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To obtain higher power P and frequency f emissions from the intrinsic Josephson junctions in a

high-Tc superconducting Bi2Sr2CaCu2O8þd single crystal, we embedded a rectangular stand-alone

mesa of that material in a sandwich structure to allow for efficient heat exhaust. By varying the

current-voltage (I-V) bias conditions and the bath temperature Tb, f is tunable from 0.3 to 1.6 THz.

The maximum P of a few tens of lW, an order of magnitude greater than from previous devices,

was found at Tb � 55 K on an inner I-V branch at the TM(1,0) cavity resonance mode frequency.

The highest f of 1.6 THz was found at Tb ¼ 10 K on an inner I–V branch, but away from cavity res-

onance frequencies. A possible explanation is presented. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4914083]

The intrinsic Josephson junction (IJJ) terahertz (THz)

emitter (IJJ-THz emitter) based on the IJJs present in the

high-Tc superconductor Bi2Sr2CaCu2O8þd (Bi2212)1–3 has

been developed experimentally4–31 and theoretically.32–46 So

far, its demonstrated radiation characteristics are the f range

from 0.3 to 1.0 THz,4,22,23 the maximum P of �30 lW,19–22

and coherent, continuous-wave emission with a spectral

width of less than 0.5 GHz.12,13 Recently, by synchronizing

the emissions from a three-mesa array, P� 610 lW was

reported.17 Using these characteristic features, THz imaging

systems29–31 and THz emission and detection system both

based on high-Tc superconductors19 are also developed.

These THz technologies using IJJs are compatible with the

recently developed semiconductor THz devices such as the

resonant tunneling diodes47,48 and the quantum cascade

lasers.49–51 The characteristic features of the IJJ-THz emitter

were recently reviewed.52

An important issue for high P generation from the IJJ-THz

emitter is how to minimize the Joule heating effects due to the

dc bias current I. From the low temperature scanning laser mi-

croscopy technique,5–7 the direct temperature distribution T(r)

measurements of mesas by using photoluminescence techni-

ques,24–27 and the numerical simulations,43,44 the Joule heating

was often found to cause severely inhomogeneous T(r) in the

mesa, including hot spots with T(r)>Tc, greatly reducing P.

Such heating effects reduce the hysteresis area of the current-

voltage (I-V) characteristics (IVCs), and lead to a discontinuous

drop in V in the lower I bias region of the outer IVC branch.

For the earliest mesas with substrates formed from the

same Bi2212 crystal, the emission intensity observed nearly

parallel to the substrate was vanishingly small,10 and it was

proposed that replacing the Bi2212 substrate with an insulat-

ing—or preferably, a normal conducting—one might poten-

tially increase the overall output P by more than two orders

of magnitude.40,41 This led to studies of stand-alone mesas,

or mesas without a superconducting substrate, which had

instead Au layers both on top and beneath the Bi2212 mesa.

The observed emission P from stand-alone mesas was at

least one order of magnitude higher than from mesas with

Bi2212 substrates.19,21,22 Here, we describe a simple device

structure based on the stand-alone mesa that is easy to fabri-

cate, assemble, and operate, and produces highly reproduci-

ble high-power emission that is tunable from 0.3 to 1.6 THz.

To make stand-alone mesas, we used high-quality single

crystals of Bi2212 grown by a traveling-solvent floating-

zone method using a modified infrared image furnace.53,54

We first annealed a piece of a Bi2212 single crystal over-

night to obtain an appropriate doping level.10–12,20–22 After

freshly cleaving both surfaces of a piece of the annealed

Bi2212 single crystal, making it a few lm thick, both surfa-

ces were coated with silver and gold by evaporation.

Several rectangular stand-alone mesas 350 lm in length,

58–66 lm in width (top-bottom), and 4.7 lm in thickness,

including the electrode pads of the Ag and Au layers, were

fabricated by Ar ion milling using different metallic masks

to define the length and the width of each mesa.14 Tc� 76 K
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was measured resistively, and the thickness was estimated

with a scanning electron microscope.

Figure 1(a) is a sketch of the stand-alone mesa device.

The stand-alone mesa was sandwiched between identical

sapphire substrates of dimensions 7.0� 7.0� 0.5 mm3, in

order to efficiently remove the Joule heat generated by I.
Prior to the sandwich construction, long rectangular elec-

trode layers of Ag and then Au about 50–100 nm in thick-

nesses and 100 lm in widths were deposited on each

sapphire substrate, and the top and bottom sapphire Au elec-

trodes were arranged to meet the top and bottom stand-alone

mesa Au surfaces face-to-face in a perpendicular fashion, as

sketched in Figs. 1(a) and 1(b). After the sandwich structure

was assembled, it was gently pressed by four screws

mounted at the corners of the device. A hemispherical

Si-lens 4 mm in diameter was attached onto a sapphire plate

for emission focusing, as shown in Fig. 1(a). Full details of

the stand-alone mesa sandwich device fabrication will be

described elsewhere.

Figure 2(a) shows typical outer-branch IVCs of the

stand-alone mesa sandwich device at bath temperatures

Tb¼ 15 K, 50 K, and 70 K. The contact resistance was sub-

tracted from the data. It is remarkable that at 15 K, the bias V
is as high as 7 V even though the mesa is 3–4 times thicker

than those previously studied.10–12 Furthermore, neither IVC

back-bending nor clear IVC jumps at low Tb values were

found. Since those features were previously associated with

mesa overheating and possibly with hot-spot formation, the

present IVCs suggest improved heat removal efficiency of

this device.

The observed radiation intensities from the stand-alone

mesa sandwich device detected by the InSb hot-electron

(HE) bolometer are displayed in Fig. 2(a) by the circle sizes

and colors on the IVCs. The intensity shows a maximum

around Tb¼ 55 K, as observed previously.20,22 Using the

power meter (VDI Erickson PM4), we also directly meas-

ured the maximum radiation power P at 56 K to be �6.5 lW

at the V� 2.2 V bias point. Accounting for the rectangular

mesa radiation pattern and the losses at the detector and

from all materials between the mesa and the detector, the

total radiation power was estimated to be on the order of

a few tens of lW, comparable to the maximum power

observed from previous stand-alone mesas.19,21,22

In Fig. 2(b), f is plotted versus the bias V at the color-

coded Tb values. The f data were mostly obtained from the

outer-most IVC branches. f is highly Tb-dependent, with

higher f values observed at lower Tb to lower f values seen at

higher Tb. Thus, remarkably very broad f tunability can

be obtained continuously for this device by varying Tb

and V. The maximum f¼ 1.15 THz from outer branches was

detected at Tb¼ 13 K, whereas the lowest f¼ 0.29 THz was

observed at Tb¼ 71 K. Similar behavior was reported

previously.6,8,22,23

Most of the experimental data shown in Fig. 2(b) follow

the ac-Josephson relation, f ¼ fJ ¼ 2eV=ðNacthÞ, where e is

the electronic charge, h is Planck’s constant, and Nact is the

number of IJJs active in the emission. The dotted line is a fit

to the ac-Josephson relation with Nfit¼ 2719, which is

slightly lower than the total number N� 3100 of mesa IJJs

estimated from 4.7 lm and 1.533 nm for the respective mesa

and IJJ thicknesses.

The large Tb dependence of f is just a consequence of

the Tb-dependent change of the bias V while fixing the ac

Josephson relation, as long as the number Nact of emitting

IJJs is independent of Tb. Note that there are points deviating

from the dotted line, especially around f� 0.6 THz. These

non-conforming data points arise from the inner IVC

FIG. 1. (a) Sketches of (a) a stand-alone mesa sandwiched by two sapphire

substrates and (b) its electrical contacts.

FIG. 2. (a) Typical IVCs at Tb¼ 15 K,

50 K, and 70 K of the stand-alone mesa

sandwich device. Circle sizes and col-

ors indicate the radiation intensities

detected by the InSb HE bolometer. (b)

The observed radiation f versus applied

bias V of the device at the color-coded

Tb values. Circle sizes indicate the spec-

tral radiation intensities detected by the

FT-IR spectrometer. The dotted line is

a linear fit of the ac-Josephson relation

to the data for Nfit¼ 2719 IJJs. (c)

Logarithmic spectral radiation intensity

versus f detected by the FT-IR spec-

trometer at the color-coded Tb values.
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branches with smaller Nact values, not on the outer-most IVC

branch, for which Nact�N� 3100 is fixed to be all of the

IJJs in the device.11

The spectral intensities measured by the FT-IR spec-

trometer for the data in Fig. 2(b) are logarithmically plotted

versus f in Fig. 2(c). The radiation intensity spectrum has dis-

tinct peaks at around 0.55 THz and 1.1 THz, which fall

within the respective TM(1,0) and T(2,0) cavity resonance

mode frequency ranges (0.62� 0.54 THz and 1.2� 1.1 THz)

of the rectangular mesa of width range 58–66 lm and index

of refraction n� 4.2.10–12,20–22 This strongly suggests that

both of these cavity resonance modes are enhancing the out-

put P. These two modes were also seen in Fig. 2(a), where

the TM(1,0) mode is excited at around 2.2 V at 50 K, and the

TM(2,0) mode is excited at 6 V at 15 K. The P observed at

the lower TM(1,0) mode frequency and higher Tb values is

an order of magnitude stronger than that observed at the

higher TM(2,0) mode frequency and lower Tb values. The

emission P from the TM(1,0) mode excitation has a maxi-

mum at 55 K, sharply decreases with further increase in Tb,

and fades away around 65 K.

To obtain further information about the relation between

the emission P and f, we measured the radiation properties of

the inner-branch IVCs. These are plotted in Figs. 3(a) and

3(b) at Tb¼ 10 K and 55 K, respectively. The black dots rep-

resent the IVC points. The measured f points are denoted by

the white filled circles. From these two f data sets, color-

coded contour plots of f are mapped onto the multi-branch

IVC structures.

As seen in Figs. 3(a) and 3(b), at fixed Tb, the radiation f
increases strongly with bias I at fixed V and weakly with

decreasing bias V at fixed I. From the ac Josephson relation,

f / V=Nact, increasing f and I at fixed V clearly implies

decreasing Nact. Due to the positively sloped IVC branches,

decreasing V at fixed I also leads to a decrease in Nact and

increasing radiation f values. Both the f tunability and IVC

plot ranges observed here are much wider than in the similar

behavior observed previously,11 perhaps due to the more effi-

cient Joule heat removal of our present stand-alone mesa

sandwich structure and to the much thicker present mesa.

In Fig. 4, we display more details of the multi-branch

IVC emission behavior at 10 K and 55 K. As shown in Figs.

4(a) and 4(e), the observed radiation frequencies f / V in

each branch, in agreement with the ac Josephson relation and

with a previous report,11 and very wide f ranges were seen.

At Tb¼ 10 K, f ranges from about 0.69 THz to 1.63 THz in

the multi-branching IVCs.

The radiation spectra from a nearly outer-most IVC

branch at Tb¼ 10 K are displayed in Fig. 4(c). These data

clearly show a strong enhancement of the radiation intensity

around 1.1 THz. The strongest radiation on this branch was

observed at f� 1.14 THz, corresponding to the TM(2,0)

mode, at the bias V� 6.3 V.

The record high radiation f¼ fmax¼ 1.63 THz was

observed on an inner branch at the bias V� 4 V, as displayed

in Figs. 4(a) and 4(d). This value is the highest frequency so

far detected from any IJJ device. The radiation intensity

spectra observed in the vicinity (1.35� 1.63 THz and

V� 4 V) of fmax are displayed in Fig. 4(d). As f increases, the

intensity decreases and its spectrum appears to split, as high-

lighted by the black-arrow eye guides. This may suggest that

the emission from the entire mesa is not completely

synchronized in this higher f range. We note that f in this

range does not match a predicted cavity mode frequency.

On the other hand, at the higher Tb¼ 55 K, radiation f
values ranging from �0.42 THz to 0.69 THz were observed

on the inner IVC branches, as shown in Figs. 4(e)–4(g). The

observed radiation mostly satisfies f / V, as at Tb¼ 10 K, but

a clear deviation from linearity was also observed in the

higher f region. This may be due to self-heating effects at

higher I biases, resulting in non-uniform mesa potential con-

ditions. The strongest radiation in this mesa was observed at

f¼ 0.50 THz within the very narrow V and I bias ranges

around �2.0 V and 12 mA in some inner IVC branches, as

seen in Figs. 4(e) and 4(g), where the TM(1,0) geometrical

cavity mode resonance enhancement mechanism appears to

be robust. We note that the peak frequency of 0.50 THz is

slightly lower than that range (0.62� 0.54 THz) expected

from the TM(1,0) mode for the mesa width range (58–66 lm).

According to patch antenna theory,55,56 this could arise from

mesa fringing effects, which increase in importance with

mesa thickness. Accounting for such fringing effects, the re-

vised expected radiation f range is 0.58� 0.51 THz, much

closer to the observed 0.50 THz.

Finally, we would like to emphasize two points. First,

as shown in Figs. 2(a), 3(a), and 3(b), the IVCs obtained

from this device construction do not exhibit any clear

back bending. Since IVC back bending is symptomatic of

FIG. 3. Black dots: Multi-branching

IVCs of the stand-alone mesa sand-

wich device at (a) Tb¼ 10 K and (b)

Tb¼ 55 K. Filled white circles: Bias

points where the color-coded radia-

tion f was measured by the FT-IR

spectrometer.
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overheating and hot-spot formation, it appears that the pres-

ent mesa device might not exhibit any hot spots in the IVC

and Tb ranges studied. Furthermore, because of the lack of

clear back-bending behavior, the bias V can be increased to

�7.0 V, corresponding to �2.2 mV per IJJ. This higher V/N
ratio for the thicker present mesa device was allowed by its

more efficient cooling mechanism. Hence, the present de-

vice structure may allow for further increases in f beyond

the present fmax¼ 1.6 THz.

Second, the strongest radiation was observed from a par-

ticular inner IVC branch among many other branches at

55 K, as shown in Fig. 4(e). This suggests that this particular

IVC branch may provide the optimal number Nact of active

junctions for the overall emission synchronization, although

the larger number N of IJJs would enhance the radiation in-

tensity. These numbers appear to be strongly constrained

both by the ac Josephson effect and by the cavity resonance

condition. In addition, another stand-alone mesa was

recently reported to exhibit characteristic step structures in

the bias V at the IVC points of strongest radiation intensity.22

The step structures suggest that at the cavity resonance con-

dition points, the mesa may self organize so as to optimize

the radiation properties. This self-organized radiation optimi-

zation supports our above observation regarding a possible

emission synchronization mechanism clue, and could be im-

portant for further study to better understand the mechanism

of THz radiation phenomena.
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