
Dynamic Games and Applications
https://doi.org/10.1007/s13235-021-00389-w

Dynamic Quantum Games

Vassili N. Kolokoltsov1,2

Accepted: 23 April 2021
© The Author(s) 2021

Abstract
Quantum games represent the really twenty-first century branch of game theory, tightly
linked to the modern development of quantum computing and quantum technologies. The
main accent in these developments so far was made on stationary or repeated games. In this
paper, we aim at initiating the truly dynamic theory with strategies chosen by players in real
time. Since direct continuous observations are known to destroy quantum evolutions (so-
called quantum Zeno paradox), the necessary new ingredient for quantum dynamic games
must be the theory of non-direct observations and the corresponding quantum filtering. Apart
from the technical problems in organizing feedback quantum control in real time, the diffi-
culty in applying this theory for obtaining mathematically amenable control systems is due
partially to the fact that it leads usually to rather non-trivial jump-type Markov processes
and/or degenerate diffusions on manifolds, for which the corresponding control is very diffi-
cult to handle. The starting point for the present research is the remarkable discovery (quite
unexpected, at least to the author) that there exists a very natural class of homodyne detec-
tions such that the diffusion processes on projective spaces resulting by filtering under such
arrangements coincide exactly with the standard Brownian motions (BM) on these spaces.
In some cases, one can even reduce the process to the plain BM on Euclidean spaces or tori.
The theory of such motions is well studied making it possible to develop a tractable theory
of related control and games, which can be at the same time practically implemented on
quantum optical devices.
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1 Introduction

Quantumgames represent the really twenty-first century branch of game theory, tightly linked
to the modern development of quantum computing and quantum technologies. Initiated by
Meyer [33], Eisert, Wilkens and Lewenstein [15], and Marinatto and Weber [31], the theory
now boasts of many beautiful results obtained by various authors in numerous publications,
see, e.g., surveys [17,20], and a mathematically oriented survey in textbook [28]. However,
the main accent in these developments was made on stationary or repeated games. In this
paper, we aim at initiating the truly dynamic theory with strategies chosen by players in real
time. Since direct continuous observations are known to destroy quantum evolutions (so-
called quantum Zeno paradox), the necessary new ingredient for quantum dynamic games
must be the theory of non-direct observations and the corresponding quantum filtering. This
theory was essentially developed by Belavkin in the 1980s of the last century, in [5–7], see
[11] for a readable modern account. There is an important work under way on the technical
side of organizing feedback quantum control in real time, see, e.g., [2,12] and [36]. The
difficulty in applying this theory for obtaining mathematically amenable control systems is
due partially to the fact that it leads usually to rather non-trivial jump-type Markov processes
and/or degenerate diffusions on manifolds, for which the corresponding control (an even
more so games) is very difficult to handle.

The starting point for the present research was the remarkable discovery (quite unex-
pected, at least to the author) that there exists a very natural class of homodyne detections
such that the diffusion processes on spheres or projective spaces resulting by filtering under
such arrangements coincide exactly with the standard Brownian motions (BM) on these
Riemannian manifolds, that is, the processes generated by the invariant Laplace–Beltrami
operator. For qubits the basic example of such special arrangements is the choice of the three
Pauli matrices as the coupling operators governing the interaction with the optical measuring
devices. For qudits, the corresponding matrices can be chosen as the generalized Pauli or
Gell-Mann matrices. Another unexpected feature of these special arrangements is that the
corresponding diffusions written with respect to the output process coincide exactly with the
diffusions written with respect to the so-called innovation process that plays the key role
in the theory of quantum feedback control. The theory of the BM on compact Riemannian
manifolds is well studied in stochastic analysis and operator theory on manifolds, making it
possible to develop a tractable theory of related control and games, which can be at the same
time practically implemented on quantum optical devices. This theory is based on the ability
to build classical or mild solutions to the corresponding Hamilton–Jacobi–Bellman–Isaacs
(HJB-Isaacs) equations on compact Riemannian manifolds, which makes it more elementary
than the approach to stochastic control based on the viscosity solutions, for which we refer to
[38] and references therein. Moreover, in some cases (essentially when all controlled Hamil-
tonian operators commute), the filtered dynamics turns out to be governed by the standard
Brownian motion on Euclidean spaces and tori, that is by the diffusion processes generated
by the standard plain Laplacian in Rd or a torus.

The content of the paper is as follows. In the next section, we briefly explain the necessary
tools from the theory of continuous quantummeasurement and filtering. In the following two
sections, we introduce our main homodyne detection schemes (first for qubits and then for
qudits) that allow one to turn the problems of dynamic quantum filtering, control and games
into the problems of the drift control of the standard Brownian motions on the complex
projective spaces. In Sects. 5 and 6, we build the theory of classical and mild solutions of the
HJB-Isaacs equations on Riemannian manifolds leading to the theory of dynamic control and
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games on compact Riemannian manifolds and thus automatically to the theory of quantum
dynamic control and games under the special homodyne detection schemes. In Sect. 7, we
introduce yet another homodyne detection scheme that leads to the simpler drift controls on
tori, whichworks, however, only in casewhen all controlledHamiltonian operators commute.
In Sect. 8, an exactly solvable model is presented, which can be considered as a kind of
dynamic extension of the initial quantum coin flipping game of Meyer. In Sect. 9, yet another
detection scheme is developed that turns the problem of quantum dynamic control to the drift
control of the standard BM in Euclidean spaces. In Sects. 10 and 11, a version of the theory is
developed for players acting on different atoms, thus for the dynamic games set in the spirit
of papers [15] and [31]. Some conclusions and perspectives are drawn and open questions
posed in Sect. 12.

2 Prerequisites: Non-demolition Observation and Quantum Filtering

The general theory of quantum non-demolition observation, filtering and resulting feedback
control was built essentially in papers [5–7]. A very good readable introduction is given in
[11]. We shall describe briefly the main result of this theory.

The non-demolition measurement of quantum systems can be organized in two versions:
photon counting and homodyne detection. One of the first mathematical results on the control
with photon countingmeasurement was given in [22], which can be used to develop the corre-
sponding game theoretical version, see [26]. But here we fully concentrate on the homodyne
(mathematically speaking, diffusive type) detection. Under this type of measurement, the
output process Yt is a usual Brownian motion (under appropriate probability distribution).
There are several (by now standard) ways of writing down the quantum filtering equation for
states resulting from the outcome of such process. The one which is the most convenient to
our purposes is the following linear Belavkin filtering equation (which is a particular version
of the stochastic Schrödinger equation) describing the a posteriori (pure but not normalized)
state:

dχ = −[i Hχ + 1

2
L∗Lχ] dt + LχdYt , (1)

where the unknown vector χ is from the Hilbert space of the observed quantum system,
which we shall loosely referred to everywhere as the atom, the self-adjoint operator H is the
Hamiltonian of the corresponding initial (non-observed) quantum evolution, and the operator
L is the coupling operator of the atom to the opticalmeasurement device specifying the chosen
version of the homodyne detection. Very often the operator L is chosen to be self-adjoint, in
which case Eq. (1) reduces to the simpler form:

dχ = −[i Hχ + 1

2
L2χ] dt + LχdYt . (2)

An important part in the theory is played by the so-called innovation process

dBt = dYt − 〈L + L∗〉χ dt, (3)

where for an operator A and a vector v in a Hilbert space we use the (more or less standard)
notation for the average value of A in v:

〈A〉v = (v, Av)

(v, v)
.
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The innovation process is in some sense a more natural driving noise to deal with, because
it turns out to be the standard Brownian motion (or the Wiener process) with respect to
the fixed (initial vacuum) state of the homodyne detector, while the output process Yt is a
Brownianmotionwith respect to the states transformed by the (quite complicated) interaction
of the quantum system and optical device, which can also be obtained by the Girsanov
transformation from the innovation process Bt . Therefore, another well-used version of Eq.
(1) is the nonlinear equation on the normalized vector φ = χ/|χ |, which can be obtained
directly from (1) by the classical Ito formula (using the classical Ito rule for the differentials
of the Wiener processes, dYtdYt = dt), but written in terms of the innovation process Bt .

The theory extends naturally to the case of several, say N , coupling operators {L j }, where
the quantum filtering is described by the following direct extension of Eq. (1):

dχ = −
⎡
⎣i Hχ + 1

2

∑
j

L∗
j L jχ

⎤
⎦ dt +

∑
j

L jχdY
j
t , (4)

with the N -dimensional output process Yt = {Y j
t }. The corresponding innovation process is

the standard N -dimensional Wiener process with the coordinate differentials

dW j
t = dY j

t − 〈L j + L∗
j 〉χ dt .

The theory of quantum filtering reduces the analysis of quantum dynamic control and
games to the controlled version of evolutions (4). The simplest situation concerns the case
when the homodyne device is fixed, that is, the operators L j are fixed, and the players can
control the Hamiltonian H , say, by applying appropriate electric or magnetic fields to the
atom. Thus, Eq. (4) becomes modified by allowing H to depend on one or several control
parameters. One can even prove a rigorous mathematical result, the so-called separation
principle (see [10]), that shows that the effective control of an observed quantum system
(that can be based in principle on the whole history of the interaction of the atom and optical
devices) can be reduced to theMarkovian feedback control of the quantum filtering equation,
with the feedback at each moment depending only on the current (filtered) state of the atom.

Remark 1 The filtering Eq. (1) was initially derived from the interaction of the atom and optic
devices described by the unitary evolution solving the quantum stochastic equation

dUt = (L d A∗
t − L∗ d At − 1

2
L∗L dt − i H dt)Ut ,

where At , A∗
t are the Hudson–Parthasarathy differentials of the quantum stochastic Wiener

noise (built from the annihilation and creation operators). It can be shown (see, e.g., [1])
that this evolution represents the Markovian approximation to the more realistic quantum
dynamics

U̇t = [−i H + La∗(t, 0) − L∗a(t, 0)]Ut ,

driven by a stationary Gaussian wide-band noise of the annihilation operators a(t, r). More
elementary derivations of the main filtering equation (bypassing heavy use of quantum
stochastic calculus) are also available. It can be obtained from an appropriate limit of sequen-
tial discrete observation scheme, see, e.g., [8,34] or [27]. A derivation from the theory of
instruments was given in [3] and [19].

Remark 2 In this paper, the players are supposed to have the same information based on the
whole (filtered) quantumstate (even if theyhave access to different controlling tools). The case
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when theymake their decision on individual states can bemost naturally achieved by allowing
them to have access to their partial traces (natural quantum analogues of classical individual
states). Such modeling is developed by the author in separate papers in the framework of
quantum mean field games, see [26] and [25].

3 Special Homodyne Detection Leading to the Laplace–Beltrami
Operator on a Sphere (for Qubits)

For a qubit the Hilbert space of an atom is C2. Since the pure state of a quantum system
is specified by a vector in the Hilbert space up to a multiplier, the actual state space is the
one-dimensional complex projective space or a two-dimensional sphere, often referred to as
the Bloch sphere. Hence, as the natural coordinate outside the state vector (0, 1), one can
take the complex number w = χ1/χ0. It is straightforward to rewrite evolution (4) in C2

in terms of w. Namely, from the equation for the first coordinate χ0 (and Ito’s rule for the
function 1/x), we find the equation for χ−1

0 :

dχ−1
0 = 1

χ2
0

⎡
⎣i Hχ + 1

2

∑
j

L∗
j L jχ

⎤
⎦
0

dt − 1

χ2
0

∑
j

(L jχ)0 dY
j
t + 1

χ3
0

∑
j

(L jχ)20 dt

and then using the Ito product rule for the product χ1χ
−1
0 , we find that

dw = w

χ0

⎡
⎣i(Hχ)0 + 1

2

⎛
⎝∑

j

L∗
j L jχ

⎞
⎠

0

⎤
⎦ dt − w

χ0

∑
j

(L jχ)0 dY
j
t + w

χ2
0

∑
j

(L jχ)20 dt

− 1

χ0

⎡
⎣i(Hχ)1 + 1

2

⎛
⎝∑

j

L∗
j L jχ

⎞
⎠

1

⎤
⎦ dt + 1

χ0

∑
j

(L jχ)1 dY
j
t

− 1

χ2
0

∑
j

(L jχ)0(L jχ)1 dt,

and finally, the quantum filtering equation in terms of the projective coordinates w:

dw = i[w(HW )0 − (HW )1] dt + 1

2

⎡
⎣∑

j

w(L∗
j L jW )0 − (L∗

j L jW )1

⎤
⎦ dt

+
∑
j

[w(L jW )20 − (L jW )0(L jW )1] dt +
∑
j

[(L jW )1 − w(L jW )0] dY j
t , (5)

where, for convenience, we have introduced the vector W = (1, w) = χ/χ0. Equivalently,
it can be rewritten in terms of the innovation processes expressed in terms of w as

dB j
t = dY j

t − 〈L j + L∗
j 〉W dt . (6)

Remark 3 Though this is not of use for us, let us mention that coordinates w can be obtained
by the stereographic projection from the Stokes parameters (x1, x2, x3) (or a polar vector)
describing in the most common way the Bloch sphere of the pure quantum states of a qubit.

We are interested in choosing {L j } in a way to make the diffusion on the Bloch sphere
defined by Eq. (5) as simple as possible, at least to make it non-degenerate, that is, with the
second-order part of the diffusion operator being elliptic.
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The Hamiltonian operator does not enter the noise term, and consequently, it does not play
role in this question. If L consists of just one operator, the diffusion is definitely degenerate,
though it may be hypoelliptic (see [23]). If there are two operators L j , one usually gets
diffusions that are elliptic almost everywhere (see Sects. 9 and 12). Turning to the case of
three operators L j , it is natural to try the simplest three operators on qubits, namely the three
Pauli operators

σ1 =
(
0 1

1 0

)
, σ2 =

(
0 − i

i 0

)
, σ3 =

(
1 0

0 − 1

)
.

Since σ j are self-adjoint and σ 2
j = 1, the second term in equation in this case is seen directly

to vanish. Moreover, explicit calculation of the third term shows that it vanishes as well, so
that the filtering Eq. (5) simplifies to

dw = i[w(HW )0 − (HW )1] dt +
∑
j

[(σ jW )1 − w(σ jW )0] dY j
t

= i[(h00 + h01w)w − (h10 + h11w)] dt
+(1 − w2) dY 1

t + i(1 + w2) dY 2
t − 2w dY 3

t , (7)

where h jk denote the entries of the 2 × 2-matrix H .
With this equation two remarkable effects occur.

Proposition 3.1 (i) Writing Eq. (7) in terms of the innovation process dB j = dY j −
2〈σ j 〉W dt, it takes exactly the same form (7) with B j instead of Y j (all new terms with
the differential dt cancel).

(ii) The diffusion operator D corresponding to Eq. (7) with vanishing H takes the form

DS(x, y) = 1

2
(1 + x2 + y2)2

(
∂2S

∂x2
+ ∂2S

∂ y2

)
, (8)

in terms of the real coordinates x, y, where w = x + iy, so that D = 2�sp, where �sp

is the Laplace–Beltrami operator on the two-dimensional sphere written in stereographic
coordinates.

Proof This is done by direct inspection. For instance, to prove (ii), we can write Eq. (7) with
vanishing H in terms of the real and imaginary parts of w as

dx = (1 − x2 + y2) dY 1
t − 2xy dY 2

t − 2x dY 3
t

dy = −2xy dY 1
t + (1 + x2 − y2) dY 2

t − 2y dY 3
t .

By Ito’s formula, the corresponding second-order operator is found to be

1

2

∂2S

∂x2
[(1 − x2 + y2)2 + 4x2y2 + 4x2] + 1

2

∂2S

∂ y2
[(1 + x2 − y2)2 + 4x2y2 + 4y2]

+ ∂2S

∂x∂ y
[−2xy(1 − x2 + y2)2 − 2xy(1 + x2 − y2) + 4xy]

= 1

2
(1 + x2 + y2)2

(
∂2S

∂x2
+ ∂2S

∂ y2

)
,

as was claimed. ��
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Remark 4 Thus, Eq. (7) gives a method to express the curvilinear two-dimensional Brownian
motion on a sphere in terms of the three-dimensional standard (plain) Brownian motion.

It is natural to ask what is the general class of the triples of operators L1, L2, L3, where
the same effects hold.

Reducing the attention to the case of self-adjoint matrices L j let us write them as

L j =
(
l00j l01j

l̄01j l11j

)
, j = 1, 2, 3,

with l00j , l11j ∈ R, l01j ∈ C. Let us introduce the three-dimensional real vectors

L0, L1, Lδ, LR
j , L

I defined by their coordinates

L0
j = l00j , L1

j = l11j , Lδ
j = (l11j − l00j )/2, LR

j = Re l01j , L I
j = Im l01j .

Proposition 3.2 (i) The second-order part of the diffusion operator arising from the stochastic
Eq. (5) is isothermic, that is, it has the form

ω(x, y)

(
∂2S

∂x2
+ ∂2S

∂ y2

)

with some positive functionω(x, y) if and only if the vectors Lδ, LR
j , L

I form an orthonormal

basis in R3, up to a common constant multiplier. If this is the case, then this operator
actually coincides with the Laplace–Beltrami operator (8) (again of course up to a constant
multiplier).

(ii) The whole diffusion operator arising from the stochastic Eq. (5) with vanishing H is
isothermic (that is, additionally to (i), all the first-order terms cancel as in the case of the
Pauli matrices) if and only if the vectors Lδ, LR

j , L
I form an orthonormal basis in R3 (up

to a common constant multiplier) and L0 = −L1. Moreover, under these conditions, the
diffusion operator of stochastic equation (5) coincides with the diffusion operator arising
from Eq. (5) rewritten in terms of the innovation process.

Proof This is done by lengthy explicit calculations, which we omit. ��

Since the transpose of an orthogonal matrix (in our case the matrix with the columns built
from the vectors L0, LR

j , L
I ) is also orthogonal, Proposition 3.2 can be formulated in the

following more transparent way.

Proposition 3.3 The diffusion operator arising from Eq. (5) with the 3 self-adjoint matrices
L j coincides with the Laplacian on a sphere (up to a multiplier), if and only if three matrices
L j form a basis in the space of traceless self-adjoint matrices, which is orthogonal in the
sense that

tr(L j Lk) = 2(l00j l00k + Re l01j Rel01k + Im l01j Iml01k ) = aδ jk

with a constant a. In the case of the Pauli matrices a = 2. The exact Laplacian arises from
a = 1.
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4 Special Homodyne Detections Leading to the Laplace–Beltrami
Operator on Projective Spaces (for Qudits)

In this section, we extend the previous results to quantum systems in Cn+1 with arbitrary n
(a qudit with d = n + 1).

As in the case of qubit, let us start by writing the corresponding filtering Eq. (4) in terms of
the vectorW = (1, w1, · · · , wn) = χ/χ0, that is, in the projective coordinates w1, · · · , wn .
We have

dχk = −
⎡
⎣i Hχ + 1

2

∑
j

L∗
j L jχ

⎤
⎦
k

dt +
∑
j

(L jχ)kdY
j
t , k = 0, · · · , n. (9)

Hence, by the Ito formula

dχ−1
0 = 1

χ2
0

⎡
⎣i(Hχ)0 + 1

2

∑
j

(L∗
j L jχ)0

⎤
⎦ dt − 1

χ2
0

∑
j

(L jχ)0 dY
j
t + 1

χ3
0

∑
j

(L jχ)20 dt .

Consequently, by the Ito product rule, we find for k > 0 that

dwk = wk

⎡
⎣i(HW )0 + 1

2

∑
j

(L∗
j L jW )0

⎤
⎦ dt − wk

∑
j

(L jW )0 dY
j
t + wk

∑
j

(L jW )20 dt

−
⎡
⎣i(HW )k + 1

2

∑
j

(L∗
j L jW )k

⎤
⎦ dt +

∑
j

(L jW )kdY
j
t −

∑
j

(L jW )0(L jW )k dt,

and thus, the quantum filtering equation for qudits (with d = n+1) in terms of the projective
coordinate W :

dwk = i[wk(HW )0 − (HW )k ] dt + 1

2

∑
j

[wk(L
∗
j L jW )0 − (L∗

j L jW )k] dt

+
∑
j

[wk(L jW )20 − (L jW )0(L jW )k] dt +
∑
j

[(L jW )k − wk(L jW )0] dY j
t .

(10)

To reduce complexity, let us discuss in more detail the case of a three-dimensional Hilbert
space (a qutrit) of the vectors χ = (χ0, χ1, χ2) (the general case being quite similar).
Extending the case of qubit, it is natural to choose L j to be the 8 generalized Pauli or
Gell-Mann matrices: 3 symmetric σ s

jk (with 1 on places jk and k j and zero otherwise ),
0 ≤ j < k ≤ 2, 3 antisymmetric σ a

jk (with −i on the place jk and i on the place k j , and

zero otherwise), 0 ≤ j < k ≤ 2, and 2 diagonal matrices σ d
k :

σ d
1 =

⎛
⎜⎝
1 0 0

0 − 1 0

0 0 0

⎞
⎟⎠ , σ d

2 = 1√
3

⎛
⎜⎝
1 0 0

0 1 0

0 0 − 2

⎞
⎟⎠ .
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Thus,

σ s
01χ =

⎛
⎜⎝

χ1

χ0

0

⎞
⎟⎠ , σ s

02χ =
⎛
⎜⎝

χ2

0

χ0

⎞
⎟⎠ , σ s

12χ =
⎛
⎜⎝

0

χ2

χ1

⎞
⎟⎠ , σ a

01χ =
⎛
⎜⎝

− iχ1

iχ0

0

⎞
⎟⎠ ,

σ a
02χ =

⎛
⎜⎝

− iχ2

0

iχ0

⎞
⎟⎠ , σ a

12χ =
⎛
⎜⎝

0

− iχ2

iχ1

⎞
⎟⎠ , σ d

1 χ =
⎛
⎜⎝

χ0

− χ1

0

⎞
⎟⎠ , σ d

2 χ = 1√
3

⎛
⎜⎝

χ0

χ1

− 2χ2

⎞
⎟⎠ .

In arbitrary dimension, it is more convenient to work directly in complex coordinates
wk, w̄k (rather than playing with their real and imaginary parts). Again direct substitution
of the above Gell-Mann matrices into Eq. (10) (we omit the lengthy by direct calculations)
shows the following analog of Proposition 3.1.

Proposition 4.1 Equation (10) with L j chosen as the 8 Gell-Mann matrices and written for
vanishing H takes the form

dw1 = (1 − w2
1) dY

01,s
t − w1w2 dY

02,s
t + w2 dY

12,s
t

+ i(1 + w2
1) dY

01,s
t + iw1w2 dY

02,a
t − iw2 dY

12,a
t − 2w1 dY

1,d
t

dw2 = −w1w2 dY
01,s
t + (1 − w2

2) dY
02,s
t + w1 dY

12,s
t

+ iw1w2 dY
01,s
t + i(1 + w2

2) dY
02,a
t + iw1 dY

12,a
t − w2 dY

1,d
t − √

3w2 dY
2,d
t .

(11)
(with all termswith dt vanishing), and exactly the same form has this equationwhen rewritten
in terms of the innovation process, which is now an eight-dimensional standard Wiener
process with the coordinates

dB jk,s
t = dY jk,s

t − 2〈σ s
jk〉W dt, dB jk,a

t = dY jk,a
t − 2〈σ a

jk〉W dt,

dBk,d
t = dY k,d

t − 2〈σ d
k 〉W dt .

Finally, the diffusion operator D arising from the stochastic differential Eq. (11) has the form
D = 2�pro, where �pro is the major (second order) part of the Laplace–Beltrami operator
on the complex projective space PC2:

�proS(w1, w2) = (1 +
∑
j

|w j |2)
[
(1 + |w1|2) ∂2S

∂w1∂w̄1
+ (1 + |w2|2)) ∂2S

∂w2∂w̄2

+w1w̄2
∂2S

∂w1∂w̄2
+ w̄1w2

∂2S

∂w̄1∂w2

]
. (12)

Of course, there exists a characterization of all collections of L j with the same property,
analogous to Proposition 3.3.

For a quantum system in Cn+1, there are (n2 + 2n) generalized Pauli matrices. Choosing
these matrices as the coupling operators in a homodyne detection scheme will lead analo-
gously to the invariant BM on the complex projective space PCn .

5 Theory of Drift Control and Games on RiemannianManifolds

Now we shall develop the theory of the classical or mild solutions to the Hamilton–Jacobi–
Bellman–Isaacs equations arising in the stochastic control and differential games on compact
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Riemannian manifolds with a controlled drift and the fixed underlyingMarkov process being
the standard Brownian motion on M . In the next section, it will be used to build the theory
of dynamic quantum games that can be reduced to such stochastic games under the special
arrangement homodyne detection as shown in previous sections. Let

�LBφ = div (∇φ) = 1√
det g

∑
j,k

∂

∂x j

(√
det g g jk ∂

∂xk

)
(13)

denote the Laplace–Beltrami operator on a compact Riemannian manifold (M, g) of dimen-
sion N , with the Riemannian metric given by the matrix g = (g jk) and its inverse matrix
G = (g jk). Let K (t, x, y) be the corresponding heat kernel, that is, K (t, x, y) is the solution
of the corresponding heat equation (∂K/∂t) = �LBK as a function of (t > 0, x ∈ M) and
has the Dirac initial condition K (0, x, y) = δy(x). It is well known that the Cauchy problem
for this heat equation is well posed in M and the resolving operators

St f (x) =
∫
M
K (t, x, y) f (y) dv(y), (14)

where dv(y) is the Riemannian volume on M , form a strongly continuous semigroup of
contractions (the Markovian semigroup of the Brownian motion in M) in the space C(M)

of bounded continuous functions on M , equipped with the sup-norm. Let C1(M) denote the
space of continuously differentiable functions on M equipped with the norm

‖ f ‖C1(M) = sup
x

| f (x)| + sup
x

‖∇ f (x)‖M ,

where in local coordinates

‖∇ f (x)‖2M = (∇ f (x),G(x)∇ f (x)) =
∑
jk

g jk ∂ f

∂x j

∂ f

∂xk
.

The key properties of this semigroup needed for our theory are the following smoothing
and smoothness preservation properties.

Proposition 5.1 (i) The operators St are smoothing:

‖St f ‖C1(M) ≤ Ct−1/2‖ f ‖C(M) (15)

with a constant C, uniformly for any compact interval of time.
(ii) The operators St are smoothness preserving:

‖St f ‖C1(M) ≤ C‖ f ‖C1(M) (16)

with a constant C, uniformly for any compact interval of time.

Remark 5 This result is possibly known, but the author did not find any precise reference. It
is standard for diffusions in Rd , but seemingly not so standard for manifolds. We sketch a
proof briefly. An alternative proof of (ii) (by-passing estimates from (i)) and its extension to
higher derivatives can be built on the theory of SDEs on (M, g).

Proof (i) This is a consequence of the well-known estimate for the derivatives of the heat
kernel on a compact Riemannian manifold (see Theorem 6 in [13]):

‖∇K (t, x, y)‖M ≤ C(δ, N )t−N/2t−1/2 exp

{
−d2(x, y)

(4 + δ)t

}
, (17)
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with any δ > 0 and a constantC(δ, N ), where the derivative∇ is taken with respect to x , and
where d is the Riemannian distance in M . In fact, differentiating (14) and using (17) yield
(15).

(ii) This follows from (17) and the method of parametrix (frozen coefficients) approxi-
mation. This method (see, e.g., formula (5.60) in [24]) starts by representing K in terms of
its asymptotics Kas and the integral correction as

K (t, x, y) = Kas(t, x, y) +
∫ t

0
K (t − s, x, z)F(s, z, y) ds, (18)

where F is the error term in the equation for Kas , that is

∂Kas

∂t
(t, x, y) − �LBKas(t, x, y) = −F(t, x, y).

From (17), it follows that the derivative of the second term in (18) is bounded and thus the
estimate for the derivative reduces to the derivatives arising from Kas , and these estimates
are standard and are performed as in the case of heat equations in Rd . ��

For the stochastic control of diffusions on (M, g) with the second-order part being fixed
as �LB , and where control is carried out via the drift only, the corresponding HJB equation
is the equation

∂ f

∂t
= �LB f + H(x,∇ f (x)), (19)

where the Hamiltonian function is of the form

H(x, p) = sup
u∈U

[ψ(x, u)p + J (x, u)], (20)

where U is the set of possible controls and ψ, J are some continuous functions. In case of
zero-sum stochastic two-player games with the so-called Isaac’s condition, the Hamiltonian
function takes the form

H(x, p) = sup
u∈U

inf
v∈V [ψ(x, u, v)p+ J (x, u, v)] = inf

v∈V sup
u∈U

[ψ(x, u, v)p+ J (x, u, v)]. (21)

The possibility to exchange sup and inf here is called Isaac’s condition. It is fulfilled, in
particular, when the control of two players can be separated in the sense that the Hamiltonian
becomes

H(x, p) = sup
u∈U

[ψ1(x, u)p + J1(x, u)] + inf
v∈V [ψ2(x, v)p + J2(x, v)] + J0(x). (22)

It is worth recalling here that though the theory of HJB is often built (for simplicity) for the
Cauchy problem of Eq. (19) in forward time, in the control theory it appears more naturally
as the backward Cauchy problem for the equation

∂ f

∂t
+ �LB f + H(x,∇ f (x)) = 0, t ∈ [0, T ], (23)

with a given terminal condition fT at some time T . This way of writing the HJB equation
becomes unavoidable whenever any of the parameters of the problem are explicitly time
dependent.

Let us now consider the general Hamilton–Jacobi–Bellman–Isaacs Eq. (19) with H being
a Lipschitz continuous function of its two variables. It is well known (and easy to see) that if
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f is a classical solution of (19) with the initial condition Y , then f solves also the following
integral equation

ft = et�LB Y +
∫ t

0
e(t−s)�LB H

(
.,

∂ fs
∂x

(.)

)
ds, (24)

referred to as themild form of (19). Solutions to the mild Eq. (24) (which may not solve (19),
because of the lack of sufficient smoothness) are often referred to as mild solutions to (19).

The following result gives the well-posedness of the HJB-Isaacs Eq. (19) with explicit
estimates for the growth of solutions and their continuous dependence on initial data.

Theorem 5.1 Let H(x, p) be a continuous function on the cotangent bundle T ∗M to the
compact Riemannian manifold (M, g) such that

|H(x, p1) − H(x, p2)| ≤ LH‖p1 − p2‖M (25)

with a constant LH . Then, for any Y ∈ C1(M) there exists a unique solution f. ∈
C([0, T ],C1(M)) of Eq. (24). Moreover, for all t ≤ T ,

‖ ft (Y ) − Y‖C1(M) ≤ E1/2(CLH
(1/2)t1/2)

× (2t1/2C(h + LH‖Y‖C1(M)) + ‖(et�LB − 1)Y‖C1(M)

)
, (26)

where h = supx |H(x, 0)| andC is from Proposition 5.1. And the solutions ft (Y1) and ft (Y2)
with different initial data Y1, Y2 enjoy the estimate

‖ ft (Y1) − ft (Y2)‖C1(M) ≤ C‖Y1 − Y2‖C1(M)E1/2(CLH
(1/2)t1/2), (27)

where E1/2 denotes the Mittag–Leffler function.

The proof of the theorem is identical to the corresponding proof given for the equations
in Rd in [24] (Section 6.1), and it follows essentially from the fixed point argument and
Proposition 5.1.

Assuming additionally that H is Lipschitz continuous in the first argument so that

|H(x1, p) − H(x2, p)| ≤ LHd(x1, x2) ‖p‖M , (28)

one can improve the result of Theorem 5.1 by showing (in exactly the same way as for Rd ,
see again [24]) that with the initial condition Y from C2(M) the solution ft will belong to
C2(M) for all t and hence, will be a (unique) classical solution to the Cauchy problem of the
HJB-Isaacs Eq. (19).

Finally, the standard result of the stochastic control theory (called the verification theorem,
see, e.g., [16]) states that a classical solution to the HJB-Isaacs equation yields in fact the
optimal cost for the corresponding stochastic control problem or the minimax solution in
case of zero-sum games.

6 Toward the Theory of Dynamic Games Under the Special Homodyne
Detections

Applying the results of the previous section in conjunction with the detection schemes of
Sects. 3, 4 leads automatically to the theory of dynamic quantum games under these detection
schemes.

In fact, assume that the Hamiltonian operator H decomposes into the three parts H =
H0 + uH1 + vH2, where H0 is the Hamiltonian operator of the “free” motion of an atom
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and the strength u and v of the application of the operators H1 and H2 can be chosen
strategically by the two players I and II, respectively. To simplify the formulas let us assume
that allowed values of the control parameters lie in certain symmetric intervals: u ∈ [−U ,U ],
v ∈ [−V , V ] with some constants U , V ≥ 0, The case of a pure control (not a game)
corresponds to the choice V = 0 and is thus automatically included. Assume that players I
and I I play a standard dynamic zero-sum game with a finite time horizon T meaning that
the objective of I is to maximize the payoff

P(t,W ; u(.), v(.)) = E
∫ T

t
〈J 〉W (s) ds + 〈F〉W (T ), (29)

where J and F are some operators expressing the current and the terminal costs of the game
(they may depend on u and v, but we exclude this case just for simplicity) and E denotes the
expectation with respect to the random trajectories W (s) arising from dynamic (10) under
the strategic choice of the controls u and v by the players.

The Isaacs condition (21) is fulfilled under our assumptions. Assuming {L j } are cho-
sen with our special detection scheme such that the corresponding diffusion operator with
vanishing H coincides with the second-order part of the Laplace–Beltrami operator on the
complex projective space, the HJB-Isaacs Eq. (23) for the minimax value

S(t,W ) = max
u(.)

min
v(.)

P(t,W ; u(.), v(.)) = min
v(.)

max
u(.)

P(t,W ; u(.), v(.)) (30)

of the game takes the form

0 = ∂S

∂t
+ (α(W ),∇S) + �LB S + 〈J 〉W

+ sup
u

⎧⎨
⎩u
∑
k

[
Re[iwk(H1W )0 − i(H1W )k ] ∂S

∂xk
+ Im[iwk(H1W )0 − i(H1W )k ] ∂S

∂ yk

]⎫⎬
⎭

+ inf
v

⎧⎨
⎩v
∑
k

[
Re[iwk(H2W )0 − i(H2W )k ] ∂S

∂xk
+ Im[iwk(H2W )0 − i(H2W )k ] ∂S

∂ yk

]⎫⎬
⎭ ,

(31)

where α includes the contributions arising from H0 and from the first-order terms of the
Laplace–Beltrami operator (if any). Equivalently, it can be rewritten as

0 = ∂S

∂t
+ (α(W ),∇S) + �LB S + 〈J 〉W

+U

∣∣∣∣∣
∑
k

[
Re[iwk(H1W )0 − i(H1W )k] ∂S

∂xk
+ Im[iwk(H1W )0 − i(H1W )k ] ∂S

∂ yk

]∣∣∣∣∣

−V

∣∣∣∣∣
∑
k

[
Re[iwk(H2W )0 − i(H2W )k] ∂S

∂xk
+ Im[iwk(H2W )0 − i(H2W )k] ∂S

∂ yk

]∣∣∣∣∣ .

(32)

In our setting, the Hamiltonian depends quadratically on w. It follows that the Lipschitz
continuity (28) holds locally. But the whole compact manifold can be covered by a finite
number of local charts implying the global Lipschitz continuity,which is required to conclude,
according to the results of the previous section, that the backwardCauchy problem forEq. (32)
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with the terminal condition 〈F〉W has the unique classical solution that yields the minimax
value of our zero-sum game.

Remark 6 Here and in the following examples, the controls u and v are not penalized in the
cost. This covers the special case of cheap control. This assumption is made for simplicity.
The choice of linear control also makes sense physically (see, e.g., [10] and [9]). In fact,
operators contributed to the Hamiltonian stand for various magnetic or electric fields that can
be applied, and choosing the linear dependence on the control parameters means the ability
of the controlling agents to choose the strength of the fields inside given bounds. Including
quadratic penalty costs would not make much difference for our analysis.

7 Special Homodyne Detections Leading to Standard BM on Tori

An alternative approach to simplify (10) is to choose L j in a way allowing for invariant
manifolds and thus reducing the complexity (the dimension) of resulting controlled process.
Suppose we choose the coordinates χ , where H is diagonal, that is hkm = 0 for k 
= m. It
turns out (which seen by direct inspection) that if one chooses n operators L j , j = 1, · · · , n,
as anti-Hermitian diagonal operators with only one non-vanishing elements, namely with the
entries

(L j )
km = ir jδ

j
k δ

j
m

with some real numbers r j , then (10) decomposes into the system of uncoupled equations

dwk = iwk(h00 − hkk) dt − 1

2
r2k wk dt + irkwk dY

k
t , k = 1, · · · , n, (33)

from which it follows that d(wkw̄k) = 0 for all k, and thus, the whole process lives on the
n-dimensional torus TC

n = {(w1, · · · , wn) : |wk | = Ck}, where the vector C = {cm} is
specified by the initial condition.

Moreover, since all L j are anti-Hermitian, the innovation process Bt = (Bk
t ) coincides

with the output process Yt , both forming the standard Brownian motion.

Remark 7 Therefore, in case of a qubit, only one operator L (with an element ir in the right
low corner and zeros otherwise) is sufficient to get d(ww̄) = 0. It is not difficult to see that
for a qubit any operator leading to this effect has the form L + α1 with a constant α ∈ C.

Writing wk = |wk | exp{iφk} we can rewrite (33) (using Ito’s formula, of course) in terms
of the angles as follows:

dφk = (h00 − hkk) dt + rk dY
k
t , k = 1, · · · , n, (34)

which is the BM on the torus TC
n with a constant drift.

This is of course simpler, than the invariant BM on the projective space PCn obtained by
choosing (n2 + 2n) generalized Pauli operators. However, from the point of the application
to control and games, this homodyne detection can be used only in case when under any
choice of control parameters u ∈ U the resulting family of possible Hamiltonians H(u) is a
commuting family. Only in this case we can choose a basis where all H(u) are diagonal and
thus treat them all with a single choice of anti-Hermitian operators L j above. The general
theory of games is then exactly the same as in Sect. 6, with the projective spaces substituted
by the tori. An exactly solvable example of such case will be given below.
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8 Example of Exactly Solvable Model

In the case of a qubit, Eq. (34) reduces to the equation

dφ = (h0 − h1) dt + r dBt , (35)

with real constants h0, h1, r and the standard one-dimensional BM Bt , thus describing the
BM on a circle with a drift.

Let us now choose r = 1 and assume that two players I and II can control the strength and
direction of the field yielding the first and the second entries h0 and h1, respectively. Assume
further that the goal of player I is to maximize the integral cost

∫ T

t
〈J 〉W (s) ds + 〈F〉W (T )

with W (t) = Ceiφ(t) and some Hermitian operators J = (J jk) and F = (Fjk), so that

〈J 〉W = J00 + J01w + J̄01w̄ + J11|w|2
1 + |w|2 = J00 + 2C Re(J01Ceiφ) + J11C2

1 + C2 .

Ignoring irrelevant constants the current cost function 〈J 〉W rewrites as (a cosφ + b sin φ),
or, by shifting φ, even simpler as just cosφ. Hence, the corresponding HJB-Isaacs equation
for this game becomes

∂S

∂t
+ 1

2

∂2S

∂φ2 + cosφ + max
u

[
uh0

∂S

∂φ

]
− max

v

[
vh1

∂S

∂φ

]
= 0.

Assuming as above that u and v can be chosen from some intervals, this equation is rewritten
as

∂S

∂t
+ 1

2

∂2S

∂φ2 + cosφ + α

∣∣∣∣
∂S

∂φ

∣∣∣∣ = 0, (36)

with a real constant α.

Remark 8 Player I has an advantage if α > 0.

Instead of the fixed time horizon problem, let us consider the corresponding stationary
problem, when one looks for the average payoff per unit time for a long lasting game.
Analytically this means searching for a solution to Eq. (36) with S linearly dependent on t :
S(t, φ) = λ(T − t) + S(φ) with some function S(φ). Here, λ is the average payoff per unit
time and S(φ) solves the stationary HJB equation

1

2
S′′ + α|S′| + cosφ − λ = 0. (37)

From the symmetry of the problem, it is clear that S(φ) is an even periodic function of φ,
and thus, it has the boundary conditions S′(0) = S′(π) = 0. Moreover, S is decreasing in φ

on the interval φ ∈ [0, π ] (since cosφ has maximum at φ = 0), so that on this interval Eq.
(37) turns to the equation

1

2
S′′ − αS′ + cosφ − λ = 0. (38)

Hence, for the function f = S′ we get the problem

f ′ − α f + cosφ − λ = 0, f (0) = f (π) = 0. (39)
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The stationary solution S itself is defined up to a constant, as it should be, since what one is
looking for is actually the average cost λ.

The solution to Eq. in (39) with the initial condition f (0) = 0 is

f (φ) =
∫ αφ

0
eα(φ−s)(λ − cos s) ds. (40)

Hence, from f (π) = 0 one finds

λ =
∫ π

0 eα(π−s) cos s ds∫ π

0 eα(π−s) ds
= α2

α2 + 1

eαπ + 1

eαπ − 1
. (41)

Similarly, one can solve the infinite horizon problemwith discount, for which one searches
for S of the form S(t, φ) = e−tδS(φ), with a fixed discount factor δ > 0, and the stationary
HJB equation writes down as

1

2
S′′ + α|S′| + cosφ − δS = 0. (42)

The same monotonicity and evenness conditions as above lead now to the problem

1

2
S′′ − αS′ + cosφ − δS = 0, S′(0) = S′(π) = 0 (43)

on the interval [0, π]. This linear problem is easy to solve. First one finds the general solution
of the equation in the form

S = Aea1φ + Bea2φ + a cosφ + b sin φ

with

a1,2 = α ±
√

α2 + 2δ, b = 4α

4α2 + (1 + 2δ)2
, a = b

1 + 2δ

2α
,

and then, the boundary condition gives the linear system

Aa1 + Ba2 + b = 0, Aa1e
a1π + Ba2e

a2π − b = 0,

from which A and B are found.

9 Special Homodyne Detections Leading to the Standard BM on
Euclidean Spaces

As the third model of special homodyne detections, we introduce the arrangements, under
which the resulting filtering process is the standard BM in Rn , that is a process govern by
the plain Laplacian, though perturbed by a drift with unbounded coefficients. We need here
2n operators L j for a quantum system in Cn+1 (unlike (n2 + 2n) Pauli matrices leading to
the invariant BM and n matrices leading to the tori). We shall take n operators L j1 = (lklj1)

and n operators L j2 = (lklj2) j = 1, · · · , n, such that the only non-vanishing entries of their

matrices are the elements of the first column lk0j1 and l
k0
j2 with k = 1, · · · , n. More concretely,

let
lk0j1 = δ

j
k , lk0j2 = iδ j

k . (44)
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Under this choice (L j1χ)0 = (L j2χ)0 = 0 and

L∗
j1L j1 = L∗

j1L j1 =

⎛
⎜⎜⎜⎝

1 0 · · · 0

0 0 · · · 0

· · ·
0 0 · · · 0

⎞
⎟⎟⎟⎠

for all j , and Eq. (10) takes the form

dwk = i[wk(h00 +
∑
l

h0lwl) − hk0 −
∑
l

hklwl ] dt + nwk dt + dY k1
t + i dY k1

t . (45)

The corresponding diffusion operator for vanishing H gets the form

DS(x, y) = n
∑
k

(
xk

∂S

∂xk
+ yk

∂S

∂ yk

)
+
∑
k

(
∂2S

∂x2k
+ ∂2S

∂ y2k

)
(46)

in the real coordinates xk, yk such thatwk = xk + iyk , that is, it defines a Gaussian (Ornstein–
Uhlenbeck) diffusion in R2n and its major second-order part is just the standard Laplacian
in R2n .

From the first sight, this third homodyne arrangement seems to be the simplest one.
However, the catch is that, unlike the cases of compact spaces above (projective spaces
and tori), where all coefficients are automatically bounded, here the Hamiltonian controlled
part has unbounded drift (generally speaking of quadratic growth), which complicates the
investigation of the corresponding HJB equations in R2n . In the case of a commuting set of
controlled Hamiltonians, when all matrices H have only diagonal coefficients, the quadratic
term disappears and the controlled drift coefficient grows linearly, which makes it amenable
to analysis, see, e.g., [18]. In this paper, we avoid dealing systematically with unbounded
coefficients and will not develop a theory of control in this case.

Remark 9 Unlike the previous cases with the projective spaces and tori, in the scheme leading
to (46) the diffusion operator written in terms of the innovation processes will be different
from (46) leading to another complication of the theory, and even to possibly two different
formulations of the control problems.

10 Zero-SumGames on Two Coupled Atoms

The examples above can be looked at the dynamic extensions of the initial game of Meyer
[33] in the sense that two players are acting on the same atom. In the popular EWL protocol
[15] and the MW protocol [31], the players act simultaneously on two different qubits, with
the interaction between the qubits taken into account by choosing entangled initial states and
taking appropriate measurement.

The theory of Sect. 6 is general enough to accommodate games of two players on different
atoms, moreover with the genuine interaction of atoms taken into account. Namely, suppose
the atoms of players I and II, playing a zero-sum game, are two quantum systems, in Cn+1

each. The combined Hilbert space is thus Cn+1 ⊗Cn+1, so that its vectors can be written as
χ =∑χ jke j ⊗ek with {ek} the standard basis inCn+1. Suppose player I (respectively II) can
act on the first (resp. second) atomby the controlledHamiltonian operators HI (u) = (hI

jk(u))

(resp. HI I (v) = (hI I
jk (v))), and the interaction between the atoms is given by an operator

A = (A jk,pq).
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Remark 10 The standard physics choice of the interaction is the operator arising frompossible
exchange of photons, A = a∗

1a2 + a∗
2a1, with the annihilation operators a1 and a2 of the two

atoms.

The filtering Eq. (4) takes the form

dχ jk = −i
∑
p

(hI
jp(u)χpk + hI I

pk(v)χ j p) dt − i
∑
p,q

A jk,pqχpq dt + · · · , (47)

where by · · · we denoted the terms arising from the coupling with optical devices or from
the uncontrolled Hamiltonian operators of the atoms. As previously, we rewrite this equation
in terms of the projective coordinates w jk = χ jk/χ00 as follows (where it is understood that
w00 = 1):

dw jk = i
∑
p

[w jk(h
I
0p(u)wp0 + hI I

p0(v)w0p) − (hI
jp(u)wpk + hI I

pk(v)w j p)] dt

+i
∑
p,q

(w jk A00,pq − A jk,pq)wpq dt + · · · , j + k > 0. (48)

Choosing for observation our special homodyne detection scheme from Sect. 4 (with
(2n + 1)2 + 2(2n + 1) generalized Pauli operators) we get the HJB-Isaacs Eq. (31) in the
form

0 = ∂S

∂t
+ (α(W ),∇S) + �LB S + 〈J 〉W

+
∑

j,k,p,q

Re[i(w jk A00,pq − A jk,pq )wpq ] ∂S

∂x jk
+
∑

j,k,p,q

Im[i(w jk A00,pq − A jk,pq )wpq ] ∂S

∂ y jk

+ sup
u

⎧⎨
⎩
∑
j,k,p

[
Re[iw jk h

I
0p(u)wp0 − ih I

jp(u)wpk ] ∂S

∂x jk
+ Im[iw jk h

I
0p(u)wp0 − ih I

jp(u)wpk ] ∂S

∂ y jk

]⎫⎬
⎭

+ inf
v

⎧⎨
⎩
∑
j,k,p

[
Re[iw jk h

I I
p0(v)w0p − ih I I

pk(v)w j p] ∂S

∂x jk
+ Im[iw jk h

I I
p0(v)w0p − ih I I

pk (v)w j p] ∂S

∂ y jk

]⎫⎬
⎭ ,

(49)

where α includes the contributions arising from the uncontrolled Hamiltonian operators (if
any) and from the first-order terms of the Laplace–Beltrami operator �LB on the projective
space PC2n+1 (if any; there are no such terms for n = 1). We are fully in the setting of Sect.
6 implying the well-posedness of the backward Cauchy problem for the HJB-Isaacs Eq. (49)
in classical and mild solutions that yield the minimax value of the corresponding zero-sum
game.

11 Nonzero-SumGames

In the previous section, zero-sum games of two players were analyzed. However, the initial
EWL and MW protocols are dealing with more general, nonzero-sum games. These games
can be also accommodated in our setting with continuous observations. Let us consider for
simplicity the case of two players playing on two coupled atoms. N players on N atoms can
be looked at analogously.

As in the previous section, assume that players I and II can act on two atoms with the com-
binedHilbert spaceCn+1⊗Cn+1. To simplify the story, we shall assume that the Hamiltonian
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operators HI (u) and HI I (v) depend linearly on their control parameters u ∈ [−U ,U ] and
v ∈ [−V , V ]. Suppose player I (respectively II) can act on the first (resp. second) atom by
the controlled Hamiltonian operators HI (u) = (hI

jk(u)) (resp. HI I (v) = (hI I
jk (v))), and the

interaction between the atoms is given by an operator A = (A jk,pq). Hence, the controlled
filtering Eq. (48) will be written as

dw jk = i
∑
p

[w jk(uh
I
0pwp0 + vhI I

p0w0p) − (uhI
jpwpk + vhI I

pkw j p)] dt

+i
∑
p,q

(w jk A00,pq − A jk,pq)wpq dt + · · · , j + k > 0. (50)

Unlike the previous section with a single cost function, we assume now that the players
have different cost functions, namely that players I and I I aim at maximizing the costs

P I (t,W ; u(.), v(.)) = E
∫ T

t
〈J I 〉W (s) ds + 〈F I 〉W (T ), (51)

P I I (t,W ; u(.), v(.)) = E
∫ T

t
〈J I I 〉W (s) ds + 〈F I I 〉W (T ), (52)

respectively. We again assume for simplicity that the current costs J I ,I I do not depend on
control, though this is really not essential.

If player I acts according to some strategy u = u(t,W ), the optimal payoff of player I I
can be defined from the backward Cauchy problem for the HJB equation

0 = ∂SI I

∂t
+ (α(W ),∇SI I ) + �LB S

I I + 〈J I I 〉W

+
∑

j,k,p,q

Re[i(w jk A00,pq − A jk,pq )wpq ] ∂S
I I

∂x jk
+
∑

j,k,p,q

Im[i(w jk A00,pq − A jk,pq )wpq ] ∂S
I I

∂ y jk

+
⎧⎨
⎩u

∑
j,k,p

[
Re[iw jk h

I
0pwp0 − ih I

jpwpk ] ∂S
I I

∂x jk
+ Im[iw jk h

I
0pwp0 − ih I

jpwpk ] ∂S
I I

∂ y jk

]⎫⎬
⎭

+ sup
v

⎧⎨
⎩v

∑
j,k,p

[
Re[iw jk h

I I
p0w0p − ih I I

pkw j p] ∂S
I I

∂x jk
+ Im[iw jk h

I I
p0w0p − ih I I

pkw j p] ∂S
I I

∂ y jk

]⎫⎬
⎭ ,

(53)

where α includes the contributions arising from the uncontrolled Hamiltonian operators (if
any) and from the first-order terms of the Laplace–Beltrami operator �LB on the projective
space PC2n+1. Similarly for player I. Since supv and supu depend only on the signs (sgn) of
the corresponding sums, the pair of costs functions SI and SI I satisfy the coupled system of
two equations (a vector-valued HJB):

0 = ∂SI ,I I

∂t
+ (α(W ),∇SI ,I I ) + �LB S

I ,I I + 〈J I ,I I 〉W

+
∑

j,k,p,q

Re[i(w jk A00,pq − A jk,pq )wpq ] ∂S
I ,I I

∂x jk
+
∑

j,k,p,q

Im[i(w jk A00,pq − A jk,pq )wpq ] ∂S
I ,I I

∂ y jk

+
⎧⎨
⎩u

∑
j,k,p

[
Re[iw jk h

I
0pwp0 − ih I

jpwpk ] ∂S
I ,I I

∂x jk
+ Im[iw jk h

I
0pwp0 − ih I

jpwpk ] ∂S
I ,I I

∂ y jk

]⎫⎬
⎭

+
⎧⎨
⎩v

∑
j,k,p

[
Re[iw jk h

I I
p0w0p − ih I I

pkw j p] ∂S
I ,I I

∂x jk
+ Im[iw jk h

I I
p0w0p − ih I I

pkw j p] ∂S
I I

∂ y jk

]⎫⎬
⎭ ,

(54)
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with

u = Usgn

⎧⎨
⎩
∑
j,k,p

[
Re[iw jk h

I
0pwp0 − ih I

jpwpk ] ∂S
I ,I I

∂x jk
+ Im[iw jk h

I
0pwp0 − ih I

jpwpk ] ∂S
I ,I I

∂ y jk

]⎫⎬
⎭

v = V sgn

⎧⎨
⎩
∑
j,k,p

[
Re[iw jk h

I I
p0w0p − ih I I

pkw j p] ∂S
I ,I I

∂x jk
+ Im[iw jk h

I I
p0w0p − ih I I

pkw j p] ∂S
I I

∂ y jk

]⎫⎬
⎭ .

(55)

Since u, v depend Lipschitz continuously on the gradients of SI ,I I and are uniformly
bounded, Theorem 5.1 applies (more exactly, its straightforward vector-valued extension)
leading to the well-posedness of system (54)-(55) in the sense of mild and/or classical solu-
tions. By the verification theorem (see, e.g., [16]; note that for checking the Nash condition
one has to verify the optimality for each single player, that is the verification theorem of the
standard control theory is applicable) the solution of the backward Cauchy problem for sys-
tem (54)–(55) yields the subgame-perfect Nash equilibrium for the corresponding game. For
the recent results on general nonzero-sum differential games, we refer to [30] and references
therein.

12 Conclusions

We introduced the special homodyne detection schemes that turn the problems of dynamic
quantum filtering, control and games into the problems of the drift control of the standard
Brownian motions on the complex projective spaces, tori and Euclidean spaces allowing for
the effective theory of quantum dynamic games based on the classical and mild solutions
of the HJB-Isaacs equations on Riemannian manifolds. An explicitly solved example is
presented.

This approach opens the road to the effective application of the recent advanced numeric
approaches to solving HJB equations, see [32,35] and references therein, as well as to the
methods of finding explicit solutions from [14]. Of course, additional work is required for
the concrete applications of these methods to the present setting.

An interesting question arises from our construction. What is the minimal number N of
the operators L j (physically, of optical measuring devices) for a quantum system in Cn+1

that can ensure that the resulting diffusion on PCn is everywhere non-degenerate (and hence
the theory of Sect. 5 applies)? From Sect. 4, it follows that 2n ≤ N ≤ n2 + 2n. In particular
2 ≤ N ≤ 3 for a qubit. Notice that the scheme of Sect. 9 does not solve the problem (as may
be thought superficially), as it constructs the scheme with N = 2n, which is non-degenerate
everywhere on the chart specified by finite W , but not outside it (in particular, with the
exception of one point for a qubit).

Additionally, one can look at unbounded coefficients control problems arising from the
homodyne schemes of Sect. 9.

Of interest is also a proper investigation of the long time behavior of controlled quantum
processes, which can lead to some kind of turnpike behavior (see [29]) of stationary solutions.
Some steps in this direction were made in [22] and [4,23] for the jump-type and diffusive
filtering, respectively. Some application of these ideas can be found in [37].
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