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Abstract

Although many quantitative risk assessment models have been proposed in literature, their use 

in construction practice remain limited due to a lack of domain-specific models, tools, and 

application examples. This is especially true in wind farm construction, where the state-of-the-art 

integrated Monte Carlo simulation and critical path method (MCS-CPM) risk assessment approach 

has yet to be demonstrated. The present case study is the first reported application of the MCS-CPM 

method for risk assessment in wind farm construction and is the first case study to consider 

correlations between cost and schedule impacts of risk factors using copulas. MCS-CPM provided 

reasonable risk assessment results for a wind farm project, and its use in practice is recommended. 

Aimed at facilitating the practical application of quantitative risk assessment methods, this case study 

provides a much-needed analytical generalization of MCS-CPM, offering application examples, 

discussion of expected results, and recommendations to wind farm construction practitioners. 

Keywords 

Renewable energy; wind farm; construction; risk; risk assessment; CPM; Monte Carlo simulation
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1. Introduction

Wind power, as a renewable source of energy (Saidur et al. 2010), has gained popularity due to 

its relative cleanliness, sustainability, and cost-competitiveness. Anticipated to lead the 

transformation of the electricity sector, wind energy is expected to produce about 35% of global 

electricity demands by 2050. To meet this need, significant investments in the construction of wind 

energy farms are being made. In 2018 alone, an estimated 67 billion USD were invested in onshore 

wind power worldwide, with investments expected to double or triple by 2050 (IRENA 2019). 

Similar to any large-scale project, wind farm construction has schedule and cost objectives, 

wherein the project must be completed within a specific timeframe and budgeted cost. As a 

relatively new type of endeavor, onshore wind farm construction is associated with a high level of 

uncertainty and risk (Gatzert and Kosub 2016; Rabe et al. 2019). Accurately assessing and 

managing this risk is essential for ensuring project success, and choosing a suitable risk assessment 

method is a key step in this process.

Risk assessment methods can be divided into two categories, namely qualitative and quantitative 

(Kendrick 2015; Salah and Moselhi 2016). In recent years, there has been a large development of 

quantitative risk models due to their increased accuracy over qualitative approaches (Taroun 2014). 

In spite of these advancements, however, quantitative models are rarely applied in construction practice 

(Laryea 2008). In 2014, Abdulmaten Taroun conducted a comprehensive literature review of risk 

modeling and assessment approaches used in construction since 1980 (Taroun 2014). This study 

concluded that, although numerous theories and techniques for improving risk assessment in 

construction have been proposed, theoretical advancements are not being translated into advances in 

construction practice (Taroun 2014). These findings align with those of a recent study by Jung and 

Han (2017), which reported that because of a lack of knowledge and real-world applicability, 

practitioners continue to rely on experienced-based, qualitative risk management approaches. Several 
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studies have investigated barriers for the practical applications of quantitative models, with assessment 

and analysis identified as the most challenging issues (Baloi and Price 2003). 

Quantitative methods described in literature are often presented using simple illustrative 

examples or generic project information. Although useful for demonstrating method generalizability, 

construction practitioners often have difficulty adapting and applying these generic methods to a 

specific project. This is particularly apparent in the wind farm construction sector, where real case 

studies and domain-specific models and tools are in short supply. Indeed, application of the gold 

standard quantitative risk assessment approach—the integrated Monte Carlo simulation and critical 

path method (MCS-CPM)—to a real wind farm project has yet to be reported in literature. 

This case study details the first reported application of the state-of-the-art MCS-CPM approach to 

develop a domain-specific risk assessment model in wind farm construction. The domain-specific 

model is used to assess the impact of multiple risk factors on the cost and schedule of a real wind farm 

project. Notably, this case study also demonstrates the first application of a newly proposed input 

modeling method to consider the influence of correlations between cost and schedule impacts of risk 

factors in MCS. Time and cost contingencies, project durations, and overall project costs are then 

estimated. Demonstration of domain-specific models and approaches, such as the one presented here, 

are expected to help guide and promote the application of more accurate risk assessment methods in 

industry—in turn contributing to improved project planning, outcomes, and success. 

Specific contributions of this study are two-fold. First, the case study demonstrates how to 

academically apply the MCS-CPM method to evaluate the impact of risks on a construction project. 

Domain-specific tools such as this are expected to facilitate the adoption and application of MCS-CPM 

by industry practitioners to more effectively assess construction risk in onshore wind projects. Second, 

this case study applies bivariate distributions to consider correlations between cost and schedule-
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related risk factors. The findings of this study not only support the use of a bivariate approach for risk 

assessment in construction, but also serve as an important demonstration of the types of decision-

support that can be gleaned when correlations between cost and schedule-related risk factors are 

considered.

2. Literature Review
2.1 Risk Assessment in Wind Farm Construction

As a new construction type, both related literature and historical data for risk assessment in 

onshore wind farm construction remain scarce (Somi et al. 2020). While several studies have 

explored risk management in onshore wind farm projects, the majority of these studies are limited 

to the identification of risk factors in different phases of onshore wind projects across different 

countries (Gatzert and Kosub 2016; Xinyao et al. 2017; Gang 2015; Somi et al. 2020; Fera et al. 

2014; Enevoldsen 2016; Montes and Martin 2007; Rolik 2017; Angelopoulos et al. 2016; Zhou 

and Yang 2020). Focusing primarily on identification, these approaches are unable to evaluate the 

potential impact of risk factors through quantification, greatly limiting their effectiveness in 

construction practice.

Certain studies have expanded upon identification by focusing on ranking safety hazards (Gul 

et al. 2018; Mustafa and Al-Mahadin 2018). Where quantification of risk factors in onshore wind 

farm construction has been attempted, methods have been developed for a specific subset of risk 

factors. Many available quantitative models for onshore wind projects have focused on analyzing 

specific risk factors affecting construction activities, such as adverse weather (Atef et al. 2010; 

Guo et al. 2017), while overlooking other types of risk. Few researchers have proposed methods 

by which risk factors can be quantified. Kucukali developed a methodology for assessing the 

overall risk severity in wind projects based on a linguistic subjective scale (Kucukali 2016), and 
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Rolik proposed a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis approach 

to assess the risk level in wind energy projects (Rolik 2017). Despite this growing body of work, 

however, the use of a quantitative approach for assessing risk in onshore wind farm construction that 

is capable of analyzing the correlated impact of different subsets of risk factors on project cost and 

schedule has yet to be reported in literature.

2.2 Application of Quantitative Risk Models in Industry

Numerous studies have explored the barriers limiting the application of quantitative risk 

assessment techniques in practice. A lack of required expertise in or familiarity with techniques was 

consistently identified as a primary factor limiting the application of quantitative risk assessment 

methods in practice in many studies (Forbes et al. 2008; Akintoye and MacLeod 1997; Dey and 

Ogunlana 2004; Tang et al. 2007; Hlaing et al. 2008; Zhao et al. 2014; Lyons and Skitmore 2004; 

Chileshe and Kikwasi 2014). Specifically, Laryea and Hughes (2008) observed that many models in 

literature were not derived from the type of data or information that are commonly used in practice. 

Rather, many models were “desk-based” or analytically-derived (Laryea and Hughes 2008). Several 

researchers have promoted the development of risk assessment methodologies that reflect actual 

practice in construction (Laryea and Hughes 2008; Taroun 2014). This is a sentiment that is shared 

by Tang and colleagues, who have highlighted the potential for improving risk assessment in practice 

by systematically increasing risk management knowledge and skills—especially with regards to 

quantitative techniques (Tang et al. 2007). 

One such approach is the application of quantitative techniques to real construction projects 

together with the development of domain-specific models and tools. In addition to facilitating model 

development and experimentation, domain-specific models allow for a better understanding of the 
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simulation model by practitioners. An effective, domain-specific model should satisfy certain 

requirements as follows (Valentin and Verbraeck 2005): 

(1) Support developers of domain-specific models by reducing the inherent difficulty associated 
with this process. 

(2) Provide insight into complexity of the system to practitioners and future model developers. 

(3) Detail required data, information, and system knowledge. 

(4) Describe system deliverables.  

2.3 Risk Management and Assessment Methods

Risk is an uncertain event that can negatively or positively affect the outcome of a project (Al-

Bahar and Crandall 1990). Risk management processes begin by identifying potential risks that may 

occur during project execution (Abdelgawad 2011; Mills 2001; AbouRizk 2009; Chapman 2001). 

Then, a risk assessment, which converts the impact of risk into numerical terms (Mills 2001; Meyer 

2015), is performed. Risk assessments are typically carried out using risk management support tools 

(Dikmen et al. 2004), which help to systematise the process, overcome analytical difficulties, and 

incorporate experience from previous projects into the decision-making process. Quantitative risk 

assessment methods can be classified into two categories (Bakhshi and Touran 2014):

(1) Deterministic methods can apply either a simple or complex mathematical approach. Simple 

mathematical approaches (e.g., pre-determined percentages) are considered the least 

sophisticated methods for risk analysis and are often performed when time is limited, projects 

are small, or owner budgets are insufficient. Simple deterministic methods depend on the 

subjective experience of the estimator, occasionally resulting in over- or underestimations 

(Salah and Moselhi 2015). Complex mathematical approaches develop theoretical 

mathematical models, often in the form of linear and non-linear equations such as regression 

and fuzzy logic (Meyer 2015). If historical data are unavailable, experts can provide 

qualitative or subjective assessment of risks, and fuzzy-set theory can then be applied to 

convert qualitative statements into numerical values (Bakhshi and Touran 2014). 
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(2) Probabilistic methods typically incorporate the random uncertainty associated with 

construction projects by using probability theory to assess risk. Due to their accuracy, 

probabilistic methods are often considered the ‘gold standard’ of risk assessment approaches, 

especially when critical decision-making is required (Bakhshi and Touran 2014).

Previous risk assessment model research is summarized in Table S1. Models capable of 

assessing risk impact and estimating contingency are categorized into three types according to the 

focus of the analysis: cost-oriented, schedule-oriented, or integrated cost and time. Cost-oriented 

models focus on cost contingency and how risk factors affect project cost. Schedule-oriented models 

focus on time contingency and the impact of risk factors on project duration. Finally, integrated 

models address the impact of risk factors on project cost and time simultaneously. The advantages 

of integrating risks for schedule and cost, as described by Hulett and colleagues (2011), include (1) 

calculating schedule contingency, (2) calculating cost contingency, (3) presenting a joint probability 

distribution of project cost and schedule, and (4) prioritizing project risks, which, in turn, assist with 

the development of risk mitigation strategies for both time and cost. It is important to note, however, 

that these integrated models do not consider correlations between cost and schedule impact, which 

can lead to over- or underestimations of project contingencies.

A commonly-applied probabilistic technique for risk assessment is Monte Carlo simulation 

(MCS) (Molenaar et al. 2013; Bakhshi and Touran 2014; Liu et al. 2017). MCS has been widely 

applied for the quantitative assessment of risks in construction (Table S1) due to its ability to simulate 

the potential impact of risks on individual activities while also determining the amalgamated impact 

at a project-level (Hulett et al. 2011). Furthermore, MCS remains the only modeling approach 

capable of simultaneously addressing the integrated impact of risks on cost and schedule. While 

fuzzy logic has been successfully applied to model and evaluate cost and time contingencies 

separately (Table S1), current fuzzy logic-based models are limited in their ability to consider the 
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integrated impacts of risk factors. While type-2 fuzzy numbers are required to consider the impact 

of both time and cost, the implementation of mathematical operations on type-2 fuzzy numbers is 

computationally complex and may result in the overestimation of uncertainty through the 

consecutive implementation of fuzzy arithmetic operations (Gerami Seresht and Fayek 2019).

The ability of MCS to integrate these impacts offers several advantages, including alleviating 

the need for analysts to calculate correlations between activities affected by the same risk factor 

(Eldosouky et al. 2014) and improving the prioritization of project risks during the development of 

risk mitigation strategies (Hulett et al. 2011).Well-known for its ability to generate accurate and 

realistic results (Zhao et al. 2014), MCS is considered the state-of-the-art technique for risk 

assessment (Raz and Michael 2001; Hulett et al. 2019). 

MCS is often coupled to a CPM network to create an integrated MCS-CPM risk assessment 

model. In comparison to other risk assessment techniques (e.g., PERT), combining the CPM with 

MCS improves the accuracy of stochastic project schedules by: 

(1) Considering all possible values for the duration of each stochastic activity when 
determining project duration (as compared to mean durations) (Karabulut 2017). 

(2) Considering the uncertainty associated with all project activities for determining project 
duration (as compared to only critical activities). 

(3) Allowing practitioners to calculate the criticality index of each activity by running the 
simulation model for a number of iterations and determining the frequency of occurrence 
of each activity in the critical path. 

As a result of these advantages, MCS-CPM has become a recommended practice for risk 

assessment by the American Association of Cost Engineering (Hulett et al. 2019). Although 

considered a superior approach, previous MCS-CPM-based models consider cost and schedule 

impacts of a risk factor as independent variables (Table S2). While a method for considering the 

dependency between cost and schedule impacts through bivariate distributions has been recently 
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proposed (Mohamed et al. 2020b), the method has not been applied to a real case study. As such, 

its functionality and practical utility for the evaluation of real case data remains unknown.

3. Methodology
MCS-CPM was applied to develop a domain-specific risk assessment model. This model was then 

used to assess construction risks of a real wind farm project. The MCS-CPM methodology consists 

of four stages, namely input data preparation, modeling and quantification, decision-support, and 

sensitivity analysis. An overview of the methodology is provided in Figure 1. Model development, 

as well as a discussion of the results and practical implications of the method, are detailed as follows.

3.1 Input Data Preparation

3.1.1 Construction Process Configuration 

In this step, construction data are used to develop the cost-loaded schedule of the project and, 

using the CPM, to estimate baseline duration and cost. These data include work-package and 

activity information and are commonly prepared as follows: 

(1) Work breakdown structure of the project is developed, and the project is partitioned into 
work-packages and activities at the required level.

(2) Logical relationships (e.g., finish to start) between work-packages and activities are 
established, and applicable constraints or required lag times are added.

(3) Construction durations and baseline costs of different work-packages and/or activities are 
calculated. 

3.1.2 Risk Identification 

Risk data are used to develop the risk assessment portion of the model as follows:

(1) Risks are identified using an established technique or a combination thereof; readers are 
referred to Siraj and Fayek (2019) for a review of commonly used techniques. 

(2) Work-package(s) affected by each risk are determined.

Page 10 of 44Canadian Journal of Civil Engineering (Author's Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. C

iv
. E

ng
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

U
ni

ve
rs

ity
 o

f 
B

ri
tis

h 
C

ol
um

bi
a 

on
 0

7/
22

/2
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



11

(3) The probability of occurrence for each risk factor is determined using probability scales, 
such as those detailed in AbouRizk (2009), PMI (2008), and Abdelgawad and Fayek (2010).

(4) Risk impact distributions for cost and schedule are determined.

A challenge limiting the practicality of MCS is the requirement that impact parameters be 

input as probability distributions (Step 4). Distributions can be derived using a variety of methods 

depending on the types and amount of data available (Biller and Gunes 2010). As a relatively new 

type of construction, wind farm projects typically lack the volume of historical data required to 

derive probability distributions using statistical means. Types of distributions used in previous 

studies are summarized in Table S2. Due to a lack of historical data, a fuzzy-based multivariate 

method for determining risk impact distributions recently proposed by Mohamed et al. (2020b) was 

adopted in this study. The method is capable of integrating the detailed subjective knowledge of 

experts through fuzzy logic to derive the distributions for cost and schedule risk impact. The method 

is characterized by several advantages, including: 

(1) It can be applied when the distribution type is unknown.

(2) It reduces bias through risk decomposition and inclusion of root causes. 

(3) Unlike other methods, it considers the dependence between the risk and cost impact of a 
variable through copula-based bivariate distributions. 

Readers are referred to Mohamed et al. (2020b) for more information.

3.1.3 Regular Variability

In addition to the uncertainty associated with risk impact and occurrence, uncertainty 

associated with regular variability in the duration and cost of construction activities must also be 

considered. Variability in cost and duration of project activities under regular conditions (Moret 

and Einstein 2016) can arise due to a number of factors including, but not limited to, estimation 

errors or biases (Eldosouky et al. 2014; Hulett et al. 2019). Although regular variability has an 
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12

occurrence likelihood of 100%, the resulting impact on project cost and schedule is uncertain. This 

is in contrast to the variability associated with specific risks, where both likelihood and impact are 

uncertain. This study makes a clear distinction between uncertainty stemming from risk or from 

regular variability; here, regular variability is modeled stochastically by probability distributions 

(Moret and Einstein 2016; Hulett et al. 2019), and risks are modeled using likelihood and impact.

Previous research studies have proposed different types of probability distributions to model 

regular variability, as shown in Table S3. Triangular or beta pert distributions are most commonly 

used in the absence of historical data due to the ease in deriving the parameters of these distributions 

under such conditions. Lognormal distributions have also been used to represent the variability of 

activity costs (Moret and Einstein 2016); notably, cost variability was shown to be best fitted to this 

distribution when historical data were available (Touran and Wiser 1992). 

3.2 Modeling and Quantification

Once the input data are prepared, modeling and simulation can begin. Data are input into the 

MCS-CPM model and various parameters, including the early start/finish times, late start/finish 

times, activity float, and the critical path are calculated. Project activities or work-packages that 

are characterized by uncertainty are modeled stochastically using probability distributions (as 

previously described). Baseline costs of activities are evaluated and input into the model, and 

project risks are defined and assigned to specific activities/work-packages. Then, multiple 

iterations of MCS are performed. In each iteration, whether or not a risk occurred is determined 

by its probability of occurrence. If a risk is simulated to occur, a random value is sampled from 

the cost and schedule distributions, and the simulated impact is added to the cost and/or schedule 

of the affected activities/work-packages. The process is repeated until the specified number of 

iterations are reached. An illustrative example of the process is provided in Figure S1.
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3.3 Outputs and Decision Support

If a sufficient number of simulation iterations are performed, estimated project duration and cost 

can be represented as a probability distribution. Because the output of each simulation iteration (i.e., 

project time and cost) represents a possible project outcome, a joint cost-time contingency, which 

provides greater insight as compared to individual cost or time contingency values, can also be 

obtained. The MCS-CPM-based approach also allows for the investigation of the criticality of project 

activities. Risk factors that affect the duration of project activities can result in changes to the critical 

path of the project, which, in turn, can change the criticality of other project activities. A tornado 

diagram, which allows analysts to visualize the risks with the greatest impact on project cost and 

time (De Marco et al. 2012), can also be created. Finally, functionality of the simulation model is 

verified by testing the sensitivity of simulation outputs to changes in inputs (Kleijnen 2010).

4. Case Study

A real wind farm project was used to demonstrate the applicability of the MCS-CPM method. The 

onshore project consists of eight 5.0 MW wind turbine generators for a total project output of 40 MW. 

The project includes eight major work-packages as shown in Figure S3: pre-construction work, 

foundation, turbine delivery, turbine assembly, collection system, mechanical completion, 

commissioning, and site rehabilitation. 

4.1 Input Data Preparation

4.1.1 Construction Process Configuration and Regular Variability

Each of the work-packages was further partitioned into more detailed work-packages, as 

shown in Figure S3. Logical relationships between the work-packages and their durations were 

extracted from project plan documents, as shown in Table 1. The stochastic duration (i.e., regular 
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variability) of work-packages was represented using either triangular or uniform distributions 

based on recommendations from previous studies (Table S3) and project experts.

4.1.2 Risk Identification

Risk factors were identified and evaluated following a review of project documents and a 

brainstorming session with a group of three experts who were directly involved in the project. The 

list, which was collected and supplied by the industrial collaborator, is shown in Table 2; detailed 

descriptions of each risk factor are available in Table S4. It is important to note that risk factors 

were identified based on the characteristics of the studied project, and these risk factors may not 

be applicable to all onshore wind projects.

The probability of occurrence of each risk factor was evaluated linguistically using the scale in 

Table S5; average values of the numerical ranges, summarized in Table S5 under the heading ‘input 

value’, were used as inputs to the model. Then, the ability of each risk factor to impact cost and 

schedule and the work-packages affected by each risk factor were determined, as shown in Table 2.

The probability distributions for cost and schedule risk impact were determined using the 

method introduced by Mohamed et al. (2020b) for input modeling of MCS in wind farm 

construction. First, the root causes/scenarios of the risk factors were determined and evaluated. An 

example for R2 is shown in Table 3; a complete list of the root causes of the risk factors and their 

evaluations are detailed in Table S6.

Second, the frequency of occurrence and adverse consequence of root causes/scenarios were 

evaluated subjectively using a fuzzy membership function, as shown in Figure S2. Then, the lower 

and upper boundaries of each risk factor were determined. Third, the impact range was divided into 

three subsets (small, medium, and large), and a mapping degree for each value was determined based 

on expert belief. Example mapping for R2 is illustrated in Figure 2; mapping for all other risk factors 
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are shown in Figures S4 through S9. Finally, the correlation between the cost and schedule risk 

impact was evaluated subjectively as either weak (ρ=0.15), moderate (ρ=0.45), or strong (ρ=0.8), 

allowing the risk impact to be represented using a normal copula. Resulting marginal distributions 

for cost and schedule impacts of the risk factors are summarized in Table 4.

It is important note that because the root causes of risk factor R1 were difficult to determine, 

the cost impact was defined as triangular (50 000, 250 000, 100 000) and the schedule impact was 

determined as pert (30, 365, 90) with a strong correlation of 0.8. For R3, a fixed value of 50 000 

CAD per turbine/day was assigned to represent the liquidated damage specified in the contractual 

documents. Because the cost impact of R3 depends on the length of the schedule delay, a probability 

distribution with the same α and β values as the schedule impact distribution was derived. Then, the 

lower and upper bound values were multiplied by the fixed liquidated damage, resulting in values of 

0 CAD and 4 500 000 CAD, respectively (i.e., 50 000 CAD/day * 90 days = 4 500 000 CAD).

Risk factors with correlated schedule and cost impacts were represented by a bivariate 

distribution using a normal copula (Mohamed et al., 2020b). A copula package in R (Yan 2007) 

was used to implement the multivariate modeling of the cost- and schedule-risk impact 

dependence. An example bivariate distribution for R2 is presented as Figure 3. Bivariate 

distributions for R6 and R7 are shown in Figures S10 and S11.

4.2 Modeling and Quantification

SimphonyProject.NET is an in-house developed simulation platform designed to facilitate the 

application of an integrated simulation-based assessment of project risks. Notably, the use of 

SimphonyProject.NET addresses common practical limitations associated with MCS-CPM, 

including difficulty interpreting results (Senesi et al. 2015) and modeling of simulation inputs. By 

making use of popular scheduling techniques, such as the CPM and MCS (Karabulut 2017; 
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Mohamed et al. 2020a), SimphonyProject.NET is able to simulate project cost and duration in 

consideration of project risks.

The user interfaces for entering schedule and cost data as well as risk data in 

SimphonyProject.NET are shown in Figures S12 and S13, respectively. Once input data were 

entered, the simulation was initiated and was run for 1 000 iterations, as recommended by Dawood 

(1998), to achieve the desired level of confidence; notably, this is well in excess of the 120 

iterations recommended for a simulation to reach appropriate maturity (Lee and Arditi 2006).

4.3 Outputs and Decision-Support

Various results and reports were extracted from SimphonyProject.NET. A baseline project 

schedule (i.e., without risk but with regular variability) is shown in Figure 4a. Average duration of 

the baseline project ( ) was determined to be 281 days (σ = 3 days), with a 90% likelihood ( ) 𝑃50 𝑃90

that the duration of the baseline project would not exceed 285 days (Figure 4b). This resulted in a 

project completion date of April 22, 2021, and April 28, 2021, for  and ,  respectively 𝑃50 𝑃90

(Figure S14). Initially planned using a deterministic approach, the project was expected to be 

completed in 270 days. As is observed in Figure 6, there is a very low probability (~1%) that the 

project will be completed within this time. These results highlight the limitations of deterministic 

approaches, which often result in underestimation due to their inability to consider the randomness 

and variability inherent to construction.

Risk factors were then added to evaluate the resulting impact on project time and cost. When 

risk was considered, the average project duration was extended to 348 days (σ = 64 days) 

(Figure 5). There was a 50% likelihood ( ) that the project would be completed in 355 days, and 𝑃50

a 90% likelihood ( ) that the project would be completed in 415 days (Figure 5). Notably, the 𝑃90

average duration and the 50% likelihood values differ, as the distribution is not symmetric. Project 
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completion dates for  and  were August 10, 2021, and November 1, 2021, respectively 𝑃50 𝑃90

(Figure S15). Compared to the baseline project, risks were estimated to delay the project by 68 

days (or 13 weeks), resulting in a substantial effect on project completion time.

Time contingency, or the average impact of all risks on schedule at the project level, in 

consideration of project risk, was extracted separately. The time contingency was determined to 

be 73 days (σ = 64 days) (Figure 6). An 18% likelihood that the impact on project duration would 

be zero, and a 90% likelihood ( ) that the project time contingency would not exceed 140 days 𝑃90

was observed (Figure 6). The time contingency varied between 0 and 375 days due to the long-

tailed beta distributions for schedule impacts of risk factors.

Because baseline cost information was not available for analysis, total project costs could not 

be quantified. However, cost information for each risk was available, allowing the cost 

contingency to be evaluated (Figure 7). The average cost contingency for the project was 

444 691 CAD (σ = 840 337) CAD (Figure 7), with a 90% likelihood ( ) that the cost contingency 𝑃90

would not exceed 2 000 000 CAD (Figure 7). Due to a low probability of risk factors’ occurrence, 

a 70% likelihood ( ) that the cost contingency would be zero was observed.𝑃70

A tornado diagram, which visualizes risk factor rankings based on their mean simulated risk 

impact of all runs, was extracted from SimphonyProject.NET (Figure 8). Results suggest that 

project completion delays have the largest potential cost impact, while COVID-19-related delays 

have the largest potential schedule impact. 

A joint time-cost contingency scattergram was generated from the data of each simulation 

iteration (Figure 9). Each iteration was plotted as estimated project completion (x-axis) versus cost 

contingency (y-axis). The green lines (Figure 9) represent baseline (i.e., no risk) values of project 

duration and cost. The gathering of points at the horizontal green line (Figure 9) can be explained 
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by the finding that there is a 70% likelihood that the cost contingency will be zero (Figure 7). The 

scattergram also reveals that the completion date of the project is moderately correlated with cost 

contingency (Figure 9). 

The impact of risk on the critical path of the project and criticality of the activities was 

examined. Table S7 summarizes the impact of risk on critical activities and work-packages, 

criticality indexes, and total float. While the critical path of the project was unchanged following 

the addition of risk, criticality of the activities was reduced, as certain risk factors (i.e., 1, 3, and 

4) delayed the entire project, resulting in the addition of float to all activities.

5. Sensitivity Analysis
Because the present case study is the first reported application of the MCS-CPM to a wind 

farm construction project in literature, the size impact of select parameters on model outcomes was 

assessed using a sensitivity analysis. Two parameters were examined: probability of occurrence 

and correlations between cost and schedule impact.

5.1 Sensitivity to Probability of Occurrence

Sensitivity of the model to probability of occurrence values was examined (Figures 10a 

and b) based on ten scenarios (Table S8). In the original model, the average value of the range 

associated with the linguistic term (Table S5) was used as the input into the model. Increasing the 

probability of occurrence value increased cost and time contingencies. Conversely, decreasing this 

value reduced contingencies for both cost and time. Although logical and expected, these findings 

highlight the importance of carefully evaluating and assigning probability of occurrence values 

when using simulation as a risk assessment method. Accordingly, it is recommended that the scale 

used in Table S5 be expanded to seven linguistic terms to allow for a more precise selection of 

average input values. If possible, researchers and practitioners may also consider the use of more 

Page 18 of 44Canadian Journal of Civil Engineering (Author's Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. C

iv
. E

ng
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

U
ni

ve
rs

ity
 o

f 
B

ri
tis

h 
C

ol
um

bi
a 

on
 0

7/
22

/2
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



19

5.2 Sensitivity to Cost and Schedule Impact Correlation

As discussed previously, the impact of risk factors on both cost and schedule were 

represented by bivariate distributions (i.e., dependent). The simulation was then re-run using 

separate input distributions for cost and schedule risks, thereby considering the impacts as 

independent. Cumulative distribution functions of cost contingency and expected project duration 

for both cases are illustrated in Figure 11a and b, respectively. While overall differences were 

small, higher contingency values for time and cost were observed when the impact of correlation 

was evaluated for individual risk factors (Figure 12). Here, cost and schedule values were 

consistently elevated when impacts were correlated (Figure 12). Therefore, considering the 

impacts of cost and schedule as dependent is recommended to ensure that contingencies are not 

underestimated—especially in large risk models.

6. Discussion And Managerial Implications
Construction practitioners continue to rely on simple and subjective tools for risk management 

and assessment. Several barriers limiting the application of quantitative risk assessment tools in 

construction practice have been reported in literature, including a lack of experience with 

quantitative techniques, lack of time for analysis, and difficulty appreciating the benefits and 

advantages of such tools.

As a new type of construction, onshore wind farms are associated with a relatively large 

amount of risk and uncertainty (Gatzert and Kosub 2016; Somi et al. 2020; Mohamed et al., 

2020b). Accurately estimating the impact of risk to ensure adequate cost and time contingencies 

is particularly important in wind farm construction due to electricity production requirements 

mandated in power purchase agreements, with contracts imposing liquidated damages of up to 

50 000 CAD per turbine/day for any delays in the operation date. However, application of state-
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of-the-art risk assessment methods, such as MCS-CPM-based approaches, to real wind farm 

projects have yet to be demonstrated in literature. 

This study aimed to facilitate the application of domain-specific techniques for risk 

assessment in onshore wind projects by providing the first reported application of the MCS-CPM 

to wind farm construction. The present case study demonstrated the practicality and benefits of the 

MCS-CPM-based approach, particularly when applied using the risk management support tool 

SimphonyProject.NET. Specifically, the MCS-CPM was capable of generating a variety of reports 

that can be used to support decision-making in practice by:

(1)  Obtaining the probabilistic completion time and cost of the project under regular variability 
without risk consideration.

(2) Obtaining the probabilistic completion time and cost of the project in consideration of 
regular variability and project risk.

(3) Providing confidence levels for completing the project within a specific time.

(4) Providing confidence levels for completing the project within a specific risk contingency.

(5) Identifying the most critical risks affecting project time and cost. 

This study focused on providing an analytical generalization rather than statistical generalization 

to demonstrate how an onshore wind project can be analyzed using the MCS-CPM approach. The 

analytical generalization allows one to establish logic that may be applicable to similar situations 

(Goh et al. 2013). The following are recommended considerations for practitioners of onshore 

wind construction projects when applying MCS-CPM for risk assessment.

(1) To achieve successful completion of the project, uncertainty and risks of the project must 

to be quantified as thoroughly and accurately as possible. Risks should be integrated with 

project schedule, and cost and should not be managed separately. 

(2) Deterministic approaches fail to provide a complete overview of the different scenarios of 

project cost and duration under the effect of risk and uncertainty. In contrast, simulation-
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based approaches are capable of simultaneously considering all identified project risks, 

dependency between cost and schedule impacts, and the inherent uncertainty of 

construction projects. Simulation-based approaches, therefore, provide a more realistic 

projection of expected project costs and durations and allow practitioners to better 

understand the probability of achieving schedule and cost targets. 

(3) MCS-CPM allows practitioners to prioritize and rank risks according to their severity, in 

turn allowing practitioners to develop risk mitigation strategies that focus on the most 

critical risks.

(4) To avoid underestimation of contingencies, correlation and dependencies between schedule 

and cost impact of risk factors should be modeled.

7. Conclusion

In this paper, a domain-specific, MCS-CPM-based method was applied to simultaneously 

quantify and assess the impact of risk factors on project cost and time. The method was adopted 

because of its advantages as an integrated tool for risk assessment and its ability to consider two 

types of uncertainty due to regular uncertainty and occurrence of risk factors. The MCS-CPM 

method was applied to a real 40 MW onshore wind project and was found capable of generating 

more comprehensive and representative results than the deterministic approach initially used by 

industrial practitioners. 

A newly developed method for input modeling (i.e., distribution elicitation for risk impact) 

was adopted to overcome limitations with the lack of historical data that is common to many wind 

farm projects. A risk assessment management support tool, SimphonyProject.NET, was found to 

substantially reduce the complexity associated with MCS-CPM, simplifying its use in practice. By 

facilitating the incorporation of risk and regular variability in project planning, the applied 
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methodology is expected to reduce under- or overestimation of project contingencies, thereby 

developing more realistic project plans and enhancing the likelihood of project success. 

This case study contributes to wind farm construction practice by providing a domain-specific 

model and application example for wind farm construction. Also, the case study contributes to other 

sectors of construction practice by demonstrating the ability of the SimphonyPoject.NET tool to 

overcome the practical limitations associated with integrated simulation-based approaches. Future 

work includes developing models to evaluate the probability of risk occurrence more accurately and 

developing strategies that allow MCS-CPM risk simulation models to be updated in real-time.
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Figure Captions

Fig. 1. Case study methodology.

Fig. 2. Probability distribution for (a) cost and (b) schedule impact of R2.

Fig. 3. Bivariate impact probability distribution of R2.

Fig. 4. Baseline project (i.e., no risk) duration as a (a) probability density function and 
(b) cumulative distribution function.

Fig. 5. Project duration considering risk impact as a cumulative distribution function.

Fig. 6. Time contingency as a cumulative distribution function.

Fig. 7. Cost contingency as a cumulative distribution function.

Fig. 8. Tornado risk diagram.

Fig. 9. Joint cost-time contingency.

Fig. 10. Sensitivity of (a) cost contingency and (b) project duration, as a cumulative distribution 
function, with respect to probability of occurrence.

Fig. 11. Sensitivity of (a) cost contingency and (b) project duration, as a cumulative distribution 
function, with respect to cost-schedule impact correlation.

Fig. 12. Simulated risk impact of (a) R2 and (b) R6.
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TABLES

Table 1. Work package details of the project

ID Work Package Name Duration (Days) Predecessor/
Relationship (Lag)

W1 Access road construction Triangular (40, 55, 47) –

W2 Crane pad and laydown areas Triangular (40, 55, 47) 1/F.S

W3 Foundation construction of 
tower1 Triangular (5, 10, 7) 2/F.S

W4 Delivery of turbines to port Uniform (90, 110) 1/S.S

W5 To site delivery of turbine2 Triangular (7, 12, 10) 2/F.S; 4/F.S

W6 Erection and install of turbine2 Triangular (5, 10, 7) 5/F.S; 3/F.S Lag (15)

W7 Underground collection circuit Triangular (100, 110, 105) 2/F.S

W8 Substation upgrade Triangular (210, 215, 220) 1/S.S

W9 Transmission line Triangular (105,115,110) 2/S.S

W10 Mechanical completion of 
turbine2 Triangular (3, 7, 5) 6/F.S

W11 Commissioning of turbine2 Triangular (5, 9, 7) 7/F.S; 8/F.S; 10/F.S

W12 Maintaining access road Triangular (90, 100, 95) 5/S.S

W13 Project completion and final 
site verification Triangular (7, 12, 9) 11/F.S

1Towers 1 or (2, 3, 4, 5, 6, 7, 8), 2Turbines  1 or (2, 3, 4, 5, 6, 7, 8)
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Table 2. Risk factor pre-evaluation

ID Risk name Probability of 
Occurrence

Cost 
Impact

Schedule 
Impact

Affected 
Work 

Package(s)

R1 Landmines Unlikely ✔ ✔ Entire Project

R2 Unexpected poor site 
geology Very Unlikely ✔ ✔ 3

R3 Project completion delay Somewhat Likely ✔ ✔ Entire Project

R4 COVID-19-related delays Likely – ✔ Entire Project

R5 Limited experience Likely – ✔ 11

R6 Blade erection failure Very Unlikely ✔ ✔ 6

R7 Installation errors Very Unlikely ✔ ✔ 6

R8 Concrete foundation issues Very Unlikely ✔ ✔ 3, 11

Table 3. Root causes of risk factor R2 and their evaluation

ID Root Causes/Scenarios Frequency of 
Occurrence

Adverse
Consequence

Data provided by the owner is low accuracy Likely Very Large
Data provided by the owner is medium accuracy Somewhat Likely Medium
Site investigation by contractor is poor Likely Large
Site investigation by contractor is medium Unlikely Small

R2

Low experience with characteristics of project area Somewhat Likely Very Large
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Table 4. Parameters of distributions for cost and schedule risk impact 

ID Cost Impact Schedule Impact ρ1

R1 Triangular (50 000, 250 000, 100 000) Pert (30, 365, 90) 0.8

Lower Upper α β Lower Upper α β

R2 30 000 75 000 13.195 12.826 14 60 10.535 13.016 0.8

R3 0 4 500 000 10.428 13.334 0 90 10.428 13.334 0.8

R4 - - - - 30 180 9.676 12.453 -

R5 - - - - 7 30 2.222 10.930 -

R6 0 300 000 3.066 16.439 3 30 2.747 12.802 0.8

R7 0 300 000 2.959 15.644 3 30 3.146 15.412 0.8

R8 100 000 300 000 3.889 14.461 30 90 2.359 3.650 -
1Where ρ = assigned correlation value
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Figure 1. Case study methodology 
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Figure 2. Probability distribution for (a) cost and (b) schedule impact of R2 
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Figure 3. Bivariate impact probability distribution of R2 
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Figure 4. Baseline project (i.e., no risk) duration as a (a) probability density function and (b) cumulative 
distribution function 
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Figure 5. Project duration considering risk impact as a cumulative distribution function 
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Figure 6. Time contingency as a cumulative distribution function 
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Figure 7. Cost contingency as a cumulative distribution function 
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Figure 8. Tornado risk diagram 
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Figure 9. Joint cost-time contingency 
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Figure 10. Sensitivity of (a) cost contingency and (b) project duration, as a cumulative distribution function, 
with respect to probability of occurrence 
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Figure 11. Sensitivity of (a) cost contingency and (b) project duration, as a cumulative distribution function, 
with respect to cost-schedule impact correlation. 
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Figure 12. Simulated risk impact of (a) R2 and (b) R6 
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