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Abstract. The best practise for structural damage detection currently relies on the installation of 

structural health monitoring systems for the collection of dedicated high frequency 

measurements. Switching to the employment of the wind turbine’s SCADA (Supervisory 

Control and Data Acquisition) signals and their commonly recorded low frequency statistics can 

lead to a reduction in the number of ad-hoc monitoring sensors and quantity of data required. In 

this paper, aero-hydro-servo-elastic simulations for a model of a turbine are used to assess its 

loads and any changes in the dynamics under healthy state and a damaged configuration case 

study. To prove the feasibility of the damage detection through low-resolution data, the statistics 

of the typically recorded signals from the SCADA and the structural monitoring systems are fed 

into a database for training and testing of classification algorithms. The ability of the machine 

learning models to generalise the classification for both stochasticity and uncertainties in the 

environmental conditions are tested. Decision tree-based classifiers showed the capability to 

capture the damage for the majority of the operating conditions considered. Though the setup of 

the traditional SCADA sensors had to be supplemented with an additional structural health 

monitoring sensor, the detection of the damage has been shown feasible by referring to low-

frequency statistics only.   

1.  Introduction 

Several strategies have been investigated and exploited towards reducing the levelized cost of energy 

(LCOE) of offshore wind farms. So far, the focus was on a ‘race to the bottom’ for development costs, 

pushing for the optimization of design parameters and installations strategies. During the last decade, 

the LCOE reduction has been targeted through reduction of the operation and maintenance costs [1], 

which are expected to reach 30% of the asset’s life time cost for the next generation of offshore farms 

[2]. Although structural damage is not very likely, its late detection can lead to critical consequences 

which will result to high cost of mitigation actions [3]. On the other side, technical assessments and 

knowledge of the status of the turbine’s support structure are necessary to prove that operating assets 

can maintain the required safety levels during lifetime extensions [4]. 

Current practice for structural damage detection strongly relies on inspections, i.e. practical 

assessments on-site, which are associated with significant costs and risks due to the offshore 

environment, especially for structural failures below sea-water level [5]. With respect to data-driven 

techniques, research and applications of vibration-based structural damage detection can be found in  

literature [6], [7]. The methods proposed mostly identify damage using either natural frequencies or 

mode shapes and their derivatives such as the displacement modal curvature [8]. Natural frequencies 
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have low sensitivity to structural damage (e.g. member loss, scour, corrosion), so they can usually be 

used to reflect damage to a moderate degree; in contrast, mode shapes have greater sensitivity to damage 

[9]. However, the assessment of a mode shape requires high-resolution sensors on the support structure 

and tower of the wind turbine. Additionally, issues related to the application of traditional operational 

modal analysis (OMA) to wind turbine dynamics [7], [10] impose difficulties in utilizing mode shapes 

to represent damage in practical applications. Alternatively, data-driven approaches for anomaly 

detection can be based on machine learning algorithms and techniques applied to signals from the 

operational turbine [5]. These have been extensively investigated and applied for the condition 

monitoring of the drivetrain mechanical and electrical components [11]–[13], where data associated to 

failure events are more commonly collected. Concerning the structural health monitoring of offshore 

wind support structures, in [14] the approach for the detection of local damage is supported by 

experimental data for the training and testing of the algorithm. 

2.  Scope of the analysis and detection approaches 

The aim of this work is to propose an alternative to the current practice for the identification of a damage 

on an offshore wind turbine jacket support structure. The focus of the analysis is on the feasibility of the 

detection of a structural damage by capturing abnormal variations of the ten-minute statistics of SCADA 

signals. As opposed to the on-demand structural health monitoring systems, installed on no more than 

10% of the turbines across a farm, SCADA system signals are continuously collected throughout the 

service life of all assets. Therefore, the proposed approach could be applied to all units across a farm. 

Furthermore, the requirement for low-frequency statistics of the SCADA data are less of a burden from 

a data storage and handling point of view.  

A summary of the approaches for damage detection based on high-frequency sensor signals (current 

practice) and low-resolution data (SCADA statistics) is given in Table 1. Two frameworks for 

implementing machine learning approaches are possible, depending on whether the damage equivalent 

load (DEL) at different locations and/or components varies in presence of a damage in the structure or 

not. The accuracy of the fatigue loads estimated from direct monitoring is affected by missing data and 

noise in the acquired signals [15]. To avoid relying on the installation of strain gauges and dealing with 

data management issues, several authors proposed and validated the use of ten-minute statistics of 

available operational SCADA signals for the prediction of structural fatigue loads from trained neural 

network models  [16]–[19]. If a DEL is shown to be a good indicator of an anomaly in the system (see 

[20], for scour), SCADA data could be employed for quantifying it and its deviation. In contrast, 

anomalies in the SCADA data and in other measurable signals should be investigated to identify the 

indicator(s) of the damage if the DEL is shown not to be one. In terms of the machine learning 

approaches for anomalies in SCADA and other measurable signals, this work is addressing supervised 

learning only, i.e. classification. 

Table 1. Summary of the possible approaches for structural damage detection: current practice and 

possible approaches based on SCADA data  

Damage Indicator(s) Sensor Resolution Detection approach 

Natural frequencies and/or 

mode shapes  
Accelerometers  ≥ 20 Hz Vibration-based 

Fatigue loads (DEL) 

• Strain gauge  

(direct monitoring) 

• SCADA 

(indirect monitoring) 

≥ 20 Hz Machine learning  

Monitoring of DEL via regression and/or 

anomaly detection approach  10-min 

Anomaly in  

SCADA data 
SCADA 

10-min 

Machine learning  

(1) Classification approach for 

identification of the damage 

indicator(s) 

(2) Monitoring of quantity via regression 

and/or anomaly detection approach 

Anomaly in other 

measurable signals  

• Strain gauges  

• Accelerometer 

• Inclinometer, etc. 
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3.  Methodology 

Figure 1 shows the flowchart of the approach. The methodology developed in this paper is based on the 

following three main steps:   

• The dynamics of the structure are analysed in response to environmental and operational 

conditions (EOC) and as a consequence of the structural failure. Semi-coupled simulations of 

the finite element (FE) model of the support structure, in healthy and damaged condition, and 

the model of the flexible structure of the turbine tower are run for a representative set of EOC. 

The time histories of loading conditions and relative structural responses are then post-

processed into ten-minute statistics, similarly to SCADA data. 

• The data are collected into a database, which is sequentially accessed to construct the datasets 

for the training and testing of machine learning algorithms. Each dataset for varying 

environmental loadings of the structure has a 50:50 ratio of healthy and damaged conditions. 

The features, i.e. the set of independent variables used for the prediction, of each dataset are 

then standardised before using in the models. The dataset in analysis is then divided into subsets, 

named “Tr” for the tuning/training subsets and “Te” for testing subsets. 

• The tuning, training and testing methods are applied in the same manner for all datasets 

considered and all algorithms investigated. The detection capability of logistic regression, 

support vector machine, k-nearest neighbour, random forest, and Gaussian naïve Bayes based 

classifiers is examined. Each algorithm’s best performance is obtained through an iterative 

process. If a classifier performs in an unsatisfactory way on the test set for stochastic variation 

of the loadings, feature and dimension reduction techniques are applied (see Figure 1, in green). 

The most promising algorithms are then tested on the subsets for variations of the environmental 

parameters (see Figure 1, with “dashed” lines in the block for “synthetic data generation” and 

“data processing”). If insufficient detection performance is exhibited at this stage, the subset for 

the training of the classifier is extended to include additional features and/or the data from the 

misclassified cases. Tuning, fitting and testing are then repeated (see Figure 1, in blue). 

Eventually, a recommendation of the best training set and algorithm for the damage detection 

task is given. 

 

Figure 1. Workflow for the data generation, the datasets processing and the algorithms training and 

testing. In “dotted lines” are the iterative processes for the re-training of an algorithm. 

4.  Synthetic data generation 

It is very unlikely to have access to real data of damaged states, as such event rarely happens for the 

subsystem under consideration, and such data would be unlikely to be shared for research purposes due 

to confidentiality reasons. For the creation and collection of the synthetic data, Ramboll’s in-house 

software ROSAP (Ramboll Offshore Structural Analysis Programs) [21] and LACFlex aero-servo-
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elastic code (based on Flex5) [22] are used in a semi-coupled approach for a model of a turbine installed 

on jacket foundations (cp. Figure 1). The ROSAP packages are used for the definition of the as-designed 

jacket geometries, material properties, and environmental loads of the jacket structure. The full model 

of the substructure is reduced into Craig-Bempton superelements [23], approximating its dynamics by 

including only a limited number of deformation modes. The LACFlex aero-servo-elastic software allows 

an accurate modelling of the tower and the rotor-nacelle assembly, together with the control strategies 

in response to the stochastic turbulent wind loads acting on the turbine. The superelement files derived 

in ROSAP are then coupled with the wind turbine model in LACFlex for each combination of wind and 

wave loads, and integrated simulations are carried out.  

Damage implementation 

As case study, the full loss of a cross-member of the jacket structure is simulated. The stiffness of a 

brace close to the seabed which connects diagonally two of the legs of the jacket is reduced to a value 

close to zero. This failure location is selected because it is associated to a high deviation of the global 

natural frequencies. It is worth mentioning that this approach, which is based on simulated data, carries 

some uncertainties. On one side, the coupling of the foundation dynamics via the superelement innerly 

hold some small discrepancies with the substructure dynamics (until 10 Hz), with respect to the full 

model [23]. On the other side, the global damping of the structure is assumed to be the same as the one 

defined at the design phase, neglecting thus the possible effect of the structural failure. These model 

uncertainties are here acknowledged but are not tackled in this paper. Nonetheless, the analysis is 

harmonized, by extending the first assumption to the healthy model as well. The second assumption is 

judged acceptable, since the aim of the investigation is to demonstrate only the detection feasibility. 

Simulations setup 

Focusing on detection during normal operational conditions (power production) of the turbine, the 

fatigue limit state load case is used for the setup of the EOC, as specified in DLC 1.2 [24]. A set of 

representative load combinations is then investigated. Considering the geometry of the jacket and the 

implemented damage, only 4 wind directions and 12 wave directions are simulated, for 6 values of 

average wind speed at the hub height (3 below and 3 above rated conditions). Nine realizations of the 

wind and wave time histories are processed for each loading combination, to guarantee the capability of 

the detection algorithms to distinguish the response due to load stochasticity from one of the damaged 

status. Therefore, a total of 2,592 simulations per turbine status are performed. 

To account for the uncertainty associated to the real operational conditions of the turbine, the healthy 

and damaged structural responses are derived for changes in the wind farm flow conditions as illustrated 

in Figure 2. The wind shear exponent (WS) – which is potentially correlated to multiple factors [25]  – 

is varied from the design base specification to a minimum of 0.08 (WSL) and a maximum of 0.3 (WSU), 

changing the distribution of the normal wind profile. The 90th percentile of the effective turbulence 

intensity (TI) is used as reference, a value considered representative for the fatigue design calculations 

[26]. Based on the experience from a similar farm, an upper (TIU) bound curve is defined to represent 

the missing extreme cases. Similarly, a lower (TIL) bound curve is drawn corresponding to the 10th 

percentile of the effective turbulence intensity. These are then implemented in a Mann turbulence model 

to represent the fluctuating wind field.  

  

Figure 2. Visualisation of the 

uncertainties considered (upper 

and lower bounds) in the wind 

farm flow condition of the 

fatigue design simulations: wind 

shear (left), and TI (right). 

WSL WSU
design

TI [%]

Wind Speed [m/s]

TIU

TIL

TIML

TIMU

design
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5.  Pre-analysis and datasets processing  

Effect of environmental parameter variations 

As outlined in [5], any structural health monitoring method employed in the detection task must be able 

to distinguish between signal variations related to EOC, as opposed to the ones corresponding to a 

structural anomaly. The damage implemented was observed to lead to significant changes of the second 

modes and their natural frequencies with respect to the healthy status. It is then reasonable to expect that 

this has an impact on the loads at the tower base, building the interface between the turbine and the 

jacket structure. However, variations of the environmental conditions could affect the global response 

in a similar manner.  

Therefore, a pre-analysis for a reduced number of simulations is performed to investigate the 

influence of wind flow parameters (upper- and lower-bound values) on the structural response. The 

deviation of the loads at the tower interface, with respect to the design load case, is presented in Figure 3, 

for a below rated load combination. The box plots of the time histories of forces and moments in the 

fore-aft (y) and the side-side (x) direction are reported for the nine stochastic variations of wind and 

wave loadings. It can be noticed that the wind shear exponent does not seem to significantly affect any 

of the loads. On the contrary, a high level of turbulence intensity is associated to higher load ranges and 

standard deviations compared to the design base scenario. Opposite behavior is then observed for the 

low-turbulence level. Consequently, datasets for variations of the TI need to be fed to the machine 

learning models during its training, as opposed to variation of the wind shear that can be fully captured 

in the structural dynamics of the design load case. 

  

 
Figure 3. Healthy status turbine box plots of the interface load for lower- and upper-bound EOC 

parameters (wind shear exponent – left – and TI – right) for a selected below rated load combination. 

Detectability and signals deviation  

The 50 Hz time histories output from the aero-hydro-servo-elastic simulations are post processed into 

ten-minute minimum (min), maximum (max), average (mean), and standard deviation (std). At first, all 

the measurable signals are collected into the database of operational conditions, potentially being 

meaningful indicators of the structural failure.  

The potential predictors of the damage are then investigated by quantifying the deviation of the 

statistics, given the scatter for the stochastic variation of the loading, for the healthy and damaged status 

data. A visual representation of this assessment is given in Figure 4, where trends in the mean of the 

tower top acceleration and the DEL of tower base bending moments are presented. With respect to the 

DEL of the bending moments, only the MyF0 related to the side-side motion (Figure 4) deviates slightly 

from the healthy status for some wind-wave misalignment angles. The DEL of the MxF0 in the fore-aft 

motion of the tower base (Figure 4), as well as the DELs of the moments at the tower top, at the 

foundation and at the blade roots remained mainly unaffected. On the contrary, it was observed that the 
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tower top acceleration (AxTT and AyTT in Figure 4), the power output range (for the extreme turbulence 

case), the tower bottom acceleration and rotations and some of the forces and moments in the drivetrain 

(mainly at the main bearing) record discrepancies from the healthy operating conditions, throughout the 

load combinations considered (not all shown for brevity).  

 

 

 

Figure 4. Box plots of the ten-minute mean tower top acceleration (A●TT) and interface bending 

moments DEL (M●F0) against wind-wave misalignments for an above rated case load combination. 

Data subsets for training and testing 

A summary of the datasets and subsets considered is given in Table 2, whereas Table 3 details the 

considered sensors. A detection through standard SCADA signals (sensor setup S0) is preferred and 

attempted at first. Initially, the investigation of the feasibility of the status classification is performed on 

the dataset of the design load combinations (dataset D0). Then the data derived for the different TI levels 

are added to this base scenario, expecting significant variations in the loadings and response of the 

structure (datasets D1, D2 and D3). Each of the training subsets (Tr#) consists of 67% of the data of the 

current set, by randomly selecting six out of the nine realizations for each load case. The remaining set 

of three realizations per load case, consisting of the 33% of the data in the set, is collected in the subset 

Te33 and used for testing. Additionally, the mid -upper and -lower TI curves (Figure 2) are derived, and 

the statistics associated to these loadings are collected into the Te3 and Te4 test sets, over that the one 

for upper and lower bound values (in the test sets Te1 and Te2).  

Table 2. Datasets and subsets for training and testing  
Data set Acronym Loading conditions No. simulations 

Datasets 

 (D)  

D0 design 5,184 

D1 design + TIU 10,368 

D2 design + TIL 10,368 

D3 design + TIU + TIL 15,552 

Training subsets 

(Tr) 
Tr# - 67% D# 

Testing subsets 

 (Te) 

Te33 - 33% D# 

Te1 TIU 5,184 

Te2 TIL 5,184 

Te3 TIMU* 5,184 

Te4 TIML* 5,184 

* mid-upper and -lower TI curves selected as shown in Figure 2 

Mean [m/s2]

A
x

T
T

A
y

T
T

M
x

F
0

M
y

F
0

DEL [kNm]

Damaged structure

Healthy status

Wind-wave misalignment [deg] 
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To achieve satisfactory classification results, also the sensor setup is redefined during the 

training/testing iterative steps (cp. Table 3). Additionally, an inclinometer and strain gauges are assumed 

to be installed at the tower base for the indirect and direct measurement of strain. The advantages from 

the selection of these sensors’ signals and location is: 1) in avoiding installing monitoring devices below 

the water level and, 2) to maintain the analysis as independent as possible from measurement from the 

drivetrain, which are highly related to the specific control strategies and optimization. 

Table 3. Sets of sensors and signals considered for the detection purpose 

Sensor type Measurement 
Signal 

acronym Unit 
Sensor set up 

S0 S1 S2 S3 

SCADA 

Nacelle direction YawPos [deg] x x x x 

Wind direction WDir [deg] x x x x 

Yaw angle (misalign. error) YawErr [deg] x x x x 

Wind speed Whub [m/s] x x x x 

Power Pow [kW] x x x x 

Rotor speed RotSpd [rpm] x x x x 

(Collective) Pitch angle PiPos1 [deg] x x x x 

 2D Tower top acceleration AxTT, AyTT [m/s2] x x x  

Inclinometer 2D Rotation at interface  UrxF, UryF [deg]  x x x 

Strain Gauge 2D Bending moment at interface MxF0, MyF0 [kNm]   x  

6.  Training and testing of the detection algorithms 

Training and testing methods 

Not having a clear indication on which of the signals (in Table 3) could stand as the best indicator(s) for 

a damage, the different sensor sets are used for the supervised classification to identify the selection of 

the best predictors based on the classifiers’ performance. The algorithms are implemented with the 

Python machine learning package (skikit) [27]. The parameter tuning approach and the training methods 

applied are briefly described in the following. Subsequently, the key performance indicators for the 

assessment of the detection quality are introduced. 

6.1.1.  Grid search cross-validation and training. A grid search is applied for the identification of the 

best hyperparameters for each model. The combination giving the overall best performance on the folds 

of the training set is selected (cross-validation). These folds, i.e. subsets, are selected by applying a 

stratified k-fold approach [28], which divides the training set in homogeneous splits of healthy and 

damaged data samples. Each of the models tuned with the optimal set of hyperparameters, is then fitted 

to the full set of training data.  

6.1.2.  Performance estimation. The key performance indicators of the models’ detection capability are 

derived from the confusion matrix (Table 4). These are the accuracy (acc), true damage (positive) rate - 

here referred to as true detection rate (TDR) -, and false damage (positive) rate - here referred to as false 

detection rate (FDR) -, as defined in equations from (1) to (3) respectively. While the acc gives an 

overall indication on the goodness of the classifier, the TDR refers to the models’ ability to detect the 

damage. A satisfactory TDR is assumed for values above 70%. The FDR, instead, gives an indication of 

the percentage of false alarms raised by the classifier. A satisfactory FDR is considered if below 30%. 

Receiver operating characteristic (ROC) curves [29] and feature ranking plots are employed during the 

tuning and training phases to track the performance and validity of the prediction. Additionally, when 

performing classification, it is advised to investigate the probability corresponding to the predicted 

category. This probability gives a measure of the confidence on the prediction and is presented in the 

so-called reliability curve [30] 
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Results 

The results of the training and testing of the classification algorithms are reported in Table 5. 

Unsatisfactory performance at the tuning and training stage are seen by the following models: 

• Gaussian naïve Bayes (NB). Based on the strong (naïve) independence assumptions between 

the features, it is here implemented by selecting the first 9 principal components (eigenvalues) 

corresponding already to more than the 90% of all the variance (as explained in [31]). Yet, 

inacceptable performance is given, probably because of violation of the normal distribution 

assumption for the numerical predictors. 

• K-Nearest Neighbour (KNN). Despite of the broad and small stepped range of K given during 

the cross-validation tuning and fitting, this algorithm, given its implementation in [27], fails in 

finding boundaries separating the two classes.  

On the contrary, results worthy of further investigation are obtained by: 

• Logistic Regression (LR). Logistic regression is a linear method that models a binary 

dependent variable, where the predictions are transformed using the logistic (sigmoid) function. 

As for linear regression, the model can overfit if there are multiple correlated inputs [32]. Here, 

it does not seem to happen, despite the high dependency of some of the features.  

• Support Vector Machine (SVM). The SVM approach aims to find a line, surface or 

hypersurface for the separation of the classes. When applied to the data, it fails in finding a 

linear hyperplane for a correct classification. On the other hand, by projecting the data into a 

higher-dimensional space defined by polynomials (poly) and Gaussian (radial) basis functions 

(rbf), the models manage to capture the nonlinearity of the classification problem yet requiring 

a higher computational time.  

• Random Forest (RF). This method fits a number of decision tree classifiers on various 

subsamples of the learning datasets, providing as output the average among the single trees’ 

predictions. This ‘trick’, together with the limitation in the number of features for the trees and 

their depth, aims to control the over-fitting.  

By testing the LR, SVM and RF classifiers on the test set for stochastic variations of the 

environmental conditions, it is observed that, for below rated conditions, their predictions are generally 

satisfactory, distinguishing successfully the normal operating conditions from the damage status (cp. 

Table 5). In contrast, substandard performance is obtained for above rated conditions. This could be 

explained by the higher fluctuation of the tower top acceleration in above rated operating conditions. 

In a next step, the algorithms are tested on the subsets of data corresponding to the response of the 

structure to variation of the TI, according to the curves in Figure 2 (test subsets Te1 to Te4). It is evident 

from Table 5 that none of the models can perform such generalization. Consequently, a re-training 

iteration is carried out by updating the training subset by either increasing the amount of data samples 

considered (varying the D datasets) or changing the amount and/or type of sensors employed (varying 

the S sensor set up per dataset). For brevity, the results are following reported only for the RF classifier 

in Table 6. The results of LR and SVM are given in the Appendix. 

 

Table 4. Confusion matrix terminology 

  Predicted 

  
Healthy 

(0 or Negative) 

Damaged 

(1 or Positive) 

A
ct

u
a

l 

Healthy 

(0 or Negative) 
True Healthy  

(TH) 

False Damaged 

(FD) 

Damaged 

(1 or Positive) 
False Healthy  

(FH) 

True Damaged  

(TD) 

acc = 
TD+TH

Total population
 (1) 

TDR = 
TD

FH+TD
 (2) 

FDR = 
FD

TH+FD
 (3) 
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Table 5. On the left, the performance of the best classifiers for the dataset D0 (trained on Tr0), sensor 

set up S0. On the right, the colour legend (targeted performances in green). 

  

6.2.1.  Varying training datasets. The algorithms are at first re-trained by adding the data samples 

corresponding to the varying turbulence levels to the dataset of the design load case (datasets D1, D2 

and D3). Acceptable results are achieved for RF classifier only, while LR and SVM do not exceed 60% 

accuracy. The targeted accuracy and detection rate are generally achieved for prediction on the test set 

Te33 and the mid-low TI (test set Te4) conditions, when adding either the low-TI or both the extreme-

TI data samples to the training set (Tr2 and Tr3, respectively). However, this achievement is associated 

to a high false alarm rate (up to 45% for above rated conditions). 

Table 6. RF classifier performance for the datasets D1, D2 and D3, in combination with the sensor S0, 

S1, S2 and S3. 

 

6.2.2.  Varying sensor sets. By adding the ten-minute statistics of the time signals from the tower base 

inclinometer to the SCADA data (sensor set up S1), significant improvements are achieved by RF. Due 

to the yet high amount of false alarms for TI level above the 90th percentile curve (test sets Te1 and 

Te2), the classifier is re-trained by adding the statistics of tower base strain gauge signals (sensor set up 

S2), including the DELs as additional features. While only a slight improvement is recorded again for 

RF (at below rated condition mainly), it is interesting to observe that LR and linear SVM accomplish 

exceptionally good results (cp. Table and Table in the Appendix). This is identified as symptom of the 

instability of the models due to the addition of collinearity into the analysis. The rotation and bending 

moment signals are, indeed, strongly correlated. The effect of this phenomenon is somewhat reduced in 

the RF classification thanks to random selection of a reduced number of features at each node. In line 

with this logic, and by recognizing a generally high correlation of the acceleration signals with the 

power, the shaft rotational speed and the wind speed (R values above 0.9), a re-training based on the use 

of the inclinometer statistics instead of the tower top accelerometer is attempted (sensor setup S3). The 

Te1 Te2 Te3 Te4

acc TDR FDR acc TDR FDR acc acc acc acc

LR 69% 67% 28% 70% 67% 27% 50% 50% 52% 52%

SVM (poly) 91% 92% 9% 71% 72% 30% 50% 50% 53% 54%

RF 100% 100% 0% 86% 86% 14% 55% 68% 66% 72%

LR 61% 60% 39% 59% 59% 41% 50% 50% 52% 50%

SVM (rbf) 89% 86% 9% 64% 66% 37% 50% 50% 52% 50%

RF 100% 100% 0% 69% 66% 28% 56% 56% 60% 59%

Below 

rated

Above 

rated 

Classifier
Te33Tr0

acc/TDR FDR

below 60 above 40

[60;75) (30;40]

[75;90) (10;30]

[90;100] [0;10]

TDR represents the damage detection rate

FDR  represents the false alarm rate

acc TDR FDR acc TDR FDR acc TDR FDR acc TDR FDR acc TDR FDR

D1 S0 85% 86% 14% - - - 63% 50% 40% 69% 62% 26% 72% 67% 36%

D2 S0 91% 96% 4% 57% 73% 41% - - - 68% 69% 8% 80% 90% 38%

D3 S0 88% 96% 3% - - - - - - 73% 67% 37% 82% 73% 20%

S1 96% 96% 4% 66% 73% 41% 80% 69% 8% 76% 90% 38% 84% 71% 3%

S2 96% 96% 3% 68% 73% 38% 81% 71% 9% 78% 92% 36% 85% 72% 1%

S3 95% 94% 3% 82% 76% 13% 86% 77% 5% 90% 89% 9% 91% 84% 1%

D2 S3 97% 96% 2% 82% 85% 21% - - - 91% 92% 11% 96% 93% 2%

D1 S0 85% 67% 32% - - - 63% 34% 20% 69% 75% 40% 72% 29% 12%

D2 S0 91% 73% 19% 57% 94% 84% - - - 68% 92% 68% 80% 79% 38%

D3 S0 88% 70% 25% - - - - - - 73% 70% 35% 82% 84% 45%

S1 96% 90% 9% 66% 99% 51% 80% 41% 0% 76% 100% 33% 84% 44% 0%

S2 96% 91% 8% 68% 98% 51% 81% 34% 0% 78% 99% 26% 85% 39% 0%

S3 95% 91% 10% 82% 96% 36% 86% 42% 3% 90% 98% 25% 91% 60% 0%

D2 S3 97% 92% 6% 82% 97% 29% - - - 91% 98% 23% 96% 88% 5%

A
b

o
v

e
 r

a
te

d

D0

B
e
lo

w
 r

a
te

d

D0

Te1 Te2 Te3 Te4
Dataset Sensor
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results confirm the hypothesis, showing improved performance for the RF, and unsatisfactory results 

for the LR and SVM classifiers. Finally, by extending the training subset with data from the lowest TI 

level (Tr2), it is observed that the targeted performance is achieved on all the test sets (Te33, Te1, Te3 

and Te4) for the RF classifier, at both below and above rated conditions. It is worth noting that also the 

SVM classifier achieves generally satisfactory performance for this dataset-sensors combination (D2-

S3). In particular, acceptable detection rate and low number of false alarms are achieved on the test sets 

Te33 and Te4, at below rated conditions, by employing a rbf kernel transformation (cp. Table in the 

Appendix). 

7.  Discussion 

The confidence of the classifiers in their prediction is discussed based on the reliability curve in Figure 5. 

The predicted probabilities for the damaged class are divided into bins - along the x-axis. The number 

of predicted damaged events are then counted for each bin and normalized on the y axis (observed 

relative frequency). A well calibrated binary classifier should classify the samples such that, for instance, 

among the samples to which is associated a probability of 0.9, approximately 90% of the cases are 

classified as damaged. Therefore, the more reliable a forecast is, the closer the points will appear along 

the main diagonal (“perfectly calibrated”). For points of the curve below the diagonal, the model has 

over-forecasted the probability, while above the diagonal the probability forecasted is too small. 

  

Figure 5. Reliability plots of the predictions from SVM (orange) and RF (blue) classifiers when trained 

and tested on the dataset-sensor combination D3-S0 (on the left) and D2-S3 (on the right), for below 

rated conditions. 

The reliability curves of the RF classifiers present their typical sigmoid shape (Figure 5) [33]. This 

means that the algorithm is overconfident on small predicted probability and underconfident for big 

predicted probabilities. This behavior is common for RF, because the average predictions from the base-

level trees can have high variance due to feature sub-setting. A slightly better confidence of the RF 

prediction is given when trained on D3-S0 and tested on medium-high TI levels (Te3). Applying specific 

calibration techniques seems necessary for the predictions associated to high-TI levels, where a higher 

under-confidence of the RF models is shown by the histogram peaks moving further away from 0 and 1 

(Figure 5, right). Therefore, although the derivation of the optimal algorithm is not in the scope of this 

paper, a re-calibration activity is suggested for further study, potentially improving the RF classifiers’ 

performance [33]. 
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When trained/tested on the D2-S3 combination, it is shown in Figure 5 that the RF-based algorithms 

are able to extend their prediction to all operating conditions, even for significant variation of the TI 

levels. Although the SVM models do not exhibits as good performance as the ones of the RF classifiers, 

the rbf-SVM classifier in the combination D2-S3 for below rated conditions is very confident in its 

predictions (Figure 5, right).  

8.  Conclusions and future work 

The analysis carried out highlights the feasibility of an approach for the indirect monitoring of a 

structural failure through the low-frequency statistic of the operational data from the offshore wind 

turbine. Supervised algorithms are trained on ten-minute SCADA data derived from simulating the 

structural response and power performance associated to the healthy-status jacket structure, and to a 

disconnection of one of the jacket brace members. The overfitting of the algorithms is controlled by 

applying a cross validation approach and by extensively testing their performance on subsets for 

variation of the stochastic representation of wind and wave time histories and turbulence intensity levels.  

It is observed that, although the tower top accelerometer can give indications on the presence of the 

structural damage, its signals are highly affected by variations in the environmental conditions, making 

the classification activity of the algorithms harder. Acceptable performance in the accuracy and 

detection rate of tree-based classifiers are obtained mainly for below rated conditions. However, the 

dataset for the algorithm training must be extended by additional data samples for correctly classifying 

the structural integrity status through a wide range of turbulence intensity levels. Furthermore, the high 

number of false alarms recorded can be reduced either by prior information on the turbulence intensity 

level (installing a specific sensor for this purpose) or better, by replacing the information from the tower 

top accelerometer with this obtained of an inclinometer positioned at the tower base. In this way, 

significant improvements are achieved in the detection skills of the random forest classifier at all 

operating conditions, and of the support vector classifier for the below rated case. This suggests the use 

of this sensor setup for further analysis of this type of damage.  

It should be noted that the classification models developed in this paper depend on either the 

availability of data associated to the damaged structure, or their simulation through a true digital twin 

model of the structure [34]. Furthermore, a broad set of isolated ten-minute SCADA data is required for 

the off-line training and testing of the algorithms, to ensure satisfactory detection performances among 

the several operating and environmental conditions. The practical value of this approach for the 

detection of the status of an operational system can be achieved by extending analysis to multiple 

damaged conditions, either by increasing the number of labels classified, or the number of classifiers. 

Therefore, future work needs to prove the applicability of this detection method by addressing the 

following: 

• understand the limits of an evaluation based on simulated data and establish the requirements 

for the integration of real data from the operating turbine.  

• investigate the capabilities of unsupervised (or semi-supervised) approaches for the creation of 

normal behaviour models of the turbine. 

• handle the detection of multiple failure modes, failure locations, and their potential 

simultaneous occurrence. 
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Appendix 

The results of the logistic regression (LR) and the support vector machine (SVM) -based algorithms 

are here presented. For brevity, the performance on the test sets are reported in terms of accuracy (acc) 

only. However, the confusion matrix (CM) of each classification test is given to allow deriving the other 

performance indicators (see Table 4). Overfitting is identified when a strong collinearity is introduced 

among the classification predictors, thus by implementing both the inclinometer and strain gauge 

measurements (sensor setup S2). Indicators of this phenomenon are: i) the improvement of the accuracy 

for both LR and SVM classifiers (cp. Table A and B), ii) the switch to a linear separation function for 

the SVM classifier, while more complex kernel transformations are employed for the all the other sensor 

combinations. Finally, the performance of the SVM-based classifiers on the combination D2-S3 are 

reported in Table C. At below rated conditions, the SVM model implementing a rfb kernel scores 

satisfactory accuracy (above 90%), detection rate (of about 90%) and alarm rate (below 10%) on the 

Te33 and Te4 tests set. 

Table A. LR classifiers performance on the dataset D0, sensor set up S0, S1, S2 and S3 

 

Table B. SVM classifiers performance on the dataset D0, sensor set up S0, S1, S2 and S3 

 
 

Table C. SVM classifiers performance on the dataset D2, sensor set up S3 

 
 

CM acc CM acc CM acc CM acc CM acc CM acc

S0
[[622, 242], 

[288, 576]]
69%

[[314, 118], 

[143, 289]]
70%

[[8, 1288], 

[2, 1294]]
50%

[[1296, 0], 

[1293, 3]]
50%

[[54, 1242], 

[15, 1281]]
52%

[[1267, 29], 

[1206, 90]]
52%

S1
[[630, 234], 

[245, 619]]
72%

[[308, 124], 

[136, 296]]
70%

[[12, 1284], 

[6, 1290]]
50%

[[1294, 2], 

[1290, 6]]
50%

[[87, 1209], 

[16, 1280]]
53%

[[1247, 49], 

[1184, 112]]
52%

S2
[[864, 0], 

[0, 864]]
100%

[[432, 0], 

[0, 432]]
100%

[[1273, 23], 

[2, 1294]]
99%

[[1255, 41], 

[122, 1174]]
94%

[[1294, 2], 

[0, 1296]]
100%

[[1293, 3], 

[18, 1278]]
99%

S3
[[538, 326], 

[332, 532]]
62%

[[266, 166], 

[175, 257]]
61%

[[327, 969], 

[163, 1133]]
56%

[[1269, 27], 

[1192, 104]]
53%

[[435, 861], 

[227, 1069]]
58%

[[1144, 152], 

[902, 394]]
59%

S0
[[529, 335], 

[342, 522]]
61%

[[256, 176], 

[175, 257]]
59%

[[7, 1289], 

[5, 1291]]
50%

[[1296, 0], 

[1296, 0]]
50%

[[107, 1189], 

[48, 1248]]
52%

[[1296, 0], 

[1296, 0]]
50%

S1
[[549, 315], 

[310, 554]]
64%

[[261, 171], 

[138, 294]]
64%

[[539, 757], 

[276, 1020]]
60%

[[1295, 1], 

[1294, 2]]
50%

[[622, 674], 

[325, 971]]
61%

[[1261, 35], 

[1120, 176]]
55%

S2
[[864, 0], 

[0, 864]]
100%

[[431, 1], 

[0, 432]]
100%

[[1277, 19], 

[0, 1296]]
99%

[[1296, 0], 

[882, 414]]
66%

[[1292, 4], 

[0, 1296]]
100%

[[1295, 1], 

[184, 1112]]
93%

S3
[[538, 326], 

[334, 530]]
62%

[[262, 170], 

[146, 286]]
63%

[[18, 1278], 

[10, 1286]]
50%

[[1296, 0], 

[1296, 0]]
50%

[[90, 1206], 

[33, 1263]]
52%

[[1296, 0], 

[1296, 0]]
50%

Te1 Te2 Te3 Te4
Sensor

B
e
lo

w
 r

a
te

d
A
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o

v
e
 r

a
te

d

Tr0 Te33

CM acc CM acc CM acc CM acc CM acc CM acc

poly (4) S0
[[787, 77], 

[73, 791]]
91%

[[303, 129], 

[121, 311]]
71%

[[916, 380], 

[922, 374]]
50%

[[358, 938], 

[346, 950]]
50%

[[707, 589], 

[632, 664]]
53%

[[683, 613], 

[574, 722]]
54%

poly (2) S1
[[815, 49], 

[67, 797]]
93%

[[378, 54], 

[84, 348]]
84%

[[1191, 105], 

[1140, 156]]
52%

[[1285, 11], 

[1074, 222]]
58%

[[1107, 189], 

[995, 301]]
54%

[[1169, 127], 

[574, 722]]
73%

linear S2
[[864, 0], 

[0, 864]]
100%

[[431, 1], 

[1, 431]]
100%

[[1266, 30], 

[3, 1293]]
99%

[[1294, 2], 

[122, 1174]]
95%

[[1287, 9], 

[1, 1295]]
100%

[[1296, 0], 

[25, 1271]]
99%

rbf S3
[[860, 4], 

[6, 858]]
99%

[[374, 58], 

[49, 383]]
88%

[[0, 1296], 

[0, 1296]]
50%

[[0, 1296], 

[0, 1296]]
50%

[[130, 1166], 

[84, 1212]]
52%

[[503, 793], 

[181, 1115]]
62%

rbf S0
[[789, 75], 

[123, 741]]
89%

[[272, 160], 

[149, 283]]
64%

[[0, 1296], 

[0, 1296]]
50%

[[0, 1296], 

[0, 1296]]
50%

[[119, 1177], 

[61, 1235]]
52%

[[0, 1296], 

[0, 1296]]
50%

poly (2) S1
[[740, 124], 

[126, 738]]
86%

[[328, 104], 

[117, 315]]
74%

[[1287, 9], 

[1271, 25]]
51%

[[1296, 0], 

[1296, 0]]
50%

[[1200, 96], 

[1030, 266]]
57%

[[1293, 3], 

[1293, 3]]
50%

linear S2
[[862, 2], 

[0, 864]]
100%

[[431, 1], 

[0, 432]]
100%

[[1294, 2], 

[2, 1294]]
100%

[[1228, 68], 

[177, 1119]]
91%

[[1294, 2], 

[0, 1296]]
100%

[[1285, 11], 

[16, 1280]]
99%

rbf S3
[[864, 0], 

[0, 864]]
100%

[[252, 180], 

[126, 306]]
65%

[[0, 1296], 

[0, 1296]]
50%

[[0, 1296], 

[0, 1296]]
50%

[[76, 1220], 

[33, 1263]]
52%

[[0, 1296], 

[0, 1296]]
50%

Te33 Te1 Te2

B
e
lo

w
 r

a
te

d
A

b
o

v
e
 r

a
te

d

Kernel Sensor
Tr0 Te3 Te4

acc TDR FDR acc TDR FDR acc TDR FDR acc TDR FDR acc TDR FDR

Below 

rated
94% 93% 6% 53% 42% 36% - - - 64% 65% 37% 91% 87% 4%

Above 

rated
78% 77% 22% 53% 86% 79% - - - 60% 86% 67% 52% 43% 39%

Te4Te33 Te1 Te2 Te3
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