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Abstract - This paper compares the performance of two graph neural network architectures on the emulation of a cardiac mechanic 

model of the left ventricle of the heart. These models can be applied directly on the same computational mesh of the left ventricle 

geometry that is used by the expensive numerical forward solver, precluding the need for a low-order approximation of the true geometry. 

Our results show that these emulation approaches incur negligible loss in accuracy compared in the forward simulator, while making 

predictions multiple orders of magnitude more quickly, raising the prospect for their use in both forward and inverse problems in cardiac 

modelling. 
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1. Introduction 
Mathematical modelling of the biomechanics of soft-tissue physiological processes has seen notable advances in recent 

years [1]. In particular, the increasing sophistication of mechanical models of the dynamics of the heart during the cardiac 

pump-cycle has raised the prospect of their use in-clinic for real-time decision support [2]. In this paper, we study one such 

model, the Holzapfel-Ogden (HO) constitutive law [3], which characterises the passive properties of the myocardium of the 

left ventricle (LV) of the heart. These properties determine the dynamics of the LV during diastole, the period of the cardiac 

cycle when the LV fills with blood. It has been shown that calibration of the LV myocardial passive properties predicted by 

the HO model against the corresponding properties observed in cardiac imaging can deliver insights into cardiac function 

that are of relevance to clinicians [4]. The problem with directly applying the cardiac biomechanical model along with the 

HO model in clinic is that the equations describing the passive dynamics of the heart admit no analytical solutions. Instead, 

the specific LV geometry of a given subject must be discretised into a computational mesh before the equations can be solved 

numerically. Using for example the finite element method, finding a numerical solution can take up to 10 minutes, even on 

a high-performance computer. In order for in-clinic iterative calibration of subject-specific myocardial passive properties 

however, this procedure would have to be performed at each calibration step. Since hundreds of iterations may be required 

for accurate calibration, the computational expense that would be incurred prohibits the use of this approach in real-time 

clinical decision support.  

The problem of expensive numerical forward solvers is general to the physical sciences and has led to the development 

of the field of emulation, or surrogate modelling [5]. An emulator, commonly a Gaussian process, is a statistical model which 

approximates the numerical solver, or simulator, at much lower computational expense at prediction time. The emulator is 

trained on a set of numerical forward simulations, which are designed to densely fill the domain of the simulator. In cardiac 

mechanics, the domain of interest is the space of physiologically plausible myocardial material parameter values, blood 

pressure profiles and LV geometries, respectively. The issue here is that each LV geometry must be represented by a 

computational mesh comprised of hundreds or potentially thousands of nodes to obtain accurate numerical simulations - 

generating a training data set with a dense coverage over a space of this dimensionality is not feasible. For this reason, 

previous research in this area has used dimensionality reduction techniques to find a lower order representation of the LV 

geometry mesh, before then training an emulator in this reduced space [6,7]. The problem with this approach is that the low-

order representation of the LV geometry mesh will not perfectly match the true geometry. Unfortunately, we have found that 

that it is difficult to get a good representation of the LV mesh that is of sufficiently low order where traditional emulation 

techniques can be used effectively.  
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There has recently been substantial interest in the machine learning community in the application of graph neural 

networks (GNNs) [8, Chapter 23] to the task of emulation of mesh-based simulation models. GNNs explicitly account 

for the local connectivity structure of the computational mesh, in a manner analogous to how a convolutional neural 

network accounts for the local connectivity of an image, allowing them to be applied to high density meshes. Our 

objective in this paper is to take two of the latest GNN architectures which have demonstrated strong performance on 

mesh-based emulation: DeepEmulators [9] and MeshGraphNets [10], and compare their performance on the 

emulation of passive cardiac mechanics. This is a challenging emulation problem, as each LV has a highly non-Euclidean 

geometry and is also non-isotropic due to the existence of muscle fibres in the myocardium. The convoluted geometry 

of these fibres around the LV perimeter as well as in different tissue layers, means the amount of strain and tensile forces 

within the generated meshes are highly variable in different locations and directions [11]. In Section 3 below, we outline 

how we created training and test data sets on which the two GNN emulators could be trained and evaluated, before the 

two architectures are explained in Section 4. The emulation results are then presented and discussed in Sections 5 and 6 

respectively. Firstly however, we give a brief of the description of the biomechanical model of the left ventricle we 

consider here. 

 

2. The Biomechanical Left Ventricle Model 
In this study, we consider the passive dynamics of the left ventricle under a constant end-diastolic pressure of 8 mmHg. 

The myocardium is characterized by an incompressible, transversely isotropic fibre-reinforced material, a reduced form of 

the widely used Holzapfel and Ogden model [3], denoted as the HO model. The fibre field is considered as generated by the 

Laplace-Dirichlet Rule-Based (LDRB) algorithm [12]. The strain energy density function is given by 

 

                                        𝚿 =
𝑎

2𝑏
(𝑒𝑏(𝐼1−3) − 1) +

𝑎f

2𝑏f
(𝑒𝑏f(𝐼4f−1)2

− 1) +
1

2
𝐾(𝐽 − 1)2 ,               (1) 

where 𝑎, 𝑏, 𝑎f and 𝑏f are the material parameters, which we denote collectively as 𝛉. The parameters 𝑎 and 𝑏 

characterise the isotropic response of the myocardium, while 𝑎f and 𝑏f describe the reinforced stiffness along the myofibres. 

The invariants 𝐼1 and 𝐼4f are defined as 𝐼1 = trace(𝐅T𝐅) and 𝐼4f = f0 ⋅ (𝐅T𝐅)f0, where F is the deformation gradient and f0 

is the unit myofiber direction at the reference configuration. The last term in (1) is to enforce the incompressibility constraint 

with the Lagrangian multiplier 𝐾 and 𝐽 = det(𝐅). The quasi-static boundary value problem for the LV passive filling in the 

current configuration (𝛀) is defined as 

                                                                       {

𝛁 ⋅ 𝛔 + 𝐛 = 0  in  𝜴,

𝛔 ⋅ 𝐧 = 𝐭  in   ∂𝜴𝑁 ,

𝐮 = 𝐮‾   in   ∂𝜴𝐷 ,

                                                                            (2) 

where 𝛔 is derived from the HO model by differentiating 𝚿 with respect to F, 𝐛 is the body force per unit volume, 𝐧 is 

the normal direction of the external surface of the Neumann boundaries (∂𝜴𝑁) and 𝐭 = −𝒑𝒏 with 𝒑 the applied cavity 

pressure. 𝐮‾  is the vector of displacement boundaries at the top of the LV geometry, the Dirichlet boundaries (∂𝜴𝐷). Eq. (2) 

must be solved numerically to find the displacement of the LV geometry from start to end-diastole, given a value of the 

material properties 𝛉. We do so using the open-source library Pulse [13], which makes use of the finite element method 

(FEM) to solve for the displacement of a LV geometry that has been discretised into a finite set of nodes with a local 

connectivity structure. The reader is directed to [13] for further details. 

 
3. Data 

We denote the numerical forward solver described at the end of the previous section as 𝓜, which takes as input a 

material parameter vector 𝛉 and a computational LV geometry mesh 𝐺, and returns a displacement matrix 𝐔 ∈ ℝ𝑀×3, where 

𝑀 is the number of finite-element nodes in 𝐺. That is, we have a function: 
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     (a) 𝛉 = [2.0,4.0,2.0,4.0]                                (b) 𝛉 = [1.0,2.0,1.0,2.0]                              (c) 𝛉 = [0.5,1.0,0.5,1.0] 

 
Fig. 1: Undeformed LV geometry (blue) against displaced geometry (red) from the simulator, run for three different values of the 

material parameter vector 𝛉. Lower myocardial stiffness levels lead to larger displacements from start to end-diastole. 

 

                                                                                 𝓜: 𝚯 × 𝒢 → ℝ𝑀×3                                                                      (3) 

which we seek to approximate with a surrogate model 𝓜̂, where 𝚯 and 𝒢 are the spaces of physiologically plausible 

material parameter values and LV geometries, respectively. In order to build an emulator, we require a training data set of 

input-output pairs from 𝓜: 

                                                              𝓓 = {([𝛉𝑖, 𝐺𝑖], 𝐔𝑖)𝑖=1
𝑁 }                                                                 (4) 

In addition, an independent test set is required to evaluate the accuracy of the surrogate. Creating these datasets in turn 

requires a selection of material parameter and LV geometry configurations from which to run simulations. Considering first 

the material parameters, we would ideally select their values for the simulations by sampling from the true population 

distribution, however this distribution is unknown. Another possibility would be to specify very wide feasible bounds on 

each individual parameter value and set 𝚯 to be a large box-domain encompassing these bounds. Then, a low-discrepancy 

sampling method such as a Sobol sequence [14] could be used to choose points in this space. This approach however would 

tend to favour running simulations from high material stiffness values. Such values are unlikely to be encountered in real 

patient data, as they would constrain the myocardium from expanding enough during diastole to pump sufficient blood into 

the systemic circulation through the aorta. This is illustrated in Figure 1, where for a fixed LV geometry, we run a simulation 

of the HO model for three different values of the material stiffness parameters 𝛉. We see that, as the stiffness values decrease, 

the displacement in the geometry between start and end-diastole increases. For this reason, we instead decide to sample the 

material parameters using a Sobol sequence of length 1000 on log parameter space. The first 600 points were used for 

training, and the following 100 were used as a validation set on which the training of the emulators was monitored. The final 

300 points were reserved as an independent test set. With this approach, our dataset is biased towards lower material 

parameter values, which will yield larger, more realistic displacements from the simulator. We chose the sample so that the 

material parameters 𝑎 and 𝑎f  would be in the range [0.1,10] kPa (the original space) and 𝑏 and 𝑏f would be in the range 
[0.5,10]. To create the LV geometry meshes, we used functionality in the Pulse library to generate a simplified artificial 

mesh with 543 finite element nodes. We then deformed the length/width/breadth this base mesh randomly to create 1000 

meshes from which to run training, validation and test simulations. The ranges within which these random deformations 

were applied were chosen to ensure that the dimensions of the artificial geometries were in ranges that are plausible for real 

LV geometries. Note that this procedure ensured that each mesh was unique; in particular, the meshes run for the test 

simulations were not used to generate the training simulations. Nevertheless, the meshes generated by this procedure were 

more symmetric than is the case for real LV meshes. Using real LV geometry meshes will the remit of future work. Once 

the material parameter and LV geometry inputs were specified, we ran a simulation of the diastolic filling of the LV to obtain 

the resulting displacement for all 1,000 input configurations. Due to the bias in our material sampling procedure towards 

lower stiffness values, a large variety of magnitudes in LV displacements were observed. For example, the increases in LV 

cavity volume from start to end-diastole for the 300 test simulation points ranged from 15% to 500%. 
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4. Emulation Approaches 
Our objective is to build an emulator 𝓜̂(𝛉, 𝐺)which approximates the true forward model, 𝓜. Before doing so, 

we first processed the computational LV meshes from our dataset into a format suitable for emulator training. 

Specifically, each finite element node 𝑖 was assigned a feature vector 𝐯𝑖 defined as follows: 

 

                                                                      𝐯𝑖 = (𝑏𝑖, 𝐟𝑖 , log 𝛉)                                                                       (5) 

 Where 𝑏𝑖 is a Boolean variable indicating if the node lies on the Dirichlet boundary, 𝐟𝑖 ∈ ℝ3is the fibre orientation 

vector at the node, and finally 𝛉 is the four-dimensional material parameter vector, common to all nodes in each 

individual geometry. We take the log of the material parameters because the displacement response of the myocardium 

increases non-linearly as the stiffness values decrease, and we find that working on the log parameter scale increases 

emulator performance. We also create a directed edge to node 𝑖 from each node 𝑗 which is a member of a common finite 

element to node 𝑖. The set of all nodes 𝑗 which send a directed edge to node 𝑖 is called the local neighbourhood of node 

𝑖, which we denote 𝒩𝑖. Each directed edge is assigned the following feature vector:  

 

                                                            𝐞𝑗𝑖 = (𝐱𝑖 − 𝐱𝑗, ∣∣ 𝐱𝑖 − 𝐱𝑗 ∣∣
2
)                                                              (6) 

where  𝐱𝑖  are the euclidean coordinates of the receiving node 𝑖 and 𝐱𝑗 are the coordinates of the sender node 𝑗. Note 

that absolute edge positions are not inputted to the model, precluding the need for the use of a low order mesh 

representation. Instead, relative node positions are encoded, meaning the emulator must learn to predict displacements 

based only on local attributes of the LV geometry. We then applied two state-of-the-art GNN architectures [9,10] to our 

processed data, each of which we describe now. 

 
4.1. DeepEmulator 

The DeepEmulator architecture [9] was inspired by the intuition that within short-time frames, the displacement 

of a given node 𝑖 is primarily a function of its own inertia, and the internal forces from those nodes in its immediate 

local neigbourhood 𝒩𝑖. It makes predictions for the displacement 𝐮𝑖 at each node 𝑖 as follows: 

 

                                          

𝐳𝑖
inertia = 𝑓𝛼

inertia(𝐯𝑖)

𝐳𝑗𝑖
internalForce = 𝑓𝛽

internalForce(𝐞𝑗𝑖 , 𝐯𝑗 , 𝐯𝑖)

𝐮𝑖 = 𝑔𝛾(𝐳𝑖
inertia, ∑ 𝐳𝑗𝑖

internalForce
𝑗∈𝒩𝑖

)

                                                   (7) 

 

where 𝑓𝛼
inertia, 𝑓𝛽

internalForce and 𝑔𝛾 are each individual multi-layer perceptrons (MLPs). Note that the inputs to 𝑓𝛼
inertia 

and 𝑓𝛽
internalForce described above differ slightly from those used in [9]. This is because the authors introduce the 

DeepEmulator architecture to predict secondary motions of 3D character animations, given deterministic primary 

motions, whereas we apply the method here in the context of cardiac mechanics. The MLP 𝑓𝛼
inertia focuses solely on the 

individual characteristics of the centre node 𝑖, and it embeds the raw values 𝐯𝑖 into a higher dimensional latent vector 

𝐳𝑖
inertia. The weights and biases of this MLP are updated during the training procedure to find a latent representation 

which allows for accurate displacement predictions to be made. The MLP 𝑓𝛽
internalForce on the other hand encodes the 

internal forces acting from each node 𝑗 ∈ 𝒩𝑖 on the center node 𝑖 into a latent vector 𝐳𝑗𝑖
internalForce. The internal forces 

depend both on the characteristics 𝐞𝑗𝑖 of the directed edge from node 𝑗 to node 𝑖, but also the individual characteristics 

𝐯𝑗 and 𝐯𝑖 of the nodes themselves. Finally, the MLP 𝑔𝛾 predicts the displacement of each node 𝑖, given the inertia vector 

𝐳𝑖
inertia and the sum of the internal force vectors 𝐳𝑗𝑖

internalForce from all neighbouring nodes 𝑗. The idea here is that all 

geometrical information has been encoded into these latent vectors, allowing final predictions to be made for each node 
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individually. All three MLPs 𝑓𝛼
inertia, 𝑓𝛽

internalForce and 𝑔𝛾 were implemented with two hidden layers each of width 96, using 

the tanh activation function. In addition, the outputs of 𝑓𝛼
inertia and 𝑓𝛽

internalForce were processed with a LayerNorm. The latent 

vectors 𝐳𝑖
inertia and 𝐳𝑗𝑖

internalForce were chosen to be of dimensionality 32 and 64, respectively. 

 
4.2. MeshGraphNets 

MeshGraphNets is an encode-process-decode GNN architecture introduced in [10] for the emulation of mesh- based 

simulators. The authors were interested in simulations over many time steps and with simulations involving the interaction 

between different bodies. In our case, we are interested in the simulation of the displacement of a single LV geometry at one 

specific time point, end-diastole, and we have tailored our discussion of the architecture to this problem domain. Given a 

computational mesh whose vertices and edges have been assigned feature vectors 𝐯𝑖 and 𝐞𝑖𝑗  respectively, MeshGraphNets 

first encodes these features into higher dimensional latent vectors 𝐯𝑖
0 and 𝐞𝑖𝑗

0 . The encodings are performed using MLPs 

denoted 𝜖𝑉 and 𝜖𝐸. These latent vectors are then sequentially updated in the processor stage for 𝑙 = 1,2, . . 𝐿 message-passing 

steps as follows: 

 

                                                           
𝐞𝑖𝑗

𝑙 = 𝑓𝐸(𝐞𝑖𝑗
𝑙−1, 𝐯𝑖

𝑙−1, 𝐯𝑗
𝑙−1)

𝐯𝑖
𝑙 = 𝑓𝑉(𝐯𝑖

𝑙−1, ∑ 𝐞𝑗𝑖
𝑙

𝑗∈𝒩𝑖
)

                                                            (8) 

where 𝑓𝑉   and 𝑓𝐸 are MLPs with a residual connection. The final decode step predicts the displacement 𝐮𝑖 for each 

node 𝑖 using the final latent node representation 𝐯𝑖
𝐿 using the prediction MLP 𝛿𝑉. For this work, all MLPs 𝜖𝑉, 𝜖𝐸, 𝑓𝑉, 𝑓𝐸 

and 𝛿𝑉 were implemented with two hidden layers of with 96 with tanh activation function, as in 4.1 above. The outputs of 

all MLPs apart from 𝛿𝑉 were processed with a LayerNorm. The latent embeddings for the node and edge features were each 

of length 24. Finally, we used 𝐿 = 3 message passing steps. 
 

4.3. Architecture Comparison 

The primary difference between the two architectures is the message passing steps used in MeshGraphNets, which 

means that information from nodes outside the local neighbourhood 𝒩𝑖 can be used to predict the displacement at node 𝑖. 
This also means however that the network will require more parameters, and hence incurs longer training and prediction 

times. Another difference is the form of the final prediction MLP for each architecture. The prediction MLP for the 

DeepEmulator is more physics-informed in the sense that it tries to model the inertia and internal forces acting on each 

node from each of its neighbours, whereas the MeshGraphNets prediction MLP only uses information from the final node 

representation to make predictions.  
 
4.4. Model Training and Evaluation 

We trained both networks using a per-node mean-squared-error loss between the true displacements 𝐮𝑖 and those 

predicted by the model, 𝐮̂𝑖. All input features and output displacements were normalised to mean zero and unit variance 

before training. Training was carried out for 5,000 epochs using the Adam algorithm with a mini-batch size of 10 and a fixed 

learning rate of 5 × 10−4. Each network was implemented in Python using the graph_nets library [16] and training was 

performed using Tensorflow on an NVIDIA Quadro P4000 GPU. Note that for each architecture, our choice of latent hyper-

parameters such as MLP width and latent dimension sizes are smaller than those used in the original publications. This is 

because we saw negligible difference in prediction accuracy when we increased the size of the latent values beyond those 

outlined above, which is possibly due to our dataset being significantly smaller than those used in [9] and [10]. 

  

 

5. Results 
Having trained the two GNN emulation approaches as described above, we used the fitted models to predict the 

displacement of the 300 independent test simulations. For each simulation 𝑖 = 1,2, . . .300 and finite element point 𝑗 =

1,2, . . .543, we calculated the Euclidean distance ∣∣ 𝐮𝑖𝑗 − 𝐮̂𝑖𝑗 ∣∣2 between the true simulated displacement 𝐮𝑖𝑗  and the 

corresponding prediction from the emulator 𝐮̂𝑖𝑗, giving a total of 300 × 543 = 162,900  loss values for each emulator. The 
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empirical 25th, 50th (median) and 75th percentiles of the losses are displayed in Table 1. These summary statistics show 

the MeshGraphNets emulator outperforms the DeepEmulator by greater than a factor of two, with only 25% of its 

nodal displacement predictions incurring a loss of more than one-tenth of a millimetre. 

 
Table 1: Test set node-wise prediction loss summary statistics (cm) 

 

Emulation Method 𝟐𝟓th Percentile Median 𝟕𝟓th Percentile 

DeepEmulator 8.0 × 10−3 1.4 × 10−2 2.2 × 10−2 

MeshGraphNets 3.6 × 10−3 6.2 × 10−3 1.0 × 10−2 

 

The For each test geometry 𝑖, we then calculated the mean displacement loss over all finite element nodes: 

 
1

𝑀
∑ ∣𝑀

𝑗=1 ∣ 𝐮𝑖𝑗 − 𝐮̂𝑖𝑗 ∣∣2 when using the MeshGraphNets emulator. A histogram of these per-geometry loss values is 

displayed in Figure 3 (a), which illustrates that there was a long tail in the distribution of test-set losses, with one outlier test 

geometry having a mean displacement loss of 5.2 × 10−2, more than one order of magnitude larger than the test points with 

lowest loss. Figure 3 (b) plots the true simulated LV geometry for this outlier point in red mesh, against the MeshGraphNets 

prediction in blue. 

 

 

                            
                                                (a)                                                                                     (b)   

Fig. 2: (a) Histogram of mean displacement loss (cm) for the 300 test simulations. (b) Plot of true displaced geometry (red mesh) 

against the corresponding prediction from the MeshGraphNets emulator (blue) for the outlier point in (a) with mean displacement 

error of 5.2×10−2. The displacement of this geometry was simulated with a material parameter vector 𝛉 = [0.11,0.6,0.16,8.16]. 

 

Finally, Table 2 compares the wall-clock prediction time of the MeshGraphNets emulator, shown in the first 

column, with the prediction times of the simulator. Simulation times are highly dependent on the values of the material 

stiffness parameters, with lower stiffness values leading to significantly longer prediction times. For this reason, two 

simulation times are shown for the simulator in Table 2. The second column of the table shows the time to convergence 

of a forward simulation with material parameter values 𝑎 = 𝑎f = 2.2 and 𝑏 = 𝑏f = 3.2 which are approximately the 

average values from the training data, while the third column then shows the time to convergence of a simulation with 

𝑎 = 0.2 and 𝑏 = 0.6, with 𝑎f and 𝑏f fixed as before. The prediction times for the emulator are independent of the material 

parameter values so only one time is shown for the surrogate model. This time was found as the average of an ensemble 

of 100 predictions from the surrogate run on an NVIDIA Quadro P4000 GPU, whereas the numerical forward 

simulations were run on an Intel Xeon Platinum 8276L CPU. The final two columns of Table 2 show the speedup factor 

on the prediction times for the emulator compared to the simulator, which is in excess of three orders of magnitude for 

the higher material parameter stiffness configuration, and over four orders of magnitude for the lower stiffness 

configuration.  
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Table 2: Prediction times (seconds) for emulator (tMeshGraphNet) and true forward model (tsimulator). 

 

tMeshGraphNet tsimulator 

𝑎 = 2.2, 𝑏 = 3.2 

tsimulator 

𝑎 = 0.2, 𝑏 = 0.6 

Speedup 

𝑎 = 2.2, 𝑏 = 3.2 

Speedup 

𝑎 = 0.2, 𝑏 = 0.6 

1.0 × 10−2 13.6 551 1.4 × 103 5.5 × 104 

 

6. Discussion 
The results presented in Table 1 demonstrate the ability of both the DeepEmulator and MeshGraphNets models to 

emulate the HO law with a high degree of accuracy, with the MeshGraphNets approach outperforming DeepEmulator by 

approximately a factor of two. This suggests that geometrical information outside the immediate neighbourhood of a node is 

useful for predicting the resulting nodal displacement. The histogram of per-geometry mean displacement errors in Figure 3 

(b) illustrates that the summary statistics in Table 1 hide a long tail in the distribution of prediction errors for the 

MeshGraphNets emulator. The points in the tail of the histogram tend to correspond to simulations with low values of the 

material parameter values, even though our design of training inputs heavily favoured these regions of low stiffness. This 

suggests that a model-based design, such as those discussed in [5], rather than a space-filling one may be required when 

selecting the location of the training inputs to ensure that accurate predictions are made across the entire material parameter 

space. Figure 3 (b) displays in blue the ground truth displaced geometry against in red mesh the prediction of the 

MeshGraphNets emulator for the outlier simulation seen in the tail of Figure 3 (a), which had a mean displacement error of 

5.2 × 10−2 between ground truth and prediction. Even for this outlier point, the difference between the true simulation and 

the prediction of the emulator appears qualitatively slight. While the MeshGraphNets emulator incurs a small loss in 

accuracy compared to the true forward simulator, it is significantly more computationally efficient at prediction time, as can 

be seen in Table 2, especially for simulations with low material stiffness values. Note that we have not optimised our 

implementation of MeshGraphNets for prediction speed and so there is potential for further performance gains here. The 

ability of the MeshGraphNets approach to make both accurate and fast predictions that generalise across different LV 

geometries means that it could be useful both for forward problems, such as sensitivity analyses, and inverse problems, where 

the objective is to estimate the material parameters 𝛉. Before this approach is applied to such areas, however, it is important 

that we evaluate its emulation performance on real LV geometries, rather than the artificial geometries considered here. Real 

LV geometries can be highly asymmetrical with varying wall thickness, which will make emulation more challenging. 

Specifically, a larger data set and greater number of message-passing steps than those used in this study may be required to 

train a MeshGraphNets emulator that can account for the complexities of real LV geometries. In addition, it is important 

for both forward and inverse problems that the model can accurately estimate strains internal to the LV wall. This will require 

a much denser mesh than considered in this study, potentially with tens of thousands of finite element nodes. Both the 

DeepEmulator and MeshGraphNets architectures have been shown however to obtain strong performance on meshes of 

this size; the reader is directed to the discussions in [9] and [10] for details.  

 

7. Conclusion 
This paper has compared the performance of two graph neural network architectures: DeepEmulator [9] and 

MeshGraphNets [10], on emulation of the Holzapfel-Ogden model for the passive dynamics of the left ventricle. We found 

that both architectures obtained high accuracy, with MeshGraphNets outperforming DeepEmulator. In addition, we have 

shown that the MeshGraphNets emulator makes predictions multiple orders of magnitude more quickly than the numerical 

forward simulator. However, our study only considered simplified, artificial left ventricle geometries. Future work will apply 

these methods to real left ventricle geometries, which are extracted from cardiac imaging scans. 
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