
Designing an Adaptable Benchmark and Competition Simulation for Integrated
Planning and Execution

Liudvikas Nemiro1, Gerard Canal2, Oscar Lima3, Michael Cashmore1, and Mark Roberts4
1 University of Strathclyde, Glasgow, Scotland, UK

2 Department of Informatics, King’s College London, UK
3 DFKI Niedersachsen Lab, Osnabrück, Germany

4 The U.S. Naval Research Laboratory

Abstract

Effectively using a planning system as the executive of an
agent acting in real time poses a variety of challenges in in-
tegrating planning and execution. Many integrated systems
have been developed with a focus on particular challenges,
and it has been typically difficult to test, benchmark, and com-
pare these systems. To do so requires a benchmark that has
transparent and well-defined rules, and can be adapted to ex-
hibit the problem characteristics of interest. In this paper, we
propose a new benchmark simulation for integrated planning
and execution, designed to be accessible and adaptive. We
describe the simple core scenario of the simulation and how it
can be configured to present more challenging scenarios. We
describe our plans for the development of the simulation as a
competition, benchmarking, and teaching tool, and encourage
the community to contribute to its design.

1 Introduction
Planning systems are a natural approach to the deliberative
control of autonomous systems. Different integrations of
planning systems into the executives of autonomous systems
results in a diverse set of systems (Muscettola et al. 2002;
McGann et al. 2008; Niemueller, Hofmann, and Lakemeyer
2019). The International Planning Competition (IPC) tack-
les the comparison of planning systems through its multiple
tracks. However, comparing and benchmarking planning ex-
ecutives poses an interesting challenge. Planning system and
execution capabilities are often developed together, making
it hard to decouple the reasoning from the execution environ-
ment.

In this paper, we introduce the initial design of the CRAFT-
BOTS simulation for benchmarking and comparing planning
and execution systems. CRAFTBOTS simulates a logistics sce-
nario for one or more actors. The simulation consists of a
minimal core scenario that can be configured with a variety of
additional modules to introduce more sophisticated problem
characteristics.

Our goal is to make the simulation available for research,
competition, and teaching. Thus, our main considerations in
the design and implementation of CRAFTBOTS is to be

1. light-weight and portable. The simulation is written en-
tirely in Python3 with no external dependencies. This will
facilitate ease of use for teaching, lower the barrier of entry

for planning or executive systems, and provide a starting
point for additional enhancements.

2. accessible - the API is as simple as possible, exposing a set
of Python3 methods. Interfaces to adapt to other platforms
are planned, such as a ROS actionlib server (Quigley et al.
2009), OpenAI Gym environment (Brockman et al. 2016),
and High-Level Robot API1. This should allow existing
systems for planning and execution, such as the CLIPS
agent (Niemueller, Hofmann, and Lakemeyer 2019) and
ROSPlan (Cashmore et al. 2015) to be directly applied to
this scenario.

3. adaptable to different execution requirements, so that
users can configure the simulation to test approaches
for handling non-determinism, temporal constraints, over-
subscription, or other combinations of problem character-
istics.

The simulation is still under active development, but the work
in progress is available as open-source software2 with open
issues and discussion pages.

One motivation of CRAFTBOTS is to provide a foundation
for a planning and execution competition. The idea of the
competition is not to organise an event with one or more
tracks, but instead to host an online competition open to
submissions all year round, similar to the Sparkle challenge3.
The competition leader-board can be filtered by problem
characteristics, based on the simulation configuration. Results
and insights from the competition can then be presented each
year at ICAPS. As the timestamped events of a completed
simulation can be efficiently saved, it would be possible to
present and host complete replays as well as scores.

The software also has great potential as a teaching resource,
enabling students to participate in the open competition. In
addition to documentation of the code, we aim to produce a
series of tutorials and exercises on intelligent control, sup-
ported by the simulation. This would allow students to submit
their coursework to the competition to broaden participation,
but also allows students to directly compare their submission
against the state-of-the-art.

The aim of this paper is to foster discussion at this early
stage of the project. We are looking to gather insight into

1https://github.com/DFKI-NI/high level robot api
2https://github.com/strathclyde-artificial-intelligence/craft-bots
3https://ada.liacs.nl/events/sparkle-planning-19/



what challenges and problem properties should be embodied
by the simulation, to foster engagement in future competi-
tions, and to guide the development of the simulation and
teaching materials into a product that is ultimately useful to
the community.

1.1 Other simulators
The CRAFTBOTS scenario takes inspiration from the Robocup
Logistics League (RCLL). RCLL focuses on in-factory logis-
tics applications for teams of mobile robots4. A simulation
of the RCLL scenario has been used for competitions with
integrated planning and scheduling (Niemueller, Lakemeyer,
and Ferrein 2015; Niemueller et al. 2016) beginning in 20175.
The simulation is built using Gazebo, a LUA-based behaviour
engine, and the Fawkes Robot Software Framework adapted
from the publicly released software stack of the Carologistics
RoboCup team (Niemueller, Reuter, and Ferrein 2015). The
simulation is also open source and has included a built-in
executive based on ENTERPRISE: PIKE (Levine and Williams
2014), and ROS interface based on ROSPlan (Cashmore et al.
2015). The simulation poses a realistic challenge in the in-
telligent control of a mobile robot team, in planning and
scheduling, plan execution, and interfacing with the robot’s
sensors and behaviours. In contrast, CRAFTBOTS focuses on
providing challenges in the planning and execution, while
simplifying the interface and underlying architecture required
to run the simulation. This presents a more accessible alterna-
tive to RCLL that can be used to develop, test, and benchmark
systems, while the underlying challenges are similar enough
that those systems could be subsequently ported to control a
RCLL robot team.

The RoboCup Rescue Agent Simulator, or ROBORESCUE,
models a situation immediately following a natural disaster
(Sheh, Schwertfeger, and Visser 2016). It is the basis of the
RoboCup Rescue Simulation League (Akin et al. 2012), an
international competition for collaborative AI agents since
2000. There are one physical and two simulated competi-
tions held annually6. The Virtual Robot League is a detailed,
high fidelity physics simulator within the confines of one
city block and faces many of the same kinds of challenges
we mentioned for RCLL. The Simulation League focuses on
environments the size of a few city blocks. The simulator for
this is written in Java and has a long history of code based on
past competitors; in fact the simulator has some very sophisti-
cated simulation capabilities and includes some baseline code
to facilitate programming new agents. In our studies (Roberts
et al. 2021), we were able to demonstrate how to connect
a cognitive system that performed a centralized dispatcher
function. This was a challenging task that required under-
standing a complex suite of interacting software components.
While we enjoyed the flexibility and richness of the simu-
lation environment provided by the server, we found that it
took considerable time to start programming agents because
so much time was invested in understanding the underlying
architecture relative to the time invested in the aspects of

4https://ll.robocup.org/
5http://www.robocup-logistics.org/sim-comp
6http://wiki.robocup.org/Rescue Simulation League

planning and execution that drew us to the simulator.
A middle ground between a realistic 3D environment and

something that is accessible is found in the CrazySwarm
(Preiss et al. 2017). This is a lightweight Python control en-
vironment for teams of physical or virtual micro-quadrotor
systems. Each vehicle can accept commands to takeoff, land,
and move to specific locations. The ”simulator” in this en-
vironment is a simple matplotlib viewer that can augment
physical vehicles or simulate a virtual-only environment,
allowing client code to easily switch between controlling
physical or virtual robots. In our studies we found this en-
vironment easy to use and were able to quickly mock up
scenarios, in Python, by calling a PDDL planner and linking
it to a goal reasoning system (Roberts et al. 2021), though
we had to write a small amount of executive and interfacing
code. The downside of the environment lies in its simplicity;
programming sophisticated behaviors, or adding new ones,
requires writing controller code for the specific quadrotor
platform. Adding new vehicles, or new behaviors, would re-
quire considerable programming, which often does not align
well with running suites of experiments for testing how the
planning and executive impact performance.

The microRTS game (Ontañón 2013) is a simple grid-
world environment that has the kind of ease of use and flexi-
bility for scenario generation we anticipate for CRAFTBOTS.
Inspired by the Starcraft game, a Real-time Strategy (RTS)
game, opponents must gather resources, construct buildings
and forces, and protect or invade other territories. The mi-
croRTS has been used to demonstrate integrated execution
of Hierarchical plans (Kantharaju, Ontañón, and Geib 2018)
and has been featured in several competitions7. CRAFTBOTS
has similar resource constraints but features more of a long-
term cooperative situation than the competitive style of RTS
games. Also, CRAFTBOTS will feature mechanisms to in-
crease the difficulty of scenarios in several ways (e.g., online
goal arrival or deadlines).

A suite of simulators have been used in learning contexts,
the most notable and recent of which is the gym environment
(Brockman et al. 2016). Gym is a standard interface for inter-
acting with simulation environments that allows rapid learn-
ing. Although there are many environments we could discuss,
we focus on a few that are the most appropriate for integrated
planning and acting. The Malmo simulator (Johnson et al.
2016) provides a python interface to the 3D sandbox game of
Minecraft and has been used in several competitions, the most
recent of was MineRL8, which provided a Gym interface for
Malmo and challenged competitors to learn from recorded
human players. Another Gym environment that shares several
properties with our ideal system mentioned in the introduc-
tion is Gym-Minigrid (Chevalier-Boisvert, Willems, and Pal
2018), which is is a gridworld environment where an agent
takes discrete cardinal actions to move between rooms to
collect items or visit target cells. Finally, PDDLGym9 is a
suite that converts STRIPS PDDL files to gym environments
to facilitate using a simulator for executing plans. The Gym

7https://sites.google.com/site/micrortsaicompetition/home
8https://minerl.io/
9https://github.com/tomsilver/pddlgym



environment is designed to advance the study of Reinforce-
ment Learning and is thus focused on episodic interaction
between an agent and its environment. Integrating planning
approach into this framework is possible, but it can require
considerable effort to craft a set of scenarios to study one
aspect of integrated planning and execution. Further, one has
to implement (or learn) controllers for each of the actions
that one would want agents to perform in a gym environment.
In contrast, CRAFTBOTS will provide a set of standard con-
trollers for actions and will also provide a suite of benchmark
problems for researchers to test against.

2 Simulation Description
In this section we describe the core scenario of the simula-
tion. Then we describe the additional modules that can be
configured and characterise the problem properties that they
introduce.

2.1 Core Scenario Description
The proposed scenario consists of agents that can move
around the environment to collect resources of different types.
The environment is represented as a network of nodes, and is
illustrated in Figure 1. Agents in the world move around this
network to collect resources (coloured triangles) from mines
(coloured circles) and build structures (coloured, stacked
polygons) at specified locations. We provide more details
about these components and their interactions below.

Agents build structures to complete task goals. A task goal
specifies the set of resources required to build a structure,
and the node at which it should be built. Once a structure is
built at that node with the required materials, then the agent
increases its score an amount proportional to the number of
resources. The agent should try to maximise its score over a
finite horizon.

Resources can be gathered at nodes which contain a mine
of that resource type. Each agent can carry only a limited
amount of resources at one time. Task goals are to use these
resources to build structures in specified locations. A task
goal specifies the location and required resources for a struc-
ture. Achieving these goals scores points for the team.

A scenario is generated from a configuration file and ran-
dom seed, and the simulator responds to commands through
the Python3 API. The command interface can be run is
threaded (the simulation will continue running and process
commands as they arrive) meaning that planning and other
reasoning must be made in real-time.

The core scenario contains a set of deterministic actions
with fixed duration, described below. Additional modules
introduce non-deterministic action durations and outcomes,
properties unique to each resource type, and structures that
can be optionally built to provide beneficial effects.

Actions Agents are each able to perform actions one at a
time. If the simulation is configured to contain more than
one agent, agents can perform actions in parallel. Unless
otherwise specified, the actions have a very short non-zero
duration.

• M O V E: the agent moves between two nodes of the graph
provided that the nodes are connected. The action has a
duration proportional to the length of the connection.

• D I G: When the agent is at a node that contains a mine,
the agent produces one resource of the mine’s resource
type. The resource appears on the ground at that node. The
action has a constant duration.

• P I C K - U P: The agent collects a resource on the ground in
the same node and adds it to the agent’s inventory.

• D R O P: The agent removes one resource from its inventory
and adds it to the ground at the current node.

• C R E AT E - S I T E: Creates a new construction site, corre-
sponding to a specific set of required materials.

• D E P O S I T: The agent removes one resource from its in-
ventory and adds it to a site at the current node. Resources
cannot be recovered once deposited into a site.

• C O N S T R U C T: Progresses the completion of a site at the
current node. The completion is bounded by the fraction
of required resources that have been deposited. Once com-
plete, the site will transform into a completed building.
The action increases the completion at a fixed rate and has
a variable duration as it can be preempted at any time.

2.2 Additional Modules
In this section we describe the modules that can be enabled to
increase the scenario difficulty or introduce specific problem
characteristics, and our motivation for each.

Resource Properties There are five types of resource (and
corresponding mines), currently identified by a color code.
Each resource type has a property that can be enabled.

• B L A C K: takes up the entire inventory of the agent. Thus,
any agent carrying one Black resource is unable to carry
any other resources at the same time.

• B L U E: The D I G action for blue resource takes 12x longer
than for other resources.

• R E D: can only be mined within known time intervals,
defined in the configuration file. The mining action must
start and finish within the interval.

• O R A N G E: requires two or more agents to cooperate at
the same node, performing the D I G action together. Only
one orange resource is produced.

• G R E E N: decays over time. It will vanish from the node,
site, or agent’s inventory a fixed time after it is produced.

The black resource prevents enterprising agents from stock-
piling all resource types in their own inventory. The blue, red,
and green resources combine with the deadlines module de-
scribed in the next section to introduce temporal constraints
to the problem. The green resource also adds an exogenous
process to the problem that is surprisingly tricky to model in
temporal PDDL (Fox and Long 2003). The orange resource
introduces required coordination between two agents.



Figure 1: Work-in-progress graphics for CRAFTBOTS. The full simulation (left box) shows the nodes and network and enlarged
section (right). Agents are shown as grey circles, mines as coloured dots, sites as stacked polygons, resources as coloured
triangles. For example, in the enlarged view there are two agents carrying blue resources while there are yellow and red sites in
the upper left.

Dynamic Goals, Deadlines, Oversubscription These
three modules follow the examples set by the Robocup Lo-
gistics scenario.

• The simulation can be configured to produce dynamic task
goals according to a randomised schedule.

• Each task goal can be associated with a deadline, by which
time the building must be completed or it will not score
points.

• Finally, the number of goals and tightness of deadlines
stated in the initial state of the simulation, or produced
according to the randomised schedule, will mean only a
subset of the goals will be possible to complete.

Temporal Uncertainty Actions can be configured to have
uncertain duration by specifying the mean and standard devi-
ation duration for each action type.

Non-deterministic Actions Actions can be given config-
ured to have a probability of failure. The effects of a failed
action depend upon the action type. Digging actions end im-
mediately without producing a resource; pick, drop, deposit,
and start site actions will simply fail to produce their effects;
failed movements result in the agent reversing direction to-
wards the origin node and optionally disable the connection
for a period of time; failed construct actions end immediately
and halve the current progress of the building.

Building Properties In addition to the buildings required
as the task goals, the agents are able to build additional build-
ings that do not score points, but provide a passive bene-
fit. There are currently four different buildings available for
agents to construct.

• B AT T E RY: increases the movement speed of the agents.
Each constructed battery decreases the duration of move-
ment times by 10 percentage points (pp), to a maximum
of 50pp.

• M A N A G E M E N T: increases the construction speed of
the agents. Each constructed management increases the
progress rate of the construction action by 10pp, to a max-
imum of 100pp.

• T O O L S: decrease the time required to mine resources.
Each constructed tools decreases the duration of movement
times by 10pp, to a maximum of 50pp.

• M I L L S: increase the inventory capacity of all agents. This
does not affect the property of the black resource.

These buildings are intended to present an interesting
choice between focusing immediate efforts on collecting
points, or investing into improving the situation in order to
more easily gather points in the future. This choice requires
reasoning about the horizon of the scenario.

3 Conclusion
We believe the core scenario presents a fairly simple problem
to be planned for and enacted, and that by enabling all of the
additional modules described above, the scenario represents
a very challenging domain for both planning and execution.
We also intend to include additional modules that introduce
partial observability and limited communication between
agents. We are bringing this to the Workshop on the IPC
because we believe this workshop to be the best venue to
gather feedback about which features and priorities are of the
greatest interest for the planning community.



Acknowledgements
MR thanks ONR and NRL for funding portions of this
work. GC has been supported by the EPSRC project THuMP
(EP/R033722/1).

References
Akin, H. L.; Ito, N.; Jacoff, A.; Kleiner, A.; Pellenz, J.;
and Visser, A. 2012. Robocup rescue robot and simulation
leagues. AI magazine 34(1): 78.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. URL arXiv:1606.01540.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera Viñas, A.; Palomeras Rovira, N.; Hurtós Vilarnau,
N.; and Carreras Pérez, M. 2015. Rosplan: Planning in the
robot operating system. In Proc. of ICAPS, 333–341. AAAI
Press.

Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic Gridworld Environment for OpenAI Gym. https:
//github.com/maximecb/gym-minigrid.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20: 61–124.

Johnson, M.; Hofmann, K.; Hutton, T.; and Bignell, D. 2016.
The Malmo platform for artificial intelligence experimenta-
tion. In Proc. of IJCAI, 4246–4247.

Kantharaju, P.; Ontañón, S.; and Geib, C. W. 2018. µCCG,
a CCG-based Game-Playing Agent for µRTS. In Proc. of
Comp. Intell. and Games, 1–8.

Levine, S.; and Williams, B. 2014. Concurrent Plan Recog-
nition and Execution for Human-Robot Teams. In Proc. of
ICAPS, 490–498.

McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2008. A deliberative architecture for AUV
control. In 2008 IEEE International Conference on Robotics
and Automation, 1049–1054. doi:10.1109/ROBOT.2008.
4543343.

Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; Plaunt,
C.; and Clancy, D. 2002. IDEA: Planning at the core of au-
tonomous reactive agents. In Workshop on On-line Planning
and Scheduling at the Sixth International Conference on AI
Planning and Scheduling.

Niemueller, T.; Hofmann, T.; and Lakemeyer, G. 2019. Goal
Reasoning in the CLIPS Executive for Integrated Planning
and Execution. In Proc. ICAPS, 754–763.

Niemueller, T.; Karpas, E.; Vaquero, T.; and Timmons, E.
2016. Planning Competition for Logistics Robots in Simula-
tion. In ICAPS Workshop on Planning and Robotics (Plan-
Rob).

Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
RoboCup Logistics League as a Benchmark for Planning in
Robotics. In ICAPS Workshop on Planning and Robotics
(PlanRob). Jerusalem, Israel.

Niemueller, T.; Reuter, S.; and Ferrein, A. 2015. Fawkes for
the RoboCup logistics league. In Robot Soccer World Cup,
365–373. Springer.
Ontañón, S. 2013. The Combinatorial Multi-Armed Bandit
Problem and Its Application to Real-Time Strategy Games.
In Proc. AIIDE, 58–64.
Preiss, J. A.; Honig, W.; Sukhatme, G. S.; and Ayanian, N.
2017. Crazyswarm: A Large Nano-Quadcopter Swarm. In
Proc. ICRA, 3299–3304.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-
source Robot Operating System. In ICRA workshop on open
source software, volume 3.
Roberts, M.; Hiatt, L. M.; Shetty, V.; Brumback, B.; Enochs,
B.; and Jampathom, P. 2021. Goal Lifecycle Networks For
Robotics. In Proc. of FLAIRS.
Sheh, R.; Schwertfeger, S.; and Visser, A. 2016. 16 Years of
RoboCup Rescue. KIJ 30(3): 267–277.


	Designing an Adaptable Benchmark and Competition Simulation for IntegratedPlanning and Execution
	Abstract
	1 Introduction
	2 Simulation Description
	3 Conclusion
	Acknowledgements
	References

