′ in A must verify that
either ok = o′

k = φ or ok �= o′
k for all k ∈ {1, . . . , K }, where

ok denotes the kth element of the path o. Less formally, ele-
ments of A only contain paths that are different where they
are not both equal to the empty observation. In practice, it
might happen that a single object generatesmultiple observa-
tions, e.g. if it spans several resolution cells, or that multiple
objects generate a single observation, e.g. if they are within
the same resolution cell, these generalisations significantly
increase the complexity of the problem and are kept for future
work. The setA, in spite of being a strict subset of the power
set ofOK , has a large cardinality and evaluating the credibil-
ity of each of its elements by exhaustion can be difficult even
when the number of observations at each time step is small.
Assuming, for simplicity, that the number of observations at
every time step is constant and equal tom, the number of ele-
ments in the power set of OK is equal to 2m

K − 1, which is
prohibitively large even for toy problems. It is generally dif-
ficult to devise algorithms that perform inference on a large
discrete space such as A, yet, MCMC methods can help to
address part of this challenge since they only require being
able to evaluate the credibility of a given association A ∈ A
proposed via some user-defined transition kernel.

In practice, we also need to estimate the interval of exis-
tence of each object. For this purpose, we introduce a set T
which is similar to A except that each path o will be paired
with a time of appearancem ∈ {1, . . . , K } and the last time of
existencen ∈ {m, . . . , K }; the tuple (o,m, n)will be referred
to as a track since all the observable characteristics of the cor-

responding hypothetical object can be estimated using this
tuple. Formally, for any set T ∈ T, any track t = (o,m, n)

in T must verify ok = φ for any k /∈ {m, . . . , n} and, for any
(o′,m′, n′) in T different from (o,m, n), it must hold that
either ok = o′

k = φ or ok �= o′
k for all k ∈ {1, . . . , K }, as

for data associations. We denote by κ the function extract-
ing paths from tracks, that is, κ(t) = o for any track t with
path o.

2.1 Uncertain variable and possibility function

We consider the representation of uncertainty described in
Houssineau et al. (2019a) which can be used as an alternative
to subjective probabilities in a statisticalmodel. The objective
of this representation of uncertainty is to model information
rather than randomness and therefore to address common
issues with statistical modelling for complex systems and
with the use of subjective probabilities. In the context of
multi-object systems, some of these issues are:

1) the associated models are hierarchical which precludes
the use of improper priors on the first level of this hierar-
chy;1 however, there is often no prior information on the
location of appearing objects which means that uninfor-
mative priors are needed;

2) as with many complex systems, there are a large number
of parameters which are not necessarily known in prac-
tice and learning these parameters is both challenging
computationally and potentially useless if they are likely
to change drastically from one time step to the other; this
is for instance the case with the probability of detection;

As will be shown in the next few sections, the proposed
approach allows for addressing these issues while preserving
most of the usual intuitivemechanisms inBayesian inference.

We model a fixed but unknown quantity as a mapping x
from a sample space � to a set X, referred to as an uncertain
variable. The difference with a random variable is that � is
not defined as a probability space and the value x∗ of the
unknown quantity is not seen as the realisation of a “true”
underlying probability distribution; instead, there is a refer-
ence element in �, denoted ω∗, such that x(ω∗) = x∗. This
modification implies that uncertainty should bemodelled dif-
ferently and we consider the approach where the information
about the true value of x is represented by a non-negative
function fx on X verifying supx∈x fx(x) = 1, referred to as
a possibility function. In this context, instead of defining the
probability of an event X ∈ A for some subset A ⊆ X as

1 An improper prior contains an arbitrary constant which is not com-
pensated for in the hierarchical Bayes rule since other terms with proper
priors also appear; this arbitrary constant therefore remains in the pos-
terior, which is not acceptable.
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∫
A pX (x)dx for some random variable X ∼ pX , we define

the credibility of the event x ∈ A as P̄(A) = supx∈A fx(x).
The notion of credibility can be illustrated by the two extreme
cases: if P̄(A) = 0 then the event x ∈ Ac = X \ A hap-
pened almost surely, whereas if P̄(A) = 1 then there is no
information against the event x ∈ A. (However, it might
also hold that P̄(Ac) = 1 as opposed to the probabilistic
case.) Possibility functions are not characterised by their cor-
responding uncertain variables, and instead, we say that the
possibility function describes the uncertain variable. If y is
another uncertain variable in a set Y and if x and y are jointly
described by the possibility function fx, y then y is described
by the marginal possibility function

f y(y) = sup
x∈X

fx, y(x, y), y ∈ Y.

Assuming that f y(y) > 0 for some given y ∈ Y, the condi-
tional possibility function describing x given that y = y is
defined for any x ∈ X as

fx(x | y) = fx, y(x, y)

f y(y)
= f y(y | x) fx(x)

supx ′∈X f y(y | x ′) fx(x ′)
,

which is the analogue of Bayes’ theorem for possibility func-
tions (De Baets et al. 1999). In this context, we will refer to
fx and fx(· | y) as the prior and posterior possibility func-
tions, respectively, and f y(y | ·) will be called the likelihood
function; similarly, f y(y) will be referred to as the marginal
likelihood. If it holds that fx, y(x, y) = fx(x) f y(y) for all
(x, y) ∈ X × Y, then x and y are said to be independently
described. This form of independence only implies that the
information about x is not related to the information we hold
about y.

A notion of expected value can be defined for possibil-
ity functions via the corresponding law of large numbers of
Houssineau et al. (2019a) as

E
∗(x) = arg supx∈X fx(x).

Another useful notion of expected value, which is the direct
analogue of the standard expected value, can be defined for
any real-valued function ϕ on X as

Ē(ϕ(x)) = sup
x∈X

ϕ(x) fx(x).

The scalar Ē(ϕ(x)) can be interpreted as the maximum
expected value of ϕ(x). If the expected value Ē(x) is inter-
preted as the first moment, then E

∗(x) can be seen as the
argument of the supremum in the zeroth moment Ē(x0) =
supx∈X fx(x) = 1.

Many concepts and results holding for probability distri-
butions can be used for possibility functions. For instance,

if Y = X = R and if the likelihood function is a normal
possibility function, i.e.

f y(y | x) = exp
(

− 1

2σ 2 (y − ax)2
)

.= N(y; ax, σ 2)

for some a ∈ R and some σ > 0, then one can show that
the posterior is also a normal possibility function if the prior
fx is normal. In other words, the concept of conjugate priors
makes sense. This result can be extended to the multivariate
case, and it has been shown inHoussineau and Bishop (2018)
that the posterior expected value and variance of the Kalman
filter can be recovered with possibility functions.

If the objective is to find the subjective probability p(B)

of some event x ∈ B for some measurable subset B of X,
then the credibility supx∈B fx(x) can be seen as an upper
bound for this subjective probability, and we find that

1 − sup
x∈Bc

fx(x) ≤ p(B) ≤ sup
x∈B

fx(x). (1)

Since x is not random, we emphasise that p(B) is a sub-
jective probability; that is, p(B) only captures a degree of
belief for the event x ∈ B rather than a probability in the
strict sense (e.g. as a limiting frequency for that event). Equa-
tion (1) implies that the possibility function 1, which is equal
to 1 everywhere on X, is the least informative; this unin-
formative possibility function is well defined even when X
is unbounded. Another consequence of (1) is that an alter-
native possibility function f ′

x for x can be seen as being
less informative than fx if f ′

x(x) ≥ fx(x) for any x ∈ X;
indeed, the bounds in (1) will be wider with f ′

x . This is
related to the notion of credal set that is common in pos-
sibility theory (Dubois and Prade 2015). It is also possible to
interface uncertain variables and random variables in order
to introduce more sophisticated representations of uncer-
tainty involving both lack of information and randomness
(Houssineau 2018b). However, we will argue that all the
elements of the introduced statistical model can be seen as
deterministic so that only possibility functions will be used.
Our approach has connections with the treatment of single-
object dynamical systems based on random set theory, see,
e.g. (Mahler 2007) where generalised likelihood functions
are suggested. Our contribution is the modelling of the entire
multi-object system with possibility functions.

2.2 Multi-object model

We first introduce the assumptions and notations for mod-
elling the way objects appear, behave and disappear in
Sect. 2.2.1 before moving on to the considered sensor mod-
elling in Sect. 2.2.2. Most of the assumptions are standard in
the field of multi-object estimation.
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2.2.1 Object and population dynamics

We consider the case where there is no information about
some or all of the components of the state of appearing
objects. Typically, there might be no prior information about
the position of objects, whereas assumptions can be made
about the velocity components. Denoting m ∈ {1, . . . , K }
the time step at which a given object has appeared, the state
at this time step is represented by an uncertain variable xm in
a space X ⊆ R

dX described by a possibility function f0. With
probabilistic modelling, improper priorsmight be required in
order to model the absence of information about appearing
objects; however, the hierarchical nature of multi-object esti-
mation implies that improper priors cannot be used without
adding heuristics at the level of data association (Houssineau
and Laneuville 2010; Ristic et al. 2012).

We consider that there is a non-negligible heterogeneity
between the dynamics of the different objects and that the
characteristics of the objects’ motion is not necessarily well
known. As a consequence, and recalling that n is the last time
step of existence of the object, we model the trajectory of an
object as a sequence of uncertain variables {xk}nk=m+1 on X
such that, for any k ∈ {m + 1, . . . , n}, xk is described by a
possibility function fxk (· | xm, . . . , xk−1) satisfying

fxk (xk | xm, . . . , xk−1) = gk(xk | xk−1), xk ∈ X,

for some possibility function gk(· | xk−1) on X. This is an
analogue of the Markov property for uncertain variables.

We take into account the fact that objectsmight completely
disappear from the scene before the last time step, in which
case we say that the object has “not survived”. This could be
seen as a convenient way of dealing with objects that are no
longer detectable by the sensor(s). Since object’s dynamics
is modelled via uncertain variables, we also model object
survival as deterministic. The respective credibilities for an
object with state x ∈ X to survive or not survive to the next
time step are denoted αs(x) and αns(x). These credibilities
must verify max{αs(x), αns(x)} = 1 for any x ∈ X. We
consider the case where αs = 1, i.e. αs(x) = 1 for any x ∈ X,
since we want to model that objects are unlikely to disappear
right after appearing, for which we need to set αns(x) � 1
for any x ∈ X. The subjective probability of survival for an
object with state x ∈ X is therefore restricted to the interval
[1 − αns(x), 1].

Given the introduced model and notations, the joint cred-
ibility of a trajectory xm:n = (xm, . . . , xn) ∈ Xn−m+1 and
of the corresponding last time of existence n ∈ {1, . . . , K }
for an object that is known to appear at time step m can be
characterised by the possibility function

g(xm:n, n |m) =

f0(xm)αns(xn)
1(n<K )

n∏

k=m+1

gk(xk | xk−1),

where 1(e) equals 1 if e is true and 0 otherwise.
There are several possible models for the number of

appearingobjects per time step.The simplest is to assume that
the credibility for an object to appear at time k ∈ {1, . . . , K }
is αk,+ and that this aspect can be independently described
for all objects. The credibility fk,+(M) for M objects to
appear at time step k is then fk,+(M) = αM

k,+. Additional
information might, however, be available about appearing
objects, such as a maximum number Mk,+ at time step k,
in which case credibility for M objects to appear would be
1(M ≤ Mk,+)αM

k,+.

2.2.2 Observation

Most sensors acquire information about the objects of inter-
est by measuring some signal over an array of resolution
cells. This is the case for cameras, where these resolution
cells are pixels, but also for most radars and sonars (Skolnik
1990). Considering for instance the case of a radarmeasuring
range and azimuth, the internal processing of the radar image
yields a set of resolution cells where the strength of the sig-
nal suggests the presence of an object in the corresponding
directions and at the specified distances. In addition, objects
are often extended and the signal can originate from different
edges and/or surfaces depending on their (unknown) orien-
tations. As a consequence, we model the observation process
via uncertain variables and consider the following form for
the likelihood function:

	k(z | x) = exp
(

− 1

2
(z − hk(x))

ᵀR−1
k (z − hk(x))

)

.= N(z; hk(x), Rk),

for any z ∈ Z, where Rk is a dZ × dZ symmetric positive-
definite matrix related to the size and shape of the resolution
cells (assumed constant in Z). The difference between this
normal possibility function and the corresponding normal
probability distributionwould notmatter in a standard single-
object tracking scenario since normalising constants would
simplify in Bayes’ theorem; however, in multi-object track-
ing, these constants are important since they appear in the
assessment of data associations. The credibility for an object
with state x ∈ X to be detected is denoted αd(x) and, simi-
larly, the credibility of a detection failure is denoted αnd(x).
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Since it must hold that max{αd(x), αnd(x)} = 1 for any
x ∈ X, we will assume that αd = 1 and αnd(x) � 1 so
that it is unlikely for an object to remain undetected. Given
a trajectory xm:n of an object appearing at time step m and
disappearing after time step n, we assume that the uncertain
variables {zk}nk=m modelling the observation in Z ∪ {φ} are
conditionally independent given xm:n = xm:n , it follows that
the likelihood function for a path o ∈ OK is

	(o | xm:n,m, n) =
n∏

k=m

αnd(xk)
1(ok=φ)	k(ok | xk)1(ok �=φ).

Overall, we have the analogue of a HMM for each object
where the sequence of uncertain variables {xk}nk=m has the
Markov property and where observations are conditionally
independent given {xk}nk=m .

The credibility for an observation z ∈ Z at time k ∈
{1, . . . , K } to be a false alarm is denoted αk,fa(z), which
will be assumed to be strictly lesser than 1; indeed, if there is
no information on false alarms, then the data associationwith
highest credibility will be the one defining all observations
as false alarms. The credibility for a given finite subset Z of
observations in Z to be false alarms is then

fk,fa(Z) =
∏

z∈Z
αk,fa(z).

As a possibility function on sets, fk,fa must verify that
supZ⊆Z fk,fa(Z) = 1.

2.3 Target possibility function

We now introduce the posterior possibility function on the
set T describing the unknown set of tracks, based on the
model detailed in Sect. 2.2. For this purpose, we consider
a track t = (o,m, n) and start by defining the credibility
π(o, n |m) of the pair (o, n) given the time of appearance
m ∈ {1, . . . , K } as

π(o, n |m) = sup
xm:n∈Xn−m+1

	(o | xm:n,m, n)g(xm:n, n |m).

Other aspects such as false alarms and initial observations
must be considered jointly. We denote by ffa the function
defined on A as

ffa(A) =
K∏

k=1

fk,fa(Zk,fa(A)), A ∈ A,

where Zk,fa(A) = {z ∈ Zk : ∀o ∈ A, z �= ok} is the set of
false alarms induced by A at time step k. We also introduce

f+ as the function on T defined as

f+(T ) =
K∏

k=1

fk,+(Mk(T ))

where Mk(T ) = �{(o,m, n) ∈ T : m = k} is the number
of objects appearing at time step k ∈ {1, . . . , K }. The func-
tions ffa and f+, defined, respectively, on A and T, are not
possibility functions; instead, they are simply the joint cred-
ibility for observations that are not in a given element of A
to be false alarms and for tracks that are in a given element
of T to have appeared at the indicated time steps. The target
possibility function, i.e. the posterior possibility function Π

on T describing the unknown set of tracks, is then expressed
for any T ∈ T as

Π(T ) ∝ ffa(κ(T )) f+(T )
∏

(o,m,n)∈T
π(o, n |m), (2)

and is such that maxT∈T Π(T ) = 1. The marginal likelihood
for the set of paths A = κ(T ) is then defined as

Π̂(A) = max{Π(T ) : T ∈ T, κ(T ) = A}. (3)

3 MCMC for data association

3.1 Computational aspects of possibility theory

Approximation methods for possibility functions must be
devised in order to solve the corresponding inference prob-
lems in general. Grid-based methods have the same short-
comings as in the probabilistic case since it is often difficult
to anticipate where the posterior possibility function will
take non-negligible values. We propose to use MCMC with
a suitably designed proposal distribution in order to explore
credible data associations and attempt to find the global max-
imum and/or regions of high credibility. In this case, there is
no requirement of targeting a given probability distribution
and there is no concern regarding the independence between
samples. One of the consequences is that low-discrepancy
sequences can be used instead of pseudorandom numbers.
The generated chain, say {Xn}n≥1, will simply be used to
approximate the expected value

Ē(ϕ(x)) ≈ max
n≥1

ϕ(Xn) fx(Xn),

for any real-valued function ϕ on X. As opposed to the stan-
dard Monte Carlo approximation, the possibility function
fx appears explicitly in the expression of Ē(ϕ(x)) since
the density of samples in a given area conveys no informa-
tion about fx ; instead, the chain {Xn}n≥1 simply provides
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support points for the approximation of fx as a function.
Although the empirical distribution of the samples generated
by the MCMC chain is not relevant in this context, the use of
MCMC remains beneficial since the underlying mechanisms
yield an efficient exploration of the set of data associations
which would otherwise be challenging. This is an example
of synergy between probability theory and possibility theory
where the former helps computing quantities appearing in
the latter by leveraging random exploration. Once the most
likely data association A∗ has been found, the credibility of
any other data association A ∈ A can be computed exactly;
this would require summing over all data associations in the
probabilistic case, which is not usually feasible. If only a
local maximum A′ �= A∗ is found, the credibility of other
data associations will be over-estimated, which is conserva-
tive according to the interpretation associated with (1) and
therefore acceptable in practice.

If only the expected value E∗(x) of x is of interest, then
the possibility function f γ

x for some γ > 1 can be used
instead. The considered power can also be increased during
the execution of the MCMC, leading to a simulated anneal-
ing. Conversely, if one is interested in identifying the subset
of X containing at least 100(1− α)% of the subjective prob-
ability mass defined in (1), then areas where fx has value α

must also be explored, hence justifying the use of a power γ

strictly lesser than 1.
When using the possibility function f γ

x in a MCMC algo-
rithm, it is the probability distribution on X defined as the
renormalised version of f γ

x that is targeted (assuming f γ
x is

integrable). This is not, however, the only possible approach.
Indeed, (1) suggests that a possibility function can be seen
as inducing an upper bound for probability distributions. It
follows that selecting the sampling distribution from the set
of upper-bounded probability distributions is also meaning-
ful. A particular choice that is appropriate in many settings
is to follow the maximum-entropy principle (Jaynes 1957)
and consider the maximum-entropy distribution that is upper
bounded by fx as in (1), as proposed inHoussineau andRistic
(2017). When X is discrete, it is possible to further increase
the entropy by replacing the set-wise upper bound of (1) by
a point-wise upper bound of the form p(x) ≤ fx(x), x ∈ X,
with p a probability mass function on X. This approach will
be particularly useful in the context of multi-object inference
since it will lead to an increase of the diversity of explored
data associations when compared to sampling from the dis-
tribution proportional to fx .

Overall, our approach provides a trade-off between the
standard probabilistic modelling where all aspects of the
problem must be characterised and model-free methods,
see, e.g. (Sgouralis et al. 2017), which rely on minimalistic
assumptions about the underlying dynamics. This trade-off
can be beneficial in situationswhere onewants to leverage the

available information without describing phenomena such as
false alarms which are often challenging to characterise.

3.2 Problem formulation

The objective in the remainder of this section is to design a
proposal distribution for identifying the mode of the possi-
bility function Π̂ defined in (3) via the Metropolis–Hastings
algorithm. We assume for the moment that this proposal dis-
tribution is given and express it as aMarkov kernelΦ fromA
to itself. A natural starting point for exploring the setA is to
consider the case where all observations are false alarms, that
is, we start from the element A = ∅ ∈ A. We first assume
that Π̂ can be evaluated everywhere so that, given a previous
sample A, a new sample A′ can be obtained from the proba-
bility distribution Φ(· | A) and accepted with probability

α̂t (A, A′) = min

(

1,
Π̂(A′)ρtΦ(A | A′)
Π̂(A)ρtΦ(A′ | A)

)

, (4)

where t is the current iteration and ρt is the inverse temper-
ature defined by ρ0 = 1 and ρt = ρt−1/(1 − c) for some
constant c.

The main difficulty with the Metropolis–Hastings algo-
rithm in the context of interest is to design a proposal
distribution Φ with adequate properties. In particular, there
are two issues with this approach which we will aim to solve
in the remainder of this section:

i) The possibility function Π̂ on A is highly multimodal
in general so that moves that are local both in space and
time are unlikely to yield a sufficient exploration of the
space.

ii) Implementing moves on entire paths in the setOK would
be more global in nature; however, this requires the non-
trivial introduction of additional structure on this set.

These two issues will be addressed in Sects. 3.3 and 3.4,
respectively. Section 3.5 will then detail the construction of
the proposal distribution Φ. Extensions of the MCMC algo-
rithm introduced for Π̂ to the possibility function Π on T
will be covered in Sect. 4.

3.3 Approximatemulti-object filtering

As is usual withMCMCalgorithms, the objective is to design
a proposal distribution that explores the set A as quickly
as possible while maintaining a reasonable probability of
acceptance. To this effect, we propose to use a multi-object
filter to ensure that any proposed association is meaningful
from the viewpoint of the model. The motivation for leverag-
ing the capabilities of an approximate filtering algorithm to
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solve the corresponding smoothing problem is very similar
to the one behind particle MCMC (Andrieu et al. 2010). The
corresponding moves that we will construct will be global
in the sense that they might affect all time steps but local
in the sense that only a restricted number of paths will be
(re)assigned. The considered filtering algorithm should have
a low complexity in order to limit the computational cost of
the overall MCMC algorithm. A possible candidate could
therefore be the probability hypothesis density (PHD) filter
(Mahler 2003) or its analogue in the context of possibility the-
ory (Houssineau 2018a). However, the PHD filter does not
solve the data association problem explicitly and, as a conse-
quence, cannot be formally used to propose paths. Instead,we
consider an analogue of the hypothesised filter for stochas-
tic populations (Houssineau and Clark 2018), or HISP filter,
which is of the same complexity as the PHD filter and which
allows for distinguishing objects.

At time step k ∈ {1, . . . , K }, the HISP filter extends a
set of paths Ok−1 ⊆ Ok−1 = Z̄1 × · · · × Z̄k−1 \ {φ}k−1

with the new observations in Z̄k and computes the marginal
probability of each association between paths in Ok−1 and
observations in Z̄k . The standard version of the algorithm
would consider all data associations with non-negligible
marginal probability and proceed to the next time step.
Instead, we consider a modified version of the algorithm
where a single observation in Z̄k−1 is selected at random for
each path in Ok−1; this allows for keeping constant the num-
ber of considered paths through all time steps. We also use
the modelling based on possibility functions introduced in
the previous sections instead of the probabilistic modelling
considered in Houssineau and Clark (2018). The different
steps of this modified HISP filter are given in the following
sections.

The context is as follows: denoting A the current state
of the MCMC chain, we aim to reassign a subset Ar of A
by using the HISP filter. This implies that the other paths
in A \ Ar are not to be modified. However, since a given
observation can only appear in a single path, it follows that
the observations contained in the paths in A \ Ar cannot be
used when reassigning paths in Ar. As a consequence, only a
subset of all observations can be used within the HISP filter
and this subset is denoted Z−

k at time step k ∈ {1, . . . , K }.
We will assume in this section that the credibility αnd of
detection failure and the credibility αns of non-survival are
constant over the state space for the sake of simplicity; as
opposed to the probabilistic case, this can be achieved in
general by selecting the (constant) credibility of detection
failure to be supx∈X αnd(x) and similarly for the credibility
of non-survival. This operation can be seen as a voluntary
loss of information with the purpose of gaining a property
of interest: we forgo specific spatial information regarding
detection and survival in order to make αnd and αns constant
and allow a Gaussian implementation to be used.

3.3.1 Initialisation

We assume that, when reassigning the set Ar of paths, the
MCMC algorithm specifies when and at which observations
the new paths should start. The corresponding set is denoted
Zc = {(zic, kic)}Nc

i=1 with, for any i ∈ {1, . . . , Nc}, zic the
observation where one of the new paths should start and with
kic the corresponding time step. These observations might
or might not be at the same time step but the pairs (zic, k

i
c),

i ∈ {1, . . . , Nc}, are assumed to be different from each other.
A pathwill be initialised every time one of these observations
is encountered in the sets of observation Z−

0 , . . . , Z−
K .

3.3.2 Prediction

We denote by Ok−1 the set of paths at time k − 1, that is, the
subset of Ok−1 composed of paths that have been selected
so far as potential sequences of object-originated observa-
tions. To each path o ∈ Ok−1 corresponds a possibility
function fk−1(· | o) on the state space X. Recalling that gk is
the Markov transition from X to itself describing the objects’
dynamics, we obtain the predicted possibility function

fk|k−1(x | o) = sup
x ′∈X

gk(x | x ′) fk−1(x
′ | o), x ∈ X.

Such a prediction only considers the event where the object
survives to the kth time step although it is possible for objects
to disappear.We postpone considerations of this aspect of the
prediction to a further stage in the algorithm.

3.3.3 Update

At time step k, the set of observations Z−
k is available to

update the existing paths. For any path o in the set Ok−1

of previously selected paths and for any new observation
z ∈ Z−

k ∪ {φ}, the posterior possibility function associated
with the extended path o : z, with “:” denoting concatenation,
is defined as

fk(x | o : z) =
⎧
⎨

⎩

	k(z | x) fk|k−1(x | o)
supx ′∈X 	k(z | x ′) fk|k−1(x ′ | o) if z ∈ Z−

k

fk|k−1(x | o) if z = φ.

Wecan then selectwhich observation in Z−
k ∪{φ}will be used

to propagate the path based on the credibility of the corre-
sponding association. However, before expressing the latter,
we first have to introduce the prior credibility of presence,
which depends on the consecutive number of time steps for
which the path under consideration has not been detected.
Indeed, there is some remaining ambiguity whenever the
empty observationφ is selected for a path since it is unclear in
this case whether the detection has failed for the correspond-
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ing object or the object has not survived the last prediction
step. We purposefully maintain this ambiguity and postpone
the decision in order to better estimate which of these two
events occur. Indeed, the credibility of non-survival is most
often much lower than the credibility of detection failure,
e.g. αnd = 0.1 and αns = 0.001, so that terminating a track
after a single detection failure is unlikely. Yet, if detection
failures keep occurring for l time steps, then the credibility
of the corresponding events, i.e. αl

nd for the case where the
object remains and αns for the case where the object has dis-
appeared, will rapidly favour a disappearance as opposed to
a sequence of detection failures. For any path o ∈ Ok−1, we
denote by lo the number of consecutive time steps forwhichφ

has been selected, e.g. if o is of the form (o1, . . . , ok−3, φ, φ)

with ok−3 �= φ then lo = 2. We then compute the credibility
that the corresponding object has survived/not survived since
the last detection as

α̂s(o) = α
lo
nd

αns ∨ α
lo
nd

, α̂ns(o) = αns

αns ∨ α
lo
nd

,

with a∨b
.= max{a, b} for any a, b ∈ R. The binary operator

∨ is assumed to have lower precedence than multiplication,
i.e. a ∨ bc = a ∨ (bc) for any a, b, c ∈ R.

We can nowexpress themarginal credibility of association
on Z−

k ∪ {φ} for the path o ∈ Ok−1 as

γk(z | o) ∝ Γk
(
Z−
k \ {z} | Ok−1 \ o)Lk(z | o)

for any observation z ∈ Z−
k ∪ {φ}, with

Lk(z | o) =
{

α̂s(o) sup
x∈X

	k(z | x) fk|k−1(x | o) if z ∈ Z−
k

α̂ns(o) ∨ α̂s(o)
(
αns ∨ αnd

)
otherwise

the marginal likelihood for the observation z and with
Γk(Z | O) the credibility for paths in the set O ⊆ Ok−1

to be associated with observations in the set Z ⊆ Z−
k , which

can be expressed as

Γk(Z | O) = max
σ :O→Z∪{φ} ffa(Z \ σ(O))

∏

o∈O
Lk(σ (o) | o),

where the maximum is over all mappings σ from O to Z ∪
{φ} that are injective on Z and where σ(O) is the image
of O by σ , i.e. σ(O) = {σ(o) : o ∈ O}. Although the
number of simultaneously reassigned paths will be limited
in the context of interest, the number of observations in Z
can be extremely large so that the computation of Γk(Z | O)

can be challenging. Yet, it is possible to rewrite this term by
assuming that any two paths in O are unlikely to obtain large
marginal likelihoods from a single observation in Z , that is,
for any o, o′ ∈ O such that o �= o′ and any z ∈ Z , there

exists z′ ∈ Z such that

Lk(z | o)Lk(z | o′) ≤ Lk(z | o)Lk(z
′ | o′). (5)

In the probabilistic version of this assumption (Houssineau
and Clark 2018), the left-hand side needs to be equal to 0,
which is more constraining. It follows that Γk(Z | O) can be
expressed as

Γk(Z | O) = ffa(Z)
∏

o∈O

[

Lk(φ | o) ∨ max
z∈Z

Lk(z | o)
αfa(z)

]

.

This result can be proved easily by developing the product in
the approximated expression and removing the terms where
a single observation is associated with several tracks. Using
this expression, all the terms Γk(Z

−
k \ {z} | Ok−1 \ o), for

any z ∈ Z−
k ∪ {φ} and any o ∈ Ok−1, can be calculated

with a computational complexity of order |Ok−1||Z−
k |. The

approach is similar to the one detailed in Houssineau and
Clark (2018) for the probabilistic case.

We then randomly select an observation in Zk ∪ {φ} for
each of the paths in Ok−1 by sampling from the maximum
entropy distribution induced by the marginal credibility of
association γk(· | o). There are two ways of enforcing the
modelling assumption that paths cannot contain the same
observation:

i) Use a rejection sampling strategy at the level of the HISP
algorithm to ensure that only acceptable data associations
are proposed and

ii) Completely reject the proposed data association at the
level of the MCMC algorithm if it contains overlapping
paths.

The main drawback with the first option is that calculating
the probability of proposing a given acceptable data associa-
tion is combinatorial in nature and becomes a computational
bottleneck when the number of observations is large. We
therefore consider the second option.

Finally, we initialise a new path for any (zic, k
i
c), i ∈

{1, . . . , Nc}, such that kic = k. This path is of the form
o = (φ, . . . , φ, zic).

At the last time step, a decision is taken for all observations
paths, even the one endingwith empty observations, and a set
Ac is defined as the set of all created paths. The conditional
probability for generating the set of paths Ac given the initial
observations Zc and the available observations Z

−
1 , . . . , Z−

K
is denoted Pc(Ac | Zc, Z

−
1:K ).

3.4 Structure on the set of paths

In order to help exploring the set of data associations A,
it is useful to equip the underlying set of paths OK with
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additional structure; in particular, the objective is to identify
which pairs of points in the observation space Z are likely
to be consecutive observations of the same object. The only
natural structure onOK is the one inherited from the fact that
the set Z is a subset of an Euclidean space. This is not, how-
ever, sufficient since simply measuring the distance between
two observations zk and z′k′ at two different time steps k �= k′
as ‖zk−z′k′ ‖, with ‖·‖ the Euclidean norm, does not take into
account the structure of the problem.Moreover, the notion of
distance is very model dependent and what is considered as
“close” or “far” would need to be adjusted for each scenario.
For instance, depending on how large the speed of objects is
likely to be, observations at two consecutive time steps that
are 100 meters apart might be very likely or very unlikely to
originate from the sameobject; similarly,when the credibility
of detection failure increases, the distance between observa-
tions should also decrease as objects are more likely to be
undetected for several time steps and therefore move further
before being detected again. One partial solution would be
to consider the Mahalanobis distance which can be seen as
a rescaling of the Euclidean distance based on a covariance
matrix; we aim to go further and use all the aspects of the
objects’ dynamical and observation model as a reference and
relate observations via the credibility for these observations
to be generated by the same object. These observations can
be seen as consistent if that credibility is close to 1 and incon-
sistent if it is close to 0. In order to simplify the calculations,
we assume the existence of an upper bounding function g for
the Markov transition gk such that gk(x | x ′) ≤ g(x | x ′), for
any x, x ′ ∈ X and for any k ∈ {1, . . . , K }, with g of the form

g(x | x ′) = N(x; Fx ′, Q), x, x ′ ∈ X,

for some dX × dX matrices F and Q. We also introduce a
lower bound and for the credibility of non-detection, i.e. and
is such that αnd(x) ≥ and for any x ∈ X.

We consider two time steps k, k′ ∈ {1, . . . , K } such that
k < k′ as well as two observations z and z′ at time steps k
and k′, respectively, and introduce fk′|k(z′ | z) as the possi-
bility for an object initialised from z at time step k to be next
observed at time step k′ at z′, that is,

fk′|k(z′ | z) = al−1
nd sup

x,x ′∈X
	k(z

′ | x ′)gl(x ′ | x) fk(x | z)

where l = k′ − k, where gl is the l fold convolution of the
transition g, that is, for any xk, xk′ ∈ X,

gl(xk′ | xk) = sup
xk+1,...,xk′−1∈X

g(xk′ | xk′−1) . . . g(xk+1 | xk)

and where fk(· | z) is the posterior possibility function
defined as

fk(x | z) = 	k(z | x) f0(x)
supx ′∈X 	k(z | x ′) f0(x ′)

, x ∈ X.

The possibility function gl(· | xk) is an upper bound for the
convolution of theMarkov transitions gk+1, . . . , gk′ . Assum-
ing that fk(· | z) = N(mz,Σ0) and denoting by Σl the
covariancematrix after l predictions, e.g.Σ1 = FΣ0Fᵀ+Q,
then the possibility function fk′|k(· | z) can be written

fk′ |k(z′ | z) = al−1
nd N(z′; Hk′,z,l F

lmz, Hk′,z,lΣl H
ᵀ
k′,z,l + Rk′ )

where Hk′,z,l is the Jacobian of hk′ at the point Flmz . The
function fk′|k can be easily extended to Z ∪ {φ} by defining
fk′|k(· | φ) = fk′|k(φ | ·) = 0.

Example 1 To illustrate the use of the notion of consistency
provided by fk′|k , a simple scenario consisting of five objects
is considered as in Fig. 1a. For each observation z ∈ Zk

at some time step k ∈ {1, . . . , K }, we compute a marginal
credibility for z as

f̂k(z) = max
k′:k′>k

(
max
z′∈Zk′

fk′|k(z′ | z)
)
. (6)

The scalar f̂k(z) can be interpreted as the credibility for
z to be followed by another observation in Zk′ for some
k′ > k. When creating a new track, we can then define
the probability for selecting z as the first observation of the
new track as a function of f̂k(z). A scatter plot displaying
these credibilities for all observations is shown in Fig. 1b.
As mentioned in the caption of Fig. 1, the superposition
of observations at all times means that the spatio-temporal
aspect of the data is not represented; in this sense, Fig. 1b
better captures the complexity of the problem by showing
how “close” are observations originating from a given tar-
get and how “far” are false alarms, which are two important
factors in the assessment of the complexity of a given sce-
nario. The probabilistic analogue of the scalar f̂k(z) would
penalise detection failures more strongly since the fitness of
the model would decrease quickly with the lag k′ − k, espe-
cially in the presence of a large dynamical noise; this means
that our approach leads to a higher probability of propos-
ing the initialisation a new path for objects with challenging
detection profiles, e.g. when there are gaps between most
observations.

The advantage of relating observations in this way is that
it can be easily extended to paths. Indeed, we can define the
consistency between an observation z ∈ Zk at some given
time k with a path o in OK as
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(a) (b)

Fig. 1 Scenario with 5 objects as represented in a with the correspond-
ing scatter plot of the probability for each observation to be selected
in b. Observations at all time steps are superimposed in these figures,
which do not represent the available spatio-temporal that is crucial in

solving the corresponding data association problem. Although the tra-
jectories of two objects cross, the objects do not reach the crossing point
at the same time

f̂k(z, o) = max
{

max
k′ :k′<k

fk|k′ (z | ok′ ), max
k′ :k′>k

fk′ |k(ok′ | z)
}
, (7)

where the initial observation is either z or one of the obser-
vations in o. Similarly, the consistency between two paths o
and o′ in OK is defined as

f̂ (o, o′) = max
{

max
k,k′ :k′<k

fk|k′ (ok | o′
k′ ), max

k,k′ :k′>k
fk′ |k(o′

k′ | ok)
}
.

We can now propose to modify a given data association by
changingnearbypaths, and therefore focus the computational
power on moves that are likely to be accepted. Although the
approach considered here is not standard, it has two main
advantages: it relates observations together and applies to
nonlinear cases as long as a Gaussian upper-bounding func-
tion can be found.

In practice, it might be necessary to reduce the time
required for computing fk′|k(z′ | z) between any pair (z, z′)
of observations, especially if the scenario runs over many
times steps or if the number of observations at every time
step is large. In that case, one can define a threshold τ ′ such
that if alnd < τ ′ then any observations that are l time steps
apart will be arbitrarily assigned a credibility of 0.

3.5 Design of the proposal distribution

When designing a proposal distribution Φ for our MCMC
algorithm, several requirements need to be considered: it
should be possible to

i) Reassign several paths simultaneously in order to address
crossings and track fragmentation,

ii) Reassign both the initial observation of a path and sub-
sequent observations and

iii) Create a new path.

Requirement i) can be easily fulfilled by using the approach
presented in Sect. 3.3; however, instead of simply choosing
the paths at random, it is more efficient to focus on nearby
paths. In order to simultaneously reassign the initial observa-
tions of a given set of paths Ar as needed in Requirement ii),
we consider the notion of consistency defined in (7). Once
a new initial observation has been selected, the approach of
Sect. 3.3 can be used to reassign the rest of the chosen path.
Finally, the marginal consistency defined in (6) can be used
for Requirement iii) in order to identify observations that are
likely to be initial observations.

The general objective is to find a proposal distribution
Φ that is as simple as possible and such that the associated
MCMC kernel is irreducible and reversible. Starting from a
given set of paths A of size s = |A|, we suggest to proceed
as follows:

1) Sample a number Nr of paths to reassign from a prob-
ability mass function (p.m.f.) pr(· | s) such that Nr ≤ s
almost surely (a.s.), e.g. a truncated Poisson distribution.
Then, sample the number Nc of paths to be created from
the p.m.f. pc(· | Nr) on the set of non-negative integersN
defined as

pc(n | Nr)

{
δ1(n) if Nr = 0
p̃c(n − Nr) otherwise,
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with p̃c a p.m.f. on {−1, 0, 1} to be defined. With this
model, there will be one created path a.s. when none are
reassigned (there is limited interest in creating several
paths at once in this case) and the number of paths will
be increased by one, kept constant or decreased by one in
case of reassignment. Reducing the number of paths by
onewill address the issue of track fragmentation, keeping
the number of paths constant is appropriate when consid-
ering objects with crossing trajectories, and leaving the
possibility of increasing the number of paths is required
to ensure reversibility. Indeed, when evaluating the prob-
ability of the reverse proposal, created paths will become
reassigned paths and vice versa.

2) If Nr = 0, then define Ar = ∅ and proceed to the next
step; otherwise, select the set Ar = {oi }Nr

i=1 of paths to
be reassigned as follows: the first path o1 is picked uni-
formly at random from the set of paths A and then the
Nr−1 remaining paths, if any, are selected based on their
distance to o1:

oi ∼ Po1:i−1

(
f̂ (o1, ·)

)

for any 1 < i ≤ Nr, where Po1:i−1(·) is a function
transforming possibility functions into probability dis-
tributions, e.g. the maximum-entropy distribution upper-
bounded point-wise by f̂ (o1, ·), which we assume to
verify

∑

o∈A

Po1:i−1

(
f̂ (o1, ·)

)
(o) = 1

and Po1:i−1

(
f̂ (o1, ·)

)
(o j ) = 0 for all j ∈ {1, . . . , i − 1}.

Therefore, the set of paths Ar is sampled without replace-
ment from the set A. When evaluating the probability
Pr(Ar | Nr) for sampling the subset Ar of A, all possi-
ble ways of obtaining such a subset must be taken into
account, that is,

Pr(Ar | Nr, A) =
{
s−1∑

σ∈SNr
∏Nr

i=2 Poσ(1):σ(i−1)

(
f̂ (o1, ·)

)
(oσ(i)) if Nr > 0

δ∅(Ar) otherwise,

where Sn is the set of permutations of {1, . . . , n}.
Although the computational complexity for this term is
combinatorial, Nr is usually small so the actual compu-
tational time is limited.

3) If Nc = 0 then define Zc = ∅ and proceed to the
next step; otherwise, select the Nc initial observations
Zc = {(zic, kic)}Nc

i=1 from the set
⋃K

k=1{(z, k) : z ∈ Z−
k }

of available observations, with Z−
k defined for any k ∈

{1, . . . , K } as

Z−
k = {

z ∈ Zk : ∀(o, k−) ∈ A \ Ar, z �= ok
}
.

The selection of the initial observations is performed
without replacement as

ẑic ∼ P
(ẑ1c ,...,ẑ

i−1
c )

(
f̂ Nr
c

)

where, for any j ∈ {1, . . . , Nc}, ẑ jc stands for the pair
(z jc , k

j
c ), and where the possibility function f̂ Nr

c is equal
to themarginal consistency defined in (6) if Nr = 0 and as
the consistency defined in (7) with the future observation
in the paths in Ar otherwise. Indeed, when reassign-
ing Nr > 0 paths, it is more efficient to propose new
paths in the same area rather than initialising paths in
random locations, especially during the burn-in period
of the MCMC when observations in different places
are likely to originate from objects. The probability of
proposing the subset Zc of observations takes a similar
form as for path reassignment and can be expressed as

P̃c
(
Zc | Nc, Z

−
1:K
) =

{∑
σ∈SNc

∏Nc
i=1 P(ẑσ(1)

c ,...,ẑσ(i−1)
c )

(
f̂ Nr
c
)
(ẑσ(i)

c ) if Nc > 0

δ∅(Zc) otherwise.

The comment regarding computational complexity made
about Pr(· | Nr) applies equally here.

4) Apply the approximate multi-object filter of Sect. 3.3 to
the set of initial observations Zc and with the sets of

available observations Z−
1 , . . . , Z−

K and denote Ac the
generated set of paths. If Ac ∩ Ar �= ∅, then we reject
the proposal; otherwise, the proposed set of paths is A′ =
(A\ Ar)∪ Ac. The reason for rejecting the proposal when
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Ac∩ Ar �= ∅ is to ensure that Ac and Ar can be recovered
from A and A′ as Ac = A′ \ A and Ar = A \ A′.

If the proposal has not been already rejected during its
construction, the probability Φ(A′ | A) to go from the pre-
vious set of paths A to the new set of paths A′ is computed
as

Φ(A′ | A) = Pc
(
Ac | Zc, Z

−
1:K
)
P̃c
(
Zc | Nc, Z

−
1:K
)

×Pr(Ar | Nr, A)pc(Nc | Nr)pr(Nr | s).

The probability α̂(A, A′) of accepting the proposed set of
paths A′ can then be computed using (4).

4 MCMC on the set of tracks

We now want to design a MCMC algorithm that targets the
possibility function Π as introduced in (2). In this case, the
Metropolis–Hastings acceptance ratio is

αt (T , T ′) = min

(

1,
Π(T ′)ρtΨ (T | A)Φ(A | A′)
Π(T )ρtΨ (T ′ | A′)Φ(A′ | A)

)

,

with A and A′ the set of paths in T and T ′, respectively. We
therefore have to propose a time of appearance and a last
time of existence for each path in A. These time steps will
sampled independently from their previous values in T .

4.1 Proposing the interval of existence

The objective in this section is to propose a time of appear-
ancem and a last time of existence n for a given path o ∈ OK ,
using the different quantities introduced in Sect. 3.3. We
consider a path o ∈ OK of the form o′ : φ. One can
sample the lag corresponding to the last time of appear-
ance according to the probability mass function p−(· | o)
on {0, . . . , lo} defined as the maximum-entropy distribution
bounded by l �→ α

1(l<lo)
ns αl

nd. The last time of existence is
set to n = K − lo + L−. For the time of appearance m asso-
ciated with a path o ∈ OK , we can simply sample a lag L+
from themaximum-entropydistribution p+(· | o)boundedby
l �→ αl

nd and set n = k+(o) − L+ with k+(o) the time of the
first observation in o. The probability distribution Ψ (· | A) is
then associated with the proposal of a time of appearance and
a last time of existence for each path in a given set A ∈ A,
i.e.

Ψ (T | A) = δA(κ(T ))
∏

(o,m,n)∈T

[
p+(m | o)p−(n | o)].

4.2 Evaluating themarginal likelihood

So far, the proposed approach does not assume a specific
model for the dynamics and for the observation process.
Indeed, although the likelihood 	k(· | x) is assumed to take
the form of a Gaussian possibility function, the function
h relating states to observations is general. We will, how-
ever, distinguish two different cases for the evaluation of
the marginal likelihood: the linear-Gaussian case in which
Kalman filtering can be used and the nonlinear case where
sequential Monte Carlo techniques are a natural alternative.

4.2.1 Linear-Gaussian case

If the Markov transition gk is of the form gk(· | x ′) =
N(Fkx ′, Qk) for some dX × dX matrices Fk and Qk and for
any k ∈ {1, . . . , K } and if the observation function hk is of
the form hk(x) = Hkx , then the posterior distribution of the
state at any time step can be computed analytically via the
Kalman filter. In particular, for a given path o ∈ Ok−1, we
denote by mo

k and Σo
k the mean and variance of the state at

time k ∈ {1, . . . , K } given the observations in the path o.
The only difference with the standard Kalman filtering equa-
tion is the marginal likelihood which, due to the form of the
likelihood, is expressed at time step k as

	̂k(z | o) = sup
x∈X

	k(z | x) fk|k−1(x | o)

= N(z; Hkm
o
k , HkΣ

o
k H

ᵀ
k + Rk)

for any z ∈ Zk .

4.2.2 Nonlinear case

If either the objects’ dynamics or the observation function
is not linear, then there is no analytical form for the filter-
ing distributions at different time steps in general. Sequential
MonteCarlo (SMC)methods are an alternative to theKalman
filter in this case. An analogue of the bootstrap particle
filter Gordon et al. (1993) can be used as in Houssineau
and Ristic (2017), see also Ristic et al. (2018) and Ris-
tic et al. (2020). In particular, for a given path o ∈ Ok−1,
we denote by {(wo

k−1,i , x
o
k−1,i )}Ni=1 the indexed family of

weighted particles approximating the predicted possibility
function fk|k−1(· | o), i.e.

Ē(ϕ(xk) | o) ≈ max
1≤i≤N

wo
k−1,iϕ(xok−1,i )

for any real-valued function ϕ on X, with the uncertain vari-
able xk being described by fk|k−1(· | o). Then

Ē(ϕ(xk) | o : z) ≈ maxi w
o:z
k,i ϕ(xok−1,i )

maxi w
o:z
k,i
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for any z ∈ Zk , where wo:z
k,i = wo

k−1,i	k(z | xok−1,i ) for any
i ∈ {1, . . . , N }. In this situation, the marginal likelihood at
time step k can be approximated by

	̂k(z | o) ≈ max
1≤i≤N

wo:z
k,i .

5 Simulations

In all the cases to be considered, K = 50 and X = R
4.

States at time step k are of the form xk = (xk, yk, ẋk, ẏk)ᵀ,
where xk and yk are the coordinates of the position in the
2-dimensional Euclidean space and where ẋk and ẏk are the
coordinates of the velocity. The duration of one time step is
denotedΔ and themotionmodel is assumed to be of the form

qk(xk | xk−1) = N(xk; Fxk−1, Q)

with

F =

⎡

⎢
⎢
⎣

1 0 Δ 0
0 1 0 Δ

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

and

Q = σ 2
a

⎡

⎢
⎢
⎣

Δ4/4 0 Δ3/2 0
0 Δ4/4 0 Δ3/2

Δ3/2 0 Δ2 0
0 Δ3/2 0 Δ2

⎤

⎥
⎥
⎦ ,

where σa is the standard deviation of the zero-mean random
acceleration, which is considered as a noise term. This model
is referred to as the nearly constant velocity model. We will
consider in particular the case where Δ = 1 and σa = 0.05.

For the sake of simplicity, the observation model is
assumed to be linear; the position (xk, yk)ᵀ of an object is
observed directly, which leads to h(xk) = Hxk with

H =
[
1 0 0 0
0 1 0 0

]

.

The variance R is of the form σ 2 I2 with σ > 0 and I2 the
identity matrix of dimension 2. This model is useful when
tracking directly in the coordinate systems defined by a sen-
sor such as the image plane of a camera. Other situations
where this model arises are when multiple sensors provide
complex observations which can be combined into a single
observation before being used in a tracking algorithm such
as with GPS or with multiple-input multiple-outputs sensor
systems (Bekkerman and Tabrikian 2006; Haimovich et al.
2007; Pailhas et al. 2016). We will consider in particular the
case where σ = 0.3 and Y = [−60, 60] × [−60, 60].

5.1 Parametrisation of the proposed algorithm

If the probability of detection is pd then the possibility of
detection failure is set to αnd = 1 − pd and the possibility
of detection αd is set to 1. The same approach is used with
the probability of survival. The possibility function αk,fa is
assumed to be constant and equal to 10−2 for all scenarios;
this is in spite of the fact that the number of false alarms will
vary significantly across the considered settings. The reason
for this is that αn

k,fa is seen as an upper bound for the prob-
ability of having n false alarms. A similar approach is used
for appearing objects with fk,+(n) = αn+ with α+ = 10−4.
The other model parameters such as σ and σa are assumed
to be known.

The proposed approach is compared to the MCMC for
Data Association (MCMC-DA) method introduced in Oh
et al. (2009). In order to make the two methods compa-
rable, the possibility function Π is used to evaluate the
log-likelihood of the proposed sets of tracks. However, as
opposed to the proposed approach, MCMC-DA is provided
with the true parameters of the model in the design of the
corresponding proposal distribution.

The main differences between MCMC-DA and our
approach lies in the construction of the proposal distribu-
tion: MCMC-DA has a number of simple moves, whereas
our approach focuses on one sophisticated move. The main
consequence is the complexity of a single step of the corre-
sponding MCMC algorithms: each step in MCMC-DA has
a constant complexity, whereas each step in our approach
has a complexity of order K ; yet, this is compensated by the
more efficient exploration of the set of data associations that
our approach yields, as demonstrated below in a range of
scenarios.

5.2 Choice of parameter

We assume that the current sample from Π is T ∈ T and
denote by A = κ(T ) the corresponding set of paths. We then
comment on the choice of parameters for the different steps
in the proposal mechanism.

The number Nr of tracks to reassign is chosen from a
Poisson distribution with parameter λr = 1, truncated to
the interval {0, . . . , |A|}. The parameter λr can be adjusted
depending on the considered scenario: if objects are expected
to be very close to each other and to frequently have crossing
trajectories, then λr could be increased to raise the average
number of tracks that are reassigned at once. Large reas-
signments are, however, less likely to be accepted so that a
trade-off between exploration and mixing must be found, as
is usual with MCMC.

Thedistribution p̃c(· | Nr)on {−1, 0, 1}drives the increase
or decrease of the number of tracks in the proposal step. Since
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(a)

(c) (d)

(b)

Fig. 2 Simple scenario with performance comparison for different parameter choices

one of the main issues with the MCMC approach for data
association is track fragmentation, i.e. the representation of
a single object by a series of shorter tracks, it is generally
helpful to focus on reducing the number of tracks. We there-
fore consider the following parametrisation:

p̃c(δ | Nr) =
⎧
⎨

⎩

1
2 if δ = −1
1
4 if δ = 0
1
4 if δ = 1.

5.3 MCMC on the data association set

The choice of parameter and the performance of the proposed
approach are assessed on different scenarios.

5.3.1 Simple scenario

We first consider a simple scenario, as shown in Fig. 2a, with
ten false alarms and 0.1 appearing objects per time step on
average and with a probability of detection of pd = 0.9. The
simplicity of the scenario is illustrated in Fig. 2a where it
appears that most of the false alarms are far from any other

observation and, conversely, object-originated observations
are close to each other.

The performance of the two considered approaches is first
assessed on a single run in Fig. 2c where the evolution of
the log-likelihood is displayed as a function of the computa-
tional time. “HISP” refers to the proposed approach whereas
“DA” refers to the MCMC-DA. The difference in behaviour
between the proposed approach andMCMC-DA is due to the
use of the simulated annealing in the former. Both methods
provide satisfactory results in this case and the MCMC-DA’s
chain mixes well. Figure 2d, which displays the performance
averaged over 50 repeats, shows that setting the parameter
c in the inverse temperature ρt to 0.001 provides the best
performance throughout the duration of the runs.

5.3.2 Scenario with high false-alarm rate

We consider a first type of challenging scenario, depicted in
Fig. 3a, with the following challenging characteristics: there
are 100 false alarms and 0.5 appearing objects per time step
on average and the probability of detection pd is equal to
0.8. In this case, it is the large number of false alarms that
make the estimation difficult due to the fact that they are
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Scenario with high false-alarm rate

likely to form coherent observation sequences over 2 to 3
time steps. This aspect is illustrated in Fig. 3b where many
false alarms can be seen to be near other observations. Fig-
ure 3c considers different choices for the Poisson parameter
λr with the log-likelihood being once again averaged over
50 repeats. The choice λr = 1 allows for rapidly creating
tracks while proposing the simultaneous reassignment of 2
tracks often enough to prevent track fragmentation, whereas
setting λr to 0.5 or 1.5 does not perform as well. Finally, a
few options are compared in Fig. 3d for the distribution p̃c,

with the log-likelihood being averaged over 50 repeats. The
assessed options are

p̃c((−1, 0,+1) | Nr) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( 13 ,
1
3 ,

1
3 ) as “uniform”

( 12 ,
1
4 ,

1
4 ) as “focus on − 1”

( 14 ,
1
2 ,

1
4 ) as “focus on 0”

( 14 ,
1
4 ,

1
2 ) as “focus on + 1”,

where p̃c((δ1, δ2, δ3) | Nr) = (p1, p2, p3) is a shorthand
notation for p̃c(δi | Nr) = pi for i ∈ {1, 2, 3}. The results
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(a) (b)

(c)

Fig. 4 Scenario with low probability of detection

in Fig. 3d show that focusing on δ = −1 yields a slightly
better performance, followed by focusing on δ = 0. Once
again, this can be attributed to the reduction in track frag-
mentation. The influence of the parameter c is considered
once more in Fig. 3e where it appears that c = 0.0005 gives
the best long-run performance. However, c = 0.001 still
provides good performance throughout the run time and is
considered for the other simulations. Figure 3f compares the
performance of the propose approach with MCMC-DA and
shows that the latter does not mix as well as in the first sce-
nario and fails to identify most of the tracks. The fact that
the proposed approach does not reach the true log-likelihood
can be attributed to local maxima in the posterior possibility
functionΠ as well as to identifiability issues. The trace plots
are shown for 50 repeats, and the median of these repeats is
also plotted in order to better illustrate the behaviour of both
approaches. In this scenario, it appears that it can be benefi-
cial to run the simulated annealing several times in order to
ensure that a good local maxima is found, as is usual with
this type of algorithm.

5.3.3 Scenario with low probability of detection

To further assess the performanceof the considered approach,
we consider another challenging scenario, as shown in
Fig. 4a, with the following characteristics: there are 25 false
alarms and 0.5 appearing objects per time step on average
and the probability of detection pd is equal to 0.5. The diffi-
culty of this scenario is illustrated in Fig. 4b where it appears
that the inter-observation distance is not sufficient to clearly
identify the objects; in particular, the observations belonging
to the object at the bottom right barely appear in Fig. 4b,
emphasising the fact that a probability of detection of 0.5 is
not sufficient to guarantee the spatio-temporal consistency
between observations. Figure 4c shows that the proposed
approach can capture most of the structure of the scenario,
whereas the MCMC-DA did not identify the majority of
tracks in the allocated time.

5.3.4 Performance of multi-object filtering

We further assess the performance of the proposed approach
by comparing the proposed multi-object filtering method
against existing algorithms of the same complexity. The
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(a) (b)

Fig. 5 Comparison between multi-object filtering methods with the first observation of each path being given. The measure of performance is the
OSPA distance (Schuhmacher et al. 2008) with parameters c = 25 and p = 2 averaged over 1000 repeats

method detailed in Sect. 3.3 is an analogue of the HISP fil-
ter (Houssineau and Clark 2018) in the context of possibility
theory, and both the original and the proposed approach are
compared against each other as well as against the PHD fil-
ter (Mahler 2003). For the latter, paths are extracted from the
underlying Gaussian mixture as is common, see, e.g. Pace
and Del Moral (2013), and data associations are sampled
from a distribution based on the components’ weight in the
Gaussian mixture.

Performance assessment is based on the OSPA distance
(Schuhmacher et al. 2008), which provides a suitable metric
on sets and is used here to evaluate the distance between the
set of true object states and the corresponding estimate at
each time step. For each scenario, the different methods are
initialised with the first observation of a given object and run
until the last time step. The results are then averaged over
all objects and over 1000 repeats. Figure 5 shows that the
proposed analogue of theHISPfilter outperforms the original
version in general, and especially when the false-alarm rate is
high. The PHDfilter does not yield reliable estimates in either
of the considered scenarios. The performance of the proposed
approach, when compared to the original HISP filter, could
be the consequence of the assumption in (5) which relaxes
the one in the original version.
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