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Abstract

The graph spectrum is the set of eigenvalues of a simple graph with n vertices.
Here we fold this graph spectrum at a given pair of reference eigenvalues and
then exponentiate the resulting folded graph spectrum. This process produces
double Gaussianized functions of the graph adjacency matrix which give more
importance to the reference eigenvalues than to the rest of the spectrum. Based
on evidences from mathematical chemistry we focus here our attention on the
reference eigenvalues ±1. They seems to enclose most of the HOMO (highest
occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital)
of organic molecular graphs. We prove here several results for the trace of the
double Gaussianized adjacency matrix of simple graphs–the double Gaussianized
Estrada index. Finally we apply this index to the classification of polycyclic
aromatic hydrocarbons (PAHs) as carcinogenic or inactive ones. We discover
that local indices based on the previously developed matrix function allow to
classify correctly 100% of the PAHs analyzed. Such indices reflect the electron
population of the HOMO/LUMO and eigenvalues close to them, in the so-called
K and L regions of PAHs.

Keywords: matrix functions; mathematical chemistry; polycyclyc aromatic
compounds; graph spectra; eigenvalues; HOMO; LUMO; frontier orbitals,
HMO

1. Introduction

The use of functions of the adjacency matrix A of graphs has proved to
be very useful in setting structure-spectra relations which found applications
in many different research fields [1, 2, 3, 4, 5, 6, 7, 8, 9] (for a recent review
see [10]). As part of this effort we have previously started the investigation of
the spectral region close to the zero eigenvalue [5, 8]. That is, instead of using
matrix functions, such as the matrix exponential exp (A) [1, 2], which prioritize
the contribution of the spectral radius λ1 over the rest of the eigenvalues of A,
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Figure 1: Scheme illustrating the double-Gaussian transformation of the spectrum of a graph
representing the energy levels of a molecule.

we focus on general Gaussian function G̃ (λref) = exp
[
−
(
λrefI −A2

)]
which

prioritize λref [5, 8]. Then, when λref = 0 we are centering the matrix function
on the nullity of the graph, which has been shown to play an important role,
for instance in chemical applications [5]. We extended this study to the analysis
of λref = −1, which revealed important structural patterns hidden in the graph
spectra [8].

When studying molecules with the so-called tight-binding Hamiltonians, e.g.,
the Hückel molecular orbital (HMO) approach [11, 12], there are two eigenvalues
of the graph spectra which play a fundamental role in understanding molecular
properties. They are known as the highest occupied (HOMO) and the highest
unoccupied molecular (LUMO), respectively [13]. These “molecular orbitals”
are schematically illustrated in Fig. 1 (left panel) where we indicate their im-
portance as electron donor and acceptor, respectively. Our goal in this work is
then to “fold” the graph spectra such that two eigenvalues, like for instance the
HOMO and LUMO, have the largest contribution to the corresponding matrix
function.

Therefore, in this work we define double Gaussian functions of the graph
spectra:

G̃ (λref1 , λref2) = exp
[
− (λref1I −A) 2 (λref2I −A) 2

]
. (1)

The schematic process of the double Gaussianization of the graph spectra is
illustrated in Fig. 2. In the case of alternant conjugated molecules with n atoms
and graph eigenvalues λ1 < λ2 ≤ · · · ≤ λn, the HOMO/LUMO correspond to
the eigenvalue ∓λn/2, respectively. Therefore, here we will focus on the case in
which λref1 = −λref2 , but the formulation is general enough as to consider any

2

Double gaussianization of graph spectra



Figure 2: Schematic illustration of the double Gaussianization of the graph spectra. In the
extreme left we illustrate the graph spectra where the eigenvalues are represented as dots in
a vertical line. In the central panel we illustrate the bifolding of the spectrum where the
reference eigenvalues occupy the lowest position in a vertical line. Finally (extreme right) we
exponentiate the bifolded spectrum and the reference eigenvalues make the highest contribu-
tion to the matrix function.

further case. Additionally, Fowler and Pisanski [14] have called “normal” the
molecular graphs for which +1 ≥ λHOMO ≥ λLUMO ≥ −1, while the rest of
molecular graphs are called “exceptional”. The reason for this is that most of
molecular graphs have their HOMO and LUMO within the ’chemical triangle’
of an HOMO-LUMO map [14]–a scatterplot of the middle eigenvalues of the
graph–, with vertices at (−1,−1), (+1,−1), (+1,+1). They proved that all
chemical trees lie within the triangle, as do all chemical graphs with up to 12
vertices [14]. Therefore, and for the sake of homogeneity of results, we will focus
here on the case λref1 = 1, λref2 = −1. Then, we study the function

G (−1, 1) = exp
[
−
(
(−1) I −A2

)
(I −A) 2

]
= exp

[
−
(
A2 − I

)2]
,

(2)

and in particular the corresponding Estrada index [1] of this function:

H−1,1 = trG (−1, 1)

=
n∑

j=1

e−(λ
2
j−1)

2
, (3)

where tr is the trace of the corresponding matrix.
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2. Preliminaries

Here we settle the notations used in this work. We consider here simple,
connected graphs G = (V,E) with n nodes (vertices) and m edges. A walk of
length k in G is a set of nodes i1, i2, . . . , ik, ik+1 such that for all 1 ≤ l ≤ k,
(il, il+1) ∈ E. A closed walk is a walk for which i1 = ik+1. The degree of a vertex
is the number of incident edges to it, i.e., the number of nearest neighbors the
vertex has. The following types of graphs are used in this work. The complete
graph of n vertices Kn is the graph having an edge between every pair of vertices.
The complete bipartite graph Kn1,n2

is the graph with the vertex set partitioned
into two disjoint subsets of cardinalities n1 and n2, respectively, such that every
vertex in one set is connected to every vertex in the other set. The star graph
is the particular case in which n1 = 1 and n2 = n − 1. The path graph of n
vertices Pn is the connected graph in which every vertex has degree 2, but two
vertices which have degree one. The cycle Cn is a connected graph in which
every vertex has degree 2. A subgraph G′ = (V ′, E′) of G is a graph such that
V ′ ⊆ V and E′ ⊆ E. An induced subgraph is a subgraph formed by a subset
of the vertices of the graph and all of the edges connecting pairs of vertices in
that subset.

Let A be the adjacency of matrix of the graph. We label the eigenvalues
of A in non-increasing order: λ1 > λ2 ≥ . . . ≥ λn. Since A is a real-valued,
symmetric matrix, we can decompose A into A = UΛUT where Λ is a diagonal
matrix containing the eigenvalues of A and U = [

−→
ψ 1, . . . ,

−→
ψ n] is orthonormal,

where
−→
ψ i is an eigenvector associated with λi. Because the graphs considered

here are connected, A is irreducible and from the Perron-Frobenius theorem we
can deduce that λ1 > λ2 and that the leading eigenvector

−→
ψ 1 can be chosen

such that its components ψ1(u) are positive for all u ∈ V .

3. H−1,1 index for graphs with all but two eigenvalues equal to ±1

Three infinite families of connected graphs have been reported [15] to have
eigenvalues r > 1 and s < −1, and all other eigenvalues equal to ±1. The
adjacency matrix and spectra of these families are as follows. Let O be an all-
zeros matrix, J an all-ones matrix and Ih the h × h identity matrix. Let R2k

be the adjacency matrix of k copies of K2, i.e., the disjoint union of k edges.

Theorem 1. [15] The infinite families of graphs having the following adjacency
matrices and spectra are the only ones having all but two eigenvalues different
from ±1:[

O J − Im
J − Im O

]
(m ≥ 3) with spectrum

{
±(m− 1), 1m−1,−1m−1

}
;[

J − Ia J
J R2k

]
(a ≥ 1, k ≥ 2) with spectrum{

a

2
± 1

2

√
a2 + 8ak − 4a+ 4, 1k−1,−1a+k−1

}
.
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When a = 1, the resulted family is the friendship graphs;[
R2ℓ J
J R2m

]
(ℓ ≥ m ≥ 2) with spectrum

{
1± 2

√
ℓm, 1ℓ+m−2,−1ℓ+m

}
.

Then we have the following result.

Theorem 2. The H−1,1 index of the above families is presented in the next
theorem

H−1,1 = 2e−m2(m−2)2 + 2m− 2. (4)

H−1,1 = e−
a2

4 (a+4k+b−2)2 + e−
a2

4 (a+4k−b−2)2 + (a+ 2k)− 2, (5)

where b =
√
a2 + 8ak − 4a+ 4.

H−1,1 = e−16(ℓm+
√
ℓm)

2

+ e−16(ℓm−
√
ℓm)

2

+ 2 (ℓ+m)− 2. (6)

Proof. (i)

H−1,1 =
n∑

j=1

e−(λ
2
j−1)

2

(7)

= e−((m−1)2−1)
2

+ e−((1−m)2−1)
2

+m− 1 +m− 1 (8)

= e−m2(m−2)2 + e−(m−2)2 + 2m− 2 (9)

= 2e−m2(m−2)2 + 2m− 2. (10)

(ii) let b =
√
a2 + 8ak − 4a+ 4 for more simplification, then

H−1,1 =
n∑

j=1

e−(λ
2
j−1)

2

(11)

= e
−
(
( a

2+
1
2 b)

2−1
)2

+ e
−
(
( a

2−
1
2 b)

2−1
)2

+ k − 1 + a+ k − 1 (12)

= e−
a2

4 (a+4k+b−2)2 + e−
a2

4 (a+4k−b−2)2 + (a+ 2k)− 2. (13)

(iii)

H−1,1 =
n∑

j=1

e−(λ
2
j−1)

2

(14)

= e
−
(
(1+2

√
ℓm)

2−1
)2

+ e
−
(
(1−2

√
ℓm)

2−1
)2

+ ℓ+m− 2 + ℓ+m
(15)

= e−16(ℓm+
√
ℓm)

2

+ e−16(ℓm−
√
ℓm)

2

+ 2 (ℓ+m)− 2. (16)
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4. H−1,1 Index for simple graphs

Here we prove some results for simple graphs which may be useful in under-
standing further structure-spectra relations in general graphs.

Lemma 3. Let Kn be the complete graph of n nodes. Then

H−1,1 (Kn) = n− 1 + e−n2(n−2)2 . (17)

Proof. The spectrum of Kn is σ(Kn) =
{
[n− 1]

1
, [−1]

n−1
}

so we have

H−1,1 (Kn) =
n∑

j=1

e−(λ
2
j−1)2 (18)

= (n− 1)e0 + e−((n−1)2−)12 (19)

= n− 1 + e−n2(n−2)2 . (20)

Lemma 4. Let Kn1,n2
be the complete bipartite graph of n1 + n2 nodes. Then

H−1,1 (Kn1,n2) =
n1 + n2 − 2

e
+ 2e−(n1n2−1)2 . (21)

Proof. The spectrum ofKn1,n2
is σ (Kn1,n2

) =
{[√

n1n2
]1
,
[
−√

n1n2
]1
, [0]

n1+n2−2
}

so we have

H−1,1 (Kn1,n2
) =

n1+n2∑
j=1

e−(λ
2
j−1)2 (22)

= e−(n1n2−1)2 + e−(n1n2−1)2 + (n1 + n2 − 2) e−1 (23)

=
n1 + n2 − 2

e
+ 2e−(n1n2−1)2 . (24)

Corollary 5. Let K1,n−1 be the star graph of n nodes. Then

H−1,1 (K1,n−1) =
n− 2

e
+ 2e−(n−2)2 . (25)

Lemma 6. Let Pn be a path having n nodes. Then, asymptotically as n→ ∞

H−1,1 (Pn) =
n+ 1

π

∫ π

0

e−(2 cos θ+1)2dθ − e−9. (26)
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Proof. The spectrum of Pn consists of the numbers 2 cos jπ
n+1 , j = 1, 2, . . . , n.

The angles jπ
n+1 do not cover the entire interval [0, π]. Therefore when employing

an integral approximation we need to compensate for the missing near-zero and
near-π contributions. It is done as follows:

H−1,1 (Pn) =
n∑

j=1

e−(λ
2
j−1)2 (27)

=
n∑

j=1

e−(4 cos2( jπ
n+1 )−1)2 (28)

=
n∑

j=1

e−(1+2 cos( 2jπ
n+1 ))

2

(29)

=
1

2

n∑
j=0

e−(1+2 cos( 2jπ
n+1 ))

2

+
1

2

n+1∑
j=1

e−(1+2 cos( 2jπ
n+1 ))

2

− 1

2
e−9 − 1

2
e−9

(30)

=
1

2

n∑
j=0

e−(1+2 cos( 2jπ
n+1 ))

2

+
1

2

n+1∑
j=1

e−(1+2 cos( 2jπ
n+1 ))

2

− e−9. (31)

Now, when n → ∞ the summation in 31 can be approached by the following
integral

H−1,1 (Pn) =
1

2

n+ 1

π

∫ π

0

e−(2 cos θ+1)2dθ +
1

2

n+ 1

π

∫ π

0

e−(2 cos θ+1)2dθ − e−9

(32)

=
n+ 1

π

∫ π

0

e−(2 cos θ+1)2dθ − e−9. (33)

The following theorem gives the value of the H−1 index for paths where
H−1 = tr(e(I+A)2).

Lemma 7. Let Pn be a path having n nodes. Then, asymptotically as n→ ∞

H−1 (Pn) =
n+ 1

π

∫ π

0

e−(2 cos θ+1)2dθ − 1

2

(
e−1 + e−9

)
. (34)
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Proof.

H−1 (Pn) =
n∑

j=1

e−(λj+1)2 (35)

=
n∑

j=1

e−(2 cos( jπ
n+1 )+1)2 (36)

=
1

2

n∑
j=0

e−(1+2 cos( jπ
n+1 ))

2

+
1

2

n+1∑
j=1

e−(1+2 cos( jπ
n+1 ))

2

− 1

2
e−9 − 1

2
e−1.

(37)

Now, when n→ ∞ the summation can be approached by the following integral

H−1 (Pn) =
n+ 1

π

∫ π

0

e−(2 cos θ+1)2dθ − 1

2

(
e−1 + e−9

)
. (38)

Remark. In the proofs of Lemmas 6 and 7, i) follows the steps of [16].

Lemma 8. Let Cn be a cycle having n nodes. Then, asymptotically as n→ ∞

H−1,1 (Cn) =
n

π

∫ π

0

e−(2 cos θ+1)2dθ. (39)

Proof. Notice that the adjacency matrix of a cycle is a circulant matrix and
consequently any function of it and that gives

H−1,1(Cn) =
n∑

j=1

G̃pp, for any node p (40)

= n

 tr
(
e−(A

2−I)2
)

n

 (41)

= n

 1

n

n∑
j=1

e−(4 cos2( 2πj
n )−1)2

 (42)

= n

 n∑
j=1

1

n
e−(2+2 cos( 4πj

n )−1)
2

 (43)

= n

 n∑
j=1

1

n
e−(1+2 cos 4πj

n )
2

 . (44)

Now, when n → ∞ the summation in 44 can be approached by the following

8
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integral

H−1,1(Cn) = n
1

4π

∫ 4π

0

e−(1+2 cos θ)2dθ (45)

= n
1

4π
(2)

∫ 2π

0

e−(1+2 cos θ)2dθ (46)

= n
1

4π
(2) (2)

∫ π

0

e−(1+2 cos θ)2dθ (47)

where θ = 4jπ
n . Thus, when n→ ∞ we have

H−1,1 (Cn) =
n

π

∫ π

0

e−(1+2 cos θ)2dθ. (48)

The following theorem gives the value of the H−1 index for cycles where
H−1 = tr

(
e(I+A)2

)
.

Lemma 9. Let Cn be a cycle having n nodes. Then, asymptotically as n→ ∞

H−1 (Cn) =
n

π

∫ π

0

e−(2 cos θ+1)2dθ. (49)

Proof. Notice that the adjacency matrix of a cycle is a circulant matrix and
consequently any function of it and that gives

H−1 (Cn) =
n∑

j=1

G̃pp, for any node p (50)

= n

 tr
(
e−(A+I)2

)
n

 (51)

= n

 1

n

n∑
j=1

e−(1+2 cos( 2πj
n ))2

 (52)

Now, when n → ∞ the summation in 52 can be approached by the following
integral

H−1(Cn) = n
1

2π

∫ 2π

0

e−(1+2 cos θ)2dθ (53)

= n
1

2π
(2)

∫ π

0

e−(1+2 cos θ)2dθ (54)

where θ = 2jπ
n . Thus, when n→ ∞ we have

H−1(Cn) =
n

π

∫ π

0

e−(2 cos θ+1)2dθ. (55)
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Corollary 10. As n→ ∞ then:
1. H−1,1 (Pn) and H−1 (Pn) are asymptotically equivalent.
2. H−1,1 (Cn) and H−1 (Cn) are asymptotically equivalent.
3. H−1,1 (Kn) and H−1 (Kn) are asymptotically equivalent.
4. H−1,1 (Kn1,n2

) and H−1 (Kn1,n2
) are asymptotically equivalent.

5. H−1,1 (K1,n−1) and H−1 (K1,n−1) are asymptotically equivalent.

Proof. Let us write the following limits of the ratios of both indices:
1)

lim
n→∞

H−1,1 (Cn)

H−1 (Cn)
=

n
π

∫ π

0
e−(2 cos θ+1)2dθ

n
π

∫ π

0
e−(2 cos θ+1)2dθ

= 1.

2)

lim
n→∞

H−1,1 (Pn)

H−1 (Pn)
=

n+1
π

∫ π

0
e−(2 cos θ+1)2dθ − e−9

n+1
π

∫ π

0
e−(2 cos θ+1)2dθ − 1

2 (e
−1 + e−9)

= 1

3)

lim
n→∞

H−1,1 (Kn)

H−1 (Kn)
=
n− 1 + e−n2(n−2)2

n− 1 + e−n2 = 1.

4) when n→ ∞ we have also n1 + n2 = n→ ∞ and n1n2 → ∞, thus

lim
n→∞

H−1,1 (Kn1,n2)

H−1 (Kn1,n2
)

= lim
n→∞

n1+n2−2
e + 2e−(n1n2−1)2

n1+n2−2
e + e−n1n2−1

(
e2

√
n1n2+e−2

√
n1n2

2

)
= lim

n→∞

n1+n2−2
e + 2e−(n1n2−1)2

n1+n2−2
e +

(
e2

√
n1n2−(n1n2+1)+e−2

√
n1n2−(n1n2+1)

2

)
= 1

5) We proved the general case in (4).

5. Extremal graphs for H−1,1 index

Let us start here by stating a result from Cioabă et al. [15]. Define G to be
the set of connected graphs with eigenvalues r > 1 and s < −1, and all other
eigenvalues equal to ±1. Then, Cioabă et al. [15] proved the following result.

Lemma 11. No graph in G has one of the graphs presented in Fig. 3 as an
induced subgraph.

We calculated the H−1,1 index for all 11,117 connected graphs with 8 nodes
and determined those with the largest values of the index. These graphs are
illustrated in Fig. 4. The largest value of H−1,1 is obtained for the complete
graph K8 (not illustrated in the Fig. 4). We have verified that for graphs Gn≤8,
H−1,1 (Gn) < H−1,1 (Kn). Therefore we have the following.

10
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Figure 3: Illustration of the prohibited induced subgraphs found by Cioabă et al. [15]. We
use the same labelling as in the paper of Cioabă et al. [15].

Conjecture 12. Let G be any connected graph of n nodes, then

H−1,1 (G) ≤ H−1,1 (Kn) . (56)

In addition, none of the graphs in Fig. 4 contain any of the graphs in Fig.
3 as an induced subgraph.

We then explore the graphs with the smallest values of H−1,1 among all
11,117 connected graphs with 8 nodes. the 10 ones with the smallest values of
this index are illustrated in Fig. 5.

We have calculated the number of each of the prohibited induced subgraphs
in these 10 graphs displaying the minimum values of H−1,1 (G). We have found
that 11 out of the 18 prohibited induced subgraphs appear very frequently in

Figure 4: Illustration of the 10 graphs (K8 is the number 1, which is omitted) with the largest
values of H−1,1 (G) among all connected graphs with 8 nodes.

11
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Figure 5: Illustration of the 10 graphs with the minimum values of H−1,1 (G) among all
connected graphs with 8 nodes.

these 10 graphs. The results are illustrated in Fig. 6. for instance, the graph
with the least value of H−1,1 (G) has the prohibited induced sugraph B 8 times,
D 6 times and L 2 times. Others, like graph 10 in Fig. 6 contains only one
prohibited subgraph, i.e., subgraph B 24 times.

Lemma 13. Let Let G be connected bipartite graph of n nodes, then

H−1,1 (G) ≤ H−1,1 (Kn) . (57)

Proof. for any graph G we have λ1 ≥ dave where λ1 is the principal eigenvalue
and dave is the average degree of the graph G. Then we have

λ1 ≥ dave =
2m

n

≥ 2 (n− 1)

n
.

(58)

Suppose that n ≥ 5 (it is easy to check that the statement is true for all
graphs of nodes less than 5) then we have λ1 ≥ 2(n−1)

n ≥ 2(4)
5 = 1.6. Thus,

(λ21 − 1)2 ≥ 2.4336 and that implies exp
[
−(λ21 − 1)2

]
≤ exp(−2.4336). If G is

bipartite, then we will have a symmetry in the spectra of G and we get λn ≤
−1.6. Following the same steps we end withexp

[
−(λ2n − 1)2

]
≤ exp(−2.4336).

Now

H−1,1(G) =
n∑

j=1

e−(λ
2
j−1)2 =

n−1∑
j=2

e−(λ
2
j−1)2 + e−(λ

2
1−1)2 + e−(λ

2
n−1)2

≤ n− 2 + 2e−2.4336

< n− 2 + 1 = n− 1 ≤ n− 1 + e−n2(n−2)2 = H−1,1 (Kn) .

12
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Figure 6: Frequency with which some of the prohibited induced subgraphs appear in the
connected graphs with 8 nodes which display the minimum values of the index H−1,1 (G).
The induced subgraphs are given in Fig. 3 and graphs are shown in Fig. 5. The prohibed
induced subgraphs not depicted in the figure do not appear in the graphs considered.

6. Subgraph contributions to H−1,1(G)

We can expand the index H−1,1(G) as a Taylor series to obtain

e−(A2−I)2 = e−Ie2A
2

e−A4

=
1

e
Ie−A4

e2A
2

=
1

e

 ∞∑
j=0

(−1)j

j!
A4j

( ∞∑
i=0

(2)i

i!
A2i

)
.

(59)

Now, using Cauchy product of two infinite series we arrive at

e−(A2−I)2 =
1

e

( ∞∑
k=0

akA
2k

)
,

where ak =
∑

4m+2n=2k

(−1)m 2n

m!n! , and m,n are non negative integers such that

4m+ 2n = 2k. For example,

13
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e−(A2−I)2 ≈ 1

e

(
11∑
k=0

akA
2k

)

=
1

e

(
I + 2A2 +A4 − 2

3
A6 − 5

6
A8 − 1

15
A10 +

23

90
A12 +

29

315
A14 − 103

2520
A16 − 4

35
A18 − 1

15
A20 − 2

63
A22

)
.

So, the trace of e−(A2−I)2 can be expressed as

H−1,1(G) =
1

e

( ∞∑
k=0

akTrA
2k

)

=
1

e

(
TrI + 2TrA2 + TrA4 − 2

3
TrA6 − 5

6
TrA8 − 1

15
TrA10 +

23

90
TrA12 + . . .

)
.

(60)

We know that:

Lemma 14. The number of walks of length k between the nodes p and q of a
graph is given by

(
Ak
)
pq
.

Consequently, TrAk counts the number of closed walks of length k in the
graph. Every close walk encloses a given subgraph. For instance, a closed walk
of length two encloses an edge, therefore the TrA2 counts twice the number of
edges in the graph. Thus, we can related every term TrAk with a weighted
sum of subgraphs. However, due to the presence of positive and negative signs
in Eq. (60) the convergence of the Taylor series is extremely slow, which make
necessary a long list of terms to compute H−1,1(G) this formula. Therefore, the
main importance of this power-series expansion resdes in its use for structural
interpretations as the researcher can identify those terms with a positive or a
negative contribution to the index as well as the contribution of a given specific
subgraph.

7. Application. Carcinogenicity of polycyclic aromatic hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are compounds formed by carbon
in fused hexagonal shapes and hydrogen, for which the eigenvalues ±1 play an
important role [17]. The excessive exposure to PAHs may result in cancer in
humans. A typical route of exposition is through the consumption of charcoal
broiled foods [18]. The general mechanism by which PAHs produce cancer is by
their metabolic activation which leads to the formation of the active carcinogens
like diol-epoxides, radical cations, and o-quinones (see first line in Fig. 7) [18].
These metabolites then react with DNA forming DNA adducts which results
in DNA mutations, alteration of gene expression profiles, and tumorigenesis
(see second line in Fig. 7). The metabolic activation of PAHs depends on the
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Figure 7: Schemetaic illustration of the metabolic activation of a PAH (first line) and the
reaction of the reactive metabolite with a DNA base producing alterations in DNA (second
line).

chemical reactivity of these compounds, and their electron donation/acceptance
capacities, which are mainly determined by their HOMO and LUMO. Then, it
is not strange to find reports on the use of these frontier molecular orbitals or
electronic parameters like superdelocalizability in explaining the carcinogenic
power of PAHs [19].

However, because chemical reactions occur at some specific atoms in a molecule
different atomic regions may have distinct contributions to the carcinogenicity
of PAHs. This has been widely recognized in the literature where four main
atomic regions have been identified with different contributions to the carcino-
genic activity of PAHs. These regions are known as K, L, M and N, which are
illustrated in Fig. 7 (see for instance [19, 20]). The regions K and L where pro-
posed by Pullman and Pullman [21, 22, 23] and have proved to be predictive for
the carcinogenicity of a large number of PAHs [21]. Due to more recent findings
the other two regions, M and N, where proposed and studied in quantitative
structure-carcinogenicity activity of PAHs for instance by Vijayalakshmi and
Suresh [20].

Here we use the series of 28 PAHs for which the carcinogenic power has been
reported and studied by Vijayalakshmi and Suresh [20]. The list of PHAs and
their carcinogenic activity (CA) is reported in Table 1. We consider here the
H−1,1 index split as follows:

H−1,1 = H−1,1 (K) +H−1,1 (L) +H−1,1 (M) +H−1,1 (N) +H−1,1 (F ) , (61)

where H−1,1 (K) is the sum of the contributions of the atoms in the region K
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to the global H−1,1 index, and the term F is used for the atoms in the frame of
the PAHs, i.e., those not in any of the four mentioned regions. We recall that
the contribution of an atom p to the H−1,1 index is:

H−1,1 (p) =
n∑

j=1

ψ2
j (p) exp

(
−
(
λ2j − 1

)2)
. (62)

We use here the average of the atomic contributions for each region H̄−1,1

whose values for the 28 PAHs analyzed are given in Table 1. We grouped
the carcinogenic activity (CA) of these 28 PAHs into two categories, which
correspond to the class I which groups inactive and the class A, which groups
PAHs with CA ranging from + to ++++ (see Table 1). The main reason is that
a classification based on the strength of the carcinogenic activity is impossible
as some of the classes contain only one member, e.g., CA +++.

We now focus in classification techniques that allow to split the set of PAHs
into the two groups devised here on the basis of the regional H̄−1,1 indices. For
that purpose we explore the use of discriminant analysis, classification trees,
support vector machine, and K-nearest neighbors (KNN) techniques, all imple-
mented in the “classification learner” toolbox of Matlab R2018b. In all cases
we observe that the use of the H̄−1,1 indices for the K and L regions are enough
for the classification of these compounds, with no improvement by adding in-
formation about M and N regions. Both, linear discriminant analysis (LDA)
and support vector machine (SVM) classify correctly 85.7% of PAHs in the
two classes. From the carcinogenic compounds these methods classify correctly
87.5% of PAHs and 83.3% of inactive ones. In Fig. 8 (a and b) we illustrate
the results for the LDA. The classification tree improves the previous results
and classifies correctly 93.75% of carcinogenic PAHs (see Fig. 8 (c and d). The
best results are obtained by using KNN which classifies correctly 100% of com-
pounds in the two classes as illustrated in Fig. 8 (e and f). Our analysis has
no exception like in the case of Vijayalakshmi et al. [20] for which 5 PAHs were
excluded from the analysis as outliers (phenanthrene, chrysene, triphenylene,
naphthalene and coronene).

These results coincide qualitatively with those published long time ago by
Pullman and Pullman [21, 22, 23] which shown that the K and L regions
are enough to classify correctly PAHs into carcinogenic/inactive classes. As
can be observed in Fig. 8 (a, c, and e) carcinogenic compounds are those
having large values of H̄−1,1 (K) as well as of H̄−1,1 (L) (red regions in the
mentioned plots). This indicates that carcinogenic PAHs have large contribu-
tions of the HOMO/LUMO eigenvalues and those close to them, which par-
allel the idea of compounds of high reactivity. In fact, the three only PAHs
having the strongest carcinogenicity, i.e., “++++”, are the ones having the
largest values of H̄−1,1 (K): dibenzo[a,i]pyrene (0.5474); dibenzo[a,h]pyrene
(0.5410); benzo[a]pyrene (0.5299). However, in general having low values of
either H̄−1,1 (K) or H̄−1,1 (L) result in inactive compounds although the other
index display large values. This result possibly indicates that a combined inter-
vention of both regions, K and L, are important for the diverse processes giving
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No. compound H̄−1,1 CA ClassK L M N
1 dibenzo[a,i]pyrene 0.5474 0.3511 0.5243 0 ++++ A
2 dibenzo[a,h]pyrene 0.541 0.3582 0.5229 0 ++++ A
3 benzo[a]pyrene 0.5299 0.3531 0.5266 0.4902 ++++ A
4 tribenzo[a,e,i]pyrene 0.5244 0.3806 0.5233 0 ++ A
5 dibenzo[a,e]pyrene 0.5024 0.379 0.5222 0.4903 +++ A
6 naphtho[2,3,a]pyrene 0.4899 0.393 0.5088 0.5066 ++ A
7 benzo[g,h,i]perylene 0.4799 0 0 0.488 ++ A
8 dibenzo[a,h]anthracene 0.4234 0.4388 0.5088 0 ++ A
9 dibenzo[a,j]anthracene 0.4192 0.4363 0.5087 0 ++ A
10 dibenzo[a,c]anthracene 0 0.4229 0.5192 0 ++ A
11 peropyrene 0.5372 0 0 0.4832 + A
12

benzo[e]naphtho[3,4,a]pyrene

0.5007 0.4011 0.5138 0.4861 + A
13

benzo[a]naphtho[2,1,8,h,i,j]naphthacene

0.4914 0.417 0.5081 0.485 + A
14 benzo[a]anthracene 0.4255 0.3947 0.5106 0 + A
15 tribenzo[a,c,h]naphthacene 0.4225 0.4316 0.5207 0 + A
16 dibenzo[a,c]naphthacene 0 0.4157 0.5214 0 + A
17 pyrene 0.5183 0 0 0.4783 - I
18 coronene 0.4934 0 0 0 - I
19 anthanthrene 0.4833 0.4123 0 0.495 - I
20 benzo[e]pyrene 0.48 0 0.5161 0.48 - I
21 chrysene 0.4301 0 0.5091 0 - I
22 phenanthrene 0.3975 0 0.5072 0 - I
23 triphenylene 0 0 0.5258 0 - I
24 dibenzo[e,l]pyrene 0 0 0.5224 0.4889 - I
25 tetracene 0 0.3881 0.515 0 - I
26 anthracene 0 0.3525 0.5114 0 - I
27 naphthalene 0 0 0.4723 0 - I
28 perylene 0 0 0 0.5008 - I

Table 1: Names of the PAHs studied here, their carcinogenic action (CA), the values of H̄−1,1

for the four atomic regions of PAHs.
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Figure 8: Illustration of the classification plots for carcinogenic PAHs (white circles) and inac-
tive ones (white squares) using LDA (a), classification tree (c) and KNN (e). Confusion charts
for the results obtained with the three classification methods used: LDA (b), classification
tree (d) and KNN (f). 18
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rise to the carcinogenicity of these compounds.

8. Conclusions

We have defined here a generalization of Gaussian function of the adjacency
matrix of a graph to account for the spectral folding at two eigenvalues. This
double Gaussianization of the graph spectra allows to generate indices that give
more importance to a couple of reference eigenvalues in the graph, instead of all
previous matrix functions which give the highest contribution to one eigenvalue,
typically the spectral radius. The current approach is general enough as to focus
on any pair of eigenvalues of the graph, but here we have concentrated on the
pair ±1. The main motivation for this selection has been the role played by
these two eigenvalues in the spectra of molecular graphs, where the HOMO and
LUMO eigenvalues seem to be bounded by these two numbers. The importance
of the HOMO and LUMO in organic molecules has been widely documented
and the current work is a contribution to the search of indices that pay more
importance to these eigenvalues and those close to them. As we have shown here
the indices derived from double Gaussianization of the graph spectra describe
very well the carcinogenicity of PAHs, opening new avenues for the analysis of
quantitative structure-property/activity relations in molecular sciences.
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