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A B S T R A C T   

This work presents a comprehensive review and discussion of the identification of critical components of the 
currently installed and next generation of offshore wind turbines. A systematic review on the reliability, avail
ability, and maintainability data of both offshore and onshore wind turbines is initially performed, collecting the 
results from 24 initiatives, at system and subsystem level. Due to the scarcity of data from the offshore wind 
industry, the analysis is complemented with the extensive experience from onshore structures. Trends based on 
the deployment parameters for the influence of design characteristics and environmental conditions on the 
onshore wind turbines’ reliability and availability are first investigated. The estimation of the operational 
availability for a set of offshore wind farm scenarios allowed a comparison with the recently published perfor
mance statistics and the discussion of the integrity of the data available to date. The failure statistics of the 
systems deployed offshore are then discussed and compared to the onshore ones, with regard to their normalised 
results. The availability calculations supported the hypothesis of the negative impact of the offshore environ
mental conditions on the reliability figures. Nonetheless, similarities in the reliability figures of the blade 
adjustment system and the maintainability of the power generation and the control systems are outlined. Finally, 
to improve the performance prediction of future offshore projects, recommendations on the effort worth putting 
into research and data collection are provided.   

1. Introduction 

Despite the efforts to achieve a through-life reliable design and at
tempts to control the failures of wind turbines, some system failures are 
inevitable. The inherent requirement for either cost, or material and 
weight optimisation, together with the extreme operating conditions, 
can lead to unexpected failures. This is true for land-based turbines and 
has an even greater impact on offshore wind systems, where the harsh 
environment and the high cost of the assets and logistics increase the 
importance of a proactive approach to the system’s maintenance. Since 
the early-stage wind farms, a considerable effort has been made in col
lecting indicators for their reliability, maintainability and availability 
(RAM) statistics and putting them into databases [1]. National and in
ternational initiatives have been mainly directed at creating repositories 
for onshore wind turbines [2]. Only recently have some initiatives 
focused on the collection of RAM data from modern [3,4] and/or 
offshore systems [5,6]. Although large and heterogeneous, the pop
ulations of some of the most well-known campaigns (e.g. Ref. [7,8]) 
generally include statistics of outdated configurations and small rated 

wind turbines, compared to modern installations and offshore trends. 
Nonetheless, the collection of historical data has shown to be useful for 
benchmarking critical components to support monitoring concept 
development and a systematic service life performance analysis. 

1.1. Previous review works 

The onshore and the few offshore available data have been already 
analysed, and cross compared by several authors. In 2011, Sheng and 
Wang [9] compiled the first extensive survey of the various databases 
available until that year. Three more recent studies have significantly 
contributed to gathering and comparing the data available until the year 
2018. Pfaffel et al. [2] presented a comprehensive collection of the 
to-date available RAM statistics (a total of 23, of which 20 are onshore), 
updating the historical data comparison initiatives with the results from 
offshore wind farms, and including datasets from outside the European 
continent. The failure frequencies and downtime are presented in an 
all-in-one comparison according to standardised key performance in
dicators (KPIs), in their normalised and non-normalised form. Artigao 
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et al. [10] cross-compared some of these reliability statistics (13 initia
tives, of which two are offshore) with the purpose of identifying the 
critical components of wind energy converters across all technologies, 
sizes and locations, in order to suggest condition monitoring strategies, 
techniques and technologies. Similarly, Dao et al. [11] used the aver
aged statistics of [2] to visualise the trends in reliability and maintain
ability figures of offshore wind turbines, as opposed to the onshore ones, 
and assess their impact on operational cost, to assist operators to identify 
the optimal degree of reliability improvement to minimise the levelised 
cost of energy. 

1.2. Issues with data collection and comparison 

Previous studies identified some trends in the averaged data, 
depending on the survey location (on- and offshore, and governing 
country), population size and mean power rating (e.g. Ref. [11]). 
However, two main issues related to the use of cumulative statistics still 
exist:  

1) As highlighted by Leahy et al. [12], and previously by Sheng and 
O’Connor [13], the currently accessible RAM data lack a harmonised 
practice for their collection, processing and publication. The absence 
of standardisation in the type of data, and methods for their collec
tion, leads to different levels of data quality. Furthermore, it is 
challenging to compare data among studies if project-specific and/or 
undocumented taxonomies are employed for the systems and sub
systems characterisation.  

2) As noticed in Ref. [1,14], technologies of different maturity, in 
different operating years, are expected to fail differently. The 
deployment location and the varying environmental conditions can 
play an important role in the lifespan reliability of the wind turbine 
systems and subsystems [15–17]. When comparing the statistics in 
terms of averages among the heterogeneous population [2,10,11], 
this level of detail is not considered. 

To tackle the first issue, Leimeister at al. [14] recognised that fuzzy 
set and/or evidence theories can help deal with the uncertainties of 
vague data. Nonetheless, these methods cannot cope with the same level 
of detail and information as for a RAM database. 

In 2011, the Continuous Reliability Enhancements for Wind (CREW) 
Database and Analysis Program, supported by the US government, 
introduced a consistent approach for the collection of high-resolution 
supervisory control and data acquisition (SCADA) data with the aim of 
characterising the reliability and performance of the country’s fleet. 
Motivated by the standardisation intent, the members of IEA Wind Task 
33 created, in 2013, the “Reliability Data Standardization of Data 
Collection for Wind Turbine Reliability and Operation & Maintenance An
alyses: Initiatives Concerning Reliability Data”. Similarly, industrially-led 
repositories are currently collecting data with a higher level of detail, 
adopting structured and harmonised procedures to accommodate the 
different types of data from wind farms [18,19], while providing suffi
cient information for a consistent comparison of the structure per ty
pology, age and location. 

With regard to the second point, some research effort has been put 
into finding a correlation between the turbines’ failure rates and the 
associated environmental conditions [15,20]. In this regard, Barabadi 
et al. [21] suggested a methodology for RAM data collection of engi
neering structures in Arctic conditions, showing its applicability to the 
offshore and marine industries. 

1.3. Scope of the analysis and methodology 

Having established the need for more representative RAM databases, 
this work aims to perform a comprehensive review of existing published 
data related to reliability, availability and maintenance of onshore and 
offshore wind turbines, with a view to critically discussing 

commonalities and distinguishing correlation aspects between modern 
and more early-stage assets. This paper adds to the existing body of 
knowledge on the identification of the trends at the turbine, its system 
and subsystem level, based on the specific design parameters and the 
deployment conditions – either onshore or offshore, as well as site- 
specific parameters. This can subsequently allow the development of a 
better understanding of the sensitivity of certain components and 
technologies to key design and environmental parameters, facilitating 
technology qualification of new alternatives and the reliability analysis 
of the units in a farm. 

The structure of the paper is organised as shown in Fig. 1. An over
view of the RAM statistics from historical repositories for onshore and 
offshore systems, as well as from the more structured industry-led ini
tiatives, is given in Section 2. In Section 3, the methods for the uniform 
and consistent comparison of the statistics are presented. The RDS-PP® 
designation is adopted to establish a uniform and easy comparison of the 
results among the several datasets. The quality of the collected statistics 
is discussed in Section 4.1 based on the type of records used for assessing 
failure of the turbine. In Sections 4.2 and 4.3, the trends from the 
comparison of the RAM statistics are identified based on the design and 
deployment parameters of the wind turbines. Finally, in Section 5, RAM 
figures of offshore wind assets are discussed. The operational avail
ability is evaluated for a set of reference offshore wind farms, to quantify 
the impact of statistical uncertainties and unveil the challenges for the 
offshore wind industry in the collection of representative data. 

2. Review of onshore and offshore statistics 

For the purpose of this paper, only fully operational data have been 
collected, rather than test data of single components (e.g. gearbox reli
ability collaboration [22] and blade reliability studies [23,24]). The 
RAM statistics found in the literature from single initiatives to summary 
reports are analysed in more detail. As the type of data collected is 
heterogeneous, a terminology is introduced for describing and classi
fying the findings from the several databases. Standardised definitions of 
reliability, maintainability, availability and performance indicators are 
summarised in the Appendix and are used to describe the data re
positories throughout the paper. 

Starting from a chronological overview of the main initiatives for 
onshore systems, the main findings are then outlined for the more recent 
offshore data collections. Despite including insights on offshore risks, 
the industry-driven databases (see Section 2.2) are generally not avail
able to the public for confidentiality reasons. Consequently, publications 
from other independent authors are reviewed, to obtain an appreciation 
of the RAM experience of various offshore wind farms installed in Eu
ropean waters. 

2.1. Wind turbine reliability and performance statistics 

2.1.1. Overview of onshore data 
One of the first reliability databases for onshore turbines was 

compiled by Lynette [25], who analysed the trend in availability and 
costs for the maintenance of various types of small-scale units installed 
in California until the end of the 1980s. Similarly, the Electric Power 
Research Institute (EPRI) collected, during 1986 and 1987, failure data 
for a portion of its Californian population [1]. These statistics were re
ported by the DOWEC (Dutch Offshore Wind Energy Converter) research 
program in Refs. [26], which has been one of the pioneers in the 
documentation of wind turbine reliability figures. Due to the outdated 
technologies in the population, the Californian data were not integrated 
in their comparative study. Only the yearly statistics, recorded around 
the end of the 1990s and first years of the 2000s, by the largest European 
data collection campaigns – the German and Danish Windstats news
letter, and the German LWK (Land Wirtschafts-Kammer) and WMEP 
(Wissenschaftliches Mess-und Evaluierungsprogramm) databases – were 
cross-analysed. By plotting the results per size classes (within the single 
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initiatives) and across the databases, the DOWEC team simply observed 
a significant scatter in the trend, justifying through the unknown age 
and the outdated type of some installations the causes of their statistics’ 
discrepancy. In contrast, some years later, Ribrant et al. [27,28] outlined 
some similarities in the share of the components to the turbines’ failure 
rate and downtime, when comparing the Swedish and Finnish databases 
– Vindstat and Felanalys, and VTT, respectively – with the current 
WMEP results. 

In the same period, a substantial contribution to the collection and 
understanding of the turbine reliability statistics was made by Durham 
University (UK) and Fraunhofer IWES (Germany). For the first time, 
Tavner et al. [29,30] analysed and compared the time-trend of the 
reliability results from EPRI, Windstats, LWK and WMEP, plotting them 
against the historical data from other industrial turbines. Tavner et al. 
compared the components’ failures of the LWK population, grouping 
them by layout and size [7,29,31]. Furthermore, Tavner et al. investi
gated the effect of weather and location on the turbines’ failures, 
drawing some preliminary conclusions on their correlation. In Ref. [15, 
32] they observed a periodicity in the failure frequency for some of the 
Danish Windstat components, while in Ref. [20] they investigated the 
possible dependency of failures on the wind farm location for a popu
lation of Enercon E30-33 turbines. In parallel, and consistently with 
what is shown by Ref. [31–34], Faulstich et al. analysed the effect of the 
turbines’ configuration and location (onshore, coastal, and offshore) on 
the reliability figures of the WMEP database [33,34]. In Ref. [35], they 
additionally explored the possible link between WMEP failures and wind 
speed, developing further the first observations of Hahn [36]. 

From the experience of the above-mentioned databases, and because 
of the increasing number of wind farm installations in Europe, more 
structured RAM data collections have been launched. Aimed at moving 
towards a design-for-reliability approach, and targeting improved con
dition monitoring techniques [8], the European ReliaWind project ran 
for three years from 2008. Starting from reviewing previous European 
projects (EUROWIN and EUSEFIA [2]) and national-level initiatives, this 
project collected and analysed heterogeneous data from the turbines 
operation and maintenance (O&M) activities, based on the joint effort of 
industry (e.g. Siemens Gamesa), technical experts (Garrad Hassan, now 
DNV GL) and academia (Durham University, among others). Contem
porarily, in Germany, the Fraunhofer Institute continued the WMEP 
database activity in the “Increasing the availability of wind turbines” 
(EVW) project [37,38], which ended in 2015. Despite these projects 
representing two of the most recent and complete databases from the 
European experience, due to confidentiality issues, only their final re
ports and relative values of the total statistics are accessible. 

From the first decade of the 21st century, other data collection ini
tiatives from the rest of the world have contributed to documenting and 
tackling the reliability of onshore installed systems. Academic and in
dustrial researchers in India, China and Japan published the first reli
ability and availability statistics reports for specific wind farms [39–41] 
and turbine manufacturers [3]. The CREW Database and Analysis Pro
gram [42], in the USA, which is an ongoing activity coordinated by 

Sandia Laboratories, has become more extensive and structured. 

2.1.2. Overview of offshore data 
Little failure data exist in the public domain for offshore wind sys

tems. Performance from UK’s offshore round 1 wind farms, with evi
dence of wind farms’ availability indicators (see Appendix A) and 
capacity factors (CF), were first reported by Feng et al. [43]. In this 
work, as in Refs. [5], maintenance records and operational issues of four 
selected wind farms were analysed. Similarly, the reliability figures for 
the Egmond aan Zee wind farm were derived by Crabtree et al. [44] by 
accessing the operational report from Noordzee Wind [45], for the first 
three years from installation. In Ref. [44], they additionally updated the 
results from the early experience of round 1 wind farms, which were 
affected by technological-immaturity failure events. Besides, they 
collected the performance indicators of round 2 wind farms, showing a 
growth in the average CF for the more modern offshore wind turbines, in 
line with results presented by the SPARTA [46] and Offshore-WMEP 
[47] projects. 

With regard to reliability and maintainability data, one of the most 
complete contributions is the dataset published by Carroll et al. [6], for a 
population of 350 offshore wind turbines. Despite the results presented 
being from a single manufacturer, the detailed definition of the failure, 
and the further results on the repair time, material costs, and required 
technicians per subassembly, are provided. 

In terms of availability, onshore wind turbines have been shown to 
reach values in a range of 95–97% for modern systems [2]. For offshore 
projects, however, the location and associated challenges (i.e. accessi
bility and exposure to extreme weather conditions) can considerably 
lower availability. As observed by Ref. [46,47], older farms – comprising 
turbines with relatively low nominal capacity, and relatively close to the 
coast – exhibit an availability in the range of the onshore average one. 
Newer farms – bigger and generally located further from the coast – are 
characterised by an increase in maintenance efforts [48]. Despite the 
higher CFs [44], the technical availability (AE, in Table A.2) of offshore 
wind farms can fluctuate across the years, depending on the distance 
from shore and hence the ease to perform the required maintenance 
operations [49]. Additionally, the fluctuation of AE among several sur
veys can be related to the varying maintainability of components for the 
different wind turbines’ concepts and designs [50,51]. 

2.2. Industry-led RAM databases 

Following the compilation of the first databases (e.g. LWK, WMEP) 
and recognising the limits of these earlier data collection initiatives, 
several authors have suggested possible improvements to the techniques 
and processes used for gathering and analysing data (e.g. Ref. [42,52, 
53]). Among these, Hameed et al. [54] proposed an optimal RAM 
database to be applied to offshore wind turbines, identifying the short
comings of the historical databases from both the onshore wind and the 
offshore oil and gas (Offshore Reliability Data, OREDA) industries. 
Observing how the lack of standards associated with reliability data 

Fig. 1. Methodological framework of this paper.  
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adversely impacts industry progress in addressing the reliability issues, 
the IEA Wind Task 33 started compiling recommended practices [55]. 

In line with these conceptual examples are two recently launched 
RAM databases for onshore and offshore systems:  

• The SPARTA (System Performance, Availability and Reliability 
Trend Analysis) initiative [19], started in 2013 by The Crown Estate 
(UK) under the supervision of the Offshore Renewable Energy (ORE) 
Catapult research centre. SPARTA is gathering KPIs (at wind farm 
level) and reliability figures (at subsystem level) from the partici
pating operators, outputting a monthly benchmark.  

• The German equivalent, WInD-Pool (Wind-Energy-Information- 
Data-Pool), with Fraunhofer IEE as trustee [18]. It can be seen as the 
successor to WMEP [33], where additional (but never published) 
information on the cost of the maintenance services was collected. It 
continues and merges the EVW (Erhöhung der Verfügbarkeit von 
Windenergieanlagen) [37,38] and Offshore-WMEP [56–58] research 
projects, gathering historic and recently collected data for both 
onshore and offshore wind turbines. 

3. Methods 

To consistently compare the RAM statistics and unveil potential 
trends, three methods are employed in this study. First, a cataloguing 
activity is used to gather the information available from the literature 
using a standardised terminology for the statistics, the type of data and 
the wind turbine typology. This process facilitates access to the statistics 
and allows the evaluation of the completeness and quality of the data 
collected by each initiative. The adaptation of RAM repositories to a 
unique taxonomy based on the most widely adopted reference desig
nation permits comparing data fairly across different initiatives. Finally, 
calculations are carried out to uniformly compare the onshore and 
offshore reliability and maintainability data in terms of operational 
(time-based) availability for a hypothetical offshore wind farm scenario. 

3.1. Statistics cataloguing 

3.1.1. Cataloguing approach 
To compile a comprehensive catalogue of the most important (and 

accessible) information for onshore and offshore RAM statistics, it is first 
necessary to identify what characteristics are worth being collected. The 
database and the population size are usually reported to provide an 
indication of the statistical significance of the data collected. However, 
consistency issues when discussing and comparing the results can arise 
from the lack of sufficient details on the population of wind turbines 
[26]. For this reason, the classification applied here differentiates the 

turbines by:  

• Capacity (power rating). As several studies have already shown (e.g. 
Ref. [26,59,60]), the number of failures (per turbine and/or per 
component) can be dependent on the dimension of the turbines, 
making it necessary to present the results by power class grouping.  

• Age of the installation. It is common knowledge that the failure rate is 
a time-dependent variable [32]. Therefore, the age of the system, 
whenever known, is reported to account for the possible influence on 
the population statistics (e.g. infant mortality and end-of-life wear 
out failure events).  

• Technical concepts and drivetrain configuration. A deep understanding 
of the results also comes from the knowledge of the type of structure 
and configuration analysed. It is proposed here to identify the 
drivetrain layouts according to the concept classes, as presented in 
Table 1. These configurations are similar to those of [49]; however, 
the sub-types acronyms are arranged to meet the concepts used by 
the WMEP [61] and LWK projects [31]. The generators’ description 
and acronyms are retrievable from Refs. [62,63], respectively. 
Schematics of the configurations, can be found in Ref. [64]. 

The terminology introduced in Appendix A is used to state which 
RAM indicators are provided in each reference. The level of detail re
ported is specified according to the conventions introduced in Table 2. 

Table 1 
Wind turbine configuration types. Adapted from Refs. [60] and integrated with [61,64].  

Concept Types Sub-Types Speed Control Gearbox Generator Grid connection 

Danish A A0 Fixed (dual) Stall a Multi-stage c SCIG Capacitor 
Advanced Danish A1 Fixed Stall b 

A2 Pitch 
Variable-speed B Limited Variable d Pitch Multi-stage WRIG Capacitor 

C Variable Pitch Multi-stage DFIG Partial-scale power converter e 

D DI DImW Variable Pitch Multi-stage WRSG Full-scale power converter 
DImS SCIG 
DImP PMSG 
DI1P Single stage PMSG 

DD DDP Variable Pitch None PMSG 
DDE EESG Full-scale power converter f  

a Passive stall regulation. 
b Active stall regulation. 
c Generally four-stages and up to two-stages gearbox. 
d With a variable resistance in the rotor windings. 
e Converter feed back to the generator. 
f Double feed back to the generator. 

Table 2 
Legend for symbols adopted in the synoptic tables.  

Symbol/ 
Acronym 

Description 

%*  Available only as a percentage/share of the *, per component 
(without total/absolute values)  

N Number of stops 
*(t) Information on the time distribution of the RAM variable (*) is 

given  
*i(t) Information on the time distribution of the RAM variable (*) is 

given, per component  
✓/X Information given but not possible and/or easy to access 
● Findings for failure frequency (top three) 
○ Findings for failure downtime (top three) 
Ave Averaged information and/or results 
Det Detailed results 
Info Additional/other information 
WT/WF Wind turbines/farms in the population 
On Onshore installations 
Off Offshore installation  
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Even though a constant (averaged) value of the failure rate over time is 
generally reported – based on the generally assumed homogeneous 
Poisson process for the components’ useful life, information on the time 
variance of the failure rate and the other RAM indicators is reported 
where possible. It must be noted that, although the best match between 
the provided definitions and single initiatives terminology is pursued, 
the classification is completed based on the engineering judgement of 
the authors. 

To implicitly suggest the definition of failure used, the classification 
of the typology of the O&M data sources is specified if possible. As re
ported by Kaidis et al. [65] the use of different methods for the data 
collection is associated with multiple RAM information and data quality. 
While in the IEA Wind Task 33 [54], the four main groups of equipment, 
operating, failure and maintenance/inspection data are distinguished, a 
higher level of detail is here given by following the grouping of [65]. As 
for [12], the data sources are classified in Table 3. Furthermore, the 
difference between the collection scheme typologies – either raw or re
sults data approach, as proposed by Ref. [2] – is additionally made, 
whenever possible. 

To assist the understanding of incomplete and/or public-restricted 
analysis, an additional column is added for summarising the main find
ings. The list of references is then included by specifying the type of 
information given in the case of multiple citations. Other basic infor
mation (such as country, study period and database size) is also reported 
for completeness. 

3.1.2. Synoptic tables 
The characteristics of the 24 databases found in the literature were 

accessed either through the initiatives’ original publications (if 
possible), or the review works mentioned in Section 3. Due to the low 
level of detail in some of these works, their cataloguing remained 
partially completed, not providing a sufficient description for the clas
sification of some quantities. It should be noted that further analysis is 
required to integrate the results from the European EUROWIN and 
EUSEFIA projects [2], the Japanese NEDO initiative [2], and the 
Fraunhofer’s EVW and recently launched WInD-Pool database (see 
Section 2.2). Therefore, only the initiatives that could be fully accessed 
are reported in the synoptic from Tables 4–7. 

3.2. Taxonomy adaption 

As for [2,10], it was necessary to select a uniform and convenient 
language to identify the equipment in a wind turbine to coherently 
compare the several statistics. As outlined by Ref. [54], different lists of 
terms can be used for categorising aspects of components, failures, 
maintenance tasks etc. as “taxonomies”. Several equipment taxonomies 

have been developed in the past. Among these are the VTT components’ 
breakdown presented by Stenberg in Ref. [69], the SANDIA Laboratories 
taxonomy in Refs. [86], and the GADS (Generating Availability Data 
System) used for North America wind plants. Another two, more recent, 
sophisticated and comprehensive classifications are the ReliaWind 
project taxonomy (see e.g. Ref. [4,8]) and the RDS-PP® (Reference 
Designation System for Power Plants) taxonomy, published by the VGB 
PowerTech e.V. in Ref. [87]. The first was created for an extensive 
failure data analysis and is internationally recognised, while the second 
one, also widely accepted, is currently employed for the offshore data 
collection schemes of SPARTA and WinD-Pool (see Section 2.1.2). 
However, the ReliaWind complete taxonomy is not publicly available, 
and there is no ongoing development to maintain it. In contrast, the 
RDS-PP® offers open access to the draft document [87], and a high level 
of detail for both system and subsystem identification and components’ 
technical information. For these reasons, the RDS-PP® was adopted to 
unify the statistical reliability and maintainability data in this analysis. 
The information necessary for the adaptation of the taxonomies is 
accessed from the VGB PowerTech e.V. draft document [87], and sum
marised in Table 8. 

The authors of this paper mapped, to the best of their knowledge, the 
initiative-specific taxonomies to RDS-PP®. When a proper mapping was 
not possible, a higher share was given to the introduced “Other” cate
gory. On the other hand, the generic “electrical systems” category, 
usually adopted in the earlier data collections, is integrated here into the 
transmission group. 

3.3. Availability calculation 

3.3.1. Availability assessment tool 
The variance in the failure rate of the wind turbines results in a 

variance in their estimated availability. This can affect decision making 
for the accurate planning of future offshore wind projects. The open
O&M assessment tool, developed by the authors in Ref. [88], is 
employed to estimate and investigate the impact of the different failure 
rates provided in the literature on the potential availability of an 
offshore wind farm. The tool was built with the aim of supporting the 
development of wind farms’ maintenance strategies. As for other O&M 
management tools [89,90], they have a modular structure consisting of 
the following core modules: (1) reliability, (2) power, (3) weather 
forecasting, (4) maintenance and (5) cost. The flowchart of the processes 
and steps of the tool are shown in Fig. 2. The inputs are weather data, 
cost data, reliability data, turbine specific data (power curve), wind farm 
layout data (distances from shore), and repair information, such as 
number and type of vessels, and the crew required for the restoring of 
the system. The wind farm lifecycle and maintenance activities are 

Table 3 
Reliability and maintenance data sources and their characteristics. Adapted and extended from [54,[65]].  

Type of data Information derived Notes (disadvantages)  

(i) Maintenance logs (incident reports)  • Accurate information on failures  
• Information for downtimes  
• Cost of repair/replacement  

• Can be in hard copy (difficult to read and/or incomplete)  

(ii) Operation and alarm logs  • Number of stops  
• Stops duration  

• Unknown alarm code  
• Numerous stops for same failure  
• (No information on environment. conditions)  
• (No description of maintenance activity)  

(iii) a. 10-minutes 
SCADA b. SCADA 
alarms  

• Failure data (frequency and downtime)  
• Information for further analysis (e.g. root cause analysis)  
• Environmental conditions  

• Large amount of data (consuming processing)  
• Not all alarms are associated with failures  
• (No description of maintenance activity)  

(iv) Service provider bills  • Maintenance cost  
• Indications of failures  

• (No detailed information)  

(v) Component purchase bills (work orders)  • Cost information for components ’repair/replacement  • (No information on failure data)  
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Table 4 
Cataloguing of the databases/initiatives.  

Database/Source 
Organisation 

Country Period WTs Data source and type Size (for published 
results) 

WT characteristics Reliability/Performance data collected References 

Power rating 
[MW] 

Age [year] Type λ down 
time 

KPI Main Findings/ 
Observations 

VVT 
Finnish Wind Power 
Association 

Finland From 1991 
Ongoing 

On Performance and 
failure annual/ 
monthly reports. 
Reports available from 
1999 at [66] 

Ave n◦ WTs 
(2000–2004): 71.2 
N◦ WFs (in 2006): 
~92 

✓/X (info in Ref. [66]) λ MDT CF 2000–2004 statistics 
• hydraulics, blades/ 
pitch, gears 
o gears, blades/pitch, 
hydraulics 

[27,28] (accessing 
2000/4 stats from 
Ref. [66]) 

N◦ WTs 
(1996–2008) 
<1 MW: 35 
≥1 MW: 37 

X 1 ÷ 20 (early 
fail. 
excluded) 

X (%)λ 

λ(t) 
(%)DT 

MDT 
(t) 

X In the original study 
[66] (in language) *i(t)
are also reported  

[67,68] from [69] 

Vindstats 
ELFORSK 

Sweden From 1997 
Ongoing 

On Performance and 
failure annual reports. 
Online available at 
[70] (from 2002) 

Ave n◦ WTs (until 
2005): 723 

✓/X (info in 
Ref. [70]) 

✓/X (info in Ref. [70]) X % DT X 2000–2004 statistics 
(the two initiatives have 
some overlap) 
• electrical sys., sensors, 
blades/pitch 
o gears, control sys, 
electrical sys. 

(2000/4) [27], 
[28] (2009) [67], 
[68] (in 2009) ≥0.15 

≤3.0 
X AO 

Felanalys 
Vattenfall Power 
Consultant (prev. 
Swedpower AB) 

From 1989 
to 2005 

Type (i) Ave n◦ WTs (in 
2005): 786 

<0.5 
0.5 ÷ 1 
>1.0 

1 ÷ 19 X % λ 

λ(t) 
X AO(t) 

Windstats 
Newletter 
Haymarket Media 
Group 

Denmark From 1987 
Ongoing 

On Failure monthly 
reports 

Ave n◦ WTs 
(1999–2001): 
~2000 

X X X (%)λ 

λi(t) 
X X • other, control, yaw sys. [26] 

N◦ WTs 
(1994–2004): 
2345-851 

≥0.1 
≤2.5 

X ✓/X (all 
concepts) 

λ(t) X X • other, yaw sys., 
hydraulic sys. 

[30] 

Influence of wind speed 
on WT λ 

Det [32] 
Info [71] 

Germany Failure quarterly 
reports 

Ave n◦ WTs 
(1999–2001): 
~2750 

X X X (%)λ 

λi(t) 
X X • other, electric, control [26] 

N◦ WTs 
(1994–2004): 
1291–4285 

≥0.1 
≤2.5 

X ✓/X (all 
concepts) 

λ(t) X X • electrical sys., other, 
yaw sys. 

Ave/Det [30] 
Info [71] 

1999’s WTs n◦: 
~7000 
2008’s WTs n◦: 
~20,000 

X X X Ni(t) 
(%)N 

DTi(t)  Based on data from Bill 
Canter (2010), Editor at 
WindStats. 

[67] 

– (Finland, Sweden, 
Denmark and 
Germany ave. results) 

N◦ WTs (in 2012) 
Denmark: ~5000 
Germany: 
~24,000 
Sweden: ~1200 

X X X X DT X Averaged 2003–2007 
and 2008–2012. 
o gearbox, elect. sys., 
generator, rotor 

[68]  
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Table 5 
Cataloguing of the main onshore databases/initiatives (cont.1).  

Database/Source 
Organisation 

Country Period WTs Data source and type Size (for published 
results) 

WT Characteristics Reliability/Performance data collected References 

Power rating 
[MW] 

Age [time 
scale] 

Type λ down 
time 

KPI Main Findings 

WMEP 
Fraunhofer 
IWES (prev. 
ISET) 

Germany From 
1989 to 
2008 

On Type (i), (iv) for about 
17 years (~64,000 
reports) 

Ave n◦ WTs 
(1998–2000): ~1435 

0 ÷ 1.5 
0.56 ÷ 1.5 

X X λi(t) X X Results per size [26] 

Ave n◦ WTs 
(2004–2005): 865 

X X X λ MDT X • electrical sys., control sys., 
hydr. 
o generators, gears, drivetrain 

[27,28] 

Ave n◦ WTs (until 
2006): ~1500 

<0.5 
0.5 ÷ 1 
≥1.0 

1 ÷ 15 X λ 
λ(t) 

X X Results per age and size [72] 

all (by 
concept) 

N(t) 
Ni(t) 

X X - Results per age, size and 
concept 
- Only stops for unplanned 
maint. 

[73] 

Ave n◦ WTs (in 2008): 
over 1500 

<0.5 
0.5 ÷ 1 
≥1.0 

X all (by 
concept) 

λ MTTR AT(t) Results provided for all 
concepts and area of 
installation 

[34,59,61, 
74,75] 

Additional weather 
data from 
meteorological masts 

N◦ of E32/33 WTs: 32 
(~24% of E32/33 in 
WMEP survey) 

0.3 
0.33 

1 ÷ 10 DImW λ X X - Periodicity of λ with wind 
speed 
- Influence from location (3 
sites) 

[15,20] 

LWK 
Land 
Wirtschafts- 
Kammer 

Germany 
(Schleswig- 
Holstein) 

From 
1993 to 
2006 

On Failure annual report N◦ WTs (1999–2000): 
510 

0 ÷ 1.5 
0.56 ÷ 1.5 

X X λ X X Results compared per group 
of WT size 

[26] 

N◦ WTs (1994–2004): 
158–653 

0.225 ÷ 1.5 
(divided in 3 
groups) 

Average age 
(t) 

A0/A1/ 
A2 
B, C, DDE 

MTTR X Time averaged results 
compared per group of WT 
size and type 

Det [71] 
Ave [7,29, 
31] 

In 13 years 
~5800 turbine per 
year 

X X X X Average result (per 
component) compared to 
the WMEP survey 

[2,5,8] 

MECAL 
MECAL 
Independent 
Experts 

Netherlands From 
~2010 to 
2014 

On Type (iii.a/b) raw data N◦ WTs in WF A: 23 
N◦ WTs in WF B: 36 
N◦ WTs in WF C: 4 

3.0 
0.85 ÷ 1.75 
2.0 

1÷2–4 (early 
fail. 
excluded) 

A2 
B 
C 
D I 

(%)λ (%)MART X Differentiate in failure 
severity (auto-manual 
restart, min./maj. rep.) and 
MART or MDT 

[65,76] 

RGU 
Robert Gordon 
University 

UK From 
~1997 to 
2006 

On Type (i) N◦ WTs: 77 
N◦ WFs: 26 

0.6 X X X X X Weibull distributions for 
drivetrain comp. 

[77] 

Strathclyde 
(Onshore) 
University of 
Strathclyde 

UK From 
~2009 to 
2014 

On Type (i), (v) from one 
manufacturer 

Total n◦ WTs 
C: 1822 
DImP/DI1P: 400 

1.5 ÷ 2.5 1 ÷ 5 C 
DImP 
DI1P 

λ(t) RT CF - Failure rate broken into 
cost categories 
- Information given per 
configuration (details only 
for drivetrain sub-syst.) 

[78]  
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Table 6 
Cataloguing of the main onshore databases/initiatives (cont.2).  

Database/Source 
Organisation 

Country Period WTs Data source and type Size (for 
published 
results) 

WT Characteristics Reliability/Performance data collected References 

Power rating 
[MW] 

Age Type λ down 
time 

KPI Main Findings 

CIRCE 
Universidad de 
Zaragoza 

Spain From 
~2013 to 
2016 

On Type (i) and (iii.a), 
raw data from 14 
manufacturers 

Ave n◦ WTs: 
<4300 
Ave n◦ WFs: 
230 
Ave n◦ WTs 
C < 1 MW: 
2130 
C ≥ 1 MW: 
2270 
DD: 215 

0.3 ÷ 1 X C % λ % TTR X • gearbox, blades, blade brake 
o gearbox, generator, blades 

[4] 

1 ÷ 3 C • gearbox, control, pitch sys. 
o gearbox, generator, blades 

0.6 ÷ 2 DD • controller, meteo. stat., yaw 
sys. 
o generator, blades, controller 

Type (iii.a/b), raw 
data 

Ave.n◦ DI 
WTs: 383 
Ave.n◦ DD 
WTs: 57 

0.85 ÷ 2 
2 

X C 
DD 

X X X Comparison of failures and 
alarm logs (per size/type) 

Det [4] 
Info [79] 

ReliaWind 
European Union 
founded project 

Europe From 2008 
to 2010 

On Type (ii), (iii.a), 
(iv), (v) 

Ave n◦ WTs: 
~350 

>0.85 >2 Variable- 
speed 

(%)λ (%)TTR X Unpublished absolute values, 
but insights on the impact of 
single systems/component 

[8,80] 

EPRI 
Electric Power 
Research 
Institute 

USA 
(California) 

From 1986 
to 1987 

On Type (i) Ave.n◦ WTs: 
290 

0.04 ÷ 0.6 X ✓/X (info in 
Ref. [26]) 

λ MART X • gearbox, blades, blade brake 
o gearbox, generator, blade 

[26] 

CREW 
Sandia National 
Laboratory 

USA From 2007 
Ongoing 

On Type (iii.a/b), raw 
data 

Ave.n◦ WTs: 
~900 
N◦ WFs: 10 
(until 2012) 

X X X (%)NA  MTD AO 

CF 
2012/13 results in 
unavailability (NA) 

Det [81] 
Info [82] 

Type (i) and (iii. a/b), 
results data 

(in 2016) X X X X X General information on the 
data collection 

[42] 

Muppandal 
Noorul Islam 
University 

India From 2000 
to 2004 

On Type (ii), (iii) N◦ WTs: 15 0.225 X A0 λ(t) 
λi(t) 

MTTR 
(t) 

CF(t) 
AO(t) 
AT(t) 

- Downtime of mech./electr. 
system given for preventive 
and corrective maint. 
- Cost analysis 

[40] 

CWEA 
Chinese Wind 
Energy 
Association 

China From 2010 
to 2012 

On Performance and 
failure data from 47 
manufacturers 

2010’s WTs 
n◦: 111 
2011’s WTs 
n◦: 560 
2012’s WTs 
n◦: 640 

✓/X (only top 9 
manufacturers) 

~2–3 (WTs 
installed in 
2008/2009) 

C 
DImP 
DDP 

λ X AT(t) - λ derived by [2] 
- AT according to Ref. [2] 
given per drivetrain type (in 
2011/12) 

[3]  
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Table 7 
Cataloguing of the main onshore databases/initiatives (cont.3).  

Database/Source 
Organisation 

Country Period WTs Data source and 
type 

Size (for 
published results) 

WT Characteristics Reliability/Performance data collected References 

Power rating 
[MW] 

Age Type λ down 
time 

KPI Main Findings 

Nanjing 
University 
Nanjing 

China 2009–2011 
2011–2013 

On Type (iii) N◦ WTs in phase 
1: 61 
N◦ WTs in phase 
2: 47 

1.5 
2.0 

1 ÷ 15 X λ MTD X - 2009/13 λ per month for 
some projects 
- Most critical (for ● and 
○): control sys., pitch/ 
blades, el. sys. 

[39] 

Huadian 
Huadian New 
Energy Company 

China 2012 (Jan–May) On Type (ii) Ave n◦ WTs: 1313 
Ave n◦ WFs: 26 

✓/X (info in Ref. [83]) % λ % MDT X - WFs name listed 
- λ derived from the 
percentage number of 
failures by [2] 

[41] 

GH 
Garrad Hassan 

Worldwide From ~1992 
To ~ 2007 

On Availability 
statistics 

Ave n◦ WFs: 
>250 

0.3 ÷ 3.0 1 ÷ 15 X X X AO(t) Availability average (per 
year) for above/below 1 
MW 

[58] 

Round 1 WFs 
Durham 
University 

UK From ~2004 to 
2007 

Off Performance data N◦ WTs: 120 2.0 
3.0 

1 ÷ 3 
(depending on 
the WF) 

C X X AT(t) 
CF(t) 

Issues within the early 
years of 4 WFs 

[5,43] 

From 2005 to 
2014 

N◦ WTs: 371 2.0 ÷ 5.0 Derivable 
from [63] 

X X CF(t) Updated CF [44] 

Egmond aan 
Zee (OWEZ) WF 
- 

Netherland From 2007 to 
2009 

Off Type (i), (ii) N◦ WTs: 36 3.0 1 ÷ 3 C N MDT X λ estimated by [84,85] [10,44,85] 

From 2007 to 
2011 

1 ÷ 5 X (%)MDT AT(t) Downtime percentage per 
component 

[74] 

Offshore-WMEP 
Fraunhofer IWES 

Germany From 2000 to 
2012 

Off Performance data N◦ WTs: 277 1.5 ÷ 3.0 1 ÷ 7 
(depending on 
the WF) 

A1 
C 
DI1P 
(accessed at 
[63]) 

X X AT(t) Technical availability for 
10 WFs installed in Europe 

Det [47] 
Info 
[55–57] 

Round 2 WFs 
Durham 
University 

UK From 2011 to 
2014 

Off Performance data N◦ WTs: 806 3.0 ÷ 3.6 Derivable from [63] X X CF(t) CFs compared to the one 
from round 1 

[44] 

SPARTA 
ORE Catapult 

UK From 2013 
ongoing 

Off Type (i), (ii), (iii.a/ 
b) 

N◦ WTs: 1045 
N◦ WFs: 19 
(throughout 
2016) 

Ave power- 
number WFs 
83–4 
155–7 
266–8 

>8 
5 ÷ 8 
<5 

X λ(t) 
λ 

X X Results given in terms of 
monthly repair: 
• hydraulic sys., pitch, rotor 

Det [46] 
Info [19] 

Strathclyde 
(Offshore) 
University of 
Strathclyde 

UK From ~2011 to 
2016 (5 years) 

Off Type (i), (v) from 
one manufacturer 

N◦ WTs: ~350 
N◦ WFs: 5 ÷ 10 

2.0 ÷ 4.0 3 ÷ 5 
>5 

C 
DImW 
DImS 

λ 
λi(t) 

MART X Failure rate broken: 
- into cost categories 
- per configuration 
- details in time for some 
components 

[6]  
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simulated, and a number of KPIs are produced, such as the time-based 
availability, power produced, and operating costs. 

3.3.2. Wind farm availability estimation 
For the calculation of the lifetime availability of a wind farm, both 

planned and unplanned maintenance activities are considered. On the 
one hand, scheduled maintenance happens at yearly intervals and is 
performed for each subsystem of the turbines in the farm following 
grouping and prioritisation. The downtimes are calculated based on the 
maintenance activity duration which is assumed to be fixed. On the 
other hand, unplanned maintenance downtime is sensitive to the 

availability of spare parts, vessels and personnel for the repair of 
damaged subsystems. 

With regard to the distribution of unforeseen failures in time, this 
information is modelled from the reliability module based on the reli
ability data from the literature. The input failure rates are grouped into 
minor repair (mr), major repair (Mr) and major replacement (MR), ac
cording to the material costs indicated by Carroll et al. in Ref. [6]. When 
this information is not provided, the downtime statistics are used for the 
classification of the failure rates, similarly to what is suggested by 
Ref. [91] (cp. Table 9). When a failure occurs, the turbine status varies 
depending on the failure type. For mr, the turbine is assumed to continue 
operating even after the failure detection, and the shutdown is only 
assumed during the repair time. For Mr and MR, the turbine is stopped 
after the detection of malfunctioning, going back to service only after 
the system is restored. The time to failure associated with each failure 
mode, for a particular subsystem i, is assumed to be distributed by an 
exponential probability density function f(t) (Eq. (1)) with parameter 
λi,mode being the failure rate for subsystem i under a particular failure 
mode (i.e. mr, Mr, or MR). 

f (t) = λi,mode e− λi,mode t (1) 

The cumulative distribution function is the probability of failure 
(PoF) of the subsystem according to the exponential reliability theory 

Table 8 
RDS-PP® taxonomy adopted for system and sub-system added with numbered 
labels for the presentation of the results.  

RDS-PP® Acronyms Labels 

MDA 1. Rotor System 
MDA10 1a. Rotor Blades 
MDA20 1b. Rotor Hub Unit 
MDA30 1c. Rotor Brake System 
– 1d. Pitch System 
MDK 2. Drivetrain System 
MDK20 2a. Speed Conversion System 
MDK30 2b. Brake System Drivetrain 
MDL 3. Yaw System 
MDX 4. Central Hydraulic System 
MDY 5. Control System 
MKA 6. Power Generation System 
MS 7. Transmission 
MSE 7a. Converter System 
MST 7b. Generator Transformer System 
MUD 8. Nacelle 
MUR 9. Common Cooling System 
CKJ10 10. Meteorological Measurement 
UMD 11. Tower System 
UMD10 11a. Tower 
UMD80 11b. Foundation System 
– 12. Others  

Fig. 2. Workflow of openO&M tool.  

Table 9 
Criteria for the classification of the reliability databases in minor and major 
repair and major replacements.  

Classif. mr Mr MR 

Material cost ≤1000 € 1000 € < cost ≤10,000 € >10,000 € 
Downtime (onshore) ≤3 days 3 days < downtime ≤ 7 days >7 days 
Downtime (offshore) ≤7 days 7 days < downtime ≤ 15 days >15 days  
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and is given in Eq. (2). The PoF of the whole wind turbine is the PoF of all 
subsystems considering all failure mode classifications, as explained 
further in Refs. [88]. 

PoF = 1 − e− λi,mode t (2) 

Further inputs for the availability estimation are the farm layout and 
the forecast of the environmental conditions during its lifetime. For the 
purpose of this analysis, the wind farm reference layout is based on Bak 
et al. [92]. The weather data simulated throughout the lifetime of the 
farm for its operation (wind speed for power production) and accessi
bility (wave height for the mobilisation of the vessels) are based on the 
FINO3 database. The stochasticity of the weather module is obtained by 
the implementation of a Markov model trained on the historical wind 
speeds and wave heights. Finally, information on the times and logistics 
for the performance of the unplanned maintenance – including repair 
times and resources needed – are based on [6]. The further assumptions 
in the maintenance module and additional information can be retrieved 
from Ref. [88]. 

4. Identification of trends based on the review of the RAM 
statistics 

A more in-depth view of the data repositories enables a cross- 
comparison of the statistics and critical discussion. Initially, the qual
ity and consistency of the averaged reliability and maintainability fig
ures are evaluated in an all-in-one comparison. A detailed discussion of 
the effect of the deployment parameters on the reliability and perfor
mance of onshore wind turbines is then suggested, leading to either 
further supporting the trends already identified in historical repositories 
or updating them based on the experience of the more recent surveys. 

4.1. Trends in the averaged reliability and maintainability statistics 

In Fig. 3, the data from all the complete and accessible initiatives 

(mentioned in Section 2) are presented as dimensional quantities, in 
failure frequency against time lost to restore the system after failure. Due 
to poor documentation, confidentiality reasons, or the lack of a stand
ardised approach, a significant spread across these averaged results is 
immediately observable. These statistics generally collate the data over 
broad populations, for varying characteristics of the units. Based on the 
detailed analysis of Tables 4–7, and the homogeneous taxonomy adap
tion activity, it is possible to discuss and draw the main conclusions from 
the plot. 

It is noticeable that the results from the WMEP and Huadian data
bases are largely in the medium range of lost hours per failure of the 
components (from 5 to 10 h/turbine/year), whilst the data from the 
other sources are distributed over a wider range. For instance, the ma
jority of Spanish (CIRCE) results are distributed below 5 h per turbine 
and year limit, while the VTT population shows values largely outside 
the average range, as observed by Ref. [60]. A possible contributor to the 
inconsistencies between these initiatives can be the definition of “fail
ure”. This can indeed vary from being just a required visit to the turbine, 
considering only when a maintenance activity is required (e.g. Ref. [6, 
73]), to when an event has a downtime over a certain threshold (e.g. 
Refs. [65]), or, conversely, to account for alarm logs and remote resets 
(e.g. Ref. [4,39]). When counting remote resets, the failure rates 
recorded are higher. Likewise, the mean time lost to restore the turbine 
operation is lower, because of the presence of these small downtime 
events. This is the case with the data collected by the Southeast Uni
versity Nanjing [39], whose outlier behaviour can be traced back to 
either the use of SCADA alarms or the very short period of the survey 
[11]. The unrealistically high failure rate and small downtime of the 
EPRI statistics can be associated with the infant mortality of its early 
stage technologies. With regard to the recent CIRCE statistics, while the 
time lost per failure is generally comparable to that of the older data 
collected (Vindstat and Felanalys, VTT, LWK and WMEP), the lower 
frequencies of the malfunctions can be related to the higher maturity of 
the technology and to the fact that only components’ (internally caused) 

Fig. 3. All-in-one comparison of the most complete reliability statistics, as rate of failure vs. hours lost per failure per components (bi-logarithmic scale).  
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failures were considered, excluding from the analysis all the other 
outage events. 

Regarding the Strathclyde offshore (Strath-Off) statistics, their 
skewed behaviour is associated with the use of the mean active repair 
time (MART, see Appendix A) as an indication of the downtime. None
theless, the gap between these MARTs and the mean downtime (MDT, 
see Appendix A) of the other statistics – except for Huadian and EPRI 
collections, already suggests the possible high impact of logistics and 
technical delays on the downtime for maintenance actions. 

Looking then at the single initiatives’ systems’ share, the drivetrain 
failures seem to be, in general, the highest contributor to the hours lost 
per turbine per year, due to the presence of a gearbox. While this is true 
for the European initiatives, the Chinese statistics of Huadian and 
Nanjing contrapose a higher criticality for the control and electrical 
transmission system. This is in line with what is reported in the CWEA 
study, where converters yield the highest failure rate among all the 
subsystems. As explained by the authors [3], this could be related to the 
harsh environment (very low temperature reached) in the area where 
these wind farms are installed. However, Artigao et al. [10] suggest that 
this is a common trend among the Chinese statistics. 

4.2. Trends based on design parameters 

4.2.1. At a turbine and farm level 
The authors from the DOWEC project [26] were the first to identify 

the need to separate the data also by power classes when plotting and 
comparing the reliability statistics. By using the data available at the 
time from the WMEP statistics, they observed that the turbines rated 
between 0.56-1.5 MW fail significantly more often than the smaller 
turbines; however, the population is 95% represented by lower rating 
units. Based on the German “250 MW Wind” program, more detailed 
and complete results for the WMEP project were collected and pub
lished. From the data of the first 15 years of the initiative, Hahn et al. 
[72] and Echavarria et al. [73] observed a time invariant increase of the 
turbine failure frequency with power rating. 

In the LWK survey, the distribution of failure intensity among 12 
different turbine models was sorted by turbine size [60]. The same au
thors who, in Ref. [30], already intuitively appreciated a lower reli
ability in the newer German turbines comparing them to their smaller 
predecessors, reaffirmed in Ref. [7] the general trend of failure rate to 
increase proportionally with the turbines’ rating. This was shown to be 
particularly true for the type A1 turbines [60], while the direct-drive 
technologies (DDE type) seemed not to follow the rule, maintaining an 
almost constant overall failure rate of about 2.5 failures per turbine and 

year for larger units. Nothing can be stated for other concepts, such as 
type B, due to the lack of data for large units. Looking at the averaged 
failure rates for type C, the more recent CIRCE data collection reported 
results are in line with the discussed hypothesis: 0.46 and 0.52 failures 
per turbine and year, for the population below and above 1 MW, 
respectively [4]. 

This higher reliability would lead to generally higher technical 
availability. Reinforcing this argument, Harman et al. [58] observed 
that the operational availability of sub-MW units is higher than that of 
the larger units. However, at the array level, they additionally observed 
that an increase in the availability of larger farms (with more than 40 
units), was proportional to the number of turbines and is independent of 
the units’ rating. 

4.2.2. At a system and subsystem level 
While this last deduction cannot be verified yet, as the wind farm 

specific data are limited and incomplete, the trend of the failure rate 
with the power rating is investigated here at the system (Fig. 4) and 
subsystem (Fig. 5) levels. When summarising the WMEP survey main 
findings in Refs. [59,61,75], Faulstich et al. developed a detailed anal
ysis at the subsystem level (Fig. 4). Significant differences in the 
contribution of single components’ failures to the total failure frequency 
were detected for small and large sized turbines. A smaller scatter for the 
share of each system to the failure rate is generally observed for medium 
rating turbines (above 500 kW and below 1.5 MW), reaffirming what 
was noticed by Dao et al. [11]. For the higher power class, the reduction 
in the percentage failure of the mechanical and structural components is 
balanced by an increase in the percentage of the electrical failures. As 
they are associated with an overall rise of the annual failure frequency 
[72], the electrical and control systems can be seen as the most critical 
components for the WMEP larger sized turbines. Although these results 
are in agreement with the project final average statistics [75], infor
mation on the distribution of the power rating in the final WMEP pop
ulation is missing. Furthermore, it has to be noted that these results are 
mainly representative of technologies and layouts that are no longer 
adopted (type A0-A2) [33]. For these reasons, the results from other 
initiatives were analysed, seeking for a match with the WMEP trends. 

The WMEP statistics are cross compared with those of the LWK and 
CIRCE surveys. To maintain the analysis as unbiased for the drivetrain 
configuration, a comparison is suggested among turbines of the same 
typology. The LWK results for the Enercon E40 (500 kW) and E66 (1.5 
MW) gearless turbines [31,60] are presented in Fig. 5-bottom, to better 
understand the anomalous behaviour of LWK’s DDE model’s failures. 
Similarly, the failure rates derived by accessing CIRCE data [4] for the 

Fig. 4. WMEP program final results in terms of share, per sub-system, to the total average failure rate of each group of MW-class, adapted from Ref. [38].  
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type C turbines, above and below 1 MW, are compared in Fig. 5-top. The 
conclusions on the effect of the power class on the reliability figures per 
component, without the effect of multiple configurations’ averaged re
sults, are the following:  

• The number of shutdowns caused by the rotor system (1) and the 
power generator system (6) – either EESG of LWK or the DFIGs of 
CIRCE – decrease when the turbine rating increases, in agreement 
with WMEP results;  

• An opposite trend characterises the control (5) and transmission (7) 
systems of CIRCE turbines, in agreement with the WMEP observa
tion. In contrast, the transmission failure rates for small sized DDE 
turbines are higher than for larger systems, as verified by Ref. [60] as 
well;  

• The speed conversion (2a) and drivetrain brake (2b) subsystems of 
the CIRCE population seem to fail less frequently for higher power 
ratings, in line with WMEP results for the drivetrain system (2) and 
with what is reported by Ref. [93] for the type A1 turbines of the 
LWK survey;  

• The pitch system (1d) – not identified as a separate subsystem in the 
WMEP results and likely to be integrated and averaged into the 

hydraulic system – follows the same trend for both LWK and CIRCE 
initiatives, increasing its number of failures with increasing turbine 
size. 

4.2.3. Modern layouts statistics 
With regard to the influence of drivetrain configurations on the 

statistics, the WMEP authors noticed a general decrease in the average 
reliability of the assets moving towards more advanced concepts, 
compared to the simple Danish concepts and standard variable speed 
[33]. Similarly, the analysis of van Bussel et al. [49,50] identified the 
robust design – consisting of a two-bladed turbine, with no pitch control 
installed on a monopile foundation – as the best design solution for 
obtaining the highest availability in a large offshore wind farm project. 

For the direct-drive configurations, the WMEP researchers observed 
that gearless layouts are not necessarily more reliable than geared ones 
[61]. Echavarria et al. [73] highlighted this aspect in more detail by 
analysing 10 years of WMEP time-trend results. They noticed that the 
direct-drive synchronous generator is not mainly responsible for the 
generally higher failure rate of these turbines compared to the geared 
alternative with an induction generator. In contrast, the failure events of 
power electronic components, in systems using synchronous generators, 
were significantly more frequent. This suggests that the statistics could 
possibly have been affected by the young age and novelty of the tech
nology. Similarly, the LWK’s authors [7,30,31] noticed that the aggre
gate failure of the generator and converters in direct-drive layouts (DDE) 
is greater than the aggregate failure rate of gearbox, generator and 
converters in indirect-drive ones. Indeed, the elimination of a gearbox 
resulted in a substantial increase in the failure rate of electrical-related 
subassemblies. 

Some authors justified this tendency as being due to the immaturity 
of these technologies and the presence of new issues related to the new 
design [16] and larger dimensions [30] of the direct-drive generators. In 
agreement with this hypothesis, the more recent data collection from 
Reder et al. [4] registered an overall decrease in the failure rate for the 
Spanish direct-drive population compared to the type C one: 0.19 vs. 
0.49 failure per turbine and year, respectively. The updated RAM sta
tistics for the newer typology of DDP published by Lin et al. [3], high
lighted an increase in the availability, during the second year of 
operation, of direct-drive design compared to the C type. To complete 
the discussion investigating the variance in failure frequency and 
downtimes, per component, between type C and DD turbines, a com
parison among CIRCE statistics [4] is suggested in Table 10. Analysing 
only the data for turbines above 1 MW, an unexpected higher failure of 

Fig. 5. Comparison of the failure rates per systems (left) and subsystems (right) of different rating turbines. Statistics for type C turbines from CIRCE database (top) 
and type DDE turbines in LWK database (bottom). 

Table 10 
Comparison of CIRCE type C and type DD reliability and maintainability sta
tistics. 
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the rotor system is observed for the type C turbines. This behaviour 
could be affected by several factors. In contrast, the 50% reduction in the 
number of failures of the direct-drive generators, could be explained by a 
profound technology improvement of EESG and/or a switch to the 
PMSGs’ direct-drive concept [78]. Nonetheless, as mentioned by 
Ref. [16], the lack of detailed information about the typology of the 
generator only allows us to speculate about the cause of this higher 
failure rate. 

As far as the medium-speed configurations are concerned, it has been 
shown [94,95] that they have the potential to offer a good compromise 
between reliable operations and cost optimisation. On the one side, 
Carroll et al. [78] compared the statistics of a population of 1800 type C 
turbines with those of a group of 400 DImP. They observed that the 
full-rated converters are the most critical components in terms of failure 
rate, while the PMSG fails almost 40% less than a DFIG and its failure 
modes are for minor repairs of the auxiliary (lubrication and cooling) 
system. Nonetheless, due to the presence of the gearbox, they noticed 
that the hybrid layout fails nearly three times more often than the 
traditional type C configuration. On the other side, Lin et al. [3] reported 
a significantly higher technical availability of the hybrid configuration 
compared to both type C and DDP. This latter study is likely to be skewed 
by early-stage failures. Because of this contrast and due to the recent and 
sporadic installations, it is not yet possible to draw any conclusions on 
their robustness. Thus, more information needs to be collected and 
compared for these kinds of systems. 

4.3. Trends with the deployment parameters 

Although site-specific information is not yet available for supporting 
the observation of Harman et al. [58] (see Section 4.2.1) on how the 
farm size influences its availability, some experience on the effect of the 
location and the environmental parameters on the turbine reliability 
figures can be found in the literature. Indeed, much research effort has 
been dedicated to identifying the critical meteorological parameters that 
influence the turbine failure behaviour negatively. 

One of the first extensive analyses on the effects of weather on tur
bine reliability was presented by Hahn et al. [36] showing increased 
failure rates of certain components with rising average daily wind 
speeds. The electrical system subassemblies showed the strongest de
pendency on wind speed, followed by the control system, while a 
significantly weaker correlation was exhibited by the other main sub
assemblies. Tavner et al. [32] identified an annual periodicity in failure 
rates due to seasonal variation in weather conditions, by analysing the 
correlation between monthly averaged wind speed conditions and 
component failures. Following this first study, they extended their 
analysis in Ref. [15,20] by cross-correlating the component failures with 
average monthly maximum and mean wind speed, maximum and min
imum air temperature, and average daily mean relative humidity. They 
concluded that other weather conditions, rather than just wind speeds, 
can be closely related to the turbine failures. Wilson et al. [96] used 
artificial neural networks to investigate if any relationship existed be
tween maximum daily gust speed, average daily wind speed and tem
perature, and the turbine’s failure rates. The gearbox, generator and hub 
were shown to be more likely to fail in variable wind conditions, with a 
high potential impact on the failure rates of these subassemblies 
offshore. They additionally noticed that gust speed is a key parameter of 
the number of failures. This observation reaffirms what was shown 
already by Ref. [32], who observed that malfunctions occur more 
frequently in the winter months where average daily wind speeds can be 
lower but maximum daily gust speeds are higher. 

Regarding the data collected for offshore wind turbines, Carroll et al. 
[6] noted that offshore turbines sited in areas with higher wind speeds 
experienced higher failure rates. This observation is in line with what 
was shown by Wilson and McMillan in Ref. [97] for onshore systems. 
Nonetheless, while this correlation appears to be rather weak onshore 
(linear regression slope is 0.08), the higher offshore wind speeds seem to 
have a higher impact on the failure rates (with 1.77 slope). 

Finally, some studies on the possible effect of near-shore location 
were analysed. Examining the WMEP statistics, Faulstich et al. [33] 
observed that turbines located near the coast and in the highlands suffer 
higher failure rates. By analysing a more segregated population of tur
bines (type DImW, with sub-MW rating), Tavner et al. [15,20], showed 
similarities between the results from the Krummhörn and Fehmarn wind 
farms, presumably because of their near sea locations, compared with 
Ormont farm, which is located inland. While the turbines from the first 
two locations are subject to humid conditions, Ormont failures 
cross-correlate with wind speed standard deviation, suggesting the in
fluence of turbulence on failure rate. 

5. Critical discussion for offshore wind turbines 

The failure of offshore and near-shore deployments can differ in 
number and typology compared to those of onshore systems, due to the 
potential effect of certain environmental conditions (such as humidity, 
gust events and turbulence intensity). For this reason, in this final dis
cussion, the influence of the studies’ specific parameters (i.e. reliability 
statistics and power ratings) is analysed by estimating the lifetime 
operational availability of hypothetical wind farms installed at a typical 
offshore location. The normalised reliability and maintainability figures 
of onshore and offshore studies are eventually compared, to identify the 
possible sources of the discrepancies in the results. 

5.1. Lifetime operational availability estimates and trends 

The derivation of the lifetime operational availability for a set of 
offshore wind farms establishes a common ground for integrating the 
offshore statistics into the analysis and consistently comparing them 
with the existing onshore ones. A similar analysis has been already 
carried out for the DOWEC project, where van Bussel et al. [49,50] 
estimated the availability and costs associated with the installation of 
different turbine technologies (drivetrain and foundations) for a 
fictional 500 MW offshore wind farm, erected at 35 km from the Dutch 
coast. Their findings concluded that there is a reduction in the avail
ability of advanced layouts, as opposed to the traditional ones (see 
Section 4.2.3). Despite the fact that this observation supports the con
clusions of Faulstich et al. in Ref. [33], the reliability figures used are 
extracted from a specific population of coastal wind turbines and 
adapted to several types of designs and the offshore application, based 
on the authors’ best knowledge. 

In contrast, the analysis presented here focuses only on the impact of 
the implementation of the several failure statistics collected from the 
literature. The reliability studies selected and adapted as required for the 
implementation on openO&M are reported in Appendix B. The systems 
and subsystems considered in the availability calculations are based on 
the taxonomy shown in Table 8 and are additionally subdivided into 
failure classes (mr, Mr and MR) as suggested in Section 3.3.2. For 
simplicity of comparison, the wind farm layout, the repair information 
and the weather data inputs are kept the same for all case studies. The 
wind turbine power curves for the estimation of the operational uptime 
are assumed, based on commercial models at the average power rating 
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of the population. This information, together with the estimated time- 
based availability, is reported in Table 11. The results are presented in 
terms of averaged value and standard deviation, due to the random se
lection of the failure modes (as explained in Section 3.3.2). 

Although the same characteristics and maintenance strategy for each 
of the offshore wind farms scenarios are selected, a spread in the esti
mation of the availability associated with the several reliability datasets 
can be noticed. This indicates that the frequency of the specific failure 
events largely affects the availability calculations and consequently the 
maintenance decision making. In contrast, the low standard deviation of 
the estimated availability (the highest of ±0.13% for the WMEP survey), 
implies a small impact of the randomness in using these failure data 
when supporting decisions for the operation of wind farms. 

A generally higher availability is found for the onshore studies 
compared to offshore ones, independently from the turbine rating, 
supporting the hypothesis of a high correlation of the failures with 
environmental conditions (generally more unfavourable offshore). It is 

worth pointing out that the direct drive wind farm scenario achieves the 
highest lifetime availability, in line with the calculations of Carroll et al. 
in Refs. [95,98], and supporting further the observation of Section 4.2.3 
on the high potential of this technology. Among the onshore 
failure-based scenarios, the WMEP and the Huadian datasets resulted in 
the smallest estimated availability, as low as 96%. Nonetheless, these 
results seem reasonable when compared against the operational avail
abilities collected by Ref. [2], on average around 95% for onshore tur
bines, with the exception of the sub-MW population, and around 93% for 
the offshore systems in the SPARTA and the WInD-Pool projects. 
Therefore, the generally high predicted values for the onshore-based 
results could suggest a general underestimation of the repair and lo
gistic times as inputs of the maintenance module. 

Independently from the sensitivity of availability to these parame
ters, some of the offshore-based results look surprising. On one side, the 
low availability, of about 80%, for the OWEZ wind farm can be related to 
the extraordinary maintenance activity during the time of the survey. 

Table 11 
Lifetime availability estimated for the selected surveys in Appendix B (in grey, from onshore failure statistics) and according to the 
derived averaged power ratings and assumed wind turbine power curves. 

Fig. 6. Comparison of offshore and onshore reliability statistics for geared turbines with an induction generator. In the x-axis are systems and sub-systems (Table 8) 
and on the y-axis the normalised failure rates. The normalised downtime is represented by the bubble size. 
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This result agrees with the statistics for the UK offshore round I, affected 
as well by infant mortality events and the underdeveloped supply chain 
for O&M. On the other side, the 84% operational availability of the 
Strath-Off population is unexpected, considering that it is associated 
with the statistics for a population with similar characteristics (turbine 
configuration and power rating) to those of the recently published RAM 
database results [2]. The explanation of such behaviour can be associ
ated with:  

• the effect of site-specific environmental conditions, which affect 
significantly the failure behaviour (as introduced in Section 5.2) and 
enhance the statistical uncertainty of the reliability figures – 
considering that these data are built upon averages from various 
sites;  

• the effect of failure distribution on the estimated availability levels, 
which has been shown to have a potentially high impact [99], and it 
has been considered here as exponential only;  

• the potential impact of: 1) preventive maintenance activities and 
condition monitoring systems, implemented in the real application, 
which could potentially avoid or prevent the failure, as well as 2) 
maintenance activities performed via helicopter access or other 
service operation vessels, which could reduce the downtime for the 
logistics and inaccessibility windows – not yet included in the tool. 

Speculating on the uncertainty surrounding the recently published 
availability statistics, the WInD-Pool project only reported vague aver
aged results in Ref. [2], while the SPARTA data are provided for 14 
months only of recording [46]. Another year of availability figures from 
the SPARTA project have recently been published [100]. However, their 
results are reported in terms of production-based availability, giving 
only an overview on the goodness of the performance of the turbines 
compared to their power curves. 

5.2. Influence of the offshore location on systems and subsystems 

With the intent of understanding which systems and subsystems 
could mainly be affected by the offshore location, the reliability statis
tics from CIRCE [4], Strath-Off [6] and OWEZ offshore WF [45] (cp. 
from Tables 4–7) are compared in the bubble plot of Fig. 6. While their 
populations are consistent – being representative of geared turbines with 
an induction generator installed and of comparable power rating –, the 
definition of failure and downtime differs among these initiatives. Thus, 
normalised failure rates and downtimes (in terms of h/turbine/year) for 
each assembly (horizontal axis), are respectively represented on the 
vertical axis (indicated by the centre of the bubble) and by the bubble 
size. It is first worth stating that, although adding value to the analysis, 
the statistics of the OWEZ farm can be affected by early failure events 
and are skewed by their derivation from the number of stops [85]. This is 
also the reason for the low share in frequency and repair time of “others” 
(12) unforeseen failures, while a higher ranking is in the Strath-Off and 
CIRCE statistics because of the use of a more detailed taxonomy for the 
collection and analysis of the data. 

The highest share in the failure of the OWEZ farm is in the control 
system (5). Differently, the Strath-Off (and SPARTA [46]) surveys, 
recorded more frequent malfunctioning of the pitch (1d) and its hy
draulic system (if present). These observations are in line with the re
sults from the onshore surveys. Recently published statistics from the 
CREW data collection ranked the rotor as the assembly with the highest 
contribution to the turbine unavailability [16]. In the CIRCE survey, the 
rotor (mainly for the blade adjustment system and its hydraulics) and 
control system failures are second only to those of the drivetrain system. 

With respect to gearbox (2a), the two offshore studies show a similar 
percentage share of failure rates, even though the high failure rate of 
Strath-Off is mainly caused by the inclusion of minor malfunctions, 
while that of the OWEZ statistics is mainly affected by catastrophic in
fant mortality failures. It is interesting to observe that, independently of 

the class of maintenance performed, the gearbox’s overall share of the 
downtime for the offshore population is higher than for all the other 
components. Therefore, the observed potential high criticality of this 
component justifies the consistent research effort put into the direct 
drive designs [16] and advanced monitoring systems and techniques 
[101–103]. 

Regarding the power generation system (6), it is noticeable that its 
unplanned maintenance actions have a similar impact on the total 
corrective downtime of the several initiatives. Nonetheless, the Strath- 
Off induction generator has a considerably higher share of the fre
quency of the repair, compared to the CIRCE statistics, suggesting again 
a potential high influence of the offshore condition on this system. 
Furthermore, as already shown by Ref. [6], the repair rate of offshore 
generators is significantly higher than that of onshore ones, mainly due 
to the frequent minor maintenance actions required. Of minor impact for 
frequency and repair time required are the converters (7a). However, it 
is worth noticing that both offshore studies recorded a higher share of 
this subsystem to the failure frequency than in the onshore dataset. 
Similarly, the repair rate of the converters is ranked fourth by the 
SPARTA monthly averaged statistics, after issues related to the rotor 
system. The cause of their failure lies in the offshore environment and 
can be either associated with low temperature and/or thermal cycling, 
as intuitively proposed by Ref. [3], or related to other environmental 
factors (such as humidity) as shown by Ref. [104]. Because of the rela
tively high cost of repair and replacement, and the relatively long repair 
time [6], components in the transmission system (including the trans
former) have a potentially high criticality. 

With respect to the structural parts, the unpredicted failures of the 
rotor system (blades and hub) are shown (1) and known to be critical to 
the O&M of offshore wind projects [6,105]. On the other hand, it is 
worth pointing out the potentially high criticality of the offshore foun
dation systems’ failures (11b), [91,105]. In spite of their little share in 
the unplanned maintenance activities [6], the performance of in
spections and repairs of the structures can have a significant financial 
impact [106], especially for areas below the water level. Despite the 
increase in the number of structural-health monitoring systems normally 
installed on the offshore wind systems [107], the post-processing and 
the analysis of the signals for an effective data management, and for 
detecting anomalies, still faces some challenges [108,109]. 

6. Conclusions 

This paper has presented a comprehensive review and critical dis
cussion for the identification of the most critical components based on 
studies of currently installed wind turbine statistics. To achieve this, 
both onshore and offshore RAM statistics from historical European and 
newer overseas initiatives are collected and catalogued. Because of the 
extensive onshore industry experience, the trends of reliability and 
availability statistics with design deployment parameters are first 
investigated for onshore systems. The analysis is then extended by 
including the results from available offshore databases, as normalised 
statistics, and, via the estimation of the operational availability of a 
typical offshore wind farm (implementing the onshore and offshore 
failure statistics), the effect of statistical uncertainty of the different 
datasets is evaluated. 

The main findings from the literature on onshore systems are:  

• at a turbine level, an observed generally lower reliability for 
increasing turbines’ size, but a potentially inverse trend in the 
availability of the wind farms with the number of units installed, 
independently from their power rating;  

• at a system level, a reduction in the shutdown events linked to the 
unforeseen failure of the rotor, the drivetrain and the power gener
ator systems are observed as opposed to an intensification in the 
corrective maintenance of the control, transmission and blade 
adjustment systems for an increase in the turbine size; 
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• at a turbine level, a higher number of failures is generally recorded 
for higher averaged wind speed, gust speed, and in presence of other 
environmental conditions (such as humidity and potentially high 
turbulence level), with a sensitivity of the drivetrain, power gener
ation and transmission subsystems to these phenomena. 

With respect to offshore wind turbines, it is noticed that:  

• although generally higher failure frequencies are observed compared 
to the onshore projects, the recently collected statistics from the 
industry-led RAM databases show a significant improvement in the 
operational availability compared to the first generation of offshore 
turbines;  

• a high share of the blade adjustment, drivetrain and transmission 
systems to the overall failure rate is common to all offshore studies, 
with the drivetrain and rotor systems being potentially the most 
critical due to being associated with longer downtime and cost of the 
repair. 

From these observations, and from the further comparison of the 
normalised reliability and maintainability figures for the onshore and 
offshore studies, it is possible to speculate on the potentially high crit
icality components for the next generation of offshore wind turbines. 
Moving towards larger systems and/or direct drive designs, there could 
be a reduction, or at least a steady trend, in the failure of the drivetrain 
and rotor systems, and of power generation systems, when switching to a 
synchronous (permanent magnet) generator type. On the other hand, 
higher costs for corrective maintenance should be expected for the 

failures of the transmission systems and the tower structures. This 
should push research in looking for improvements at the design stage 
and/or for the implementation of monitoring systems on these assets. 

As far as the availability estimation of offshore wind farms is con
cerned, the discrepancy between the predicted results and reference 
values from the literature suggests that a higher level of detail is needed 
and should be fed into the tool for obtaining conclusive results. This 
analysis, complemented with a cost analysis, is fundamental to a wide 
range of stakeholders in the offshore wind industry to achieve im
provements of the financial targets of current and future projects. To 
tackle the statistical uncertainty associated with the input failure sta
tistics, information on the distribution in time and among the turbines in 
the array (subjected to varying environmental conditions) should be 
provided. Finally, reference availability statistics for a longer period 
should be collected and made available for validation. 
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Appendices. 

A. RAM terminology definitions and performance indicators 

As the data collected is heterogeneous, a terminology is introduced for describing and classifying the results in the several databases. Thus, 
standardised definitions of reliability, maintainability and key performance indicators (KPIs) are summarised in the following section. 

Reliability and maintainability terminology 
In the reliability analysis, an indication of the frequency of the failure and/or the time elapsing until the system is restored is generally given. The 

frequency parameter is usually represented by the failure rate (λ), which is the likelihood of a system to fail within a specific period. Unlike a 
probability, however, it can reach values greater than 1. Focusing on the constant failure rate region of an asset, the indicator λ of a WT, consisting of K 
components, is averaged over the i − th recording periods according to Eqn A.1 [19,67]. The I is the number of intervals for surveys of length Ti and ni 
failures per interval. This Power Law Process is commonly used in the reliability analysis of repairable systems [18]. As the data collected are from 
many turbines, the data are generally normalised by the number of units in the population Ni, as well as providing, for instance, information on the 
number of failures per turbine, per year (i.e. [failure/turbine/year]). 

λ=
∑I

i=0
∑K

k=1ni,k
/

Ni
∑I

i=0Ti
/

8760
(A.1) 

According to the relevant ISO standards [110,111], a distinction between a repairable and a non-repairable system is required, as well as dis
tinguishing whether the maintenance action consists of a repair or a replacement measure. Having only had access to limited information, this 
quantity is considered in this paper as a general failure, or maintenance event rate. Furthermore, λ depends on the definition of failure itself. A 
“failure” is the loss of ability to perform as required; however, the qualitative judgement of the authors can vary when interpreting the term “loss of 
ability”.  

Table A.1 
Acronyms and definition for the “downtime” terminology used throughout the paper  

Acronym/ 
Symbol 

Definition (cp. [110,111]) Comments and Notes 

MART Mean Active Repair Time 
“Expected active repair time” or “expected effective time to repair.” 

With “active”, the ISOs define the effective time to achieve repair of an item. This accounts 
for: fault localization, correction and checkout time. This definition is in agreement with the 
one of the IEC [112] defined, and commonly called, “repair time”. (Refer to Fig. 4 of [111], 
and Figs. 5 and 6 of [110]). 

MTTR 
(MTTRes) 

Mean Time to Repair/Restoration 
“Expected time to achieve the following actions:  

The ISOs defined MTTRes (mean time to restoration) wants to be an elucidation to the 
MTTR (mean time to repair) from IEC [113]. In the latter, the fault detection time is not 
considered. Thus, MTTRes is defined as 

(continued on next page) 
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Table A.1 (continued ) 

Acronym/ 
Symbol 

Definition (cp. [110,111]) Comments and Notes  

- time to detect the failure;  
- time spent before starting the repair (with administrative, logistics 

and technical delays);  
- effective repair time (MART);  
- time before the component is available to be put back into 

operation (possible other administrative delays).” 

MTTRes = MRT + MFDT 
where MRT and MFDT are, respectively: 
- the time elapsing from the actual occurrence of the failure of an item to its detection, and - 
time elapsing from the detection of the failure of an item to the restoration of its function. 
(Refer to Fig. 5 of [110]). 

MDT Mean Downtime 
“Expectation of the downtime.” 
The downtime is the time interval during which an item is in a down 
state, and thus “unavailable”. (Refer to Figs. 3 and 4 of [111])  

• It can be either for planned or unplanned maintenance actions. However, only the latter 
(corrective O&M actions) is considered in this work.  

• The downtime includes all the delays between the item failure and the restoration of its 
service.  

• It differs from MTTR accounting also for “other unplanned outages”; among these are: 
operational problems, restrictions, and machinery shutdown (trip1 and manual).  

1 Defined as the shutdown of a piece of machinery (activated automatically by the control/monitoring system) from normal operating conditions to full stop. It can 
either be “real”, if the result of exceedance (monitored or calculated) of a pre-set limit, or “spurious” when an unexpected shutdown caused by a failure. 

With respect to the quantity characterising the “failure time” several definitions are relevant, and the most recurring statistics analysed are re
ported in Table A.1. These measures are used as representative of the maintainability characteristics of the failure. They have the dimension of time, 
with varying resolution, and they can be normalised by either the number of turbines or the failures in the time interval considered. More specifically, 
the definition of “downtime” varies from the minimum time to perform the repair (MART), to the total time expected from when the system fails to its 
restoration (MTTR or MTTRes). The more commonly collected mean downtime (MDT) differs from the MTTR in reporting shutdown events due to grid 
restrictions, weather conditions, and other causes (for more information refer to Table 4 of reference [111]). 

Performance indicators 
Production factors are used by several authors as an indication of the averaged performance of wind turbines and farms (e.g. Ref. [3,43]). The KPIs 

used in these papers are explained and reported in Table A.2 and are in line with those adopted by Refs. [2,114]. Among them, the technical 
availability (AT) is the most meaningful one for the understanding of unexpected failures. It is defined as the ratio between uptime and downtime of the 
turbine, and, by considering for the latter only the downtime for corrective maintenance (excluding scheduled actions), it gives combined information 
on the frequency of and restoring time for the failure. The time-based, or operational (AO), and energetic (AE) availability are employed as a measure of 
the actual performance of turbines and/or farms. The AO is the availability derived by the lifecycle assessment tool of Section 3.3.1. As regards the AE, 
being the estimation of the potential power output of a complex process, and subject to high uncertainties, the capacity factor (CF) is often encountered 
instead.  

Table A.2 
Acronyms and definitions of the KPIs used throughout the paper  

Acronym/ 
Symbol 

Expansion, Reference, and Description Formulae Formulae terms 

AT Technical Availability [112] 
Fraction of a given period of time in which a turbine is operating 
according to its design specifications 

tavailable

tavailable + tunavailable  

tavailable  
- time of full and partial performance  
- technical standby and requested shutdown  
- downtime due to environment and grid 
tunavailable 
time of corrective actions and force outage (excluding missing 
data and scheduled maintenance)  

AO Operational Availability [112] (or Time-based Availability) 
Share of the time when the system is operating and/or able to operate, 
compared to the total time 

tavailable 
time of full and partial performance (considering low wind as 
well) 
tunavailable 
time of all the other cases (excluding missing data)  

AE Energetic Availability [2] 
Amount of energy produced by the system compared to its potential 
energy production 

Pactual

Ppotential  

Pactual: Average actual power output 
Ppotential: Average potential power output (excluding missing 
data)  

CF Capacity Factor [112] 
Ratio between the amount of energy actually produced by the system 
and what it can theoretically produce 

Pactual

P  
P: Rated power output   

B. Failure statistics for availability calculations 

In Table B.1, the failure rate statistics used as an input for the availability calculation in the openO&M tool are reported. The Strath-Off and onshore 
data are integrated by making assumptions on the time required for performing offshore maintenance. The OWEZ statistics are used for comparison, 
being the only other offshore survey reporting sufficient information on its reliability and maintainability figures. Additionally, with respect to the 
onshore studies, only the most complete and consistent studies identified in Section 4.1 are considered, further subdividing the surveys depending on 
turbine configuration and/or power rating where possible. 
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Table B.1 
Repositories implemented for availability calculation of offshore wind farm   

CIRCE DD CIRCE C > 1 MW Huadian LWK Muppandal Strath Off WMEP OWEZ 

mr Mr MR mr Mr MR mr Mr MR mr Mr MR mr Mr MR mr Mr MR mr Mr MR mr Mr mr 

1. Rotor System   0.012  0.084   0.141  0.321   0.027 0.133 0.027 1.462 0.227 0.003  0.522   0.704  
1a. Rotor Blades   0.005   0.019   0.026 0.194   0.027 0.133 0.027 0.456 0.010 0.001  0.113    0.054 
1b. Rotor Hub Unit   0.005  0.011           0.182 0.038 0.001  0.171     
1c. Rotor Brake System          0.040               
1d. Pitch System   0.003  0.051   0.115  0.088      0.824 0.179 0.001 0.238    0.649  

2. Drive Train System 0.003    0.081   0.088   0.226  0.280   0.395 0.038 0.154  0.291    0.498 
2a. Speed Conversion System     0.065   0.062   0.142  0.173   0.395 0.038 0.154  0.106    0.486 
2b. Brake System Drivetrain    0.003     0.018 0.053   0.107      0.130     0.012 

3. Yaw System  0.014   0.021    0.026 0.115   0.160   0.162 0.006 0.001 0.177   1.456   
4. Central Hydraulic System    0.021      0.134   0.173      0.225      
5. Control System 0.052   0.058    0.106  0.222    0.080  0.355 0.054 0.001 0.403   2.659   
6. Power Generation System   0.011   0.025   0.150  0.140  0.067   0.485 0.321 0.095   0.100   0.206 
7. Transmission 0.026    0.044   0.291  0.323   0.040   0.812 0.154 0.010 0.548     0.381 

7a. Converter System 0.003    0.007   0.229  0.005   0.040   0.076 0.081 0.005      0.195 
7b. Generator Transformer 
System  

0.008    0.006   0.018       0.052 0.003 0.001       

8. Nacelle                    0.094     
9. Common Cooling System 0.005   0.041            0.190 0.007        
10. Meteorological 

Measurement 
0.019   0.012      0.061   0.027            

11. Tower System 0.003   0.006            0.092 0.089      0.052  
11a. Tower    0.003                   0.052  
11b. Foundation System 0.003    0.003           0.092 0.089        

12. Others 0.045   0.126   0.044   0.312      2.225 0.166 0.001 0.245   0.385     
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