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Abstract

Tools for computing detailed optically thick spectral line profiles out of local thermodynamic equilibrium have
always been focused on speed, due to the large computational effort involved. With the Lightweaver framework,
we have produced a more flexible, modular toolkit for building custom tools in a high-level language, Python,
without sacrificing speed against the current state of the art. The goal of providing a more flexible method for
constructing these complex simulations is to decrease the barrier to entry and allow more rapid exploration of the
field. In this paper we present an overview of the theory of optically thick nonlocal thermodynamic equilibrium
radiative transfer, the numerical methods implemented in Lightweaver including the problems of time-dependent
populations and charge-conservation, as well as an overview of the components most users will interact with, to
demonstrate their flexibility.

Unified Astronomy Thesaurus concepts: Radiative transfer (1335); Radiative transfer simulations (1967);
Computational methods (1965); Solar physics (1476); Stellar physics (1621)

1. Introduction

Optically thick nonlocal thermodynamic equilibrium (NLTE)
radiative transfer (RT) is one of the most computationally
intensive problems in modern solar and stellar physics. It
consists of taking a model atmosphere and computing self-
consistent atomic populations while taking into account the fact
that radiation originating from these atomic transitions may also
affect their states elsewhere in the atmosphere. The high
numerical cost of this problem is due in part to the high
dimensionality of the the intensity, as it varies with wavelength
and direction in addition to the spatial and temporal variation of
most other quantities considered, and also the possibly large
number of contributors at each wavelength. The NLTE problem
can be extended to take into account the problem of finding an
electron density consistent with the atomic populations, and this
will also be discussed.

In recent times there has been a rise of flexible high-
performance frameworks available in high-level languages
such as Python. One domain where these have demonstrated
their power is machine learning, where the building blocks
provided by the frameworks allow researchers to rapidly
prototype new systems with little loss in performance over a
hand-tuned highly specific low-level implementation. The goal
of Lightweaver is to provide a similar set of tools for plane-
parallel optically thick RT. To this end it consists of an
extensible Python frontend with a clean high-performance
C++ backend. During development the code has been
extensively tested against both RH (Uitenbroek 2001; Pereira
& Uitenbroek 2015) and SNAPI (Milić & van Noort 2018), to
ensure agreement between all three on a range of problems.
While most RT tools are designed specifically for a single task,
there is much commonality between the operations performed
(especially the most costly operations, such as the formal
solution of the RT equation (RTE)). It is therefore reasonable to
abstract out these common building blocks in a way that allows

a user to quickly build what amounts to a specialized tool with
very little code, in a high-level, memory-safe language that is
widely supported in the scientific computing community.
This paper describes in detail the components of the

Lightweaver framework, including the numerical methods
used. In Section 2 we provide an overview of NLTE RT and
describe the numerical methods and their implementations.
Then in Section 3 the structure of the framework is described to
demonstrate how modularity is achieved.
Lightweaver can be installed by an end-user through the

standard Python package manager pip without need for
particular compilers to be installed. The code is freely available
under the permissive MIT license5 and is available on GitHub6

with archival on Zenodo (Osborne 2021a). Lightweaver is in
constant development and suggestions and enhancements are
welcomed by contacting the authors or through the software’s
repository. All examples in this paper were tested against the
most recent release of Lightweaver, v0.5.0. These examples are
available on Zenodo (Osborne 2021b).

2. Numerical NLTE RT

In this section we first present a brief overview of NLTE RT;
for a much more in-depth introduction see Hubený & Mihalas
(2014). We also explain how most terms are implemented in
Lightweaver, especially those that are less apparent.
Solving the NLTE RT problem consists primarily of two

coupled sub-problems.

1. Solving the RTE to obtain the specific intensity at each
frequency, point, and direction in the discretized computa-
tional domain for a given set of atomic populations and a
given atmospheric model. This step is known as the formal
solution of the RTE.
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2. Updating the populations based on the radiative rates
obtained from the formal solution.

These two problems are solved iteratively; a formal solution is
first computed from an initial guess of the atomic populations,
which is then used to construct a linear operator applied in
conjunction with the current populations to update these until
convergence. Note that to compute the population update it is
necessary to compute the intensity from transitions that do not
overlap the spectral range of interest, due to their effect on the
balance of transitions between the atomic population levels.

In the following we will expand on the solution of these two
problems, first describing the terms that enter the equations, the
construction of a linear operator, and the formal solution to
the RTE.

2.1. Basic Definitions

The most basic quantity to consider in the study of radiation
and radiation transport is specific intensity. This is commonly
denoted I(ν, d) at some frequency ν and direction d and has (SI)
units J m−2 s−1 Hz−1 sr−1. Specific intensity (and its projec-
tions in the Stokes vector) is the quantity where our
observations and simulations meet, and the only vector by
which spectroscopic (and polarimetric) information arrives
from the observed object.

A ray traveling through a medium, such as neutral gas or a
plasma, gains a certain amount of energy per unit length due to
emission processes in the plasma, and loses another amount
due to absorption (χabs) and scattering (χscatt) processes. These
gain and loss terms are called emissivity and opacity, typically
denoted η and χ= χabs+ χscatt respectively, and will depend
both on the frequency considered, as well as the location and
direction of the ray.

Considering the case of a ray traveling through plasma made
up of neutral and ionized atoms, the emissivity and opacity will
depend on the number of atoms, the frequency-dependent
cross-sections of these atoms, and the quantum mechanical
processes coupling the photons and the plasma.

For a bound–bound process we then arrive at the following
expression for the radiative rates for a transition from level i to
level j ( j> i):

ò f n n n= Wd dR B I d d, , , 1ij ij∮ ( ) ( ) ( )

ò n y n n= + Wd dR A B I d d, , , 2ji ji ji∮ [( ( )) ( )] ( )

where f is the line absorption profile, ψ is the line emission
profile, and A and B are the Einstein coefficients for the
transition. The radiative rates have units s−1, and locally
describe the number of atomic transitions (i→ j and j→ i
respectively) per unit time. For bound–free transitions the
radiative rates are given by

ò a n n n= WdR I d d, , 3ij ij∮ ( ) ( ) ( )
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where h is Planck’s constant, c is the speed of light, αij is the
photoionization cross-section, kB is Boltzmann’s constant, and

ne is the electron number density. Φ is the Saha–Boltzmann
equation defined such that
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where n* is the population of the species in LTE, me is the
electron mass, ΔEji is the energy difference between levels j
and i, and gi is the statistical weight of level i. The Saha–
Boltzmann equation is obtained by combining the Saha
ionization equation and the Boltzmann excitation equation,
and describes the distribution of the total atomic population
across its possible states, at a given electron density, and under
the assumption of LTE.
The rest frequency νij of a transition is given by

n =
D

h

E
. 6ij

ji
( )

In Lightweaver, due to existing convention in other RT codes,
the energy of each level relative to the ground level of the
model atom is supplied in cm−1.
The Einstein coefficients are related to each other and to the

oscillator strength (a dimensionless quantity describing absorp-
tion probability) by
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where fij is the oscillator strength, e is the charge of an electron,
and ò0 is the vacuum permittivity. As the oscillator strength can
be used to compute the Einstein coefficients for a transition,
and again for consistency with other codes, Lightweaver
requires fij for each spectral line.

2.2. Line Broadening

A transition between well-defined energy states in a bulk
motionless plasma is not infinitely narrow, but instead
broadened by a number of factors, including natural radiative
broadening, Doppler broadening, and collisional broadening, to
give the absorption profile fij. By default we follow the
standard assumption of a Voigt absorption profile, and allow
for a combination of different damping terms. There are
described in detail in Appendix A.
The design of Lightweaver also supports non-Voigt line

profiles, such as the more complex model for electric pressure
broadening discussed in Kowalski et al. (2017), while only
modifying the Python code in the model atom object; however,
the standard code-path for the Voigt profile is more optimized.
The example presented in Section 3.7 shows how a Doppler
line profile could be implemented.
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2.3. MALI

In the following we present a brief review of the numerical
techniques implemented in Lightweaver. Much of the content
follows Uitenbroek (2001) and the RH code described therein.

Given an atomic species where the population of excitation
level i is given by ni the general form of the kinetic equilibrium
equation is given by

å å¶
¶

+  = -
¹ ¹

v
n

t
n n P n P , 10i

i
j i

j ji i
j i

ij· ( ) ( )

where v is the bulk macroscopic velocity of the particle
distribution, Pij is the total transition rate between atomic states
i and j and is given by

= +P R C , 11ij ij ij ( )

where Rij is the radiative rate, due to interaction with photons or
spontaneous emission, and Cij is the collisional rate, due to
interaction with other particles. In NLTE studies it is normally
assumed that the collisional rate can be known a priori from the
model atmosphere definition.

A common simplification of (10) is to assume that the
atmosphere is in a steady state (i.e., ∂ni/∂t= 0), and therefore
the advective term can also be ignored. This sets the left-hand
side of (10) to 0 and we obtain the statistical equilibrium
equation

å å- =
¹ ¹

n P n P 0. 12
j i

j ji i
j i
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For both (10) and (12), the system must be solved
simultaneously for all levels of an atomic species, the latter
requiring a constraint equation to avoid degeneracies.

Lightweaver adopts the same Rybicki–Hummer full pre-
conditioning approach (Rybicki & Hummer 1992) as used in
RH (Uitenbroek 2001), although the implementation is slightly
different. Following these authors, we write the emissivity η
and opacity χ of a transition between atomic levels i and j, at
frequency ν, along a ray of direction d as

h n= dn U , , 13ij j ji ( ) ( )

c n n= -d dn V n V, , , 14ij i ij j ji( ) ( ) ( )

where ni is the population density level i. We assume here that
j> i and then, by convention, χji=−χij.

The U and V terms are defined for bound–bound and bound–
free transitions as
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By convention we define Uij=Uii= Vii= 0.

Lightweaver can also treat lines necessitating partial
redistribution (PRD). Following Uitenbroek (2001) we define

r n
y n
f n

=d
d

d
,

,

,
18ij

ij

ij

( )
( )
( )

( )

and thus

n
p

r n f n= d dU
h

A
4

, , , bound bound 19ji ji ij ij( ) ( ) – ( )

n
p

r n f n= d dV
h

B
4

, , , bound bound. 20ji ji ij ij( ) ( ) – ( )

In the case of complete redistribution (CRD) ρ= 1. These
terms will be discussed in detail in Section 2.5.
The total opacity and emissivity can then be found by

summing over all species:
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In Lightweaver we split species into three categories.

1. Background: bound–free transitions are considered under
the assumption of LTE. The opacity and emissivity
contribution here is considered to be isotropic.

2. Detailed: all transitions (bound–bound and bound–free)
are considered in detail, using either given (e.g., from a
previous NLTE simulation) or LTE populations. The
opacity and emissivity contribution here is considered to
be angle-dependent.

3. Active: all transitions are considered in detail and terms
necessary for iterating the populations are accumulated.
The opacity and emissivity contribution here is consid-
ered to be angle-dependent.

The expressions for total emissivity and opacity can then be
written as the summation over the emissivity and opacity in
each of the three previous categories, for each frequency and
direction.
The source function at a given frequency and direction is

then given by

n
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where σ is the continuum scattering coefficient that will be
discussed further in Section 2.9.5.
It is common to define an operator, Λ, used to obtain the

monochromatic radiation field in a particular direction from the
source function:

n n= Lnd dI S, , . 24d,( ) [ ( )] ( )

In essence, this is our formal solver, discussed in Section 2.4.1.
Rybicki & Hummer (1992) introduce an additional operator, Ψ,
that aids in the construction of a linear preconditioned iterative
scheme for solving (12) such that
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where ctot
† is the opacity evaluated with the populations from

the previous iteration. For the converged solution, these two
operators are equivalent, as χ†= χ.

Taking the n as the vector of level populations {n1,
n2,K,nN} at a location in the atmosphere, we can write our
iterative scheme for (10) as

¶
¶

+  = Gv n
n

t
n , 26i

i i· ( ) ( )

where Γi is a row vector from the matrix Γ= ΓC + ΓR, which is
evaluated using the previous population estimate. ΓC and ΓR

represent the preconditioned collisional and radiative rate
equations respectively. We will address the construction of ΓC

later. From Rybicki & Hummer (1992) and Uitenbroek (2001)
we can write
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when assuming a diagonal Ψ* operator, describes the nonlocal
contribution to the radiation field from the atom in question,
and the local contribution from other species. It is often
separated, as it remains constant for all transitions in an atom.
The diagonal terms of Γ are computed using the conservation
property that requires, for the sake of total number conserva-
tion, that the sum of each column of Γ be zero (Rybicki &
Hummer 1992). Thus,

åG = - G
¹

. 29ll
m l

ml ( )

Now that Γ has been constructed it can be used in (26). In the
case of statistical equilibrium, we must solve the matrix-vector
equation Γn= 0. A constraint equation is also needed, to avoid
the trivial solution (n= 0), typically a constraint on the total
number density of the species. In effect, this amounts to
replacing one of the equations with a sum over the level
populations, i.e., replacing one of the rows of Γ with ones, and
the associated entry in right-hand side with the total population
number density.

The discretization of the time-dependent form of the kinetic
equilibrium equation is discussed in the following section as it
involves extra complexities strongly coupled to the numerical
methods applied.

2.3.1. Numerical Implementation

Most of the integration terms proceed similarly to those of
the RH code, but as those have not been presented in a single
document, we describe the numerical implementation in
detail here.

When considering a one-dimensional plane parallel atmos-
phere, as is done in Lightweaver, it is efficient to discretize the
integration over solid-angle using Gauss–Legendre quadrature
over the cosine of the angle between the ray and the normal to
atmospheric slabs, commonly denoted μ. These integrations are

then implemented as weighted summations of the integrand at
the Gauss–Legendre nodes i.e., the angle-averaged intensity

n
p

n= WdJ I d
1

4
, 30∮( ) ( ) ( )

at a point in the atmosphere can be calculated from

ån n=
m

mdJ I w, . 31( ) ( ) ( )

The number of angle points is user defined, as it depends on the
problem (the anisotropy of the radiation field): for static
atmospheres three angle samplings are normally sufficient,
whereas five is more reliable in dynamic atmospheres.
As Lightweaver handles overlapping transitions, there needs

to be a common wavelength grid that covers all transitions for
the problem in question. Each transition provides a set of
wavelengths that need to be taken into account to reliably solve
the RT problem (e.g., lines are typically densely sampled in the
line core and sparse in the wings). All of these individual
wavelength grids are combined to produce the global
wavelength grid, and a new grid is created for each transition
which contains all of the original points, as well as the
wavelength points from all other transitions that overlap.
These wavelength grids also define the basis of a numerical

quadrature that is described in Appendix B. Therein we also
describe the specific accumulation terms used in the construc-
tion of the fully preconditioned Γ.
In the case of the time-dependent kinetic equilibrium, there is

no “one-size-fits-all” approach to this equation and Light-
weaver provides the following tools. The advective term in (26)
is ignored, as this requires a more complete treatment including
consideration of hydrodynamics. We can discretize ∂n/∂t=
Γn using a theta method,

q q
-

D
= G + - G

+
+ +n n

n n
t

1 , 32
t t

t t t t
1

1 1 ( ) ( )

where the superscripts t and t+ 1 indicate the start and end of
the timestep being integrated over, Δt the duration of the
timestep, and θ the degree of implicitness. θ= 0.5 represents
the Crank–Nicolson scheme, θ= 1 the backward Euler scheme,
and θ= 0.55 is commonly used as it is often found to cope
better with stiff systems (e.g., Viallet et al. 2011). This system
is solved by storing Γt at the start of the process, and then
updating Γt+1 using revised updates of the populations nt+1

with each iteration. The process of obtaining a new estimate for
nt+1 can be found by rearranging (32) into the form

q q- D G = - D G ++ + n n nt t1 , 33t t t t t1 1( ) ( ) ( )

where  is the identity matrix. As the right-hand side is known
a priori, it can be evaluated directly, and (33) is a matrix-vector
system that can be solved equivalently to the statistical
equilibrium case, albeit without the need for a constraint
equation. Currently only the fully implicit θ= 1 case is
supported, as during testing the differences were found to be
insignificant; however, we plan to include support for other θ in
the future, and this has already been implemented in separate
packages that use Lightweaver, but without modifying the base
framework.
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2.4. RTE

To obtain the intensity terms in the radiative rates, as well as
the outgoing intensity, we need to solve the monochromatic
RTE, which for a one-dimensional plane-parallel atmosphere
stratified along the z-axis is expressed as

m
n

h n c n n
¶

¶
= -

d
d d d

I

z
I

,
, , , , 34

( ) ( ) ( ) ( ) ( )

or along an optical-depth stratification as

m
n
t n

n n
¶
¶

= -
d

d d
I

I S
,

, , , 35
( )

( )
( ) ( ) ( )

for the optical depth defined as d τ(ν)=−χ(ν) dz.
Solving this equation for multiple projected angles μ

provides the radiation field throughout the model atmosphere
that is necessary to compute the Γ operator. Typically the
optical depth formulation of (35) is solved as it is more
numerically robust (de la Cruz Rodríguez & Piskunov 2013;
Janett et al. 2018).

2.4.1. Formal Solver

The formal solver is the technique by which the RTE (34) is
solved and the approximate operator Ψ* is computed. By
default we adopt the third-order Bézier spline short-character-
istics approach of de la Cruz Rodríguez & Piskunov (2013) and
de la Cruz Rodríguez et al. (2019); however, investigation is
also under way into the use of pragmatic formal solvers as
discussed in Janett et al. (2018) and the BESSER formal solver
of Štěpán & Trujillo Bueno (2013).

In the short-characteristics approach the formal solver is
provided with the opacity and source function at discretized
points throughout the atmosphere, and the behavior of these
between the known points is assumed to follow a simple
function that can be analytically integrated, in this case a third-
order Bézier spline. It is important to choose an interpolating
function that varies smoothly and minimizes or, better yet,
eliminates under- and overshoots in the interpolant. The third-
order Bézier spline has proven to be robust in this setting and
has been applied in other modern codes such as STiC (de la
Cruz Rodríguez et al. 2019) and SNAPI (Milić & van
Noort 2018).

The integration routine proceeds from one end of the
atmosphere to the other, accumulating these terms through the
analytic short-characteristics integration to obtain the up- or
down-going intensity for this ray at each point in the
atmosphere.

The approximate Ψ operator Ψ* is simply the diagonal of the
true Ψ operator, a matrix that would map the vector of
emissivity to the intensity. Ψ* is trivially computed during the
formal solution from the local contribution terms to the
intensity and the local opacity.

The simple linear short-characteristics formal solver is also
present and new formal solvers that conform to the interface
used in Lightweaver can be compiled separately and loaded
from a shared code library, allowing Lightweaver to serve as a
testbed without the need to modify the core package.

2.5. PRD

The effects of PRD are important for some NLTE lines,
typically strong resonance lines and lower-density regions
where radiative effects dominate over collisional effects

(Hubený & Mihalas 2014). For a complete treatment of the
theory describing PRD lines we direct readers to Hubený &
Mihalas (2014) and references therein, but we will provide a
basic overview here. The common assumption of CRD in
spectral lines is that ψ= f. The argument is that most lines are
formed in regions with sufficient elastic collisions that atoms
are well distributed across the sub-states of each energy level.
Emission is therefore not correlated with the absorbed photon
that excited the atom into this state. When the plasma is less
collisional, there is said to be a natural population of a
particular level, i.e., a population where the emission frequency
is correlated to the absorption frequency. In this case the
emission profile ψ differs from the absorption profile f, and
these coherent scattering effects must be considered.
Lightweaver currently adopts the iterative PRD approach

presented in Uitenbroek (2001), but may also in future
implement a direct solution, as it may prove more robust than
the iterative approach for some highly dynamic problems,
despite the higher computational cost. Currently cross-redis-
tribution is not implemented, but the groundwork is present,
and the remaining changes would be a simple extension
following Uitenbroek (2001) and the RH code.
In the common case where flows are lower than the thermal

Doppler velocity, the integrations needed to solve the PRD
equations can be simplified by assuming isotropy of the
radiation field. This is known as angle-averaged PRD. In cases
with stronger flows we instead employ the hybrid PRD
approach of Leenaarts et al. (2012) which consists of
computing ρ in the atom’s rest frame. This approximation
agrees quite well with a full angle-dependent treatment, is
simple to implement, and much faster to evaluate than the full
angle-dependent case. Due to the additional computation effort
involved in PRD calculations, regardless of the method used,
lines need to be explicitly labeled as PRD.
The derivation of the PRD equations and their numerical

implementation is described in Appendix C.

2.6. Self-consistent Electron Density

The MALI technique assumes that the electron density is
known a priori, but this is often not the case. Assuming that the
electron density can be given by the LTE ionization state of the
plasma can yield substantially incorrect results for chromo-
spheric and prominence lines (Heinzel 1995; Paletou 1995;
Bjørgen et al. 2019). An additional iteration process is therefore
needed to determine the correct electron density within the
framework of the NLTE problem.
While not quite as robust as the pure MALI treatment a

secondary Newton–Raphson iteration to self-consistently
compute electron density was proposed by Heinzel (1995)
and Paletou (1995), and forms the basis of the method
implemented here. The time-dependent case is based on
Kašparová et al. (2003), and the numerical implementation of
both of these is described in Appendix D.

2.7. Collisional Rates

Based on the RH code, a number of different formulations
for collisional rates are available in Lightweaver. Currently
these include tabulated collision strength (Ω) against temper-
ature for excitation of ions by electrons, tabulated collisional
ionization and excitation rates of neutrals by electrons (known
in RH as CI and CE), tabulated collisional excitation by
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protons, neutral hydrogen, and charge exchange with these
species (CP, CH, CH+, and CH0 respectively). Additionally
the collisional ionization rates of Arnaud & Rothenflug (1985)
and Burgess & Chidichimo (1983) are present. These can be
extended further in user code with no modifications to the base
library. The choice of pre-implemented collisional rates in the
Lightweaver “standard library” allows the direct conversion of
the majority of model atoms that are distributed with RH to
also be distributed with Lightweaver. The collisional rates for a
level depend only on the local parameters, and have no
wavelength dependence, therefore the implementation is much
more straightforward and does not require complicated
numerical integration.

By default, the collisional rates are re-evaluated at the start of
each formal solution, although this can be disabled by the user.

2.8. Full Stokes Treatment

We also support Zeeman splitting and polarization effects
where the complete set of anomalous Zeeman splitting terms
can be computed from the quantum numbers J, L, and S for the
levels considered through the LS coupling formalism, or a
classical Zeeman triplet computed from an effective Landé g-
factor present in the definition of a line. Lightweaver does not
support full Stokes iteration of the populations, but provides
support for both the field-free and polarization-free approaches
(Trujillo Bueno & Landi Degl’Innocenti 1996). The final
formal solution is then undertaken with the third-order Bézier
spline Diagonal Element Lambda Operator method of de la
Cruz Rodríguez & Piskunov (2013).

2.9. Miscellaneous

Like RH, Lightweaver utilizes base SI units throughout, with
the singular exception of wavelength being treated in
nanometers. The units of a variable are therefore easy to
determine, with little consideration of derived units. In the
remainder of this section we will discuss other small
implementation details of the code.

2.9.1. Collisional–Radiative Switching

The collisional-radiative switching (CRSW) technique of
Hummer & Voels (1988) is available in Lightweaver. Using
MALI, many problems will converge without much issue;
however, in the case of strong atmospheric gradients the
corrections to the populations in early iterations can be overly
large and drive the system into a poorly conditioned state. To
avoid this the CRSW technique multiplies the collisional
contributions to Γ by a significant factor, so as to force the
system into LTE. This factor is slowly reduced, allowing a
graceful departure from LTE toward NLTE. The exact decay of
this parameter can be configured by the user.

2.9.2. Isotopes

Isotopic models are also supported as valid atomic models.
By default the abundances for all elements and their isotopic
proportions are taken from Asplund et al. (2009); however,
these can easily be modified by the user.

2.9.3. Equation of State

Lightweaver contains a simple equation of state and
background opacity package based on Mihalas (1978),

implemented by Wittmann, and ported to Python by J. de la
Cruz Rodriguez.7 This equation of state has also been used in
SIR (Ruiz Cobo & del Toro Iniesta 1992) and NICOLE (Socas-
Navarro et al. 2015). In Lightweaver it is often used to
determine the values of unknown parameters in a provided
model atmosphere, and determining an LTE hydrostatic
stratification if necessary (based on NICOLE). The equation
of state also provides an estimate of the reference opacity τ500
at 500 nm for model atmospheres that provide a height- or
column-mass-based stratification.

2.9.4. Molecules

While molecular lines are not currently supported by
Lightweaver, it can compute molecular formation in instanta-
neous chemical equilibrium, using the same molecular models
as RH. These molecules reduce the populations of the atoms
bound up in them and some (OH, CH, and H−) contribute to
the background opacity. The H− population is always
computed, due to its importance in obtaining correct back-
ground opacities.

2.9.5. Background Treatment

The default implementation of background emissivities,
opacities, and scattering terms currently follows that of RH,
but a more general interface that is trivially overrideable in user
code without modifying the framework is also present. The
components present in the default background opacity package
are listed in Table 1. The OH and CH opacities are not present
unless these molecules are explicitly loaded and instantaneous
chemical equilibrium is computed as discussed in Section 2.9.4.

2.9.6. Interpolation

For interpolation duties, other than those in the formal solver
and calculation of the PRD terms, we adopt the rapid, but
robust fourth-order weighted essentially non-oscillatory
approach presented in Janett et al. (2019). While this technique
does not guarantee monotonicity around discontinuities, the
over- and under-shoots remain very small, with no ringing
artifacts, and we feel that the high quality of the solution in
smooth regions makes it worthwhile. We have provided a
performant implementation of this technique as a separate
Python package that is available through pip as weno4, on
GitHub8 and archived on Zenodo (Osborne 2021c).

Table 1
References for Components Present in Default Background Opacity Package

Component References

H free–free Mihalas (1978)
H2
− free–free Bell (1980)

H2
+ free–free Bates (1952)

H2 Rayleigh scattering Victor & Dalgarno (1969)
H− bound–free Geltman (1962), Mihalas (1978)
H− free–free Stilley & Callaway (1970), Mihalas (1978)
H− free–free (>9113 nm) John (1988)
OH bound–free Kurucz et al. (1987)
CH bound–free Kurucz et al. (1987)
General Rayleigh scattering Mihalas (1978)

7 https://github.com/jaimedelacruz/witt/
8 https://github.com/Goobley/Weno4Interpolation
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3. Description of Major Code Components

In this section we provide a brief overview of the
components of Lightweaver a user will typically interact with.
The frontend is entirely constructed in Python with a binding
layer written in Cython9 (Behnel et al. 2011) to allow it
communicate with the C++ backend.

3.1. Atomic Models

The information stored in model atoms used by contempor-
ary codes is more than simple atomic data, and in essence these
codes are defining their own ad hoc scripting languages to
support reading the various terms encoded in these files. As we
have access to a high-level dynamic language in the form of
Python, it is reasonable to model these as object hierarchies
where we can take advantage of the common Python
convention that obj == eval(repr(obj)) i.e., evaluating
the textual representation of the object generates an equivalent
object.

The code in Figure 1 shows the complete source necessary
for a three-level + continuum hydrogen atom. It is constructed
from nested Python classes, and through inheritance user code
that implements the same interfaces will be able to extend these
further.

For example, taking the quadrature component of a
spectral line, we see here that the LinearCoreExpWings
class is used. This is a derived class of LineQuadrature
and any derived instance of this class can be used here. The
requirements are that it provide at least functions Doppler_-
units, wavelength, and __repr__, that return the
quadrature in Doppler units and wavelength respectively, and
specify how to print the object so it can be re-evaluated. The
last of these is trivial and there are plenty of examples
throughout the Lightweaver codebase. Line-broadening terms
are implemented similarly. One strength of the model atoms
being implemented in terms of objects is the ease by which
they can be manipulated with a simple script before being used
or saved in text form (or an optimized Python object storage
format such as pickle10).

3.2. Radiative Set

During the configuration of a simulation, all atomic models,
whether “active” (full NLTE), “detailed static” (transitions
computed in detail, but populations fixed), or “passive”
(background contributions only) are stored in a Radiative-
Set object. This is responsible for producing the common
wavelength grid from all transitions taken into account, and the
final grid for each transition while taking the other transitions
into account as discussed in Section 2.3.1. These data are
returned in a SpectrumConfiguration object, which can
create another instance of itself, covering a restricted range of
wavelengths, that is often used for computing a final formal
solution over a line in detail, after the NLTE iteration is
complete.

The RadiativeSet is also responsible for determining the
LTE populations of these species from their models and the
atmospheric data provided. During this process the electron
density can be assumed fixed, as provided in the atmospheric
data, or can be iterated to be self-consistent with the LTE

populations. In the future this object will also be responsible for
optionally applying a variant of the second-order escape
probability method of Hummer & Rybicki (1982), applied to
MALI by Judge (2017), which currently resides in the C++
backend. These LTE and initial condition atomic population
data are returned in a SpeciesStateTable.

3.3. Species State Table

The SpeciesStateTable is responsible for holding both
the LTE and NLTE populations of the species (and molecules)
present in the simulation, as well as the radiative rates for
species treated in detail. This object can also update the LTE
and H− populations given an updated set of atmospheric data,
thus facilitating time-dependent simulations. The arrays in this
object are updated automatically by the C++ backend, as they
are in fact shared by reference, and the backend is operating
directly on the same memory, with no duplication necessary.
This is achieved with a lightweight C++ library allowing
multidimensional views onto a non-owned segment of data.
These arrays provide a subset of NumPy functionality, and are
limited to handling contiguous memory for performance.
Thanks to the use of C++ templates for various data types,
these have been verified to compile to assembly equivalent to
access into a flat array, with no performance loss, but
substantially greater memory safety than raw pointers, and
the option to enable bounds-checking during debugging (by
adjusting compilation flags).

3.4. Context

The code objects discussed so far primarily describe the
configuration of the simulation which is then controlled by the
Context object. The Context takes these data, in addition
to several other configuration options, such as the whether to
use hybrid PRD, charge conservation, CRSW, Ng acceleration
(Ng 1974), multithreading options, and initial solution to use
(which, as discussed in Section 3.2, will be moved to the
frontend in future). The effects of most of these options can
also be achieved by calling some extra methods, but are
simplified when used as arguments to the Context initializer.
During initialization the Context computes background
opacity, emissivity and scattering, and line profiles, and maps
the data into a form which can be used by the backend.
After this initial setup the Context can be used to interact

with the backend by calling various methods. These include the
following.

1. formal_sol_gamma_matrices which evaluates the
collisional rates and formal solution for all wavelengths,
and constructs the Γ operator.

2. single_stokes_fs which computes the polarized
line profiles (if not already present), and computes a full
Stokes formal solution.

3. prd_redistribute which performs a number of
PRD sub-iterations, until either the maximum number of
sub-iterations is performed, or the update size falls under
a configurable tolerance.

4. stat_equil which computes the solution of the
statistical equilibrium equations given the previously
computed Γ operator.

5. time_dep_update which computes the solution of the
kinetic equilibrium equations for one step of a provided
duration.

9 https://cython.org/
10 https://docs.python.org/3/library/pickle.html
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6. nr_post_update which computes the self-consistent
electron density following Section 2.6. In the case of
statistical equilibrium this is called automatically, if the
Context was initialized in charge conservation mode.

7. update_deps which updates various quantities such as
the background opacity and line profiles to handle
modifications to the model atmosphere (e.g., computing
a finite-difference response function or changing time-
steps in the case of a time-dependent simulation).

8. compute_rays which can compute a formal solution
for one or multiple different viewing angles, optionally
with full Stokes RT.

The Context and all other associated Cython components
have been designed to support the Python pickle serial-
ization and deserialization standard. Therefore it is possible to
save an entire context to disk, and reload it and continue
processing with only a few lines of code. This will be discussed
further in Section 3.5.

3.5. Parallelization

Two forms of parallelization are supported by Lightweaver,
one explicitly, and the other implicitly. The Context object
explicitly supports parallelization of the formal solver over
multiple threads of a single process by splitting the wave-
lengths over threads. This approach also applies to PRD lines,
for which the scattering integral can be computed in parallel.
When the aim is to process multiple atmospheres, for

example in the case of a finite-difference response function or a
1.5D atmosphere simulation, it is more efficient to use
Lightweaver in a multiprocess mode. This can be done simply
using, e.g., ProcessPoolExecutor11 from the Python
standard library for single computing nodes, or a Python MPI
implementation for a multinode cluster. This method of
computing is supported by the ability to pickle the
Context, allowing the entire simulation state to be shipped

Figure 1. Complete code for a three level + continuum hydrogen atomic model.

11 https://docs.python.org/3/library/concurrent.futures.html
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Figure 2. Simple program comparing the results for Ca II 8542 Å with different electron densities.
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between nodes in a single block if desired (although messages
this large are taxing on process interconnects, and in many
cases it is simpler to simply ship the data necessary to
reconstruct the Context on a different node).

3.6. Example

The code in Figure 2 presents a simple script for running the
comparison between the line profiles obtained for Ca II 8542Å
with different electron densities in the FAL C atmosphere
(Fontenla et al. 1993).

These are plotted against the RH solution for the electron
density given in FAL C in Figure 3.

The agreement between RH and Lightweaver is extremely
good when solving the same problem, as shown by the blue
and dashed orange curves. The red curve, using LTE electron
density, shows the importance of the correct electron density
for Ca II 8542Å. The green curve, which is the solution
computed with charge conservation from an LTE starting
solution, approaches the reference electron density solution,
and represents a self-consistent solution for electron density
taking into account H and Ca in NLTE; however, the final
differences between the charge conserved solution and the
reference solution are probably due to other elements, such as
Fe, being treated in LTE.

3.7. Advanced Example

In this section we present a more advanced example, first
demonstrating the implementation of a different line profile (in
this case Doppler) in a Ca II model atom, and then using this
modified model in a program that reprocesses output from the
RADYN (Carlsson & Stein 1992; Allred et al. 2015) radiation–
hydrodynamic code in a time-dependent fashion.

Figure 4 demonstrates the modification of a five-level +
continuum Ca II atom to use Doppler line profiles. The
DopplerLine class is first defined, with a new implementa-
tion of the compute_phi method expected on an instance of
AtomicLine. It is then necessary to define the NoOp-
Broadener for the LineBroadening object provided to
these lines; this class does nothing but provide a comparison
against itself and a __repr__ method, allowing the model
atom to be constructed from repr as discussed in Section 3.1.

Finally, the model atom is constructed as before, but using the
newly defined DopplerLine class. In this way model atoms
can contain features such as different line profiles and collision
rate parameterizations that are not known to the core
Lightweaver package but remain compartmentalized in
user code.
Figure 5 shows the small amount of code needed to construct

a specialized program for synthesizing radiation from a
preprocessed RADYN simulation (where the thermodynamic
parameters of the atmosphere have been interpolated onto a
fixed spatial grid) in a time-dependent fashion. The simple
method presented here ignores the advection of the populations
by the plasma flows, but updates the calcium populations in a
time-dependent fashion. The hydrogen populations are loaded
from the RADYN output and are used directly in the “detailed
static” mode of operation. Combining the Ca II atom with
Doppler line profiles from Figures 4 and 5 it is easy to perform
this same synthesis twice, once with the traditional Voigt
profiles and once with the Doppler profiles. The code present in
these listings with the data file in the associated repository
(Osborne 2021b) are all that is needed to run this simulation.
First, the preprocessed data are loaded and an atmosphere

object atmos is constructed from the initial timestep of the
data. Several functions are then defined.

1. construct_context_for constructs a Context
for an atmosphere and collection of model atoms,
similarly to Figure 2.

2. initial_stat_eq computes the statistical equili-
brium solution using this context similarly to iter-
ate_ctx in Figure 2.

3. load_step loads the thermodynamic atmospheric
properties, and hydrogen populations from the chosen
timestep into the Context, before recomputing the line
profiles and background opacities via ctx.update_
deps.

4. compute_time_dependent_profiles then uses the
load_step to load each timestep of the data present,
solve the RT problem, and advance the calcium
populations in time. It returns a list of the outgoing
radiation from each timestep in the data.

Figure 3. Comparison between RH and Lightweaver for the Ca II 8542 Å line with different electron density solutions.
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Finally these functions are applied twice to construct two
different simulations, one for each of the different calcium
model atoms used.

A complete reprocessing of the RADYN simulation,
considering the effects of advection of the atomic populations
is substantially more complex, and outside the scope of the core
Lightweaver framework. However, after implementing a

suitable advection scheme the code presented here could easily
be adapted.

3.8. Performance Comparison

Taking the FAL C example (with given electron density)
presented in Section 3.6, for a five-level + continuum model

Figure 4. Configuring a Ca II model atom with Doppler profiles.
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Figure 5. Performing a basic time-dependent synthesis from RADYN simulation with and without Doppler line profiles in the Ca II model atom.
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hydrogen atom and a five-level + continuum model calcium
atom we will compare the performance of Lightweaver with
RH. These comparison tests were run on an Intel Xeon E3-
1270 v3 (four cores/eight logical threads, Haswell micro-
architecture) with 1600 MHz DDR3 memory inside the
Windows Subsystem for Linux environment in Microsoft
Windows 10.0.18363.1016. The compiled components of both
codes were compiled with the GNU compiler collection 7.5.0,
and Lightweaver was run using Python 3.8.2.

In both codes the atomic populations were initialized to LTE
and Ng acceleration was disabled, to allow direct comparison
of the iteration speed. All tests were run five times, and the final
result is the mean of these. The variability from run-to-run is
extremely low, so is not shown here.

The single-threaded results are shown in Table 2. The
difference the total wall time (real-world elapsed time) and the
“setup and iteration only” time is the time taken to load and
correctly configure the model atmosphere. The FAL C model
used is defined on a column mass stratification. Both RH and
Lightweaver work in geometric height, so this stratification
must first be converted. This is a simple procedure with the
total hydrogen density specified in the model atmosphere file.
To make the model atmosphere easy to manipulate on its own
in Lightweaver, the continuum optical depth τ500 is also
evaluated at the same time. In RH this step takes place after the
background opacities are computed, and these can be used
directly (hence the very low cost of this step). To improve
flexibility in Lightweaver, this term uses background opacities
obtained from the equation of state package discussed in
Section 2.9.3. Many improvements could be made to the speed
of this package by reimplementing its most numerically costly
functions in a more performant language (or perhaps binding
the pre-existing FORTRAN version to Python). In practice, this
one-off cost is rarely an issue as many models are now
specified in terms of height, and Lightweaver does not require
the calculation of column mass and continuum optical depth
when a height stratified atmospheric definition is provided.

The codes were also compared when running on multiple
threads. In this case eight threads were used in both codes, as
this provided the fastest execution on this system. These results
are shown in Table 3. The constant cost of the τ500 conversion
in Lightweaver can again be seen in these results.

Lightweaverʼs threading model, which uses a thread-pool and
lockless accumulation of the Gamma operator, provides
significantly faster results at the cost of slightly higher memory
consumption (one copy of the Γ matrix per atom per thread,
and one copy of the accumulation terms (see Appendix B) per
atom per thread). Ignoring the aforementioned expensive one-
off cost of computing τ500 for the model atmosphere via the
equation of state, RH achieves a 1.2× speedup from utilizing
multiple threads, whereas Lightweaver achieves a 3.4×
speedup. Accounting for the high cost of RH’s threading
model on Windows (where thread creation is very costly), this
test was also run on a computer running CentOS 7, where a
maximum speedup of 1.5× was recorded.

4. Conclusions

We have presented a brief overview of NLTE RT, and the
methods used to solve associated problems employed by the
Lightweaver framework. We have also discussed the design of
the framework, and hope that it will allow simpler experi-
mentation with RT methods due to its “factoring out” of
common operations into composable building blocks, and
providing a single-language approach to running and analyzing
simulations thanks to the extensive pre-existing set of scientific
tools available in Python. The nature of the framework allows
programs for specialized tasks to be written far more easily
than is possible in the traditional “configuration file”-based
monolithic code. We are currently working on multidimensional
extensions to the framework, to allow the synthesis of radiation
from 2D and simple 3D atmospheres, but do not anticipate
applying the advanced domain decomposition techniques of, e.g.,
Multi3d (Leenaarts & Carlsson 2009) or PORTA (Štěpán &
Trujillo Bueno 2013); however, such an extension would be
relatively simple thanks to the modularity of the codebase and
simple serialization of Context state.
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2007), Cython (Behnel et al. 2011), and Astropy (Robitaille
et al. 2013; Price-Whelan et al. 2018) packages.

Appendix A
Line Broadening

In the following we describe how the different broadening
terms arise and are implemented in Lightweaver as the basis for
the standard Voigt line profile. Natural broadening arises due to
the finite lifetime of atomic states (described by Aji) and the
consequent variation in transitional energy due to the
Heisenberg uncertainty principle. The energy of an atomic
transition is no longer perfectly defined, and instead takes the
form of a Lorentzian distribution with damping coefficient
Γrad=∑i<jAji. This description only accounts for broadening
due to spontaneous emission, and a strong radiation field can
modify this. It may sometimes be useful to tune this parameter

Table 2
Single-threaded Comparison between RH and Lightweaver for a FAL C

Atmosphere with Both H and Ca Active

Configuration Time (s)

RH wall time 8.81
RH setup and iteration only 8.79
Lightweaver wall time 11.05
Lightweaver setup and iteration only 8.47

Table 3
Multithreaded Comparison between RH and Lightweaver for a FAL C

Atmosphere with Both H and Ca Active

Configuration Time (s)

RH wall time 7.37
RH setup and iteration only 7.35
Lightweaver wall time 5.32
Lightweaver setup and iteration only 2.49
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to account for observations, and lines that are not present in a
simplified model atom; Γrad is therefore a free parameter for
each line in Lightweaver.

Doppler broadening is due to the random thermal motions of
particles within the plasma. In Lightweaver, we take the
broadening velocity to be = +v k T W v2broad B turb

2 , where W
is the particle’s mass, and vturb is the microturbulent velocity
specified for the atmosphere in question. As Doppler broad-
ening produces a Gaussian line profile, and radiative broad-
ening produces a Lorentzian, the line profile due to both of
these effects is the convolution of these, known as a Voigt
profile. Now, normalizing with respect to the Doppler width
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Γ is the sum of all “typical” broadenening terms (radiative,
Stark, and van der Waals), and H(a, x) is the Voigt function
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when accounting for a directionally varying line profile. The
line profile j describes the photon absorption probability at a
certain position in Doppler units. To be dimensionally
consistent with an integration over frequency we define the
frequency dependent line profile fij such that
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Similarly to the line absorption profile, the properties of a
continuum are controlled by the atomic cross-section at a given
frequency. The cross-sections can be described in two different
ways in Lightweaver: either as a hydrogenic continuum, in
which case the cross-section falls off as 1/ν3 with increasing
frequency from the continuum edge, or as a tabulated cross-
section, whereby the cross-section is provided at different
wavelengths, and then interpolated between.

Note that the quantity stored in the variable phi in the code
is in fact j/vbroad, as this simplifies construction of some of the
expressions. We denote this term fnum, which is used in
Appendix B when describing the calculation of emissivity and
opacity.

Appendix B
MALI Numerical Implementation

In the following the integration and accumulation terms used
in the implementation of the MALI method (Section 2.3) are
presented.
As discussed in Section 2.3.1 a common wavelength grid is

first computed from which the final individual wavelength grid
for each transition is extracted. For each transition with its final
individual discrete wavelength grid (denoted λ) we define the
integration weights
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For lines, this can be used to compute the line-profile
normalization factor
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which ensures that (A5) holds for each discretized point in the
atmosphere k. fnum is defined in Appendix A. This line-profile
normalization factor is essential in ensuring that Γ is correctly
scaled, especially for more sparsely sampled lines. The
integration weights for the terms contributing to ΓR for each
transition ij at each depth are then
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These terms may not be immediately evident upon comparison
with (27); the differences arise from ensuring that all terms are
integrated in frequency, despite the discretization being
performed in wavelength.
From the previous discussion of line profiles in Appendix A,

we have
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under the reasonable approximation that ν= νij over the
integration range for a spectral line. This latter formulation is
used when evaluating U and V in Lightweaver. Additionally,
we follow Uitenbroek (2001) and define

r r

n=

= -

- -* *
g

g g B B

n n
h

k T

bound bound

exp bound free,
B6ij

i j ij ji ij ij

i j
B

⎜ ⎟

⎧

⎨
⎪
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⎝

⎞
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/ /

/

such that

=V g V , B7ji ij ij ( )

and

n
=U

h

c
V

2
, B8ji ji

3

2
( )
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which can be expressed as Uji= Aji/BjiVji for bound–bound
transitions. With these expressions the U and V terms are very
efficient to evaluate in a vectorized manner, and we therefore
choose to not cache them. If one were writing an entirely CRD
code, these terms could be computed once per transition and
stored, which could be a valuable optimization in some cases,
at the expense of computer memory.

During the accumulation of emissivities and opacities at each
wavelength and direction for the formal solver we also
accumulate the emissivity per atom

å h= , B9
i j

ij
,

( )†

total Uji per level j

å= U , B10j
i

ji ( )†

and effective self-opacity in for each level l

å åc c= -
> <

 . B11l
j l

lj
i l

il ( )† †

If no lines are associated with a wavelength point, then all
the sources of emissivity and opacity are direction independent,
and these accumulations can only be performed once for all of
the directional formal solutions. As the accumulation of terms
into ΓR can be done after the formal solution for each direction
is performed, the storage of these terms does not increase with
the number of directions. If one adopts the “same-transition”
preconditioning approach of Rybicki & Hummer (1992) then
none of these accumulation arrays are needed. This could be
advantageous in the implementation of higher-dimensional
schemes, as in most cases there appears to be no difference in
convergence speed between the two methods.

The formal solver then provides the values of I†(ν, d) and
Yn d,* , for all depths, one direction at a time. The per-atom Ieff

term of (28) for this direction can then simply be computed as

n= - Yn n dI I , , B12d d,
eff

,*( ) ( )†

where the final term is a simple scalar multiplication, under the
assumption that Ψ* is simply the diagonal of the true Ψ operator
(which is currently the case in Lightweaver).

With these definitions the integration of the off-diagonal
entries of ΓR at each spatial point, for each active atom, is
performed by looping over each contributing transition ij such
that

åG = + - Y
m

m lG  w w U V I , B13ij
R

a
ij ji ji i j

,
, ,

eff
a

*[ ( )] ( )

åG = - Y
m

m lG  w w V I . B14ji
R

a
ij ij j i

,
, ,

eff
a

*[ ( )] ( )

The radiative rates are computed similarly

å=
m

m lGR w w I V , B15ij
a

ij ij
,

, , a[ ] ( )†

å= +
m

m lGR w w U I V . B16ji
a

ij ji ij
,

, , a[ ( )] ( )†

Appendix C
PRD Implementation

In the following we describe the terms needed to apply PRD
to a spectral line and their implementation in Lightweaver. For
the previous definition of ρij from (18), under the assumptions
of a line with an infinitely sharp lower level and broadened
upper level, and the validity of PRD being in the atomic
frame being approximated by PRD in the observer’s frame
(Uitenbroek 2001), following Hubený & Mihalas (2014) we
then have

òr n g
p

n

n n

f n
f n n

= +
å

¢ ¢

¢ ¢
- ¢ ¢ W¢

<d d

d d

d
d

n B
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R
d d

, 1
1

4
,

, ; ,

,
, , C1
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l j j lj

j j

lji
II

ij
lj

⎡

⎣
⎢

⎤

⎦
⎥

∮( ) ( )

·
( )

( )
( ) ( )

where RII is the generalized redistribution function for
transitions of this kind (Hubený 1982), and γ is the branching
ratio, or coherency fraction. The summation over l and lji
subscript on R II describe the scattering process. When ignoring
cross-redistribution (Raman scattering), we have l= i, and the
summation is replaced by a single term, as we are only
considering resonance scattering within the line i→ j.
The coherency fraction γ describes the normalized prob-

ability of a photons being re-emitted from the same sublevel of
energy level j before an elastic collision that will redistribute it
across sublevels, provided that it is re-emitted at all. This is
then given by

g =
+

P

P Q
, C2

j

j j
( )

where Pj is the total rate of transitions out of level j
(depopulation rate), and Qj is the total rate of elastic collisions
affecting this level.
Defining gII(ν, ν′)= R II(ν, ν′)/fij(ν′), which is normalized

such that

òp
n n n¢ ¢ W =g d d

1

4
, 1, C3II∮ ( ) ( )

as per Gouttebroze (1986) and Uitenbroek (1989) wherein fast
approximations to this function are derived, and ignoring cross-
redistribution, we then have

òr n g
p

n

n n f n n

= + ¢ ¢

¢ - ¢ W¢ ¢

d d

d

n B

n P
I

g d d

, 1
1

4
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, , . C4
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i ij

j j

II ij

∮( ) ( )

· [ ( ) ( )] ( )

Ignoring bulk plasma flows, the integrals over angle and
frequency can then be split, providing an angle-averaged form
of ρ that is much easier to compute, given by

òr n g n n n n= + ¢ ¢ ¢ -
n B

n P
g J d J1 , , C5ij

i ij

j j
II ij( )( ) ( ) ( ) ¯ ( )

where

òp
n f n n= W =d dJ I d d

R

B

1

4
, , C6ij

ij

ij
∮¯ ( ) ( ) ( )

is the frequency-integrated mean intensity across the transition.
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The numerical implementation of angle-averaged PRD
simply follows the method of Uitenbroek (2001), which is
briefly summarized below. The redistribution function is often
very sharply peaked; an accurate evaluation of the scattering
integral therefore requires much finer sampling of the
wavelength grid than that which is required to evaluate the
terms in ΓR. However for each wavelength in a line’s grid there
is only a small surrounding region for which gII is non-zero. J
(ν) is then interpolated onto a fine grid over this region, over
which (C4) is trivially implemented by an application of
Simpson’s rule. It is essential that the scattering integral
component of (C4) be normalized as per (C3) to avoid the
addition or destruction of photons in the transition. The term

ò n n n n¢ ¢ ¢g J d, C7II ( ) ( ) ( )

is then implemented as

n n n dn
n n dn

å ¢ ¢ ¢

å ¢ ¢
g J

g

,

,
, C8i II i i i

i II i i

( ) ( )
( )

( )

where δ ν′i are the integration weights over this fine grid.
The iterative method currently employed consists of

performing a formal solution over the wavelengths where
PRD lines are active, and updating ρ using this method while
maintaining the populations fixed. When solving a PRD
problem, a number of these sub-iterations to update ρ
(commonly three) are interleaved between every complete
formal solution and population update.

For the hybrid PRD case of Leenaarts et al. (2012), used
when plasma flows exceed the thermal Doppler velocity, J(ν)
in (C5) is then replaced by Jrest(ν), the mean intensity in the
atom’s rest frame. This approximation is much faster to
evaluate than the full angle-dependent case, as the accumula-
tion of Jrest(ν) can be done during the formal solution, using a
linear interpolation off the Doppler-shifted frequency grid. ρ
can be linearly interpolated from the atomic rest frame during
the calculation of the U and V terms, or into a directionally
dependent array at the end of each PRD sub-iteration. Currently
Lightweaver does the former of these.

To ensure that Jrest is accumulated correctly during the PRD
sub-iterations, we no longer simply perform formal solutions
over wavelengths where PRD lines are present, but also over
wavelengths that when shifted back to the rest frame contribute
to Jrest in these regions. We have found that this modification,
which is not present in RH1.5D (Pereira & Uitenbroek 2015),
can dramatically aid convergence in atmospheres with high
velocity shifts.

Appendix D
Self-consistent Newton–Raphson Electron Density Iteration

From Section 2.3, the equations of statistical equilibrium are
given by (12). Let us write this system for a level i of a species
s as

å å= - =
¹ ¹

n n nF n n P n n P n, , , 0. D1s i s e
j i

j ji s e i
j i

ij s e, ( ) ( ) ( ) ( )

With a fixed electron density the preconditioned linear
formulation of these equations for a species s can be written

G =n 0. D2s s ( )

We start by obtaining the solution to this linear system that, in
the following, will be denoted~ns. The previous values of these

populations, i.e., the ones at which Γs was evaluated, will once
again be denoted with †.
The principle of Newton–Raphson iteration is to compute

F(x0+ δx)= 0, which can be written as F(x0)+ Jδx= 0, with J
the Jacobian of F evaluated at x0, and δx some small correction
to x0. This can be rearranged to −Jδx= F(x0). Applying this to
technique (D1) and explanding to first order we have
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where δnj and δne indicate the corrections to these populations
necessary to render them self-consistent. This expression can
be written for each level of each active species. Looking more
closely at each term we have
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where the term involving ΓC depends on the exact form of the
collisional rates. Due to the number of collisional rate options
available in Lightweaver this is evaluated through finite
differences, which remains relatively efficient due to the local
nature of this term.
As can be seen from (D4) and (D5), all terms are linear in δn

and δne; however, additional constraints are needed to close
this system: a constraint on the total population of each species
s, and a constraint on charge neutrality. In total, this forms a
system of ∑sNlevel,s+ 1 equations, where Nlevel,s is the number
of levels treated in detail for species s, and the summation is
performed over all active species. This system can therefore be
written at each point in the atmosphere as a block diagonal
matrix, with each block being Nlevel,s× Nlevel,s, with a final row
and column due to the electron density terms and charge
conservation equation that couple all blocks. The block terms
are simply −Γs for each species, and the final column for level j
of species s is the additive inverse of the right-hand side of
(D5). In our implementation the population conservation
equation is

å åd = - ~n n n , D6
j

j
j

jtotal ( )

where ntotal is the total population of the species (derived from
abundance and hydrogen density, or mass density). The left-
hand side amounts to placing a block row of ones in the
Jacobian for all levels in the species. In our case we replace the
last equation for each species with this population conservation
equation to avoid degeneracies.
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The charge conservation equation is given by

åå ååd d- = + -n j n n j nion ion ,

D7

e
s j

s s j e
s j

s e, ,bg( ) ( )

( )

†

where ions( j) is the ionization level of the jth level of species s,
and ne,bg is the electron density due to background species
whose populations are not otherwise taken into account during
this iteration. The left-hand side is inserted into the final row of
the Jacobian.

The right-hand side vector for the Newton–Raphson proce-
dure, where not specified by the constraint equations, is given by
G~ns s. This system can be solved as a typical matrix-vector system
to obtain the corrections. Finally, the populations are corrected as

d= +n n n and d= +n n ne e e
† , and all LTE populations must

be updated for consistency with the new electron density. As
hydrogen is by far the dominant contributor of electrons, we
optionally allow the above to only operate on hydrogen, and
count all other species as background for the purpose of updating
ne, and in some cases this may be more stable.

The time-dependent case then follows a similar derivation to
the statistical equilibrium case. Here we start from the θ-
method of (33) and similarly to (D1) define
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Similarly to (D4) we then have

d q
¶

¶
= - D G

+

~+

nG n

n
t

,
, D9

n

s i s
t

e

j n

ij s ij
,

1

,

,

s
t

e
1

( ) ( )
( )†

where δij is the Kronecker delta, and then similarly to (D5)
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The Jacobian matrix is constructed in the same way as the
statistical equilibrium case, but using the derivatives of G. The
right-hand-side vector of the Newton–Raphson iteration
procedure is then given by (D8), where the superscript t terms
are known from the start of the timestep and need to be stored
for use in this procedure. The constraint equations remain the
same as in the time-independent case. As in the case of time-
dependent population updates, Lightweaver currently only
supports the θ= 1 case, but the groundwork is present for
supporting other θ.
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