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Abstract

Image segmentation has a critical role in medical diagnosis systems as it is mostly the initial stage,

and any error would be propagated in the subsequent analysis. Certain challenges, including Irreg-

ular border, low quality of images, small Region of Interest (RoI) and complex structures such as

overlapping cells in images impede the improvement of medical image analysis. Deep learning-

based algorithms have recently brought superior achievements in computer vision. However, there

are limitations to their application in the medical domain including data scarcity, and lack of pre-

trained models on medical data. This research addresses the issues that hinder the progress of

deep learning methods on medical data. Firstly, the effectiveness of transfer learning from a pre-

trained model with dissimilar data is investigated. The model is improved by integrating feature

maps from the frequency domain into the spatial feature maps of Convolutional Neural Network

(CNN). Training from scratch and the challenges ahead were explored as well. The proposed

model shows higher performance compared to state-of-the-art methods by %2.2 and %17 in Jac-

card index for tasks of lesion segmentation and dermoscopic feature segmentation respectively.

Furthermore, the proposed model benefits from significant improvement for noisy images without

preprocessing stage. Early stopping and drop out layers were considered to tackle the overfitting

and network hyper-parameters such as different learning rate, weight initialization, kernel size,

stride and normalization techniques were investigated to enhance learning performance. In order

to expand the research into video segmentation, specifically left ventricular segmentation, U-net

deep architecture was modified. The small RoI and confusion between overlapped organs are big

challenges in MRI segmentation. The consistent motion of LV and the continuity of neighbor

frames are important features that were used in the proposed architecture. High level features

including optical flow and contourlet were used to add temporal information and the RoI mod-

ule to the Unet model. The proposed model surpassed the results of original Unet model for LV

segmentation by a %7 increment in Jaccard index.
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Chapter 1

Introduction

1.1 Background

Most research on medical image analysis encompasses similar steps including preprocessing, fea-

ture extraction, segmentation, classification, interpretation and measurement (Deserno, 2011).

Due to each stage’s reliance on its previous step, a system’s performance will be considerably

affected if one of these steps; is not performed properly, particularly early stages such as segmen-

tation.

Image segmentation aims to localise a specific part or object of an image in order to generate a

useful representation for the system to analyse. This is an important stage of many applications in

computer vision including traffic control systems and video surveillance, recognition tasks such

as face or fingerprint detection, autonomous driving, medical image/video analysis etc.

When it comes to the medical domain, image segmentation is a fundamental stage in various med-

ical diagnosis systems because often it is the initial part, so any error would be propagated in the

following analyses. Medical image segmentation is often applied to deal with separating an organ

or tissue in pathology, or other relevant structures, such as tumor detection and computer assisted

surgery (Pereira et al., 2016), (Cireşan et al., 2013), (Soler et al., 2001). To generate images of

different parts of body, various devices and modalities have been produced to improve diagnostic

systems. The development of imaging equipment technology has led to an increase in medical data

too. Nowadays, several types of medical images and videos are available to researchers includ-

1



ing Magnetic Resonance Imaging (MRI), X-rays, Computed Tomography (CT) scans, ultrasound

and nuclear medicine imaging such as Positron-Emission Tomography (PET). However, certain

challenges with medical data limit the effectiveness of medical analysis systems:

• Dataset scarcity is a major problem in medical image segmentation as providing labelled

data is costly and requires clinician experience.

• Irregular border and complex structures in medical images for instance, overlapping cells

in images (Qi et al., 2011) or certain tumours which mostly form within the tissue and very

much resemble normal tissue, lead to further complications in segmentation.

• Low quality of medical images also reduces accuracy. Medical images are mostly noisy and

affected by various artifacts while imaging.

• Not only the resolution of medical images has improved over the years but the dimension

has also expanded, which requires the development of methods on 3D and 4D images.

Over the years, a wide variety of methods deriving from computer vision and machine learning

have been developed for the task of image segmentation. These have been applied and adopted

for the medical domain too. Traditional segmentation techniques encompass methods based on

thresholding, clustering, region and edge-based techniques, as well as methods powered by ma-

chine learning which have seen dramatic improvements. Extracting discriminant features is the

key to advancing these segmentation methods and extensive research into feature extraction and

selection algorithms has been carried out. Moreover, the methods that researchers use for a spe-

cific type of medical image may not work well on other types. For several decades, researchers

have considered finding a solution that can be applied to various types of images and is suitable

for different medical segmentation applications, yet this is still a controversial topic.

Lesion segmentation as the first step of a melanoma diagnosis system, aims to separate the rele-

vant pixels to melanoma tumors. Skin cancer is a prevalent kind of cancer worldwide with fast

increment in incidence and number of deaths over the past decade (Siegel et al., 2016). Never-

theless, there is a high chance of a cure if the cancer is diagnosed in a primary stage before other

tissues of the body are invaded. Dermoscopic imaging has significantly assisted dermatologists in

the detection of malignant melanoma, the deadliest form of skin cancer. However, expert clini-

cians are still needed to distinguish the disease. Research on automated computer-based detection
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systems for melanoma cancer have increased in the past few years to assist dermatologists, lessen

workload, continue monitoring high risk patients and more to reduce the costs of diagnosis and

treatment (Alamdari et al., 2017). Moreover, such algorithms can be used to improve embedded

systems, robots or even mobile software to create an easy user interface as part of an automated di-

agnosis system. Lesion border segmentation is still a challenging and complex task due to several

problems in dermoscopic images including:

• The lesions being of various shapes, colours and sizes

• Low contrast

• In some images, the region of interest is very small

• Fuzzy borders

• Illumination variation

• Variety of artifacts including ruler marks, hair, air bubble, etc.

• Dark corners

Figure 1.1 shows samples of dataset.

Figure 1.1: Sample images from the ISIC dataset that show various issues such as variety in scales
and colour, the existence of hair and other artifacts, and dark corners on images.

Various algorithms have been developed in the literature to tackle the aforementioned issues, for

example to remove hair or illumination correction algorithms (Liu and Zerubia, 2015), (Jaisak-

thi et al., 2018). Moreover, the lack of extensive public datasets has impeded the development

of computer-aided systems for melanoma detection. Recently, ISIC (International Skin Imaging

Collaboration) has provided public collections of dermoscopic images of skin lesions, and ISBI

challenges (IEEE International Symposium on Biomedical Imaging) have been held to improve

skin cancer diagnosis (Gutman et al., 2016), (Codella et al., 2019). Deep Convolutional Neural
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Networks (CNN) have seen great success in computer vision and machine learning, and surpassed

conventional methods in several challenges (Cireşan et al., 2013), (He et al., 2016). CNN learns

more complex features with more layers compared to a shallow network but it requires a large

amount of data for training, which is a critical issue in the medical domain. Dataset enlargement

by adding other available datasets has been generally considered by researchers, whereas preparing

labeled data is still time consuming and expensive. Common classical augmentation techniques

such as flipping, rotation, and scaling are often applied to produce adequate information to feed the

deep neural network (Harangi, 2018), (Hussain et al., 2017) (Kwasigroch et al., 2017). However,

augmentation techniques are specific to datasets and require attention to avoid losing information

or increasing the share of irrelevant data. Augmentation techniques have therefore expanded into a

field widely used in deep learning particularly medical analysis. It has become an active academic

area within which many studies are being conducted to develop data-generation methods (Zhang

et al., 2017), (Liang et al., 2018), (Frid-Adar et al., 2018).

When it comes to dermoscopic feature segmentation, unbalanced data is the main challenge to

training the model. Nearly half of the images in the dataset do not contain any dermoscopic

features and the detection of empty masks can improve the performance (Chen et al., 2018).

Moreover, among those which hold dermoscopic features, the number of pixels that belong to

the classes of globules or streaks are far fewer than background pixels. Nearly 42 percent of im-

ages contain pixels of globules while the number of images involving streaks is less than 8 percent

of the dataset. Techniques such as weighted loss function and customized augmentation will be

considered to tackle this issue.

The task of left ventricular segmentation was chosen to expand the research from image to video

segmentation. A cardiac MRI scan is a non-invasive test and an MRI machine is used to generate

magnetic and radio waves to show detailed pictures of the inside of the heart. Over the years,

cardiovascular research has developed to improve the early identification of cardiac diseases. The

left ventricular (LV) is the most investigated chamber in cardiac segmentation due to its key role in

pumping blood through the human body. The LV is the thickest of the heart’s chambers and pumps

oxygenated blood to tissues all over the body. A cardiac magnetic resonance image is a critical

part of cardiac function analysis/calculations, such as left ventricular volume and ejection fraction,

wall thickness and wall motion abnormality detection and stroke volume. Cardiovascular diseases
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(CVD) are a significant cause of disability and death around the world. The Global Burden of

Disease research reported that CVD was the main cause of 29.6% of all deaths worldwide. It is still

the main reason for over 4 million deaths per year, which constitutes half of all deaths in Europe in

2010 (Nichols et al., 2014). It is estimated that by 2035, nearly 45 % of adults living in the US will

be diagnosed with some form of CVD (Benjamin et al., 2018). The number of LV segmentation

studies based on CNN is increasing with the recent advances in deep learning (Wu et al., 2020),

(Shoaib et al., 2019). However, there is still potential improvement for LV segmentation thanks

to advances in deep models. LV segmentation faces several challenges including small region of

interest compared to whole slide, intensity issues, and weak boundaries between myocardium and

surrounding tissue. This is what motivated this research to improve a CNN-based method with

adding regions of interest and edge information to the network to improve the performance.

1.2 Motivation

Extracting effective features in medical images is still a challenging issue. Not only is it a tedious

and time consuming task. it also demands medical professionals’ experience, hence scientists

have been strongly motivated to design fully automatic computer-based diagnostic systems. Fur-

thermore, deep learning with the superiority of automatic feature learning from raw input has

received particular attention in medical analysis. Such an automated system not only benefits

from not being dependent on expert knowledge to find efficient feature extraction/selection meth-

ods but it has also demonstrated considerable accuracy and robustness. Recent advances in image

processing demonstrates striking progress relying on deep learning algorithms and the increasing

rate of research in this area demonstrates the importance of this subject in the medical domain too.

Figure 1.2 highlights the increase in the number of publications on medical imaging with deep

learning methods over the last few years.

Although CNN based models have surpassed traditional segmentation techniques, most studies

have addressed natural images and not the medical domain where possible procedures on natural

images may not be easily applicable. There has been a jump-start in CNN-based models for

image segmentation in 2015, inspired from the Fully Convolutional Networks (FCN) study (Long

et al., 2015) (which adopted the CNN based classification model for task of segmentation), along

with technological advances in hardware including GPUs. This motivates the present study to
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Figure 1.2: The number of publications that used deep learning in medical imaging. Data is from
Scopus and search is defined as the search phrases are deep learning and medical imaging within
search areas of title, keywords, and abstract.

investigate the challenges that FCN confronts within the medical domain and improve upon a new

model for medical image/video segmentation. Although FCN based models have been presented

in the literature in computer vision with remarkable success, there is still research potential to

improve detection accuracy in image segmentation, specifically in the medical area, which still

faces challenges due to the lower quality of the medical images, overlapping organs, their complex

structure, noise and artifacts.

Although studies have generated several FCN-based pretrained models on object recognition and

segmentation tasks, there are no pretrained models on medical images. The use of a pretrained

model made of natural images on medical data has not yet been assessed. Addressing this issue is

essential for the application of FCN-based architectures in the medical area. The first phase will

therefore investigate transfer learning with a pretrained model on a dataset containing millions of

natural images, which is remarkably different from the medical dataset. Data augmentation and

fine tuning to adjust the parameters to enhance the model will be considered as well.

Due to the dissimilarity of medical data and data of the pre-trained model in transfer learning, only

general information in the first layers can be useful to initially speed up the learning mechanism,

but this may negatively affect convergence. Moreover, issues such as local representation on

some layers (Yosinski et al., 2015) and the limitation to modify the deep network disparate from

pretrained model motivated this study to investigate the training of the deep convolutional network

on medical data from scratch. The challenges ahead will be studied to identify an efficient deep

architecture for medical image segmentation based on best-known recent segmentation methods
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(i.e. FCN and U-net) (Ronneberger et al., 2015). This can be done by going deeper along layers

in the deep network to extract higher level features or increasing the inputs. These are common

approaches in deep networks, but they are hardly applicable in the medical area where datasets are

scarce. Therefore, this study proposes advancing the CNN-based model in a way that improves

the network’s high-level feature learning without increasing the network’s capacity, which causes

overfitting.

1.3 Aims and Objectives

This research aims to design a segmentation system based on CNN to address the issues that hin-

der the progress of deep networks on medical data such as data scarcity, noisy images, lack of

pretrained models on medical data and unbalanced datasets. For image segmentation, this study

focuses on skin lesion diagnostics. The proposed models will be evaluated for two tasks of lesion

border segmentation and attribute detection, (Gutman et al., 2016). The task of left ventricular

segmentation to study medical video segmentation is also considered. Based on challenges re-

viewed in the literature, and to attain the above-mentioned goal, the research objectives are listed

as follows:

• To conduct a literature review to understand the state-of-the art in medical segmentation.

• To design a hybrid segmentation method for two tasks of skin lesion segmentation and

dermoscopic feature segmentation. As in the literature reviewed, despite of the popularity

of transfer learning, there is still the open question of whether transfer learning from a deep

model pre-trained on a dataset with significant different images from medical area, can

improve performance.

• To improve efficiency in terms of the number of parameters and convergence time, and in

particular to ease the training procedure for dermoscopic feature segmentation with issues of

complex structure and very small regions of interest and unbalanced data. Although various

research on skin melanoma diagnosis has been conducted, these studies mostly address

lesion border segmentation. Only a limited number of research papers have focused on

dermoscopic feature segmentation where increasing accuracy is still a key challenge.

• To propose a new deep architecture built by integrating spectral domain features into deep
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networks to tackle the challenges ahead for training the deep network from scratch on a

small dataset. Amending the cost function and using drop out layers will be considered To

improve the regularization as well.

• To design a robust segmentation algorithm to deal with critical issues relevant to the skin

dataset including low contrast, dark corners, small area, and artifacts such as hair and ruler

marks. The network will be improved taking into account minimal pre-processing tech-

niques specific to the dataset, in order to preferably use the raw images as inputs for the

network. This is important for the model to be easily applicable on various medical datasets

that may need different preprocessing methods.

• To develop the proposed model for video segmentation, specifically automatic left ventricle

segmentation. Such a task is still challenging due to the size and intervention of the cardiac

area as well as the thorax in slices. Contourlet feature maps will be investigated to handle

weak boundaries and provide edge information to the network. To produce a location guide

for CNN, the continuity feature of consecutive frames and motion feature will be considered.

This would be useful for tackling the issue of the left ventricular area being a small area

compared to the whole cardiac image.

1.4 Thesis Structure

The remainder of thesis is comprised of five chapters and is organised as follows:

Chapter 2: In this chapter, the segmentation techniques in the literature are classified into deep

learning based models, specifically CNN and traditional methods, and a comprehensive review is

conducted. Moreover, this chapter discusses the concept of deep learning beside an architecture of

the convolutional neural network as the most common deep learning method in computer vision.

This chapter also describes information on the required hardware and the frameworks used in this

research.

Chapter 3: A hybrid model inspired by a deep CNN identified in the literature review is proposed

for two main segmentation tasks in a melanoma diagnosis system (including a lesion segmen-

tation followed by a dermoscopic feature segmentation). An overview of the model, details on

the training and the hyper-parameters are discussed as well. The issue of overfitting as the most
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common issue in deep architectures when it comes to medical domain, is discussed and transfer

learning is considered along with the effect of applying drop out layers, data augmentation, and

early stopping to tackle this issue.

Chapter 4: The diagnosis system proposed in this chapter considers training from scratch, comple-

ments the former model and improves it gradually by appending appropriate features and optimisa-

tion techniques. Image representations from multi-direction and multi-scale contourlet transform

are incorporated into a CNN network and form a novel architecture, which is then compared in

terms of efficiency and accuracy to the original model and top research in literature. Various

parts of the method including pre-processing, architecture of the segmentation model, and post

processing are detailed.

Chapter 5: The proposed U-net based architecture in this chapter addresses the task of video seg-

mentation, specifically automatic left ventricle (LV) segmentation on a short-axis cardiac MRI.

Video attributes, including motion features, are considered to improve the model. Data prepara-

tion and the design of a new model inspired by models from previous chapters are explained as

well.

Chapter 6: Contributions and potential topics for future research are presented.
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Chapter 2

Review of Segmentation Methods

2.1 Introduction

Image segmentation as an important initial part of image analysis techniques, is still an active

research field in computer vision. Segmentation is the processing of an image to divide it into

various regions where each pixel is attributed to a region. It has been used in numerous applications

where segmented objects of an image are required, including but not limited to object tracking and

video conferencing, medical applications such as detection of cancerous cells and locate tumors,

computer assisted surgery, object detection and recognition tasks such as face and iris recognition

(Ikonomakis et al., 2000) , (Pereira et al., 2016), (Mukherjee et al., 2016). Image Segmentation

techniques can be categorized into two main groups: traditional methods and methods based on

deep learning algorithms. Figure 2.1 displays a brief classification of the segmentation methods

in this chapter. In next section, from segmentation techniques edge, threshold, region and hybrid

methods are briefly described followed by segmentation methods based on Convolutional Neural

Network (CNN).

2.2 Traditional Methods

Common conventional techniques of image segmentation can be classified into four major cate-

gories i.e. edge based segmentation, region-based segmentation, thresholding and neural network-

based segmentation (Figure 2.1). In this section, traditional segmentation methods are briefly
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Figure 2.1: Classification of segmentation methods

reviewed followed by segmentation techniques in the medical area that are relevant to this re-

search.

2.2.1 Methods based on Thresholding

Thresholding the image is the oldest and most commonly used segmentation method that can

simply be shown as:

g(x, y) =

 1 if f(x,y)>T

0 Otherwise
(2.1)

Where T stands for threshold value, and g(x,y) is the threshold version of f(x,y).

Image thresholding can be categorized into global threshold and local threshold. Global threshold

considers a single threshold value for the whole image and each pixel’s gray value will be com-

pared with this threshold value while in the local threshold, the value of threshold appoints to each

pixel due to the gray scale information of the neighbouring pixels (Al-Amri et al., 2010). Global

techniques are really fast and they show great results for common scanned documents. Statisti-

cal methods such as clustering approaches have been the main technique for global thresholding.
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However, these methods are inappropriate for complex documents, particularly when the docu-

ment does not have uniform illumination. The Otsu algorithm is a common used global thresh-

olding technique that seeks for a threshold to make the intra-class variances of the segmented

image minimum. Over the years, various methods have been developed by researchers for global

and local thresholding to select automatic optimized value for threshold such as histogram based

threshold selection, edge maximization technique, mean method, P-tile method (Al-Amri et al.,

2010). Peaks and valleys in the histogram of an image can be considered in finding the appro-

priate value for the threshold. While the mean value of the pixels is set as the value of threshold

in mean method, in p-tile method the information of the area size of the desired object is used to

conduct image thresholding. A fuzzy technique was also applied in order to select a threshold.

Based on the concept of fuzzy sets and the description of membership function, a thresholding

method was proposed to employ the measure of fuzziness to determine an adequate threshold

value. In (Chaudhuri and Agrawal, 2010), a method based on a fuzzy framework reported that a

thresholding histogram has been conducted according to the similarity between gray levels.

2.2.2 Edge based Segmentation

Since edges in an image involve important information, segmentation techniques can be applied to

the edges retrieved from edge detection techniques and object contours are produced by connecting

the edges. A typical procedure of edge detection based-segmentation includes calculating edge,

processing the edge image to keep the border of the objects closed, and transforming the output

to a typical segmented image by filling inside of the predicted object borders. Edge detection

methods are used regularly as part of segmentation techniques particularly for images that consist

of various objects, because the edges efficiently express the object’s boundaries. Compared to

region-based technique, this method has the benefit of not necessarily needing closed boundaries

s. The edge-based methods have been applied to distinguish the discontinuity in intensity level,

that constitute the image boundary. Image Segmentation based on edge detection methods use

an edge detection operator i.e. Laplace operator, Sobel and Canny operator (Razali et al., 2014).

(Fabijańska, 2011) introduced a new approach to define an edge position using a variance filter.

The output of applying a variance filter has been clustered by K-means clustering into two classes

of edge pixels and non-edge pixels. As a result, a wide edge is obtained to enter skeletonization

algorithm to define one-pixel width edge.
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2.2.3 Region Based Segmentation

In region based segmentation, the pixels with more similar characteristics are located in the same

group to generate homogeneous segments. Various segmentation algorithms are available for re-

gion growing, splitting and merging Chaudhuri and Agrawal (2010), Tang (2010), Adams and

Bischof (1994), Fan and Lee (2014). Various methods have been proposed for region growing.

Fan and Lee (2014) introduced three techniques to enhance the performance of the Seeded Region

Growing (SRG) method, which is a fast and powerful algorithm for region based image segmen-

tation. In a simple common SRG method, a set of seeds such as a set of connected pixels are

placed in the image to be segmented, followed by growing these seeds into regions with the idea

of consecutively adding neighbouring pixels to them until the image is partitioned into segments

that come from seeds (Shih and Cheng, 2005). Region splitting as another region based method,

considers the whole image as a region that is subdivided iteratively due to homogeneity criteria

(Ohlander et al., 1978). However in many studies, splitting has been applied as a first stage of split-

merge algorithm that generally contains a decomposition method such as Quadtrees that applies

for a splitting phase followed by a merging phase. (Chaudhuri and Agrawal, 2010) proposed an

automated thresholding method that stands on bimodality detection, and is followed by recheck-

ing through merging technique between the two neighboring regions. They proposed an algorithm

that uses the density ratio of the neighbor pair regions to handle the issues caused by the splitting

method.

2.2.4 Neural Network Based Methods

Artificial Neural Networks (ANN) have been primarily inspired by human being’s central nervous

systems. Over the years, neural networks have shown their incredible ability to solve problems in

several applications in prediction, recognition and detection systems. The models stand on neural

networks to analyze a small region of an image by applying an ANN. Finally, the regions of an

image are classified by the neural network. Neural networks involved in image segmentation are

Hopfield, Multi-Layer Perceptron (MLP), Self-Organizing Map (SOM), and Pulse Coupled Neu-

ral Network (PCNN) (Cheng et al., 1996), (Cuevas et al., 2009), (Xiao et al., 2009), (Iscan et al.,

2009). This section will discuss studies that relied on ANN for image segmentation. (Zhao et al.,

2010) designed a segmentation technique that uses textural features and neural network. They
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applied Gray Level Co-occurrence Matrix (GLCM), and three parameters of textual features i.e.

uniformity, energy and diagonal moment to dental micro-CT images. A back propagation neural

network with two hidden layers was also applied as well as the pre-processing technique of de-

noising, filtering and image sharpening. Results have demonstrated that this technique is superior

in segmentation than other methods such as the thresholding and the region growing methods in

terms of speed and accuracy of segmentation. (Teimouri et al., 2014) presented a segmentation

algorithm for discriminating almond images which belonged to different classes including normal

almond, broken and split almond, shell of almond, wrinkled almond and double or twin almond.

Sensitivity analysis has been practiced to select the best features set of colour features from im-

ages. Finally, ANNs that consisted of an input layer, one hidden layer and three neurons as output

were adopted to classify the images into object, shadow and background. They compared their re-

sult to the results obtained from otsu, dynamic thresholding and watershed methods and reported

outperforming results. Cuevas et al., explored the implementation of Learning Vector Quantiza-

tion (LVQ) network and a decision function for the face segmentation task (Cuevas et al., 2009).

They showed by applying LVQ network to the pixels of an image and without using any dynamic

model or probability distribution, not only did processing speed improve but also performance

has enhanced particularly while images with various illumination were practiced. Probabilistic

neural networks (PNNs) contained four layers: an input layer, a pattern layer, a summation layer,

and an output layer. During learning, the biggest probability of each pixel to the category that it

belongs, will be considered as the category of the pixel. Their experimental results showed that

PNNs were more accurate in image segmentation in contrast to back propagation neural networks

and MLPs.

2.2.5 Hybrid Methods

There are segmentation methods based on a hybrid of the methods discussed in the literature.

(Rout et al., 1998) applied a method based on generating a threshold surface by interpolation of

edge points using a Hopfield neural network for multi modal image segmentation. Another study

that can be considered as a hybrid technique is a research that proposed an image segmentation

algorithm that merges information derived from edges and regions with spectralmethods through

a morphological algorithm of watersheds (Monteiro and Campilho, 2008). In the first step, their

technique includes a rainfalling watershed algorithm that was used to divide images into primitive
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regions. Finally, a region-based segmentation method relying on similarity graph representation

of the image regions was applied. (Haider et al., 2012) also reported a method based on Pixel

Neighborus Pattern Analysis (PNPA) to eliminate the influence of edge discontinuity. Firstly, a

canny edge detector was performed followed by PNPA operation for edge enhancement. Then,

an image segmentation method was developed using Kohonen’s SOM artificial neural network to

detect the main features of image and genetic algorithm to cluster the image into homogeneous

regions.

2.2.6 Why Deep Learning?

A number of issues in traditional segmentation methods that deep learning successfully address,

are outlined below:

• Feature engineering is very important stage in traditional methods. The extraction of ef-

fective features is not only a difficult and time consuming task, it also demands specialist

attempts and experience. However, by increasing the number of features, a feature selection

technique is also required to select the discriminative features. On the other hand, the main

advantage of deep learning is automatic feature learning. Thus, there is no need to feature

engineering. The network scans the data and learns the hidden patterns from the data by

itself and with more data, a higher performance is achieved.

• Designing a segmentation method depends largely on data type, for instance edge-based

algorithms do not perform well on images with smooth transitions and low contrasts. Edge

based techniques are also highly sensitive to noise. Region based methods require initial-

ization, and finding good start points. Moreover, good similarity criteria directly affect

performance. However, a deep learning specifically convolutional neural network automati-

cally learns the features and is not programmed, thus less expert analysis is required and the

system is less dependent on data type.

• The traditional methods are not fully automated and mostly are comprised of various algo-

rithms and supplementary processing steps while deep learning, specifically CNN solves the

problem on an end-to-end basis, from general features such as edges and blobs to high level

features like shapes are extracted with gradient-based learning applied to the whole system.
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Figure 2.2(b) shows the workflow for deep learning and a traditional computer vision system in

Figure 2.2(a). Deep learning methods have received a considerable attention in recent years and

Figure 2.2: Comparison of traditional machine learning and deep learning, (a)Traditional machine
learning flow, (b) deep learning flow

various techniques have been developed in this area. Deep networks have demonstrated remark-

able success compared to the traditional methods in applications of medical image analysis (such

as computer-aided diagnosis and medical image segmentation) (Wang et al., 2014),(Zhang et al.,

2015).

2.3 Models based on Deep Learning

2.3.1 Introduction to Deep Learning-based Models

Generally, the methods that researchers use for a specific type of image may not works well on

other types of images. Finding a solution that can be applied to different images and that is suitable

for all the segmentation applications has been considered by researchers for several decades and it

is still a challenging subject in image processing and computer vision. The main aim of deep learn-

ing is to automatically learn abstractions from low-level features to high-level representations with

less dependency on hand-engineering features. Many studies in recent years have shown that not

only deep learning techniques alleviate the need for manually engineered features, but they also

produce a powerful representation that captures texture, shape and contextual information (Ben-

gio and Lee, 2015). As the main aim of this study is working on deep learning algorithms, this

section discusses recent models in which segmentation methods relied on deep learning. Deep

learning methods have attracted considerable attention in recent years and various architectures

have been developed. The first deep neural network, “Convolutional Neural Network” (CNN),

was introduced in 1998 by LeCun (LeCun et al., 1998). Restricted Boltzmann Machines (RBMs)
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introduced by Paul Smolensky in 1986 (Smolensky, 1986) were once again in spotlight after Geof-

frey Hinton suggested fast learning algorithms for them in 2006. Moreover, by stacking RBMs and

fine-tuning the resulting network another deep architecture was performed which is called deep

belief networks( (Hinton et al., 2006)), (Hinton, 2009). In recent years, several pattern recog-

nition and machine learning contests have been organized and various high dimensional image

datasets have become publicly available on the Internet. CNNs have demonstrated excellent per-

formance on visual recognition issues. Researches demonstrated that deep CNNs have surpassed

the traditional algorithms in these competitions, for instance, deep learning won MICCAI 2013

Grand Challenge and ICPR 2012 competition on mitosis prediction (Cireşan et al., 2013) and deep

neural networks won the ISBI’12 challenge on segmenting neuronal structures. CNNs had origi-

nally been proposed for classification problems and various models based on convolutional layers

have been proposed for object recognition, anomaly detection, image restoration, natural language

processing and speech recognition. When it comes to segmentation, several methods have been

proposed to apply convolutional layers of classification models to segmentation problem mostly

based on patch-wise training. Extracted image patches are fed to CNN and center pixels will be

classified. Consequently, various improved deep neural network models that were originally ap-

plied to classification, have been used for segmentation problems too. Furthermore, studies have

been done to transform common convolutional classification models into segmentation tasks. In

2015, a Fully Convolutional Neural network (FCN) was designed to adapt CNN to perform the

task of segmentation that consists of encoder layers/downsampling and corresponding decoder

layers/upsampling (Long et al., 2015). Various studies applied the same downsampling layers

as FCN that was composed of convolution, max-pooling and sub-sampling to provide the fea-

ture maps, and their novelties stand on enhancing upsampling path or used similar deconvolution

layers and an enhanced encoder part with recently improved convolutional architectures. Convo-

lutional neural network-based segmentation methods can be categorised into two major classes:

region-based convolutional models and encoder/decoder models which are mostly inspired by

FCN.

2.3.2 Region based Convolutional Neural Network Methods

Algorithms that work on patches of image instead of the whole image are very common in com-

puter vision. As CNN was initially proposed for the task of classification, the main idea of the
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using region based algorithms is to perform classification on a proposed region to which an object

might belong. Various methods have been applied to generate the region proposals. Moreover,

a number of studies motivated to generally use regions or multiscale version of input images to

handle the scarcity of dataset with employing many applicable patches since deep learning needs

large amounts of data. The following sections briefly describe some recent research relevant to

patch-wise and multi-scale segmentation methods based on CNNs.

2.3.2.1 Regions with CNN Features (R-CNN)

Regions with CNN features (R-CNN) is an object recognition and segmentation system that com-

bines multi-layer convolutional networks with region proposal method (Girshick et al., 2015). As

Figure 2.3 indicates, the architecture contains category-independent region proposals generated

using selective search method (Uijlings et al., 2013) to discern an available candidate for detection

system. All pixels of each region candidate will be wrapped in a bounding box around to the

required size, then a convolutional neural network is used to extract a fixed-length feature vector

from each region. Finally, a class-specific linear Support Vector Machine (SVM) classifies the

regions. They used various strategies to compute the features and showed that merging features of

full region and the foreground will enhance the results.

Figure 2.3: R-CNN: Region-based Convolutional Network (Girshick et al., 2015)

A supervised pretrained model for classification task is used for the training of this architecture and

any of the CNN structures such as VGG, ResNet and AlexNet can be used for this purpose.

2.3.2.2 Simultaneous Detection and Segmentation(SDS)

The idea of SDS is similar to R-CNN but this method benefits of detecting all objects which

place in a same class in an image. It includes the multiscale combinatorial grouping method to

extract region proposals (Arbeláez et al., 2014) followed by feature extraction phase with CNN
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from both region of interest and the foreground as shown in Figure 2.4. Compared to R-CNN,

in this architecture two joint convolutional networks are used for feature extraction from the RoI

and the foreground (Figure 2.4). SVM is trained on top of the CNN features to define a score for

each class to every object. Finally, region refinement has been conducted using a Non-Maximum

Suppression (NMS) technique on the scored candidates and the features from the CNN to produce

category-specific coarse mask predictions to fine the candidates.

Figure 2.4: The pipeline of SDS method (Arbeláez et al., 2014)

2.3.2.3 Fast R-CNN and Faster R-CNN

The author of R-CNN proposed Fast R-CNN which improves the training speed and increases the

detection accuracy (Girshick, 2015). The architecture shown in Figure 2.5 is similar to R-CNN

but the whole input image is forwarded to the CNN unlike R-CNN, whereby a multitude of region

proposals constitute the input of the network. In this method, the region proposals are produced

by CNN and are resized by a RoI max pooling layer to enter into a fully connected layer. The

spatial the spatial pyramid pooling layer used in (He et al., 2015) is applied for the RoI layer. A

multi-task loss is used since Fast R-CNN is an end-to-end learning method which learns the class

of object and the bounding box position and size. Each training RoI has two labels from ground-

truth class (u) and from ground-truth bounding-box regression (v). Thus the multi-task loss L is

defined as:

(2.2)

in which Lcls(p, u) = logpu shows the error for true class and the error of second class. Lloc, is

determined over a tuple of true bounding-box regression targets for class u, v = (vx, vy, vw, vh),

and a predicted tuple tu = (tux, t
u
y , t

u
w, t

u
h), again for class u. The function [u ≥ 1] is equivalent to
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1 when u ≥ 1 and 0 otherwise. By convention the catch-all background class is labeled u = 0. The

loss for the bounding-box regression is:

(2.3)

in which

(2.4)

Figure 2.5: The Diagram of Fast R-CNN (Girshick, 2015)

Fast R-CNN benefits of end-to-end learning compared to R-CNN with multi stage architecture

that was also much slower because the CNN had to process thousands of region objects for each

input image. However, both methods are still slow overall, due to using an external method to

generate region proposals. A further research called Faster R-CNN solved this issue by chang-

ing the architecture, whereby the network learns the region proposals (Ren et al., 2015). They

introduced a Region Proposal Networks (RPNs) that shares the convolution layers with the object

detection network. The region proposal networks are placed after the last convolution layer to

generate region proposals from a convolutional feature map followed by RoI pooling layer and

finally classification and regression blocks similar to fast R-CNN.

2.3.2.4 Learning Hierarchical Features

(Farabet et al., 2012) proposed the idea of multi-scaling convolutional representation in their paper

for scene learning, a parallel architecture including CNN to generate feature maps and graph-

based classification. A laplacian pyramid is a common method in computer vision, and is applied

21



to decompose image to multiple different scales, then each scaled image is forwarded through

a convolutional network that generates a group of feature maps. The feature maps of all scales

are merged after upsampling so that the coarser-scale maps to match the size of the finest-scale

map. A parallel processing for over-segmentation such as training conditional random fields over

super pixels and multilevel cut with class purity criterion has also been considered. A set of

segmentations such as a segmentation tree is created over the image to process the picture at

various levels and finally design a method to automatically restore from a group of segmentation

pieces to produce the final image labelling.

Figure 2.6: The pipeline of the scene parsing system (Farabet et al., 2012)

2.3.2.5 Recurrent Convolutional Neural Networks

(Pinheiro and Collobert, 2014) introduced a recurrent convolutional network that contains a com-

position of P instances of the convolutional network f(). As Figure 2.7 shows, a convolution

network takes an image as the input and predicts low resolution patches. Then the process will

repeat with the output predictions of the previous instance of the network and the down sampled

version of the original image. In this architecture, a sequential series of networks share the same

set of parameters. Three convolutional networks with shared parameters make the network which

Figure 2.7: System considering one (f), two (f o f) and three(f o f o f) instances of the network. In
all three cases, the architecture produces labels (1 1 output planes) corresponding to the pixel at
the center of the input patch (Pinheiro and Collobert, 2014)
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is trained by maximizing the likelihood:

(2.5)

where L(f) is a shorthand for the likelihood:

(2.6)

the parameters (W, b) of the network f(·) are learned in an end-to-end supervised way, by mini-

mizing the negative log-likelihood over the training set (2.6). li,j ,k defines the correct pixel label

class at position(i, j) in image Ik.

2.3.3 Methods Inspired from CNN Classification Models

Deep CNN was initially proposed for classification and CNN based models soon found their way

into many research proposals including object recognition,localization and segmentation. Pioneer

models were mostly region based methods mainly seeking to use a convolution network to generate

feature maps from region proposals or classification of the regions followed by localization and

refinement. A Fully Convolutional Network (FCN) contributes to adapting the standard deep

CNN classifier into a segmentation model by changing fully connected layers of classification

models to convolutional layers followed by upsampling with deconvolutional (fractionally strided

convolutions) layers (Long et al., 2015). The FCN can be considered a keystone of semantic

segmentation that uses deep neural networks. Thereafter, studies inspired by FCN were conducted

to convert CNN-based classification models to segmentation. Consequently, new architectures

were proposed which consisted of encoder recent classification models in the downsampling line

and an FCN inspired upsampling model for the decoder part. Some of these models are briefly

described below.

2.3.3.1 Fully Convolutional Neural Network

The Berkeley Vision and Learning Centre reported using convolutional neural network for seman-

tic image segmentation (Long et al., 2015). The idea was to convert fully connected layers to

convolution layers besides merging features with outputs of corresponding former layers named
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Figure 2.8: Transforming fully connected layers into convolution layers. Fully convolutional net-
works can efficiently learn to make dense predictions for per-pixel tasks like semantic segmenta-
tion. (Long et al., 2015)

skip connections (Figure 2.9). Down-sampling and upsampling ways are linked, thus expanding

the path, retrieve more information from encoder layers. This architecture takes a 2D image as

input and a 21-class semantic segmentation of that images provided as an output. In order to move

from classification to segmentation, they decapitate the net by ignoring the fully connected clas-

sifier layer, and replaced these fully connected layers to convolution layers. The 1×1 convolution

layer was also changed to a channel dimension of 21 in order to estimate scores for each class

including background, followed by deconvolution layer which performs bilinear upsampling to

make pixel-wise output from the coarse outputs. Learnable deconvolution filters were introduced

to upsample feature maps. The deconvolutional filters of final layer are fixed to bilinear interpola-

tion, while intermediate upsampling layers are initialized to bilinear upsampling, and then learned.

They adapt recent common classification networks (AlexNet,the VGG net, and GoogLeNet) into

fully convolutional networks and transfer their learned representations by fine-tuning to the seg-

mentation task. Although with going deeper, the more detailed deeper features are provided, the

output of convolution is also smaller and spatial location of shallower layers will lost.The skip

connections enhanced the result by fusing coarse, high layer information with fine, low layer in-
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Figure 2.9: The skip connection: combining coarse, high layer information with fine, low layer
information.

formation. The possibility of making the receptive field grow while the number of parameters are

Figure 2.10: (a) F1 is 1-dilated convolution with a receptive field of 3×3. (b) F2 is produced from
F1 by a 2-dilated convolution and the receptive field increased to 7×7. (c) F3 is produced from F2
by a 4-dilated convolution with receptive field of 15×15 Yu and Koltun (2015)

not increasing reveals the strength of this architecture specifically in medical analysis where the

datasets are often scarce and training a network with many parameters is not feasible.

2.3.3.2 SegNet

Another segmentation method called SegNet also consists of encoder layers and corresponding

decoder layers followed by a soft-max classifier (Badrinarayanan et al., 2017). In this architecture,

for each sample, the indices of the max locations calculated in the pooling are stored. The novelty

of this technique is that the decoder upsamples the feature maps by using the stored pooled indices

from the corresponding encoder. The input image is reconstructed by convolution of the sparsed

upsampled maps with trainable filter banks. The final feature maps in the decoder path are entered

25



into a soft-max classifier for pixel-wise classification.

Figure 2.11: SegNet and FCN decoders. a, b, c, d correspond to values in a feature map (Badri-
narayanan et al., 2017)

Figure 2.11 displays the decoder parts of FCN and SegNet. SegNet uses the max pooling in-

dices to upsample the feature maps and convolves with a trainable decoder filter bank while in

FCN upsampling is conducted, then the provided feature map fused to the output of max pooling

layer in the encoder part. This feature map was resized to the size of upsampling output before

fusion.

2.3.3.3 UNet

U-net architecture comprises of convolution layers followed by a rectifier linear unit and max pool-

ing operation for downsampling that provide the feature map for upsampling path (Ronneberger

et al., 2015). In this method a convolution layer comes after each upsampling layer, then this layer

will concatenate to the corresponding feature map from the downsampling path that is cropped to

have the same size of this layer. The architecture is similar to FCN but in the upsampling there

are a large number of feature channels, which allow the network to propagate context information

to higher resolution layers. So, the encoder part is completely symmetric to the decoder part that

makes a u-shaped model. Feature maps transferring via skip connections are also concatenate to

corresponding upsampled feature map instead of fusion as would be the case in an FCN.

2.3.3.4 Reseg

ReSeg is based on an image classification model called ReNet. Three ReNet layers composed of

four recurrent neural network have been proposed that are followed by upsampling layers. They
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have applied ReNet layers on top of the first layers in FCN, to have generic local features and

ReNet layers that get local features by first sweeping the image horizontally, followed by sweeping

the output of hidden states vertically.

First, the initial layers of VGG-16 network receives the input image and initialized with pre-trained

on ImageNet then without fine tuning in this stage, they keep the resolution of image. ResNet

layers receive this output feature maps. In the last stage, the last feature maps will be resized by

upsampling layers to the same resolution of the input and a softmax non-linearity used to predict

the probability distribution over the classes for each pixel. In this architecture, the recurrent layer

constitute the main part of architecture which is made by multiple RNNs. Each recurrent layer is

composed by 4 RNNs coupled together (Visin et al., 2016).

2.4 Segmentation Research on Medical Data

This section briefly discusses segmentation methods on medical data relevant to chapter three,

four and five. Various algorithms of image analysis have been proposed to assist clinicians in

early diagnosis of skin cancer over years. Dermoscopic feature based algorithms such as ABCD

rule that includes Asymmetry,Border, Color, and Dermoscopic structure (Nachbar et al., 1994)

and CASH (Color, Architecture, Symmetry, and Homogeneity) (Henning et al., 2007) are primary

methods that have been used for many years.

Moreover, common segmentation techniques including edge or region-based methods (Wong et al.,

2011), (Tajeddin and Asl, 2018), (Jaisakthi et al., 2018), (Lau et al., 2018), thresholding techniques

(Zortea et al., 2017) and methods based on features from transform domain such as wavelet and

Fourier transform (Garnavi et al., 2012) have been developed for the task of skin lesion segmen-

tation. (Jaisakthi et al., 2018) proposed a technique including edge and region-based algorithm

for skin lesion segmentation. Illumination enhancement and artifact removal such as hair and air

bubbles constitute the initial stage as the pre-processing phase. The Grabcut algorithm that uses

both edge and boundaries information was applied for segmentation followed by further stages in-

cluding K-means clustering and the flood-fill technique, to segment the lesion area with enhanced

boundaries. The result (Jaccard index) was lower than that of the winners of challenge 2017

(Codella et al., 2019). Another popular region-based method termed watershed was developed
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in various algorithms for medical segmentation tasks. (Masoumi et al., 2012) proposed using the

watershed algorithm and MLP neural network for feature extraction in an iterative process. The

extracted features from both techniques were compared and the error was computed in each iter-

ation to sequentially adjust the required parameters of the algorithm. In addition, morphological

smoothing, Gaussian filtering and morphological gradients were used at this preprocessing stage

but no post-processing was conducted. A popular method that has been widely developed for

image segmentation is active contour composed of deformable contours that adjust to variety of

shapes. The method includes an energy maximization procedure built on region or edge based

models have been employed for segmenting several kinds of medical images including ultrasound

imaging, CT, and MRI of different organs in the body (Ciecholewski, 2016),(Riaz et al., 2018).

In research (Riaz et al., 2018), to generate the initial curve, adaptive thresholding was applied

and an optimization problem was proposed to maximize the Kullback–Leibler divergence of gray

level distribution between background and lesion. A recent research proposed saliency map gen-

erated by improved discriminative regional feature integration (mDRFI) (Jahanifar et al., 2018).

This method was also composed of multiple stages including pre-processing such as colour con-

stancy and hair removal, generating an initial mask by thresholding the saliency map based on the

DRFI method and a final mask formation using a distance regularized level set evolution (DRLSE)

framework. They extended regional property descriptors and proposed a pseudo-background re-

gion to improve the DRFI method but the result was still lower than in the highly ranked papers

of both ISBI2016 and 2017 challenges. (Tajeddin and Asl, 2018) proposed adding new texture

features of peripheral regions for classification and a segmentation technique composed of esti-

mating initial contour and propagating it with an iterative process based on dual component speed

function. Otsu’s method is followed by morphological process conducted to generate the thresh-

old initial mask. They used a level set framework and proposed two component speed function

for the image gradient and the color probability distribution of pixels to generate the final mask.

General shape features based on common ABCD features, colour-based features and texture re-

lated features from luminance channel of Labcolour space implied for feature extraction phase.

They also proposed a textural feature set from peripheral region that is based on masks from the

segmentation phase. A variety of pre-processing methods were applied to remove hair, marks and

eliminate dark corners, correct image illumination and crop images regarding to the masks. This

segmentation method ranked 5th in ISBI challenge 2016. Techniques based on super-pixels also
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have been extensively used in medical image segmentation. The super-pixel is an efficient method

to segment images by partitioning the image into groups of connected pixels that have similarities

(Nguyen et al., 2018), (Navarro et al., 2018). In the research (Navarro et al., 2018), the common

Simple Linear Iterative Clustering (SLIC) method is improved by focusing on segmenting the ROI

precisely instead of segmenting whole image accurately. Firstly, feature points are detected in the

image by SIFT operation and then Gaussian distribution is applied to place initial centres followed

by applying SLIC to these centres. The result showed marginally higher Jaccard index compared

to the top results of ISIC 2017 challenge. All traditional methods that were mentioned in previ-

ous section, are composed of multiple stages such as pre-processing, initialization, edge/region

extraction or various techniques for feature extraction while deep learning methods benefit from

receiving the input as a raw image and generate the output via an end-to-end learning process.

Another drawback of traditional models is that the discriminative features play an important role

in success of these models. Extracting effective features is a difficult task which requires high

level knowledge. A variety of algorithms have been suggested to extract features regarding the

image structure of medical images, but these algorithms mostly deal with particular features of

an image that may not work for all kinds of images. For instance, the low contrast between the

lesion and the background would not contribute to an accurate thresholding method, weak or noisy

edges deter the performance of edge-based segmentation models and active contours build upon

an initial contour that limits the efficiency of model. However, the deep convolution network has

the advantage of learning the features automatically from general features such as edges and lines

extracted in first convolutional layers to high level features like shapes extracted in higher layers.

Deep learning algorithms have shown remarkable progress in various computer vision tasks. No-

tably, CNN has outperformed conventional methods in several pattern recognition and machine

learning domains. CNN is introduced as a deep neural network architecture composed of more

layers in comparison to shallow conventional neural networks. More convolution layers enable the

network to learn more complex features. CNN was originally proposed for the task of classifica-

tion and extensive research was conducted to design efficient deep architectures. Recently, several

studies modified CNN-based networks that are designed for classification problems to be applied

to segmentation tasks. Early proposed CNN models for segmentation were based on classifying

super-pixels or the region surrounding a pixel (Farabet et al., 2012), (Ciresan et al., 2012).
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In 2015, FCN was designed to adapt the classification model to perform segmentation. An end-to-

end pixelwise learning architecture was proposed in which fully connected layers are transformed

to convolution layers so the network has spatial output maps (Long et al., 2015). In FCN, the

fractionally strided convolution is introduced as upsampling, also called deconvolution. Various

subsequent studies were conducted to improve FCN for different segmentation problems. U-

net (”Convolutional Networks for Biomedical Image Segmentation”) is a popular model used in

medical area. It has symmetric encoder-decoder architecture that includes deconvolution layers

with a larger number of feature channels, each followed by a concatenation of feature maps from

the corresponding layer in a contraction path (Ronneberger et al., 2015). A Residual Network

(ResNet) is proposed to efficiently increase the depth of a convolution network by introducing

shortcut connections of identity mapping that connects the output of each layer to a higher layer

(He et al., 2016). The encoder part of Refine-net (Lin et al., 2017) is based on this model and the

decoder contains multi-level Refine-net blocks that fuse the features received from the encoder

as well as the features from the previous Refine-Net block. A very deep convolutional network

composed of fifty layers is used in (Yu et al., 2016) and residual learning is applied to deal with

overfitting. (Yu et al., 2016) proposed a fully convolutional residual network (FCRN) for task

of lesion border segmentation and their experiments ranked second in segmentation task of ISBI

2016 challenge. (Bi et al., 2017) designed a model based on FCN that contains FCNs in multi-stage

structure (mFCN). In each stage, the FCN receives inputs including the original input image and

the estimated output of previous stage. They also integrate the segmentation results of all stages

in a parallel way and their result slightly outperformed the best results of the challenge (Codella

et al., 2019). The full resolution convolutional networks (FrCN) proposed by (Al-Masni et al.,

2018), removed all sub-sampling layers in the encoder part and considered each pixel as a training

sample. Although this method benefits from not including any pre/post processing techniques or

artifact removal, the high computation load for this technique is due to not using pooling layers,

which requires computational resources. Resizing the input images is an alternative that they

considered but decreasing the resolution leads to loose information as well.

A large amount of research on medical video segmentation is inspired from image segmenta-

tion methods applied on video frames. Thresholding and edge detection methods were applied

in (Huang et al., 2011) to segment the left ventricle from short axis cine cardiac MR images. In
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(Jolly, 2006), localization techniques such as maximum discrimination and thresholding is used

followed by region segmentation and active contours. Thresholding, region growing and active

contours constitute major part of LV segmentation studies which are not based on machine learn-

ing models, (Codella et al., 2008), (Queirós et al., 2014), (Kaus et al., 2004). The KNN classifier

is applied to predict pixel class after feature extraction (gradient magnitude, the largest eigen-

value, the output of median filter, and the gray value) in (Hadhoud et al., 2012). Recent studies

have applied CNN-based methods, specifically FCN and Unet on frames of videos as well. (Yan

et al., 2018), proposed an Optical Flow Feature Aggregation sub-network which is integrated into

the Unet and is further developed by dilated convolution. A method proposed by (Khened et al.,

2019), employed densely connected convolutional neural networks for LV segmentation. They

have applied Fourier analysis and circular Hough transform to detect the region of interest and in

the deep network they proposed short-cut and long connections similar to skip connections. (Dong

et al., 2018) proposed an FCN based architecture with feature fusion across different layers and

a residual module for LV segmentation from three-dimensional echocardiography. By converting

3D dataset to 2D image slices, the input samples for training a deep network increased and further

data augmentation was conducted with the rotate and resize functions. Finally, they conducted

segmentation with transfer learning on a pretrained VOC model and based on the coarse segmen-

tation results, they proposed a fine segmentation method based on 3D initialization and the 3D

snake model.

2.5 Introduction on Convolutional Neural Networks and Evaluation

Metrics for Segmentation

In recent years, Artificial Intelligence has grown dramatically through CNNs. The proposed meth-

ods in this research are focused on developing CNN based architectures for tasks of detection

and segmentation. After a short introduction on deep learning concept, a CNN architecture was

the most common deep learning method in computer vision that has been discussed. In order to

train deep convolutional networks, various frameworks have been created and special hardware

for large computational operations in terms of memory are required. Information on hardware and

frameworks used in this research, are described in the following sections.
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2.5.1 Architecture of Convolutional Neural Network

A CNNs overall architecture looks like a typical neural network that includes neurons that have

learnable weights and biases. The inputs of neurons update with weights (dot product) and fol-

lowed by a non-linearity function . The whole network still expresses a single differentiable score

function: from the raw image pixels on one end to class scores on the other. The last fully-

connected layer includes a loss function (e.g.Softmax) and all the learning process is the same as

for regular neural networks. However, CNNs benefits from getting images as input and the archi-

tecture is improved so that the neurons in layers of a Convolution Network are placed on three

dimensions.

Building a typical CNN involves stacking various layers including convolution, pooling, and fully

connected layers. Convolution layers are connected to a local area of the previous layer instead

of connecting to all neurons to which fully connected layers are connected. CNNs therefore have

fewer parameters due to the local connectivity compared to regular feed forward networks with

similar sized layers. Pooling is a downsampling operation along with the spatial dimensions and

are fully-connected layer with an output of the class scores. The parameters of the convolution

layer and fully connected layers are trained with gradient descent. In the following sections,

convolution and pooling layers and the activation function are described.

2.5.1.1 Convolution Layer

CNN has the advantage of receiving an input layer in a shape of 2D information layer and a neuron

within any layer is linked to a small region of the previous layer named receptive field where the

filter applies, and convolution is computed. The convolution layer is the most important layer with

highest computation in the network. This layer includes a group of learnable kernels that slide

over the width and height of the image to conduct a convolution operation simply as dot products

between the kernel and the input at each location. The result is a 2D feature map for each filter

sliding over the image and finally, the set of these feature maps is concatenated along the depth

dimension to make the output. The output of convolution operation for position (i,j) in a feature

map is:
k=1∑
m=0

k−1∑
n=0

xsi+m,sj+nKm,n + b, (2.7)
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where x is the location in the preceding layer, K represents the kernel and k the size of kernel. The

stride (s) is the number of pixels that the filter skips while sliding over the image. There are three

parameters to define the size of the output volume: stride, depth that is the number of filters and

zero-padding which is applied to put zero values around the border of the input volume and can

be considered as a parameter to set the spatial size of the output volumes. The spatial size of the

output volume is (W − F + 2P )/S + 1 in which S is stride, W is the size of input, F is the filter

size and P is the zero padding parameter.

2.5.1.2 Pooling Layer

The pooling layer also termed downsampling, is usually applied after convolution layers to de-

crease the spatial size of the feature map and consequently decrease the number of parameters that

lead to less computation. Pooling applies on each depth slice of the input and resizes it. Generally,

there are three forms of pooling: max pooling, average pooling and L2-norm pooling. The output

of max pooling is the maximum number in each area that the filter convolves while the average

pooling computes the average in the region. Assuming a 2D matrix Xij as the output of the spe-

cific patch of convolution layer, for each item in feed forward or backward pass the L2-norm is

calculated as (Rezaei et al., 2017):

(2.8)

2.5.1.3 Activation Function

Rectifier Linear Unit (ReLU) is a type of activation function that comes after the convolution layer

and it is the most commonly used activation function in CNN. Mathematically, it is determined as

y = max(0, x) and no exponential calculation is needed compared to tanh and sigmoid activation

function, it is simply implemented (LeCun et al., 2015).
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Figure 2.12: Rectifier Linear Unit activation function

2.5.2 Hardware Required to Train a CNN

A Graphics Processing Unit (GPU) is considered a necessary part of deep learning. Training the

deep CNN and storing the trained model are computationally intensive tasks because of the large

number of parameters. A GPU provides more logical cores and a higher bandwidth to retrieve a

larger amount of memory at once compared to CPU. Huge parallel computing is another capability

that makes a GPU useful for training deep neural network Li et al. (2016). GPU GeForce GTX

TITANX was used to implement deep architectures in this research.

2.5.3 Deep Learning Frameworks

A number of libraries have been designed for implementing deep CNNs on GPUs. Common

machine learning frameworks such as , Tensorflow (Abadi et al., 2015), Torch (Collobert et al.,

2011), Theano (Al-Rfou et al., 2016), Caffe (Jia et al., 2014) have their own GPU libraries for

CNNs. Caffe is a very common deep learning framework that has been extensively used by ma-

chine learning experts. In this research Caffe and Tensorflow libraries are used for coding. Caffe

(Convolutional Architecture for Fast Feature Embedding) is a deep learning framework that is

established by the Berkeley Vision and Learning Center (BVLC) and by community contribu-

tors that is released under the BSD 2-Clause license (Jia et al., 2014). It is originally written in

C++, with command line, Python, and MATLAB interfaces and supports both GPU and CPU-

based acceleration computational kernel libraries. TensorFlow is developed by the brain team of

Google’s intelligence research division for machine learning and deep learning research.It is an

end-to-end open source platform for machine learning. It has many flexible tools and libraries

which researchers can use to develop machine learning applications1.
1https://www.tensorflow.org
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2.5.4 Evaluation Metrics

The following five different metrics have been used to compare the performance of the methods

studied in the paper;

Sensitivity(SE) =
TP

TP + FN
(2.9)

Accuracy(AC) =
TP + TN

TP + FP + TN + FN
(2.10)

Specificity(SP ) =
TN

FP + TN
(2.11)

Dicecoefficient(DI) =
2× TP

2× TP + FP + FN
(2.12)

where TP, TN, FP, FN, are true positive, true negative, false positive, and false negatives respec-

tively and performance metrics are computed at the level of single pixels. A true positive shows a

pixel that is correctly predicted to be in a class (according to the target mask) while a true negative

defines a pixel that is correctly recognized as not to be in the given class. The results of the chal-

lenge ISIC are ranked based on the Jaccard index. The Jaccard index also known as Intersection

over Union measures the similarity and diversity of the sample sets. The Jaccard coefficient shows

similarity between sample sets, and is determined as the size of the intersection divided by the size

of the union of the sample sets, by considering A as test groundtruth and B as output groundtruth:

(2.13)

The Jaccard index can also be determined based on TP, FP and FN as shown below:

Jaccardindex(JA) =
TP

TP + FP + FN
(2.14)
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2.6 Summary

This chapter reviewed traditional and deep learning based methods. Traditional methods are com-

posed of multiple stages such as initialization, edge/region extraction or various techniques for

feature extraction while deep learning methods benefit from receiving the input as a raw image

and generate the output via an end to end learning process. Another drawback of traditional mod-

els is that discriminative features play an important role in the success of these models. Extracting

effective features is a tedious task that requires expert attempts too. A variety of algorithms have

been suggested to extract features regarding the image structure of medical images, but these algo-

rithms deal mostly with particular features of the image that do not necessarily work for all kinds

of images. For instance, low contrast between lesion and the background would not contribute to

an accurate thresholding method, weak or noisy edges deter the performance of edge-based seg-

mentation models and active contours build upon an initial contour that may limit the efficiency

of model. However, the deep convolution network has the advantage of learning the features au-

tomatically from general features such as edges and lines extracted in first convolutional layers, to

high level features like shapes extracted in higher layers. This automatic feature learning makes

deep learning an efficient solution for medical diagnostic tasks that are highly dependent on spe-

cialist knowledge. Moreover, deep learning methods with the idea of using a large amount of raw

data as input, have the ability to successfully address the issue that medical systems often have

with various input types of 2D/3D/4D medical images taken by different instruments and experts.

However, training the deep learning models with medical data meet challenges that were discussed

in section background, thus this study focuses on the deep learning segmentation model in medical

area.
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Chapter 3

A Hybrid CNN-based Model for Skin

Lesion Analysis towards Melanoma

Detection

3.1 Data Preparation

The data analyzed in this project comes from the challenges of ”Skin Lesion Analysis towards

Melanoma Detection” (Gutman et al., 2016), (Codella et al., 2019) that leverage datasets of anno-

tated skin lesion images from the International Skin Imaging Collaboration (ISIC) archive. The

ISIC archive contains the largest publicly available collection of quality controlled dermoscopic

images of skin lesions.

The dataset contains a representative mix of images of both malignant and benign skin lesions. The

dataset was randomly partitioned into both training and test sets, with 900 JPEG colored images

in the training set and 379 images in the test set. The size of both train and test images varies

from 722*542 to 4288*2848. The masks for both training and test sets was generated in PNG

format and are the same size as their corresponding lesion image. Ground truths are 8-bit PNGs

and each pixel is either: 0: belongs the background class, 255: belongs the image foreground, or

the region inside the lesion. Moreover, 5-Fold cross-validation was used. So, the training dataset

was randomly divided into five exclusive subsets. The algorithm ran 5 times and each turn, one of
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the five parts was considered the validation set and the remaining part was the training set.

The data set for dermoscopic feature segmentation includes 807 lesion images, each paired with

two binary masks (1614 binary mask images, separate masks for the dermoscopic features of

”globules” and ”streaks”) that present locations of the globules and streaks. Dermoscopic fea-

tures were provided in the ISIC 2016 for task of lesion dermoscopic feature segmentation. 335

images are supplied as test data. A sample image from the dataset with all masks is provided in

(3.1).

Figure 3.1: (a)Sample images from ISIC dataset (b)The groundtruth for skin lesion segmentation
(c) The mask for feature segmentation (Globules) (d)The mask for feature segmentation (streaks).

The Caffe framework defined in Chapter 2, requires datasets in various formats including Light-

ning Memory-Mapped Databases(LMDB) and HDF5. Although HDF5 is a simpler format to

read/write, LMDB is more common due to better I/O performance and good performance with

large datasets Jia et al. (2014). In this research, LMDB format is used. Caffe stores, and employs

the information as blobs. Data layers load input and save output by converting to and from Blob

to other formats. The conventional blob dimensions for batches of image data are number N ×

channel K × height H × width W. For instance, with batch of 8 and using RGB images with size

500×500, the images stored in LMDB are: 8×3×500×500. To make data ready for training,

image data for train and test/validation are converted into separate LMDB datasets.
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3.2 The Proposed Hybrid Model for Tasks of Skin Lesion Segmenta-

tion and Dermoscopic Feature Segmentation

Fully Convolutional Networks (FCN) with the idea to transform fully connected layers into convo-

lution layers following by upsampling layers allow for a state-of-the-art configuration for semantic

image segmentation (Long et al., 2015). As identified in the literature, FCN benefits from inputs of

any size and generating correspondingly-sized outputs. This chapter proposes, a FCN-based deep

convolutional neural network to address two main segmentation tasks in melanoma diagnosis, a

lesion border segmentation followed by a lesion dermoscopic feature segmentation including the

dermoscopic features of ”globules” and ”streaks”. Details of the proposed model and its evaluation

on a database from the 2016 ISBI challenge (Gutman et al., 2016) are presented below.

Generally, a deep convolutional network can be trained from scratch when the data set is large or

by using a pretrained network and applying for transfer learning when dataset is scarce. In this part

of the research, transfer learning and training from scratch have been used, this will be described

in next chapter. Transfer learning consists of using a pretrained model and fixing some layers and

retraining the rest of the network, for example keeping fixed the earlier layers that contain general

features, such as edge, and only fine-tune the later layers which extract higher level features, such

as shapes (Donahue et al., 2014). The proposed model in this chapter is inspired from FCN. As

the dataset only contains 900 images, transfer learning from a model pretrained on millions of

natural images is investigated. However, due to the dissimilarity between the skin lesion dataset

and ImageNet (natural images), fine-tuning is conducted to keep the earlier layers and to retrain

the later layers. The pre-trained models applied in this study were namely (i) FCN-AlexNet and

(ii) VOC-FCN8s.

• FCN-AlexNet with 7 convolutional layers. The first work that popularised Convolutional

Networks in computer vision was the AlexNet (Krizhevsky et al., 2012). This model was

based on semantic segmentation research done by the UC Berkeley Vision and Learning

Center (BVLC) (Long et al., 2015).

• Pascal VOC-FCN8s with 15 convolutional layers: a standard recognition model that was

benchmarked with detection and semantic segmentation research by BVLC. (Long et al.,

2015).
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Architecture of the network that is fine tuned on a pre-trained model called FCN8s is provided in

Figure 3.2. The parameters of the network include stride, filter size and zero padding as shown in

Table 3.1.

Figure 3.2: The outline of the proposed deep network architecture for lesion segmentation and
dermoscopic feature segmentation.

Table 3.1: Parameters of the network FCN

The deep network includes convolution and pooling layers followed by deconvolutional layers. A

normalization layer termed Local Response Normalization (LRN) is applied since the activation

function after the convolution layer is a Rectified Linear Unit (ReLU), which is non-saturating

(see Chapter 2). ReLU significantly reduces training time compared to the hyperbolic tangent

function (y = tanh(x)) which is more common in neural networks. The inter channel LRN across
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the channel is demonstrated in (Krizhevsky et al., 2012). For aix,y as the activity of a neuron is

computed by applying kernel i at position (x, y) and then applying the ReLU nonlinearity, the

response-normalized activity bix,y is:

(3.1)

where N is the total number of kernels in the layer and the constants (k,α,β,n) are hyper-parameters.

The effect of reducing the filter size or stride of pooling layer to improve the accuracy was inves-

tigated and a larger stride was selected in convolutional layers to decrease the size of the feature

map. Furthermore, the stride of the last pooling layer was reduced to provide higher resolution

inputs for upsampling layers. This led to a higher computational load but no considerable im-

provement in accuracy.

Figure 3.3: Outline of proposed deep network architecture for the tasks of lesion segmentation and
dermoscopic feature segmentation.

Lesion dermoscopic pattern detection is the second part of the model. Finding particular clinical

dermoscopic features increases the accuracy of melanoma diagnosis. Globules and streaks are

dermoscopic features used by clinicians to distinguish melanoma from benign skin lesions. Binary

masks were provided as training data to identify where features are present in lesions, and the goal

was to automatically generate these masks for the test data as shown in Figure 3.1. Ground-truth

images from the task of lesion border segmentation were used to extract the RoI of images by
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applying a bounding box to the predicted lesion region. The images are cropped by a factor of 1.1

times, the size of the RoI provided by binary masks, because streak features can be ejected at the

periphery of the lesion (shown in yellow in Figure 3.4).

Binary masks, which are detected by lesion border segmentation, and in the testing phase these

were used to crop test images before entering the network. Convolutional layers were initialized

with a pre-trained model from the previous part that helped the network converge fast. All layers

of the AlexNet model were fine tuned because the pretrained model was trained on a large dataset

of natural images, which was very different to our dataset. For the deeper model though, early

convolution layers (conv11 to conv13) were fixed, because initial layers are supposed to retrieve

more general data. This architecture is followed by two parts, each contains two convolutional

layers and four deconvolutional layers to predict masks for both streaks and globules features.

Moreover, fusion, convolutional and crop layers were used to concatenate upsampling layers with

previous shallower pooling layers that are not shown in Figure 3.3 for the sake of simplicity. For

this purpose, the idea in (Long et al., 2015) was used to combine the high layer information with

the low layer information.

Figure 3.4: The lesion border mask is shown in blue. Globules and streaks are red and yellow
respectively.

Cross entropy and the dice loss function were investigated. By considering pixel i in image X with

n pixels, the Dice loss (which is computed for each class mask c and averaged to calculate the final

score), is defined as:

(3.2)
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where P (
n
i)(c) presents the probability of pixel i belonging to the class c, Y (i)(c)

n is the groundtruth

of pixel i. The multiply and sum are element-wise and Σ is calculated over all pixels of image.

Cross entropy is the most common loss in deep learning, is defined as:

(3.3)

Lmce push the prediction P (
n
i) from segmentation network to be close to the groundtruth label

Y
(
n
i) (Huang et al., 2016).

3.2.1 Reducing the Filter Size of Pooling Layer or Even Removing Pooling Layers

to Increase the Accuracy

The all Convolutional Net, which proposed a network architecture that would consist of convolu-

tional layers and pooling layers, was discarded (Springenberg et al., 2014). It is recommended to

use a larger stride in the convolution layer to decrease the size of the representations. Moreover,

the effect of widening the receptive field was investigated and authors achieved the same result

with layer composition rather than increasing the kernel size that led to a decrease in the number

of parameters. A three stacked 3×3 also provides a 7×7 receptive field while a 7×7 layer had

81% more parameters than three stacked 3×3 layers. In this practice, the pooling layers after

the two last convolutional layers were discarded in order to provide higher resolution inputs for

upsampling layers.

3.2.2 Data Augmentation to Overcome Overfitting

The pixel size of both train and test images varied from 722×542 to 4288×2848. A resizing of

the input images was considered due to memory limitation. This resizing to 500×500 may lead

the loss of some information and deteriorate the accuracy, as some images are very large, (up to

2000×1500 pixels). To solve this problem, the images were cropped, operated on separately, and

were merged with the sub-images together for evaluation after training the network. This can also

be considered an augmentation technique that prevents overfitting and improves generalization.

Flipping also was used to increase the size of the dataset. The dataset included both malignant and

benign skin lesions and was randomly partitioned into both training and test sets, with 900 JPEG
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images as the training data and 379 images as the test data. The number of images to be used for

training increased to 7200 coloured images by cropping in two and flipping vertically, horizontally

and both.

3.2.3 Drop out Layers to Prevent Overfitting

Figure 3.5: (a) Standard Neural Net with 2 hidden layers, (b) An example of a thinned net produced
by applying dropout to the standard network. Crossed units have been dropped (Srivastava et al.,
2014)

Another idea that was practiced to improve the training of CNN was called drop out, which applied

to fully connected layers or after the max pooling layer (Srivastava et al., 2014). A thinner network

would provided by dropping out units randomly in a neural network (i.e. temporarily removing

it from the network), along with all its incoming and outgoing connections. Learning a fraction

of the weights in the network, in each training iteration, offers a very computationally cheap and

significantly effective regularization technique to delay overfitting and reduce generalization error

in deep neural networks (Srivastava et al., 2014). By considering a neural network with L hidden

layers whereby l∈ {1, . . . , L} shows the index of hidden layers of the network, the feed-forward

operation with dropout is:

(3.4)

where f is any activation function and ∗ denotes an element-wise product. z is considered the

vector of inputs into layer l and r is a vector of independent Bernoulli random variables each of
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which has probability p of being 1. This vector is sampled and multiplied element-wise with the

outputs of that layer, y, to create the thinned outputs ỹ. The thinned outputs are then used as input

to the next layer and this process is applied at each layer as shown in Figure 3.6 (Srivastava et al.,

2014).

Figure 3.6: (a) Standard Neural Network, (b) Dropout Network (Srivastava et al., 2014)

3.2.4 Early Stopping to Handle Overfitting

Early stopping is a technique that helps avoid overfitting. The idea is to train the network to learn

the pattern of input to output and measure the performance in training and validation set every few

iterations until the validation set error reaches its lowest level and starts going up, while training

error continues to decrease as shown in Figure 3.7. A stopping criterion from (Orr and Müller,

2003) was used to stop the training. By considering Etr(t) as the training set error and Eva(t) as

validation error, the value Et
opt is defined to be the lowest validation set error obtained in epochs

up to t:

Eopt(t) := mint<t′Eva(t′) (3.5)

And generalisation loss to stop the training as soon as it exceeds a certain threshold (a) defines as:

GL(t) := 100(
Eva(t)

Eopt(t)
− 1) (3.6)
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Figure 3.7: Early Stopping.

Figure 3.8: Stopping criteria with training error and validation error for an FCN-based network
fine tuned on FCN8s for skin lesion analysis

Figure 3.8 shows the early stopping point for an FCN-based network fine tuned on FCN8s for task

of lesion border segmentation.

3.3 Experiments and Results

In order to implement the deep learning-based concept for the detection of melanoma, a deep

learning based network on lesion segmentation was utilized. This was further extended to a hybrid

convolutional neural network designed for both tasks of dermoscopic feature segmentation and

lesion border segmentation. The networks were trained with the stochastic gradient descent (SGD)

method and hyper-parameters including learning rate, weight decay and momentum set at 0.001,

0.0005 and 0.9, respectively (although a large learning rate leads to faster learning, may deteriorate

the convergence). On the other hand, with a very small learning rate, not only the training is slower,

but it may lead to being permanently stuck with a high training error (Goodfellow et al., 2016).
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Thus, as the most important hyper-parameter, the learning rate can not be very small or large

and generally prior calculation to choose the best learning rate is not possible. (Bengio, 2012)

recommended values between 1 and 10−6 for a neural network with inputs mapped to the (0,1)

interval. Typical momentum values in practice are 0.5, 0.9, and 0.99 (Goodfellow et al., 2016). In

this research, an adaptive learning rate, was used which is tracking the learning process and choose

a smaller learning rate when the loss plateaus. Therefore, the training phase started with a learning

rate of 0.001 and was reduced throughout the training. The kernel size was set at 3×3 and 2×2

for convolutional and pooling layers, respectively. Moreover, a 5-Fold cross-validation test was

applied, which randomly split into five exclusive subsets. The algorithm runs 5 times subsequently,

each time taking one of the 5 splits as the validation set and the rest as the training set. Evaluation

metrics including Jaccard index and Dice were the most common metrics for segmentation. These

are described in Chapter 2. Table 3.3 reports the results on model FCN32s which doesn’t have the

skip connections. Compared to the Alex-Net model in Table 3.2 (which is a shallower network

and flipping conducted as augmentation), shows that by using cropping images in two to increase

the data and resolution, and applying a deeper model, all metrics improved from 2% for accuracy

to 10% for Jaccard index. Moreover, by using a model (FCN8s) that has skip connections (second

row in Table 3.4), the Jaccard index improved by 6% compared to the model(FCN32s) (Table 3.3),

that shows the benefit of skip connections as corroborated by the results in (Long et al., 2015) who

reported that fusing the feature maps from primary layers with upsampling layers improves the

result.

When it comes to overfitting issue, techniques including drop out layers and augmentation are

investigated by comparing the Figures, 3.9 to 3.11. Studying Figure 3.9 and 3.10 shows that

adding a drop out layer not only advanced the convergence time but also helped the network in

terms of overfitting. Figure 3.11 depicts how data augmentation helps tackle overfitting.

Figure 3.12-a was produced by FCN-AlexNet model using original images as training data whereas

Table 3.2: Result of fine-tuning the network on Alex-net, Data augmentation is conducted by
flipping
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Table 3.3: Results of fine-tuning the network on pre-trained model of FCN32s, Data augmentation
is conducted by flipping and cropping

Figure 3.9: Loss for network fine-tuned on FCN-8s with flipped and cropped images as augmen-
tation

Figure 3.10: Output error, using FCN8s as pre-trained model without drop out layer

Figure 3.12-b and Figure 3.12-c are produced by the deeper model that employed the augmented

training dataset which was created by cropping images. Thus, the generated masks for the cropped

images of the network (b,c) make the output by merging. Image (d)is the original mask. This fig-

ure shows significant improvement in the generated output mask by deeper network which also
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Figure 3.11: Output error, using FCN8s as pretrained model with drop out layer

benefited from augmenting the database by cropping the image.

Figure 3.12: (a) Segmented image produced by the model pre-trained with Alex-net and data set
augmented by just flipping, (b),(c) are output of the model in which, the input segmented images
augmented by cropping and these outputs produced by a deeper network (16 convolution layers)
using pre-trained model VOC-FCN8s, (d) Ground truth test image.

The evaluation results from Table 3.4 indicates the importance of augmentation (from 900 input

images to 3600) which considerably improved the Jaccard index from 0.61 to 0.67. In addition

to the augmentation, by going deeper (from 7 convolution layers to 16 convolution layers), the

Jaccerd index score increased by 0.16 which was a significant improvement and was comparable
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Table 3.4: Evaluation results of lesion segmentation compared to best challenge result(ISIC2016)
(Gutman et al., 2016)

to the top result of the ISBI challenge (Gutman et al., 2016). This is important as later layers

extracts more complex features, however the augmentation technique is required to tackle early

overfitting. The same indices have been applied to evaluate the dermoscopic feature segmentation

task as well. The metrics calculated for this task are shown in Table 3.5. The results are comparable

with the results of the second place winner in the 2016 ISBI challenge. The sensitivity of proposed

method is slightly higher while other metrics are close to the 2nd best results. Figure 3.13 shows

test ground truth for the globule feature and the globule feature segmented by our network.

3.4 Summary

Two main segmentation tasks in melanoma diagnosis systems were developed in this part of the

research. An FCN-based deep network and a pre-trained model from the semantic image dataset

ImageNet in (Krizhevsky et al., 2012)) were investigated for this medical application. Several

Table 3.5: Evaluation results for dermoscopic feature segmentation compared to the best result of
challenge (ISIC2016)
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Figure 3.13: (a) Image from test dataset. (b) Test ground truth for globule feature. (c) Feature
segmentation by our network

papers have used deep learning for lesion segmentation but not on dermoscopic feature segmenta-

tion. The proposed model yields promising results. Transfer learning was applied due to the small

dataset but later layers were retrained because of the dissimilarity between skin dataset and Ima-

geNet. This issue is particularly important for the deeper model for which the initial convolution

layers could be fixed and the rest of the network be retrained. The earlier layers of a Convolu-

tion network contain more generic features such as edges that are generally helpful in many tasks

while the later layers extract more specific details relevant to the dataset and pertaining to the

classes, such as shapes. This research investigated to improve the FCN model but not design-

ing a very deep network due to the overfitting problem. In many previous studies on skin lesion

segmentation, considering data scarcity, massive data augmentation techniques were applied, or

the models were fine-tuned on a model that was pretrained on irrelevant data (i.e. natural images

and not medical images). Data Augmentation improved the Jaccard index and the efficiency of

techniques. Adding drop out layers and early stopping were investigated to prevent overfitting.

The computation load for dermoscopic feature segmentation was significantly decreased because

of a shared convoultional network from lesion segmentation. In addition, the masks from the task

of lesion segmentation were used to extract the region of interest to fed into the network in der-

moscopic feature segmentation. In the validation phase, the masks provided by first task (lesion

51



segmentation) used to crop the RoI. In terms of augmentation, cropping was found to be very ef-

fective since the images were large and needed to be resized before forwarding to the deep network

due to the memory issues. To solve this problem, images were cropped into two parts and were

fed to the network. In test/validation phase, images are also cropped and then sub-images merged

together to calculate the metrics. The final proposed method was composed of 15 convolution

layers, which is significantly less complicated compared to FCRN with 50 layers (Yu et al., 2016),

or mFCN (Bi et al., 2017) that contains FCN architecture in each stage.
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Chapter 4

Proposed Contourlet-Convolutional

Neural Network

4.1 Proposed Method

Training from scratch and challenges were investigated and a modified FCN model was proposed

for lesion border segmentation and attribute detection tasks. An overview of the proposed seg-

mentation architecture is depicted in Figure 4.1. Details of the method, including pre-processing,

architecture of segmentation model, and post processing are explained below.

Figure 4.1: Architecture of proposed model, deep convolutional neural network proposed for le-
sion segmentation and image representations from various levels of contourlet transform.
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4.1.1 Pre/Post Processing

Images of the surface of the skin mostly involve dark corners, hairs, ruler marks, variation in

color, and uneven illumination. Removing noisy artifacts has extensively been investigated as an

essential preprocessing task to enhance image quality (Oliveira et al., 2016). In this study, no

preprocessing procedure for the task of lesion segmentation was conducted, but the dataset size

was slightly increased by flipping the images. The effect of dark corners on generated masks

is compensated in post processing and the model performs very efficiently on images with hairs

and other noisy artifacts. For the task of lesion dermoscopic feature segmentation, the images

are cropped first by applying a bounding box and using masks from the previous task, then the

images are flipped to balance the dataset. In the post-processing phase, the masks are resized

to the original size, then thresholding and morphological dilation are used to extract the objects

in a predicted mask, choose an object closer to the center of image, and finally remove unwanted

components, such as corner’s effect, and cover the small holes (Gonzalez and Wintz, 1977).

4.1.2 Network Architecture

The modified CNN model proposed in this chapter is inspired from FCN and U-net and is trained

from scratch. The model is improved by feature maps from the frequency domain as well as spa-

tial feature maps of the original FCN. Contourlet as a multiscale transform was considered as it

is multidirectional and sparser compared to wavelet, which is the most widely used transforma-

tion in image analysis. The proposed method consists of three parts: contourlet transformation

which generates features in the frequency domain, concatenation of frequency and spatial domain

features and convolutional neural network which is the main part.

4.1.2.1 Contourlet Transformation

Contourlet transform, with the distinctive attributes of directionality, anisotropy and localisation

has demonstrated itself as an excellent performance in computer vision problems (Do and Vetterli,

2005). Contourlet represents notable features of image such as edges, curves and contours more

efficiently than wavelet. Wavelet is based on point singularities and works adequately to detect

edges but not smooth contours. In this research, multiscale and multidirectional coefficients from

contourlet transform are integrated into the network, which added distinctive feature representa-

54



tions to the CNN. In contourlet transform, multiscale and directional decomposition is achieved

by applying a combination of a Laplacian Pyramid (LP) and a Directional Filter Bank (DFB) (Do

and Vetterli, 2005). The architecture is illustrated in Figure 4.3. The laplacian pyramid generates

a down sampled low-pass sketch of an image and the difference between origin and the prediction

that produces the band pass image. In (Do and Vetterli, 2005), a LP decomposition is proposed,

inspired from the research (Burt and Adelson, 1987), (Figure 4.2) in which, the output of each

LP level is a down-sampled low-pass version of the original (a[n]) and the difference between the

original and the prediction that produces a band-pass image (b[n]). H and G are low-pass analysis

and synthesis filters, respectively, and M shows the sampling matrix.

Figure 4.2: (a) The original LP decomposition from (Burt and Adelson, 1987), (b) LP decompo-
sition proposed in (Do and Vetterli, 2005)

The directional filter bank receives the band-pass image as input and produces final directional de-

composition. Consecutively, the Laplacian pyramid applies to the low pass image and the process

is repeated to reach the desired level of decomposition. As demonstrated in Figure 4.3, the mul-

tidirectional representations generated by the directional filter bank in each scale are considered

to concatenate with the equivalent pooling layer. By considering x0[n] as input image, the output

of LP stage consists of J band-pass images bj [n], j = 1, 2, ...J , in the fine-to-coarse order and a

low-pass image aj [n]. In other words, the jth level of the LP with the input image aj−1[n], gen-

erates aj [n] and band-pass bj [n] which is further decomposed by lj-level DFB into 2lj band-pass

directional images Cj
d[n], d=1,2,..2lj − 1.

4.1.2.2 Contourlet-driven CNN

The proposed model is inspired from FCN and U-net, which are both composed of an encoder

and a decoder path (Long et al., 2015), (Ronneberger et al., 2015). FCN has been designed to

use the CNN of the classification task as in the supervised pre-training, and to fine tune the fully

convolution network to perform the task of segmentation. In the FCN architecture, fully connected

layers are converted to convolution layers besides adding the feature map from lower layers in the
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Figure 4.3: Contourlet transform composed of Laplacian Pyramid and Directional filter bank.

encoder path to the corresponding layer in decoder path that termed skip connections. The U-net

(Ronneberger et al., 2015) modified the FCN by using the multitude of feature channels in the

expanding path compared to the FCN, so that the number of kernels in the upsampling path is

limited to the number of classes. Moreover, learnable filters are utilised and skip connections are

concatenated to the corresponding upsampling layer instead of fusing in FCN. Thus, using the

Unet architecture, requires more memory due to many feature maps being created because of the

numbers of kernels. In Equation 2.7, the zth feature map in the convolution layer l can be defined

as:

hlz =
K∑
k=1

hl−1k ∗ wl
kz, (4.1)

where ∗ denotes the convolution and K is the kernel size. hland w show the feature maps in

convolution layer l and the kernel respectively. From the previous section, the output of jth level

of LP and DFB in contourlet can be described as:

F j
LP (aj−1[n]) = bj [n], aj [n] (4.2)

FDFB(bj [n]) = Cj
d[n], d = 1, 2, ..2lj − 1 (4.3)

By considering g as an activation function such as ReLU and p as the pooling function such as

max/average pooling, the new feature maps generated by merging lth convolution layer and the
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contourlet transform can be described as:

hnew[n] = p(g(hl[n])) c©Cj
d[n] (4.4)

The symbol c© represents the technique of integrating CNN and contourlet representations. In

contourlet, various scales and directional decomposition are generated depending on parameters

set for LP decomposition and the number of directional decomposition in DFB. Also, in CNN, the

size of feature maps is defined by the parameters of the convolution layer and the pooling layer,

including stride and kernel size. Concatenation was considered as in this study, the size of the

feature maps in CNN and contourlet were set to be the same in each scale. Alternatively, methods

such as resizing or extracting the RoI could also have been considered. Moreover, feature fusion

can be used instead of concatenating to reduce the computation load.

4.1.2.3 Lesion Segmentation

A basic model inspired by Unet and FCN is considered and gradually improved by injecting fea-

tures from the transform domain and adding CIElab color model of input images. The initial

model is composed of encoder and decoder elements. The encoder part of this model includes a

series of convolution layers followed by max pooling layer. ReLUs are applied after convolution

layers to accelerate the training (Krizhevsky et al., 2012). The number of feature channels starts

from 16 in the first convolution layer and duplicates in each subsequent convolution layer. To

deal with overfitting, a drop out layer is applied to the last two convolutional layers (Srivastava

et al., 2014). In decoder side, a series of deconvolution layers operate as learnable upsampling

layers. The number of kernels in the decoder part is considered equal to the number of classes:

two. This model is trained from scratch and the learnable weights in both convolutional layers and

deconvolutional layers are initialised with Xavier filters. As recommended in FCN, feature maps

from pooling layers in the encoder path are connected to later deconvolution layers in the decoder

path but in this study, concatenation is used similar to U-net. The number of deconvolution lay-

ers is also different from Unet and FCN. There are 6 upsampling layers to get the output with

the same resolution as the input image. Moreover, the number of filters considered to be 16 for

the first convolution layers compared to 64 in FCN and U-net, to decrease the depth and number

of the training parameters since the data set is small. To improve performance, representations
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from contourlet transform in four levels are concatenated to the pooling layers that make model2.

Discrete contourlet transform with 4 decomposition levels and 4 directions in each level are ap-

plied to three color channels of the input images, in total they provided 12 representations in each

level. In another experiment, changing the Model 1 to a deeper model (increasing the number

of convolution layers in encoder part from 7 to 15) was investigated instead of integrating with

image representations of the transform domain. This model was named Model 3. The architecture

of the Model 2 was improved by using a deeper model, this was termed Model 4 (which had 15

convolution layers in the encoder part instead of 7 convolution layers) and due to high correlation

between the red, green and blue colors in RGB, CIELAB color channels were also applied to the

input of final final model (model 4 with CIELAB). CIELAB contains a lightness component (L),

and two-color components (A and B) and has the benefit of being device independent compared

to RGB.The 4 models are briefly defined as:

• Model 1: The model with 7 convolution layers in the encoder part.

• Model 2: The model with 7 convolution layers the in encoder part and that is integrated with

representations of the transform domain.

• Model 3: The model with 15 convolution layers in the encoder part.

• Model 4: The model with 15 convolution layers in the encoder part and that is integrated

with representations of the transform domain.

4.1.2.4 Lesion Attribute Segmentation

Segmentation of dermoscopic features including globules and streaks helps clinicians diagnose

melanoma from benign skin lesions. The goal of this task is to automatically generate two masks

for each lesion that reveal the location of streaks and globules. For this task, the segmentation

model contains two parts including the encoder and the decoder. The encoder part is the same

as for the task of lesion border segmentation. Therefore, transfer learning was considered from

task1. The encoder path consists of two parts for globules and streaks localization each of which

includes two convolution layers and four learnable upsampling layers, and so two losses are added

up to generate the final loss of the network. The main issue with training the model for this task is

unbalanced data. Nearly half of the images in this dataset do not contain any dermoscopic features
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and the detection of empty masks can improve performance. Thus, classification (to classify

empty and non empty masks) was added to the network and the corresponding loss added to the

segmentation loss. The idea was to use a max pooling so that if the network detection was wrong

and predicted an empty mask as a mask that included any of features (non empty mask), the loss

of classification would be high and this would force the network to predict the right empty mask

as presented in (Chen et al., 2018). The final loss of the network is the sum of classification and

two segmentation losses for predicting globules and streaks. Moreover, among those which hold

dermoscopic features, the number of pixels that belong to the classes of globules or streaks are far

fewer than the background pixels and each skin image does not necessarily contain both streaks

and globules features. Almost 42 percent of images contain pixels of globules while the number

of images involving streaks is limited to less than 8 percent of the dataset. In the previous chapter,

a bounding box was applied to separate the lesion region by using ground truth images. Thus,

the network will look to a larger region of interest as input and the number of background pixels

falls, lessening class imbalance. Images are cropped by a factor of 1.1 because in a few cases the

streak and globule pixels are located slightly outside of the border of the lesion (from the mask

of lesion border segmentation). Accordingly, the output masks generated by lesion segmentation

from task1 were used to crop the test images before entering the network. To deal with imbalanced

data, images containing streaks were flipped over the vertical axis, the horizontal axis, and both

vertical/horizontal axes. So, the number of images with streaks increased to 23 percent and images

with globules increased to 48 percent as most images with streaks contained globules too. In the

following, the network was extended and deconvolution layers were used with a larger number

of feature channels followed by concatenation of feature maps from the corresponding layer in a

contraction path similar to the Unet model.

4.2 Experiments and Results

To validate the model, the method is applied to two databases provided by Skin Lesion Analysis

towards Melanoma Detection challenges (ISIC 2016 and 2017) (Gutman et al., 2016), (Codella

et al., 2019). The performance of the proposed method is compared to the results of the winners of

both challenges. Further information on datasets, implementation details and results are presented

below.
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4.2.1 Data Preparation

The challenges of ”Skin Lesion Analysis towards Melanoma Detection” provided datasets of an-

notated skin lesion images from the ISIC Archive. Two publicly available datasets from the ISIC

2016, 2017 challenges (Gutman et al., 2016), (Codella et al., 2019) are utilised in this research.

Details are described in Chapter 3. The proposed model takes advantage of not using common

methods of preprocessing, such as removing hair or artifacts in the images. Instead, raw images

are the input of networks in all experiments of this research. Furthermore, only flipping was used

in terms of data augmentation. The images and corresponding ground truths are flipped vertically

to expand training data for task of lesion segmentation and flipping vertically and horizontally to

balance the dataset for task of dermoscopic feature segmentation.

4.2.2 Implementation

Initially, a basic architecture composed of 7 convolution layers followed by 6 deconvolution layers,

named Model 1, was considered in this study, and a series of comparative experiments was con-

ducted to improve the results. Training was performed using stochastic gradient descent (SGD),

such that weight decay and momentum were set at 0.0005 and 0.99, respectively. An initial learn-

ing rate of 0.001 was considered, which was then reduced manually by a factor of 10 when the

error reaches the plateau (details are discussed in Chapter 3). In experiments where the convolu-

tional neural network is trained with the Adam optimization method, parameters were determined

as α = 0.001, β1 = 0.9 and β2 = 0.999 as recommended in (Kingma and Ba, 2014) for good

default settings for machine learning problems. To ensure a fair comparison, similar values for

parameters such as filter size, stride and learning rate are considered in all models. The hyperpa-

rameters of the proposed network are provided in 4.1. For the number of epochs, the maximum

was set to 10000 but early stopping technique was applied to deal with overfitting (details are

discussed in Chapter 3). The Caffe framework with GPU GeForce GTX TITANX was used to

implement the deep architectures. More details about Caffe are described in Chapter 2.

4.2.3 Results for the Task of Lesion Segmentation

Evaluation metrics are described in detail in Chapter 2. Since the database is scarce and many

parameters in a deep neural network stand on heuristics, such a simple model was used to pre-
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Table 4.1: Hyperparameters of Convolutional Neural Network- Model 1

vent early overfitting, and find appropriate weight initialization and an optimization algorithm to

train the network from scratch. The model was gradually improved and the results reported the

compromise made between computational complexity and accuracy. Model 1 includes a series of

convolution layers followed by a pooling layer that takes the input image with size of 3*698*698

in first layer ended to feature representation of size 512*16*16 in last convolution layer. It was em-

pirically found that the network converges more slowly when filters are initialized with a Gaussian

distribution rather than Xavier. Therefore, all convolution layers were initialized with a Xavier

distribution (Glorot and Bengio, 2010), and were learned from scratch in all subsequent experi-

ments. A Rectified Linear Unit along with normalization layer were used after each convolution

layer. Moreover, drop out layers were applied after both of the latest layers in decoder i.e. conv6

and conv7 (Srivastava et al., 2014). Inspired from (Long et al., 2015), skip connections were used

to concatenate information from primary layers to later deconvolution layers. In addition, early
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stopping was applied. The results derived from this model are provided in Table 4.2.

Table 4.2: Evaluation metrics for different architectures compared to the best result of challenge
(Gutman, et al., 2016). Model 1 refers to the basic architecture composed of 7 convolution layers
and 6 deconvolution layers, Model 2 is the model 1 incorporated with representations of transform
domain, Model 3 is the model 1 but deeper, and Model 4 is model 3 with integrated features of
transform domain.

Further improvement was investigated by considering two options. The first option consisted of

combining the transform domain representations of input images into convolutional layers, this

was referred to as Model 2. The motivation behind this consisted of integrating these proper

features leads convolutional layers to understand the input better. An alternative common option

was to make the network deeper so that it could learn more complex representations. In Model 2,

the contourlet transform in four levels and four directions was applied to different color channels

of images, which provided 12 images for each level. These representations have the same size of

the outputs of pooling layers with which they are concatenated at various levels and increased the

depth. The evaluation metrics for this architecture in Table 4.2 demonstrated improvements for all

metrics with a significant rise of 12 percent on the Jaccard index compared to Model 1. Figure
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4.4 shows a sample image with relevant groundtruth and representations of the image derived

from contourlet transform. The consequence of making the network deeper instead of applying

contourlet coefficients was explored in Model 3. In this model, convolution layers were extended

in an encoder part from 7 to 15 layers by adding one convolution layer after conv1 and conv2, and

adding 2 conv layers after conv3 to conv5. The performance metrics showed 6 percent increase in

the Jaccard index compared to Model 1, but still had a lower performance than Model 2.

Figure 4.4: Original image and Mask (b) Multiscale image representations of contourlet

To investigate the system performance in terms of training time, forward and backward execution

time averaged over 50 iterations per image reported in Table 4.3. The model to which transform

domain features were added (Model 2) showed higher performance and less inference time com-

pared to Model 3 that was made by more convolution layers. Figure 4.5 demonstrates the train-

ing error curves. The network converged faster if either feature maps from contourlet transform

were added, or the number of convolution layers increased. As extending convolution layers also

yielded higher performance, the final model (Model 4) was built by increasing convolution layers

in the Model 2. 15 convolution and 6 deconvolution layers were applied under this architecture.

Furthermore, performing optimization with Adam led to a significant reduction in convergence

time compared to SGD in the deeper architecture apart from slightly improving the results. Train-

ing error curves in Figure 4.5 confirmed that Model 4 with Adam optimization converges two

times faster.

As the deeper model got more complex, the training data was also increased by flipping to tackle

the overfitting issue. At this point, transformed images from RGB to CIELAB color space also

added to the network that concatenated with the input feature maps. The results were compared to

the model in (Pour et al., 2017) which had a similar architecture but trained using transfer learning.
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Figure 4.5: Training curves for models 1-4

Table 4.3: Training time comparison in different models

The dataset was also expanded eight times by augmentation techniques like cropping images to

two and flipping horizontally, vertically, and both. The Six segmented lesion cases generated by

deep convolutional network in Model 3 and similar architecture improved by transform domain

features in Model 4 were compared to corresponding masks in Figure 4.6. For these instances,

masks produced by a deep convolutional network fine tuned with a pre-trained model were also

compared to emphasize the advantages of gradually improving the performance by training from

scratch that is not easily feasible when limiting the model to be tuned from a pretrained model.
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(Pour et al., 2017) explored, fine tuning the network using a pretrained model that was trained on

millions of natural images (ImageNet) were explored. The results of this study outperformed the

former particularly for noisy images which contains artifact or hair. For further validation, the

model was also evaluated on ISIC 2017 dataset (Codella et al., 2019) for the task of lesion seg-

mentation. The performance metrics in Table 4.4 indicate that the proposed model outperformed

the (Codella et al., 2019) by 7% improvement in Sensitivity ,1.1% improvement in Accuracy and

2.2% improvement in the Jaccard index. The Jaccard index was also evaluated without post pro-

cessing that was 0.778 and was still higher than the winner of the challenge (Codella et al., 2019)

and other models in Table 4.4. A histogram of Jaccard Index values is shown in Figure 4.7. Al-

though the number of images with Jaccard index higher than 0.9 in our model is lower than the top

challenge result, more images with Jaccard index between 0.75 to 0.9, besides fewer segmented

images with Jaccard under 0.05 were achieved.

Table 4.4: Evaluation metrics for ISIC2017 dataset

4.2.4 Results for Task of Lesion Dermoscopic Feature Segmentation

Two binary masks were used to identify the position of dermoscopic features (globules and streaks)

in lesions. Evaluation metrics were the same as in task 1 and the aim was to automatically generate

two masks (globules and streaks) for each test image. Transfer learning was applied using the

model trained in previous part that helped the network converge fast. The encoder included the

similar convolutional layers as pretrained model and this architecture was followed by two parts,

each contained two convolutional layers and four deconvolution layers to predict masks for both

streak and globule features. The earlier layers (encoder part) retained freeze for the first 40 epochs

then the whole network was retrained with the learning rate decreasing by a factor of ten. The

segmentation metrics were calculated over the entire test data set and the results are demonstrated

in Table 4.5. Compared to the best result of the challenge, a 17 % improvement in the Jaccard index
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Figure 4.6: a) Original image b) Segmented output from model 3 3 c) Segmented output from
model 4 d) Output of model that is fine-tuned on a pretrained model (Pour, Seker, Shao, 2017) E)
Test mask

is observed and samples of images from test dataset with predicted groundtruth are presented in

4.8.

Table 4.5: Evaluated metrics for the task of dermoscopic feature segmentation

4.3 Discussion

Deep convolutional neural networks have widely improved various kinds of tasks solved by clas-

sical algorithms in machine learning over the past few years. A lack of appropriately sized dataset

is a major issue when it comes to medical analysis. Although going deeper led to higher per-
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Figure 4.7: Histogram of Jaccard index values for proposed method compared to top result of the
challenge ISIC 2017

formance, it is more prone to overfitting. Applying transfer learning is a solution for this issue .

However, a model trained on medical data can barely be found to be used as a pretrained model.

Moreover, the model can hardly be improved by modifying the architecture, as the architecture is

limited to be designed similar to the pretrained model and fixing a layer is not simply applicable

due to local distribution representations may found in some layers as discussed in (Yosinski et al.,

2015). (Pour et al., 2017) investigated using a pretrained model from semantic image dataset for

the task of skin lesion segmentation. In this research, training the network from scratch and im-

proving the model by inserting appropriate features to the network were explored for the task of

skin lesion segmentation and dermoscopic attribute detection. A simple model based on convolu-

tional neural network considered and was improved gradually by appending appropriate features

and optimization techniques. The model benefits from not applying excessive data augmentation

techniques, and instead adds multiscale and multidirectional representation of input images from

transform domain to a convolutional network. This led to a considerable rise of 12% in the Jaccard
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Figure 4.8: (a), (b), (c), are the original images with globule and streak groundtruth respectively.
(d) is the predicted globule groundtruth and (e) is the predicted streak

index in Model 2 compared to a 6% raise in Jaccard index in Model 3, modified by making the

network deeper by increasing the number of convolution layers from 7 to 15. The training time

of these models are compared in Table 4.3, which shows that the training time increased 128.83

ms by increasing the number of layers from 7 to 15, compared to just 34.71ms for model with

7 convolution layers and integrated with the transform domain features. Figure 4.9 compares the

output of the 4th, 8th, 9th, and 11th convolution layers in Models 3 and 4. Model 4, which includes

image representations of contourlet transform is learning the pattern more effectively while Model

3 is a deep model without features of the transform domain showing noisier patterns. The pro-

posed model with incorporated representations (Model 4) shows 10 percent improvement in the

Jaccard index compared to a similar model without adding features (Model 3). This confirms the

idea of integrating features of the frequency domain to the network particularly when the dataset
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is scarce and going deeper can not really improve the results. In comparison with the model in

(Pour et al., 2017) that is fine-tuned on pretrained model on natural images and data augmentation

that is conducted to increase the data 8 times, the average Jaccard index has improved 3% and the

proposed model indicates significantly higher performance in noisy images such as images that

contains hair or artifacts.

Figure 4.9: (a), (b), (c), (d) are the outputs of 4th,8th,9th and 11th convolution layer respectively.
Images in the first raw are from model 3 and second raw from model 4. (e) Origin image and the
groundtruth

The advantages of the proposed model, in short, contain not using preprocessing and excessive

data augmentation, improving the performance of a not very deep and complex CNN-based model

by integrating multi-scale and multi-directional contourlet representations, high performance of

the model on small dataset and significant improvements in segmenting noisy images.

4.4 Summary

In this work, a segmentation model based on CNN was proposed for the tasks of lesion segmen-

tation and dermoscopic feature segmentation. While adding more layers and increasing the depth

are common ways to improve the accuracy of a CNN. This may not be applicable to medical data,

because the network requires more training data, which is a major issue in the medical domain. To

deal with this issue, many studies use excessive augmentation algorithms that may add irrelevant

data as well. Furthermore, providing the labelled data in medical domain is expensive and requires

expert skills, also entails privacy issues of medical records. This contributes to limited data ac-
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cess in this area. A further solution to use deep architectures for scarce data is transfer learning,

but this is also limited because a pretrained model on a medical dataset can hardly be found. In

this study, training the network from scratch was investigated and increasing the depth of input

to convolutional layers by concatenating efficient feature maps from transform domain and using

CIELAB colour space in addition to RGB colour channels instead of excessive augmentation or

using a pretrained model on natural images. A basic CNN model was initially proposed and was

progressively improved, and the results were compared to the common techniques such as adding

more layers to the network, transfer learning or data augmentation. In the first stage, incorporat-

ing multiscale image representations from transform domain improved the Jaccard index by 12%,

while adding layers to the network increased it by 6% compared to our basic model. The model

improved by combining these two models, boosting with the CIELAB colour model and flipping

as a trivial augmentation that outperformed the winner of 2017 challenge by a 2.2%improvement

in the Jaccard index and 7% in sensitivity. A summary of the achievements of the proposed model

includes:

• A CNN is designed to do automatic learning from training data with a deep architecture that

applied to extract low level to high level features in various layers.

• The relevant feature maps are concatenated to the network by inserting image representa-

tions from the transform domain that provide a superior understanding of the input into the

model.

• CIELAB colour space is applied in addition to RGB colour channels that provide more

information for the network.

• This architecture benefits from not applying pre-processing methods as well as not using

excessive data augmentation techniques.

• Despite the small dataset, the proposed architecture is trained from scratch and improved

the results, particularly for noisy images, compared to the model that was fine-tuned with a

model pretrained on natural images.

• Improves accuracy by 12% while adding layers to the network increases the Jaccard index

score by 6% compared to our basic model.
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• The final proposed model outperformed the results of both 2017 and 2016 challenges with

2%and 7% improvements in the Jaccard index and Sensitivity for 2017 and an increase of

1%in Jaccard index with 6%in sensitivity for 2016.

• The model with integrated transform domain features (Model 2) shows less inference time

compared to model 3 that is made by more convolution layers.
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Chapter 5

Left Ventricular Segmentation

5.1 Introduction

A cardiac magnetic resonance image (MRI) scan is a non-invasive test and an MRI machine is

used to generate magnetic and radio waves to show the detailed pictures of inside of the heart.

Cardiovascular research has improved over the years to improve early identification of cardiac

diseases. The left ventricular (LV) is the most investigated chamber in cardiac segmentation due

to its key role in the blood pumping in human body. It is the thickest of the heart’s chambers and

is responsible to pump oxygenated blood to tissues all over the body. Moreover, cardiac MRI is a

critical part of cardiac function analysis such as left ventricular volume and the ejection fraction,

wall motion abnormality and stroke volume. Cardiovascular diseases (CVD) is a significant cause

of disability and death around the world. The Global Burden of Disease study estimated that 29.6%

of all deaths worldwide were caused by CVD. It is still responsible for over 4 million deaths per

year, close to half of all deaths in Europe in 2010 (Nichols et al., 2014).

Many studies on medical video segmentation are inspired from image segmentation methods and

have been applied on video frames too. These methods include traditional segmentation tech-

niques such as thresholding, region growing and active contours (Codella et al., 2008), (Queirós

et al., 2014), (Kaus et al., 2004) as well as recent deep learning based models such as FCN and

specifically Unet, which has shown significant improvement in biomedical image segmentation

(Wang et al., 2014), (Moradi et al., 2019). Several research papers on medical video segmenta-

tion, have incorporated prior information including motion and shape, to improve robustness and
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accuracy (Petitjean and Dacher, 2011). Moreover, the size of ventricles is small compared to the

whole cardiac MRI image and detecting the region of interest (RoI) is an essential primary step in

LV segmentation to decrease the intervention of surrounding tissues. Frequent movement property

of LV is an important feature that can be applied to detect the RoI, where intensity varies signif-

icantly in a cardiac cycle. The circular shape of LV in the short-axis MR images and the center

position of LV are further factors that have been widely used in the literature too.

(Alba et al., 2014), considered the center position of the heart in the image and the endocardial

and papillary muscles were identified by optimal threshold method of Otsu, watershed, and 1D

fast Fourier transform. The final epicardial contour was detected by applying a multiple seed,

region-growing on pixels that were mapped from Cartesian to polar coordinates. The motion

characteristic was used to find the RoI in (Lu et al., 2019). Cumulative Difference Variation was

defined as sum of absolute difference of adjacent slice images followed by making a binary image

by using an Otsu threshold method. The center of the image was considered as the center of

the rectangle with a predefined side length to generate the RoI. An edge detection method and

Circle Hough Transform (CHT) were applied to estimate the initial contours of LV and finally,

a minimum distance constraint was used to specify the proper circle. (Nambakhsh et al., 2013)

used shape and intensity information that were derived from manually segmentation of the first

frame in each sequence for 2D and a single point per target regions (cavity or myocardium) in

3D were applied followed by an optimization of distribution measures to achieve the optimal

cavity and myocardium regions. Although various image segmentation systems based on image

processing techniques have shown encouraging results, the generalization problem and the issue

that these techniques are mostly customized to the data, have led to the further growth of machine

learning-based methods and specifically, recent deep convolutional neural network models with

the ability of automatic end to end feature learning from raw data. (Yan et al., 2018), proposed

an optical flow feature aggregation sub-network which was integrated to the Unet and was further

developed by dilated convolution. A method proposed by (Khened et al., 2019), employed Fourier

transform and circular Hough-transform to detect the RoI and used densely connected CNNs for

LV segmentation. Further details of deep CNN-based models are provided in Chapter 2. To

detect the RoI in this research, motion and continuity of the frames in a sequence beside shape and

position of LV are considered by using optical flow and absolute difference of frames in a sequence
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(Lu et al., 2019). Finally, a CNN-based network is designed to segment the LV. Data preparation,

proposed model inspired of U-net as a leading deep learning model for medical domain and details

of the experiments will be presented.

.

5.2 Proposed Method

5.2.1 Data Preperation

The dataset of Sunnybrook Cardiac Data (SCD) has 45 cine-MRI images from a range of patients

and pathologies: healthy, hypertrophy, heart failure with infarction and heart failure without in-

farction. The data became publicly accessible as part of the MICCAI 2009 challenge on automated

LV segmentation from short-axis cardiac magnetic resonance imaging (MRI). 1

Figure 5.1: A sample image from Sunnybrook dataset and the converted ground truth.

Another database that is used for this task comes from the Left Ventricle Segmentation Challenge

(LVSC)2 that is accessible from STACOM 2011 challenge on automated LV myocardium seg-

mentation from short-axis cine MRI (Suinesiaputra et al., 2014). The dataset includes 100 sets
1http://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/
2http://www.cardiacatlas.org/challenges/lv-segmentation-challenge/
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are in the DICOM (Digital Imaging and Communications in Medicine) format that consists of

various metadata parameters related to the patient and the image. The contours format is in text

files which include contour points which required to be converted into the groundtruth.



of cardiac MRI images of patients with coronary artery disease and myocardial infarction. The

images have the resolutions from 0.7 to 2.1 mm/pixel with sizes from 156 × 192 to 512 × 512.

Cardiac cycle contains 18 to 35 frames. A few samples of dataset are provided in Figure 5.2.

Figure 5.2: Images (numbers 0, 5, 13, 20 respectively from the same sequence-patient 1) and the
corresponding groundtruths from LV segmentation challenge dataset (Suinesiaputra et al., 2014)

The MRI images are in various sizes and orientations which are taken by different experts and

belong to various patients, thus data normalization is required. As 2D slices from all sequences

are extracted, the normalization can be conducted on each frame of sequence.

5.2.2 Proposed CNN based Model for Task of LV Segmentation

In this research, the feature of the constant movement of LV was used to find the region that it

belongs to. This feature was concatenated to the network feature map as a location guide to render

the output sensitive to the region of interest. The procedure to design the location guide module

includes: applying an edge detection (canny edge detector or contourlet transform); calculating

the absolute difference of two frames in a sequence; and the employment of adoptive thresholding

and morphological operations. More details of the location module are given in the next section

that identifying the region of interest is described.

The output of the location module is fed to the deep convolutional neural network after having been

down-sampled to reflect the corresponding sizes of the various layers in the network. The deep

network consists of encoder (downsampling) and decoder (upsampling) parts and skip connections

as proposed in the U-net architecture (Ronneberger et al., 2015). The proposed architecture is

depicted in Figure 5.3. This architecture is referred as ’model 1’ in the experiment section. The

encoder comprises 15 convolutional layers followed by RELU activation and pooling layers, and

the upsampling path includes convolution and deconvolution (fractional convolution) layers. The
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sum of cross-entropy terms over each pixel of output map is used as the loss function. In each

iteration, two frames from a sequence are fed to the network and location module. To alleviate

the class imbalance between segmented and the surrounding background particularly in the first

architecture where images are not cropped, the Dice loss function described in the previous chapter

is also applied to improve accuracy. This is important due to the problem of imbalanced classes,

because less than 2 per cent of all pixels belong to the LV class in the Sunnybrook dataset.

Moreover, the model is compared to the architecture in which the RoI is identified in the first step

followed by extracting the RoI. The extracted RoI is then fed to the deep CNN and the output mask

is generated. Details of the method used to predict the RoI are presented in the next section, but

the architecture of deep CNN is the same as in the previous model, and this architecture is referred

as model 2 in the experiment section.

Figure 5.3: Outline of the proposed method for task of LV segmentation.

5.2.3 Proposed Algorithms to Identify the Region of Interest (RoI)

The heart is located in the thoracic cavity between the lungs, and extends as far as the diaphragm.

Hence the cardiac MR images often include the heart and the surrounding chest cavity such as the

lungs and diaphragm. The region of interest was extracted to enhance accuracy by focusing on the

area in which the left ventricular is located and by decreasing the noise. Furthermore, capturing
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the RoI alleviated the imbalance between classes by reducing the number of background pixels.

To capture the RoI, two factors relevant to the shape and function of the LV were investigated:

its motion and the fact that it is mostly located close to the center of the MRI image. Firstly, a

canny edge detector was applied to the images in a sequence (Canny, 1986). Detecting motion in

the neighboring images in a sequence, allowed for an estimation of the region that the LV belongs

to. In each image sequence, the absolute difference of two frames were calculated after operating

the canny edge detector, and local thresholding was conducted at the end. Adaptive thresholding

computes a locally adaptive threshold that chooses the threshold based on the local mean intensity

(first-order statistics) in the neighborhood of each pixel.

Figure 5.4: The Procedure of Detecting the Region of Interest.

Canny Edge Detection is a multi-stage edge detection algorithm that includes the following stages.

Firstly the noise is reduced by a Gaussian filter,

(5.1)

where

(5.2)

The gradient of the smoothed array S(m,n) is computed in the next step by using any of the gradient
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operations (Roberts, Sobel, Prewitt, and so on):

(5.3)

(5.4)

in the next step, non-maximum suppression to the gradient magnitude is followed by double

thresholding to detect and link the potential edges investigated (Jain et al., 1995). Binarizing

and morphological operations are conducted to select the closest object to the centre, removing

small and disconnected objects and creating a rectangular filter that is extended by 20 percent

from all sides. Moreover, a contourlet transform similar to that described in the previous chapter

is used instead of the canny, and obtained a slightly higher performance but computationally, it is

more complicated.

5.2.4 U-net based Model Improved by Optical Flow Motion Estimation

The proposed segmentation method outlined in this section benefits from considering temporal

information between cine frames by adding motion analysis to the CNN. Optical flow indicates

the motion of image objects between two consecutive frames and can be defined by the following

equations (albeit with the assumptions that illumination is constant over time and there is very

minor LV displacement between adjacent frames).

I(x, y, t) = I(x+ dx, y + dy, z + dz) (5.5)

dI

dx
U +

dI

dy
V +

dI

dt
= 0 (5.6)

I is the image intensity as a function of space and time, U and V are horizontal and vertical velocity

components of the pixel in the position (x,y). Figure 5.5 (b,c) shows an example of U, V with full

range of colours in the colour-map. The resultant optical flow is indicated in Figure 5.5 (d) where

the arrows show directional components specified by (U+du,V+dv).

79



Figure 5.5: (a)original adjacent frames, (b) and (c) are U and V respectively, and (e) vector repre-
sentation optical flow

The architecture of the main network is the same as in the prior model, and additional convolu-

tional layers receive optical field data as input with multi-dimensional, multi-directional contourlet

representations integrated into the corresponding convolution layers. Conv1 to Conv3 layers in

Figure 5.6 are a group of 3 convolution layers. A fusion technique is applied to integrate feature

maps of optical flow into the fourth convolution layer of the network. As shown in Figure 5.6,

feature maps of the contourlet are fused with the convolution layers of the optical flow network. In

the method proposed in Section 5.2.2, the contourlet representations were concatenated with the

pooling layers. The reason for the use of fusion instead of concatenation was that the number of

parameters was increased, since convolution-pooling layers were added for LV frames and optical

flow feature maps and concatenating the layers pooling 3 of both networks will double the number

of parameters too. Therefor, fusion of feature maps was considered, which includes summations

of the corresponding positions of feature maps of the optical flow network and the main convolu-

tion network. In order to equalize the size and depth of the feature maps of the contourlet and the

corresponding pooling layer, resizing and convolution layers are applied before fusion. To further

improve the model, inspired from (Zhou and Yang, 2019) three normalization methods are investi-

gated, including Batch Normalization (BN), Layer Normalization (LN) and Instant Normalization

(IN). BN is employed to normalize the input feature map FN×H×W×C by considering a mean of

0.0 and variance of 1.0. H, W and C are height, width and number of channels respectively. N

is the number of images in a mini batch in the input layer. It is demonstrated that this technique

reduces the number of training epochs required to train deep networks too (Ioffe and Szegedy,

2015). The normalization is performed by computing the mean and variance of each mini batch
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Figure 5.6: The proposed system with integrating optical flow feature maps

input variable along the channel:

(5.7)

(5.8)

where ε is a small value added to increase the stability of the division. Normalization is applied

to the feature maps (fn,h,w) after the convolution layer and before the activation layer. In LN,

the mean and variance are calculated along batch (Equation 5.9), while in IN method they are
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calculated along channel and batch (Equation 5.10).

(5.9)

(5.10)

5.3 Experiments and Results

The proposed U-net based model includes convolutional layers with 3*3 filter, normalization,

ReLU activation function followed by 2*2 pooling layers. Drop out layers were also applied to

overcome overfitting. Skip connections were used to concatenate the feature maps from shallow

layers to deep layers (Long et al., 2015). The model was implemented using GPU TitanX. Both

architectures on datasets of Sunnybrook and the dataset from LV segmentation challenge (LVSC)

were evaluated. The network was trained using an Adam optimizer with parameters including α =

0.001, β1 = 0.9 and β2 = 0.999. 15 percent of data was considered for validation and 15 percent

for test. 70 percent was also considered for training. After each epoch the model was checked

with the validation data and the final model used to evaluate the test data.

Dice and Softmax loss were applied, which were formulated in previous chapters. In terms of the

evaluation metrics, Dice, Jaccard, Sensitivity and Specificity were used. The two other metrics,
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positive predictive value (PPV), and negative predictive value (NPV) are defined as:

(5.11)

where T1,T0 are the number of correctly predicted pixels from object and background classes

respectively and F1,F0 are the number of misclassified pixels as object and background, respec-

tively. Dice loss improved the segmentation metrics, especially Dice, and accordingly the Jaccard

index.

Table 5.1: Evaluation metrics from the proposed model 1 compared to the recent papers including
(Tan et al., 2017), (Khened et al., 2019), (Tran, 2016)

Table 5.1 presents the performance of the proposed model 1, which is comparable to the highest

performance reported in recent papers on LV segmentation and using the LVSC dataset. The

performance of two models were compared, model 1 (in which the location guide module was

used and its multi-scale features are integrated into the network) and model 2 (in which identifying

RoI and cropping the images were the initial steps). The two loss functions were considered, the

Dice layer and Cross Entropy loss, as shown in Table 5.2. In method 2, the cross entropy loss

outputs were very close to the output of dice loss since by RoI cropping, the class imbalance was

alleviated that led to optimal performance for cross entropy loss too.

Fine tuning the model on the pretrained model from chapter 3 is evaluated and as Figure 5.7 shows

that the network converges more quickly. The learning of general information, particularly in the

early layers of these two networks, could be similar but transfer learning even on a different med-

ical dataset helps the network to converge faster. However, the later layers were retrained.

The training of the network on the Sunnybrook dataset was divided into three parts: train:31
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Table 5.2: The performance of both models with cross entropy and dice loss

Figure 5.7: Training and validation loss for model 1, The Left plot is for using pretrained model
from previous chapter.

cases; validation:7 cases; and test:7 cases. A dice of 0.96 was achieved, thus outperforming the

result of (Tran, 2016) which was 0.94. For this part, data augmentation was also conducted with

flipping vertically and horizontally to increase the dataset and prevent early overfitting. Transfer

learning was used from the model pretrained on the LVSC dataset. The other technique that was

considered to handle the overfitting issue was early stopping, as described in Chapter 3. The effect

of increasing the number of convolution layers and number of filters to make the network deeper
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was investigated to find the efficient architecture. Table 5.3 represents the results showing that

increasing the depth does not necessarily lead to improved performance.

Table 5.3: The effect of increasing convolution layers and number of filters on dice metric from
proposed model on LVSC dataset

Table 5.4: Comparing with the original U-net

The proposed model is also compared to the model similar to the original U-net architecture that

is without concatenating the feature maps of location modules to the CNN. The Jaccard metric

in the Table 5.4 shows 6 percent improvement by manipulating the network with the RoI guide.

The LVSC dataset set categorized individual images into Apex, Mid, and Base levels, which is

conducted in this study but the slices not identified from validation were removed. The results of

the proposed model with optical flow and contourlet with IN, LN and BN normalization techniques

are reported in Table 5.5. (Yan et al., 2018) reported the results of using max-pooling in the CNN

architecture and the improved results by using dilated convolution. The proposed architecture in

this research uses max-pooling and outperforms the results in (Yan et al., 2018) when max-pooling

is used as well as the results in (Tan et al., 2017). Table 5.5 shows the higher Jaccard index with

applying IN for Apex slices and slightly higher result for Mid slices with BN compared to results

in (Yan et al., 2018) when they used dilated convolution instead of max-pooling. BN was used in

the previous reported results in this chapter. (Yan et al., 2018) and (Tan et al., 2017) applied BN

as well.
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Table 5.5: Comparing the results with applying IN, BN, LN normalization methods with two
recent models

5.4 Discussion

In this chapter, the proposed CNN-based models of image segmentation were expanded to video

segmentation, aiming to establish a model for the task of automatic left ventricle (LV) segmenta-

tion on short-axis cardiac MRI. A fully automated technique was proposed to address LV segmen-

tation. As LV covers a small area in the image, methods to detect the RoI were proposed based

on a similarity measure, i.e. absolute differences of images in a sequence, edge detection tech-

niques including contourlet transform and optical flow as a motion detection technique. Further

features including the shape and center position of LV were considered too. The experimental

results demonstrate the significant improvement of the U-net model by incorporating contourlet

coefficients and an optical flow module. Although the pretrained model data from a previous chap-

ter was different from LV frames, the network convergence time was almost halved, as shown in

Figure 5.7. In terms of network parameters, a 2% improvement in the Dice metric was achieved

in Model 1 by changing the loss function from cross entropy to Dice. Table 5.3 shows a com-

promise between number of kernels, depth and accuracy. The impact of normalization techniques

is depicted in Table 5.5 stating that instant normalization improved the average Jaccard index in

Apex and Batch normalization in Mid and Basal images. The proposed method in this chapter

that uses max pooling showed a higher Jaccard index score compared to the method in (Yan et al.,

2018) using max pooling for Apex and Base slices and surpassed the results in (Tan et al., 2017)

too. Moreover, the proposed model with IN normalization outperformed the average Jaccard in-

dex reported in (Yan et al., 2018) for Apex frames and stated comparable results for Mid and Base

images. Although this research improved U-net by incorporating features, the network elements
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remained unchanged and there is still potential for progress as (Yan et al., 2018) replaced the max

pooling operation with dilated convolution and blocks of the U-net were updated to res-block to

improve the results.

5.5 Summary

In this chapter, an automated U-net based segmentation system was proposed for left ventricle

segmentation, which is a crucial task in cardiac disease diagnosis. LV segmentation is still a

challenging task due to the small size of RoI, intensity issues and weak boundaries between my-

ocardium and surrounding tissue. The continual movement of the LV is an important feature that

has been ignored in most cardiac diagnostics studies, many of which only analyse single frames.

In this chapter, the inherent continuity feature of neighbouring frames in the video was considered

to propose techniques to highlight the RoI and provide a location guide for the neural network.

Recent CNN-based models, specifically U-net have demonstrated encouraging results in medical

image segmentation. A U-net based model was improved significantly by integrating temporal

and frequency information into the deep CNN.

A further experiment was conducted designing an ROI identification by applying an edge detector

and adoptive thresholding to find RoI. So, in the second model the input images are wisely cropped

to the ROI in the first step, and the output is fed to the convoultional network. The results are close

to the first model but the model is now more efficient in reducing GPU memory required in the

training phase since all input images are cropped to a smaller size. Using contourlet transform

as edge detector to find the RoI, slightly improved the Jaccard index by 1%. By employing the

optical flow and contourlet feature maps to the network led to a significant improvement in results,

nearly 9% improvement in Jaccard index.

The effect of making the network deeper by increasing the number of kernels and convolution

layers was investigated to determine the more efficient architecture. To further improve the results,

normalization techniques including batch, layer and instant normalization was investigated and

higher jaccard index achieved with IN for Apex slices and BN for Mid and Base slices.
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Chapter 6

Conclusion

6.1 Introduction

This research aimed to address the limitations of applying deep learning methods in the medical

area specifically CNN based methods. From the literature review in Chapter 2, top recent archi-

tectures including FCN and U-net were considered and two tasks of medical image/video seg-

mentation on skin and heart disease diagnosis systems were identified. For image segmentation,

two sub-tasks of skin lesion border segmentation and dermoscopic segmentation were studied and

for video segmentation the task of left ventricular segmentation was investigated. Although many

models based on CNN have been proposed in recent years, not all models are easily applicable to

medical data due to limitations on access to pretrained models and scarcity of medical dataset. In

this research, CNN based architectures were proposed to deal with challenges of training a deep

network on medical data. A summery of research contributions are presented in the following

section.

6.2 Contributions

Contribution1: In Chapter3, a novel hybrid model inspired from fully convolution network was

proposed which addressed multiple tasks on skin disease diagnosis, including a skin lesion border

segmentation and dermoscopic feature segmentation. The model was efficient in terms of com-

putation load as the convolution layers of both models shared information beside the fact that
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second model which addressed feature segmentation, benefited from receiving the cropped region

of interest from mask provided by task 1.

Contribution2: The multi-task model in chapter 3 was among the first few models that evalu-

ated transfer learning on a medical CNN based model from a model pretrained on irrelevant data

(natural images). The performance was comparable with the winners of the ISIC 2016, 2017

challenge.

Contribution3: A novel CNN based model was proposed in Chapter 4 which outperformed the

existing models for two tasks of lesion segmentation and dermoscopic feature segmentation. The

proposed model improved well known CNN based models (FCN and U-net) with integrating ap-

propriate feature maps from the frequency domain, providing a superior understanding of the input

to the model. Multiscale and multidirectional representations of the input images from the trans-

form domain were incorporated to the convolutional network that led to a considerable increase in

the Jaccard index.

This network benefited from training from scratch and presented significant improvement on noisy

images compared to the model that was fine-tuned on a pretrained model on natural images. It

also found out that rather than adding the depth of network, integrating the feature maps from the

transform domain, not only improves the Jaccard index score, but also significantly decreases the

inference time.

Furthermore, the convergence time was significantly reduced by using the optimization technique

and for the task of attribute detection, by transfer learning with the pretrained model of Task

1.

Contribution 4: The proposed segmentation model in Chapter 4 was extended to medical video

segmentation (Left Ventricular segmentation) in Chapter 5. The feature of frequent motion of LV

was used and predicted RoI was fed to the network as a location guide. Also, temporal features

provided by optical flow estimation along with contourlet representations fused to the network and

significant performance was observed with the addition of this element. The effect of using the

Dice loss function and the cross entropy beside changing the network hyper-parameters such as

number of kernels or layers to improve the model were discussed as well.
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6.3 Future Work

More data provided in the future will improve the performance of applying deep architectures on

medical data. CNN based data augmentation techniques such as Generative Adversarial Network

(Antoniou et al., 2017), (Yi et al., 2019) and natural data augmentation (Goyal et al., 2018) could

be applied as well. There is also potential of improvement by dealing with selected efficient

relevant features and new deep architectures.

Moreover, due to robustness and practicality, the proposed frameworks will become a gold stan-

dard approach to the analysis of similar image data sets, in particular, medical and biological

domains where there is always small number of samples available.

The four-class proposed system could be designed as a multi-class segmentation task and improved

via weighted loss function to address the data imbalance too. In order to find the more efficient

parameters of the network, optimization techniques could be added to the network to choose the

best number of layers and filters.

Three medical datasets were applied to different models in this research. However, tuning a deep

network on various medical datasets will provide a pretrained model on medical data that is hardly

available at present but could be very beneficial in the medical domain that most datasets are

scarce. Although the training would be on different kind of medical data, this still helps the

network to converge faster than randomly initialization.

The 2D convolutional model was applied but there is recent research that proposed models based

on 3D convolutional neural networks and the proposed system could be implemented for em-

bedded systems, robots and even mobiles to make a simple user interface part of diagnosis sys-

tem.
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Acronyms
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ABCD Asymmetry, Border, Color, Diameter

BN Batch Normalization

CAD Computer-Aided Diagnosis

CASH Color, Architecture, Symmetry, and Homogeneity

CHT Circle Hough Transform

CNN Convolutional Neural Network

DFB Directional Flter Bank

FCN Fully Convolutional Network

GAN Generative Adversarial Network

GLCM Gray Level Co-occurrence Matrix

IN Instance Normalization

KNN K-Nearest Neighbour

LN Layer Normalization

LP Laplacian Pyramid

LSTM Long Short-Term Memory
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LV Left Ventricular

LVQ Learning Vector Quantization

MLP Multi-Layer Perceptron

MRI Magnetic Resonance Image

NMS Non-maximum suppression

PNN Probabilistic Neural Networks

PNPA     Pixel Neighbours Pattern Analysis

R-CNN Regions with CNN Features

RBM Restricted Boltzmann Machines

RPN Region Proposal Networks

SDS Simultaneous Detection and Segmentation

SRG Seeded Region Growing

SVM Support Vector Machine
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