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A B S T R A C T

Analyzing two-mode networks linking actors to events they attend may help to uncover the structure and
evolution of social networks. This classic social network insight is particularly valuable in the analysis of
data extracted from contact diaries where contact events produce — and at the same time are the product of
relations among participants. Contact events may comprise any number of actors meeting at a specific point
in time. In this paper we recall the correspondence between two-mode actor–event networks and hypergraphs,
and propose relational hyperevent models (RHEM) as a general modeling framework for networks of time-
stamped multi-actor events in which the diarist (‘‘ego’’) simultaneously meets several of her alters. RHEM
can estimate event intensities associated with each possible subset of actors that may jointly participate in
events, and test network effects that may be of theoretical or empirical interest. Examples of such effects
include preferential attachment, prior shared activity (familiarity), closure, and covariate effects explaining
the propensity of actors to co-attend events. Statistical tests of these effects can uncover processes that govern
the formation and evolution of informal groups among the diarist’s alters. We illustrate the empirical value of
RHEM using data comprising almost 2000 meeting events of former British Prime Minister Margaret Thatcher
with her cabinet ministers, transcribed from contact diaries covering her first term in office (1979–1983).
1. Introduction

Interpersonal relations are shaped by, and at the same time shape
membership of actors in informal groups (Breiger, 1974). Such latent
group membership is often reflected in observable patterns of co-
participation to social events (Davis et al., 1941; Freeman, 2003).
Previous work has suggested a variety of analytic methods (Borgatti
and Everett, 1997; Seidman, 1981; Everett and Borgatti, 1993; Everett
et al., 2018) and statistical models (Wang et al., 2013; Koskinen and
Edling, 2012; Snijders et al., 2013; Butts, 2008; Stadtfeld and Geyer-
Schulz, 2011; Conaldi et al., 2012; Conaldi and Lomi, 2013; Lerner and
Lomi, 2020; Chodrow and Mellor, 2020) for two-mode networks or –
equivalently – hypergraphs. As we discuss more formally in Section 2.1,
a hypergraph contains hyperedges that may link any number of nodes
(Bretto, 2013). In contrast, edges in a graph link exactly two nodes.

Events typically have associated time points (or time intervals) and
this is – almost by definition – true for meeting events transcribed
from contact diaries whose entries have associated dates and/or times
(Fu et al., 2013; Yen et al., 2016). A major shortcoming of most
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previous statistical network models is that they either cannot cope
with the fine-grained time information associated with meeting events
– or they are designed for dyadic relational events, having a single
sending node and a single receiving node. Building on the framework
proposed in Lerner et al. (2019), in this paper we develop relational
hyperevent models (RHEM) for networks of time-stamped multi-actor
events transcribed from contact diaries. RHEM can cope with the fine-
grained time information of meeting events, where often each event
has its own unique time stamp – and at the same time can specify
separate event intensities for all subsets of a given sample of actors.
RHEM provide a general framework for likelihood-based inference of
model parameters from observed sequences of time-stamped multi-
actor events and enable researchers to test hypotheses on processes
governing co-participation in social events.

The RHEM framework represents an important and transforma-
tive step for diary studies - a recognized area of inquiry in social
research Bartlett and Milligan (2015), Stafford (2009). Appointment
diaries, which are increasingly in electronic formats, contain multi-
actor event data with fine-grained time information and hence lend
vailable online 22 April 2021
378-8733/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.socnet.2021.04.001
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/socnet
http://www.elsevier.com/locate/socnet
mailto:juergen.lerner@uni-konstanz.de
mailto:alessandro.lomi@usi.ch
mailto:John.Mowbray@glasgow.ac.uk
mailto:Neil.Rollings@glasgow.ac.uk
mailto:Mark.Tranmer@glasgow.ac.uk
https://doi.org/10.1016/j.socnet.2021.04.001
https://doi.org/10.1016/j.socnet.2021.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socnet.2021.04.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Social Networks 66 (2021) 224–236J. Lerner et al.

w
l
l
i
(
d
a

e
e
𝑒
t
p
ℎ
e

t
f
n
s
o
n
c
r
e
(
a
𝑢
n
i
(
h
e
p
a
w
t
m
e
h

t
1
o
d
a
p
a
T
t
n
o
m
r
2

themselves particularly well to illustrate the applicability and empirical
value of RHEM. According to Alaszewski (2006, p.1), a diary is ‘‘a
document created by an individual who has maintained a regular,
personal and contemporaneous record’’. While appointment diaries
regularly appear in the private papers of politicians, civil servants,
artists (Hackett, 1989), and business executives, they have rarely been
analyzed through the lens of longitudinal network models explaining
co-participation of alters in meetings with the diarist. Instead, diary
research in the social sciences and humanities has typically focused
on the narrative content of unsolicited personal diaries, or on their
solicited use as a research tool; for overviews, see Mehl and Conner
(2012), Bartlett and Milligan (2015). Personal and contact diaries
have been used mostly, albeit not exclusively, as sources of data for
qualitative research (Alaszewski, 2006). By specifying RHEM for the
study of appointment diaries, however, it will be possible to forge a new
and more factual understanding of prominent public figures, based on
the evolving structural dynamics of their interpersonal relationships.
Findings from such studies would directly inform debates in contem-
porary history, political science, and elite studies, thus opening new
avenues of research in those fields.

We illustrate the empirical value of RHEM in an analysis of event
data extracted from former British Prime Minister (PM) Margaret
Thatcher’s appointment diaries. While the objective of this paper is
methodological, we illustrate how the RHEM framework could help
to illuminate existing research debates on topics such as the nature
of the policy process in the British core executive (Heffernan, 2005;
Richardson, 2018), the development of Thatcherism (Williamson, 2015;
Jackson and Saunders, 2012), and many others. We highlight the
analytical potential of RHEM by presenting an exploratory analysis
of Thatcher’s meetings with cabinet ministers during the term of the
1979 Parliament (May 1979 to June 1983). We hypothesize that
participation in meetings – in which ministers can potentially influence
the PM and/or can take influence on the PM’s interaction with other
ministers – can reflect and establish latent competition and power
differences among cabinet ministers. More specifically, we demonstrate
how the following three research questions could be rigorously ad-
dressed with RHEM. Based on a binary actor-level covariate labeling
‘‘dry’’ ministers,1 we test whether: (i) The PM has a preference (or
reluctance) to meet with dry ministers and (ii) she has a preference
(or reluctance) to meet with homogeneous groups of ministers that are
either mostly dry or mostly non-dry. Furthermore, as an example of a
structural effect in hyperevent networks we test whether (iii) there is
a significant tendency for or against triadic closure in the PM meeting
diary data. We conjecture that a negative closure effect – together with
a tendency to partially repeat meetings – could lead to the emergence of
stable structural holes (Burt, 1992) and might be a signal of competition
and systematic power differences among minsters. We emphasize that
it is not the goal of this paper to obtain conclusive evidence on these
questions – but rather to illustrate how such questions could be tackled
with RHEM.

2. Background

In this paper we propose statistical models for networks of time-
stamped multi-actor events. Formally, the data we consider involve a
sequence of events 𝐸 = (𝑒1,… , 𝑒𝑁 ), where each event 𝑒 = (𝑡𝑒, ℎ𝑒) ∈
𝐸 comprises the event time 𝑡𝑒 and a set of participants ℎ𝑒 ⊆ 𝑉𝑡𝑒 ,

1 Cabinet ministers who fully supported Thatcher’s free-market agenda,
hich prioritized controlling inflation over controlling unemployment, were

abeled ‘‘dry’’. On the other hand, ministers who were critical of her hard-
ine economic policies were labeled ‘‘wet’’, because Thatcher perceived their
nclination towards consensus politics and state intervention to be a weakness
Heppell, 2020). In our analysis we make a binary split between dry and non-
ry ministers, where the latter category contains Wets but also ministers that
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re neither labeled dry nor wet. o
which is a subset from a given sample of actors 𝑉𝑡𝑒 at the event time.
For example, in the case of contact diaries that we examine in the
empirical case study of this paper, the actors are the participants to
the various meetings recorded in the diary, that is, the actors are
the diarist’s alters. In the following we recall in Section 2.1 the well-
known equivalence between hypergraphs and two-mode actor–event
networks (Seidman, 1981) and in Section 2.2 we discuss the applica-
bility of related statistical network models to networks of time-stamped
multi-actor events.

2.1. Hypergraphs and two-mode actor–event networks

The underlying data structure for RHEM is a hypergraph containing
hyperedges that may connect any number of nodes (Bretto, 2013).
Therefore, hypergraphs may be viewed as a generalization of graphs
because every edge in a graph can only connect two nodes. Formally,
a hypergraph 𝐺 = (𝑉 ,𝐻) comprises a set of nodes 𝑉 (representing, e. g.,
the actors of a social network) and a set of hyperedges 𝐻 ⊆ (𝑉 ), where
ach hyperedge ℎ ∈ 𝐻 is a subset ℎ ⊆ 𝑉 of any size (representing,
. g., the set of actors attending a social event). A relational hyperevent
= (𝑡, ℎ) is a hyperedge ℎ ⊆ 𝑉 (recording the participants to the event)

ogether with a timestamp 𝑡 (recording the time when the event takes
lace). In the data that we consider in this paper, the same hyperedge
(i. e., the identical set of participants) can experience more than one

vent at different points in time.
It is well known that a hypergraph (𝑉 ,𝐻) gives rise to a bipartite,

wo-mode actor–event network and vice versa (Seidman, 1981). The
irst set of nodes of the bipartite network (comprising the ‘‘actor
odes’’) is identical with the node set 𝑉 of the hypergraph, the second
et of nodes (comprising the ‘‘event nodes’’) is identical with the set
f hyperedges 𝐻 , and an actor node 𝑣 ∈ 𝑉 is connected to an event
ode ℎ ∈ 𝐻 in the bipartite graph if and only if the hyperedge ℎ
ontains the actor 𝑣 in the hypergraph. Fig. 1 displays a sequence of
elational hyperevents (middle) and the associated two-mode actor–
vent network (left) and hypergraph (right). The one-mode projection
to the set of actors) of a two-mode network is a graph whose nodes
re the actor nodes of the two-mode network and in which two nodes
and 𝑣 are connected by an edge if and only if there is an event

ode in the two-mode network that is connected to both 𝑢 and 𝑣 –
n other words, if 𝑢 and 𝑣 co-participate in a common event. Fig. 1
right) displays the one-mode projection by dashed lines within the
yperedges. We recall that two-mode networks and hypergraphs are
quivalent representations of the same data. In contrast, a one-mode
rojection does not uniquely represent a two-mode network or its
ssociated hypergraph. This can be seen in the example from Fig. 1,
here the triads {𝐴,𝐵, 𝐶} and {𝐷,𝐸, 𝐹 } are identically connected in

he one-mode projection but are structurally different in both the two-
ode network and the hypergraph. Note that actors in the first triad

xperience one common event while actors in the second triad only
ave pairwise co-participation in different events.

One possibility to analyze two-mode networks, or hypergraphs, is
o consider the associated one-mode projection (Borgatti and Everett,
997), which, however, has its drawbacks. First, as discussed above,
ne-mode projections do not uniquely represent the original two-mode
ata. Second, one-mode projections introduce structural artifacts such
s high local density and clustering. For instance, a single event with 22
articipants (the largest events in our illustrative data) introduces 231
ctor–actor ties and 1,540 closed triangles in the one-mode projection.
hus, analyzing one-mode projections can bias findings – at least –
owards ‘‘detecting’’ a tendency for triadic closure. For such reasons
etwork analytic methods have been developed that operate directly
n two-mode networks or – equivalently – hypergraphs. These include
ethods to compute centrality or clusters (Borgatti and Everett, 1997),

ole colorings (Everett and Borgatti, 1993), blockmodels (Doreian et al.,
004), information flows (Everett et al., 2018), or the structure of

verlapping subsets (Foster and Seidman, 1982) in two-mode networks
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Fig. 1. Middle: Stylized example of five hyperevents 𝑒1 ,… , 𝑒5 occurring at event times 𝑡1 < ⋯ < 𝑡5. Participating actors are given by uppercase letters 𝐴,… ,𝐻 . Left: Representation
of the sequence of hyperevents as a two-mode actor–event network. Events are displayed as rectangular nodes ordered from top to bottom by their time (older events are displayed
in a darker shade than younger events) and are connected to their participants by solid lines. Right: Representation of the sequence of hyperevents as a hypergraph. Events are
represented by hyperedges displayed as convex hulls enclosing their participants. Dashed lines represent ties in the one-mode projection to the set of actors.
or hypergraphs. These network analytic methods have a different ob-
jective than the statistical models that we propose in this paper. Our
framework allows analysts to conduct statistical tests whether certain
characteristics of sets of actors (such as being homogeneous with
respect to an actor-level covariate or being indirectly connected via
third actors) increase or decrease the probability to experience common
events (compare the three exemplary research questions formulated in
Section 4). Thus, we need methods that estimate interaction probabil-
ities for hyperedges (i. e., sets of actors) by comparing those on which
events are observed with alternative hyperedges that could potentially
have experienced events. We therefore turn our discussion to related
statistical models defining probability distributions on a given space of
two-mode networks (or hypergraphs).

2.2. Related statistical models for two-mode networks and relational event
networks

Statistical models for 2-mode networks (or hypergraphs) have been
proposed in different frameworks for (temporal) ERGM (Wang et al.,
2013; Krivitsky and Handcock, 2014), SAOM (Koskinen and Edling,
2012; Snijders et al., 2013), relational event models (REM) (Butts,
2008; Conaldi et al., 2012; Lerner and Lomi, 2020; Valeeva et al.,
2020), or by defining configuration models for hypergraphs that con-
dition on observed degree sequences (Chodrow and Mellor, 2020).
However, (T)ERGM, SAOM, or the configuration model are designed for
networks of relational states and cannot cope with the fine-grained time
information associated with contact events, where each event might
have its own unique time stamp.

REM, on the other hand, are explicitly designed to model networks
of relational events with fine-grained time information. However, REM
typically specify event rates for dyads having one sending node and
one receiving node – which is inappropriate for multi-actor interaction
resulting from contact diaries requiring that event rates are specified
for all subsets of actors (i. e., hyperedges) in the risk set. We point out
that, in the case of meeting events transcribed from contact diaries,
the ‘‘event nodes’’ in the two-mode actor–event representation are not
exogenously given but arise – simultaneously with their ties – in an
endogenous process. Event nodes are ‘‘active’’ in a single point in
time in which they are created by the joint interaction among actors,
simultaneously with all their incident ties. This marks a considerable
difference to settings in which dyadic relational events connect single
actors to existing nodes in the second mode: for instance, Valeeva
et al. (2020) specify and estimate event rates for dyads comprising
one director and one company board (one event recording that a
director joins a board); Lerner and Lomi (2020) estimate dyadic REM
for two-mode networks connecting Wikipedia users to the articles they
contribute to (one event recording that a user edits an article). In
contrast, events in our data do not ‘‘exist’’ over extended periods of time
226

(event duration is very short compared to the observation period and
events do not overlap) in which actors could decide to join or leave; in
our data, events record simultaneous interaction of a set of actors. The
distinction whether events are associated with dyads or with groups of
actors of any size is also reflected in the size of the risk set, that is, the
set of instances that could experience a common event. If events are
associated with dyads, the risk set can comprise pairwise combinations
of nodes, leading to a maximal risk set size that is quadratic in the
number of nodes. If events are associated with hyperedges, the maximal
risk set size can be exponential in the number of nodes, since any
subset can constitute the participant list of the next event. Moreover, if
events are associated with groups of any size, models can test for more
complex effects, such as subset repetition of order larger than two (see
Section 3.2.1), that cannot be included in dyadic RHEM. Being related
to our paper in a different way, Marcum and Butts (2015) propose REM
for data extracted from diaries – but their events are about time-use
data, rather than contact events.

As discussed in Lerner et al. (2019), some attempts to generalize
REM to multi-actor interaction exist. Butts (2008) recommends to
create ‘‘virtual’’ nodes representing subsets of elementary nodes to treat
interaction with multiple senders and/or receivers. This can be a feasi-
ble approach, e. g., to represent the entire set of actors by a node that is
the receiver of broadcast messages (Gibson, 2005; DuBois et al., 2013)
– but it is easy to see that this strategy is restricted to a limited number
of predefined sets of actors since there are exponentially many possible
subsets. Following a different approach, Kim et al. (2018) propose the
hyperedge event model for directed multicast events that have exactly
one sender and any number of receivers (or conversely any number
of senders and exactly one receiver). Their model specifies for every
possible sender–receiver dyad (𝑖, 𝑗) an intensity function 𝜆𝑖𝑗 . These
dyadic intensity functions then stochastically determine (1) who is the
sender of the next event and (2) which is the set of receivers, given
the chosen sender. The difference to RHEM proposed in Lerner et al.
(2019), and elaborated for co-attendance data in this paper, is that in
the model from Kim et al. (2018) the intensities are defined for dyads,
while RHEM can define separate intensities for all hyperedges of any
size. Bartolucci et al. (2018) define models for bipartite event networks
including first-order effects (e. g., propensity of individual actors to
participate in events) and second-order effects (e. g., propensity of pairs
of actors to co-participate in events). However, generalizing their model
to higher-order effects (like the ones that can be included in RHEM)
seems to lead to inefficient estimation algorithms.

Another related model has been defined by Hoffman et al. (2020),
who propose a model for the dynamics of face-to-face interaction, such
as the formation and dissolution of informal conversation groups during
social gatherings. This model maintains a two-mode network of actors
and groups in which – at any point in time – each actor is connected
to exactly one group (which may be a single-actor group representing
an isolate). Actors who are currently isolates can decide to connect to

existing groups; actors who are currently members of some multi-actor
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group can decide to leave the group. Similar to REM for two-mode
networks, discussed above, the model from Hoffman et al. (2020) seems
not to apply to empirical data of the kind that we consider in this
paper. The atomic observations in data that we gather from contact
diaries comprise meeting events jointly experienced by groups of actors
– rather than events in which individual actors join or leave ongoing
meetings. Indeed, we consider the two models as complementary,
where Hoffman et al. (2020) model individual actors’ decisions to join
and leave groups, while we model events jointly experienced by groups
of actors.

3. Relational hyperevent models for networks of time-stamped
multi-actor events

In this section we develop relational hyperevent models for time-
stamped multi-actor events extracted from contact diaries, building
on the framework proposed in Lerner et al. (2019). Contact diaries
(Fu, 2007) differ from the more common personal diaries (Bolger
et al., 2003). The latter record personal histories that may or may not
include systematic accounts of contacts with others. Personal diaries
are typically retrospective, i. e., based on the diarist’s memories of time
past. The former are specifically kept to record systematic information
about relational events involving multiple alters simultaneously. Con-
tact diaries are typically prospective, i. e., their objective is to organize
and structure the diarist’s time in the future.

We assume that we have a time-varying population of actors that
could potentially appear in the participant list of events at time 𝑡,
enoted by 𝑉𝑡. Moreover, we assume that we are given a sequence
f observed relational hyperevents 𝐸 = (𝑒1,… , 𝑒𝑁 ), where each event
= (𝑡𝑒, ℎ𝑒) ∈ 𝐸 comprises the event time 𝑡𝑒 and a set of participants
𝑒 ⊆ 𝑉𝑡𝑒 . For instance, in our exemplary empirical data, discussed in
ection 4, 𝑉𝑡 is the set of all cabinet ministers at time 𝑡 and an event
= (𝑡𝑒, ℎ𝑒) represents a meeting with the PM (i. e., the diarist) that takes
lace at 𝑡𝑒 and whose participants are the cabinet ministers listed in ℎ𝑒.

.1. General model framework

Following Lerner et al. (2019), RHEM specify an event intensity
(𝑡;ℎ) (also event rate or hazard rate) associated with hyperedges ℎ,
hich intuitively is the expected number of events on ℎ in a time

nterval of length one, starting at 𝑡 (Lawless, 2003). Formally, if 𝑛(𝑡;ℎ) =
{𝑒 ∈ 𝐸 ∶ 𝑡𝑒 ≤ 𝑡 ∧ ℎ𝑒 = ℎ}| is the number of events on hyperedge ℎ up
o and including time 𝑡, the intensity is defined by

(𝑡;ℎ) = lim
𝛥𝑡→0

E[𝑛(𝑡 + 𝛥𝑡;ℎ) − 𝑛(𝑡;ℎ)]
𝛥𝑡

,

here E[𝑛(𝑡 + 𝛥𝑡;ℎ) − 𝑛(𝑡;ℎ)] is the expected number of events on ℎ in
the interval [𝑡, 𝑡 + 𝛥𝑡].

Given a sequence of relational hyperevents 𝐸 = (𝑒1,… , 𝑒𝑁 ) and
a point in time 𝑡, we denote by 𝐺[𝐸; 𝑡] the network of past events
which is a function of all events from 𝐸 that happen strictly before
𝑡 (Brandes et al., 2009). We specify the likelihood of the sequence
of hyperevents 𝐸 based on the Cox proportional hazard model (Cox,
1972). We decompose the event rate 𝜆(𝑡;ℎ) into a time-varying baseline
rate 𝜆0(𝑡) and a relative event rate 𝜆1(𝑡;ℎ; 𝜃;𝐺[𝐸; 𝑡]), conditional on a
vector of hyperedge statistics 𝑠(𝑡;ℎ;𝐺[𝐸; 𝑡]) ∈ R𝑘, being a function of the
network of past events, and a vector of associated parameters 𝜃 ∈ R𝑘:

𝜆(𝑡;ℎ; 𝜃;𝐺[𝐸; 𝑡]) = 𝜆0(𝑡) ⋅ 𝜆1(𝑡;ℎ; 𝜃;𝐺[𝐸; 𝑡]) , (1)
𝜆1(𝑡;ℎ; 𝜃;𝐺[𝐸; 𝑡]) = exp (𝜃 ⋅ 𝑠(𝑡;ℎ;𝐺[𝐸; 𝑡])) . (2)

The baseline rate 𝜆0 represents time-variation in the intensity of events
in the whole network and is left unspecified. The partial likelihood
based on the observed event sequence 𝐸 is

𝐿(𝜃) =
∏ 𝜆1(𝑡𝑒;ℎ𝑒; 𝜃;𝐺[𝐸; 𝑡𝑒])

∑

𝜆 (𝑡 ;ℎ; 𝜃;𝐺[𝐸; 𝑡 ])
, (3)
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𝑒∈𝐸 ℎ∈𝑅𝑡𝑒 1 𝑒 𝑒
where the 𝑅𝑡𝑒 ⊆ (𝑉𝑡𝑒 ) are a suitable definition of the risk sets at the
event times. As pointed out in Lerner et al. (2019), this framework for
relational hyperevents is very close to some specifications of dyadic
REM (Butts, 2008; Perry and Wolfe, 2013; Vu et al., 2015; Lerner and
Lomi, 2020). The difference is that separate event rates are specified
for all hyperedges in the risk set, rather than for all pairs of nodes as in
dyadic REM, and that the statistics are functions of sets of any number
of nodes, rather than being functions of dyads. The hyperedge statistics
𝑠(𝑡;ℎ;𝐺[𝐸; 𝑡]) can operationalize hypothetical effects explaining multi-
actor interaction, for instance, by preferential attachment (popularity
effects), prior shared activity (familiarity), closure, or covariate ef-
fects (e. g., homophily). The associated parameters – estimated by
maximizing the likelihood function – provide statistical tests for such
hypotheses.

We make two further decisions in defining the model framework.
The first decision – constraining the risk set 𝑅𝑡𝑒 at the time of the
event 𝑒 = (𝑡𝑒, ℎ𝑒) to those hyperedges that have the same size as ℎ𝑒
– is due to a very strong dependence of event intensity on hyperedge
size. The second decision is taken to achieve computational tractability
and consists of sampling from the risk sets.

Conditioning the model on the size of the observed hyperevents
seems to be necessary – at least until we have found better ways to
control for size – to avoid the confounding effect of hyperedge size on
event intensity. To illustrate this, we note that the baseline probability
to experience events typically depends strongly on the size of hyper-
edges. For instance, in our exemplary empirical data (compare Fig. 6)
hyperedges of size one have a baseline event intensity that is about 50
times higher than the intensity on hyperedges containing exactly two
actors and more than 500,000 times higher than the baseline intensity
on hyperedges of size 11. Such examples illustrate that event intensities
should not be compared between hyperedges of different size. Indeed,
the preliminary analysis in Lerner et al. (2019) has shown that models
with unconstrained risk sets yield results that strongly depend on how
models control for the effect of hyperedge size on event intensity.

While we do not claim that this approach is preferable in all settings,
we consider in this paper conditional-size models (Lerner et al., 2019),
where the risk set at the time of an observed event 𝑒 = (𝑡𝑒, ℎ𝑒) consists
of all hyperedges of size |ℎ𝑒|, i. e., 𝑅𝑡𝑒 = {ℎ ⊆ 𝑉𝑡𝑒 ; |ℎ| = |ℎ𝑒|}.
This implies that for each of the factors in Eq. (3) the hyperedges ℎ
appearing in the denominator have the same size as the hyperedge ℎ𝑒
in the numerator on which the event 𝑒 has been observed. Thus, event
intensities are only compared among hyperedges of the same size. The
alternative hyperedges ℎ can be obtained from the event hyperedge ℎ𝑒
by removing a subset of actors ℎ′ ⊆ ℎ𝑒 of any size from ℎ𝑒 and then
adding a set of new participants ℎ′′ of the same size as ℎ′. Formally,
the event hyperedge ℎ𝑒 is only compared with alternative hyperedges
ℎ satisfying ℎ = (ℎ𝑒 ⧵ ℎ′) ∪ ℎ′′ for some ℎ′, ℎ′′ ⊂ 𝑉𝑡𝑒 , where ℎ′ ⊆ ℎ𝑒,
ℎ′′ ∩ ℎ𝑒 = ∅, and |ℎ′| = |ℎ′′|. Thus, as discussed in Lerner et al.
(2019), conditional-size models are consistent with the point of view
that (groups of) actors compete for participation in meetings. We further
discuss the implications of conditional-size models – and the need for
future work on this issue – after having presented the empirical results
in Section 5.

The second decision – taken to maintain computational tractability
– is that the risk sets 𝑅𝑡𝑒 at the event times are replaced by sampled
risk sets �̃�𝑡𝑒 (Lerner et al., 2019), obtained via case-control sampling
(Borgan et al., 1995). Sampling has become established in estimat-
ing approximate parameters for dyadic REM on large networks. For
instance, Butts (2008) points out that estimating parameters via ap-
proximate likelihood functions, obtained by sampling, could make REM
applicable to larger networks. Vu et al. (2015) specifically apply case-
control sampling (Borgan et al., 1995), where all events and for each
event a fixed number of randomly drawn ‘‘controls’’ (non-events from
the risk set) are considered. Lerner and Lomi (2020) experimentally
assess the reliability of case-control sampling for REM estimated on

large networks. Following Lerner et al. (2019), we draw – for a given
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number 𝑚 of non-events per event – sampled risk sets �̃�𝑡𝑒 that contain
he hyperedge ℎ𝑒 of the observed event 𝑒 = (𝑡𝑒, ℎ𝑒) and 𝑚 non-event
yperedges drawn uniformly at random from 𝑅𝑡𝑒 = {ℎ ⊆ 𝑉𝑡𝑒 ; |ℎ| =
ℎ𝑒|}. This leads to the following sampled likelihood function:

̃ (𝜃) =
∏

𝑒∈𝐸

𝜆1(𝑡𝑒;ℎ𝑒; 𝜃;𝐺[𝐸; 𝑡𝑒])
∑

ℎ∈�̃�𝑡𝑒
𝜆1(𝑡𝑒;ℎ; 𝜃;𝐺[𝐸; 𝑡𝑒])

. (4)

Given the values of the statistics 𝑠(𝑡𝑒;ℎ;𝐺[𝐸; 𝑡𝑒]) for all hyperedges
ℎ in the sampled risk sets �̃�𝑡𝑒 , maximum likelihood estimates for
the parameters in Eq. (4) can be computed with standard statistical
software. For the empirical analysis reported in this paper we compute
hyperedge statistics with an extension of eventnet 2 (Lerner and Lomi,
2020) and use the R package survival3 (Therneau and Grambsch,
2013) to estimate parameters.

3.2. Model specification: network effects

Network effects included in the empirical model specification that
we estimate in our illustrative analysis fall into three classes. First,
we control for the tendency to repeat previous events, either in exact
repetition with the identical set of participants or in partial repetition
where a subset of participants of a previous meeting co-participates in
a future meeting, potentially with yet other participants. Second, we
introduce hyperedge statistics based on actor-level covariates, assessing
first-order effects and homophily effects of the respective covariate.
(In our exemplary case study we use the binary covariate labeling
ministers as dry or non-dry.) Third, we define a hyperedge statistic
for how strongly groups of actors have previously co-participated in
meetings with common third actors to assess a tendency for or against
triadic closure in meeting data. Technically, effects are added to the
model by defining the vector of hyperedge statistics 𝑠(𝑡;ℎ;𝐺[𝐸; 𝑡]) in
the specification of the relative event rate in Eq. (2). These statistics
assign real numbers to hyperedges ℎ at time 𝑡 based on the network of
past events 𝐺[𝐸; 𝑡].

3.2.1. Repetition and subset-repetition
A very basic effect in hyperevent networks is that events are re-

peated or partially repeated (Lerner et al., 2019). In all models reported
in this paper we let the effect of past events decay over time in the way
as it has been suggested in Brandes et al. (2009). For a given half life
period 𝑇1∕2, we set the decay factor 𝑤(𝛥𝑡) for the time difference 𝛥𝑡 to

𝑤(𝛥𝑡) = exp
(

−𝛥𝑡 ⋅ 𝑙𝑜𝑔(2)
𝑇1∕2

)

.
The repetition statistic associated with a given hyperedge ℎ at time

counts the number of previous events in 𝐸<𝑡 = {𝑒 = (𝑡𝑒, ℎ𝑒) ∈ 𝐸 ; 𝑡𝑒 <
} whose set of participants ℎ𝑒 is identical with ℎ, weighted by the
espective decay factor. Formally, it is defined by

𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛(𝑡;ℎ;𝐺[𝐸; 𝑡]) =
∑

𝑒∈𝐸<𝑡

𝑤(𝑡 − 𝑡𝑒) ⋅ 𝜒(ℎ = ℎ𝑒) ,

where 𝜒 is the indicator function that is one if the argument is true and
zero else.

Often the set of participants of one event is not exactly repeated in
another event – as it is required in the definition of 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 – but only
partially and possibly in co-participation with yet other actors. We first
define a time-varying indicator, denoted as hypergraph degree, assessing
to what extent a given set of actors ℎ co-participated in past events.
This indicator counts the number of events in which all actors in ℎ co-
participated – weighted by the respective decay factor – and is formally
defined by

ℎ𝑦.𝑑𝑒𝑔(𝑡;ℎ;𝐺[𝐸; 𝑡]) =
∑

𝑒∈𝐸<𝑡

𝑤(𝑡 − 𝑡𝑒) ⋅ 𝜒(ℎ ⊆ ℎ𝑒) .

2 https://github.com/juergenlerner/eventnet.
3 https://CRAN.R-project.org/package=survival.
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Subset repetition is a family of hyperedge statistics parametrized by the
order (also size or cardinality) of subsets. Formally, for a given integer
𝑝 ∈ N, subset repetition of order 𝑝 is defined by

𝑠𝑢𝑏.𝑟𝑒𝑝(𝑝)(𝑡;ℎ;𝐺[𝐸; 𝑡]) =
∑

ℎ′∈(ℎ𝑝)
ℎ𝑦.𝑑𝑒𝑔(𝑡;ℎ;𝐺[𝐸; 𝑡])∕

(

|ℎ|
𝑝

)

,

where
(ℎ
𝑝

)

denotes the set of all subsets of ℎ that have exactly 𝑝
elements. The formula above takes the average hypergraph degree
over all subsets of size 𝑝 of ℎ. Thus, subset-repetition of order 𝑝 can
assess whether sets of 𝑝 actors who have co-participated in previous
events (potentially with other participants) are more or less likely to
co-participate in future events (potentially with other participants).

Repetition and subset-repetition of various order is illustrated in
Fig. 2. Note that subset-repetition of order one assigns the identical
value to all three triads, subset-repetition of order two can distinguish
between ℎ1 on one hand and ℎ2 and ℎ3 on the other hand but fails to
distinguish between the latter two, subset-repetition of order three can
recognize that ℎ3 has one previous joint event, in contrast to ℎ1 and ℎ2.

We emphasize that subset-repetition statistics are not merely ‘‘con-
trol’’ variables, but may be able to uncover important aspects of partic-
ipant selection based on familiarity of different order. Subset-repetition
of order one accounts for individual past activity (i. e., the number
of prior events of individual actors) and can model a tendency for or
against preferential attachment. Subset-repetition of order two accounts
for prior shared events on dyads (dyadic familiarity); subset-repetition of
order three considers prior shared events on triads (triadic familiarity),
and so on.

Although we do not have event types or weights in the empirical
data analyzed in Section 4, we note that types or weights could be
taken into account in the repetition or subset-repetition statistics in a
straightforward way. Different statistics could count only past events
of certain types and/or could add up the weights of past events. This
would be very similar to the approach for typed and weighted dyadic
events proposed in Lerner et al. (2013a).

3.2.2. Covariate effects (first-order and homophily effects)
We assume that we are given a binary, time-constant actor-level

covariate 𝑥∶ 𝑉 → {0, 1}. (In the exemplary case study of this paper we
use the binary covariate dry, where 𝑑𝑟𝑦(𝑣) = 1 indicates that 𝑣 is a dry
minister.) We define two hyperedge statistics modeling (1) a first-order
effect of the covariate 𝑥, assessing whether actors 𝑣 with 𝑥(𝑣) = 1 are
more likely to be among the participants of meetings than actors 𝑣′ with
𝑥(𝑣′) = 0 and (2) a second-order effect on homophily with respect to 𝑥.
Both statistics are independent of time and independent of the network
of past events.

For a hyperedge ℎ, the statistic average-𝑥 is the ratio of actors 𝑣
with 𝑥(𝑣) = 1 in ℎ; formally

𝑎𝑣𝑔.𝑥(𝑡;ℎ;𝐺[𝐸; 𝑡]) =
∑

𝑣∈ℎ
𝑥(𝑣)∕|ℎ| .

In our exemplary case study (with 𝑥 operationalizing whether ministers
are dry) this statistic can assess whether dry ministers do more often
participate in meetings – or, from the other point of view, whether
the PM has a preference to meet with Dries. If a positive parameter
is associated with 𝑎𝑣𝑔.𝑥, then in the example given in Fig. 3, the
right-most hyperedge would be predicted to have the highest event
rate, followed by the hyperedge in the middle, and then the left-most
hyperedge.

For a hyperedge ℎ, let ℎ𝑥 = {𝑣 ∈ ℎ ; 𝑥(𝑣) = 1} denote the set of
actors with 𝑥 = 1 contained in it and let ℎ𝑥 = {𝑣 ∈ ℎ ; 𝑥(𝑣) = 0} denote
hose with 𝑥 = 0. The statistic 𝑥-homogeneity measures to what extent
he larger of the two groups outnumbers the smaller, normalized by the
ize of ℎ; formally

.ℎ𝑜𝑚(𝑡;ℎ;𝐺[𝐸; 𝑡]) =
max(|ℎ𝑥|, |ℎ𝑥|) − min(|ℎ𝑥|, |ℎ𝑥|) .
|ℎ𝑥| + |ℎ𝑥|

https://github.com/juergenlerner/eventnet
https://CRAN.R-project.org/package=survival
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Fig. 2. Stylized example illustrating repetition and subset-repetition effects. Previous events on the three hyperedges ℎ𝑖 = {𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖} for 𝑖 = 1, 2, 3 are displayed as gray-shaded
onvex hulls enclosing their respective participants. Left: each of the three members of ℎ1 has participated in two single-actor events. Middle: each unordered pair of the three
embers of ℎ2 has co-participated in one two-actor event. Right: all three members of ℎ3 have co-participated in one three-actor event and, in addition, each of its members has
articipated in one single-actor event.
Fig. 3. Stylized example illustrating average-𝑥 and 𝑥-homogeneity for a binary actor-level covariate 𝑥∶ 𝑉 → {0, 1}. The image shows three hyperedges, each containing six actors,
displayed as small circles. Actors 𝑣 with 𝑥(𝑣) = 1 are displayed in darker shade than those taking the value zero in the covariate 𝑥. Left: all actors take the value 𝑥 = 0 and the
yperedge is maximally homogeneous. Middle: half of the actors take the value 𝑥 = 1 and the hyperedge is maximally inhomogeneous (homogeneity is zero). Right: all actors take
he value 𝑥 = 1 and the hyperedge is maximally homogeneous.
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f |ℎ| is odd, then it is not possible that the two groups have the
ame size, so that zero (minimally homogeneous) would not be attain-
ble. To correct this, we take the value 𝑥.ℎ𝑜𝑚(𝑡;ℎ;𝐺[𝐸;𝑡])−1∕|ℎ|

1−1∕|ℎ| , instead of
𝑥.ℎ𝑜𝑚(𝑡;ℎ;𝐺[𝐸; 𝑡]), if ℎ has an odd number of participants. With this
orrection, the statistic can attain the extremal values zero and one.4

In our exemplary case study (with 𝑥 operationalizing whether min-
isters are dry), the statistic 𝑥-homogeneity can assess whether meetings
reveal a homophily effect with respect to the dry/non-dry characteristic
of ministers – or, from the another point of view, whether the PM has a
preference to meet dry ministers separately from non-dry ministers. If a
positive parameter is associated with 𝑥.ℎ𝑜𝑚, then in the example given
in Fig. 3, the right-most and the left-most hyperedge would be predicted
to have a higher event rate than the hyperedge in the middle. If 𝑥.ℎ𝑜𝑚
has a negative parameter, then the ‘‘mixed’’ hyperedge in the middle
would be predicted to have a higher event rate than the two ‘‘pure’’
hyperedges.

3.2.3. Closure
The closure statistic measures to what extent the members of a

hyperedge ℎ have co-participated in previous events with common
third actors 𝑤. In contrast to subset-repetition of order three, these third
actors 𝑤 may be outside of the focal hyperedge ℎ and different members
of ℎ may have co-participated with 𝑤 in different past events. Formally,

4 If |ℎ| = 1, we set 𝑥.ℎ𝑜𝑚(𝑡;ℎ;𝐺[𝐸; 𝑡]) = 0.
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losure is defined by5

𝑙𝑜𝑠𝑢𝑟𝑒(𝑡;ℎ;𝐺[𝐸; 𝑡])

=
∑

{𝑢,𝑣}∈(ℎ2)∧𝑤≠𝑢,𝑣

min[ℎ𝑦.𝑑𝑒𝑔(𝑡; {𝑢,𝑤};𝐺[𝐸; 𝑡]), ℎ𝑦.𝑑𝑒𝑔(𝑡; {𝑣,𝑤};𝐺[𝐸; 𝑡])]∕
(

|ℎ|
2

)

,

In the formula above, we iterate over all combinations ({𝑢, 𝑣}, 𝑤), such
that {𝑢, 𝑣} ∈

(ℎ
2

)

is an unordered pair of actors who are both members
of the focal hyperedge ℎ and 𝑤 is any actor different from 𝑢 and 𝑣. For
each of these triples, we compare the hypergraph degrees of the two
sets {𝑢,𝑤} and {𝑣,𝑤} and add up the minimum of these two values. The
resulting sum is divided by the number of unordered pairs within ℎ. As
an example of such a triple of actors ({𝑢, 𝑣}, 𝑤), consider ({𝐸, 𝐹 }, 𝐷) in
Fig. 4 at the time of the event 𝑒4 = (𝑡4, {𝐸, 𝐹 }). Both members of the
focal hyperedge ℎ4 = {𝐸, 𝐹 } are connected by one past event to the
third actor 𝐷. Thus, disregarding any decay in the influence of past
events, 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑡4;ℎ4) = 1.

Understanding the implication of the closure effect in hyperevent
networks – and its interplay with subset-repetition of various order –
is challenging. For illustration we use again Fig. 4 which recalls five
hyperevents (assumed to be observed in the past) and defines two
additional hyperedges, ℎ = {𝐴,𝐵,𝐻} and ℎ′ = {𝐷,𝐺,𝐻}, on which
events could happen at a time point 𝑡 > 𝑡5.

A superficial look at the one-mode projection (given by the dashed
lines) seems to suggest that the five observed events reveal a tendency

5 The closure statistic in our paper would have been denoted by 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(1,1,1)

n Lerner et al. (2019) who define closure statistics of varying order — but do
ot estimate any closure effect in their empirical analysis. Another difference
s that Lerner et al. (2019) propose a different normalization by also dividing
ver all possibilities of third actors; we deviate from this to be more consistent
ith usual definitions of closure in networks of dyadic events.
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Fig. 4. Illustration of closure on the data from Fig. 1, recalled in the hypergraph (left) and in the sequence of hyperevents (middle). The hypergraph on the right displays two
additional hyperedges ℎ = {𝐴,𝐵,𝐻} and ℎ′ = {𝐷,𝐺,𝐻}, on which events could potentially occur, as white convex hulls with dark borders. An event on ℎ would point to closure
while an event on ℎ′ could be explained by subset-repetition. See the text for additional explanation.
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for triadic closure, since the one-mode projection contains many closed
triangles. However, a more detailed inspection of the actual hyper-
events tells us that just one of the five events (namely 𝑒4 connecting
actors 𝐸 and 𝐹 ) has a closure statistic different from zero (𝐸 and 𝐹
have co-participated in past events with actor 𝐷). None of the other
four events closes any two-path that was present before the respective
event. Most triangles in the one-mode projection are actually created
by hyperevents of size three or larger. Thus, a first insight is that the
existence of densely connected groups, local clustering, or an over-
representation of closed triangles in hyperevent networks does not
give any evidence for a positive closure effect but can alternatively be
explained by events of size three or larger — or by the tendency to
(partially) repeat such events.

Next we consider the two hyperedges ℎ = {𝐴,𝐵,𝐻} and ℎ′ =
{𝐷,𝐺,𝐻}, on which events could potentially occur in the next time
point and discuss whether such events would provide evidence for a
closure effect in a model that controls for subset-repetition of var-
ious order. A hypothetical event on the hyperedge ℎ = {𝐴,𝐵,𝐻}
would give evidence for closure. Indeed 𝐴, 𝐵 and 𝐻 have previously
o-participated each in one event with the common third actor 𝐶.
ubset-repetition, on the other hand, does not appear to explain a
ypothetical event on ℎ. We note that 𝐴, 𝐵 and 𝐻 individually have
articipated in only one event each so that they are rather inactive
ctors, compared to others in the same network. Among the three
nordered pairs in {𝐴,𝐵,𝐻} there is just one that has one previous
oint event so that subset-repetition of order two on the hyperedge ℎ is
qual to 1∕3 and therefore is also below average (which is 12∕

(8
2

)

= 0.43
n this network). Finally {𝐴,𝐵,𝐻} have never jointly co-participated
n any event, so that sub-repetition of order three (or higher) could
ot explain an event on ℎ either. Indeed, closure seems to be the only
atisfying explanation for a hypothetical event on ℎ – beyond random
hance.

This is very different for a hypothetical event on ℎ′ = {𝐷,𝐺,𝐻}.
hile the closure statistic on ℎ′ has a positive value (actually, it is equal

o two), a hypothetical event on ℎ′ could alternatively be explained by
ubset-repetition. Indeed, the triad {𝐷,𝐺,𝐻} has co-participated in a
oint event before and subset-repetition of order two and three on ℎ′

re above average, both being equal to one. Thus, assuming that we
ave positive subset-repetition effects, an event on ℎ′ would provide no
vidence for closure. (It is obvious that from observing just a handful
f events, as in this stylized example, we could not statistically separate
he effects of closure from subset-repetition. However, in our exemplary
mpirical data we have thousands of events and – as it will turn out –
e can actually separate these effects.)

Closure and its interplay with subset-repetition has implications for
he macro-structure of hyperevent networks on one hand and for the
xistence of stable structural holes on the other. First we note that
epetition and subset-repetition leads to a reinforcement of densely
onnected groups of actors. For instance, the data from Fig. 4(left) sug-
ests the dense groups {𝐴,𝐵, 𝐶}, {𝐶,𝐷,𝐺,𝐻}, and {𝐷,𝐸, 𝐹 }. Subset-
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epetition and repetition predicts that these groups will be re-inforced.
rucially, these groups are overlapping in two ‘‘bridging’’ actors 𝐶
nd 𝐷, respectively. These two actors are surrounded by structural
oles which could point to a position of power (Burt, 1992). Given
uch a precondition, the future evolution of the network crucially
epends on whether we have a positive or a negative closure effect.
positive closure effect – which could lead for instance to an event

n ℎ = {𝐴,𝐵,𝐻} – would imply that overlapping dense groups have
tendency to merge over time. In turn, this would close structural

oles and 𝐶 and 𝐷 would potentially lose their power positions. In
contrast, a negative closure effect would prevent, for instance, events on
ℎ = {𝐴,𝐵,𝐻}. In turn, overlapping dense groups would typically not
merge and structural holes would remain open. In conclusion, a neg-
ative closure effect – in combination with positive (subset-)repetition
– could explain overlapping but stable dense groups in dynamic co-
participation networks or, from another point of view, is a way to
sustain structural holes and thus power positions of actors. We take up
this point again when discussing the empirical results on the closure
effect in Section 5.

4. Illustrative case study: Thatcher meetings

We seek to establish the empirical value of RHEM in an analysis of
empirical data sourced from Margaret Thatcher’s appointment diaries.
While the contribution of our paper is methodological, we provide
in this section a brief overview of the empirical setting from which
the exemplary data stems. Indeed, to demonstrate that RHEM can be
fruitfully applied in empirical social network analysis, we illustrate how
relevant research questions could be addressed and how findings could
advance existing empirical research. While details of the empirical set-
ting are necessarily context-specific, we emphasize that RHEM provide
a general model framework for time-stamped multi-actor events from
contact diaries.

4.1. Background on the illustrative empirical setting

Network studies are firmly established in political science research
(Victor et al., 2017; Ward et al., 2011). The majority are based on cross-
sectional designs, but dynamic models such as temporal exponential
random graph models (TERGM) and stochastic actor-oriented models
(SAOM) have also been applied to longitudinal network data; for an
overview, see Desmarais and Cranmer (2017). Longitudinal studies
using time-stamped relational event data are increasingly adopted also
in the political sciences (Lerner et al., 2013a; Stadtfeld et al., 2017;
Brandenberger, 2019) – but models are typically for dyadic events and
do not directly apply to multi-actor events transcribed from contact
diaries. This is a severe limitation for political science since appoint-
ment diaries exist widely and contain masses of information about the
working lives of individuals, particularly leaders and managers. Indeed,
the empirical data on which we illustrate our models are sourced
from the appointment diaries of former British PM Margaret Thatcher,

which are publicly accessible and cover a significant portion of her
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Fig. 5. Co-attendance networks at selected points in time. Circles represent ministers (circles with a dark shade represent dry ministers), squares represent events, and lines connect
vents to their participants. Left: The network after the fourth multi-actor event. Right: The network after the seventh multi-actor event.
premiership (Margaret Thatcher Foundation, 2019). Such data makes
it possible to study the British core executive using advanced network
analytic methods.

Many research themes have emerged in the literature that relate
either directly or indirectly to the executive branch of the British
government. For example, there are long-standing debates on whether
policy implementation is driven by a prime ministerial or collectivist
process (Bennister and Heffernan, 2012; Burch and Holliday, 2004;
Burnham and Jones, 1993; Byrne and Theakston, 2019; Heffernan,
2003), and investigations into different leadership styles (Bowles et al.,
2007; Kaarbo and Hermann, 1998; Theakston, 2011). Our case study
illustrates how RHEM can add to this literature by specifically focus-
ing on power dynamics within Thatcher’s early cabinets. When she
entered Downing Street in May 1979, Thatcher faced a lack of internal
support from several members of her conservative party – known as
the ‘‘Wets’’ – who were critical of her hard-line economic policies and
considered her to be an untried extremist with a limited shelf life as
PM (Cannadine, 2016, p. 29). To increase the chances of implementing
her domestic policy agenda, therefore, Thatcher placed her small band
of cabinet supporters – i. e., the Thatcherites, or ‘‘Dries’’ – into key
economic positions. Then, at subsequent cabinet reorganizations, she
took the step of using promotions almost exclusively for policy ends, to
gradually shift the balance of power in her favor (King, 1985, p. 132).

4.2. Orienting questions

It is within this context that we demonstrate the potential of the
RHEM framework. To illustrate how RHEM could be applied in em-
pirical research, we pose exemplary questions to explore the power
balance between the Dries and Non-dries (i. e., Wets and other ministers
not labeled as dry) in Thatcher’s early cabinets, and how it impacted
her approach to ministerial meetings. Our first question relates to a
first-order effect of the actor-level covariate dry on the propensity to
participate in events. Essentially, it seeks to determine whether the PM
preferred to meet with dry ministers over non-dry ministers:

RQ1 Does the chance of a group of ministers jointly meeting the
PM increase as the proportion of dry ministers in that group
increases?

Our second question also explores the general composition of Thatcher’s
ministerial meetings. It addresses a second-order effect of the same
covariate to test whether ministerial meetings tend to be homogeneous
(mostly dry or mostly non-dry ministers) or heterogeneous (a balance
of dry and non-dry ministers) in nature:
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RQ2 Does the chance of a group of ministers jointly meeting the PM
increase if the group is homogeneous, that is, if it is composed
mostly of dry or mostly of non-dry ministers?

Our final question tests for the structural effect of triadic closure in
the data. Positive triadic closure would imply that ministers who co-
attended meetings with common third ministers have an increased
probability to co-attend meetings themselves. Negative triadic closure,
on the other hand would imply that brokers (i. e., those who bridge
between different groups) typically keep their power positions since
their different contacts are kept separate:

RQ3 Does the chance of a group of ministers jointly meeting the
PM increase if they have previously co-attended meetings with
common third ministers?

The models that we fit later in this paper to address these research
questions control for other basic effects in networks of time-stamped
multi-actor events, such as the tendency to repeat meetings with the
identical or overlapping participant lists. We note that a tendency
against triadic closure could point to the existence of stable structural
holes and in turn to competition or power differences among cabinet
ministers. This aspect has been already discussed in Section 3.2.3 and
we will discuss it again in light of our results in Section 5.

4.3. Illustrative empirical data

Our illustrative analysis is based on a sequence of 1,989 meeting
events of Margaret Thatcher with her cabinet ministers, which took
place between 5th May 1979 and 8th June 1983, i. e., Thatcher’s
full first term. These events are sourced from the PM’s appointment
diaries, which are publicly accessible and cover a significant portion
of her premiership (Margaret Thatcher Foundation, 2019). The cabinet
consisted of 21 ministers (in addition to the PM), with the exception
of eight months from September 1981 when there were 22 ministers.
Cabinet composition – that is, the population of actors – changed in
four cabinet reorganizations with a total of eight ministers exiting and
eight ministers entering cabinet. Individual meeting events in the data
are listed by the minute and do not overlap in time. The participant
lists of events (i. e., their hyperedges) comprise all attending ministers
except the PM, since she attended every meeting by definition. Meetings,
therefore, involve one, several, or all cabinet ministers. In many cases,
other non-cabinet members were involved in meetings. These have
been removed from the data to focus explicitly on the PM’s interactions
with ministers. In this paper we use a binary actor-level covariate that
labels ministers as ‘‘dry’’ (that is, supportive of the PM’s economic

agenda) or ‘‘non-dry’’. Of the 29 ministers who featured in cabinet
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Fig. 6. Left: Histogram of sizes (i. e., number of cabinet ministers) of observed meetings in the illustrative empirical data. Right: Histogram of sizes of non-event subsets (i. e.,
groups of ministers that could have experienced a meeting event) sampled uniformly from the set of all cabinet members at the event times.
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during Thatcher’s first administration, eight were Dries.6 Note that the
category of ‘‘non-dries’’ contains ministers considered Wets (those who
were opposed to Thatcherism) and those that were considered neither
dry nor wet. This covariate does not vary over time.

In Fig. 5 we visualize the co-attendance network after selected
points in time (to avoid visual clutter we only display the networks
after the first few events in the sequence of almost 2,000 meetings).
We display only events with two or more attending participants (multi-
actor events), since meetings with only one attending minister result
in uninformative event nodes of degree one. The layout has been
computed by an algorithm for dynamic network visualization proposed
by Brandes and Mader (2011) and implemented in the visone7 software
(Baur et al., 2001). Note that this is an offline algorithm in which node
positions for the network at time 𝑡 take into account network data from
time points 𝑡′ > 𝑡. We visualize the co-attendance networks for the first
14 multi-actor events in the Appendix in Fig. 7.

The number of sets of actors that could potentially experience joint
events depends exponentially on the size of the population. In our
illustrative empirical analysis we get 221 ≈ 2.1 million different sets
for cabinets with 21 members and for cabinets with 22 members we
get 222 ≈ 4.2 million different sets of ministers that could potentially
constitute the participant list of any meeting. (Strictly speaking we
have to subtract one from these numbers since the empty subset, i. e.,
a meeting with no participating minister, would not be considered an
event in our data.) The distribution of meeting sizes in our empirical
data is given in Fig. 6 (left). This distribution of observed event sizes
is contrasted in Fig. 6 (right) with the distribution of the sizes of
ubsets that are drawn uniformly at random from the set of all cabinet
inisters at event times. (The latter are draws from the binomial
istribution 𝑓 (𝑘) =

(𝑛
𝑘

)

with 𝑛 = 21 or 𝑛 = 22, respectively.) It
an be seen that small meetings are over-represented in the empirical
ata, meetings of intermediate size are very infrequent compared to
he large number of subsets of intermediate size, and large meetings
re also over-represented – although not to the same degree as small
vents. As discussed above, the strong dependency of event frequency
n subset size is the main reason to consider in this empirical study only
HEM with size-constrained risk sets. We discuss this aspect again after
aving presented the results. The largest size-constrained risk set in our
mpirical data contains more than 700,000 hyperedges and results from
eetings with 11 participating ministers from a cabinet of size 22.

. Results

We estimate RHEM parameters from the empirical PM meeting
ata by maximizing the sampled likelihood given in Eq. (4). For each
bserved event 𝑒 = (𝑡𝑒, ℎ𝑒) we sample 100 non-event hyperedges from
he size-constrained risk set 𝑅𝑡𝑒 (i. e., sets of cabinet ministers at 𝑡𝑒

6 Dries in the cabinet are: Geoffrey Howe, John Biffen, John Nott, Keith
oseph, Leon Brittan (from Jan-81), Nigel Lawson (from Sept-81), Cecil
arkinson (from Sept-81), and Norman Tebbit (from Sept-81).

7 http://visone.ethz.ch/.
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Table 1
Cox proportional hazard models for event intensities associated with hyperedges (sets of
ministers). All three models are estimated on 1,989 events and 101,246 observations
(the number of observations is the number of events plus the number of sampled
controls).

Repetition 0.38 (0.02)*** 0.37 (0.02)*** 0.38 (0.02)***
Sub.rep(1) 0.07 (0.04)a 0.10 (0.04)** 0.07 (0.04)a

Sub.rep(2) 2.34 (0.13)*** 2.37 (0.14)*** 2.36 (0.14)***
Sub.rep(3) 2.33 (0.14)*** 2.31 (0.14)*** 2.30 (0.14)***
closure −3.01 (0.30)*** −3.11 (0.30)*** −3.10 (0.30)***
Avg.dry 0.05 (0.02)* 0.04 (0.02)*
Hom.dry −0.12 (0.05)* −0.11 (0.05)*

AIC 9,983.14 9,982.50 9,979.74

***𝑝 < 0.001, **𝑝 < 0.01, *𝑝 < 0.05, a𝑝 < 0.1.

f the same size as ℎ𝑒). If the size-constrained risk set has less than
00 elements (which happens for instance for observed events of size
ne), we take the full risk set. We set the half life for the decay of
ast events to 30 days. Thus, an event counts close to one right after
he event, one month later it counts 1/2, and so on.8 Effects in the
yperevent model therefore assess the impact of recent events. Before
stimating the parameters, we standardize statistics to mean equal to
ero and standard deviation equal to one. Since statistics have no
atural units, this facilitates the interpretability of the relative effect
izes. Table 1 reports estimated parameters of three models. All models
nclude repetition, subset-repetition of order one, two, and three, and
he closure statistic. The first model additionally includes the statistic
verage-dryness of sets of ministers, the second model includes dry-
omogeneity, and the third contains both covariate effects. Below,
e discuss the results mostly independent of the specific empirical

ontext. Recall that it is not the objective of this paper to actually draw
onclusive empirical insight, but rather to present a model that can be
ruitfully applied to this and related empirical settings.

epetition and subset-repetition. The parameter associated with 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛
s significantly positive. Thus, there is a tendency to repeat (recent)
eetings with the identical set of participants. We also find a positive

ffect of subset-repetition of order one (in two of the models, this
ffect is only significant at the 10%-level). Thus, actors who (recently)
articipated in more meetings, are more likely to be included among
he participants of future events. This can be seen as a preferential
ttachment effect where ‘‘popular’’ actors (i. e., those who were more
requent participants in the past) accumulate future interaction at a
igher rate. Moreover, we find a positive effect of subset-repetition of
rder two and three. Thus, sets of actors containing dyads (or triads)
hat previously co-participated in joint meetings experience future
eetings at a higher rate. This can be understood as a familiarity effect:

8 In preliminary tests we found that models with time decay consistently
ave a better fit than models without time decay. Moreover, for checking
obustness, we repeated our analysis with a half life set to 7 days and again
ith a half life set to 90 days (not reported in this paper). Qualitatively, results
ave been very similar to those reported below.

http://visone.ethz.ch/
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Table 2
Cox proportional hazard models for event intensities associated with hyperedges (sets
of ministers). All three models are estimated on 1,989 events and 101,246 observations

Repetition 0.39 (0.02)*** 0.45 (0.02)*** 0.38 (0.02)***
Sub.rep(1) 0.12 (0.04)*** −0.04 (0.04) 0.07 (0.04)a

Sub.rep(2) 2.83 (0.14)*** 2.36 (0.14)***
Sub.rep(3) 2.30 (0.14)***
Closure 4.23 (0.19)*** −1.41 (0.30)*** −3.10 (0.30)***
Avg.dry 0.06 (0.02)** 0.06 (0.02)** 0.04 (0.02)*
Hom.dry −0.05 (0.04) −0.14 (0.05)** −0.11 (0.05)*

AIC 10,724.31 10,257.10 9,979.74

***𝑝 < 0.001, **𝑝 < 0.01, *𝑝 < 0.05, a𝑝 < 0.1.

actors have a tendency to co-attend meetings with others they have
recently met before. This effect is not restricted to dyadic familiarity,
where it just matters whether actors have pairwise met before, but also
applies to triadic familiarity. For instance, in the example given in Fig. 2
the hyperedge ℎ3 would be predicted to have a higher event rate than
the hyperedge ℎ2 and ℎ2 would be predicted to have a higher rate than
ℎ1. As discussed above, subset-repetition and repetition can reinforce
dense groups of actors, or local clustering.

Covariate effects: dry and homogeneous meetings. The parameter asso-
ciated with the average-dryness statistic – instantiating the statistic
‘‘average-𝑥’’ in this case study – is significantly positive. Thus, dry
ministers are more likely to be among the participants of meetings
than non-dry ministers. This finding could be interpreted in the sense
that the dry ministers are in more powerful positions (having more
opportunities to meet the PM), or – from another angle – that the
PM has a preference to meet dry ministers. Moreover, we find a sig-
nificantly negative parameter associated with dry-homogeneity. Thus,
there seems to be a tendency to mix dry and non-dry ministers when
assembling the participants of meetings. Taking these effects together,
and looking at the example given in Fig. 3, we would expect a tendency
for meetings somewhere ‘‘right of the middle’’ (i. e., towards the ‘‘drier’’
hyperedges) but not at the extreme right. These two covariate effects
keep their sign when both are included in the same model. We note
that there are fewer dry ministers than non-dry ministers in the cabinets
(i. e., population of actors) and therefore, if this covariate had no effect
on meeting frequency, then by chance alone we would expect more
Non-dries than Dries among the participants of observed meetings.
Thus, the negative effect of dry-homogeneity – which pushes hyperedge
composition towards balanced meetings with about the same number
of dry and non-dry ministers – tends to also increase the number of dry
meeting attendees over random chance.

Closure effects. We consistently find a negative closure effect. Thus,
looking at the example given in Fig. 4, the hyperedge ℎ, which closes
several open two-paths but could not be well explained by subset-
repetition, would be predicted a rather low probability to experience
meetings. As discussed in Section 3.2.3, a negative closure effect –
together with positive subset-repetition – can explain overlapping but
stable (i. e., non-merging) dense subgroups and the maintenance of
stable structural holes. This, in turn could point to actors that maintain
power positions by bridging structural holes (Burt, 1992).

Interplay between subset-repetition and closure. How does the estimated
negative closure effect depend on whether we control for subset-
repetition or not? To shed light on this question, we fit models, reported
in Table 2, that control only for subset-repetition of order one (i. e.,
for past activity of individual actors), that control for subset-repetition
of order one and two, and compare these to the model including
subset-repetition up to order three.

The crucial difference is between the leftmost model, which controls
only for individual activity, and the two others which also control for
prior shared events of dyads or triads, respectively. If we control only
for past individual participation in meetings, but fail to control for past
co-participation, we spuriously estimate a positive closure effect. This
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can be well explained with the example given in Fig. 4. The hyperedge
ℎ′ closes several triangles – but could alternatively be explained by
subset-repetition of order two or three. However, a model that fails to
control for prior shared events misses the difference between events on
the hyperedge ℎ (which would point to closure) and events on ℎ′ (which
would give no evidence for closure since they can be explained by
subset-repetition or order two or higher). Since events on hyperedges
like ℎ′ are apparently frequent in our data (due to subset-repetition),
the first model in Table 2 falsely estimates a positive closure effect.

Explanatory power of estimated RHEM. We might ask how well the
fitted models succeed in ‘‘recognizing’’ the true observed events among
their associated alternatives. Here we do not consider out-of-sample
prediction, since we believe that picking the right event out of 4
million alternatives (or up to 700,000 for conditional-size models) is
a fairly impossible task. We also argue that RHEM – as we specify
and apply them in this paper – are made for testing hypotheses in
dynamic co-attendance networks, rather than to foresee the future.
This view is consistent with the observation in Block et al. (2018) that
in longitudinal network studies, models with the best performance in
out-of-sample prediction often have limited relevance for inferential
network modeling. Therefore, we fit RHEM to the whole observed data
and then compare – separately for each observed event 𝑒 = (𝑡𝑒, ℎ𝑒) –
the implied relative event rate on the event hyperedge ℎ𝑒 with the
implied rate on all associated controls sampled from the risk set 𝑅𝑡𝑒 .
The relative event rate of a hyperedge ℎ′ at the time 𝑡𝑒 (implied by a
fitted model, that is, with given parameters 𝜃) is

𝑟𝑒𝑙.𝑟𝑎𝑡𝑒(ℎ′) =
𝜆1(𝑡𝑒;ℎ′; 𝜃;𝐺[𝐸; 𝑡𝑒])

∑

ℎ∈�̃�𝑡𝑒
𝜆1(𝑡𝑒;ℎ; 𝜃;𝐺[𝐸; 𝑡𝑒])

,

compare Eq. (4). We report results for the largest model; see the
right-most column of Table 1.

This model seems to succeed fairly well in assigning high relative
event rates to hyperedges of observed events. More than 39% of all
observed events are assigned the highest event rate among all sampled
alternatives (note that more than one hyperedge can be assigned the
same maximum event rate). Moreover, we compute for each observed
event 𝑒 = (𝑡𝑒, ℎ𝑒) the percentile of the associated relative rate 𝑟𝑒𝑙.𝑟𝑎𝑡𝑒(ℎ𝑒)
in the vector of values (𝑟𝑒𝑙.𝑟𝑎𝑡𝑒(ℎ))ℎ∈�̃�𝑡𝑒

. For comparison, under random
guessing we would expect percentiles equal to 0.5. The model seems
to perform reasonably well also from that perspective: the median
percentile over all observed events is more than 0.95, implying that the
‘‘typical’’ event hyperedge is surpassed by less than 5% of its associated
alternatives. Note that this is nevertheless consistent with our view that
predicting the correct event hyperedge is a difficult task, since 5% of
4 million (or up to 700,000 in conditional-size models) is still a large
number. We think that developing more sophisticated methods to assess
the fit of RHEM is a relevant task for future work.

5.1. Limitations of the empirical case study

We recall that the contribution of this paper is methodological,
that the empirical case study has been included for illustrating the
usefulness of RHEM, and that it is not our objective here to draw
conclusive insights into Thatcher’s government. In fact, the concrete
model specification that we applied to our empirical data is quite rep-
resentative for basic RHEM and is almost independent of the concrete
empirical setting. It seems plausible that (subset-)repetition, closure,
and covariate effects (main effect and homophily) are present in most
instances of relational hyperevent networks — although the nature of
the covariate will most likely be different in other settings. We avoided
to include effects that are specific to the concrete setting. For that
reason, we discuss some of the limitations of our case study and how
these limitations could be tackled in future work that seeks to draw
empirical insights.
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Fig. 7. Co-attendance networks at the time of the first 14 multi-actor events in the Thatcher meeting data. Circles represent ministers (circles with a dark shade represent dry
ministers), squares represent events, and lines connect events to their participants.
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In our study we considered only one covariate – ‘‘dry’’, which
intuitively identifies ministers supporting Thatcher’s political agenda –
and we did not distinguish any type of meetings. A more sophisticated
analysis might consider ministerial roles, membership in committees,
or restricted access to some meetings, e. g., due to national secu-
rity interests. Some meeting events are ‘‘formal’’ cabinet meetings or
cabinet committee meetings which, in the medium term, have static
attendee lists, while other events correspond to ‘‘ad-hoc’’ meetings with
unconstrained participant lists. There are a number of possibilities to
extend RHEM in order to control for such constraints. Ministerial roles
or committee membership could be included via covariate effects and
it is possible to specify separate models for, e. g., formal and ad-hoc
meetings, or to interact effects with dummy variables indicating the
type of meetings. If attendee lists of meetings are constrained – either
by mandatory participation or restricted access – then this could be
incorporated by specifying the risk set accordingly: if it is known that,
say, minister 𝐴 necessarily has to attend a meeting event 𝑒 = (𝑡𝑒, ℎ𝑒),
hen the risk set at time 𝑡𝑒 should comprise only hyperedges that
ontain 𝐴; if it is known that minister 𝐵 must not attend such a meeting
234
for instance, due to national security interests), then the associated
isk set should comprise only hyperedges not containing 𝐵. Since such

constraints could explain latent dense groups or separation between
groups of actors, not including them in the model might distort findings
on effects such as repetition, homogeneity, or closure.

Another issue worth mentioning is our approach to condition the
risk sets to the observed event size. We argue that in our empirical
data the event rate associated with hyperedges depends strongly on
hyperedge size, with factors up to 500,000. Conditional-size RHEM
seem to be a way to avoid comparison of hyperedges with such different
baseline rates. The decision to condition on hyperedge size, however,
has implications for the interpretation of results. For instance, a finding
such as the preference for meeting dry ministers in a conditional-size
RHEM does not imply a tendency to add more and more dry ministers
to the set of attendees (since this would change the size of the meeting
event) but rather a tendency to add dry ministers whilst removing
the same number of non-dry ministers, thereby increasing the overall
proportion of dry attendees at the meeting event. Thus, the point of
view in conditional-size models is that actors compete for participation
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in meetings. Another implication is that hypotheses concerning event
size (such as, a preference for having large or small meetings) cannot
be tested with conditional-size RHEM. It is worth noting that the
approach to condition hyperedge size cannot be justified by substantive
arguments in our empirical data, as it seems unlikely that the PM can
only meet with groups of ministers of a given size at a given point in
time. We consider conditional-size RHEM rather as a way to prevent
that hyperedges of observed events are compared with alternative
hyperedges of different size that are known to have very different
baseline intensities. For robustness checks we estimated RHEM with
unconstrained risk sets, controlling for a linear and quadratic effect of
hyperedge size on meeting intensity — similar to the approach taken by
Lerner et al. (2019). Some of these findings were consistent with those
made via conditional-size models: we found positive effects for repeti-
tion, subset-repetition of order two, and average-dryness and a negative
closure effect. However, subset-repetition of order one and three, as
well as dry-homogeneity, were no longer significant in RHEM with
unconstrained risk sets. Moreover, findings made via unconstrained
models are more sensitive to the inclusion or exclusion of effects. In
summary, while some of the empirical findings seem to be robust, we
argue that conditional-size models are a way to filter out the strong
dependency of event rates on hyperedge size. An alternative to this
approach would be to develop RHEM with unconstrained risk sets that
better control for the effect of size. In general, the question whether to
condition RHEM on observed event sizes needs future work (also see
the discussion below).

6. Conclusion

Relational event models enable the analysis of time-stamped so-
cial interaction data that frequently represent the micro-structure of
social networks (Pallotti et al., 2020). Because of their emphasis on
temporally ordered event sequences, available relational event models
are ill-suited as models for clusters of simultaneous events like those
recorded in contact diaries where one person (the diarist) typically
meets simultaneously multiple alters at a specific point in time giving
rise to a cluster of dyadic events with the same time-stamp. This one-
to-many and many-to-one ‘‘multicasting’’ situation is more common
than our empirical illustration might suggest. For example, situations
where ego interacts with multiple alters simultaneously are commonly
encountered in empirical studies of conversation (Gibson, 2005) and
in the analysis of venture capital investment syndicates (Sorenson and
Stuart, 2008).

The main methodological contribution of this paper was to extend
REMs by proposing RHEM as a general statistical framework for the
analysis of time-stamped events involving multiple actors simultane-
ously. We have shown how RHEM may be used to estimate event
frequencies associated with all subsets (i. e., hyperedges) of a given set
of actors. By specifying appropriate hyperedge statistics, it is possible
to rigorously test a wide range of hypotheses about how characteristics
of a group may influence the probability that group members experi-
ence common events. Examples of characteristics of a group that may
be of theoretical or empirical interest include its socio-demographic
composition and its embeddedness in the network of prior interaction
events.

We have exemplified the empirical applicability of RHEM using data
extracted for the contact diaries of Ms. Margaret Thatcher. Our illustra-
tive analysis revealed relevant patterns in the structure and dynamics
of hyperevent networks. We discussed that an over-representation of
closed triangles in one-mode projections of co-attendance networks
does not necessarily give evidence for triadic closure — but can in
a more straightforward manner be explained by ‘‘large’’ events (i. e.,
events involving three or more actors), or by the tendency to (partially)
repeat such events. In our empirical analysis we rather find a tendency
against triadic closure, given that we control for repetition and subset-
235

repetition. We argued that negative triadic closure can explain the
existence of overlapping but stable (i. e., non-merging) dense groups
and, in turn, the existence of actors occupying stable broker positions.
In contrast, positive triadic closure would predict that overlapping
groups tend to merge over time, thereby closing structural holes.

In closing, it may be useful to repeat that while we demonstrated
the value of RHEM in a specific empirical context, the model itself is
general and may be applied to data produced by a variety of social
settings. RHEM apply to network data taking the form of a sequence
of relational hyperevents, if the following scope conditions hold. Event
times have to be available at a sufficient level of resolution to allow
considering events as conditionally independent of each other, given
the network of previous events (Lerner et al., 2013b). The frame-
work allows simultaneous events, if conditional independence can be
credibly assumed. Moreover, the approach to specify event rates at a
given time as a function of all previous events assumes that decisions
regarding participant lists are done at event time — an assumption that
might be violated if events (with fixed set of attendees) are scheduled
significantly in advance. A possible way to deal with such situations
would be to specify event rates dependent on past events at the time
of planning the event. Another scope condition deserving notice is that
event participants have to be extracted from a larger set of ‘‘possible
contacts’’ containing a population of known actors. This set itself may
vary over time, but the identities of the actors at risk of experiencing
an event must be known at the time of observed events.

Further developing RHEM opens up several avenues for future work.
As we discussed above, the approach to condition RHEM on observed
event sizes may not be appropriate in all settings. An alternative would
be to control for the effect of event size on relative rates by including
(functions of) hyperedge size in the model statistics. A preliminary
analysis suggests that quadratic polynomials of hyperedge size do not
seem to be sufficient — at least not for the empirical data we considered
in this paper. Future work might explore fixed effects for (some) event
sizes or interacting other explanatory variables with size. Another di-
rection for advancing RHEM methodology would be to further develop
methods for model selection and assessment of model fit. For instance,
we might compare statistics of possible events predicted by a RHEM
with those of observed events to assess whether models are likely to
generate plausible events.
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Appendix. Visualization of co-attendance networks for the first 14
events

In Fig. 7 we visualize the co-attendance network before and after
the first 14 multi-actor events. To avoid visual clutter we choose the
earliest time points in the sequence of almost 2000 events. We display
only events with two or more attending participants (multi-actor events),
ince events with only one attending minister result in uninformative
vent nodes of degree one. The layout has been computed by an
lgorithm for dynamic network visualization proposed by Brandes and
ader (2011) and implemented in the visone9 software (Baur et al.,

001). Note that this is an offline algorithm in which node positions
or the network at time 𝑡 take into account network data from time
oints 𝑡′ > 𝑡.

9 http://visone.ethz.ch/.

http://visone.ethz.ch/
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