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SUMMARY

MIG-10/RIAM/lamellipodin (MRL) proteins link acti-
vated Ras-GTPases with actin regulatory Ena/VASP
proteins to induce local changes in cytoskeletal
dynamics and cell motility. MRL proteins alter mono-
meric (G):filamentous (F) actin ratios, but the impact
of these changes had not been fully appreciated.
We report here that the Drosophila MRL ortholog,
pico, is required for tissue and organismal growth.
Reduction in pico levels resulted in reduced cell
division rates, growth retardation, increased G:F
actin ratios and lethality. Conversely, pico overex-
pression reduced G:F actin ratios and promoted tis-
sue overgrowth in an epidermal growth factor (EGF)
receptor (EGFR)-dependent manner. Consistently,
in HeLa cells, lamellipodin was required for EGF-
induced proliferation. We show that pico and lamelli-
podin share the ability to activate serum response
factor (SRF), a transcription factor that responds to
reduced G:F-actin ratios via its co-factor Mal. Genet-
ics data indicate that mal/SRF levels are important
for pico-mediated tissue growth. We propose that
MRL proteins link EGFR activation to mitogenic
SRF signaling via changes in actin dynamics.

INTRODUCTION

The construction of properly sized and functional tissues and

organs during animal development requires tight control of cell

growth, proliferation, differentiation, and death. Networks of in-

tracellular signal transduction pathways that respond to various

secreted ligands and cell surface proteins coordinate these

processes. Elucidating the nature of the intracellular signaling

networks that connect extracellular stimuli to basic cellular

machinery controlling proliferation, growth, and morphology is

not only critical for the understanding of tissue size regulation

during normal development, but is also important for the

identification of aberrant events underlying numerous disease

processes, including cancer.

A number of pathways regulating cellular development are

initiated by ligation of transmembrane receptor tyrosine kinases
680 Developmental Cell 15, 680–690, November 11, 2008 ª2008 Els
(RTKs), such as the epidermal growth factor (EGF) receptor

(EGFR). One of the key mediators of RTK signaling is the Ras

GTPase, capable of activating proteins harboring Ras associa-

tion (RA) domains to initiate downstream signaling pathways,

such as the mitogen-activated protein kinase (MAPK) cascade,

and ultimately resulting in changes in gene transcription. The

Ras/MAPK and other canonical RTK signaling pathways have

been well characterized, yet they cannot account for all of the

observed effects of their respective extracellular signals.

The MIG-10/Rap1-GTP-interacting adaptor molecule (RIAM)/

lamellipodin (Lpd) (MRL) proteins are a family of recently identi-

fied molecular adaptors, harboring an RA, pleckstrin homology

(PH), and several proline-rich domains (Krause et al., 2004;

Lafuente et al., 2004). Several lines of evidence indicate that

MRL proteins act downstream of Ras-like GTPases and trans-

duce extracellular signals to changes in the actin cytoskeleton,

cell motility, and adhesion. In particular, Lpd interacts with active

Ras and RIAM with active Rap1. Consistent with this, only RIAM

is required for Rap1-induced cell adhesion (Lafuente et al., 2004;

Rodriguez-Viciana et al., 2004). Lpd also binds to PI(3,4)P2 via its

PH domain, which is sufficient for membrane targeting after

platelet-derived growth factor stimulation (Krause et al., 2004).

Both Lpd and RIAM utilize their proline-rich motifs to directly

interact with the Enabled (Ena)/vasodilator-stimulated phospho-

protein (VASP) actin regulators, known to regulate lamellipodia

formation and cell migration (Jenzora et al., 2005; Krause et al.,

2004; Lafuente et al., 2004). In addition, Lpd knockdown impairs

lamellipodia formation, whereas Lpd overexpression increases

speed of lamellipodia protrusion in an Ena/VASP-dependent

manner (Krause et al., 2004). Finally, both Lpd and RIAM have

been shown to alter the cellular ratio between monomeric (G)

and filamentous (F) actin (Krause et al., 2004; Lafuente et al.,

2004), suggesting a wider role in regulating cell metabolism.

Indeed, control of the G:F actin ratio is an essential way for cells

to regulate gene transcription via the transcription factor serum

response factor (SRF), and has been linked to changes in

proliferation, migration, and differentiation (Miralles et al., 2003).

Here we report the characterization of the Drosophila MRL

ortholog, which we have named pico on the basis of the retarded

growth phenotype resulting from pico knockdown or loss-

of-function mutant. Reduction in pico levels results in reduced

rates of cell growth and proliferation, whereas ectopic expres-

sion of pico promotes coordinated cell growth and proliferation,

leading to tissue overgrowth. pico’s effect on cell proliferation is
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conserved in its mammalian ortholog, Lpd. We present evidence

that pico and Lpd link extracellular signaling to tissue growth

via changes in actin dynamics and SRF activation. To our knowl-

edge, this is the first time that MRL proteins have been impli-

cated in controlling cell proliferation and tissue growth.

RESULTS

Pico Encodes the Only MRL Protein in Drosophila

Phylogenetic analysis has shown that pico (CG11940) encodes

the only member of the MRL family of proteins in Drosophila

(Krause et al., 2004; Lafuente et al., 2004). The organization of

the pico transcription unit, located on the first chromosome at

cytological position 18F2-4 (Consortium, 2003), is shown in Fig-

ure 1A. We identified two transcripts that are generated from

alternative transcription start sites of the pico transcription unit:

pico and pico-L. pico-L encodes a 1159 amino acid protein

that is identical to the protein encoded by pico, except for

the presence of an additional 128 N-terminal residues. Both

pico proteins contain RA and PH domains and proline-rich

Ena/VASP binding sites characteristic of the MRL proteins

(Krause et al., 2004; Lafuente et al., 2004; see Supplemental

Data and Figure S1 available online).

Pico Is Essential for Organismal Growth and Viability
To determine the in vivo function of pico, we generated a mutant

allele, picok1, by imprecise excision of a viable P element trans-

poson, which we found inserted in the pico 50 untranslated

region. picok1 showed little or no pico-L expression, reduced

levels of pico, but wild-type levels of the neighboring gene

CG11943 mRNA (Figure 1B), consistent with molecular analysis

revealing a 2.81 kb deletion removing the 50 end of pico-L and

a large region upstream of the predicted pico transcription start

site in this mutant (Figure 1A). Hemizygous picok1 animals were

larval lethal and displayed phenotypes reminiscent of mutations

in positive regulators of growth and proliferation: mutant larvae

were dramatically reduced in size, with severely reduced endor-

eduplicated tissue and little or no detectable imaginal disc

tissue; mutant larvae eventually died following an extended larval

period of up to 2 weeks (Figure 1C, and data not shown). Heat

shock-induced co-overexpression of pico and pico-L rescued

the hemizygous lethality of picok1, indicating that the lethality of

picok1 is due to disruption of the pico locus (data not shown). The

presence of food in the guts of picok1 mutant larvae verified that

they had eaten, and suggests that the inhibition of larval growth

may be caused by a cellular growth defect. To assess this, we

examined the behavior of picok1 mutant cells randomly gener-

ated in the wing imaginal disc by mitotic recombination. Homo-

zygous picok1 cells could not readily be detected, but were occa-

sionally observed to achieve clone sizes of up to 15 cells in

clones positively marked with GFP. Their predominantly basal lo-

calization indicated that they might be displaced from the basal

surface of the disc epithelium (Figures 1D and 1E; Figure S2).

This phenotype is reminiscent of cells that have sustained inap-

propriate cell cycle arrest. However, unlike mutants that prevent

passage through the cell cycle, but allow continued growth (Neu-

feld et al., 1998), pico mutant cells did not become enlarged,

suggesting that pico loss-of-function also results in a cellular

growth defect.
Developme
Knockdown of pico Results in Cell Growth
and Proliferation Defects
To further assess the cellular requirement for pico, we used a

heritable double-stranded (ds) RNA interference (RNAi) approach

to flexibly knockdown pico and pico-L levels. We generated

stable lines of transgenic flies carrying an inverted repeat con-

struct (picoIR) capable of expressing intron-spliced hairpin

dsRNA for a sequence common to pico and pico-L under GAL4-

UAS control. Sequence analysis predicted minimal off-targets for

picoIR (0 off-targets from 459 possible 19 mers). Flies expressing

this construct ubiquitously under the control of tubulin-GAL4

(tub > picoIR) were semilethal; survivors were small compared

to tubulin-GAL4 siblings (tub >) (Figures 2A and 2B). Levels of

pico and pico-L mRNA were greatly reduced in tub > picoIR

Figure 1. pico Is Essential for Growth and Viability

(A) Genomic organization of the pico locus. pico encodes two transcripts: pico

and pico-L. Untranslated regions are shown in gray; coding regions are in

green. Orientation of pico and CG11943 transcription units is indicated with

arrows. The insertion site of the P-element, GS9113, used to generate picok1,

is marked. The deletion in picok1 is indicated with a dashed line.

(B) RT-PCR analysis showing reduction in levels of pico and pico-L expression

in picok1 mutant larvae.

(C) Hemizygous picok1 mutant larva to the left, showing arrested growth

compared to pico+ siblings of the same age to the right. Inset: mutant larvae

were identified on the basis that they lacked a GFP balancer chromosome.

(D and E) pico mutant clones fail to divide and appear to be displaced from

the wing imaginal disc epithelium. Compared to wild-type control clones (D),

which are located in apical sections and contain, on average, about 45 posi-

tively marked cells, picok1 mutant clones (E) contain, on average, fewer than five

cells and appear to be located at the basal surface of the wing epithelium.

Merged images show cells positively marked with GFP in green, DNA stained

with propidium iodide in red, and F-actin labeled with phalloidin in blue.
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Figure 2. Knockdown of pico by RNAi Reduces Tissue Size
Moderate ubiquitous expression of picoIR results in a reduction in overall

body size.

(A and B) A tub-GAL4 fly and a tub-GAL4 UAS-picoIR (tub > picoIR) fly are shown

for comparison. Quantitative measurements of female flies (n = 50 per geno-

type) show a 23% reduction in body weight in tub > picoIR flies (p < 0.01).

(C) Representative RT-PCR analysis showing reduction in pico and pico-L

expression in tub-GAL4 and UAS-picoIR flies using primers recognizing both

transcripts. A range of cDNA concentrations normalized against GAPDH

was used to assess transcript levels.

(D and E) Expression of picoIR knocks down levels of Myc-tagged pico in wing

imaginal discs. (D) High levels of ectopic pico in the posterior compartment

marked by GFP (in green) were detected by Myc staining (in red) in

en-GAL4, UAS-Myc-pico discs. (E) No Myc staining was detected in discs

coexpressing picoIR.

(F and G) Compared with control (F), expression of two copies of picoIR (G)

results in a significant reduction in adult wing size (p < 0.01). Male wings are

shown. Wing area is expressed as a percentage of control (±SD). The reduc-

tion in wing size is due to fewer and smaller cells, as revealed by relative bristle

density measurements (see insets).
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larvae compared with control animals, indicating knockdown of

endogenous pico expression (Figure 2C). We also found levels of

ectopic Myc-tagged Pico were severely reduced by coexpres-

sion of picoIR (Figures 2D and 2E). Ectopic overexpression of

picoIR in the developing wing using MS1096-GAL4 (MS1096 >

picoIR) resulted in a significant reduction in wing area (p <

0.001; Figures 2F and 2G). MS1096-GAL4 is expressed at higher

levels in the dorsal half of the developing wing pouch. Accord-

ingly, MS1096 > picoIR wings were curled upwards slightly,

indicating that, relative to the ventral wing blade, the dorsal

wing blade was somewhat reduced in size (data not shown).

As a single wing hair marks each adult wing cell, we measured

the wing hair density to gauge cell size. The wing hair density

in MS1096 > picoIR wings was significantly increased relative

to wild type (p < 0.01; Figures 2F and 2G), indicating that the

reduction in wing area was at least in part due to a reduction in

cell size. An independent inverted repeat construct (National

Institute of Genetics: 11940R), showed qualitatively similar

effects to picoIR, suggesting that the growth defects we

observed are not due to off-target effects (data not shown).

To study the effects of changes in steady-state levels of pico in

more detail in a defined cell population, we used en-GAL4 to con-

tinuously drive picoIR expression in the posterior compartment of

the wing disc from the earliest stages of disc formation. Adult

wing measurements showed that en-GAL4, UAS-picoIR (en >

picoIR) flies exhibited a specific reduction in the area of the

posterior wing compartment (Figure 2H). The ratio of posterior

to anterior area of en > picoIR wings (1.33:1) was significantly

reduced compared to that of control wings (1.68:1; p < 0.01).

To determine the effect of pico on cell cycle progression, we

obtained cell cycle profiles using flow cytometry on live cells

from dissociated en > picoIR wing imaginal discs. DNA profiles re-

vealed that cells expressing picoIR had normal cell cycle phasing,

while forward scatter analysis confirmed that cells were slightly

smaller than controls (Figures 2I and 2J). To assess in vivo cell di-

vision rates, we generated clones coexpressing GFP and picoIR

using the flip-out technique (Neufeld et al., 1998) and counted

the number of GFP-expressing cells per clone 38 hr after induc-

tion. Clones expressing picoIR had significantly fewer cells than

control clones expressing GFP alone (p < 0.01), and therefore

contained cells that divided at a slower rate (Figures 2K and 2L).

(H–J) Consequences of picoIR overexpression in the posterior compartment of

the wing under the control of en-GAL4. (H) Compared to control, expression of

picoIR with en-GAL4 results in a reduction in size of the posterior compartment

of the adult wing. A, anterior; P, posterior. Numerical scale is in arbitrary units.

Error bars indicate 1 SD. (I and J) picoIR-induced growth retardation is not due

to aberrant cell cycle phasing. Flow cytometry was performed on dissociated

wing disc cells overexpressing GFP alone (I) or picoIR and GFP (J). GFP-

positive experimental populations are marked in green; GFP-negative internal

controls are marked in gray. Comparison of representative cell cycle profiles

shows that picoIR does not alter cell cycle phasing. Percentage of cells in

G1, S, and G2 phases of the anterior and posterior compartments is shown

in insets. Graphs of forward scatter (FSC; bottom panels) show that picoIR

results in a modest reduction in cell size at the third instar larval stage. The ratio

of the mean FSC value of GFP-positive verses GFP-negative cells is shown in

the top right corner of the bottom panels.

(K and L) The distribution of clonal cell number for control (K) and picoIR-

expressing clones (L). Cell-doubling time (DT) is markedly increased by picoIR.

Insets show representative clones of each genotype as visualized by nuclear

GFP.
vier Inc.
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Figure 3. Ectopic Expression of pico Promotes Tissue Overgrowth

(A) Male adult MS1096-GAL4 wing resembling wild-type.

(B) Overexpression of pico in the developing wing pouch (MS1096 > pico/pico)

results in significant wing overgrowth (p < 0.01). Wing area is expressed as

a percentage of control (±SD). Insets are magnified images of wings showing

the relative wing bristle density.

(C–E) Consequences of pico overexpression in the posterior compartment of

the wing under the control of en-GAL4. (C) Adult male wings expressing pico

and GFP (en > GFP, pico) show an increase in the size of the posterior com-

partment compared to control (en > GFP). A, anterior; P, posterior. Numerical

scale is in arbitrary units. Error bars indicate ±1 SD.

(D and E) Results of flow cytometry on dissociated wing disc cells overex-

pressing (D) GFP alone or (E) pico and GFP. GFP-positive experimental

populations are in green; GFP-negative internal controls are in gray. Compar-

ison of representative cell cycle profiles shows that ectopic pico does not

alter cell cycle phasing. Percentage of cells in G1, S, and G2 phases of the

A and P compartments is shown in the top left corners of the upper panels.

Graphs of forward scatter (FSC; bottom panels) show that cell size is relatively

unaffected by ectopic pico. The ratio of the mean FSC value of GFP-positive

verses GFP-negative cells is shown in the top right corner of the lower panels.

(F and G) The distribution of clonal cell number for control and pico-expressing

clones. Cell doubling time (DT) is markedly decreased by pico. Insets show

representative clones of each genotype as visualized by nuclear GFP.

(H–J) Moderate ubiquitous expression of pico results in an increase in organ-

ism size; arm-GAL4 male fly (H) and arm-GAL4, UAS-pico/UAS-pico male fly (I)
Developme
Ectopic pico Promotes Coordinated Cell Growth
and Proliferation
To determine whether pico is limiting for tissue growth, we exam-

ined the effect of ectopically expressing pico in the wing. Ectopic

pico resulted in significant wing overgrowth with little or no

disruption of patterning (p < 0.01; Figures 3A and 3B). MS1096

> pico wings were curled downwards slightly, indicating that,

relative to the ventral wing blade, the dorsal wing blade was

enlarged (data not shown). Ectopic pico had no effect on wing

hair density, suggesting that increased tissue growth driven by

pico results from an increased rate of cell division with a matching

increase in growth rate. When pico was overexpressed together

with picoIR, the phenotypic effects of each alone were nullified,

resulting in wings that were of wild-type size and appearance

(data not shown). Ectopic expression of pico in the posterior

compartment of the developing wing resulted in an expansion

of the posterior tissue (Figure 3C). The posterior to anterior

area ratio of wings from en-GAL4, UAS-pico flies (2.03:1) was

significantly increased compared to that of control wings

(1.65:1; p < 0.01). Flow cytometric analysis revealed that cells

overexpressing pico had normal cell cycle phasing and were of

a normal size (Figures 3D and 3E). Clones expressing pico had

significantly more cells than control clones expressing GFP

alone (p < 0.01), and therefore contained cells that divided at a

faster rate (Figures 3F and 3G). Therefore, in the context of the

developing wing, ectopic pico induces a coordinated increase

in cell cycle and cell growth rates, leading to substantial tissue

overgrowth. Moderate ectopic expression of pico throughout

the fly resulted in dose-dependent increase in body mass,

indicating that pico functions as a general growth promoter in

multiple tissues (Figures 3H–3J). These data show that the

loss-of-function phenotype of pico is complementary to its gain-

of-function phenotype. The gain-of-function phenotype appears

to reflect the overactivation of the natural function of pico, which

is to promote cell growth and proliferation.

Pico Partially Disrupts Epithelial Architecture
but Does Not Induce Cell Death
Mutations that slow the rate of cell proliferation can show intrin-

sic survival defects. Conversely, strong proliferative stimuli, such

as the oncogenes E2F and Dp, can induce apoptosis, and net

proliferation only occurs when apoptosis is simultaneously

prevented. To determine whether cells expressing different

levels of pico undergo cell death, we examined the effect of

expressing pico or picoIR in positively marked (GFP-positive)

cells with ptc-GAL4. Cells undergoing apoptosis were identified

by activated caspase 3 staining. Compared to controls express-

ing GFP alone, the zone of GFP-positive cells in discs ectopically

expressing picoIR was narrower and contained fewer cells

(Figure 4). We did not observe elevated activated caspase 3

staining, and all nuclei appeared normal, suggesting that cells

with reduced pico levels did not have an intrinsic survival defect.

Ectopic expression of pico under control of ptc-GAL4 resulted in

an expansion of the number of ptc > GFP cells. Pico expressing

cells often exhibited an abnormal distribution toward the basal

showing size difference. (J) Quantitative representation of adult weight in

micrograms from flies of different genotypes, as indicated.
ntal Cell 15, 680–690, November 11, 2008 ª2008 Elsevier Inc. 683
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Figure 4. Reduction or Elevation of pico

Levels Does Not Induce Apoptosis

The basal view of wing disc epithelia is shown.

Discs expressing picoIR with ptc-GAL4 have a

reduced zone of GFP-labeled cells compared with

discs expressing GFP alone (control). Conversely,

discs expressing ectopic pico displayed an

expanded zone of GFP-labeled cells. Some cells

were located basally, but did not show elevated

caspase staining and did not have pyknotic nuclei

(arrow). Expression of E2F and Dp resulted in high

levels of caspase staining and nuclei were

pyknotic (arrowhead). Coexpression of pico was

unable to suppress E2F/Dp-induced cell death.

Merged images show activated caspase staining

in blue to visualize apoptotic cells, ptc-GAL4-

expressing cells visualized by GFP in green, and

propidium-labeled nuclei in red. All images were

taken with identical settings to permit comparison

of the intensity of activated caspase.
side of the wing disc epithelium, despite appearing morpholog-

ically normal (Figure 4). The effect of pico overexpression on

adult wing size was not enhanced when apoptosis was

suppressed by coexpression of the caspase inhibitor p35 (data

not shown). Therefore, stimulation of growth by pico was not as-

sociated with an increase in apoptosis. Studies of the miRNA

bantam have shown that genes stimulating cell proliferation

can simultaneously suppress apoptosis (Brennecke et al., 2003).

Therefore, we wondered whether pico could suppress prolifera-

tion-induced apoptosis caused by ectopic E2F and Dp. As

previously reported, cells overexpressing E2F and Dp under

the control of ptc-GAL4 showed pyknotic nuclei and elevated

levels of activated caspase 3 in basal optical sections of wing

discs, indicative of apoptosis (Figure 4) (Brennecke et al., 2003).

Coexpression of pico with E2F/Dp had no effect on the levels of

activated caspase (Figure 4). Therefore, stimulation of growth

and proliferation by pico is not associated with an increase in

apoptosis, and pico is not capable of suppressing apoptosis

induced by proliferative stimuli from E2F and DP oncogenes.

Pico Appears to Act in a Noncanonical EGFR-Dependent
Pathway
MRL proteins have been postulated to link activated growth

factor receptors, such as the EGFR via interactions with Ras

GTPases to changes in actin dynamics (Krause et al., 2004).

The Drosophila EGFR is critical for imaginal disc growth, as

well as for patterning and differentiation (Diaz-Benjumea and

Garcia-Bellido, 1990). Ectopic expression of dominant negative

Egfr (EgfrDN), which is thought to interfere with signaling by form-

ing inactive heterodimers with the wild-type receptor (Kashles

et al., 1991), results in dramatically reduced, narrow wings and

loss of wing veins (L3 and distal parts of L4 and L5) (Guichard

et al., 1999). Wings coexpressing pico and EgfrDN resembled

those expressing EgfrDN alone (Figure 5A), indicating that pico

failed to promote cell growth and proliferation when EGFR

activity was compromised. This might indicate that pico is either

upstream of Egfr or, alternatively, that pico needs to be activated

by Egfr signaling to have its effect. Ectopic pico appeared to act

cell autonomously, did not phenocopy Egfr-induced wing
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venation defects (Figure 3), and did not affect EGFR levels or

distribution (Figures 5B and 5C), suggesting that pico is unlikely

to be upstream of Egfr or its ligands. Conversely, picoIR sup-

pressed the effect of Egfr overexpression on wing size, but not

venation (Figure 5D), indicating that pico may be an effector of

Egfr-mediated tissue growth.

EGFR is known to activate Ras-like GTPases capable of bind-

ing to mammalian MRL proteins (Rodriguez-Viciana et al., 2004).

We found that full-length Pico and a fragment of Pico containing

the RA-PH domain (PicoRA-PH) bound to constitutively activated

Ras and Rap1 (RasV12 and Rap1V12, respectively) in the two-

hybrid system. Pico did not bind to wild-type or dominant-

negative Ras, suggesting that pico may be an effector of Ras

GTPases (Figure 5E). In support of this, we found that ectopic

picoIR partially suppressed the effect of ectopic overexpression

of RasV12 in the wing (Figure 5F). In addition, wings overexpress-

ing picoRA-PH were significantly smaller than controls (89 ± 2.2%;

p < 0.01). This effect could be overcome by cooverexpression of

full-length pico or enhanced by loss of one copy of pico (Figures

5G and 5H), suggesting that ectopic PicoRA-PH may interfere with

pico function by competing for its binding partners, and that

other regions of the pico protein are required for its growth-

promoting effect. To determine whether pico contributes to

canonical Ras effector signaling, we stained tissues ectopically

expressing pico in flip-out clones with an antibody that recog-

nizes the diphosphorylated (activated) form of MAPK (Gabay

et al., 1997). Ectopic pico had no detectable effect on activated

MAPK staining relative to controls (Figure 5I). Taken together,

these data suggest that pico acts downstream of EGFR and

may act as a Ras or Rap1 effector, but does not induce the

canonical MAPK pathway.

Pico Interacts with ena and Modifies Actin Dynamics
Mammalian MRL proteins have been shown to stimulate F-actin

formation without influencing total actin content (Krause et al.,

2004; Lafuente et al., 2004). We found that, in the context of

the wing imaginal disc, ectopic pico promoted F-actin formation,

and ectopic picoIR reduced F-actin levels (Figure 6A). Total actin

content was unaffected in extracts (Figure 6B), suggesting that
evier Inc.
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pico regulates the ratio of G:F-actin content. EgfrDN suppressed

pico-mediated changes in G:F actin ratio (Figures 6B and 6C),

suggesting that this aspect of pico function is dependent on

EGFR signaling.

MRL proteins alter actin dynamics through their interactions

with proteins that can regulate the length and branching density

of actin filaments, such as Ena/VASP (Krause et al., 2004;

Lafuente et al., 2004). MRL-Ena/VASP interactions are mediated

by the Ena/VASP homology 1 domain (EVH1) domain in Ena/

VASP. In support of this, we found that the EVH1 domain of Dro-

sophila Ena bound directly to full-length Pico in the two-hybrid

system, but not PicoRA-PH, which lacks canonical EVH1 binding

sites (Figure 6D). Endogenous, full-length Ena coimmunoprecipi-

tated with Pico from Drosophila tissue extracts (Figure 6E),

suggesting that Ena is complexed to Pico in vivo.

Given the conserved ability of Pico to bind Ena and promote

F-actin formation, we tested the involvement of ena in pico-

mediated F-actin accumulation and growth. For this analysis

we used a mutant of ena (ena210), which fails to interact with

EVH1-binding partners (Ahern-Djamali et al., 1998). Wings from

Figure 5. pico Appears to Act in a Nonca-

nonical EGFR-Dependent Pathway

(A) The effect of MS1096 > pico is completely

abrogated by coexpression of EgfrDN. Wing area

is expressed as a percentage of MS1096-GAL4-

only control (±SD).

(B) Ectopic pico does not affect EGFR distribution

or levels in wing discs.

(C) EGFR levels on immunoblots of wing disc

extracts are unaffected by ectopic pico.

(D) Wing overgrowth, but not aberrant wing

venation, induced by ectopic Egfr is partially

suppressed by co-overexpression of picoIR.

(E) Pico full-length and picoRA-PH bind RasV12 and

Rap1V12 in the yeast two-hybrid system, but not

controls: wild-type Ras (RasWT), dominant nega-

tive Ras (RasDN), or an unrelated control (NIPP1).

Interaction is indicated by blue X-gal coloration

(X) and growth on auxotrophic media at high (H)

and low (L) density.

(F) The effect of overexpressing RasV12 along the

presumptive wing margin is partially suppressed

by cooverexpression of picoIR.

(G and H) Reduced tissue growth resulting from

ectopic expression of picoRA-PH can be (G)

suppressed by co-overexpression of full-length

pico or (H) enhanced in females by pico loss of

function. Wing area is expressed as a percentage

of MS1096-GAL4 only control (±SD).

(I) pico does not activate MAPK. Ectopic expres-

sion of picoIR or pico in flip-out clones marked with

GFP (in green) do not affect levels of activated

MAPK (dpERK, in red), whereas ectopic RasV12

leads to elevated levels of activated MAPK and

rounded clones.

ena210 heterozygotes resembled wild-

type (Figure 6F). ena210 dominantly sup-

pressed pico-mediated F-actin accumu-

lation (p < 0.01, Figure 6A) and wing

overgrowth (60%, p < 0.01, Figure 6F),

suggesting that ena is limiting for pico function. We also exam-

ined the effect of ena overexpression. Like ectopic pico, ena

overexpression resulted in a decreased G:F actin ratio (Figures

6A and 6B) and significant wing overgrowth (p < 0.01; Figure 6F).

Wings coexpressing ena and picoIR resembled those expressing

picoIR alone (Figure 6F), indicating that ena is largely dependent

on pico for its growth-promoting effect. Co-overexpression of

ena and pico phenotypically resembled the effect of overex-

pressing either gene alone (Figure 6F). The lack of an additive

effect makes it unlikely that ena and pico act in parallel pathways

to drive tissue overgrowth. Together, these data suggest that

the effects of pico on tissue growth may be linked to specific,

ena-mediated changes in actin dynamics.

MRL Proteins Facilitate Mal/SRF Activation
and Cell Proliferation
The SRF is a mitogen-responsive transcription factor that is

inhibited by binding of cellular G-actin to the SRF cofactor Mal

(Posern and Treisman, 2006). Ena/VASP has been reported to in-

duce SRF activity via a region of Ena/VASP that mediates F-actin
Developmental Cell 15, 680–690, November 11, 2008 ª2008 Elsevier Inc. 685
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Figure 6. pico Interacts with ena and

Modifies Actin Dynamics

(A) Representative wing discs of the indicated

genotypes stained for F-actin. Ectopic expression

of pico or ena results in elevated F-actin, whereas

ectopic picoIR reduces F-actin. pico-induced

F-actin formation is dominantly suppressed by

ena210. Ectopic expression, driven by en-GAL4,

is limited to the posterior compartment marked

by GFP. Quantitation of ratios of anterior:posterior

F-actin levels is shown at the bottom of (A) (±SD).

(B) Immunoblots showing levels of total actin nor-

malized to tubulin in extracts from wing discs of

the indicated genotypes. Mean actin levels from

six independent experiments are expressed below

as percentage of the control ± SD.

(C) Ectopic expression of Myc-pico using

MS1096-GAL4 results in elevated F-actin staining

in the dorsal region of the wing disc where Myc-

pico levels are highest. This effect is suppressed

by coexpression of DN-Egfr. Quantitation of ratios

of ventral:dorsal F-actin levels (±SD) is shown in

the upper right corners of the upper panels.

(D) Pico full-length, but not picoRA-PH, binds the

Ena EVH1 domain, but not an unrelated control

(NIPP1), in the yeast two-hybrid system. Interac-

tion is indicated by blue X-gal (X) and growth on

auxotrophic media at high (H) and low (L) density.

(E) Ena coimmunoprecipitates with Myc-tagged

pico from MS1096 > Myc-pico wing disc extracts.

Lower panel shows protein immunoblot analyses

of total cell lysates to control for loading.

(F) Wing images of the indicated genotypes show-

ing functional interactions between pico and ena in

the wing. Wing from ena210 heterozygote resem-

bles wild-type. ena210 dominantly suppresses the

effect of ectopic pico on tissue overgrowth;

compare with the effect of one copy of pico alone.

Ectopic ena drives tissue overgrowth. The effect of

ectopic ena is not enhanced by coexpression

of pico, but can be suppressed by one copy

of picoIR. The effect of one copy of picoIR alone

is shown for comparison. Mean wing area is

expressed as a percentage of control (±SD).
assembly (Grosse et al., 2003; Sotiropoulos et al., 1999). Given

that the MRL proteins share the ability to bind Ena/VASP and

modify actin dynamics, we wondered whether Mal/SRF could

be a conserved downstream target of the MRL proteins.

First, we tested the ability of human Lpd to promote cell pro-

liferation in HeLa cells, which only express Lpd and not RIAM.

We generated three clonal Lpd knockdown HeLa cell lines using

Lpd-specific or scrambled control short hairpin RNA (shRNA)

expression. We quantified effects on cell proliferation by

measurement of viable cell numbers using a tetrazolium dye

(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide

[MTT])-based metabolic assay. Knockdown of Lpd resulted in

a reduction in cell proliferation (Figures 7A and 7B). Levels of

apoptotic markers were not affected in Lpd knockdown cell lines

(Figures 7C and 7D), indicating that reduction in cell number was

not due to increased cell death. Importantly, there was no signif-

icant difference in proliferation of Lpd knockdown cell lines

treated with or without EGF, unlike control cells, which overpro-

liferated when treated with EGF (Figure 7B). Taken together,
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these data suggest that Lpd is required for EGF-induced prolifer-

ation, and that the effect of pico on proliferation is conserved in

human Lpd.

Second, we used an established cell culture system (Sotiro-

poulos et al., 1999) to analyze the effect of MRL proteins on

SRF activity. Ectopic expression of pico induced a 7.2-fold

increase in SRF-responsive gene expression (Figure 7E), similar

to the effect of activated H-Ras (H-RasV12). Lpd also appeared

to increase SRF activation. The effect was much less pro-

nounced than pico, most likely because there is tight negative

regulation of ectopic Lpd expression in mammalian cells.

However, the effect of Lpd was significantly enhanced in the

presence of H-RasV12. The effect of Lpd and H-RasV12 co-

overexpression was significantly higher than that of H-RasV12

alone (Figure 7E). When we tested whether Lpd was required

for SRF activation, we found that serum-induced SRF activation

was abrogated in Lpd knockdown cell lines compared with

control cell lines (p < 0.05; Figure 7F). These data show that

MRL proteins are capable of inducing SRF activation, and that
evier Inc.
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Figure 7. MRL Proteins Facilitate Mal/SRF

Activation and Cell Proliferation

(A) Immunoblot analysis of Lpd expression in HeLa

cell lines expressing Lpd-specific or scrambled

shRNA. Hsc70 staining serves as loading control.

(B) Lpd knockdown reduces cell proliferation and

abrogates cell proliferation in response to EGF.

Cell proliferation was measured using an MTT

assay after 5 days. The increase in proliferation

compared to Day 1 was calculated; the scrambled

control with EGF was set to 100%. The mean

values (±SEM) of four independent experiments

are shown. **p < 0.05; #p > 0.05; one-way ANOVA.

(C and D) Lpd knockdown does not induce apo-

ptosis. (C) Dot plots showing Annexin-V-PE/

7-AAD staining of HeLa cell lines examined by

flow cytometry. Camptothecin treatment (positive

control, 20 mM for 24 hr) induced apoptosis.

DMSO treatment acted as negative control. (D)

Percentage of apoptotic cells as measured by

Annexin-V staining for each of the indicated

treatments. The mean values (±SEM) of three

independent experiments are shown.

(E and F) Transient expression of pico and coex-

pression of Lpd and HRasV12 significantly induce

SRF-reporter gene activity in serum-starved

293FT cells. (E) Graph showing SRF activation

for each of the indicated treatments, expressed

as a percentage of the effect of constitutive active

SRF (SRFVP16) activity.(F) Lpd knockdown abro-

gates serum-induced SRF activation. SRF activity

is expressed as percentage relative to the serum-

induced reporter activity in control cells. The mean

values (±SEM) of three independent experiments

are shown. **Statistically significant results

(p < 0.05, one-way ANOVA).

(G) The distribution of clonal cell number for

control and mal-expressing clones. Cell-doubling

time (DT) is markedly reduced by mal. Insets

show representative clones of each genotype as

visualized by nuclear GFP.

(H) Overexpression of mal in the developing wing

pouch (MS1096 > mal) results in significant wing

overgrowth (p < 0.01).

(I) The effect of ectopic mal is not significantly

modified by either coexpression of pico or picoIR.

(J) Wing from bs2 heterozygote resembling

wild-type. bs2 dominantly suppresses the effect

of ectopic pico on tissue overgrowth.
Lpd is required for efficient serum-induced SRF activation in

mammalian cells.

Finally, we examined the role of mal in pico-mediated overpro-

liferation. Overexpression of wild-type or activated mal or blis-

tered (bs), which encodes Drosophila SRF, has been previously

reported to cause overproliferation of the adult wing (Han et al.,

2004), similar to the phenotype resulting from ectopic pico. We

found that ectopic mal reduced cell-doubling time (Figure 7G)

without inducing apoptosis (as determined by activated caspase

3 staining; data not shown), and resulted in a significant increase

in wing area (p < 0.01; Figure 7H). Co-overexpression of mal and

pico in flies phenotypically resembled the effect of overexpress-

ing mal alone. Furthermore, mal-mediated overgrowth could not

be suppressed by ectopic picoIR (Figure 7I). Pico-mediated wing
Developme
overgrowth was dominantly suppressed (47%; p < 0.01) by a hy-

pomorphic mutation in bs (Figure 7J), indicating that bs is limiting

for pico-mediated growth. Collectively, these data indicate that

MRL proteins activate SRF-dependent gene expression and

that mal/SRF mediate pico-induced tissue overgrowth.

DISCUSSION

MRL Proteins Are Positive Regulators of Cell
Proliferation and Tissue Growth
Here we show that pico, which encodes the only Drosophila

member of the MRL family of proteins, and its mammalian ortho-

log, Lpd, have a conserved role in the regulation of cellular pro-

liferation. Reduced pico or Lpd levels result in reduced rates of
ntal Cell 15, 680–690, November 11, 2008 ª2008 Elsevier Inc. 687
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cellular proliferation, but do not impair cell survival. Too much

pico promotes coordinated growth and proliferation, leading to

larger tissues with more normal-sized cells. In this respect, the

effect of pico is distinct from that of many known Drosophila

growth drivers. Growth regulators, such as Drosophila S6K,

cause cells to accumulate mass faster than they can divide, pri-

marily due to effects on translation, leading to cellular hypertro-

phy. Other regulators, such as E2F, can drive cell division without

stimulating cell growth, leading to hyperplastic cellular hypotro-

phy and/or apoptosis.

MRL Proteins Link EGFR Activation to Changes
in Actin Dynamics and Cellular Proliferation
We found that attenuating EGFR signaling abrogates the effect

of ectopic pico on both F-actin accumulation and tissue growth.

pico acts cell autonomously and is therefore unlikely to act

upstream of Egfr by affecting the level of EGFR ligands. To rule

out that pico regulates levels of EGFR, we examined receptor

levels and distribution in wing imaginal discs overexpressing

pico or picoIR. EGFR levels and distribution in these genetic

backgrounds resembled wild-type. Another possibility is that

pico regulates EGFR activity. Although suitable reagents were

not available to directly monitor EGFR activity levels in wing

discs, we analyzed effects on extracellular signal-regulated

kinase (ERK) activation, which provides a molecular readout

for EGFR/Ras/Raf signaling. Diphosphorylated (dp) ERK levels

were not affected by ectopic pico. These data suggest that,

rather than being upstream of EGFR, Pico needs to be activated

by EGFR or a downstream component of EGFR signaling, such

as activated Ras. Consistently, both Lpd and Pico bind to

activated, but not wild-type, Ras. Furthermore, we found that

pico knockdown partially suppresses the effects of ectopic

Egfr and activated Ras; in addition, Lpd knockdown impairs

the EGF-induced increase in proliferation. Taken together, these

data suggest that pico and Lpd are downstream effectors of

EGFR.

Ena/VASP has been reported to act downstream of MRL pro-

teins (Krause et al., 2004; Lafuente et al., 2004). Correspond-

ingly, we found that pico-mediated wing overgrowth and F-actin

accumulation are sensitive to the levels of ena. Importantly, ena

is also sufficient to cause overgrowth and F-actin accumulation

when overexpressed. Changes in actin dynamics induced by

Ena/VASP proteins can activate SRF-dependent gene expres-

sion in mammalian cells. Similarly, we found that Pico and Lpd

can activate SRF activity. Like pico, ectopic mal or bs/SRF in flies

(Han et al., 2004) are sufficient to cause wing overgrowth.

Pico-mediated overgrowth is sensitive to the levels of bs/SRF,

but mal-induced overgrowth could not be suppressed by pico

knockdown, suggesting that Mal/SRF may act downstream of

pico in flies. Collectively, these data suggest that MRL proteins

may exert their mitogenic effects by specifically interacting

with Ena/VASP proteins and inducing SRF-responsive transcrip-

tion. Interactions between EGFR, MRL proteins, Ena/VASP, and

Mal may provide a mechanism linking growth factor signaling

and Mal-mediated SRF activation.

Are MRL proteins uniquely able to stimulate Mal/SRF-

mediated tissue growth? Although other actin regulators are

known to activate Mal/SRF (Posern and Treisman, 2006), there

is currently little data to indicate that they play a role in prolifera-
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tion control. This might be explained if different transcriptional

responses occur at different Mal-dependent SRF activation

thresholds, leading to diverse cellular outcomes. Alternatively,

other actin regulators might influence processes that limit net tis-

sue growth. For instance, Rho activates Mal/SRF in mammalian

cells (Posern and Treisman, 2006), but increased Rho activity in

flies is associated with loss of epithelial integrity and cell

extrusion (Speck et al., 2003), which may negate any potential

mal-mediated growth-promoting effects. These issues warrant

further study in both flies and mammals. Future studies are

also needed to characterize transcriptional targets of Drosophila

SRF and resolve the contribution of SRF targets to MRL-

mediated growth and proliferation.

MRL Proteins and Cancer
Lpd expression appears to be differentially regulated in cancer

compared to normal tissues (Dahl et al., 2005; Eppert et al.,

2005; Ginestier et al., 2006). Our data, showing a conserved

role for MRL proteins in proliferation control, may provide a

potential mechanistic explanation for these observations. In

this regard, it is interesting that loss of pico or Lpd can abrogate

the effects of EGFR/Erb signaling, deregulation of which has also

been implicated in cancer progression. Collectively, these data

suggest that MRL proteins might play a role in the pathogenesis

of certain cancers and may therefore represent novel molecular

targets for therapeutic intervention.

EXPERIMENTAL PROCEDURES

Mutational Analysis

Mutant pico alleles were generated by mobilization of an isogenic line of

GS9133 (Toba et al., 1999) using delta 2-3 transposase, and deletions were

mapped by Southern blotting. FM7i, Act-GFP was used to identify hemizygous

mutant animals and determine the lethal phase. RT-PCR with gene-specific

primers verified levels of pico and pico-L expression in hemizygous mutant

larvae. Genomic PCR and sequencing confirmed the breakpoints of picok1

following Southern blotting. Expression of UAS-pico alone, or together with

UAS-pico-L, with hs-GAL4 and heat shock rescued the lethality of picok1

mutant males. Mosaic analysis of picok1 clones was performed using FRT-

mediated recombination (see Supplemental Data for further details).

UAS-Constructs for Heritable RNAi and Ectopic Expression

To make a dsRNAi construct targeting both pico and pico-L, a 477 bp DNA

fragment corresponding to 17–493 bp of the pico coding sequence was subcl-

oned into EcoRI/AvrII and NheI/XbaI sites of pWIZ (Lee and Carthew, 2003).

This created a UAS-responsive element carrying a tail-to-tail pico inverted re-

peat flanking the second intron of the white gene. Off-targets were analyzed

using dsCheck (http://dscheck.rnai.jp/; Naito et al., 2005). Full-length pico

and pico-L open reading frames were amplified by RT-PCR and subcloned

into pUAS-HM (Parker et al., 2001) and pPFMW (Drosophila Genome

Resource Center [DGRC]) for expression in flies with an N-terminal Myc tag.

A fragment encoding the RA-PH domain of pico (picoRA-PH) was subcloned

into pPGW (DGRC) for expression in flies with an N-terminal GFP tag. For

each construct, at least 10 stable transgenic lines were generated by Genetic

Services Inc. (Sudbury) using P element-mediated germline transformation

into a w1118 strain. Different transgenes gave qualitatively similar phenotypes.

Fly Stocks and Genetics

Information about the transgenes and mutations used in this study and the ge-

notypes of flies examined are provided in the Supplemental Data. Positively

marked, flip-out clones for cell-doubling time analysis and activated MAPK

staining were generated in hsFLP122; Act > CD2 > GAL4, UAS-GFP animals.

Upon hatching, 50 staged larvae were transferred to vials containing yeast

paste and raised at 25�C. Clones were induced at 77 hr for 20 min at 37�C,
evier Inc.

http://dscheck.rnai.jp/


Developmental Cell

Pico Promotes Cell Growth and Proliferation
producing 5–10 clones/disc, and analyzed at 115 hr. Each experiment was

performed at least twice.

Weight and Area Analysis

Body weight was the average of at least 40 flies, 3 days after eclosion. Adult

wings were mounted in Canada Balsam and examined by light microscopy.

Cell density was assessed by counting number of wing hairs on the dorsal

wing surface as described by Böhni et al. (1999) (n = 25 per genotype). The

area of wing, exclusive of the alula and the costal cell, was measured using

NIH ImageJ (n = 25 per genotype).

Cell Cycle Phasing and FCS

Wing imaginal discs were dissected from larvae at wandering third instar stage

125 hr after egg deposition and flow cytometry was performed essentially as

described by Neufeld et al. (1998) using Hoechst 33342 to stain the DNA of

trypsinated cells. Approximately 30 wing discs were examined per experiment.

At least three experiments were performed for each genotype. Data were

collected on a Dako (Cytomation) MoFlo flow cytometer and analyzed using

Summit V4.0 software.

Immunostaining

Wing discs were fixed with Brower’s Fix (three parts buffer: 0.15 M PIPES pH

6.9, 3 mM MgSO4, 1.5 mM EGTA, 1.5% NP-40; one part fix: 8% formaldehyde)

for 2 hr at 4�C before staining with Myc antibody (9E10 mouse monoclonal

supernatant). For caspase and EGFR staining, wing discs were fixed in 4%

paraformaldehyde in PBS for 30 min at room temperature before staining

with cleaved human caspase 3 antibody (Yu et al., 2002) or Drosophila

EGFR antibody (Santa Cruz Biotechnology), respectively. For activated-

MAPK staining, wing discs dissected in 10 mM Tris-Cl, pH 6.8, 180 mM KCl,

50 mM NaF, 1 mM NaVO4, 10 mM b-glycerophosphate and fixed in 4%

paraformaldehyde in PBS for 30 min at room temperature were immuno-

stained using dpERK antibody (Sigma Aldrich). Cy3- or Cy5-conjugated

secondary antibodies were used for immunofluorescent detection (Jackson

ImmunoResearch Labs, Inc.). F-actin was visualized with Alexa Fluor-633

phalloidin (Invitrogen). DNA was stained with propidium iodide (Sigma Aldrich).

Images were collected on a scanning confocal microscope, imported to

Photoshop (Adobe), and adjusted for brightness and contrast uniformly across

entire fields.

Yeast Two-Hybrid and Immunoprecipitation Assays

Full-length pico and picoRA-PH were cloned into the GAL4 DNA-binding domain

vector pGBKT7 and fragments encoding NIPP1, wild-type Ras, dominant neg-

ative Ras, RasV12, Rap1V12, and the EVH1 domain of ena (aa 1–113) were

subcloned into the GAL4 activation domain vector pACT2 for yeast two-hybrid

binding assays. Yeast two-hybrid assays were performed as described by

Bennett and Alphey (2007). Immunoprecipitation assays were performed as

described by Vereshchagina et al. (2004) from MS1096-GAL4 or MS1096-

GAL4 UAS-Myc-pico third instar wing disc extracts. Ena antibody (5G2;

Developmental Studies Hybridoma Bank, Iowa City, IA), was used for Western

Blotting.

MTT Assay in HeLa Cells

HeLa cells were transfected with Lpd-specific shRNA or the corresponding

scrambled sequence (Krause et al., 2004) using Lipofectamine 2000 (Invitro-

gen). Single clones were selected in DMEM, 10% FBS, penicillin/streptomycin,

2 mM L-glutamine, 2 mg/ml puromycin, screened for Lpd expression/knock-

down, and expanded. Proliferation of these cells lines was assessed in four in-

dependent experiments using the MTT cell proliferation assay (American Type

Culture Collection) according to the manufacturer’s instructions. For each

experiment, cell lines were plated in triplicate and left growing in the absence

or presence of 100 ng/ml EGF (Sigma Aldrich) for 5 days. The increase in

proliferation compared to Day 1 was calculated, and cell lines expressing

Lpd shRNA were compared to the control, which was set to 100%. The

percentage of apoptosis in these cell lines was assessed using the Annexin-

V-PE apoptosis detection kit (BD Biosciences). Flow cytometry was performed

on a FACSCalibur cytometer (BD); 12,000 cells each were analyzed using the

Cell Quest Pro software (BD).
Developme
SRF Assay in HEK293FT Cells

HEK293FT cells were transfected with p3D.ALuc (100 ng) (Geneste et al.,

2002), pRL-TK (100 ng), and expression plasmids (1.8 mg), as indicated in

the legend for Figure 7E, using Lipofectamine 2000 (Invitrogen). Cells were

maintained in 0.5% FCS for 24 hr before lysis. HeLa cell lines were transfected

with p3D.ALuc (100 ng), pRL-TK (100 ng) using Fugene HD (Roche). Cells were

maintained in 0.5% FCS for 16 hr before 8 hr stimulation with 15% FCS prior to

lysis.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and

two figures and can be found with this article online at http://www.

developmentalcell.com/cgi/content/full/15/5/680/DC1/.
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