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Abstract. Detecting volatile organic compounds (VOCs) in human breath is critical for early diagnosis of 

diseases. Good selectivity of VOCs sensors is crucial for accurate analysis of VOCs biomarkers in human 

breath, which consists of more than 200 types of VOCs. In this paper, a flexible virtual sensor array (FVSA) 

was proposed based on a sensing layer of MXene and laser-induced graphene interdigital electrodes (LIG-

IDEs) for detecting VOCs in the exhaled breath. Fabrication of LIG-IDEs avoids the costly and 

complicated procedures for preparation of traditional IDEs. The FVSA’s responses of multi-parameters 

build a unique fingerprint for each VOC, without a need for changing the temperature of sensing element, 

which is commonly used in the VSA of semiconductor VOCs sensors. Based on machine learning 

algorithms, we have achieved highly precise recognitions of different VOCs and mixtures, and accurate 

prediction (accuracy of 89.1%) of the objective VOC’s concentration in variable backgrounds using this 

proposed FVSA. Moreover, blind analysis validates the capacity of the FVSA to identify alcohol content 

in human breath with an accuracy of 88.9%, using breath samples from volunteers before and after alcohol 

consumption. These results show the proposed FVSA is promising for detection of VOCs biomarkers in 

human exhaled breath and early diagnosis of the disease. 

 

Keywords: Flexible VOCs sensor; Laser-induced graphene; MXene; Selectivity; Virtual sensor array; 

Human breath detection;  
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1. Introduction 

Gas sensing is essential for many fields such as agriculture/planting, pollution monitoring, food 

storage, and medical diagnosis.1-3 In particular, detecting volatile organic compounds (VOCs) in human 

breath is considered to be a promising approach for diagnosis of diseases due to its advantages of fast and 

non-invasive operation as well as requiring no specialized personnel.4, 5 Approximately 200 VOCs have 

been detected in human breath and the levels of these VOCs reflect the physical condition of a person.6 

For example, the concentrations of H2S and NO in the exhaled breath of patients with halitosis and asthma 

exceed more than several parts per million (ppm)and hundreds of parts per billion (ppb), respectively.7 

Accordingly, VOCs sensors need not only to sensitively detect individual VOCs but also to effectively 

identify different types of VOCs and quantify the target VOCs in complex backgrounds. 

Recent advances in flexible electronics facilitate the development of flexible VOCs sensors that 

provide real-time information about human breath.8, 9 Flexible sensors are bendable, easy to wear, and can 

be attached to various irregular surfaces, which are very convenient for detection of human breath. 

Nevertheless, the time-consuming and complicated preparation process hinders the large-scale production 

of these flexible VOCs sensors.10 Recently, laser-induced graphene (LIG) with porous structure has 

become a promising material for flexible electrodes.11, 12 Typically, the LIG is fabricated by converting sp3 

carbon in polyimide (PI) into highly conductive sp2-hybridized carbon through laser induction. The 

process combines graphene synthesis and graphene electrode fabrication into one simple process, which 

can be performed under an ambient atmosphere without using any solvents.  

Typically, a sensing material is deposited on the surface of the VOCs sensor and the response of the 

sensor is greatly dependent on the properties of this sensing layer. Two-dimensional (2D) materials are 

among the most promising materials for VOCs sensing applications, because of their advantages of large 

surface area, versatile surface chemistry, and capability of sensitive detection at room temperature.13, 14 

Recently, VOCs sensors based on a new family of 2D materials called MXene have also shown promising 

performance for application.15, 16 MXenes possess a metallic conductivity, while their surfaces are covered 

with many types of functional groups. Among them, Ti3C2Tx-based VOCs sensors were reported to have 

ultra-high signal-to-noise ratios and low limit of detections compared with VOCs sensors based on other 

types of 2D materials.17 However, MXenes have strong adsorptions to various VOCs, and thus how to 

improve the selectivity of the MXene-based VOCs sensors remains a key challenge.  

Combining sensors into arrays is an effective approach to enhance the poor selectivity of each 

individual sensor, and this is sometimes referred to as an “electronic nose” or e-nose.18-20 However, multi-
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sensor systems often face many issues, such as high power consumption, complicated sensing circuits, 

and high breakdown possibilities, since the whole e-nose system does not work if any of the component 

sensors fails.21 

To overcome the drawbacks of conventional sensor arrays, virtual sensor array (VSA) was proposed, 

which means a single VOCs sensor can produce a multi-dimensional signal similar to that generated by 

an electronic nose.22-24 For the VSA, multi-dimensional responses are usually analyzed using machine 

learning techniques, such as principal component analysis (PCA),25 linear discriminant analysis (LDA),26 

and partial least squares (PLS).27 For semiconductor VOCs sensors, changing the temperature of sensing 

elements is one of the most commonly used methods in reported VSAs to mitigate the poor selectivity.28 

For example, Tonezzer et al. proposed a VSA by varying the temperature of Pt-SnO2 nanowires for 

selective detection of VOCs.29 However, the time to reach the targeted temperature is often too long for 

many real applications and high temperature may cause permanent changes of the sensing layer’s 

properties. In the previous work, we proposed a VSA based on impedance spectra for selective detecting 

VOCs without the need to change the temperature of sensing element.30  

In this paper, we present a flexible VSA (FVSA) based on LIG interdigital electrodes (LIG-IDEs) 

and a sensing layer of MXene, as schematically illustrated in Figure 1. The FVSA can produce a multi-

dimensional response which resemble that generated by an electronic nose. In this method, we deposited 

a Ti3C2Tx film on the surface of LIG-IDEs to form a FVSA, which was then exposed to different 

concentrations of multiple VOCs at room temperature. The broadband impedance spectra of the FVSA 

were measured under various conditions and we extract characteristic parameters from them. A systematic 

analysis of the characteristic parameters was carried out using machine learning algorithms to identify 

different types of VOCs and predict the concentration of the target VOC in various backgrounds. In 

addition, the FVSA was used to identify alcohol content in human breath samples. To our knowledge, this 

is the first report using a FVSA to detect VOCs in human exhaled breath. This paper is an extension work 

of a conference paper.31 

 

2. Experimental 

2.1 Fabrication and characterization of the FVSA. 

The sensor was fabricated by coating a layer of Ti3C2Tx on the prepared LIG-IDEs. In the Ti3C2Tx 

structure, two layers of carbon atoms are sandwiched between three layers of titanium, and the surface of 

Ti3C2Tx is terminated by fluorine (−F), oxygen (−O), and hydroxyl (−OH) groups.32 The detailed synthesis 
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process of Ti3C2Tx is shown in S1 of supplementary information. The flexible LIG-IDEs consist of three 

layers: LIG on the top, PI tape in the middle, and PI film as the supporting substrate. The laser direct 

writing technology was adopted with for PI patterning. The scan speed and laser power of the direct writing 

are 2 cm·s-1 and 3.85 W, respectively. The length and width of the LIG-IDE are 13.3 mm and 12 mm 

respectively, which is composed of six pairs of electrodes. The length and width of the electrodes are 9 

mm and 500 μm. The gap between the electrodes and the length of opposite electrode are 300 μm and 8 

mm. A dispersion of Ti3C2Tx at a concentration of 0.5 mg/mL in deionized water (100 μL) was dropped 

on the fabricated LIG-IDEs. After being dried, the sensing layer formed. Characterization methods of the 

FVSA have been presented in S2 of supplementary information. 

2.2 VOCs exposure. 

Figure S1 shows the schematic illustration of VOCs sensing experimental setup. Firstly, the 

performance of the FVSA was studied by exposing the FVSA to different concentrations of multiple VOCs 

and VOCs mixtures. The broadband impedance spectra (frequency range from 30 kHz to 30 MHz) were 

measured using a network analyzer (Agilent, E5061B). Response was defined as the relative change in 

impedance relative to the baseline impedance after VOCs exposure (i.e., ΔR (X) / R0 (X0)) (%). Response 

and recovery time were defined as the time from when the impedance starts to change until the impedance 

reaches 90% of its final value. The capabilities of the proposed FVSA were tested to identify the alcohol 

content in 36 real exhalation samples. 18 volunteers were asked to drink 100 ml of beer with an alcohol 

content of 2.5%vol to 3%vol. Breath samples were collected from each volunteer before and 30 minutes 

after alcohol consumption. The test temperature was maintained at a room temperature (25℃). 

2.3 Data Analysis.  

Three sensors were tested under same conditions, and results were expressed using the mean value ± 

 
Figure 1. Schematic illustration of the of the FVSA. 
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its standard deviation. Reactance is defined as the imaginary part of impedance. Eight characteristic 

parameters from broadband impedance spectrum of the FVSA are used to build VOCs classification and 

concentration prediction models. They are the resistances at 100 kHz, 5 MHz, 15 MHz and the reactances 

at 300 kHz, 1 MHz, 3 MHz, 9 MHz, 20 MHz respectively. Detailed data analysis method is shown in S3 

of supplementary information. 

 

3. Results and discussion 

3.1 Material Characterizations. 

Figure 2a shows the prepared flexible LIG-IDEs with a good flexibility. Figure 2b shows an SEM 

image of the fabricated LIG-IDEs with consistent line widths and sharp edges, revealing the successful 

processing of LIG-IDEs by laser direct writing technology. The ordered porous surface morphology of the 

prepared LIG-IDEs is shown in Figure 2c. Figure 2d shows a cross-sectional SEM image of the obtained 

LIG-IDEs, revealing the three-layer structure of PI film, PI tape and LIG. Figure 2e shows an image of 

MXene-based flexible VOCs sensor after coated with a uniform Ti3C2Tx film (Inset: a photograph of the 

LIG-IDEs). The elemental maps (Figure 2f) reveal uniform distributions of core elements (C, Ti) and 

surface elements (O, F), indicating a good surface functionality.  

Figure S2 shows SEM and TEM images of Ti3C2Tx nanosheets, indicating that the average lateral size 

of the Ti3C2Tx nanosheets is about 1.5 μm. SEM images of the proposed sensor with Ti3C2Tx film are 

shown in Figure S3. Figure S3b shows the SEM image of Ti3C2Tx film in the channel (i.e., on top of PI). 

Figure S3c shows the surface SEM image of LIG-IDEs after coating with Ti3C2Tx. No Ti3C2Tx film on the 

IDEs can be observed. Because the thickness of the LIG-IDEs is much larger than that of the Ti3C2Tx film 

and the surface of LIG-IDEs is porous and uneven. Figures S3d-f show the cross-sectional SEM image of 

the flexible sensor (in the channel) and its corresponding elemental mapping analysis results (Ti and O). 

The thickness of Ti3C2Tx film is ~1.2 µm. The resistance values of the flexible VOCs sensor and LIG-

IDEs are rather stable even after 1000 cycles of bending, as shown in Figure S4, revealing high mechanical 

strength and good flexibility of the VOCs sensor based on Ti3C2Tx film and LIG-IDEs. The resistance of 

LIG-IDEs increases slightly after 1000 cycles due to the formation of microcracks caused by the repeated 

applied strain. 

Raman spectrum of the LIG shows three main peaks: the first-order D peak (roughly at 1350 cm-1), 

the first-order G peak (roughly at 1580 cm-1), and the second-order D peak (roughly at 2660 cm-1), as 

shown in Figure 2g. It confirms successful fabrication of high-quality LIG-IDEs using laser direct writing 
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technology.33 X-ray diffraction (XRD) curve of the Ti3C2Tx film reveals a sharp peak at 2θ = 6.8°, 

indicating that Ti3C2Tx was successfully prepared from Ti3AlC2, as shown in Figure 2h.34 This peak 

corresponds to (002) peak of the Ti3C2Tx film, indicating the center-to-center distance of Ti3C2Tx is 13 Å. 

Figures 2i and S4 show high-resolution X-ray photoelectron spectra (XPS) of Ti3C2Tx (Ti 2p, C 1s, O 1s). 

Ti 2p spectrum (Figure 2i) can be deconvoluted into four doublets (Ti 2p3/2, Ti 2p1/2) with a doublet 

separation of 5.8 eV and an area ratio of 2:1. The Ti 2p3/2 peaks centered at 454.94 eV, 455.94 eV, 456.97 

eV, and 458.74 eV are assigned to Ti−C (Ti+), Ti−X (Ti2+), TixOy (Ti3+), and TiO2 (Ti4+), respectively, 

which is as reported by the previous XPS results.35 The C 1s spectrum (Figure S5a) shows four types of 

carbon atoms. Peaks centered at 281.7 eV, 284.8 eV, 285.3 eV, 286.6 eV correspond to C-Ti, C-C, C-O, 

and O-C=O, respectively. The O 1s spectrum can be deconvoluted into three peaks centered at 529.7 eV, 

533 eV, and 533.4 eV, corresponding to TiO2, Ti-O-Ti, and Ti−OH, respectively, as shown in Figure S5b.36 

3.2 Dynamic VOCs sensing performance. 

Figure S6a shows resistance and reactance responses of the flexible sensor operated at 1 MHz 

investigated by exposing the VOCs sensor to ethanol with different concentrations from 100 to 800 ppm. 

 

Figure 2. Surface and structural characterizations of the PI-based flexible VOCs sensor. (a) Photograph of the PI-based 

flexible LIG-IDE. (b) SEM image of the PI-based LIG-IDE with finger spacing of 300 μm. (c) Surface morphology of 

PI-based flexible LIG-IDE (d) Cross-sectional SEM image of the PI-based electrode. (e) Photograph of the flexible 

sensor after coating with Ti3C2Tx. Inset: photograph of the LIG-IDE. (f) Elemental mapping analyses of the Ti3C2Tx film. 

(g) Raman spectrum of the flexible LIG-IDE. (h) XRD patterns and (i) XPS (Ti 2p) of Ti3C2Tx film. 
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The resistance and reactance of the sensor were continuously measured with an interval of 1 s. Both the 

resistance and reactance of the sensor show positive increases to ethanol but the increased value of 

resistance is relatively small. The resistance and reactance baselines of the VOCs sensor drift up slightly, 

indicating the non-recoverable responses of the Ti3C2Tx-based sensor, mainly caused by the slow recovery 

due to chemisorption of ethanol by the Ti3C2Tx film. Figure S6b shows the short-term repeatability of the 

sensor upon exposure to ethanol vapors with concentration of 100 ppm for four consecutive cycles, 

indicating the good repeatability of the sensor. The response and recovery speeds of the proposed sensor 

were further investigated, and the detailed response and recovery processes of the sensor are shown in 

Figures S5c and S5d. Interestingly, the response and recovery times of resistance are different from those 

of reactance. The response times of resistance and reactance responses are 33 s and 17 s and the recovery 

times of resistance and reactance responses are 35 s and 67 s, respectively. The reason for this phenomenon 

is that the resistance and reactance at 1 MHz are dominated by the different properties of the Ti3C2Tx film, 

and response and recovery times of different properties are different upon exposure to ethanol, which will 

be discussed in the next section. Figure S7 shows impedance responses of the flexible sensor operated at 

1 MHz upon exposure to different VOCs, i.e., 100 ppm of methanol (MeOH), ethanol (EtOH), acetone, 

and isopropanol (IPA). The impedance values show positive changes after VOCs exposure. 

3.3 VOCs fingerprints and working principle. 

The Ti3C2Tx based VSA was exposed to four types of vapors, i.e., from 100 ppm to 800 ppm of MeOH, 

EtOH, IPA, and acetone. The impedance spectra (frequency range from 30 kHz to 30 MHz) of the FVSA 

were obtained in the context of different VOCs. Eight representative parameters are selected as the VOCs 

characteristics based on the obtained impedance spectra, as mentioned above. A fingerprint for each VOC 

can be created by the multi-dimensional responses based on relative changes of all the eight characteristics, 

as shown in Figure S8. Different VOCs generate different response patterns, which allows a 

straightforward discrimination of different types of VOCs. Resistance value at 15 MHz exhibits a negative 

change, whereas the other characteristic parameters exhibit positive changes upon exposure to various 

VOCs. To visualize the unique response patterns of the multiple VOCs, relative changes of all eight 

characteristic parameters are plotted as radar plots after VOCs exposure., which is shown in Figure 3a. 

Apparently, different VOCs have different fingerprints. Therefore, we determine that a unique fingerprint 

for each VOC can be created by the multi-parameter sensing responses.  

Figure 3b shows the experimental Nyquist curve of the FVSA over a frequency range of 30 kHz-30 

MHz in dry air. We fit the curve to obtain the equivalent circuit model. The fitting data are very close to 
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the experimental data, indicating the equivalent circuit model with high accuracy. The equivalent circuit 

model of the FVSA is shown in Figure 3c. Here the circuit elements R1 and L represent the resistance in 

thickness direction and inductance between Ti3C2Tx layers, and elements R2 and C represent the transverse 

resistance and capacitance between electrodes.37, 38 The contact resistance between the LIG-IDEs and the 

Ti3C2Tx film can be neglected. The values of R1, L, R2, C are 969.3 Ω, 1.396·10-5 H, 8923.3 Ω, 1.63·10-

12 C, respectively. In the circuit model, the AC resistance (R(f)) and reactance (X(f)) can be written as 
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Various effects lead to impedance changes of the MXene-based sensor and the proportions of multiple 

effects caused by different VOCs are quite different.15-17, 39 These effects lead to changes of the sensor 

properties, such as transverse resistance and capacitance between electrodes, which correspond to 

components in the equivalent model of the sensor. So each VOC has an effect of specific proportion on 

multiple components in the equivalent circuit model.40, 41 The impedance obtained at each frequency is 

determined by all components in the equivalent model and the influences of changes of every component 

on impedances (R(f) and X(f)) are affected by frequency, which is shown clearly in Eqs. (1) and (2). If the 

influences of two VOCs on each component in the equivalent model are not the same, the changes of 

 
Figure 3. VOCs fingerprints and the equivalent circuit model of the FVSA. (a) Radar plot of unique fingerprint patterns 

of different VOCs. (b) Experimental Nyquist curve and fitting curve. (c) The equivalent circuit model of the FVSA. 
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impedance spectra will be different after exposure to VOCs. Therefore, VOCs fingerprints can be 

generated using the multi-parameter sensing responses based on the broadband impedance spectra. 

3.4 VOCs identification and concentration prediction. 

In order to qualitatively discriminate various VOCs with the similar properties and define the 

dimensionality of the of the FVSA’s responses after VOCs exposure, the matrix of characteristic 

parameters variations was analyzed by PCA, which consists of 24 rows (four VOCs with six different 

concentrations) and 8 columns (characteristic parameters). After the PCA transformation, the percentage 

of cumulative variance of the first three principal components (PCs) exceeds 98%. The variance 

percentages for PC1-PC3 are 87.16%, 9.6% and 2.6%, respectively. Therefore, high data dimensionality 

of FVSA’s responses is achieved after exposure to only four VOCs.  

The scores of obtained first three PCs are depicted into a 3D plot, as shown in Figure 4a. Points with 

different color correspond to different types of VOCs and each point denotes a VOCs fingerprint at a 

certain concentration. Points denoting different types of VOCs are dispersed in space, and points denoting 

the same VOC (from 100 ppm to 800 ppm) are situated roughly on a line, indicating the capability of the 

FVSA to identify different types of VOCs. 

Then the LDA performed was carried out to quantitatively identify different VOCs. A 3D plot of LDA 

scores of various VOCs is shown in Figure 4b. Points with different color correspond to different types of 

VOCs. A pentagram is the mass center of each point group denoting the same VOC. Various types of 

VOCs can be well discriminated. Figure 4c shows the LDA results for VOCs identification. Each VOC 

sample was identified correctly with an accuracy of 100%. The leave-one-out cross validation (LOOCV) 

was performed to investigated the validity of LDA model. Cross-validation correct rate is 95.8%, 

indicating that one out of 24 samples is misclassified, which is shown in Figure 4d. 

In order to further investigate the discriminating power of the FVSA, we exposed the FVSA toward 

similar complex VOCs mixtures, in which A, B, C, D are mixtures of EtOH and MeOH, EtOH and IPA, 

EtOH and acetone, as well as EtOH and dichloromethane, respectively. The concentrations of mixtures 

during the test are listed in Table S1. We carried out the LDA to identify the FVSA’s responses after VOCs 

mixtures exposure. Figure 4e shows a plot in a 3D feature space for identification of VOCs mixtures. Four 

VOCs mixtures are well separated from different angles of view. 100% correct prediction means that the 

mixtures with various concentrations are identified as the correct mixture type. As shown in Figure 4f, the 

correct classification rate is 85%. Figure 4g shows the corresponding LOOCV results, indicating the 
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correct cross-validation rate of identification for VOCs mixtures is 85%. These results indicate that the 

proposed FVSA has capability for identification of both pure VOCs and similar VOCs mixtures. 

 

 

Figure S9 shows the responses of the sensor to ethanol in different backgrounds. The impedance of 

the sensor in dry air is chosen as the zero point. The Ti3C2Tx-based sensor has drifts when the ethanol 

concentration is zero in the presence of methanol and water because Ti3C2Tx also absorbs methanol and 

water.17, 39 The response of the FVSA is not a linear superposition of the response to water or methanol 

and the response to ethanol. This is because the adsorption sites for ethanol are partially occupied by water 

or methanol. Therefore, we cannot eliminate the influence of humidity or methanol through detecting a 

single parameter. 

PLS regression analysis was performed to quantify concentrations of EtOH in various backgrounds 

with different humidity levels and MeOH concentrations. Four latent variables (LVs) were selected to 

 

Figure 4. Results of VOCs identification and concentration prediction. (a) 3D plot of the first 3 principal components of 

PCA results of different VOCs. 3D plot of LDA results the four VOCs (b) and VOCs mixtures (e). Identification results 

of four VOCs (c) and VOCs mixtures (f). Cross-validation results of identification of four VOCs (d), and VOCs mixtures 

(g). (h) Ethanol concentration prediction in the presence of a variable background. (i) Concentration prediction of second 

data set.  
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provide the minor prediction error without generating an overfitting, based on the root of sum of squared 

error (SSE) and average accuracy of prediction as a function of LV number as shown in Figure S10. Figure 

4h presents the results of the prediction for EtOH concentration in various backgrounds with different 

humidity levels and MeOH concentrations. In principle, if the prediction matches the real EtOH 

concentration, then the corresponding point is located on diagonal line. As shown in Figure 4h, all points 

are approaching the diagonal, indicating the ethanol concentrations are predicted quite well. An average 

accuracy of 89.1% for EtOH concentration prediction is achieved. In order to investigate the reliability of 

the prediction model, a second dataset was employed as input for the PLS model built from previous 

dataset. Figure 4i shows a concentration prediction of second dataset. As illustrated, ethanol concentrations 

are predicted quite well, demonstrating that the LIG-based FVSA is suitable for the concentration 

prediction of target VOC in variable backgrounds. 

3.5 Human exhalation detection. 

The FVSA based on MXene and LIG electrodes were used for frequency and composition analysis 

of human exhalation. As shown in Figure 5a, the FVSA is integrated into a medical breathing mask for 

monitoring human respiration in real time, Figures 5b and 5c show the resistance and reactance responses 

of the FVSA operated at 1 MHz for human breathing. One breathing period involves two actions: 

exhalation and inhalation. In the exhalation process, the resistance and reactance increase quickly, mainly 

due to the water and heat in exhalation as well as force produced by airflow.42, 43 The resistance and 

reactance then return back to their normal values during the inhalation process. The periodic changes of 

resistance and reactance are obviously different upon exhalation. The reason for this phenomenon is that 

the resistance and reactance are dominated by different components in the equivalent circuit, i.e., different 

properties of the sensing film, whose change processes are different after exposure to exhalation.  

In addition, we investigated the capacity of the FVSA to identify whether a person consumes alcohol 

based on the multi-parameter responses. The FVSA was exposed to 36 real breath samples collected from 

18 volunteers before and after alcohol consumption.44 LDA was employed for discrimination of these 

samples. Figure 5d shows the identification results of breath samples. An accuracy of 94.4% was achieved 

via LDA identification, indicating that 2 out of 36 samples were misclassified. The misclassified samples 

are indicated by points marked by circles. LOOCV was performed to tested the validity of the 

identification. The correct cross-validation rate is 88.9%. The two samples misclassified in LOOCV are 

indicated by the points marked by triangle symbol. Ethanol has effects of unique proportions on 

components in equivalent circuit model of the FVSA which stand for various properties of MXene. 
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Therefore, using the FVSA based on LIG-IDEs and MXene, we can make accurate judgments about 

whether a person drinks alcohol or not. 

 

 

4. Conclusions 

In conclusion, we proposed a FVSA based on LIG-IDEs and MXene to detect VOCs in human breath. 

The fabrication of LIG-IDEs avoids the complicated and costly procedures for preparation of traditional 

IDEs. We deposited a Ti3C2Tx film on the surface of LIG-IDEs to form a FVSA. The FVSA’s responses 

of eight characteristic parameters from broadband impedance spectra create a unique fingerprint for each 

VOC without a need for changing temperature of the sensor. The identification accuracies for VOCs and 

VOCs mixtures are 95.8% and 85%, respectively. The prediction accuracy of the ethanol concentration is 

up to 89.1% in the presence of water and methanol with different concentrations using the proposed FVSA. 

Blind analysis validates the capability of the FVSA to identify alcohol contents with an accuracy of 88.9% 

 

Figure 5. Frequency and composition analysis of human exhalation breath. (a) Photograph of a breathing mask with the 

LIG-based FVSA fixed inside for breath monitoring, inset shows a volunteer wearing the mask. Resistance (b) and 

reactance (c) response of the FVSA operated at 1 MHz to human breath. (d) Identification results of whether there is 

alcohol using breath samples collected from volunteers.  
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in real breath samples collected from volunteers before and after drinking. The high level of identification 

and concentration prediction shows that the proposed FVSA is promising for detection of VOCs 

biomarkers in human exhaled breath and early diagnosis of the disease. 
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