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Given a metric measure space (X, d, m) and a lower semicontinuous, lower bounded 
function k : X → R, we prove the equivalence of the synthetic approaches to Ricci 
curvature at x ∈ X being bounded from below by k(x) in terms of

• the Bakry–Émery estimate ΔΓ(f)/2 −Γ(f, Δf) ≥ k Γ(f) in an appropriate weak 
formulation, and

• the curvature-dimension condition CD(k, ∞) in the sense of Lott–Sturm–Villani 
with variable k.

Moreover, for all p ∈ (1, ∞), these properties hold if and only if the perturbed 
p-transport cost
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is nonincreasing in t. The infimum here is taken over pairs of coupled Brownian 
motions b1 and b2 on X with given initial distributions μ1 and μ2, respectively, and 
k(x, y) := infγ

∫ 1
0 k(γs) ds denotes the “average” of k along geodesics γ connecting 

x and y.
Furthermore, for any pair of initial distributions μ1 and μ2 on X, we prove the 
existence of a pair of coupled Brownian motions b1 and b2 such that a.s. for every 
s, t ∈ [0, ∞) with s ≤ t, we have
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r é s u m é

Étant donnés un espace métrique mesuré (X, d, m) et une fonction k : X → R
semi-continue inférieurement et minorée, nous prouvons l’équivalence des approches 
synthétiques pour la courbure de Ricci en x ∈ X étant minorée par k(x) exprimées 
en termes
• de l’estimée de Bakry–Émery ΔΓ(f)/2 −Γ(f, Δf) ≥ k Γ(f) formulée en un sens 

faible approprié et
• de la condition CD(k, ∞) au sens de Lott–Sturm–Villani avec k variable.
De plus, pour tout p ∈ (1, ∞), ces propriétés sont vérifiées si et seulement si le 
p-coût de transport perturbé

W k
p (μ1, μ2, t) := inf
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E
[
e
∫ 2t
0 pk

(
b1
r,b

2
r

)
/2 dr dp

(
b1
2t, b2

2t
)]1/p

est décroissant en t. Ici, l’infimum est pris sur toutes les paires de mouvements 
browniens couplés b1 et b2 sur X avec lois initiales respectives μ1 et μ2 et k(x, y) :=
infγ

∫ 1
0 k(γs) ds désigne la “moyenne” de k le long des géodésiques γ reliant x et y.

En outre, pour toute paire de lois initiales μ1 et μ2 sur X, nous prouvons l’existence 
d’une paire de mouvements browniens couplés b1 et b2 telle que presque sûrement 
pour tous s, t ∈ [0, ∞) avec s ≤ t, on a
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1. Introduction

Throughout this paper, the triple (X, d, m) is a metric measure space, that is, a complete and separable 
metric space (X, d) equipped with a locally finite measure m defined on the Borel σ-field B(X), and 
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k : X → R is a lower semicontinuous function which is bounded from below. For simplicity, we assume 
that m has full topological support. We say that (X, d, m) is an RCD space if it satisfies the RCD(K, ∞)
condition for some K ∈ R. This will be our standing assumption throughout.

Denote by P(X) the space of Borel probability measures on (X, d). For p ∈ [1, ∞), Pp(X) is the set of 
μ ∈ P(X) with 

∫
X

dp(x, y) dμ(y) < ∞ for some x ∈ X. As usual, Wp denotes the p-Kantorovich–Wasserstein 
distance defined through

Wp(μ, ν) := inf
π

( ∫
X×X

dp(x, y) dπ(x, y)
)1/p

,

where the infimum is taken over all π ∈ P(X × X) with marginals μ and ν. If it exists, the limit |γ̇t| :=
limh→0 d(γt+h, γt)/|h| is called metric speed of the curve γ ∈ C([0, 1]; X) at t ∈ [0, 1], and we write |γ̇| if 
|γ̇t| = |γ̇s| for every s, t ∈ [0, 1]. Moreover, Geo(X) denotes the space of geodesics on X, i.e. the set of 
γ ∈ C([0, 1]; X) with d(γt, γs) = |t − s| d(γ0, γ1) for all s, t ∈ [0, 1]. Similarly, we define Geo(Pp(X)) as the 
space of Wp-geodesics in the space of probability measures. We say that π ∈ P(Geo(X)) represents the 
Wp-geodesic (μt)t∈[0,1] if μt = (et)�π for all t ∈ [0, 1], where et : C([0, 1]; X) → X is the evaluation map 
defined by et(γ) := γt. By [23], every Wp-geodesic can be represented by some π ∈ P(Geo(X)).

We present various synthetic approaches to the definition of Ricci curvature at x ∈ X bounded from 
below by k(x) and prove their equivalence. These characterizations are suitable extensions of the curvature-
dimension condition, the evolution variational inequality, Bochner’s inequality, gradient estimates and 
transport estimates to nonconstant curvature bounds. To this list, we add a description in terms of pathwise 
coupling of Brownian motions. In total, our main result is the following.

Theorem 1.1. Let (X, d, m) be an RCD space, and let k : X → R be a lower semicontinuous, lower bounded 
function. For all exponents p ∈ (1, ∞) and q ∈ [1, ∞), the following properties are equivalent:

(i) the curvature-dimension condition CD(k, ∞),
(ii) the evolution variational inequality EVI(k),
(iii) the q-Bochner inequality BEq(k, ∞),
(iv) the q-gradient estimate GEq(k),
(v) the p-transport estimate TEp(k), and
(vi) the pathwise coupling property PCP(k).

Moreover, any of these properties yields (iii), (iv) and (v) for all exponents p, q ∈ [1, ∞).

Let us now introduce each of these extensions and give an overview of the organization of our reasoning. 
Throughout, we assume the reader to be familiar with the theory of RCD(K, ∞) spaces and basic properties 
of these. An account on this will be collected in Section 2 which can be read independently of the rest of 
this paper.

1.1. Lagrangian formulation of synthetic variable Ricci bounds

Here and in the sequel, g(s, t) := min{s(1 − t), t(1 − s)} denotes the Green’s function of the unit interval 
[0, 1]. Define the Boltzmann entropy Entm : P2(X) → (−∞, ∞] as

Entm(μ) :=
∫

ρ log ρ dm if μ � m with μ = ρm, Entm(μ) := ∞ otherwise.

X
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We put Dom(Entm) := {μ ∈ P2(X) : Entm(μ) ∈ R}. Convexity properties of the Boltzmann entropy 
are at the center of the curvature-dimension condition CD(K, ∞) introduced in [29,24] (as well as of its 
enforcements in [30,8,14]) which we are extend now from fixed K to variable k.

Definition 1.2 [31, Definition 3.2]. An RCD space (X, d, m) is said to satisfy the curvature-dimension con-
dition with variable curvature bound k, briefly CD(k, ∞), if for every μ0, μ1 ∈ Dom(Entm) there exists a 
measure π ∈ P(Geo(X)) representing some W2-geodesic (μt)t∈[0,1] connecting μ0 and μ1 such that, for all 
t ∈ [0, 1],

Entm(μt) ≤ (1 − t) Entm(μ0) + tEntm(μ1) −
1∫

0

∫
Geo(X)

g(s, t) k(γs) |γ̇|2 dπ(γ) ds.

Definition 1.3 [31, Definition 3.3]. An RCD space (X, d, m) is said to satisfy the evolution variational in-
equality with variable curvature bound k, briefly EVI(k), if for every μ0 ∈ P2(X) there exists a locally 
absolutely continuous curve (μt)t>0 in Dom(Entm) with W2(μt, μ0) → 0 as t → 0, and for every t > 0 and 
ν ∈ P2(X) there exists a measure πt ∈ P(Geo(X)) representing some W2-geodesic connecting μt and ν
such that

d+

dt
1
2W

2
2 (μt, ν) +

1∫
0

∫
Geo(X)

(1 − s) k(γs) |γ̇|2 dπt(γ) ds ≤ Entm(ν) − Entm(μt).

From [31, Theorem 3.4], it is already known that CD(k, ∞) is equivalent to EVI(k) on RCD spaces, which 
establishes the equivalence of (i) and (ii) in Theorem 1.1.

1.2. Eulerian formulation of synthetic variable Ricci bounds

Let us now switch to the Eulerian picture which, to shorten the presentation, is directly presented for 
arbitrary exponents. Define the Cheeger energy E : L2(X, m) → [0, ∞] as

E (f) := inf
{

lim inf
n→∞

∫
X

lip(fn)2 dm : fn ∈ Lipb(X), fn → f in L2(X,m)
}
,

where lip(f)(x) := lim supy→x |f(x) − f(y)|/ d(x, y) denotes the local Lipschitz slope at x ∈ X. We put 
Dom(E ) :=

{
f ∈ L2(X,m) : E (f) < ∞

}
.

Definition 1.4. Given q ∈ [1, ∞), we say that an RCD space (X, d, m) satisfies the q-Bochner inequality or 
q-Bakry–Émery estimate with variable curvature bound k, briefly BEq(k, ∞), if

∫
X

(1
q
Γ(f)q/2 Δφ− Γ(f)q/2−1 Γ(f,Δf)φ

)
dm ≥

∫
X

k Γ(f)q/2 φ dm

holds for all f ∈ Dom(Δ) with Δf ∈ Dom(E ) as well as Γ(f) ∈ L∞(X, m) and for every nonnegative 
φ ∈ Dom(Δ) ∩ L∞(X, m) with Δφ ∈ L∞(X, m).

The equivalence of (i) and (iii) for q = 2 in our major Theorem 1.1 above states that the variable 
Eulerian and Lagrangian approaches to synthetic lower Ricci bounds coincide, i.e. CD(k, ∞) is equivalent 
to BE2(k, ∞). If k is constant, this has been proved by Ambrosio, Gigli and Savaré in their groundbreaking 
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works, see [4], which follows [15], for (i) implying (iii), and [5] for (iii) implying (i). In the nonconstant case, 
this remained open in previous contributions [20,21,31].

The implication from BE2(k, ∞) to CD(k, ∞) follows from Theorem 3.4 and Theorem 4.5. The proof of 
the converse is a consequence of Proposition 4.6, Proposition 5.6, Theorem 5.19 and eventually Theorem 3.4. 
This requires a detailed heat flow analysis, both at the level of functions and measures, and in particular 
an extension of Kuwada’s duality [22, Theorem 2.2] between q-gradient estimates and p-transport estimates 
for dual p and q. This is quite demanding – indeed, until now not even a formulation of an appropriate 
p-transport estimate with nonconstant curvature bound existed.

The “self-improvement property” of the q-Bochner inequality will be another key result. Indeed, the 
BEq(k, ∞) condition is independent of q, see Theorem 3.6, which provides the equivalence of (i) and (iii) in 
Theorem 1.1 for general q.

1.3. Improved gradient estimates

Following [31], let (Pqk
t )t≥0 be the Schrödinger semigroup on L2(X, m) associated to the generator Δ −qk

for q ∈ [1, ∞). It extends to a strongly continuous semigroup on Lr(X, m) for each r ∈ [1, ∞). In terms 
of the Brownian motion (Px, b) on X starting in x ∈ X, it can be expressed through the Feynman–Kac 
formula

Pqk
t f(x) = Ex

[
e−

∫ 2t
0 qk(br)/2 dr f(b2t)

]
for every f ∈ Lr(X,m). (1.1)

Definition 1.5. We say that a q-gradient estimate with variable curvature bound k, briefly GEq(k), holds 
whenever

Γ(Ptf)q/2 ≤ Pqk
t

(
Γ(f)q/2

)
m-a.e.

is satisfied for every f ∈ Dom(E ) and every t ≥ 0.

Adapting the well-known arguments for constant Ricci curvature bounds from [10,27], we establish, as 
stated in Theorem 3.4, that BEq(k, ∞) holds if and only if GEq(k) is satisfied. This yields the equivalence 
of (iii) and (iv) in Theorem 1.1 for general q ∈ [1, ∞).

1.4. Variable transport estimates

In order to formulate a dual p-transport estimate for p ∈ [1, ∞), we consider evolutions on the product 
space X ×X. Denoting by Gε(x, y) the set of γ ∈ Geo(X) with γ0 ∈ Bε(x) and γ1 ∈ Bε(y), we introduce 
the function k : X ×X → R defined by

k(x, y) := lim
ε→0

inf
γ∈Gε(x,y)

1∫
0

k(γs) ds. (1.2)

Its basic properties are summarized in Section 2. As we will see in Remark 5.12, Theorem 6.1 and The-
orem 5.17, it turns out that k can indeed equivalently be replaced in all relevant quantities by the larger 
function k : X ×X → R defined by

k(x, y) := lim inf
(xn,yn)→(x,y)

sup
γ∈G0(xn,yn)

1∫
k(γs) ds. (1.3)
0
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Definition 1.6. A pair 
(
(b1

t )t≥0, (b2
t )t≥0

)
of stochastic processes on X is called coupling of Brownian motions

if it is defined on a common probability space (Ω, P ) and each of the processes (b1
t )t≥0 and (b2

t )t≥0 is a 
Brownian motion on the RCD space (X, d, m).

Given μ1, μ2 ∈ Pp(X), we define the perturbed p-transport cost at time t ≥ 0 by

W k
p (μ1, μ2, t) := inf

(P ,b1,b2)
E
[
e
∫ 2t
0 pk

(
b1
r,b

2
r

)
/2 dr dp

(
b1
2t, b2

2t
)]1/p

,

where the infimum is taken over all pairs of coupled Brownian motions 
(
P , b1) and 

(
P , b2) on X, restricted 

to [0, 2t] and modeled on a common probability space, with initial distributions μ1 and μ2, respectively. 
Note that W k

p (μ1, μ2, 0) = Wp(μ1, μ2) and that for general t ≥ 0, if k is constant, say k = K, the perturbed 
p-transport cost can be expressed in terms of the usual p-transport cost via

W k
p (μ1, μ2, t) = eKt Wp(Htμ1,Htμ2).

Definition 1.7. Given any p ∈ [1, ∞), we say that a p-transport estimate with variable curvature bound k, 
briefly TEp(k), holds if the map t 	→ W k

p (μ1, μ2, t) is nonincreasing on [0, ∞) for every pair μ1, μ2 ∈ Pp(X).

Having at our disposal appropriate replacements for the expressions e−qKt Pt

(
Γ(f)q/2

)
and eKt Wp(Htμ1,

Htμ2) in terms of Feynman–Kac formulas with potentials qk for the Brownian motion on X and −pk for 
pairs of coupled Brownian motions on X × X, respectively, we are in a position to formulate and prove 
a generalization of the fundamental Kuwada duality in the case of nonconstant k. This addresses the 
equivalence of (iv) and (v) in Theorem 1.1.

Theorem 1.8. For every p, q ∈ (1, ∞) with 1/p + 1/q = 1, the following are equivalent:

(iv) the q-gradient estimate GEq(k), and
(v) the p-transport estimate TEp(k).

This result is a consequence of Theorem 5.16 and Theorem 5.19. For both results, it is crucial to use a 
localization argument in regions where k or k are “approximately constant” and then use tail estimates for 
Brownian paths to control the remainder terms.

Suitable extensions to the case q = 1 and p = ∞ will be discussed, and eventually shown to be equiva-
lent, in Theorem 5.10, Theorem 5.17 and Theorem 6.1. Therefore, making sense of an appropriate TEp(k)
condition for p = ∞ is the content of the subsequent Section 1.5.

Remark 1.9. It is often convenient to use the characterization of TEp(k), which is zeroth-order in nature, 
through a first-order condition via the differential p-transport inequality

d+

dt

∣∣∣∣
t=0

W p
p (Htδx,Htδy) ≤ −p k(x, y) dp(x, y) for every x, y ∈ X,

very much in the spirit of the connection between BEq(k, ∞) and GEq(k). The equivalence of TEp(k) and the 
foregoing estimate, which for constant k is essentially Gronwall’s lemma and a standard coupling technique, 
is treated in Theorem 5.7.

A posteriori, for every p ∈ (1, ∞), any of the conditions (i) to (vi) from Theorem 1.1 will indeed give the 
stronger estimate
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d+

dt W
p
p (Htμ1,Htμ2) ≤ −p

1∫
0

∫
Geo(X)

k(γs) |γ̇|p dπt(γ) ds for every t ≥ 0,

where μ1, μ2 ∈ P(X) have finite Wp-distance to each other, and πt ∈ P(Geo(X)) is an arbitrary measure 
representing a Wp-geodesic from Htμ1 to Htμ2, see Corollary 5.11. �

1.5. Pathwise coupling of Brownian motions

Finally, we reinforce the p-transport estimate by passing to the limit p → ∞ and by replacing the mean 
value estimates by a pathwise one.

Definition 1.10. We say that the pathwise coupling property with variable curvature bound k, briefly PCP(k), 
holds if for every pair μ1, μ2 ∈ P(X) there exists a pair 

(
P , b1) and 

(
P , b2) of coupled Brownian motions 

on X with initial distributions μ1 and μ2, respectively, such that P -a.s., we have

d
(
b1
t , b2

t

)
≤ e−

∫ t
s
k
(
b1
r,b

2
r

)
/2 dr d

(
b1
s, b2

s

)
for every s, t ∈ [0,∞) with s ≤ t.

It is proved in [7, Theorem 4.1] that complete Riemannian manifolds with Ricci curvature bounded 
from below by K ∈ R satisfy PCP(k) with constant k = K. The work [31, Theorem 2.9] extended this to 
general RCD(K, ∞) spaces. A first result into the nonconstant direction is due to [32, Theorem 6]. Again 
on Riemannian manifolds with a uniform lower bound on the Ricci curvature, it deduces the existence of 
a pair 

(
b1, b2) of coupled Brownian motions starting in (x, y) obeying for every t ≥ 0, on the event that (

b1
r, b2

r

)
does not belong to the cut-locus of X for all r ∈ [0, t], the estimate

d
(
b1
t , b2

t

)
≤ e−

∫ t
0 κ

(
b1
r,b

2
r

)
/2 dr d(x, y),

where κ(x, y) := −d+

dt
∣∣
t=0 logW1(Htδx,Htδy) denotes the coarse curvature at x, y ∈ X, x 
= y. For x, y close 

to each other, say y = expx(εv) with ε > 0, v ∈ TxX, we have

κ(x, y) = Ricx(v, v) + o(1),

see [32, Theorem 19 and Remark 20]. The construction of this process deeply relies on smooth calculus 
tools, which are unavailable in our setting and thus cannot be adopted.

Our main theorem extends these results in terms of k and circumvents regularity issues involving the 
variable curvature bound. The existence of a process satisfying the PCP(k) condition is even equivalent 
to CD(k, ∞). Indeed, given TEp(k) for every large enough p ∈ (1, ∞), we deduce PCP(k) by means of 
Theorem 6.1, the content of which is the implication from (v) to (vi) in Theorem 1.1. Note that according 
to the previous Theorem 1.8 and nestedness of q-gradient estimates, see Lemma 3.3, the 1-gradient estimate 
GE1(k) implies TEp(k) for all p ∈ (1, ∞) and thus PCP(k). The converse of this, i.e. the implication from 
PCP(k) to GE1(k), is addressed in Theorem 5.17.

Acknowledgments The authors warmly thank Matthias Erbar for a number of fruitful and enlightening 
discussions.

2. Preliminaries

Notations We write C(X) and Lip(X) for the spaces of continuous and Lipschitz functions f : X → R, 
respectively. We set Lip(f) := supx�=y |f(x) −f(y)|/ d(x, y) for f ∈ Lip(X). The space of bounded continuous 
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functions on X is denoted by Cb(X), and the space of functions in C(X) with bounded support is called 
Cbs(X), and similarly for Lipb(X) and Lipbs(X).

The Riemannian curvature-dimension condition We say the metric measure space (X, d, m) is infinitesi-
mally Hilbertian if the Cheeger energy E is a quadratic form (in other words, if it satisfies the parallelo-
gram identity). Furthermore, we say that (X, d, m) satisfies the Riemannian curvature-dimension condition
RCD(k, ∞) if it is infinitesimally Hilbertian and satisfies the curvature-dimension condition CD(k, ∞) ac-
cording to Definition 1.2. As said, we always assume that (X, d, m) is an RCD(K, ∞) space for some constant 
K ∈ R. The value of K does not enter any of our results. Without restriction k ≥ K on X. Indeed, one 
should think of k as being much larger than K everywhere on X.

The RCD(K, ∞) assumption carries numerous important consequences for (X, d, m). Further details on 
the subsequent results can be found in [3,4,17,26,27].

a. Volume growth. For each z ∈ X there exists a nonnegative constant C such that m[Br(z)] ≤ eCr2 for 
every r > 0.

b. Nondegeneracy of entropy. Entm is well-defined and does not attain the value −∞ on P2(X).
c. Uniqueness of W 2-geodesics. For each pair of m-absolutely continuous measures μ0, μ1 ∈ P2(X), there 

exists a unique W2-geodesic connecting them.
d. Dirichlet form. By polarization, E defines a quasi-regular, strongly local, conservative Dirichlet form, 

unambiguously denoted by E , on L2(X, m) with dense domain W 1,2(X) := Dom(E ). The latter is a 
Hilbert space w.r.t.

[
‖f‖2

L2(X,m) + E (f)
]1/2. The generator of E , i.e. the self-adjoint operator Δ on 

L2(X, m) defined by putting f ∈ Dom(Δ) and h = Δf if and only if

E (f, g) = −
∫
X

h g dm for every g ∈ W 1,2(X),

is called Laplacian.
e. Heat flow. The Dirichlet form E defines the heat semigroup (Pt)t≥0 as its gradient flow in L2(X, m), 

or alternatively via spectral calculus as Pt = eΔt, t ≥ 0. This semigroup is m-symmetric and extends 
to a strongly continuous contraction semigroup on Lr(X, m) for any r ∈ [1, ∞). It can be chosen to be 
strong Feller, more precisely, Pt maps L∞(X, m) to Lip(X) for t > 0 with Lip(Ptf) ≤ ‖f‖L∞(X,m)/

√
t

if K = 0, while if K 
= 0, then

Lip(Ptf)2 ≤ K

e2Kt − 1 ‖f‖2
L∞(X,m) for every f ∈ L∞(X,m). (2.1)

The semigroup (Pt)t≥0 is in duality with the semigroup (Ht)t≥0 defined as the gradient flow of Entm in 
P2(X) and extended to P(X) by continuity, i.e.

∫
X

f dHtμ =
∫
X

Ptf dμ for every f ∈ Cb(X) and μ ∈ P(X).

In particular, Ht(gm) = (Ptg) m for every g ∈ L1(X, m).
f. Uniqueness of EVI curves. Every curve (μt)t≥0 in P2(X) satisfying the obstructions from Definition 1.3

with arbitrary choice of k ≥ K necessarily coincides with the heat flow (Htμ0)t≥0 starting at μ0.
g. Brownian motion. For each μ ∈ P(X), there exists a conservative Markov process (P , (bt)t≥0) on 

X, or (P , b) for short, unique in law, with continuous sample paths and transition semigroup given 
by
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E
[
f(bt+s) | bs

]
= Pt/2f(bs) for every s, t ∈ [0,∞) and f ∈ Cb(X),

and with (b0)�P = μ. This process is called the Brownian motion on X with initial distribution μ. If we 
want to stress the dependence on the initial distribution, we write Pμ instead of P , where we abbreviate 
Pδx by Px for x ∈ X.

h. Carré du champ. The set Lip(X) ∩ L2(X, m) is a core for E . A quadratic functional Γ: W 1,2(X) →
L1(X, m) can be defined by requiring

∫
X

Γ(f) g dm = E (f, f g) − 1
2E

(
f2, g

)
for every g ∈ Lipb(X).

Indeed, Γ(f)1/2 coincides m-a.e. with the minimal weak upper gradient |Df |.
i. Test functions. The set

TestF(X) :=
{
f ∈ Dom(Δ) ∩ L∞(X,m) : Γ(f) ∈ L∞(X,m), Δf ∈ W 1,2(X)

}
(2.2)

is a core for E and an algebra w.r.t. pointwise multiplication.
j. Twice differentiability. We have Γ(f)1/2 ∈ Dom(E ) for all f ∈ D(Δ) and

E
(
Γ(f)1/2

)
≤ ‖Δf‖2

L2(X,m) −KE (f).

k. Sobolev-to-Lipschitz property. Every f ∈ W 1,2(X, m) with |Df | ∈ L∞(X, m) has a Lipschitz represen-
tative f with Lip(f) ≤ ‖|Df |‖L∞(X,m).

Hopf–Lax evolution For later use, we summarize the main properties of the general p-Hopf–Lax (or 
Hamilton–Jacobi) semigroup (Qs)s≥0, p ∈ (1, ∞). A detailed account on this topic in general metric spaces 
can be found in [2,3,18].

Fix a Lipschitz function f on X. Its p-Hopf–Lax evolution (Qsf)s≥0 is defined by

Q0f := f and Qsf(x) := inf
y∈X

{
f(y) + dp(x, y)

psp−1

}
for every s ∈ (0,∞) and x ∈ X.

The map s 	→ Qsf belongs to Lip([0, ∞); C(X)), where C(X) is endowed with the usual supremum metric. 
We also have Qsf ∈ Lip(X) with Lip(Qsf) ≤ p Lip(f) for all s ∈ (0, ∞). Denoting by q ∈ (1, ∞) the dual 
exponent to p, for every x ∈ X, we have

d
dsQsf(x) + 1

q
lip(Qsf)q(x) ≤ 0

for all but at most countably many s ∈ (0, ∞), and equality holds e.g. if (X, d) is geodesic.
Using the p-Hopf–Lax semigroup gives a nice duality formula for the p-Kantorovich–Wasserstein distance, 

see [22,33] for details: for all μ, ν ∈ P(X), one has

1
p
W p

p (μ, ν) = sup
{∫

X

Q1f dμ−
∫
X

f dν : f ∈ Lipb(X)
}
. (2.3)

The function k and Lipschitz approximation Recall that k is lower semicontinuous and bounded from 
below by K, and so is k by construction. If k is also bounded from above, say by C ∈ R, then so is 
k. By reparameterization of geodesics, we get k(x, y) = k(y, x) for every x, y ∈ X. Note that k can 
be reconstructed from k, since k(x) = k(x, x). Lastly, the function k defined in (1.2) is the pointwise 
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monotone limit from below of bounded Lipschitz functions kn, and so is the function k by considering 
kn on the diagonal. We intend Lipschitz continuity on X × X w.r.t. the product metric dX×X given by 
dX×X

(
(x, y), (x′, y′)

)
:=

[
d2(x, x′) + d2(y, y′)

]1/2. The former fact will be used frequently. Following [1], we 
can, for instance, define kn : X ×X → R for n ∈ N by

kn(x, y) := inf
{
min{k(x′, y′), n} + n dX×X

(
(x, y), (x′, y′)

)
: x′, y′ ∈ X

}
.

Lemma 2.1. The above functions kn, n ∈ N, have the following properties:

(i) for every n ∈ N, the function kn is Lipschitz on X ×X with Lip(kn) ≤ n,
(ii) for all x ∈ X and each n ∈ N, we have K ≤ kn(x) ≤ kn+1(x) ≤ n + 1, and
(iii) the sequence (kn)n∈N converges pointwise from below to k.

3. Gradient estimates, Bochner’s inequality, and their self-improvements

In this section, we adapt the well-known arguments of [9,10,27] for constant curvature lower bounds to 
derive the equivalence of the q-Bochner inequality with the q-gradient estimate with exponent q ∈ [1, ∞). 
Moreover, we prove that these properties are independent of q.

Up to replacing k by kn := min{k, n}, n ∈ N, we may assume throughout this chapter that k is 
bounded. In the general case, each of the subsequent results still holds for k since BEq(k, ∞) and GEq(k)
trivially imply BEq(kn, ∞) and GEq(kn) for every n ∈ N, respectively, and conversely, if BEq(kn, ∞)
and GEq(kn) hold for each n ∈ N, the monotone convergence theorem implies BEq(k, ∞) and GEq(k), 
respectively.

In this chapter, we denote an E -quasi-continuous representative of a given function h ∈ W 1,2(X) by h̃. 
The function h̃ is uniquely determined E -quasi-everywhere.

3.1. Equivalence of Bochner and gradient estimate

First, we review the measure-valued Laplacian Δ and the measure-valued Γ2-operator Γ2 as introduced 
and analyzed in [16,27], defined by means of

∫
X

g dΔf = −
∫
X

Γ(g, f) dm for every g ∈ Lipbs(X) and (3.1)

Γ2(f) := 1
2ΔΓ(f) − Γ(f,Δf)m

for suitable f ∈ W 1,2(X). We write f ∈ Dom(Δ) if the signed measure Δf exists, which is then uniquely 
determined by (3.1) and does not charge sets of zero capacity. We denote the density of the m-absolutely 
continuous part of Γ2(f) by γ2(f). The singular part of Γ2(f) w.r.t. m is a nonnegative measure. Both Δf

and Γ2(f) are well-defined for f ∈ TestF(X). Lastly, a consequence of the generic calculus rules of Γ is the 
following chain rule for Δ.

Lemma 3.1. Fix f ∈ Dom(Δ) ∩ L∞(X, m), an interval I ⊂ R with 0 ∈ I containing the image of f , and a 
function Φ ∈ C2(I) such that Φ(0) = 0. Then Φ(f) ∈ Dom(Δ) and

ΔΦ(f) = Φ′(f̃)Δf + Φ′′(f) Γ(f)m. (3.2)

Proof. Given any f ∈ Dom(Δ) ∩L∞(X, m), first observe that Φ(f) ∈ W 1,2(X). Furthermore, by density of 
Lipschitz functions in W 1,2(X) and a simple truncation argument, we find a sequence (fn)n∈N of functions 
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in W 1,2(X) ∩ Lip(X) which is uniformly bounded in L∞(X, m) such that fn → f in W 1,2(X). Up to 
taking a subsequence, we assume without restriction that (fn)n∈N converges E -quasi-uniformly to an E -
quasi-continuous representative f̃ of f , cf. [12, Theorem 1.3.3]. Since Δf has finite total variation on any 
bounded subset of X, the dominated convergence theorem yields, for every g ∈ Lipbs(X) and up to possibly 
taking further subsequences,

∫
X

gΦ′(f̃)dΔf +
∫
X

gΦ′′(f) Γ(f) dm

= lim
n→∞

∫
X

gΦ′(fn) dΔf +
∫
X

gΦ′′(f) Γ(f) dm

= − lim
n→∞

∫
X

Γ
(
gΦ′(fn), f

)
dm +

∫
X

gΦ′′(f) Γ(f) dm

= − lim
n→∞

(∫
X

Φ′(fn) Γ(g, f) dm +
∫
X

gΦ′′(fn) Γ(fn, f) dm
)

+
∫
X

gΦ′′(f) Γ(f) dm

= −
∫
X

Φ′(f) Γ(g, f) dm = −
∫
X

Γ
(
g,Φ(f)

)
dm.

The claim follows from definition (3.1) of Δ. �
Once BE2(k, ∞) holds, as in the proof of [27, Lemma 3.2] we get

E
(
Γ(f)

)
≤ −

∫
X

2k Γ(f)2 + Γ(f) Γ(f,Δf) dm and

k Γ(f)m ≤ 1
2ΔΓ(f) − Γ(f,Δf)m

for every f ∈ TestF(X). Taking these estimates into account, one can argue exactly as in [9, Proposition 
1], which has also been leaned on [27, Theorem 3.4], to obtain that, for every f ∈ TestF(X),

Γ(Γ(f)) ≤ 4
(
γ2(f) − k Γ(f)

)
Γ(f) m-a.e. (3.3)

Using this, we deduce the whole range of q-Bochner inequalities from BE2(k, ∞).

Proposition 3.2. The condition BE2(k, ∞) implies BEq(k, ∞) for every q ∈ [1, ∞).

Proof. Fix f ∈ TestF(X) and a nonnegative φ ∈ Dom(Δ) ∩ L∞(X, m) with Δφ ∈ L∞(X, m). Given ε > 0, 
consider the smooth function Φε(r) := (r + ε)q/2 − εq/2 defined for r ≥ 0. Since 2 − q ≤ 1, we obtain the 
m-a.e. inequalities

−Γ(Γ(f)) Φ′′
ε (Γ(f)) ≤ q

4Γ(Γ(f))
(
Γ(f) + ε

)q/2−2 ≤ 2
(
γ2(f) − k Γ(f)

)
Φ′

ε(Γ(f))

by means of (3.3). Multiplying this by φ and integrating, one gets

−
∫

Γ(Γ(f)) Φ′′
ε (Γ(f))φ dm
X



M. Braun et al. / J. Math. Pures Appl. 147 (2021) 60–97 71
≤ 2
∫
X

Φ′
ε

(
˜Γ(f)

)
φ̃ dΓ2(f) − 2

∫
X

k Γ(f) Φ′
ε(Γ(f))φ dm

=
∫
X

Φ′
ε

(
˜Γ(f)

)
φ̃dΔΓ(f) − 2

∫
X

Φ′
ε(Γ(f))

(
Γ(f,Δf) + k Γ(f)

)
φ dm.

Invoking Lemma 3.1, this amounts to

2
∫
X

Φ′
ε(Γ(f))

(
Γ(f,Δf) + k Γ(f)

)
φ dm ≤

∫
X

φ̃ dΔΦε(Γ(f)) =
∫
X

Φε(Γ(f)) Δφ dm.

By the dominated convergence theorem, letting ε ↓ 0 in the preceding inequality gives the BEq(k, ∞)
inequality for f ∈ TestF(X).

To extend this to general f ∈ Dom(Δ) with Δf ∈ W 1,2(X) and Γ(f) ∈ L∞(X, m), we approximate it 
in W 1,2(X) by means of its heat flow regularizations Ptf ∈ TestF(X) as t ↓ 0. Since Γ(Ptf) → Γ(f) and 
Γ(Ptf, ΔPtf) → Γ(f, Δf) in L1(X, m) as t ↓ 0, Γ(Ptf) is uniformly bounded in L∞(X, m) for small enough 
t, and Γ(ΔPtf)1/2 is uniformly bounded in L2(X, m) for small enough t, we easily get

lim
t↓0

Γ(Ptf)q/2 = Γ(f)q/2 and lim
t↓0

Γ(Ptf)q/2−1 Γ(Ptf,ΔPtf) = Γ(f)q/2−1 Γ(f,Δf)

in L1(X, m). This yields the claim. �
By the Feynman–Kac representation (1.1) of Pqk

t and Jensen’s inequality, the following hierarchy between 
gradient estimates is immediate. This and the above self-improvement property of BE2(k, ∞) will be used 
in the proof of Theorem 3.4 below.

Lemma 3.3. If GEq(k) holds for some q ∈ [1, ∞), then GEq′(k) is satisfied for all q′ ∈ [q, ∞).

Theorem 3.4. For every q ∈ [1, ∞), the properties BEq(k, ∞) and GEq(k) are equivalent to each other.

Proof. By density of TestF(X) in W 1,2(X) and an argument as in the proof of Proposition 3.2, the function 
f under consideration may be assumed to belong to TestF(X).

Suppose that BEq(k, ∞) is satisfied. Fix any t > 0, f as above and a nonnegative φ ∈ Dom(Δ) ∩L∞(X, m)
with Δφ ∈ L∞(X, m). Given any ε > 0, consider the function Φε as defined in the proof of Proposition 3.2
above. Define Fε : [0, t] → R by

Fε(s) :=
∫
X

Pqk
s

(
Φε

(
Γ(Pt−sf)

))
φ dm =

∫
X

Φε

(
Γ(Pt−sf)

)
Pqk
s φ dm.

This function belongs to C1([0, t]) since the functions s 	→ Pqk
s φ and s 	→ Φε

(
Γ(Pt−sf)

)
as well as their 

derivatives in L2(X, m) are bounded on [0, t], see also [5, Lemma 2.1] for a similar argument. Thus

lim inf
ε↓0

F ′
ε(s) ≥ lim inf

ε↓0

∫
X

Φε

(
Γ(Pt−sf)

)
(Δ − qk)Pqk

s φ dm

− 2 lim sup
ε↓0

∫
X

Φ′
ε

(
Γ(Pt−sf)

)
Γ(Pt−sf,ΔPt−sf) Pqk

s φ dm,

which is nonnegative by BEq(k, ∞). Fatou’s lemma gives
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F0(t) − F0(0) = lim inf
ε↓0

(
Fε(t) − Fε(0)

)
≥

t∫
0

lim inf
ε↓0

F ′
ε(s) ds ≥ 0,

which establishes GEq(k) for f ∈ TestF(X) by the arbitrariness of φ.
Conversely, assume GEq(k) for q ∈ [2, ∞). As Φ0 ∈ C1([0, ∞)) for such q, we deduce F ′

0(0) ≥ 0, which 
is a reformulation of the BEq(k, ∞) inequality with Ptf in place of f . Letting t ↓ 0 gives the desired 
conclusion. If, on the other hand, we have q ∈ [1, 2), we cannot rely on the above regularity of Φ0. However, 
Lemma 3.3 ensures GE2(k), which implies BE2(k, ∞) by the previous discussion. Therefore, BEq(k, ∞)
holds by Proposition 3.2. �
3.2. Independence of the q-Bochner inequality of q

In this section, we prove the independence of the q-Bochner inequality of q ∈ [1, ∞). See Theorem 3.6
below for the precise statement.

We start with the following result. For its proof, we adapt the arguments of [19]. A crucial point in this 
argument is that our a priori RCD assumption guarantees Γ(f)q/2 ∈ Dom(Δ) for all f ∈ TestF(X) and 
every q ∈ [1, ∞), and that TestF(X) is dense in W 1,2(X).

Proposition 3.5. The condition BEq(k, ∞) implies BE2(k, ∞) for every q ∈ (2, ∞).

Proof. As discussed above, it suffices to show the claimed implication starting from GEq(k) with q ∈ (2, ∞).
Arguing exactly as in the constant situation in [19, Lemma 3.2] (see also [27, Theorem 3.4]), one can 

show that for every r ∈ (2, ∞), BEr(k, ∞) holds if and only if the inequalities

1
2Γ(f) δ(Γ(f)) + r − 2

4 Γ(Γ(f)) ≥ Γ(f) Γ(f,Δf) + k Γ(f)2 m-a.e. and ˜Γ(f)Δ⊥Γ(f) ≥ 0 (3.4)

are valid for every f ∈ TestF(X). Here, δ(Γ(f)) is the density of the m-absolutely continuous part of ΔΓ(f)
w.r.t. m, Δ⊥Γ(f) stands for the corresponding m-singular part. In particular, note that GEq(k) already 
yields ˜Γ(f)Δ⊥Γ(f) ≥ 0 by (3.4) which is independent of q.

The crucial point is to show that

1
2Γ(f) δ(Γ(f)) + εΓ(Γ(f)) ≥ Γ(f) Γ(f,Δf) + k Γ(f)2 m-a.e. (3.5)

for every ε > 0. Given the observation (3.4), this will imply BE2+4ε(k, ∞) for each ε > 0, and eventually 
letting ε ↓ 0 and applying the monotone convergence theorem, we get the claimed BE2(k, ∞) condition.

Given BEq′(k, ∞) for arbitrary q′ ≥ q, it is straightforward to follow the proof of [19, Theorem 3.6], 
which relies on generic calculus rules for Γ2 and closely follows the strategy presented in [27], to prove (3.5)
with ε replaced by q′ − 1

4(q′+1) . Now, according to [19, Lemma 3.3], given any ε > 0 there exist n ∈ N and 
q′ ≥ q so that Pn(q′) = ε, where P (r) := r − 1

4(r+1) and Pn is the n-fold composition of P . Since BEq(k, ∞)
yields BEq′(k, ∞), iterating the foregoing reasoning allows us to finally reach the inequality (3.5). �

Combining Proposition 3.2 and Lemma 3.3 with Proposition 3.5 yields the following.

Theorem 3.6. If the q-Bakry–Émery estimate BEq(k, ∞) holds for some q ∈ [1, ∞), then it holds for every 
q ∈ [1, ∞).

It is also possible to obtain an equivalent characterization of BE2(k, ∞) in terms of a lower bound on the 
measure-valued Ricci tensor
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Ric(∇f,∇f) := Γ2(f) −
∣∣Hess f

∣∣2
HS m for every f ∈ TestF(X)

introduced in [17]. As for the measure-valued Laplacian Δ, we denote by ric(∇f, ∇f) the density of the 
m-absolutely continuous part and by Ric⊥(∇f, ∇f) the m-singular part of Ric(∇f, ∇f), respectively.

Corollary 3.7. The RCD space (X, d, m) satisfies BE2(k, ∞) if and only if for every f ∈ TestF(X), we have

ric(∇f,∇f) ≥ k Γ(f) m-a.e. and Ric⊥(∇f,∇f) ≥ 0.

3.3. Localization of Bochner’s inequality

To study a suitable local-to-global behavior of the q-Bochner inequality, we present a reformulation of 
it where we enlarge the class of functions φ. Recall that our standing assumption RCD(K, ∞) implies 
Γ(f)q/2 ∈ W 1,2(X) for every f ∈ TestF(X) and q ∈ [1, ∞).

Lemma 3.8. Given q ∈ [1, ∞), the BEq(k, ∞) property holds if and only if for all f ∈ TestF(X) and all 
nonnegative φ ∈ W 1,2(X) ∩ L∞(X, m),

−
∫
X

(1
q
Γ
(
Γ(f)q/2, φ

)
+ Γ(f)q/2−1 Γ(f,Δf)φ

)
dm ≥

∫
X

k Γ(f)q/2 φ dm. (3.6)

Proof. Obtaining BEq(k, ∞) from (3.6) through integration by parts and the density of TestF(X) in 
W 1,2(X) is easy, thus we focus on the converse. Trivially, the inequality (3.6) holds for all φ ∈ Dom(Δ) ∩
L∞(X, m) with Δφ ∈ L∞(X, m). Recall now, e.g. from [17,27], that any function φ ∈ W 1,2(X) ∩ L∞(X, m)
can be approximated in W 1,2(X) by means of a mollified heat flow

Pεφ :=
∞∫
0

η(s) Pεsφ ds, where η ∈ C∞
c ((0,∞); [0,∞)) with

∞∫
0

η(s) ds = 1,

as ε ↓ 0. Since Pεφ ∈ Dom(Δ) ∩L∞(X, m) and ΔPεφ = − 
∫∞
0 η′(s) Pεsφ ds/ε ∈ L∞(X, m) for every ε > 0, 

this allows us to extend the class of admissible φ. �
Definition 3.9. We say that the local q-Bakry–Émery condition with variable curvature bound k, briefly 
BEq,loc(k, ∞), with q ∈ [1, ∞) holds if for every z ∈ X there exists δ > 0 such that

−
∫
X

(1
q
Γ
(
Γ(f)q/2, φ

)
+ Γ(f)q/2−1 Γ(f,Δf)φ

)
dm ≥

∫
X

k Γ(f)q/2 φ dm

for all f ∈ TestF(X) and every nonnegative φ ∈ W 1,2(X) ∩ L∞(X, m) with suppφ ⊂ Bδ(z).

It is elementary to pass from the global BEq(k, ∞) condition to BEq,loc(k, ∞). The converse is more 
involved. The proof of the following result is similar to the one of [6, Theorem 6.12], but uses a more 
elementary partition of unity and does not require local compactness or upper dimension bounds of the 
base space.

Theorem 3.10. For q ∈ [1, ∞), the property BEq,loc(k, ∞) implies the BEq(k, ∞) condition.
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Proof. Let {zi : i ∈ N} be a countable dense subset of X and consider the collection of metric balls Bδi(zi)
with δi > 0 chosen in such a way that the local q-Bakry–Émery inequality is satisfied around zi. For i ∈ N, 
define functions on X by

η0
i := 2

δi
d
(
·, X \Bδi(zi)

)
, η∗i := min

{ i∑
j=1

η0
j , 1

}
and ηi := η∗i − η∗i−1.

Then ηi ∈ Lipb(X) with support in Bδi(zi) and 
∑∞

i=1 ηi = 1 on X. Thus, for arbitrary nonnegative 
φ ∈ W 1,2(X) ∩ L∞(X, m), the assumption BEq,loc(k, ∞) allows us to deduce

−
∫
X

(1
q
Γ
(
Γ(f)q/2, φ

)
+ Γ(f)q/2−1 Γ(f,Δf)φ

)
dm

= −
∞∑
i=1

∫
X

(1
q
Γ
(
Γ(f)q/2, φ ηi

)
+ Γ(f)q/2−1 Γ(f,Δf)φ ηi

)
dm

≥
∞∑
i=1

∫
X

k Γ(f)q/2 φ ηi dm =
∫
X

k Γ(f)q/2 φ dm.

We conclude the assertion using Lemma 3.8 above. �
4. From 2-gradient estimates to CD and differential 2-transport estimates

Our goal now is to derive the evolution variational inequality EVI(k) with variable curvature bound k
from the 2-gradient estimate GE2(k). In [31] there is a first part of the proof for this implication. With 
some extra arguments, we complete it.

The key point is a localization argument. Indeed, it suffices to prove the EVI(k) “locally”, that is, for 
measures in a given small neighborhood. The heat flow will neither stay within this neighborhood nor in 
any other bounded region. We thus modify it by truncating its tails. Due to the Gaussian behavior of the 
heat flow, the difference is of arbitrary polynomial order for small times. This will imply the CD(k, ∞)
inequality locally. However, the latter is already known to give the CD(k, ∞) inequality globally, and this 
in turn yields the global version of the EVI(k).

4.1. Tail estimates for the heat flow

Given any ball Bδ(z) ⊂ X with δ > 0 and z ∈ X, and ρ ∈ P(X), we put

H∗
t ρ := 1B2δ(z) Htρ + Htρ[X \B2δ(z)] δz.

Lemma 4.1. Assume that ρ ∈ P(X) is m-absolutely continuous with density f ∈ L2(X, m) and supp ρ ⊂
Bδ(z). Then for every a > 0 there exists t∗ > 0 such that for all t ∈ [0, t∗] and all bounded Borel functions 
φ, we have

W 2
2 (H∗

t ρ,Htρ) ≤ ta and
∣∣∣∫
X

φ dH∗
t ρ−

∫
X

φ dHtρ
∣∣∣ ≤ ta sup |φ|(X).

Proof. To see the first assertion for t > 0, the case t = 0 being trivial, observe that

W 2
2 (H∗

t ρ,Htρ) ≤
∫

d2(z, x) dHtρ(x)

X\B2δ(z)
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≤
∞∑

n=3
(nδ)2

∫
Bnδ(z)\B(n−1)δ(z)

Ptf dm

≤ ‖f‖L2(X,m)

∞∑
n=3

(nδ)2
(
m
[
Bnδ(z) \B(n−1)δ(z)

])1/2
e−(n−2)2δ2/4t

where the last inequality comes from the integrated Gaussian heat kernel estimate of [28, Theorem 1.8]
applied with K = k = 1, γ = λ = 0, A = Bnδ(z) \B(n−1)δ(z) and B = Bδ(z) and replacing 1B and m[B]1/2
by f and ‖f‖L2(X,m) therein, respectively. Therefore, by the volume growth property in RCD(K, ∞) spaces 
and finally assuming that t is small enough, we obtain

W 2
2 (H∗

t ρ,Htρ) ≤ ‖f‖L2(X,m)

( ∞∑
n=3

m
[
Bnδ(z) \B(n−1)δ(z)

]
e−n2δ2/72t

)1/2
e−δ2/8t

≤ ‖f‖L2(X,m)

(∫
X

e− d2(z,x)/72t dm(x)
)1/2

e−δ2/8t ≤ ta.

The second assertion follows from the first one, since

∣∣∣∫
X

φ dH∗
t ρ−

∫
X

φ dHtρ
∣∣∣ ≤ sup |φ|(X) Htρ[X \B2δ(z)] ≤

sup |φ|(X)
δ2 W 2

2 (H∗
t ρ,Htρ). �

In Chapter 5, we need the following result, which is a consequence of Lemma 4.1.

Lemma 4.2. For each z ∈ X, δ > 0 and a > 0 there exists t∗ > 0 such that

Px

[
bxt /∈ B3δ(z)

]
≤ ta for every x ∈ Bδ(z) and t ∈ [0, t∗],

where 
(
Px, bx

)
denotes Brownian motion on X starting in x.

Proof. Let ρ be the uniform distribution of Bδ/2(z). Choose a pair 
(
P , bx) and (P , b) of coupled Brownian 

motions with initial distributions δx and ρ, respectively, such that d(bxt , bt) ≤ e−Kt d(x, b0) P -a.s. for every 
t ≥ 0, see [31, Theorem 2.9] for the construction. Thus in particular, P -a.s. we have

d(bxt , bt) ≤ δ

for every t ∈ [0, t′∗] and a suitable t′∗ > 0. According to the previous Lemma 4.1,

P
[
bt /∈ B2δ(z)

]
≤ ta

for all t ∈ [0, t∗] and some t∗ > 0 depending only on m[Bδ/2(z)] and a. Combining both estimates yields 
that

P
[
bxt /∈ B3δ(z)

]
≤ P

[
bt /∈ B2δ(z)

]
≤ ta.

uniformly in x ∈ Bδ(z) for small enough times. �
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4.2. From 2-gradient estimates to CD

In this section, we assume that k is Lipschitz and bounded. The general case follows using the approxi-
mation scheme via the sequence (kn)n∈N with kn(x) := kn(x, x) for x ∈ X derived from Lemma 2.1. Indeed, 
GE2(k) trivially implies GE2(kn) for every n ∈ N, which will imply both CD(kn, ∞) and EVI(kn). Since 
W2-geodesics between m-absolutely continuous measures and EVI(k)-curves are unique, we may then pass 
to the limit n → ∞ by monotone convergence.

We present a modification of [31, Lemma 3.5] which is proved in exactly the same way as the previous 
version subject to the choice of parameterization from [5, Theorem 4.16] involving the additional parameter 
κ. Throughout this section, we denote by (Qs)s≥0 the 2-Hopf–Lax semigroup.

Lemma 4.3. Assume the 2-gradient estimate GE2(k) with variable curvature bound k, and let κ ∈ R be an 
arbitrary constant. Let (ρs)s∈[0,1] with ρs = fs m be a regular curve in the sense of [5, Definition 4.10], 
and for t > 0, define ϑκ,t(s) := eκst−1

eκt−1 if κ 
= 0 and ϑ0,t(s) := s as well as Rκ(t) := κt
eκt−1 if κ 
= 0 and 

R0(t) := 1. Then

∫
X

Q1φ dHtρ1 −
∫
X

φ dρ0 −
1
2R2

κ(t)
1∫

0

∣∣ρ̇ϑκ,t(s)
∣∣2 ds + t

(
Entm(Htρ1) − Entm(ρ0)

)

≤ −
1∫

0

st∫
0

∫
X

Pr

(
(k − κ) P2(k−κ)

st−r Γ(Qsφ)
)

dρϑκ,t(s) dr ds

is satisfied for every φ ∈ Lipbs(X) and all t > 0. The term 
∣∣ρ̇ϑt(s)

∣∣ has to be understood as the metric speed 
of the original curve (ρs)s∈[0,1] evaluated at ϑt(s).

The same estimate is satisfied for every W2-geodesic (ρs)s∈[0,1] with m-absolutely continuous measures, 
in which case 

∫ 1
0 |ρ̇ϑκ,t(s)|2 ds = W 2

2 (ρ0, ρ1), independently of κ and t.

Lemma 4.4. Assume the 2-gradient estimate GE2(k) with variable curvature bound k. Suppose that k ≥ Kz

in B2δ(z) for some z ∈ X, Kz ∈ R and δ > 0. Then for all ρ0, ρ1 ∈ P2(X) ∩ Dom(Entm) with support in 
Bδ(z) and bounded densities w.r.t. m, we have

d+

dt

∣∣∣∣
t=0

1
2W

2
2 (Htρ1, ρ0) + Kz

2 W 2
2 (ρ0, ρ1) ≤ Entm(ρ0) − Entm(ρ1).

Proof. The proof follows the reasoning for [31, Lemma 3.6] and [5, Theorem 4.16], but with a subtle 
modification. Fix t > 0. While the curve (Htsρϑt(s))s∈[0,1] connects ρ0 and Htρ1, the potentials Qsφt, 
s ∈ [0, 1], are Hopf–Lax interpolations of optimal Kantorovich potentials for the transport from ρ0 to H∗

t ρ1. 
Thus, we have to match these two different situations and then use the nice behavior of the remainder 
terms.

We know by [3, Proposition 3.9] that for any W2-optimal coupling πt ∈ P(X ×X) of ρ0 and H∗
t ρ1, and 

any Kantorovich potential ϕt relative to πt, we have |Dϕt| ≤ d(x, y) ≤ 4δ for πt-a.e. (x, y) ∈ X ×X. Taking 
(2.3) and the bounded support of ρ0 into account,

1
2W

2
2 (H∗

t ρ1, ρ0) = sup
{∫

X

Q1f dH∗
t ρ1 −

∫
X

f dρ0 : f ∈ Lipbs(X), Lip(f) ≤ 4δ
}
.

The latter supremum is attained, see [3, Proposition 2.12], at some φt ∈ Lipbs(X). Possibly adding constants 
and invoking a cutoff argument, we may assume that |φt| ≤ C everywhere on X for some C > 0 independent 
of t. Thus, |Qsφt| is bounded on X and Lip(Qsφt) ≤ 8δ, uniformly in s ∈ [0, 1].
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Let (ρs)s∈[0,1] be the W2-geodesic joining ρ0 and ρ1. Note that the measures ρs = fs m, s ∈ [0, 1], are 
supported in B2δ(z). The CD(K, ∞) condition furthermore ensures that the fs are bounded uniformly in 
s, cf. [25, Theorem 1.3]. Applying Lemma 4.3 with κ := Kz we get

1
2t

(
W 2

2 (Htρ1, ρ0) −W 2
2 (ρ0, ρ1)

)
= 1

2t

(
W 2

2 (Htρ1, ρ0) −W 2
2 (H∗

t ρ1, ρ0) + 2
∫
X

Q1φt dH∗
t ρ1 − 2

∫
X

φt dρ0 −W 2
2 (ρ0, ρ1)

)

≤ 1
2t

(
W 2

2 (Htρ1, ρ0) −W 2
2 (H∗

t ρ1, ρ0) + 2
∫
X

Q1φt dH∗
t ρ1 − 2

∫
X

Q1φt dHtρ1

)

+ 1
2t
(
R2

Kz
(t) − 1

)
W 2

2 (ρ0, ρ1) + Entm(ρ0) − Entm(Htρ1)

− 1
t

1∫
0

s

t∫
0

∫
X

Γ(Qsφt) P2(k−Kz)
s(t−r)

(
(k −Kz) Psrfϑt(s)

)
dm dr ds,

where we have put ϑt := ϑKz,t. Note that the lim sup as t ↓ 0 of the last term is nonnegative since 
(k −Kz) fs ≥ 0 m-a.e. on X for every s ∈ [0, 1] and

lim
t↓0

1
t

t∫
0

P2(k−Kz)
s(t−r)

(
(k −Kz) Psrfϑt(s)

)
dr = (k −Kz) fs

w.r.t. convergence in L1(X, m). Indeed, ϑt(s) → s as t ↓ 0 for every s ∈ [0, 1] and therefore fϑt(s) → fs
pointwise m-a.e. As all considered functions are nonnegative and 

∫
X
fϑt(s) dm =

∫
X
fs dm for all t > 0, we 

have fϑt(s) → fs in L1(X, m) as t ↓ 0. We conclude by strong continuity of the heat and the Schrödinger 
semigroup with potential 2(k −Kz) in L1(X, m).

Lower semicontinuity of Entm yields − lim inft↓0 Entm(Htρ1) ≤ − Entm(ρ1), and clearly R2
Kz

(t) = 1 −
Kzt + o(t) as t ↓ 0. Lastly, observe that 

(
W 2

2 (Htρ1, ρ0) −W 2
2 (H∗

t ρ1, ρ0)
)
/2t → 0 according to Lemma 4.1

applied with a := 2. Thus, we finally deduce

lim sup
t↓0

1
2t
(
W 2

2 (Htρ1, ρ0) −W 2
2 (ρ0, ρ1)

)
+ Kz

2 W 2
2 (ρ0, ρ1) ≤ Entm(ρ0) − Entm(ρ1). �

Theorem 4.5. The 2-gradient estimate GE2(k) implies CD(k, ∞).

Proof. Given ε > 0, Proposition 4.4 translates into a “local” EVI(k − ε) property at time 0: for every 
z ∈ X, choosing δ > 0 and Kz ∈ R such that Kz ≤ k ≤ Kz + ε in B2δ(z), we obtain that for all 
μ, ν ∈ P2(X) ∩ Dom(Entm) with support in Bδ(z) and bounded densities w.r.t. m, for π ∈ P(Geo(X))
representing the W2-geodesic from μ to ν, we have

d+

dt

∣∣∣∣
t=0

1
2W

2
2 (Htμ, ν) +

1∫
0

∫
Geo(X)

(1 − s)
(
k(γs) − ε

)
|γ̇|2 dπ(γ) ds ≤ Entm(ν) − Entm(μ).

With the same argument used in the proof of [31, Theorem 3.4] for the equivalence of CD(k, ∞) and EVI(k)
(based on previous work [13] in the case of constant k), we conclude that this local EVI(k − ε) implies a 
“local” CD(k − ε, ∞) condition in the following sense: for all z ∈ X there exists δ > 0 such that for all 
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tein 
μ0, μ1 ∈ P2(X) ∩ Dom(Entm) with support in Bδ(z) and bounded densities w.r.t. m, if π ∈ P(Geo(X))
represents the W2-geodesic from μ0 to μ1, for every t ∈ [0, 1], we have

Entm(μt) ≤ (1 − t) Entm(μ0) + tEntm(μ1) −
1∫

0

∫
Geo(X)

g(s, t)
(
k(γs) − ε

)
|γ̇|2 dπ(γ) ds.

Using the local-to-global property from [31, Theorem 3.7] and taking the limit ε ↓ 0, noticing again that 
the choice of W2-geodesics does not depend on ε, allows us to pass from this local CD(k − ε, ∞) property 
to CD(k − ε, ∞) and finally to CD(k, ∞). �
4.3. From EVI to a differential 2-transport estimate

It has already been observed in [20] that EVI(k) yields contraction estimates for the 2-Kantorovich–Wassers
distance along two heat flows starting at regular measures. For irregular initial data, we now aim in deducing 
a weak version of it, see also Remark 1.9.

Proposition 4.6. The EVI(k) implies the following differential 2-transport estimates:

(i) for every μ1, μ2 ∈ P2(X) ∩ Dom(Entm), one has

d+

dt

∣∣∣∣
t=0

W 2
2 (Htμ1,Htμ2) ≤ −2

1∫
0

∫
Geo(X)

k(γs) |γ̇|2 dπ(γ) ds, (4.1)

where π ∈ P(Geo(X)) represents the W2-geodesic from μ1 to μ2, and
(ii) for all x, y ∈ X,

d+

dt

∣∣∣∣
t=0

W 2
2 (Htδx,Htδy) ≤ −2k(x, y) d2(x, y).

Proof. Concerning (i), up to truncating k and using monotone convergence afterwards, we may assume 
that k is bounded. Naively, the claim follows by applying the EVI(k) to (Htμ1)t≥0 and (Htμ2)t≥0, respec-
tively. Some care, however, is needed to deal with the double t-dependence of the nonsmooth function 
t 	→ W 2

2
(
Htρ0,Htρ1

)
. To deal with this, one adds up the EVI(k), integrated from t to t + h, h > 0, for the 

flow (Htμ1)t≥0 with observation point Ht+hμ2 and for the flow (Htμ2)t≥0 with observation point Htμ1. The 
entropy terms cancel out, and we obtain the desired estimate after dividing by h and letting h ↓ 0. See [20, 
Theorem 6.1] for details.

Next, we show (ii). Denote by kn ∈ Lipb(X × X) a sequence converging pointwise from below in a 
monotone way to k, see Lemma 2.1, and put kn(x) := kn(x, x) for x ∈ X. Given x, y ∈ X and t > 0, select 
τ∗ > 0 small enough so that, for every τ ∈ (0, τ∗),

W 2
2 (Hτ δx,Hτδy) ≤ d2(x, y) + 2t2.

The local absolute continuity of the curves (Htδx)t≥0 and (Htδy)t≥0 on (0, ∞) w.r.t. W2 and property (i) 
with kn in place of k, since kn ≤ k on X, yield

1 (
W 2

2 (Htδx,Htδy) − d2(x, y)
)
≤ t + 1 (

W 2
2 (Htδx,Htδy) −W 2

2 (Hτδx,Hτδy)
)

2t 2t
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≤ t− 1
t

t∫
τ

1∫
0

∫
Geo(X)

kn(γs) |γ̇|2 dπr(γ) dsdr,

where πr ∈ P(Geo(X)) represents the W2-geodesic from Hrδx to Hrδy. As n → ∞, by monotone conver-
gence, the above inequality still holds with k in place of kn. Thus, the definition of k and the inequality 
kn ≤ k on X for every n ∈ N give, setting πr := (e0, e1)�πr,

1
2t
(
W 2

2 (Htδx,Htδy) − d2(x, y)
)
≤ t− 1

t

t∫
τ

∫
X×X

kn(x′, y′) d2(x′, y′) dπr(x′, y′) dr.

Since Hrδx → δx and Hrδy → δy w.r.t. W2 as r → 0 and since W2(Hrδx, Hrδy) is bounded uniformly in for 
small r, stability of optimal couplings, see [1, Proposition 7.1.3], and uniqueness of the W2-optimal coupling 
π0 := δx ⊗ δy imply that πr → π0 weakly as r → 0. Thus, the map r 	→

∫
X×X

kn d2 dπr is continuous 
at 0 by [33, Lemma 4.3]. The claim follows by taking successively τ ↓ 0, t ↓ 0 and n → ∞ in the above 
inequality. �

A posteriori, knowing from Theorem 1.1 that EVI(k) implies GE1(k), we will be able to improve the 
bound (ii) from Proposition 4.6 even for exponents different from 2, see Remark 5.12 below.

5. Duality of p-transport estimates and q-gradient estimates

Throughout the rest of this article, given t ≥ 0, we use the short-hand notation Πt := C([0, t]; X ×X). 
Moreover, at several instances we consider a function � : X × X → R which, unless stated otherwise, is 
assumed lower semicontinuous and lower bounded. However, it should practically rather be thought of as a 
bounded Lipschitz function “approximating” k from below without being of the particular form (1.2). This 
often allows us to assume that � ∈ Lipb(X ×X), while k is not continuous in general, even if k is Lipschitz.

5.1. Perturbed costs and coupled Brownian motions

Given any p ∈ [1, ∞) and μ1, μ2 ∈ Pp(X), let us define the perturbed p-transport cost with potential −p�

at t ≥ 0 by

W 

p(μ1, μ2, t) := inf

(P ,b1,b2)
E
[
e
∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr dp

(
b1
2t, b2

2t
)]1/p

, (5.1)

where the infimum is taken over all pairs of coupled Brownian motions 
(
P , b1) and 

(
P , b2) on X, restricted 

to [0, 2t] and modeled on a common probability space, with initial distributions μ1 and μ2, respectively. In 
more analytic words,

W 

p(μ1, μ2, t) = inf

ν

( ∫
Π2t

e
∫ 2t
0 p


(
γ1
r ,γ

2
r

)
/2 dr dp

(
γ1
2t, γ

2
2t
)
dν(γ)

)1/p
, (5.2)

the infimum being taken over all ν ∈ P(Π2t) whose marginals ν1, ν2 ∈ P(C([0, 2t]; X)) are the laws of 
Brownian motions on X, restricted to [0, 2t], with initial distribution μ1 and μ2, respectively. If � = k, this 
is the usual perturbed p-transport cost from Section 1.4.

A natural, albeit nontrivial identity relates the perturbed p-transport cost in the case of constant k with 
the usual p-transport cost.
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Lemma 5.1. If � is constantly equal to L ∈ R then, for t ≥ 0,

W 

p(μ1, μ2, t) = eLt Wp(Htμ1,Htμ2).

Proof. Since Wp(Htμ1,Htμ2)1/p = inf(x,y) E
[
dp(x, y)

]1/p, the infimum ranging over pairs of random variables 
x ∼ Htμ1 and y ∼ Htμ2 defined on a common probability space (Ω, F , P ), and as b2t ∼ Htμ for every 
Brownian motion (P , b) with initial distribution μ ∈ P(X), we get

W 

p(μ1, μ2, t) ≥ eLt Wp(Htμ1,Htμ2).

For the converse inequality, let πt ∈ P(X ×X) be a Wp-optimal coupling of Htμ1 and Htμ2. Consider 
Brownian motions 

(
P1, b1) and 

(
P2, b2), restricted to [0, 2t], starting at μ1 and μ2, defined on probability 

spaces (Ω1, F1, P1) and (Ω2, F2, P2), respectively. Define the “bridge measures” Px
1 for x ∈ X by disinte-

grating P1 w.r.t. Htμ1(dx) or, in other words, by conditioning b1 on the event {b1
2t = x}. Similarly, let Py

2
for y ∈ X be the disintegration of P2 w.r.t. Htμ2(dy). Consider the “glued measure” P̃ defined by

P̃ :=
∫

X×X

Px
1 ⊗ Py

2 dπt(x, y)

on Ω := Ω1 × Ω2. Then 
(
P̃ , b1) and 

(
P̃ , b2) is a pair of coupled Brownian motions with joint distribution 

πt at time 2t. The desired inequality then follows directly, since

Ẽ
[
dp
(
b1
2t, b2

2t
)]

=
∫

X×X

dp(x, y) dπt(x, y) = W p
p (Htμ1,Htμ2). �

Lemma 5.2. For every p ∈ [1, ∞), t ≥ 0 and μ1, μ2 ∈ Pp(X) as above, the infima in (5.1) and in (5.2) are 
attained.

Moreover, for every sequence of lower semicontinuous functions �n : X ×X → R converging pointwise to 
� from below in an increasing way, we have

lim
n→∞

W 
n
p (μ1, μ2, t) = W 


p(μ1, μ2, t).

Proof. The lower semicontinuity of � implies the one of

γ 	−→ e
∫ 2t
0 p


(
γ1
r ,γ

2
r

)
/2 dr dp

(
γ1
2t, γ

2
2t
)

w.r.t. the uniform topology on Π2t which in turn implies weak lower semicontinuity of

ν 	−→
∫

Π2t

e
∫ 2t
0 p


(
γ1
r ,γ

2
r

)
/2 dr dp

(
γ1
2t, γ

2
2t
)
dν(γ)

in P(Π2t). This gives the existence of a minimizer for (5.2) by a standard argument since, according to 
[33, Lemma 4.4], the family of ν ∈ P(Π2t) with given marginals is tight as the sets of marginals are both 
singletons.

The second assertion is a standard argument via Γ-convergence of the functionals whose infima give 
W


n
p (μ1, μ2, t) and W 


p(μ1, μ2, t), respectively, in P(Π2t). �
Let us denote by Bν(X×X) the completion of the Borel σ-field on X×X w.r.t. a given ν ∈ P(X×X), 

and then
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Buniv(X ×X) :=
⋂

ν∈P(X×X)

Bν(X ×X)

is the σ-field of all universally measurable subsets of X ×X.

Lemma 5.3. For every t ≥ 0 and p ∈ [1, ∞), there exists a universally measurable map

ηt : X ×X −→ P(Π2t)

such that for every x, y ∈ X, the marginals of ηt
x,y := ηt(x, y) are laws of Brownian motions, restricted to 

[0, 2t], starting in x and y, respectively, and ηt
x,y is a minimizer in the definition (5.2) of W 


p(δx, δy, t).

Proof. According to Lemma 5.2, for each pair (x, y) ∈ X×X there exists an admissible measure on P(Π2t)
which attains the infimum in (5.2). The class of all probability measures with this property is closed. Then a 
measurable selection argument, see [11, Theorem 6.9.2] and [31, Lemma 2.2], allows us to produce a family 
of measures ηt

x,y still satisfying the minimality property so that (x, y) 	→ ηt
x,y is universally measurable in 

(x, y) ∈ X ×X. �
An important consequence of these observations is a type of Markov property which will be crucial in the 

proof of Proposition 5.6. For this and also for later use, fix s, t ≥ 0, a measure ν ∈ P(Πs) and a universally 
measurable map μ : X×X → P(Πt) such that (e0)�μx,y = δx⊗δy for all x, y ∈ X. Define their composition 
μ ◦ ν ∈ P(Πs+t) by

∫
Πs+t

f(γ) d(μ ◦ ν)(γ) :=
∫
Πs

∫
Πt

f
(
Φs,t(α, β)

)
dμα1

s,α
2
s
(β) dν(α) for every f ∈ Cb(Πs+t),

where

Φs,t(α, β)r := αr if r ∈ [0, s] and Φs,t(α, β)r := βr−s if r ∈ (s, s + t]

denotes the concatenation map “gluing” together the curves (ασ)σ∈[0,s] and (βτ )τ∈[0,t].

Proposition 5.4. For every p ∈ [1, ∞), every s, t ≥ 0 and all μ1, μ2 ∈ Pp(X), there exists a pair 
(
P , b1)

and 
(
P , b2) of coupled Brownian motions on X with initial distributions μ1 and μ2, respectively, which 

minimizes (5.1) for the given time t and such that

W 

p(μ1, μ2, t + s)p ≤ E

[
e
∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr W 


p

(
δb1

2t
, δb2

2t
, s
)p]

. (5.3)

Proof. Denote the map from Lemma 5.3 with s in place of t by ηs, denote a minimizer of (5.2) for time t by 
νt, and define ηt+s := ηs ◦ νt ∈ P(Π2(s+t)). This defines a coupling of the laws of two Brownian motions 
with initial distributions μ1 and μ2, respectively, restricted to [0, 2(t + s)] such that

∫
Π2(s+t)

e
∫ 2(t+s)
0 p


(
γ1
r ,γ

2
r

)
/2 dr dp

(
γ1
2(t+s), γ

2
2(t+s)

)
dνt+s(γ)

=
∫

Π2t

e
∫ 2t
0 p


(
α1

r,α
2
r

)
/2 dr W k

p

(
δα1

2t
, δα2

2t
, s
)p dνt(α).

This proves the claim. �
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Less formally, the previous construction can be described as follows. To estimate the perturbed p-transport 
cost at time t + s, we construct the required process by first choosing a pair process 

(
b1, b2) of Brownian 

motions with given initial distributions μ1 and μ2 which realizes the minimum for W 

p(μ1, μ2, t). Then we 

switch to a pair of Brownian motions starting in b1
2t and b2

2t, respectively, which minimizes the cost at time 
s.

5.2. Differential p-transport inequalities and p-transport estimates

To deduce a p-transport estimate TEp(k), we have to control the upper derivatives of the function 
t 	→ W k

p (δx, δy, t)p or, more generally, of t 	→ W 

p(δx, δy, t)p for x, y ∈ X.

Lemma 5.5. Assume that � ∈ Cb(X ×X). Then for all x, y ∈ X and p ∈ [1, ∞), we have

d+

dt

∣∣∣∣
t=0

W 

p(δx, δy, t)p ≤ p �(x, y) dp(x, y) + d+

dt

∣∣∣∣
t=0

W p
p (Htδx,Htδy).

Proof. Choose any exponent p′ ∈ (p, ∞) with dual exponent q′ ∈ (1, ∞). For all t > 0, denote by 
(
P , b1) and (

P , b2) a pair of coupled Brownian motions starting in (x, y) and such that the law of 
(
b1
2t, b2

2t
)

constitutes 
a Wp′-optimal coupling of Htδx and Htδy. Albeit this process still depends on t, we suppress this dependence 
in the sequel to simplify the notation. For a precise construction of such process, we refer to the proof of 
Lemma 5.1.

Observe that

d+

dt

∣∣∣∣
t=0

W 

p(δx, δy, t)p

≤ lim sup
t↓0

1
t
E
[
e
∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr dp

(
b1
2t, b2

2t
)
− dp

(
b1
0, b2

0
)]

≤ lim sup
t↓0

1
t
E

[(
e
∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr − 1

)
dp
(
b1
2t, b2

2t
)]

+ d+

dt

∣∣∣∣
t=0

W p
p′(Htδx,Htδy).

Each of the last two limits will be estimated separately. The last term will converge to the upper derivative 
of W p

p (Htδx,Htδy) at 0 as p′ ↓ p by monotone convergence. Moreover, since � is bounded, the former term 
can be estimated through

lim sup
t↓0

1
t
E

[(
e
∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr − 1

)
dp
(
b1
2t, b2

2t
)]

≤ lim sup
t↓0

p

2tE
[ 2t∫

0

�
(
b1
r, b2

r

)
dr dp

(
b1
2t, b2

2t
)]
.

Now we split the expectation into a term where 
(
b1, b2) behaves well and a remainder term. Let ε > 0 and 

choose δ > 0 such that

max
{∣∣�(x′, y′) − �(x, y)

∣∣, ∣∣ dp(x′, y′) − dp(x, y)
∣∣} ≤ ε for every x′ ∈ Bδ(x), y′ ∈ Bδ(y),

and define the exceptional set Er,2t for r ∈ (0, 2t) by

Er,2t :=
{
b1
r /∈ Bδ(x)

}
∪
{
b1
2t /∈ Bδ(x)

}
∪
{
b2
r /∈ Bδ(y)

}
∪
{
b2
2t /∈ Bδ(y)

}
.

By these definitions and Fubini’s theorem, since � is bounded,
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lim sup
t↓0

p

2tE
[ 2t∫

0

�
(
b1
r, b2

r

)
1Ec

r,2t dr dp
(
b1
2t, b2

2t
)]

≤ p
(
�(x, y) + ε

) (
dp(x, y) + ε

)
lim sup

t↓0

1
2t

2t∫
0

P
[
Ec

r,2t
]
dr.

According to Lemma 4.2, we have P [Er,2t] → 0 as r ↓ 0 and t ↓ 0, therefore the latter lim sup is equal to 1. 
On the other hand, if C > 0 denotes an upper bound for �, using Hölder’s inequality the second term can 
be bounded through

lim sup
t↓0

∣∣∣∣ p2tE
[ 2t∫

0

�
(
b1
r, b2

r

)
1Er,2t dr dp

(
b1
2t, b2

2t
)]∣∣∣∣

≤ pC lim sup
t↓0

E
[
dp

′(
b1
2t, b2

2t
)]p/p′

lim sup
t↓0

( 1
2t

2t∫
0

P
[
Er,2t

]
dr

)1−p/p′

.

By the choice of the pair process 
(
b1, b2), the first lim sup is equal to dp(x, y) while the second one is 0, as 

already observed above. Since ε was arbitrary, we obtain the claim. �
Proposition 5.6. Fix p ∈ [1, ∞) and assume the differential p-transport estimate

d+

dt

∣∣∣∣
t=0

W p
p (Htδx,Htδy) ≤ −p k(x, y) dp(x, y) for every x, y ∈ X. (5.4)

Then the p-transport estimate TEp(k) is satisfied.

Proof. We first show that for all μ1, μ2 ∈ Pp(X), the function t 	→ W 

p(μ1, μ2, t) is nonincreasing on [0, ∞)

whenever � ∈ Cb(X ×X) with � ≤ k on X ×X.
To get started, we demonstrate that its p-th power t 	→ W 


p(μ1, μ2, t)p is upper Lipschitz continuous 
on [0, ∞). To see this, fix h ∈ (0, 1] and t > 0, and consider the pair process 

(
b1, b2) as provided by 

Proposition 5.4. By the estimate (5.3) of this proposition, Lemma 5.1 and contractivity of the Wasserstein 
heat flow, we have

1
h

(
W 


p(μ1, μ2, t + h)p −W 

p(μ1, μ2, t)p

)
≤ 1

h
E

[
e
∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr

(
W 


p

(
δb1

2t
, δb1

2t
, h

)p − dp
(
b1
2t, b2

2t
))]

(5.5)

≤ 1
h
E

[
e
∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr dp

(
b1
2t, b2

2t
) (

epCh − 1
)]

≤ C ′ W 

p(μ1, μ2, t)p

for suitable nonnegative constants C and C ′. This proves upper Lipschitz continuity of the p-th power of 
the perturbed p-transport cost with potential −p�, which in turn implies

W 

p(μ1, μ2, τ)p −W 


p(μ1, μ2, σ)p ≤
τ∫

σ

d+

dt W


p

(
μ1, μ2, t

)p dt (5.6)

for every σ, τ ∈ [0, ∞) with σ ≤ τ . Letting h ↓ 0, the estimate (5.5) and the observation
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E
[
e
∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr dp

(
b1
2t, b2

2t
)]

< ∞,

which justifies to apply Fatou’s lemma, give

d+

dt W


p(μ1, μ2, t)p ≤ E

[
e
∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr d+

dh

∣∣∣∣
h=0

W 

p

(
δb1

2t
, δb2

2t
, h

)p]
.

Finally, the inequality (5.6) for the upper derivative inside the expectation, Lemma 5.5 and then the assumed 
estimate (5.4), noting that −k ≤ −� on X ×X, yield the initial claim.

The nonincreasingness of t 	→ W k
p (μ1, μ2, t) on [0, ∞) is then immediate due to an easy approximation 

argument using Lemma 2.1 and Lemma 5.2. �
Theorem 5.7. For every p ∈ [1, ∞), TEp(k) and the differential p-transport estimate (5.4) are equivalent.

Proof. According to Proposition 5.6, it suffices to prove that TEp(k) implies

d+

dt

∣∣∣∣
t=0

W p
p (Htδx,Htδy) ≤ −p k(x, y) dp(x, y)

for every x, y ∈ X. For every t > 0 and p′ ∈ (p, ∞), we denote by 
(
P , b1) and 

(
P , b2) a pair of coupled 

Brownian motions which realizes the minimum in the definition of W 

p′(δx, δy, t). This process does depend 

on t, but we leave out this dependency from the notation. Arguing as in the proof of Lemma 5.5, we get

d+

dt

∣∣∣∣
t=0

W p
p (Htδx,Htδy)

≤ lim sup
t↓0

1
t
E

[(
1 − e

∫ 2t
0 p


(
b1
r,b

2
r

)
/2 dr

)
dp
(
b1
2t, b2

2t
)]

+ d+

dt

∣∣∣∣
t=0

W k
p′(δx, δy, t)p

≤ −p �(x, y) dp(x, y) + d+

dt

∣∣∣∣
t=0

W k
p′(δx, δy, t)p

for all � ∈ Cb(X ×X) with � ≤ k on X ×X. Letting p′ ↓ p, the last upper derivative becomes nonpositive 
due to TEp(k), and approximating k from below using Lemma 2.1 gives the conclusion. �

Using this equivalence, Hölder’s inequality and the chain rule, the subsequent nestedness of TEp(k), 
which is the Lagrangian analogue of Lemma 3.3, is easily shown.

Corollary 5.8. If TEp(k) holds for some p ∈ [1, ∞), then TEp′(k) is satisfied for all p′ ∈ [1, p].

5.3. Transport estimates via vertical Brownian perturbations

We prove the variable Kuwada duality from Theorem 1.8. We start by first showing the implication from 
GEq(k) to TEp(k), where p, q ∈ (1, ∞) are dual to each other. Since the behavior of Brownian trajectories 
can only be controlled for small times, we show the equivalent infinitesimal first-order description of TEp(k)
in terms of a differential p-transport estimate. This is done by a localization argument.

Additionally, in the extremal case q = 1, the argument mentioned above can actually be circumvented 
and we are able to derive the contraction estimate

d+

dt W
p
p (Htμ,Htν) ≤ −p

1∫ ∫
k(γs) |γ̇|p dπt(γ) ds for every t ≥ 0
0 Geo(X)
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for all μ, ν ∈ P(X) of finite Wp-distance to each other, for every p ∈ (1, ∞). The measure πt ∈ P(Geo(X))
induces an arbitrary Wp-optimal coupling of Htμ and Htν. This is discussed now, see Theorem 5.10 and 
Corollary 5.11, where, possibly replacing k by min{k, n} for n ∈ N, we assume that k is bounded. This is 
not restrictive as, given these results for every n ∈ N, they easily pass to the limit n → ∞ by monotone 
convergence.

Recall that G0(x, y) denotes the set of geodesics from x ∈ X to y ∈ X. Given p ∈ (1, ∞) and t ≥ 0, we 
define the function d0

p,k,t : X ×X → R by

d0
p,k,t(x, y) := inf

γ∈G0(x,y)

( 1∫
0

Eγs

[
e−

∫ 2t
0 pk(br)/2 dr

]
|γ̇|p ds

)1/p

.

Here 
(
Pγs

, b
)

denotes Brownian motion starting in γs for every s ∈ [0, 1]. We will not explicitly mention the 
dependence of the process b on s. The function d0

p,k,t can be turned into a metric dp,k,t on X by defining

dp,k,t(x, y) := inf
{ n∑

i=1
d0
p,k,t(xi−1, xi) : n ∈ N, x =: x0 < x1 < · · · < xn := y

}
.

It is equivalent to d by boundedness of k since d is a length metric. Let us denote by W 0
p,k,t and Wp,k,t

the transport “distances” w.r.t. d0
p,k,t and dp,k,t, respectively. Then Wp,k,t is a metric on Pp(X), which is 

equivalent to the usual p-Kantorovich–Wasserstein metric Wp. Compared to the perturbed p-transport cost 
W k

p which measures Brownian evolutions “horizontally” by following their trajectories with fixed starting 
points, the distance Wp,k,t varies the initial points along a geodesic and may thus be seen as a “vertical” 
counterpart of W k

p .
Let Qs be the p-Hopf–Lax semigroup and q ∈ (1, ∞) such that 1/p + 1/q = 1. Similarly to [22, Proposi-

tion 3.7], the key point will be the following Lipschitz regularity along geodesics.

Lemma 5.9. Let f ∈ Lipb(X). Then for every x, y ∈ X, each t > 0 and all γ ∈ G0(y, x), the map s 	→
PtQsf(γs) belongs to Lip([0, 1]), and

PtQ1f(x) − Ptf(y) ≤
1∫

0

(
lim sup

h↓0

1
h

(
PtQsf(γs+h) − PtQsf(γs)

)
− 1

q
Pt

(
lip(Qsf)q

)
(γs)

)
ds.

Proof. Let h > 0 and s ∈ [0, 1 − h]. Notice that

1
h

∣∣PtQs+hf(γs+h) − PtQsf(γs)
∣∣

≤ 1
h

∣∣PtQs+hf(γs+h) − PtQs+hf(γs)
∣∣ + 1

h

∣∣∣∫
X

(
Qs+hf −Qsf

)
dHtδγs

∣∣∣

≤ d(x, y)
h

s+h∫
s

|DPtQs+hf |(γv) dv +
∫
X

1
h
|Qs+hf −Qsf |dHtδγs

.

The latter is bounded uniformly in s and h since the first integral can be controlled using the Lipschitz 
regularization estimate (2.1) of the heat flow while the second one exploits the fact that the map s 	→ Qsf

is Lipschitz from [0, ∞) to C(X).
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It follows that PtQ1f(x) − Ptf(y) is bounded from above by

1∫
0

(
lim sup

h↓0

1
h

(
PtQsf(γs+h) − PtQsf(γs)

)
+ lim sup

h↓0

1
h

∫
X

(
Qs+hf −Qsf

)
dHtδγs+h

)
ds. (5.7)

The Kantorovich–Rubinstein formula (2.3) for W1, the W1-contractivity of the heat flow and the duality of 
Pt and Ht give us the following upper bound for the second lim sup in (5.7)

lim sup
h↓0

1
h

∫
X

(
Qs+hf −Qsf

)
d
(
Htδγs+h

− Htδγs

)
+ lim sup

h→0

1
h

∫
X

(
Qs+hf −Qsf

)
dHtδγs

≤ Lip(Q•f) lim sup
h↓0

W1
(
Htδγs+h

,Htδγs

)
+

∫
X

d
dsQsf dHtδγs

= −1
q

∫
X

lip(Qsf)q dHtδγs
= −1

q
Pt

(
lip(Qsf)q

)
(γs).

Here we used Lip(Q•f) as a shorthand for the Lipschitz constant of the map s 	→ Qsf from [0, ∞) to C(X). 
These estimates conclude the proof. �
Theorem 5.10. Assume the 1-gradient estimate GE1(k). Then for every p ∈ (1, ∞), t ≥ 0 and μ, ν ∈ P(X),

Wp(Htμ,Htν) ≤ Wp,k,t(μ, ν) ≤ W 0
p,k,t(μ, ν).

Proof. The second inequality is trivial since by definition dp,k,t ≤ d0
p,k,t, thus we concentrate on the first 

one.
Let us initially consider the case μ := δx and ν := δy for x, y ∈ X, and t > 0. By the duality (2.3), we 

have to estimate PtQ1f(x) − Ptf(y) from above for every f ∈ Lipb(X). Pick a geodesic γ ∈ G0(y, x). By 
the upper gradient property of |DPtQsf | and the GE1(k) inequality, we deduce for L 1-a.e. s ∈ [0, 1] that

lim sup
h↓0

1
h

(
PtQsf(γs+h) − PtQsf(γs)

)
≤ lim sup

h↓0

d(x, y)
h

s+h∫
s

Pk
t |DQsf |(γv) dv

≤ d(x, y)Eγs

[
e−

∫ 2t
0 pk(br)/2 dr

]1/p
Pt

(
lip(Qsf)q

)1/q(γs),
denoting by 

(
Pγs

, b
)

Brownian motion on X starting in γs. Invoking Lemma 5.9 and Young’s inequality, we 
infer that

PtQ1f(x) − Ptf(y) ≤ dp(x, y)
p

1∫
0

Eγs

[
e−

∫ 2t
0 pk(br)/2 dr

]
ds. (5.8)

Taking the supremum over f ∈ Lipb(X) and then infimizing over all geodesics γ connecting y to x, we deduce 
the inequality Wp(Htμ,Htν) ≤ W 0

p,k,t(μ, ν) = d0
p,k,t,(x, y). By the triangle inequality and the definition of 

dp,k,t, this already implies that Wp(Htμ, Htν) ≤ Wp,k,t(μ, ν) = dp,k,t,(x, y) under the above assumptions.
The case t = 0 follows by letting t ↓ 0 in (5.8) and then concluding as above.
Lastly, the inequality Wp(Htμ, Htν) ≤ Wp,k,t(μ, ν) for general μ, ν ∈ P(X) follows by a standard coupling 

argument. Given any Wp,k,t-optimal coupling π of μ and ν, fix Wp-optimal couplings πt,x,y of Htδx and Htδy, 
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x, y ∈ X, in a π-measurable way according to a measurable selection theorem [11, Theorem 6.9.2], and define 
a coupling of Htμ and Htν by

d�t(u, v) :=
∫

X×X

dπt,x,y(u, v) dπ(x, y).

Thus we obtain

W p
p (Htμ,Htν) ≤

∫
X×X

dp(u, v) d�t(u, v) =
∫

X×X

W p
p (Htδx,Htδy) dπ(x, y)

≤
∫

X×X

dpp,k,t(x, y) dπ(x, y) = W p
p,k,t(μ, ν). �

With this in hand, we can proceed to what we have indicated in Remark 1.9.

Corollary 5.11. Assume that GE1(k) is satisfied. Let μ, ν ∈ P(X) so that Wp(μ, ν) < ∞, let t ≥ 0, and 
let πt ∈ P(Geo(X)) represent an arbitrary Wp-optimal coupling between Htμ and Htν, i.e. (e0, e1)�πt is a 
Wp-optimal coupling of Htμ and Htν. Then

d+

dt W
p
p (Htμ,Htν) ≤ −

1∫
0

∫
Geo(X)

k(γs) |γ̇|p dπt(γ) ds.

Proof. Given any optimal geodesic plan πt as above, using Theorem 5.10 gives

lim sup
h→0

1
ph

(
W p

p (Ht+hμ,Ht+hν) −W p
p (Htμ,Htν)

)
≤ lim sup

h↓0

1
ph

(
W 0

p,k,h(Htμ,Htν)p −W p
p (Htμ,Htν)

)

≤ lim sup
h↓0

1
ph

∫
Geo(X)

( 1∫
0

Eγs

[
e−

∫ 2h
0 pk(br)/2 dr

]
ds− 1

)
dp(γ0, γ1) dπt(γ)

= −
1∫

0

∫
Geo(X)

k(γs) |γ̇|p dπt(γ) ds,

where 
(
Pγs

, b
)

denotes Brownian motion on X starting in γs. In the very last step, we used the assumed 
boundedness of k together with the dominated convergence theorem. �
Remark 5.12. The previous corollary applied to μ := δx and ν := δy for x, y ∈ X at t = 0, choosing π0 as 
the Dirac mass on an arbitrary geodesic γ ∈ G0(x, y), yields the estimate

d+

dt

∣∣∣∣
t=0

W p
p (Htδx,Htδy) ≤ −p sup

γ∈G0(x,y)

1∫
0

k(γs) ds dp(x, y) ≤ −p k(x, y) dp(x, y),

where, as in (1.3), the function k : X ×X → R is defined by
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k(x, y) := lim inf
(xn,yn)→(x,y)

sup
γ∈G0(xn,yn)

1∫
0

k(γs) ds.

Note that k is lower semicontinuous and bounded from below.
This improves the differential p-transport estimate (5.4), since k ≤ k on X ×X, see also Proposition 4.6. 

In Chapter 6, we shall construct a coupling of Brownian motions obeying pathwise bounds involving the 
larger function k in place of k. In particular, using Theorem 5.17, all equivalences from Theorem 1.1 and 
Theorem 1.8 are still valid when replacing the function k by k in all relevant quantities. �

The proof of the TEp(k) property starting from GEq(k) with dual p, q ∈ (1, ∞) is slightly more involved 
as a control of the error terms is only possible “locally” for small times. A crucial ingredient is the subsequent 
result.

Lemma 5.13. Let u and v be bounded Borel functions on X such that u ≤ v on a ball Bδ(z), z ∈ X and 
δ > 0. Then for every p ∈ (1, ∞) and ε > 0, there exists t∗ > 0 such that for every t ∈ [0, t∗], every 
nonnegative Borel function g on X, and every Brownian motion (Px, b) on X starting in x ∈ Bδ/2(z), we 
have

Ex

[
e
∫ t
0 u(br) drg(bt)

]
≤ Ex

[
ep

∫ t
0 (v(br)+ε) drgp(bt)

]1/p
.

Proof. The condition on u and v guarantees that for fixed T > 0 and every t ∈ [0, T ],

e
∫ t
0 u(br) dr − e

∫ t
0 v(br) dr =

t∫
0

e
∫ s
0 u(br) dr+

∫ t
s
v(br) dr(u− v)(bs) ds ≤ M

t∫
0

1{bs /∈Bδ(z)} ds.

Here, M > 0 is a constant depending only on u, v and T . Therefore,

Ex

[
e
∫ t
0 u(br) drg(bt)

]
≤ Ex

[
e
∫ t
0 v(br) drg(bt)

]
+ M

t∫
0

Ex

[
e
∫ t
0 v(br) drg(bt)1{bs /∈Bδ(z)}

]
ds

≤ Ex

[
e
∫ t
0 pv(br) drgp(bt)

]1/p (
1 + M

t∫
0

Px

[
bs /∈ Bδ(z)

]1/q ds
)
,

where q ∈ (1, ∞) denotes the dual exponent to p. By Lemma 4.2, we know that Px[bs /∈ Bδ(z)] ≤ sq for 
every s ∈ [0, t] and small enough t. Thus, 1 + M

∫ t

0 Px[bs /∈ Bδ(z)]1/q ds ≤ eεt, which directly proves the 
claim. �
Remark 5.14. With the very same strategy, also estimates for Feynman–Kac-type expressions in terms of 
pairs of Brownian motions can be derived, each component being required to start within Bδ/2(z). Moreover, 
the integrands u and v are then supposed to be functions on X ×X with u ≤ v on Bδ(z) ×Bδ(z). �

Proposition 5.15. Let p, q ∈ (1, ∞) such that 1/p + 1/q = 1 and assume the q-gradient estimate GEq(k). 
Assume that � ∈ Cb(X ×X) with � ≤ k on X ×X, and put �(x) := �(x, x) for x ∈ X. Then for every ε > 0, 
p′ ∈ (1, p) and z ∈ X, there exist δ > 0 and t∗ > 0 such that for every x, y ∈ Bδ(z), every γ ∈ G0(y, x) and 
every t ∈ [0, t∗], we have

W p′

p′ (Htδx,Htδy) ≤ d(x, y) e−
( ∫ 1

0 
(γr) dr−ε
)
t,
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and thus in particular,

d+

dt

∣∣∣∣
t=0

Wp′(Htδx,Htδy) ≤ − d(x, y)
( 1∫

0

�(γr) dr − ε
)
.

Proof. We adapt the proof of Theorem 5.10 by adding a localization argument. Given z ∈ X and ε > 0, 
choose δ > 0 and Lz ∈ R such that Lz ≤ � ≤ Lz + ε/2 on B3δ(z). Let x, y ∈ Bδ(z) and γ ∈ G0(y, x), and 
note that Lz ≤

∫ 1
0 �(γr) dr ≤ Lz + ε/2.

Denote by Qs the p′-Hopf–Lax semigroup with dual exponent q′ ∈ (q, ∞). Since |DPtQsf | is a weak 
upper gradient and using GEq(k), which clearly implies GEq(�), we directly obtain, for L 1-a.e. s ∈ [0, 1],

lim sup
h↓0

1
h

(
PtQsf(γs+h) − PtQsf(γs)

)
≤ d(x, y)

(
Pq

t |DQsf |q

)1/q(γs).
Applying Lemma 5.13 with ε/2 and t/2 in place of ε and t, respectively, we get, for small enough t,

(
Pq

t |DQsf |q

)1/q(γs) ≤ e−(Lz−ε/2)t Pt

(
lip(Qsf)q

′)1/q′(γs),
and thus

d(x, y)
(
Pq

t |DQsf |

)1/q(γs) ≤ dp
′
(x, y)
p′

e−p′(Lz−ε/2)t + 1
q′

Pt

(
lip(Qsf)q

′)
(γs)

for L 1-a.e. s ∈ [0, 1] by Young’s inequality. Therefore, Lemma 5.9 with q′ in place of q yields

PtQ1f(x) − Ptf(y) ≤ dp
′
(x, y)
p′

e−p′(Lz−ε/2)t ≤ dp
′
(x, y)
p′

e−p′( ∫ 1
0 
(γr) dr−ε

)
t.

Taking the supremum over f ∈ Lipb(X), we conclude by (2.3). �
Theorem 5.16. Given p, q ∈ (1, ∞) with 1/p +1/q = 1, the q-gradient estimate GEq(k) implies the p-transport 
estimate TEp(k).

Proof. Fix x, y ∈ X, an arbitrary geodesic γ ∈ G0(y, x) and � as in Proposition 5.15. Given ε > 0, 
choose a finite covering of γ([0, 1]) by metric balls Bδi/2(γsi), i ∈ {1, . . . , n} and n ∈ N, such that each 
of the enlarged balls Bδi(γsi) satisfies the assumption of the previous Proposition 5.15. Without restric-
tion, we may assume s1 = 0 and sn = 1. Applying this proposition to pairs of intermediate points γsi−1

and γsi and the reparameterized geodesics γi ∈ G0(γsi−1 , γsi) defined by γi
r := γsi−1+r(si−si−1), r ∈ [0, 1], 

yields

d+

dt

∣∣∣∣
t=0

Wp′(Htδx,Htδy) ≤
n∑

i=1

d+

dt

∣∣∣∣
t=0

Wp′
(
Htδγsi−1

,Htδγsi

)

≤ −
n∑

i=1
d(γsi−1 , γsi)

( 1∫
0

�
(
γi
r

)
dr − ε

)

= − d(x, y)
( 1∫

0

�(γr) dr − ε
)
.
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Since � is arbitrary, this bound holds with k in place of � by Lemma 2.1. Furthermore, by definition 
of k and the arbitrariness of ε > 0, we deduce the differential transport estimate (5.4) with p replaced 
by p′. Since this true for every p′ ∈ (1, p), this finally yields TEp(k) by Proposition 5.6 and monotone 
convergence. �
5.4. Gradient estimates out of pathwise and transport estimates

A modification of the arguments given in [22, Proposition 3.1] allows us to prove the converse direction 
of Theorem 1.8, i.e. that the p-transport estimate TEp(k) implies the q-gradient estimate GEq(k), where 
1/p + 1/q = 1. As in the previous section, a control of the error terms can only be achieved for small 
times. Therefore, instead of deriving GEq(k) directly, it is more convenient to establish a local version of 
the q-Bochner inequality BEq(k, ∞).

As in the preceding Section 5.3, the extremal version q = 1 is much easier to treat: in this case, the 
condition “TE∞(k)” is to be interpreted as “TEp(k) holds for any p ∈ [1, ∞)”, which translates into the 
requirement of PCP(k) as discussed in Chapter 6.

Theorem 5.17. The property PCP(k) implies the 1-gradient estimate GE1(k), that is, for every f ∈ W 1,2(X)
and t ≥ 0, we have

Γ(Ptf)1/2 ≤ Pk
t

(
Γ(f)1/2

)
m-a.e.

Proof. Fix f ∈ Lipbs(X) and x ∈ X. Recall that Pt/2f(x) = Ex[f(bt)], where (Px, b) denotes Brownian 
motion on X starting in x. Pick a function � ∈ Lipb(X ×X) with � ≤ k on X ×X, and set �(x) := �(x, x)
for x ∈ X. By PCP(k), given any � > 0 and y ∈ B�(x), we may choose a pair 

(
Px,y, b1) and 

(
Px,y, b2) of 

coupled Brownian motions in such a way that Px,y-a.s., we have

d
(
b1
t , b2

t

)
≤ e−

∫ t
0 k

(
b1
r,b

2
r

)
/2 dr d(x, y) ≤ e−

∫ t
0 


(
b1
r,b

2
r

)
/2 dr d(x, y) (5.9)

for every t ≥ 0. With this in hand, we can estimate

|DPt/2f |(x) ≤ lim
�↓0

sup
y∈B�(x)

|Pt/2f(x) − Pt/2f(y)|
d(x, y)

≤ lim
�↓0

sup
y∈B�(x)

Ex,y

[
|f(b1

t ) − f(b2
t )|

d(b1
t , b2

t )
d(b1

t , b2
t )

d(x, y)
(
1U�,t

+ 1V�,t
+ 1W�,t

)]
,

where V�,t :=
{
d
(
b1
t , b2

t

)
≥ �1/2}, W�,t :=

{∫ t

0 d
(
b1
r, b2

r

)
dr/t ≥ �1/2} and U�,t := V c

�,t ∩W c
�,t.

Let us consider this upper bound for the weak upper gradient |DPt/2f |(x) term by term, starting with 
the contribution coming from U�,t. We have the inequality 

∫ t

0 �
(
b1
r, b2

r

)
dr ≥

∫ t

0 �
(
b1
r

)
dr − Lip

(
�
)
t�1/2 on 

W c
�,t, which gives

lim
�↓0

sup
y∈B�(x)

Ex,y

[
|f(b1

t ) − f(b2
t )|

d(b1
t , b2

t )
d(b1

t , b2
t )

d(x, y) 1U�,t

]

≤ lim
�↓0

sup
y∈B�(x)

Ex,y

[
e−

∫ t
0 


(
b1
r

)
/2 dr+Lip(
)t�1/2/2 sup

z∈B
�1/2 (b1

t )

∣∣∣f(b1
t ) − f(z)

d(b1
t , z)

∣∣∣]

= lim
�↓0

Ex

[
e−

∫ t
0 
(bx

r )/2 dr+Lip(
)t�1/2/2 sup
z∈B 1/2 (bx)

∣∣∣f(bxt ) − f(z)
d(bxt , z)

∣∣∣]

� t
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= Ex

[
e−

∫ t
0 
(bx

r )/2 dr |Df |(bxt )
]

= P

t/2

(
Γ(f)1/2

)
(x).

We point out the intermediate change from the process b1, which in general also depends on y, to a Brownian 
motion 

(
Px, bx

)
on X starting in x, chosen independently of y.

Next we consider the term involving 1V�,t
. Denoting by C > 0 a suitable upper bound on �, we obtain 

by (5.9) that

lim
�↓0

sup
y∈B�(x)

Ex,y

[
|f(b1

t ) − f(b2
t )|

d(b1
t , b2

t )
d(b1

t , b2
t )

d(x, y) 1V�,t

]

≤ Lip(f) lim
�↓0

1
�1/2 sup

y∈B�(x)
Ex,y

[
d2(b1

t , b2
t )

d(x, y)

]
≤ Lip(f) eCt lim

�↓0

1
�1/2 sup

y∈B�(x)
d(x, y) = 0.

Similarly, the last expression which involves W�,t can be bounded through

lim
�↓0

sup
y∈B�(x)

Ex,y

[
|f(b1

t ) − f(b2
t )|

d(b1
t , b2

t )
d(b1

t , b2
t )

d(x, y) 1W�,t

]

≤ Lip(f) lim
�↓0

1
t�1/2 sup

y∈B�(x)

t∫
0

Ex,y

[
d(b1

t , b2
t ) d(b1

r, b2
r)

d(x, y)

]
dr

≤ Lip(f) eCt lim
�↓0

1
�1/2 sup

y∈B�(x)
d(x, y) = 0.

Finally, we have to extend the class of admissible functions f and pass to GE1(k). By uniform convexity 
of E , every f ∈ W 1,2(X) can be approximated strongly in W 1,2(X) by a sequence of Lipschitz functions fn
with bounded support [3]. Thus, possibly passing to a subsequence, we get, for some suitable c ∈ R, that

lim
n→∞

P

t

(
Γ(f − fn)1/2

)
≤ ect lim

n→∞
Pt

(
Γ(f − fn)1/2

)
= 0 m-a.e.

Moreover, Γ(Ptfn) → Γ(Ptf) in L1(X, m) as n → ∞ and thus, up to a subsequence, this convergence holds 
m-a.e., which then proves GE1(�) for arbitrary f ∈ W 1,2(X). By the arbitrariness of �, Lemma 2.1 and the 
identity k(x) = k(x, x) for every x ∈ X, we deduce GE1(k) by the monotone convergence theorem. �
Proposition 5.18. Let ε > 0, z ∈ X and q ∈ (1, ∞). Assume the transport estimate TEp(k), where 1/p +1/q =
1. Suppose that � ∈ Cb(X ×X) with � ≤ k on X ×X. Then for every q′ ∈ (q, ∞), there exist t∗ > 0 and 
δ > 0 such that

Γ(Ptf)q
′/2 ≤ Pq′(
−ε)

t

(
Γ(f)q

′/2) m-a.e. on Bδ(z)

for every t ∈ [0, t∗] and all bounded Lipschitz functions f on X.

Proof. Fix T > 0. Given ε > 0, choose δ > 0 and Lz ∈ R such that Lz ≤ �(x, y) ≤ Lz + ε/3 for 
every x, y ∈ B3δ(z). Given t ∈ [0, T ], x ∈ Bδ(z) and y ∈ B�(z) with � ≤ δ, select a pair 

(
Px,y, b1) and (

Px,y, b2) of coupled Brownian motions starting in (x, y) which attains the minimum in the definition of 
W k

p (δx, δy, t/2) ≤ d(x, y). The choice of this pair does depend on x, y and t, but these dependencies are 
suppressed in the notation. Similarly to the proof of Theorem 5.17, for every f ∈ Lipb(X), we have

|DPt/2f |(x) ≤ lim
�↓0

sup Ex,y

[
|f(b1

t ) − f(b2
t )|

d(b1, b2)
d(b1

t , b2
t )

d(x, y)
(
1V�,t

+ 1V c
�,t

)]

y∈B�(x) t t
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where V�,t :=
{
d
(
b1
t , b2

t

)
≥ �1/2q}. The contribution of V�,t vanishes as � ↓ 0 due to

lim
�↓0

sup
y∈B�(x)

Ex,y

[
|f(b1

t ) − f(b2
t )|

d(x, y) 1V�,t

]

≤ Lip(f) eCt lim
�↓0

�(1−p)/2q sup
y∈B�(x)

1
d(x, y) Ex,y

[
e
∫ t
0 pk

(
b1
r,b

2
r

)
/2 dr dp

(
b1
t , b2

t

)]
≤ Lip(f) eCt lim

�↓0
�(1−p)/2q sup

y∈B�(x)
dp−1(x, y) = 0

for a suitable C > 0, where we used the assumption that � ≤ k in the first inequality and the TEp(k)
condition in the last inequality.

Next we study the influence coming from V c
�,t. Choosing some exponents q′′ ∈ (q, q′) and p′′ ∈ (1, p′) dual 

to each other, using Hölder’s inequality, Lemma 5.13 with ε/3 and t/2 in place of ε and t, respectively, and 
eventually assumption TEp(k), we obtain for sufficiently small t that

lim
�↓0

sup
y∈B�(x)

Ex,y

[
|f(b1

t ) − f(b2
t )|

d(b1
t , b2

t )
d(b1

t , b2
t )

d(x, y) 1V c
�,t

]

≤ e−(Lz−ε/3)t/2 lim
�↓0

sup
y∈B�(x)

Ex,y

[∣∣∣f(b1
t ) − f(b2

t )
d(b1

t , b2
t )

∣∣∣q′′ 1V c
�,t

]1/q′′

· lim
�↓0

sup
y∈B�(x)

Ex,y

[
ep

′′(Lz−ε/3)t/2
∣∣∣d(b1

t , b2
t )

d(x, y)

∣∣∣p′′]1/p′′

≤ e−(Lz−ε/3)t/2 lim
�↓0

Ex

[
sup

z∈B
�1/2q (bx

t )

∣∣∣f(bxt ) − f(z)
d(bxt , z)

∣∣∣q′′]1/q′′ 1
d(x, y) W

k
p (δx, δy, t)

≤ e−(Lz−ε/3)t/2 Ex

[
|Df |q′′(bxt )

]1/q′′
.

Here (Px, bx) is a Brownian motion on X starting in x which is chosen independently of y. Once again using 
Lemma 5.13 as above to estimate the last expression, we finally obtain

lim
�↓0

sup
y∈B�(x)

Ex,y

[
|f(b1

t ) − f(b2
t )|

d(b1
t , b2

t )
d(b1

t , b2
t )

d(x, y) 1V c
�,t

]
≤ Pq′(
−ε)

t

(
|Df |q′

)1/q′(x). �
Theorem 5.19. Given p, q ∈ (1, ∞) with 1/p +1/q = 1, the p-transport estimate TEp(k) implies the q-gradient 
estimate GEq(k).

Proof. Let � be as in Proposition 5.18 and put �(x) := �(x, x) for x ∈ X. First, we assume that q ∈ [2, ∞). 
Given ε > 0, z ∈ X, t∗ > 0, q′ ∈ (q, ∞) and the associated time t∗ > 0 from in Proposition 5.18, arguing as 
in the proof of Theorem 3.4, the function F : [0, t∗] → R defined by

F (t) :=
∫
X

(
Pq′(
−ε)
t

(
Γ(f)q

′/2)− Γ(Ptf)q
′/2

)
φ dm

belongs to C1([0, t∗]) for every f ∈ TestF(X) and all nonnegative functions φ ∈ W 1,2(X) ∩ L∞(X, m)
supported in Bδ(z). The function F itself and its derivative at 0 are nonnegative by Proposition 5.18. The 
latter translates into

−
∫ ( 1

q′
Γ
(
Γ(f)q

′/2, φ
)

+ Γ(f)q
′/2 Γ(f,Δf)φ

)
dm ≥

∫
(�− ε) Γ(f)q

′/2 φ dm.
X X
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Approximating k from below by the sequence kn ∈ Lipb(X) of functions kn(x) := kn(x, x) for x ∈ X, or in 
other words, replacing � by kn for every n ∈ N, where kn tends to k from below as provided by Lemma 2.1, 
and letting q′ ↓ q and ε ↓ 0, we obtain precisely the local q-Bakry–Émery inequality BEq,loc(k, ∞) according 
to Definition 3.9. Since the latter implies BEq(k, ∞) by Theorem 3.10, the equivalence with GEq(k) finishes 
the proof in the case q ∈ [2, ∞).

If q ∈ [1, 2), choosing q′ := 2 in Proposition 5.18 and arguing as above, we obtain BE2(k, ∞), which in 
turn implies BEq(k, ∞). �
6. A pathwise coupling estimate

It remains to treat the pathwise coupling property w.r.t. k to finish the proof of Theorem 1.1. By 
Theorem 5.17, we know that PCP(k) implies GE1(k). Conversely, letting k be the function from Remark 5.12
which is even larger than k, GE1(k) implies that, for any p ∈ (1, ∞),

d+

dt

∣∣∣∣
t=0

W p
p (Htδx,Htδy) ≤ −pk(x, y) dp(x, y) for every x, y ∈ X.

The same argument as for Proposition 5.6 then shows that t 	→ W k
p (δx, δy, t) is nonincreasing for every 

p ∈ (1, ∞) and every x, y ∈ X. Therefore, PCP(k) follows once having proven the subsequent even stronger 
statement which has a weaker assumption.

Theorem 6.1. Suppose that, for all large enough p ∈ (1, ∞), the map t 	→ W k
p (δx, δy, t) is nonincreasing on 

[0, ∞) for every x, y ∈ X. Then for every μ1, μ2 ∈ P(X) there exists a pair 
(
P , b1) and 

(
P , b2) of coupled 

Brownian motions on X with initial distributions μ1 and μ2, respectively, such that P -a.s., we have

d
(
b1
t , b2

t

)
≤ e−

∫ t
s
k
(
b1
r,b

2
r

)
/2 dr d

(
b1
s, b2

s

)
for every s, t ∈ [0,∞) with s ≤ t.

In particular, the pathwise coupling property PCP(k) holds.

For the proof of Theorem 6.1, it is necessary to adapt the arguments from [31, Section 2] in a nontrivial 
way, since our pathwise estimate requires control of the entire path of 

(
b1, b2) on the interval [s, t] and not 

just at the endpoints.
The proof of Theorem 6.1 will be subdivided into multiple steps. Firstly, we construct a coupled process 

starting in δx ⊗ δy, x, y ∈ X, satisfying the desired pathwise contraction estimate on the interval [0, 1]. 
Secondly, a gluing procedure will let us extend the process to [0, ∞). Finally, we use a coupling technique 
to allow for arbitrary initial distributions.

Proposition 6.2. Under the same assumptions as in Theorem 6.1, for every t ≥ 0, there exists a universally 
measurable map

μt : X ×X −→ P(Πt)

such that for every x, y ∈ X, the marginals of μt
x,y := μt(x, y) are laws of Brownian motions, restricted to 

[0, t], starting in x and y, respectively, and

d
(
γ1
t , γ

2
t

)
≤ e−

∫ t
0 k

(
γ1
r ,γ

2
r

)
/2 dr d(x, y) for μt

x,y-a.e. γ ∈ Πt.

Proof. Given x, y ∈ X and an increasing sequence (pn)n∈N tending to ∞, denote by ηt,n
x,y ∈ P(Πt) the 

measure obtained by Lemma 5.3 for the exponent pn, � replaced by k, and time t/2 in place of t. As for 
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Lemma 5.2, we see that the sequence (ηt,n
x,y)n∈N is tight. Hence it converges weakly to some ηt

x,y ∈ P(Πt)
along a subsequence which we do not relabel.

Let p ∈ (1, ∞) arbitrary, and fix � ∈ Cb(X ×X) with � ≤ k on X ×X. Then by Hölder’s inequality and 
the nonincreasingness of t 	→ W k

pn
(δx, δy, t) for large enough n, we obtain

(∫
Πt

e
∫ t
0 p


(
γ1
r ,γ

2
r

)
/2 dr dp

(
γ1
t , γ

2
t

)
dηt

x,y(γ)
)1/p

≤ lim inf
n→∞

(∫
Πt

e
∫ t
0 p


(
γ1
r ,γ

2
r

)
/2 dr dp

(
γ1
t , γ

2
t

)
dηt,n

x,y(γ)
)1/p

≤ lim sup
n→∞

(∫
Πt

e
∫ t
0 pnk

(
γ1
r ,γ

2
r

)
/2 dr dpn

(
γ1
t , γ

2
t

)
dηt,n

x,y(γ)
)1/pn

≤ d(x, y).

Sending p → ∞ and then approximating k from below by means of Lemma 2.1 gives

d
(
γ1
t , γ

2
t

)
≤ e−

∫ t
0 k

(
γ1
rγ

2
r

)
/2 dr d(x, y) for ηt

x,y-a.e. γ ∈ Πt.

A measurable selection argument as in the proof of Lemma 5.3 establishes the claim. �
The next goal is to obtain a measure which obeys such pathwise bound at every initial and terminal time 

instance in, say, [0, 1]. Indeed, this is the point where the main work has to be done.

Theorem 6.3. Under the same assumptions as in Theorem 6.1, there exists a universally measurable map

μ : X ×X −→ P(Π1)

such that for every x, y ∈ X, we have that the marginals of μx,y := μ(x, y) are laws of Brownian motions, 
restricted to [0, 1], starting in x and y, respectively, and that there exists a μx,y-negligible Borel set E ⊂ Π1
such that

d
(
γ1
t , γ

2
t

)
≤ e−

∫ t
s
k
(
γ1
r ,γ

2
r

)
/2 dr d

(
γ1
s , γ

2
s

)
for every s, t ∈ [0, 1] with s ≤ t

for all γ ∈ Π1 \ E.

Proof. The strategy relies on patching the laws obtained in the previous proposition together on small 
dyadic partitions of [0, 1]. Denote by μ2−n the map from Proposition 6.2 and define

μn,x,y := μ2−n ◦ · · · ◦ μ2−n︸ ︷︷ ︸
2n−1 kernels

◦μ2−n

x,y ∈ P(Π1),

that is, at every dyadic partition point of [0, 1] at scale 2−n, we attach a new random curve evolving according 
to the law obtained in Proposition 6.2 to the random endpoint of the previous curve. The marginals of μn,x,y

are the laws of Brownian motions on X, restricted to [0, 1], starting in x and y, respectively. As in the proof 
of Lemma 5.2, we may exhibit a subsequence, not relabeled in the sequel, weakly converging to some 
μx,y ∈ P(Π1).

The key point lies in proving that for every s, t ∈ Q ∩ [0, 1] with s ≤ t, there exists a μx,y-negligible Borel 
set Es,t ⊂ Π1 such that, for every γ ∈ Π1 \ Es,t,

d
(
γ1
t , γ

2
t

)
≤ e−

∫ t
s
k
(
γ1
r ,γ

2
r

)
/2 dr d

(
γ1
s , γ

2
s

)
. (6.1)
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By continuity of curves, the desired requirements are then satisfied by the μx,y-null set

E :=
⋃

s,t∈Q∩[0,1],
s≤t

Es,t.

Let � ∈ Cb(X ×X) as above, i.e. � ≤ k on X ×X. Pick s and t as above and notice that the sequences 
sm := 2−m�2ms� and tm := 2−m�2mt� tend to s and t, respectively, as m → ∞. Fix m ∈ N and an arbitrary 
n ≥ m. Given any i ∈ {1, . . . , 2n − 1}, for every path γ̃ ∈ Π2−n one gets

d
(
γ1
2−n , γ2

2−n

)
≤ e−

∫ 2−n

0 

(
γ1
r ,γ

2
r

)
/2 dr d

(
γ̃1
2−n , γ̃2

2−n

)
for μ2−n

γ̃1
2−n ,γ̃2

2−n
-a.e. γ ∈ Π2−n .

Observing that the dyadic partition of [0, 1] of step size 2−n contains the one at scale 2−m and then 
integrating the resulting μn,x,y-a.e. valid estimate, truncated at large enough C > 0, against an arbitrary 
nonnegative function φ ∈ Cb(Π1), we obtain

∫
Π1

φ(γ) dC
(
γ1
tm , γ2

tm

)
dμn,x,y(γ) ≤

∫
Π1

φ(γ) e−
∫ 2−n�2ntm�
2−n�2nsm� 


(
γ1
r ,γ

2
r

)
/2 dr dC

(
γ1
sm , γ2

sm

)
dμn,x,y(γ),

where dC := min{d, C}. Since � is bounded, for all m ∈ N and every ε > 0, this yields∫
Π1

φ(γ) dC
(
γ1
tm , γ2

tm

)
dμn,x,y(γ) ≤

∫
Π1

φ(γ) e−
∫ tm
sm



(
γ1
r ,γ

2
r

)
/2 dr dC

(
γ1
sm , γ2

sm

)
dμn,x,y(γ)

+ ε

∫
Π1

φ(γ) dC
(
γ1
sm , γ2

sm

)
dμn,x,y(γ)

for all large enough n. Letting n → ∞, ε ↓ 0 and then C → ∞ in the previous estimate as well as extending 
the class of φ to nonnegative, bounded Borel functions by a routine approximation argument, we get

d
(
γ1
tm , γ2

tm

)
≤ e−

∫ tm
sm



(
γ1
r ,γ

2
r

)
/2 dr d

(
γ1
sm , γ2

sm

)
for μx,y-a.e. γ ∈ Π1. (6.2)

Let us now put

Ẽs,t :=
⋃

m∈N
{γ ∈ Π1 : γ does not satisfy (6.2)}

which clearly satisfies μx,y

[
Ẽs,t

]
= 0, and (6.1) holds on Π1 \ Ẽs,t with � in place of k by the convergences 

sm → s and tm → t as m → ∞. Finally, denoting by kn ∈ Lipb(X) a sequence approximating k from below 
as provided by Lemma 2.1, the above reasoning gives Borel subsets Ẽn

s,t of Π1 such that μx,y

[
Ẽn

s,t

]
= 0 and

d
(
γ1
t , γ

2
t

)
≤ e−

∫ t
s
kn

(
γ1
r ,γ

2
r

)
/2 dr d

(
γ1
s , γ

2
s

)
for every γ ∈ Π1 \ Ẽn

s,t. Putting

Es,t :=
∞⋃

n=1
Ẽn

s,t,

we see that μx,y

[
Es,t

]
= 0 and that (6.1) holds for all γ ∈ Π1 \ Es,t by monotone convergence.

A similar argument and arguing as for Lemma 5.3 shows that we can then select the obtained measures 
in a universally measurable way. �
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The cases of arbitrary initial distributions μ ∈ P(X × X) and an infinite time horizon are immediate 
given the construction in the proof of Theorem 6.3.

Proof of Theorem 6.1. By iteratively composing copies of μ with μ ◦ μ, we obtain a measure ρμ ∈
P(C([0, ∞); X ×X)) such that (e0)�ρμ = μ. The pathwise coupling properties on each interval [n − 1, n], 
n ∈ N, which are inherited by μ carry over to the entire space.

By considering the canonical process 
(
b1, b2) defined by b1

t (γ) := γ1
t and b2

t (γ) := γ2
t under the measure 

ρμ, we immediately obtain the assertion of Theorem 6.1, which is just a stochastic rephrasing of the previous 
considerations. �
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