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Abstract: As a popular method, virtual reality (VR) is still controversial in its effect on the balance
function of patients with Parkinson’s disease. This systematic review aims to discuss such effects
of VR and to compare it with that resulting from traditional therapies. A comprehensive search
was conducted for randomized controlled trials published from 2000 to 2020 through the following
databases: PubMed, Web of Science, CINAHL, Embase, Cochrane Library. Fifteen articles were
included for the systematic review. An evaluation on their methodological qualities was performed
using the PEDro scale, followed by an assessment of their risk of biases in accordance with the
Cochrane Handbook for Systematic Reviews of Interventions for quality assessment. In terms of
dynamic balance, the BBS score of the VR group was significantly improved when compared with
the control group (SMD = 0.52, 95% CI = 0.31–0.73). However, no significant difference was observed
between the two groups on TUG (SMD = −0.26; 95% CI = −0.62–0.1; p = 0.16). Besides, the VR group
also showed better results in improving patients’ static balance, balance confidence, and quality of
life. A funnel plot was created to investigate the effects of each study included in the meta-analysis
in order to identify any existing publication bias. This systematic review shows that the application
of VR leads to more significant improvement in the balance of patients with Parkinson’s disease than
having them perform traditional exercises. It can be used as an auxiliary method of rehabilitation.

Keywords: virtual reality; balance; Parkinson’s disease

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disease mainly leading to movement
disorders, such as static tremor, bradykinesia, rigidity, and postural instability. These
symptoms will worsen over time, not only causing difficulties in balance, but also causing
patients to lose their confidence in maintaining it, increasing the risk of falls and decreasing
their measures of quality of life [1]. The most significant feature of PD is the decrease
in dopamine content in the brain, which is closely related to the severity of the loss of
dopaminergic neurons in the substantia nigra compact area, leading to the loss of gait
autonomy and balance [2]. Therefore, dopamine replacement therapy is an important
treatment for PD. However, it cannot prevent continued deterioration of body function [3],
and balance and gait-related symptoms are resistant to drugs [4]. Therefore, physical
therapy is a necessary auxiliary method for the treatment of PD. It can improve balance
function [5,6] and enable patients to perform their activities of daily living independently,
thereby improving their quality of life.

It is becoming popular to use VR to treat patients with PD. By definition, VR is a
computer-generated virtual environment with which people can interact in a natural way
and produce a sense of immersion in the corresponding real environment [7]. It has three
key characteristics: immersion, presence, and interactivity [8]. Immersion refers to the
degree to which VR can provide a full range of sensory stimuli that are not originated from
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the physical environment, as well as a high degree of matching between users’ actions
and the corresponding information generated by the system [9]. Immersion can affect
the patients’ experience of VR. By providing multiple visual, auditory, and tactile sensory
cues, it affects the patients’ sense of presence, and through the psychological satisfaction
obtained from indulging in appropriate challenges during the interaction, patients can
be immersed in the world created by VR. The provision of user control, appropriate
challenges, and the enablement of feelings of success are the key elements to immerse
patients in the VR system [10]. There are three types of VR, namely non-immersive, semi-
immersive, and fully immersive. Non-immersive VR equipment mainly includes mice,
joysticks, and high-resolution monitors. It requires the lowest cost of all the virtual reality
systems, and brings to its customers the lowest sense of immersion and interaction. Fully
immersive VR equipment mainly includes gloves, voice commands and head-mounted
displays, which are very expensive but can bring about the highest sense of immersion and
interaction [11]. VR can promote the movement and cognitive processes of its participants,
thereby increasing their chances of regaining lost motion abilities [12]. It can also be
used to carry out personalized repetitive training of balance function and obtain real-
time visual feedback [13], in order to promote the motor learning, maintenance, and
transfer of its users [14]. Patients can be trained using commercially available equipment
(such as Nintendo Wii or XBOX) or custom-made VR systems. Through the provision
of training within a challenging and stimulating environment, VR can also effectively
maintain patients’ interests and motivation to adopt it in practice [15]. Besides, these
devices can be used at home or be catered for patients in lower socioeconomic conditions
to help increase their adherence to rehabilitation [16]. Therefore, VR can have long-term
effects on these patients, as it could have prevented or slowed down the progression of
their physical dysfunctions.

Some systematic reviews have identified the effects of VR on PD patients in the
past, but the conclusions drawn were of opposite views [17,18]. Moreover, they only
used a few outcome measures to evaluate the improvement in patients’ balance functions.
Therefore, whether VR has any beneficial impact on the balance of PD patients has yet
to be determined. In recent years, new studies have evaluated the pros and cons of
both VR and traditional therapies on their treatment to PD. As such, the purpose of this
systematic review is to determine the effect of VR on the balance functions of patients with
PD when compared with traditional therapies by assessing the results obtained from the
measurement of different types of balance.

2. Materials and Methods
2.1. Literature Search

This systematic review was conducted following the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines (Supplementary Materials File S1).
VR has been an emerging technology with a variety of potential benefits in many aspects
of rehabilitation assessment, treatment, and research since 2000 [7]. Through its capacity,
which allows for the creation and control of dynamic 3-dimensional, ecologically valid
stimulus environments within which behavioral responding can be recorded and measured,
VR offers clinical assessments and rehabilitation options that are not otherwise available
with traditional methods [19]. Solid evidence through ongoing research that had studied
the effectiveness of evolving VR technologies within the context of rehabilitation has been
accumulating since then [20]. In view of this, we retrieved references from PubMed, Web
of Science, CINAHL, Embase, Cochrane Library, PEDro from 2000 to 2020. The main
search terms include Parkinson’s disease (“PD”, “Parkinson disease”, “Parkinsonism”,
“Paralysis agitans”, or “Parkinsonian”), virtual reality (“VR”, “Virtual reality exposure ther-
apy”, “Virtual reality immersion therapy”, “exergam*”, “X-BOX”, “Kinect”, or “Wii”), and
randomized controlled trials (“controlled clinical trial”, “randomized”, or “randomly”).
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2.2. Inclusion Criteria

Our research question was based on the Population Intervention Comparison Out-
comes and Study (PICOS) principle. Studies that met the following criteria were eligible:
(1) Participants diagnosed with PD; (2) Randomized controlled trials; (3) The experimental
group used VR training while the control group received traditional treatment. Non-
English research and reviews and conference abstracts were excluded. The titles and
abstracts were screened to select the references deemed qualified. Then, full texts were
extracted to fully evaluate whether they had indeed met the above inclusion criteria.

2.3. Outcome Measures

According to the study by Schoneburg [21], balance function is related to four posture
systems: static balance, dynamic balance, reactive posture adjustment, and expected
posture adjustment. These systems may affect the balance of PD patients and increase the
risk of falls. Therefore, the main results collected were related to static balance, dynamic
balance, and posture control, including (1) Static balance. The One-Leg Stance (OLS) Test
(Single-Leg Stance Test or Unipedal Stance Test), the Limits of Stability (LOS), and the
Sensory Organization Test (SOT) were used to evaluate static balance ability. (2) Dynamic
balance. The Berg balance scale (BBS) and the Timed Up and Go (TUG) Test were used to
measure the patients’ dynamic balance ability. (3) Balance confidence. The Falls Efficacy
Scale (FES) and the Specific Activity Balance Scale (ABC) were used to measure the patients’
confidence when performing activities that may affect their balances and cause them to
fall. (4) Quality of life. Quality of life was evaluated using the 39-Item Parkinson’s Disease
Questionnaire (PDQ-39).

2.4. Data Extraction and Quality Assessment

Two reviewers searched for articles and screened them according to the established
search strategy. After determining the studies to be included in the literature, the reviewers
conducted data extraction and quality evaluation. During the evaluation process, if un-
certainties were encountered while reviewing certain articles, they would be revaluated
by another reviewer. The following data were extracted: (1) Article information; (2) Main
characteristics of the sample (sample size, composition, diagnosis, disease stage); (3) Exper-
imental content (intervention, dosage, measurement); (4) The main results. The qualities
of the literature were evaluated by the PEDro scale. Scores in the range of 0-3 were of
low quality, 4–6 were of medium quality, and 7–10 were of high quality. Using the bias
domains as set out in the Cochrane Handbook for Systematic Reviews of Interventions [22]
for quality assessment, all included studies were being evaluated in order to determine
their risk of biases. The studies were rated as having “low risk of bias”, “high risk of bias”,
or an “unclear risk of bias”.

2.5. Statistical Analysis

As the resulting indexes involved in this article were continuous scalars, we selected
the standardized mean difference (SMD) and a 95% confidence interval (CI) as the effect
size. The heterogeneity of the experiment was evaluated using a forest plot and the I2
statistic. When I2 was less than 50%, the heterogeneity was considered acceptable, and
so the fixed effects model was selected. Otherwise, the random-effects model would be
chosen. Among the outcome variables, p < 0.05 was considered statistically significant.
Review Manager 5.4 under the Cochrane Collaboration protocols was used to perform
a meta-analysis.

3. Results
3.1. Study Selection and Quality Assessment

Through the database searches, 408 related papers were found. After removing
duplicated documents and screening the remaining papers, 15 articles were included as
depicted in Figure 1. The risk of biases was shown in Figures 2 and 3. In summary, one



Electronics 2021, 10, 1003 4 of 16

article had a low risk of bias, 13 articles had an unclear risk of bias, and one article had a
high risk of bias.

The quality ratings of these studies ranged from 4 to 8 (Table 1). Among them,
12 experiments scored 6 or above on the PEDro scale, so their qualities were rated as good
(Supplementary Materials File S2). No participants were blinded to the interventions and
only one study involved therapists who were blinded. Six studies concealed the allocation
of all their participants.
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Table 1. Characteristics of the included studies.

Study Outcomes Findings PEDro

Yang
2016

BBS
TUG

PDQ-39
No significant differences were found in BBS, TUG, PDQ-39 7

Tollár
2019

PDQ-39
BBS

VR group showed a greater improvement in BBS compared with the
control group 6

Heuvel
2014

BBS
SLS
FES

PDQ-39

No significant differences were found in FRT, BBS, SLS, FES, PDQ-39 8

Shih
2016

LOS OLS
BBS TUG Significant improvement in LOS, OLS, BBS, TUG 6

Santos
2019

BBS
TUG

PDQ-39
Significant improvement in BBS, TUG, PDQ-39 6

Ribas
2017

BBS
PDQ-39

Significant improvement in BBS, but this benefit was not sustained in
the long-term 7

Pompeu
2012

BBS
UST No significant differences were found in BBS, UST 5

Pazzaglia
2020 BBS VR group showed a greater improvement in BBS compared with the

control group 5

Liao.
2015a

TUG
LOS
SOT
FES

PDQ-39

Significant improvement in TUG, LOS, SOT, FES, and PDQ-39 7

Lee
2015 BBS Significant improvement in BBS 4

Gandolfi
2017

BBS
ABC Significant improvement in BBS and ABC 6

Feng
2019

BBS
TUG Significant improvement in BBS, TUG 6

Pedreira
2013 PDQ-39 VR group showed greater improvement in the PDQ-39 than the control

group 4

Liao
2015b SOT No significant difference was found in SOT between the two groups 7

Yen
2011 SOT VR group showed greater improvement in SOT-6 than control group 8

Note. BBS, Berg Balance Scale; TUG, Timed Up and Go Test; PDQ-39, 39-Item Parkinson’s Disease Questionnaire; SLS, Single Leg Stance;
LOS, Limits of Stability; OLS, One-Leg Stance; UST, Unipedal Stance Test; FES, Falls Efficacy Scale; ABC, Activities Balance Confidence
scale; SOT, Sensory Organization Test.
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3.2. Main Characteristics

While Table 1 showed the outcomes, main findings, and the PEDro scores of the in-
cluded studies, their experimental designs were described in Table 2. Fifteen studies [23–37]
were published from 2011 to 2020, which included 569 subjects. Gandolfi, Geroin [36] and
Tollár, Nagy [26] had the highest number of participants in their studies, which were 76
and 74 respectively. Except for these two as well as the studies by Santos, Machado [28],
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Pazzaglia, Imbimbo [32], and Yen, Lin [23], all other studies involved less than 40 partici-
pants. The ages of the subjects were between 50 and 85 years old, of which 344 were male.
Thirteen studies [23–31,33,34,36,37] used a modified Hoehn and Yahr scale to assess the
stages of severity of the patients’ PD. Most of the subjects were in stages 1 to 3, and only
one study included patients in stage 4 [37]. Two studies did not report these data [32,35].

All experimental groups adopted non-immersive VR interventions. Nine compared
VR with conventional training [24,25,27,29–32,36,37], four compared VR with conven-
tional training and no treatment [23,26,33,34], and two compared VR with traditional
training and VR combined with traditional training [28,35]. Patients in the experimental
groups completed their training related to balance through following the instructions
on the computer monitors or projection screens. Eight studies used the Nintendo Wii
Fit system [28–31,33–36]. The rest of the research used other equipment, including an
X-box 360 core system [26], Kinect sensor, balance board [23,25,27], or custom-made VR
systems [24,32,37]. The number of embedded VR games that were introduced to the par-
ticipants varied from study to study, ranging from two [24] to ten [36]. Five studies had
the games played in blocks [24,26,28,31,32], such that the participants were allowed to
take breaks in between each game. These breaks ranged from 1 minute each [28,31,32] to
5 min each [24,26].

The duration of the interventions varied from 5 to 12 weeks, and their frequency of
treatments ranged from 2 to 5 times a week. The intensity of the treatments ranged from
30 min to 60 min, ten of which included warm-up sessions prior to the start of the actual
VR or conventional training [23,24,26–28,30–32,36,37], and four out of which also had
cool-down sessions afterwards [26,27,32,37]. The reported warm-up durations ranged from
5 min [26,37] to 10 min [23,24,27,28,30,31]. On top of the initial 10-min warm-up, one study
also involved an extra 20 min of global exercises that were focused on the limbs, the trunk
and the neck before the actual intervention began [30]. Two other studies that included
warm-up sessions did not specify their durations [32,36]. There was one study which
involved a 5-min cool-down exercise towards the end of each intervention session [26],
while two other studies reported that a 10-min cool-down was given to participants at
the end of each session [27,37]. The remaining study did not report the duration of its
cool-down session [32].

In terms of participant selection, all studies had conformed to the exclusion of potential
subjects who would have encountered great difficulties following the proposed activities
due to various forms of physiological impairments, including orthopedic injuries, neuro-
logical dysfunctions, or other chronic diseases. Four studies had additionally considered
the exclusion of PD patients with depression [24,26,30,36], since depression is known to be
an accompanying clinical condition in some individuals inflicted by PD, which may further
affect their performances and lead to biased results. One study excluded participants with
symptoms that are highly similar to those of PD [32], including secondary Parkinsonism
and Parkinson-plus, so as to ensure that the recruited subjects were exclusively affected
by PD. Two studies had accounted for the possible influence of past learning effects, and
excluded participants who have had prior experiences playing with Nintendo Wii [29,30].

In assigning participants to different study arms, all studies had adopted the ran-
dom allocation approach. Three studies randomly assigned their subjects to different
groups through the use of computerized methods that produced computer-generated
random numbers [24,29,31]. Eight studies achieved randomization through the drawing of
objects by an independent assessor, including sealed envelopes [25,27,29,33,34], colored
ribbons [26], and drawing of names or assignment cards [23,30]. The other four studies did
not provide details on their randomization methods [28,32,35,37].
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Table 2. Characteristics of the included studies.

Study
Sample Intervention

DosageDiagnosis
Hoehn and Yahr

Size
M/F Experimental Group Control Group

Yang
2016

IPD
2–3

23
14/9 VR balance training (n = 11) Conventional home balance

training (n = 12)

50 min/d
2 d/w

6 w

Tollár
2019

PD
2–3

74
36/38

Exergaming
(n = 25)

Stationary cycling (CYC) (n = 25)
Waitlist
(n = 24)

60 min/d 5 d/w
5 w

Heuvel
2014

IPD
2–3

33
20/13

Augmented visual feedback
(VFT)

(n = 17)

Conventional training
(n = 14)

60 min/d
2 d/w

5 w

Shih
2016

IPD
1–3

20
16/4 Exergaming group (n = 10) Balance training group

(n = 10)

50 min/d
2 d/w

8 w

Santos
2019

PD
1–3

45
31/14

NW
(n = 15)

NW + CE
(n = 15)

Conventional exercise (CE)
(n = 15)

50 min/d
2 d/w

8 w

Ribas
2017

PD
1–3

20
8/12

Exergaming
Wii fit games

(n = 10)

Conventional exercise
(n = 10)

30 m/d
2 d/w
12 w

Pompeu
2012

IPD
1–2

32
17/15

Wii-based motor training
(n = 16)

Traditional balance exercise
(n = 16)

60 min/d
2 d/w

7 w

Pazzaglia
2020

PD
NA

51
35/16

VR rehabilitation
(n = 25)

Conventional program
(n = 26)

40 min/d
3 d/w

6 w

Liao
2015a

IPD
1–3

36
17/19

VR-based Wii Fit exercise
(n = 12)

Traditional exercise
(n = 12)

Control group
(n = 12)

1 h/d
2 d/w

6 w

Lee
2015

PD
NA

20
10/10

VR + NDT and functional
electrical stimulation

(n = 10)

NDT and functional electrical
stimulation

(n = 10)

45 min/d
5 d/w

6 w

Gandolfi
2017

PD
2.5–3

76
51/25

VR telerehabilitation
(n = 38)

Sensory integration balance
training (n = 38)

50 min/d, 3 d/w
7 w

Feng
2019

PD
2.5–4

30
17/13

VR training
(n = 14) Conventional therapy(n = 14)

45 min/d
5 d/w
12 w

Pedreira
2013

PD
1–3

31
22/9

Nintendo Wii virtual games
(n = 16)

Traditional exercise
(n = 15)

40 min/d
3 d/w

4 w

Liao
2015b

IPD
1–3

36
17/19

VR–based Wii Fit exercise
(n = 12)

Traditional exercise
(n = 12)

Control group
(n = 12)

60 min/d
2 d/w

6 w

Yen
2011

IPD
2–3

42
33/9

VR balance training
(n = 14)

Conventional balance training
(n = 14)

Control group
(n = 14)

30 min/d
2 d/w

6 w

Note. IPD, Idiopathic Parkinson’s disease (PD); NDT, Neurodevelopment treatment.
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With the exception of two studies [30,35], all other studies had conducted their as-
sessments and/or interventions only when they coincided with the participants’ “on”
periods after they had taken their medications beforehand. In particular, four studies
clearly reported that they carried out both their assessments and interventions 1 to 2 h
after the participants had taken their drugs [23,26,28,31]. The delays were essential since
they accounted for the fact that the effects of drug intake were not immediate and that it
required time for medications to attain their maximal effect.

Of the 15 studies, 12 had appointed qualified physical therapists as trainers during
the intervention periods [23–26,28–30,32–34,36,37]. One study additionally required the
presence of a caregiver during the exercises [36], since the interventions were delivered
remotely at the patients’ own homes. The appointment of physical therapists in carrying
out the interventions helped increase the safety levels of the programs as they were able to
guide the participants through the provision of appropriate instructions as well as guard
the participants against potential falls.

Of all experimental groups, twelve had used commercially available VR-based game
systems [23,25–31,33–36], including Nintendo Wii and XBOX, which are widely popular as
home-based video games and are known for their qualities to simulate real environments
that could easily engage users’ interactivity and enjoyment. Nonetheless, all game-based
systems being reviewed in this study had the potential of increasing participants’ motiva-
tion to complete the games at hand through the posing of challenging goals, the showcasing
of their progress in the form of points scored, and the possible promotion from one level to
another. They were capable of providing participants with timely visual, perceptual, and
auditory feedback, which had a positive influence on the participants’ final performances.
Among the three that had adopted custom-made VR balance training programs, one re-
ported that it had better served the specific purposes of the study as well as the needs of the
recruited participants through the customization of scenarios that mimic everyday living
tasks, and also through the development of more adjustable game difficulty levels [24].

Of the control groups, all studies except five [23,26,33–35] had similar training objec-
tives as their experimental counterparts. Four of these studies adopted conventional exer-
cises from either regional guidelines on physical therapy exercises for PD patients [25,32,37]
or from following the models developed by previous studies [29]. Six studies had gen-
eral training protocols that were similar or the same as the experimental groups in terms
of the focus of the exercises involved [24,27,28,30,31,36]. The five studies whose control
groups did not share similar training objectives with the experimental groups involved
minimal to no amounts of exercise [23,26,33–35]. Two of them consisted of fall prevention
education [33,34], one involved neurodevelopment treatment and functional electrical
stimulation [35], and two involved untrained control groups [23,26]. The inclusions of
untrained control groups were useful in facilitating the elimination of results caused by
physical degenerations due to time effect.

Except for two studies [26,36], sample sizes were generally considered small and was
therefore the key limitation in most studies, which affected the strength of interpretation as
well as the generalizability of their results. On the other hand, studies with large sample
sizes were able to produce outcome measures that were backed by stronger data, which
subsequently lead to conclusions that were of greater significance.

3.3. Results of Main Outcomes
3.3.1. Static Balance

Three studies [25,27,30] evaluated the results from patients’ OLS Tests. Van den
Heuvel, Kwakkel [25] found that there was no significant difference between the two
groups (p > 0.0017), but an insignificant trend was in favor of VR. Pompeu, Mendes [30]
found that the patients were able to stand on one leg with a lengthened amount of time in
both groups, and that the effect was still maintained during the follow-up period (p < 0.05).
Shih, Wang [27] found that when patients used the less affected leg to support their bodies,
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the recorded one-leg standing time while they had their eyes closed was significantly
improved from 3.35 s to 6.1 s.

Two studies [27,34] evaluated the improvement of LOS. Both studies found that VR
can significantly improve patients’ directional control. Shih, Wang [27] found that VR can
improve the performance of patients with their eyes closed. The reaction time increased
from 0.96 s to 0.74 s, while the endpoint excursion increased from 75.2% to 84%, and the
directional control increased from 75.7% to 78%. Liao, Yang [34] found that the effects of VR
on movement velocity, maximum excursion, and directional control were more significant
after training and during the follow-up period.

Three studies [23,33,34] evaluated the results of the SOT. Liao, Yang [34] found that
the results were significantly better than those in the control group (p < 0.001 after training,
p < 0.001 during follow-up). Another study showed that the vestibular integration ability
and visual integration ability of the VR group had been more significantly improved [33].
Yen, Lin [23] showed that the improvement in balance in the VR group was more significant
(p < 0.001), but then this improvement could not be sustained upon follow-up. When
patients had difficulties relying on the information received via visual and somatosensory
input, VR can significantly improve their sensory integration in order to help them maintain
their postural stability.

3.3.2. Dynamic Balance

The impact of VR on the BBS was tested by combining the post-intervention data from
11 studies [24–30,32,35–37]. Figure 4 reported the BBS results of 378 patients. There was
no heterogeneity among the studies (I2 = 17%; p = 0.28), and a fixed-effects model was
applied. Overall, our meta-analysis showed that the balance of patients in the VR group
had significantly improved, and that the BBS score had increased after the interventions
(SMD = 0.52, 95% CI = 0.31–0.73).
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Five studies [24,27,28,34,37] evaluated the effect of VR on the TUG test, which included
122 patients (Figure 5). There was no heterogeneity among the studies (I2 = 12%; p = 0.33),
and a fixed-effects model was used. Meta-analysis showed that there was no statistically
significant difference between the two groups (SMD = −0.26; 95% CI = −0.62–0.1; p = 0.16).
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3.3.3. Confidence in Balance

Three studies [25,34,36] reported the impact of VR on the patients’ balance confidences.
Gandolfi and Geroin [36] used the ABC and found that patients in both groups had
significant improvements in their self-confidences after the interventions, and that this
effect had lasted and was still captured during the follow-up period. Liao, Yang [34]
and van den Heuvel, Kwakkel [25] used the FES to assess the confidence levels of their
participants. Liao. et al. found that patients in the VR group showed more significant
improvements (p < 0.001 after the intervention, p = 0.001 during the follow-up period). On
the contrary, Heuvel et al. did not observe any statistically significant difference between
the two groups (p = 0.42), but the results showed an insignificant trend in favor of VR.

3.3.4. Quality of Life

Seven studies [24–26,28,29,31,34] evaluated the PDQ-39 scores of patients with PD.
Most studies found that VR significantly improved the quality of life of those patients.
Pedreira and Prazeres [31] found that the overall quality of life score of patients in the VR
group had improved by more than 10% (p < 0.05). Only two studies showed that the two
groups had no significant improvement in their quality of life scores [25,29].

3.4. Publication Bias

A funnel plot was produced to identify whether there was any publication bias
(Figure 6). The plot showed that the effects of each test were relatively evenly distributed
on both sides. However, the existence of publication bias cannot be ruled out since most of
the included studies had a small sample size.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 16 
 

 

the contrary, Heuvel et al. did not observe any statistically significant difference between 
the two groups (P = 0.42), but the results showed an insignificant trend in favor of VR. 

3.3.4. Quality of Life 
Seven studies [24–26,28,29,31,34] evaluated the PDQ-39 scores of patients with PD. 

Most studies found that VR significantly improved the quality of life of those patients. 
Pedreira and Prazeres [31] found that the overall quality of life score of patients in the VR 
group had improved by more than 10% (P < 0.05). Only two studies showed that the two 
groups had no significant improvement in their quality of life scores [25,29]. 

3.4. Publication Bias 
A funnel plot was produced to identify whether there was any publication bias (Fig-

ure 6). The plot showed that the effects of each test were relatively evenly distributed on 
both sides. However, the existence of publication bias cannot be ruled out since most of 
the included studies had a small sample size. 

 
Figure 6. Funnel plot. 

4. Discussion 
This systematic review included 15 studies. The results showed that in terms of static 

balance, BBS, and balance confidence, VR can, to a certain extent, achieve better effects 
than traditional training. The results of TUG suggested that there was no significant dif-
ference between the two methods. Therefore, it is believed that VR can improve the bal-
ance function of PD patients, and is to a certain extent more effective than traditional train-
ing. 

VR can improve the patients’ motivation and enjoyment, improve their compliance 
to rehabilitation, and reduce the amounts of fatigue experienced [10,29], all of which are 
achievable through its generation of real-time feedback involving the audiovisual and tac-
tile senses, creating an immersive virtual environment for the patients to explore and 
move about. A review reported that patients’ performances could be improved by increas-
ing their immersion, and that the enjoyment derived from engaging in VR had in turn 
increased their willingness to participate in more rehabilitation plans [38]. In this review, 
all selected trials had used non-immersive VR as their experimental intervention, which 
is the least immersive form of VR comprising custom-made ones as well as commercially 
available ones such as Nintendo Wii and XBOX, which to a certain extent may have com-
promised the patients’ immersive experiences during the training as well as affected their 
subsequent rehabilitation effect. Nonetheless, it still managed to show that patients’ com-
pliance was higher when VR training was adopted instead of traditional training. In six 
studies, all recruited patients had stayed on throughout the entire study duration and 
completed all the experimental processes [26,29,30,32,35,37]. In other studies, the number 
of people who completed the entire study was higher in the VR group than that in the 

Figure 6. Funnel plot.

4. Discussion

This systematic review included 15 studies. The results showed that in terms of static
balance, BBS, and balance confidence, VR can, to a certain extent, achieve better effects than
traditional training. The results of TUG suggested that there was no significant difference
between the two methods. Therefore, it is believed that VR can improve the balance
function of PD patients, and is to a certain extent more effective than traditional training.

VR can improve the patients’ motivation and enjoyment, improve their compliance
to rehabilitation, and reduce the amounts of fatigue experienced [10,29], all of which are
achievable through its generation of real-time feedback involving the audiovisual and tac-
tile senses, creating an immersive virtual environment for the patients to explore and move
about. A review reported that patients’ performances could be improved by increasing
their immersion, and that the enjoyment derived from engaging in VR had in turn increased
their willingness to participate in more rehabilitation plans [38]. In this review, all selected
trials had used non-immersive VR as their experimental intervention, which is the least
immersive form of VR comprising custom-made ones as well as commercially available
ones such as Nintendo Wii and XBOX, which to a certain extent may have compromised
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the patients’ immersive experiences during the training as well as affected their subsequent
rehabilitation effect. Nonetheless, it still managed to show that patients’ compliance was
higher when VR training was adopted instead of traditional training. In six studies, all
recruited patients had stayed on throughout the entire study duration and completed all
the experimental processes [26,29,30,32,35,37]. In other studies, the number of people who
completed the entire study was higher in the VR group than that in the control group.
Except for one participant from the VR group who preferred traditional training [24] and
one who did not believe in the effect of VR [31], only 12 other individuals belonging to the
VR group had withdrawn from the studies due to personal issues or other health problems.
In comparison, a total of 28 people had withdrawn from the control groups, of which 9
withdrew due to a lack of motivation or a loss of interest [23,31,33].

Future studies are recommended to investigate the effects resulting from participants’
engagement in other types of immersive VR game systems, including fully immersive
versions where subjects are equipped with head-mounted displays or VR glasses that are
capable of producing stereoscopic 3D effects within simulated environments, and compare
these performances against those resulting from non-immersive VR training. One of the
fully immersive VR systems that has been receiving increasing interest is the Cave Auto-
matic Virtual Environment (CAVE), which is a room-sized cube in which 3D visualization of
virtual environments (VEs) occurs thanks to the combination of four stereoscopic projectors,
three rear-projection screens (i.e., the three walls) and one downward-projection screen. The
fully immersive VR CAVE system enables the combination of motor and cognitive exercises
according to a “dual-task” paradigm. Previous studies have reported an association of high
immersion and fun while participants were engaging in the VR CAVE experiences [39,40].
The application of VR CAVE is able to engage the participants even more than conventional
training programs. This is an important factor to consider when designing interactive
systems in the medical and rehabilitative field, as greater involvement drives the patients
to achieve better results [39]. Taken together, the ability to establish experiences that appear
to be more realistic and believable is a major advantage of fully immersive VR systems such
as the VR CAVE, which is speculated to engross the participants even more during their
game plays and in turn enable them to achieve yet better performances when compared
with other forms of training, thereby further enhance their cognitive processes as well as
increase the extent to which their mobility could be improved.

Studies have found that VR had some shortcomings, namely simulator disease. Long-
term participation in VR may lead to eye fatigue, dizziness, and ataxia [38]. VR may cause
participants to hold inappropriate expectations about the outcome, which could result
in participants decreasing their participation in non-VR treatments and in turn lead to a
decline in their functions [41]. At the same time, VR may also cause patients to pay more
attention to performance scores obtained through the process of task completion. They
may cheat through some compensatory actions in order to help them achieve higher scores.
Patients may start placing competition scores above the original purpose of the training and
consciously decide to sacrifice their performance accuracies in order to improve their final
completion scores [10]. Although the patients’ scores during training had improved under
such circumstances, the actual training effect had been reduced. Therefore, VR devices
should be designed in ways that could avoid these compensatory actions from happening.

VR and traditional intervention can lead to the same effect on the balance of PD
patients, which had important clinical implications. Traditional rehabilitation resources
available to each patient were limited and expensive, and long-term treatment may not be
possible due to reasons such as travelling inconveniences and other economic concerns.
VR can bring about benefits to those patients. Besides, VR can be used as a low-supervised
home-based rehabilitation device to help PD patients resume activities at home and in
the community. Home-based VR can provide patients with some flexibility and may
improve the compliances of those who are easy to give up. Studies have explored the
effect of home-based VR for the balance training of PD patients. The studies of Yang,
Wang [24] and Gandolfi, Geroin [36] have both showed that home-based VR significantly
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improved participants’ balance functions, and that patients can get almost the same effect
at home as in the hospital. However, safety is a problem during treatment. Before training,
patients need to be trained in the use of the equipment and be briefed on the relevant safety
precautions. During the training process, special attention should be paid to the patients.
Therapists should maintain regular follow-ups with patients to evaluate their treatment
effect. Further research needs to compare the treatment effect under low supervision with
that of traditional training.

It is important to use the most relevant assessments during treatment because inappro-
priate tools may not be able to detect balance disorders sensitively. Studies in this review
all chose functional assessments to evaluate balance disorders because these tests were
affordable and easy to use, and had been proven as effective in predicting the risk of falls.
BBS had high reliability but the sensitivity was poor to moderate [42]. Ceiling effect may
mislead the process while assessing patients with mild deficits [43]. Duncan, Leddy [44]
also suggested that BBS was not the most appropriate tool to assess balance function in PD,
as it cannot detect the difference between patients with or without freezing of gait. TUG
may be an accurate tool to identify the risk of falls in PD patients [45]. However, studies
found that TUG was sensitive to the treatment in PD but not sensitive when patients were
still in the early stages of the disease [46,47]. These subjective assessments had ceiling
effects and some symptoms related to balance disorders may not be detected by clinical
tests and scales. Therefore, more objective methods should be sought to improve the
accuracy of evaluation in clinical practice. The usage of computerized posturography
and wearable sensors in objective balance measurement can provide more sensitive and
accurate data in clinical assessments. Studies had found that posturography showed a
great advantage in detecting fallers in PD patients [48], and wearable inertial sensors could
detect balance disorders even before clinical tests found them [49]. TUG, combined with
inertial sensors, can detect the dynamic balance impairments in untreated PD patients,
although the Get-Up-And-Go time showed no difference [50]. Therefore, it is suggested
that physicians should combine subjective scales with objective tools to provide a more
accurate and sensitive assessment of balance for their patients in the future.

The research limitations mainly include the following aspects. The sample sizes
were limited, which may hinder the generalization of the research results to patients with
Parkinson’s disease. Differences in the age and gender of the participants, types of VR used,
control groups employed, and treatment durations assigned across studies may have led
to biases in results. Besides, some studies had no follow-ups while others had follow-up
periods that were too short. During the follow-up periods, these studies had imposed no
restrictions on the patients’ daily activities. The duration of the VR treatment effect is still
unclear. Therefore, studies with larger sample sizes should be conducted to better test the
effects of VR on the balance functions of patients with PD in future. Future research can
design experiments according to different age groups, genders, and disease severities to
explore the impact of these factors on PD patients’ performances playing with VR. The
follow-up period should also be extended in order to determine the duration of the effect
of VR on patients with PD.

5. Conclusions

This review combines existing evidence on the use of virtual reality technology in
the treatment of Parkinson’s disease to better study its effect on improving PD patients’
balance functions. VR can achieve an equivalent or even a better level of improvement
than traditional treatments, and can therefore be used clinically as an auxiliary technology
for the treatment of balance functions in patients with Parkinson’s disease.
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