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ABSTRACT 

A Bayesian network is developed to embed the probabilistic reasoning dependencies of the 

demographics on the incidence of infectious diseases. Influenza epidemics occur every year in both 

hemispheres during the winter. The Bayesian learning paradigm is used to create synthetic data sets 

that simulate an outbreak of influenza for a geographic area. The Bayesian prior and posterior 

probabilities can be altered to represent an outbreak for various demographics in different 

geographic regions. Epidemic curves are generated, via time series analysis of the data sets, for the 

temporal flow of influenza on different variants of the demographics. The analysis of the 

demographic-based epidemic curves facilitates in the identification of the risk levels among the 

different demographic sections. Spread vaccination lowers the impact of the epidemic, depending 

on the efficacy of the vaccine. Our model is equipped to analyze the effects of spread vaccination 

and design vaccination strategies, that optimize the use of public health resources, by identifying 

high-risk demographic groups. Our results show that application of the vaccine in the order of risk 

levels will further lower the epidemic impact as compared to uniform spread vaccination. 

 

1. INTRODUCTION 

The incidence of infectious diseases in a population has various attributing factors, such as genetics, 

health history, travel history, demographics, and others, including unknown and hidden causes. It is 

generally assumed that an individual is protected from an infectious disease when he/she has the 

requisite disease immunity.   Immunity can be present due to either genetic makeup, vaccination or 

past exposure. Vaccination is the primary policy of the public health departments in combating the 

spread of infectious diseases. 

An epidemic of an infectious disease can be studied and analyzed by use of epidemic curves, which 

graph the incidence of the disease over time. In this paper, demographic based epidemic curves for a 

geographic region are generated. The temporal analysis of these curves shall aid in the identification 

of the critical groups of the population, that require primary attention in curtailing the spread of the 

dis- ease.  Limited resources of public health departments must be optimally deployed which 

necessitates the identification of demographic specific groups for the surveillance, prevention, and 

control of infectious diseases. 

The remainder of this section gives a brief sketch on influenza and the susceptibles infectives 

removals (SIR) model. Section 2 illustrates the utilization of the Bayesian network for influenza, to 

generate data sets simulating an epidemic. Section 3 discusses the temporal analysis of the 

demographics on the incidence of influenza, and vaccination strategies. Section 4 outlines the 

related work in mathematical studies of influenza and other infectious diseases, and section 5 

concludes the paper. 
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1.1 Influenza 

Influenza is an infectious disease, which is more commonly known as the flu. Symptoms include 

fever, respiratory symptoms, nasal discharges, cough, headache and sore throat. Incubation period 

is the time period between the start of infection and the onset of symptoms. Influenza has an 

incubation period of 1-4 days [14]. The latent period is the time between being infected and 

becoming infectious, that is, capable of passing on the infection to others. Influenza’s latent period is 

a day less than the incubation period. The latent period is followed by 4-5 days of infectious period 

[14] . Once the infectious period ends, the recovery period starts, during which the infected 

individual is no more transmitting the infection to others. Fig. 1 illustrates the infection time-line for 

influenza. 

The 1918 pandemic, caused by the H1N1 Spanish strain, is a historical event, resulting in 20 million 

deaths in its first year alone [14]. World Health Organization (WHO) [17] and Centers for Disease 

Control and Prevention (CDC) [5] are involved in influenza surveillance around the world and in the 

design of effective vaccination programs. 

 

 

1.2 SIR Model 

Mathematical modeling of infectious diseases are based on the principles of susceptibles, infectives, 

and removals, namely the SIR model. Susceptibles are those individuals in a population who can be 

infected by the disease under study. Infectives are those individuals who have been infected and are 

infectious. Removals include all individuals that are incapable of transmitting the infection, and are 

either recovering, fully recovered, or expired from the disease. In complex models, the removals 

who recover may revert back to susceptibles. In case of influenza, a recovered individual cannot be 

infected by the same influenza strain due to acquired immunity during the infection, while he/she 

be- comes susceptible to other influenza strains. Fig.  2 shows the transient curves for the 

susceptibles, infectives and removals during the course of a disease epidemic. 

Kermack-McKendrick threshold theorem [3] is the basis for the SIR model. A continuous influx of 

susceptibles is a requisite for sustained infection in a population.  The model is based on the 

presumption of a closed population, assuming that the epidemic spreads rapidly enough that the 

changes brought in by births, deaths, migration and demo- graphic changes are negligible [2]. 

The index case is the first infected individual and is the source of the infection. During the infectious 

period, the infection is passed on to some susceptibles, who interact with the index case close 

enough to contract the infection. This triggers the cycle of infections spreading through the 

population until a peak, as shown in Fig. 2. The infected individuals, on either recovery or expiry, 
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move over to the removals category. The rising infection on reaching the peak starts to recede due 

to the decrease in the number of susceptibles, and dies down eventually. 

 

2. INFLUENZA OUTBREAK SIMULATION 

The probabilistic reasoning capabilities under uncertainty are integral to Bayesian learning. The 

principle of Bayes’ theorem is to update the beliefs of a hypothesis, given evidence. The prior 

probability distributions of the hypothesis transforms to posterior probability distributions upon 

witnessing the evidence. There are a number of good sources of study for Bayesian learning 

([7],[8],[10]). 

We develop a Bayesian network illustrating the probabilistic dependencies of the demographics on 

the incidence of influenza in a geographic region.  The Bayesian network is used to generate 

synthetic data sets, that reverse engineer an influenza outbreak embedded in a temporal domain. 

 

2.1 Bayesian Network 

For the study, the demographics and the symptoms considered are not comprehensive to keep the 

Bayesian model simple. The demographic parameters are ethnicity, gender, age, income, and 

location; and the symptoms are cough and fever. Fig. 3 shows the Bayesian network illustrating the 

dependencies between demographics, symptoms, and influenza incidence. The analysis includes the 

absence and presence of vaccination. 

  

 

2.2 Artificial Data Sets 

The Bayesian network (Fig. 3), coupled with the influenza infection time-line (Fig. 1) are used to 

generate synthetic data sets for a population size of 100,000. The lack of avail- able real data sets for 

epidemic outbreaks with finer demo- graphic details necessitates the development of approaches to 

synthetically replicate epidemic data sets. Table 1 lists the symbols used for the random variables 

and their corresponding values. Table 2 defines the prior and posterior probability distributions for 

the random variables of the Bayesian network. For example, P(I/C,F) refers to the conditional 

probability of influenza, given the evidence of cough and fever. A contact rate of 10 is used, which 
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implies that each infected individual contacts an average of 10 other people during the infectious 

period of 4-5 days. A contact is considered successful if the disease is transmitted. The index case 

can be visualized as the root of a tree, with the infection spreading along the branches of the tree 

until the leaves being unable to make successful contacts with susceptibles. 

 

 

3. TEMPORAL ANALYSIS 

An epidemic curve visualizes the incidence (rate) that traces the number of newly affected 

individuals over time. Data mining is applied to synthetic data to extract pertinent information of the 

influenza epidemic, including demographic-based ethnic curves. The role of vaccination in curtailing 

the impact of the epidemic is investigated. 
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3.1 Epidemic Curves 

Epidemic curves (Figures 4-7) are generated for the entire population, as well as for various 

demographic categories. Fig. 4 shows the dispersion of the epidemic among the different ethnic sub-

groups.  The level of impacts are ordered <hispanics, whites, blacks, asians>, thereby, placing larger 

number of hispanics at higher risk.  Fig.  5 shows the normalized version of the epidemic spread 

among the ethnic sub-groups, wherein the newly affected cases are proportioned over the total 

population of the specific sub-group. This helps in visualizing the outbreak among the sub-groups on 

a balanced platform. The ordered list of epidemic im- pact is <hispanics, asians, blacks, whites>. The 

asians are categorized correctly at the second highest risk level, while the earlier ordering placed 

asians at the lowest risk. Hence, normalized curves help in perceiving the true risk groups, based on 

proportions, rather than epidemic curves based on absolute number of disease incidences. 

Fig. 6 depicts the normalized epidemic spread among the genders, female and male. The females are 

observed at a higher risk level compared to males. Influenza spread does not have a gender bias. The 

observed result may be at- tributed to the complex social interaction patterns in the geographic 

region under study. 

The age groups have been categorized as child (≤5 years), adult (6-64 years), and senior (≥65 years). 

Fig. 7 shows the normalized dispersion of the epidemic among the three age groups. Child subgroup 

are at the highest risk. Adults and seniors are observed at lower risk levels, closely interspersed with 

each other. CDC strongly recommends vaccination for seniors, since 90% of influenza related 

mortality occurs in the senior group. The observed lower level for the seniors in our experiments 

may be attributed to the specifics of the synthetic data.  
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3.2 Vaccination 

Vaccination is the key preventive measure used by pub- lic health departments in toning down the 

annual influenza epidemics. A uniform random distribution of the vaccines among the population is 

deployed by use of spread vaccination. Limitations on public health resources prohibit the goal of 

herd immunity. Consequently, resources must be applied optimally in order to curtail the epidemic. 

Vaccines have associated effective rates of success. An ideal vaccine shall have a 100% success in 

protecting a vaccinated individual from influenza. Nevertheless, influenza vaccines have an efficacy 

of 50%-80%. Fig. 8 compares the epidemic curves for 10% of the population being spread vaccinated 

with 100%, 80%, and 50% success rates respectively, with a non-vaccinated population. The 

epidemic impacts for vaccine scenarios are all toned down compared to no vaccination scenario, 

reflecting on the success of the vaccination programs. As expected, 100% vaccine efficacy yields the 

best result. 

Fig.  9 illustrates the normalized bezier epidemic curves for ethnicity, gender and age groups. The 

analysis of the demographic graphs on a normalized scale aids in creation of a hierarchical list of 

demographic sub-groups ordered by their respective levels of risk. The ordered list in the decreasing 

level of risk shall be <child, hispanic, asian, female, male, black, adult, senior, white>. 

In our experiments, we assume vaccines are available for 10% of the population. In the first case, 

these vaccines are equally deployed among the three high-risk groups <child, hispanic, asian>. In the 

second case, these vaccines are applied equally among the three low-risk groups <adult, senior, 

white>. Fig.  10 depicts the epidemic curves of both the cases, along with the curve for simple spread 

vaccination. We are using 80% vaccine efficacy. Vaccination, prioritized on the high-risk groups, yield 

the best results in curtailing the epidemic, while vaccination of low-risk groups increases the 

epidemic impact, as compared to naive spread vaccination. Hence, demographic based high-risk 

group vaccinations should be accorded higher priority to curtail the influenza epidemic.  This 

necessitates a better understanding of disease progression in a given demographic domain. 

 

  

 

4. RELATED WORK 

The spatial and temporal correlation of influenza epidemics in the United States, France,  and 

Australia from 1972 to 1997 has been analyzed in [16]. The results indicate a high correlation 

between United States and France, but irregularity in the patterns between Australia and the other 

two countries. Demography is highlighted as the primary reason for the discrepancy. 
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Bayesian learning is used to infer the dependency of the demographics on the incidence of diseases 

in different geo- graphic regions [1]. A stochastic cellular automata paradigm is used to study the 

dynamics of infectious diseases’ epidemics, and vaccination strategies in controlling them [15]. In 

susceptibles, infectives, and susceptibles  (SIS) model, the infectives upon recovery return to the 

susceptibles category. The SIS model for spread of infectious diseases has been analyzed for non-

uniform population densities, thereby accounting for mobility of individuals [4]. The susceptibles, 

exposed, infectives, and removals (SEIR) model includes the class of exposed individuals who have 

been exposed to the disease, but are in the latent stage, and hence are not ca- pable of infecting the 

susceptibles. A 4-dimensional SEIR epidemic model is considered and the criteria for stable equilibria 

has been established [6]. 

Data obtained from the WHO global influenza surveil- lance network are mined to extract qualitative 

and quantitative information and used in the vaccine strain selection process [12]. The effects of 

prior infection by influenza has been studied to determine the performance and efficacy of 

vaccination [13]. 

Hidden Markov models with an exponential-gaussian mix- ture have been used for automated 

detection of influenza epidemics [11]. A Monte Carlo simulation using a Markov model is 

implemented to study the infection models, that oc- cur naturally, such as influenza whose viral 

pathogen spreads through a susceptible community, or induced deliberately, as in the case of bio-

terror attacks [9]. 

 

5. CONCLUSION 

Bayesian probabilistic reasoning is used in developing syn- thetic data sets, portraying the outbreak 

of an influenza epi- demic in a geographic region. Influenza epidemic due to a single strain prevails 

for around eight weeks, and all the epi- demic curves generated from the synthetic data also depict 

similar epidemic behavior.  The epidemic curve for the total population is dispersed into 

demographic-based epidemic curves. The temporal flow of the epidemic among the different 

sections of the population is analyzed. The different population sections are ordered in a hierarchical 

list, based on risk levels. The higher end risk spectrum of the ordered list need primary health care 

early, in comparison to the lower end risk spectrum, to curtail the epidemic. 

Spread vaccination is applied uniformly across a proportion of the population, and is witnessed to 

scale down the epidemic. The higher the efficacy of the vaccine in thwarting the disease, the lower is 

the impact of the epidemic. Vaccination resources are alternatively applied in two different ways. In 

the first scenario, the high risk groups are targeted, while in the second case, the lower risk groups 

are targeted. As per expectations, the epidemic is reduced extensively when high-risk groups have 

been vaccinated. On the other hand, when applied to low-risk groups, the de- sired effects of our 

vaccination effort are less, as compared to naive spread vaccination. This validates the reasoning in 

identification of high risk demographic sections of the population, and prioritizing them in the 

allocation of the limited public health resources. 
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