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Neocortical inhibitory interneuron subtypes are
differentially attuned to synchrony- and rate-coded
information
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Michael M. Kohl@ © & Blake A. Richards@® 247>

Neurons can carry information with both the synchrony and rate of their spikes. However, it is
unknown whether distinct subtypes of neurons are more sensitive to information carried by
synchrony versus rate, or vice versa. Here, we address this question using patterned optical
stimulation in slices of somatosensory cortex from mouse lines labelling fast-spiking (FS) and
regular-spiking (RS) interneurons. We used optical stimulation in layer 2/3 to encode a 1-bit
signal using either the synchrony or rate of activity. We then examined the mutual infor-
mation between this signal and the interneuron responses. We found that for a synchrony
encoding, FS interneurons carried more information in the first five milliseconds, while both
interneuron subtypes carried more information than excitatory neurons in later responses.
For a rate encoding, we found that RS interneurons carried more information after several
milliseconds. These data demonstrate that distinct interneuron subtypes in the neocortex
have distinct sensitivities to synchrony versus rate codes.
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ne of the foundational concepts in neuroscience is that

neurons encode information with their action potentials.

The earliest demonstrations that action potentials carry
information came from Lord Adrian (1926), who demonstrated
that the rate of spikes in peripheral nerves is correlated with the
force applied to a limb!. Decades of work following this
demonstrated that the rate of spikes can carry information about
almost any aspect of the environment or an animal’s behaviour,
including sensory stimuli?, spatial location3, action selection?,
etc. However, the rate-of-fire of a neuron is not the only aspect of
a spike train that can carry information®. It has also been
demonstrated that the specific timing of action potentials can
correlate with salient variables, including sensory stimuli®7,
spatial location®, and action selection®10. There are a variety of
potential coding schemes using spike times®, but basic principles
of postsynaptic spatiotemporal integration tell us that the syn-
chrony of incoming inputs can be as important as the rate of
incoming inputs to a neuron!l. Therefore, the brain is likely to
encode information using both the synchrony and rate of
spikes!2-14,

One interesting aspect of information encoding with both
synchrony and rate of spikes is that different cells with different
biophysical properties will respond to each signal differently!>1°.
For example, when we consider linear integration, a cell with a
short membrane time constant will be more sensitive to infor-
mation carried by synchronous inputs, whereas a cell with a
longer time constant would be more sensitive to the rate of
inputs. These issues are particularly salient when we consider the
diversity of biophysical properties found in neocortical inhibitory
interneurons!’-19. Different types of inhibitory interneurons
possess intrinsic membrane properties, morphologies, firing
patterns, and presynaptic inputs!”>1°. For example, inhibitory
interneurons that exhibit fast-spiking (FS) behaviour are known
to have very short membrane time constants, short-term
depressing presynaptic inputs and often express parvalbumin
(PV). In contrast, inhibitory interneurons that show regular-
spiking (RS) patterns with spike-frequency adaptation also dis-
play short-term facilitating presynaptic inputs and typically
express somatostatin (SST). These distinct biophysical properties
of interneurons are likely relevant to information encoding in the
brainl6-20,21

Given that different functional subtypes of interneurons, such
as FS and RS cells, display distinct biophysical properties, it is
possible that each subtype is more or less sensitive to information
conveyed by synchrony or rate. However, although these inter-
neuron subtypes have been studied extensively over recent dec-
ades, it is unknown whether there are functional specializations in
the integration of information carried by synchrony or rate of
activity.

Here, we explored this question using a combination of
transgenics, ex vivo whole-cell patch clamping, and patterned
optogenetic illumination. Specifically, we examined the responses
of green-fluorescent protein positive (GFP+) neurons in two
different transgenic mouse lines: GAD67-GFP (reported to target
FS interneurons) and GIN-GFP (reported to target RS SST+
interneurons). We recorded from GFP+ and GFP— (likely
excitatory neurons) in layer 2/3 of mouse barrel cortex. We then
activated the cells optogenetically in a patterned manner. Using a
digital micromirror device, we encoded a random 1-bit signal by
controlling either the synchrony or rate of optical activation in
the tissue. We then examined the amount of information that
GAD67+, GIN+, and GFP— (likely pyramidal) neurons carried
about this 1-bit signal in their spiking and membrane voltage. We
found that the two classes of interneurons were differentially
sensitive to the synchrony and rate of optical activation. Specifi-
cally, we observed that both interneuron types carried more

information in their spiking responses than pyramidal neurons
but in different ways. FS GAD67+ interneurons carried more
information about the 1-bit signal in their early (<5 ms) responses
to synchronous activation. Both interneuron types carried more
information than GFP— cells in response to synchronous acti-
vation after more time (>5 ms). When we examined the responses
to rate encoding, RS GIN+ interneurons carried more informa-
tion about the 1-bit signal than either FS GAD67+ or GFP—
pyramidal neurons in their later responses. These data confirm
that different types of inhibitory interneurons can integrate
information carried by synchrony or rate of activity in different
ways. It also suggests that the inhibition received by pyramidal
neurons in the neocortex may be selectively driven by the syn-
chrony and the rate of action potentials. This may be critical for
understanding how different pieces of information are encoded
and relayed in the neocortex.

Results

Transgenic targeting of FS and RS interneurons. We focused
our investigation on layer 2/3 (L2/3) of the somatosensory cortex
(specifically barrel cortex), as this is a region of the neocortex
where synchrony and rate codes have been extensively explored.
In order to target different populations of interneurons within
12/3 of the barrel cortex, we used GAD67-GFP (GAD67+) and
GIN-GFP (GIN+) transgenic mice which have been reported to
express GFP in inhibitory interneuron types with distinct firing
characteristics (FS and RS, respectively)?>23. To confirm this
distinction of electrophysiological phenotypes, we conducted
whole-cell patch-clamp recordings from GFP+ cells in GAD67-
GFP and GIN-GFP mice and analysed the neurons’ responses to
current injection in current clamp.

In the GAD67-GFP transgenic line, nearly all of the GFP+
cells (N = 26) exhibited spiking behaviour typical of cortical FS
cells with high f-I slopes and close to linear relationships
between injected current and firing frequency in each cell
(Fig. la—c), as shown previously?3. GFP+ cells in the GIN-GFP
transgenic line (n = 30) showed different spiking characteristics
to the GAD67+ cells as their spiking tended to accommodate in
response to increasing current injections and often peaked at
around 100 Hz (Fig. 1a—c), a hallmark firing pattern for almost
90% of SST+ cells?4.

To provide an additional comparison with these cell
populations, we also recorded from GFP— cells in each
transgenic line (n=30). Usually, these GFP— cells exhibited
regular firing patterns typical of layer 2/3 pyramidal cells
(Fig. la-c)?*. Sometimes GFP- cells, exhibited fast-spiking
behaviour (4 cells), indicating that these were in fact FS
interneurons, which is to be expected from a random sampling
of cells in layer 2/3 of somatosensory cortex?®2’. These four
cells are shown here, but were excluded from later analyses in
order to keep each population of cells distinct.

A principal components analysis (PCA) of each cell’s
electrophysiological characteristics (e.g. adaptation ratio, sag
amplitude, and membrane tau; see ‘Methods’, Fig. S1) revealed
three distinct clusters in the first two principal components
(Fig. 1d). When these components were used to map the recorded
cells onto a dendrogram, three distinct clusters that were largely
consistent with selective labelling of distinct neuronal subtypes
were revealed (Fig. le). Thus, the electrophysiological clustering
supported the idea that the cells we recorded from GAD67-GFP
and GIN-GFP corresponded to distinct inhibitory interneuron
subtypes.

Additionally, we wanted to explore what the first few principal
components corresponded to. We noted that the two populations
of GFP+ interneurons could be entirely separated using only the
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Fig. 1 GAD67-GFP and GIN-GFP mice target distinct populations of neurons, FS, mostly PV-+, and SST+ interneurons, respectively. a Sample

electrophysiological traces from each cell type to current injections —80 pA, +160 pA, +400 pA (darkest to lightest). b Frequency vs. current injection
(f-1) curves for each cell type. Larger circles represent mean values. ¢ Mean slope of the f-I curves for each cell type. Horizontal lines represent mean
values. d 2 Component PCA of each cell type's electrophysiological characteristics. @ Dendrogram clustering. f Sample immunohistochemistry images from

both transgenic lines.

first principal component. The loadings for the first principal
component suggest that this dimension mainly captured the
linear filtering and fast-spiking properties of cells ([feature:
loading]; f-I slope: 0.46, membrane time constant (7): —0.46,
spike halfwidth: —0.43, rheobase: 0.32, cell capacitance: —0.30,
spike amplitude: —0.23, spike threshold: —0.22, input resistance:
—0.22, adaptation ratio: 0.21, sag amplitude: —0.06). In other
words, cells further along the first principal component tend to

have higher f-I slope, lower membrane time constant, faster
spikes, and higher rheobase. This suggests that the first principal
component was largely identifying the difference between FS and
RS interneurons.

The second principal component also separated GAD67+ and
GIN+ cells, though not as cleanly, as there was some overlap
along this dimension. The loadings for the second principal
component suggested that it mainly captured the linear and non-
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linear filtering properties of cells ([feature: loading]; input
resistance: 0.49; cell capacitance: —0.45; sag amplitude: 0.44;
adaptation ratio: 0.36; rheobase: —0.34; spike amplitude: —0.32;
membrane time constant: —0.09; f-I slope: .09; spike threshold:
—0.09; spike halfwidth: —0.02). This means cells further along the
second principal component tended to have higher input
resistance, lower cell capacitance, higher sag amplitude and
higher adaptation ratios, which are features more typical of RS
than FS interneurons.

For comparison with other studies, we examined co-expression
of parvalbumin (PV) and somatostatin (SST) in GAD67+ and
GIN+ cells using immunohistochemistry staining. Immunohis-
tochemistry staining for PV protein in the barrel cortex of GAD-
67-GFP animals showed a higher probability of GFP+ cells being
PV+ (P(PV+|GFP+), 59.4% +7.5%, n=7 animals) and vice
versa (P(GFP+|PV+), 33.5% +3.1%, n=7) when compared to
staining for SST peptide (P(GFP+|SST+), 5.0% +1.4%, n = 6; P
(SST+|GFP+), 3.0% + 0.6%, n = 6; Fig. 1f top row). In GIN-GFP
animals, the opposite was seen. In particular, when staining for
SST, GIN-GFP animals showed a higher probability of GFP+
cells being SST+ (P(SST+|GFP+), 93.8% + 1.0%, n = 6) and vice
versa (P(GFP+|SST+), 67.6% + 6.8%), than when compared to
PV  protein staining (P(PV+|GFP+), 02%*0.2% n=6,
P(GFP+|PV+), 0.1% + 0.1, n = 6; Fig. 1, bottom row).

These results indicate that our GIN-GFP animals were
expressing GFP primarily in SST+ interneurons, which
suggests that our data can be directly compared with results
in other studies examining SST+ cells. These results also
indicate that cells recorded in GAD67-GFP animals were
comprised mostly of FS PV+ interneurons. However, there are
still a small number of SST+ interneurons, and interneurons
expressing neither PV or SST. As was the case in previous
studies?3, all GAD-67+ cells we recorded from were fast-
spiking. This might mean we recorded from FS SST+ (e.g. SST
+ basket cells?®), and some other FS interneurons expressing
neither PV or SST (e.g. non-PV expressing L2 chandelier
cells??). An alternative explanation is that despite colocalization
with other indicators there is a selection bias towards successful
patching of PV+ basket cells that tend to be larger than SST+
interneurons and have stronger GFP expression?3. These results
suggest a reasonable level of both genotypic specificity and
efficiency and is in line with previous work which suggests that
GAD67-GFP and GIN-GFP animals express GFP in FS and SST
+ cells, respectively?2-2430,

Altogether, these results confirm that GAD67-GFP and GIN-
GFP transgenic mice express GFP in cell types with distinct
biophysical characteristics, corresponding to FS, mostly PV+,
and RS SST+ interneurons and that most GFP— cells are not
from these subclasses of interneurons. For clarity, cell groups will
be labelled as GFP— (for nonfluorescent, non FS neurons),
GAD67+ (for ES, likely PV+ interneurons), GIN+ (for SST+
interneurons) herein.

Encoding a random 1-bit signal using patterned optical sti-
mulation. Central to our experimental objective is the ability to
encode information via the synchrony or rate of activity in an
ex vivo slice. To do this, we adopted a patterned optical stimu-
lation approach. We infected the barrel cortex of 5-7-week old
mice with an adeno-associated virus carrying channelrhodopsin-2
(ChR2) and the mCherry reporter, under the Ca2*/calmodulin-
dependent protein kinase II promoter (rAAV1-CamKii-hChR2
(h134r)-mCherry). This led to expression of mCherry in many
neurons of layer 2/3 (Fig. 2a). Due to the use of the CamKii
promoter expression of mCherry was strongest in GFP—, exci-
tatory cells, but we observed ChR2 responses in both mCherry+

and mCherry— cells (Fig. S3), which is in-line with reports that a
shortened CamKii promoter can sometimes lead to small
amounts of expression beyond pyramidal neurons3!. After suffi-
cient time for expression (2-3 weeks), we then prepared ex vivo
slices of barrel cortex and used a digital micromirror device to
illuminate layer 2/3 with spatially controlled patterns of light
(Fig. 2b; see ‘Methods’). Whole-cell recordings from infected
neurons demonstrated that we could use spatially restricted discs
of illumination (470 nm, 15um diameter, ~14 mW/mm?) to
reliably induce spiking in the tissue (Fig. 2c). We also examined
the responses of neurons at different distances from the disc of
illumination (Fig. S2a). We found that due to the limitations of 1-
photon excitation, neurons up to 50 um away from a disc of
illumination could also spike (Fig. S2b-d). Nonetheless, neurons
farther than 50 um away rarely spiked (Fig. S2b-d). To limit the
spread of excitation and mixing of responses in the tissue, we
chose to restrict illumination to more sparse regions of infection
(see ‘Methods’). Altogether, this demonstrated that we could use
the digital micromirror device to activate particular regions of
interest (ROIs) in the slice individually.

Next, we performed whole-cell patch-clamp recordings of GFP+
(and some GFP—) neurons in the slices. We used our patterned
optical illumination approach to encode a 1-bit random signal (i.e. a
signal with two states, 0 or 1) in the activity of 10 ROIs containing
ChR2 expressing neurons (Fig. 3a). We chose a 1-bit random signal
because it enables unbiased, low-variance estimation of mutual
information with limited samples, unlike more natural, continuous
signals32. We encoded this signal using either the synchrony or rate
of optical activation of the 10 ROIs. Although, in general, neurons
can and do transmit information much richer than single-bit
codes®>34, this choice of code to embed in the pattern of tissue
stimulation enabled tractable estimation and analysis of mutual
information in the neurons’ responses (see ‘Methods).

To encode the 1-bit signal using the synchrony of activation,
we created an optical activation pattern where each ROI was
activated at a constant rate of 2.7 Hz, but with low synchrony for
the O state, and high synchrony for the 1 state (Fig. 3b).
Specifically, during the low synchrony state, the activation times
of the 10 ROIs were sampled from 10 independent Poisson
processes, whereas during high synchrony states the activation
times were sampled from a single Poisson process. As a result,
when the 1-bit signal was in the O state, the 10 ROIs were
activated at independent times, whereas when the 1-bit signal was
in the 1 state, the 10 ROIs were activated synchronously. But,
importantly, the rate of activation of the ROIs was identical in the
two states.

To encode the 1-bit signal using the rate of activation, we used a
low rate for the O state and a high rate for the 1 state (Fig. 3c).
Specifically, we always sampled the activation times of the ROIs
from 10 independent Poisson processes, but for the 0 state, we
sampled with a 0.5 Hz rate, and for the 1 state we sampled with a
5 Hz rate. This meant that the average rates were approximately the
same as for the synchrony encoding (2.7 Hz), but the rates changed
depending on the state of the 1-bit signal. Interestingly, we found
that, in comparison to whole-field illumination protocols, these
patterned optical illumination protocols produced qualitatively
more natural responses in the recorded neurons, which was
confirmed by analyzing the spectral densities of the whole-cell
recordings (Fig. S4). Therefore, using our synchrony and rate
encoding protocols, we could investigate the extent to which
different subtypes of neurons in layer 2/3 barrel cortex are sensitive
to information encoded with the synchrony or rate of activity.

Responses to synchrony encoding differ between neuron sub-
types. We first examined the responses of FS GAD67+, RS GIN+
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Fig. 3 Artificially encoding a random 1-bit signal using the synchrony or rate of optical inputs to ChR2+ pyramidal neurons in layer 2/3. a Experimental
protocol. b Sample raster plots illustrating how the 1-bit signal was encoded using synchrony of optical inputs. € Sample raster plots illustrating how the

1-bit signal was encoded using the rate of optical inputs.

cells, and non-fast-spiking GFP—, non-fluorescent (NF) cells
(likely pyramidal neurons) to the synchrony encoding protocol
(NF: n=17, FS: n =21, RS: n = 22). In general, all three types of
neurons exhibited reliable responses to the optical stimulation
patterns (Fig. 4a). Histograms of both the mean membrane
potential and the firing frequency (i.e. spike counts) for each cell
type over the course of the 50 ms window illustrated different
responses during the 0 and 1 states of the random signal. As
expected, we found that both average membrane potential and
spiking frequency were variable and correlated with the number
of active ROIs, such that during the 0 state of low synchrony the

spike counts and membrane potential were highly variable, but
during the 1 state of high synchrony, the spike counts and
membrane potential were less noisy (both were high when all the
ROIs were activated, and low when none of the ROIs were acti-
vated). More specifically, in the O state, the average membrane
potential of all three cell types were generally more depolarized
and variable (Fig. 4b, light histograms; GFP— = —58.98 mV *
4.54, GAD67+ = —59.51 mV *4.36, GIN+ = —54.96 mV +4.92)
when compared to neurons in the 1 state (Fig. 4b, dark histo-
grams; GFP— = —6547mV +2.15, GAD67+ = —66.37 mV *
2.24, GIN+ = —64.35 mV +2.89). Similarly, we found that
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during the 0 state of low synchrony, the firing frequency across
each cell type was generally higher and extremely variable
(Fig. 4c, light histograms; GFP— = 3.29 Hz +2.80, GAD67+ =
19.58 Hz + 17.87, GIN+ = 15.01 Hz + 8.31), compared to spiking
frequencies during the 1 state of high synchrony, which were
more consistent (Fig. 4c, dark histograms; GFP— =2.59 Hz +
1.81, GAD67+ =9.84 Hz+5.67, GIN+ =847 Hz+1.83). At
first glance, these results may be counter-intuitive, since they
show that the 0 state of low synchrony induced higher average
firing rates. But, careful consideration of the low versus high
synchrony states shows that during the low synchrony state there
are fewer periods where no stimulation occurs, whereas in the
high synchrony state stimulation is less frequent, though it is
more consistent and strong when it does occur. This leads
naturally to higher, though more variable, firing rates during the
low synchrony state.

To determine the extent to which each subtype of neuron was
sensitive to information encoded in the synchronicity of neural
activity, we used information-theoretic tools. Specifically, we
examined the mutual information between the 1-bit signal and
different aspects of the patched cells’ activity. Because our
optical protocol did not include any inhibition, the activation of
the 10 ROIs induced prolonged polysynaptic activity in the
tissue (Fig. S5). To examine differences in the faster and slower
integration properties of each cell type, we divided our analyses
into early responses found in the first 5 ms of optical activation
and late responses throughout the rest of the window, in which
we expected there to be more or less polysynaptic activity,
respectively.

When we analysed whether the average membrane potential of
each cell type conveyed information about the random signal, we
found that each neuron type was roughly equal in the amount of
mutual information between the 1-bit signal and their mean
voltage, for both the early (Fig. 5a; GFP— =0.3928+0.1294,

a Average Vm b Average Vm

GAD67+ = 0.4206 £0.1075, GIN+ =0.4211+0.0827) and late
windows (Fig. 5b; GFP— = 0.4562 + 0.1353, GAD67+ = 0.4917 +
0.0796, GIN+ = 0.5079 + 0.0681). This data suggest that although
there may be differences in the responses of each neuron type to
the synchrony encoded information, the amount of information
they carry in their average membrane potential is equivalent.

Next, we examined the spiking responses of the patched
neurons. Again, we split our analyses into approximately early
and late time windows. Interestingly, unlike the mean voltage
responses, we observed clear differences between neuron types
in the mutual information between the 1-bit signal and the
spike counts. In the early window, GAD67+ cells showed the
highest amount of mutual information with the random 1-bit
signal (Fig. 5¢; GFP— =0.0218 £ 0.0187, GAD67+ = 0.0861 +
0.0954, GIN+ = 0.0338 £ 0.0332). These data suggest that when
we consider spiking behaviour, GAD67+ interneurons rapidly
convey more information than either GIN+ interneurons or
pyramidal neurons about signals encoded with synchronous
activity.

Meanwhile, for the late time window, the GAD67+ and GIN+
cells showed equal levels of mutual information with the 1-bit
signal, both of which were higher than the information contained
in the spike counts of the GFP— neurons (Fig. 5d; GFP— =
0.0580 £ 0.0641, GAD67+ = 0.1688 £ 0.1242, GIN+ =0.2472
0.1049 GFP—=10.0580 +0.0641, GAD674 =0.1679 +0.1254,
GIN+ =0.2472 £0.1049). This suggests that both interneuron
subtypes may be more sensitive to signals encoded with
synchronous activity than pyramidal neurons. However, it should
be noted that in the late time window there may be differences in
the rate of synaptic activity thanks to the reverberation of activity
in the tissue. This could include not only the recorded neurons
or the 10 ROIs themselves but also neurons activated by them.
So, whether these differences reflect a different sensitivity to
synchronous activity, or different sensitivity to other cells driven
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Fig. 5 Different subtypes of interneurons carry different amounts of information in response to our synchrony encoding. a Mutual information analysis
of the average membrane potential of each cell type to our 1-bit signal within early (0-5ms) response. Dotted lines indicate window of analysis, with
greyed areas indicating what part of the response was analysed (One-way ANOVA, F(2,57) = 0.432, p = 0.656; post-hoc t-tests: GFP— vs. GIN+: t(35) =
—0.830, p=0.412; GAD67+ vs. GIN+: t(41) = —0.00, p = 0.988; GFP— vs. GAD67+: t(36) = —0.737, p = 0.473, * = tests significant at p < 0.017 with
Bonferroni correction). b Same analysis as (a) but restricting the analysis to only the later (5-50 ms) responses (One-way ANOVA, F(2,57) =140, p=
0.244; post hoc t-tests: GFP— vs. GIN+: t(37) = —1.56, p = 0.127; GAD67+ vs. GIN+: t(41) = —0.809, p = 0.477; GFP— vs. GAD67+: t(36) = —0.933, p
= 0.319; * = tests significant at p < 0.017 with Bonferroni correction). ¢ Mutual information analysis of the spike counts of each cell type to our 1-bit signal
within early (0-5ms) response (Kruskal-Wallis, H(2) = 9.88, p = 0.007; post-hoc t-tests: GFP— vs. GIN+: t(37) = —1.35, p = 0.190; GAD67+ vs. GIN+: t
(41) = 2.37, p=0.025; GFP— vs. GAD67+: t(36) = —3.01, p = 0.006*, * = tests significant at p < 0.017 with Bonferroni correction). d Same analysis as (c)
but restricting the analysis to only the later (5-50 ms) responses (Kruskal-Wallis, H(2) = 21.2, p < 0.0071; post-hoc t-tests: GFP— vs. GIN+: t(37) = —6.94,
p <0.001*; GAD67+ vs. GIN+: t(41) = —2.26, p = 0.031; GFP— vs. GAD67+: t(36) = —3.49, p = 0.001*, * = tests significant at p < 0.017 with Bonferroni
correction).
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Fig. 6 Mutual information between early spike counts in recorded neurons and synchrony code correlates with second principal component of

electrophysiological features in GAD67+ and GIN+ interneurons. a Mutual information between average membrane potential and 1-bit synchrony coded
signal correlated with first and second principal components (PC1 and PC2, respectively) of electrophysiological features in the early window (PCT:

Pearson's r= —0.04, p=0.818; PC2: Pearson's r= —0.17; p=0.281). b Same as (a) but comparing later average membrane potential responses (PC1:
Pearson’s r = —0.13; p = 0.394. PC2: Pearson's r = — 0.09, p = 0.583). ¢ Conditional mutual information between spike counts and 1-bit synchrony coded
signal correlated with first and second principal components of electrophysiological features in the early window (PC1: Pearson's r = 0.27, p = 0.084; PC2:
Pearson's r = —0.32, p=0.037). d Same as (c) but comparing spike counts in later window (PC1: Pearson’'s r = —0.21, p = 0.169; PC2: Pearson's r = 0.20,

p=0.191).

by synchronous activity, is impossible to know. Nonetheless, taken
together with the data from the early time window, we can say that
our results demonstrate that GAD67+ interneurons, GIN+
interneurons, and GFP- neurons carry different amounts of
information over different time-scales about a 1-bit signal that has
been encoded via optical activation of 10 ROIs in a synchronous
vs. non-synchronous manner.

To give an indication of how the electrophysiological
composition of interneurons contribute to their sensitivity to
synchrony coding, we assessed how well mutual information
estimates correlated with the first and second principal
components of electrophysiological features identified for each
cell from current injection (Fig. 6). As a reminder, the more
positive projections onto the first principal component
indicates higher f-I slope, lower membrane time constant,
faster spikes, and higher rheobase, whereas more positive
projections onto the second principal component indicates
higher input resistance, lower cell capacitance, higher sag
amplitude and higher adaptation ratio. We found that there was
significant negative correlation between the second principal
component and mutual information with early window spikes
(Fig. 6¢, Pearson’s r = —0.32, p = 0.037). This suggests that higher
input resistance and stronger presence of slow variables determin-
ing the electrophysiological properties of the cell (indicated by sag
amplitude and adaptation ratio) weakens sensitivity to synchronous
activity over short time scales.

Finally, in order to reinforce these analyses with a more
concrete, mechanistic understanding, we constructed a computa-
tional model of FS and RS interneurons with electrophysiological
properties that matched the neurons in our recordings (Fig. S7a;

see ‘Methods’). We then ran simulations with these model cells
wherein we provided them with inputs that matched our optical
activation patterns (Fig. S7b). Interestingly, we found that the
models cells exhibited the same phenomena as the real neurons:
when using a synchrony encoding, simulated FS neurons carried
more information about the 1-bit signal in a short time-window
than simulated RS neurons. Moreover, the models allowed us to
actively manipulate the parameters in an ‘ablation’ study in order
to determine which physiological parameters were most impor-
tant for inducing this difference in information processing. We
found that the most important parameters for inducing the FS
versus RS mutual information profiles were spike adaptation and
spike threshold (Fig. S7c). Given that the first two principal
components in our analyses above included these variables, our
data suggest that the spiking properties of these two interneuron
types can explain the differences we observed. The importance of
spiking properties for determining the mutual information results
was further supported by additional analyses demonstrating that
the amount of mutual information between the 1-bit signal and
the spikes of the neurons, but not their average membrane
potential, was strongly correlated with the mean firing-rate of the
neurons (Fig. S8). Thus, altogether, our data and modelling
results suggest that FS GAD67+ are better placed to respond
to synchrony codes over short time-scales than RS GIN+
interneurons due to their spiking properties.

Responses to a rate encoding differ between neuron subtypes.
We then examined responses (GFP—: n =17, GAD67+: n = 20,
GIN+: n = 22) to the same one-bit signal encoded via the rate of
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activation of the ROIs. Similar to responses seen in the synchrony
optical encoding, each cell type showed different responses
during the 0 or 1 state of the rate encoding. However rate-based
activation of ROIs induced responses that were of lower mag-
nitude and less noisy during the O state (low rate) than the
responses during the 1 state (high rate) (Fig. 7a). More specifi-
cally, membrane potentials during the 0 state were often
hyperpolarized and had low variance (Fig. 7b, light histograms;
GFP— = —66.38 mV +2.15, GAD67+ = —67.38 mV +2.50,
GIN+ = —65.81 mV + 2.34) whereas during the 1 state they were
depolarized with high variance (Fig. 7b, dark histograms; GFP—
=—5471mV £5.29, GAD67+ = —56.03 mV *6.67,
GIN+ = —49.06 mV + 4.30). This pattern was also seen with the
firing rates of each cell type in response to low rates of optical
stimulation (Fig. 7c, light histograms; GFP— = 0.90 Hz + 0.74,
GAD67+ =4.61 Hz +4.79, GIN+ = 4.68 Hz + 2.56) versus high
rates (Fig. 7c, dark histograms; GFP—=6.56 Hz*5.20,
GADG67+ =32.65 Hz + 31.49, GIN+ = 22.57 Hz + 8.41).

Before conducting information-theoretic analyses, we sought to
ensure that any information about the signal encoded by the
recorded response was driven by the increase in the rate of
optogenetic activation, rather than the unavoidable increase in
synchronous stimulation of ROIs with increased rate (see Fig. S6).
Specifically, when a rate coding system is used, higher rates will
inevitably lead to a larger number of ROIs being activated
synchronously. As a result, unlike the synchrony code where one
can manipulate synchrony while leaving the rate constant, it is
impossible to manipulate the rate while leaving the synchrony
constant. As such we conditioned our mutual information
measure on the ROI activation count in each time bin (see
Materials and Methods). This conditioning was important,
because without it the mutual information estimated in the
responses to the rate code would have included information that
results from synchrony of ROI activation, rather than rate of ROI
activation (Figs. S9 and S10).

Conditional mutual information analysis revealed that
GAD67+ interneurons tended to have lower conditional
mutual information with the 1-bit signal than the other cell
types in both the early (Fig. 8a; GFP— =0.1682+0.0286,
GAD67+ =0.1161 £ 0.0519, GIN+ = 0.1755 + 0.0278) and late
(Fig. 8b; GFP— = 0.0802 + 0.0238, GAD67+ = 0.0590 + 0.0395,
GIN+ = 0.0782 + 0.0214) windows. These data indicate that the
membrane potential fluctuations of GAD67+ interneurons are
less sensitive to signals encoded by rates of activity than GIN+
interneurons and GFP— cells.

We then examined the spiking responses of our recorded
neurons, again splitting spike times into those occurring during
the early and late windows. Spiking was more frequent in the
1 state than in the O state for all neurons, and spike counts
tended to increase monotonically with the number of ROIs
activated. The purpose of conditioning on ROI activation count
is to determine whether there was a difference in spike counts
accounted for only by the rate of ROIs activated, and not the
number of ROIs activated. We found that for spikes occurring
during the early window, there was little difference in
conditional mutual information with the one-bit signal between
GAD67+ and GIN+ interneurons, although both tended to
carry more information about the signal than GFP— cells
(Fig. 8¢c; GFP— =0.0010 + 0.0030, GAD67+ = 0.0085 + 0.0089,
GIN+ = 0.0097 £ 0.0172). This indicates that rapid responses
to rate encoded pyramidal cell activity are similar between
GAD67+ and GIN+ interneurons.

Interestingly, for spikes occurring during the late time window,
SST+ interneurons carried more information about the signal
than both the GAD67+ and GFP— cells, which carried similar
amounts of information (Fig. 8d; GFP— =0.0091 + 0.0106,

GAD67+ = 0.0126 £ 0.0102, GIN+ = 0.0463 +£0.0243).  This
indicates that GIN+ interneurons can accumulate information
about rate encoded signals over longer time windows than both
GADG67+ and GFP— cells.

Once again, we also investigated how the electrophysiological
composition of interneurons contribute to their sensitivity to
rate coding by assessing how well mutual information estimates
correlated with the first and second principal components of
electrophysiological features (Fig. 9). We found that mutual
information between average membrane potential and the rate
coded signal was negatively correlated with the first principal
component and positively correlated with the second principal
component in both the early and late windows (Fig. 9a, b).
Furthermore, we also found that mutual information between
spike counts in the late window was negatively correlated with
the first principal component, and positively correlated with the
second principal component. Together, these results indicate
that stronger linear filtering properties, along with slower
spiking and nonlinear integration, increase the sensitivity to
rate-coded signals.

Discussion

Using a digital micromirror device, we performed ex vivo
experiments in slices of mouse barrel cortex to examine the
sensitivity of different interneuron subtypes to information
encoded with the synchrony or rate of activated neurons. Using
GADG67-GFP and GIN-GFP transgenic mice coupled with viral
infection of neurons with ChR2, we were able to examine the
responses of layer 2/3 fast-spiking GAD67+ and regular-spiking
GIN+ interneurons (as well as NF, GFP— cells that were
likely pyramidal neurons, Fig. 1). We examined their responses to
a 1-bit random signal encoded with either the synchrony or the
rate of optical ROI activation (Figs. 2, 3). We found that there
were indeed differences between cell types in the amount of
information carried about the 1-bit signal. When the signal was
encoded using the synchrony of ROI activation, all of the cell
types carried similar amounts of information in their membrane
potentials, but spiking responses showed differences (Figs. 4, 5).
GAD67+ interneurons carried more information than the other
cell types during an early time-window, while both GAD67+ and
GIN+ interneurons carried more information than GFP— cells in
a later time-window. This effect could be driven by the lower
input resistance and more linearized integration properties (via
absence of slow variables) of FS GAD67+ interneurons (Fig. 6).
When the signal was encoded with the rate of ROI activation, we
found that GAD67+ interneurons carried less information than
either GIN+ or GFP— cells in their membrane potential. For
spiking responses, both GAD67+ interneurons and GIN+ inter-
neurons carried more information than GFP— cells in the early
window, but in the later time-window, GIN+ interneurons carried
more information than either GFP— or GAD67+ cells (Figs. 7, 8).
These differences could be driven by the stronger presence of
nonlinear slow dynamic variables and longer integration proper-
ties of RS GIN+ interneurons (Fig. 9). Altogether, these results
demonstrate that there are differences between neocortical cell
types in their sensitivity to information encoded with the syn-
chrony or rate of activation.

Our findings are broadly in-line with what is known about
neuronal subtypes in the neocortex. First, we found that both
interneuron types tended to carry more information than the
GFP— cells in their spiking responses. This fits with a previous
study that reported higher amounts of information about sensory
stimuli in barrel cortex inhibitory interneurons compared to
excitatory neurons3. (Though it should be noted that that study
reported no significant difference in information content between
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Fig. 7 High and low states within the rate encodings produced different neuronal responses. a Sample traces of each cell type to the rate encoding.
b Probability density functions of the membrane potential of each cell type during high (darker histogram) and low (lighter histogram) states within the
rate encodings (numbers shown represent mean membrane potential in each state + standard deviation). 2-KS tests indicate differences in the sample

distributions of average membrane potential for each cell type between the 0 and 1 state (GFP—: D(30) = 0.76, p < 0.001; GAD67-GFP: D(26) = 0.80, p <
0.001; GIN-GFP: D(30) = 0.83, p < 0.001). ¢ Probability density functions of the firing frequency of each cell type during high and low states within the rate
encodings (numbers shown represent mean firing frequency in each state * standard deviation). 2-KS tests indicate differences in the sample distributions
of average membrane potential for each cell type between the O and 1 state (GFP—: D(30) = 0.55, p < 0.001; GAD67-GFP: D(26) = 0.52, p < 0.007; GIN-
GFP: D(30) =0.73, p< 0.001).
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Fig. 8 Different subtypes of interneurons carry different amounts of information in response to our rate encoding. a Mutual information analysis of the
average membrane potential of each cell type to our 1-bit signal within early (0-5 ms) response. Dotted lines indicate window of analysis, with greyed areas
indicating what part of the response was analysed (Kruskal-Wallis, H(2) =13.9, p < 0.001; post-hoc t-tests: GFP— vs. GIN+: t(37) = —0.806, p = 0.425;
GAD67+ vs. GIN+: t1(40) = —4.17, p < 0.001*; GFP— vs. GAD67+: t1(35) = 3.48, p = 0.001*, * = tests significant at p < 0.017 with Bonferroni correction).
b Same analysis as (a) but restricting the analysis to only the later (5-50 ms) responses (One-way ANOVA, F(2,56) = 3.10, p = 0.053; post-hoc t-tests:
GFP- vs. GIN+: t(37) = 0.266, p = 0.792; GAD67+ vs. GIN+: t(40) = —1.98, p = 0.054; GFP— vs. GAD67+: t(35) =1.93, p = 0.062, * = tests significant
at p <0.017 with Bonferroni correction). € Mutual information analysis of the spike counts of each cell type to our 1-bit signal within early (0-5ms)
response (One-way ANOVA, F(2,56) =2.93, p=0.066; post-hoc t-tests: GFP— vs. GIN+: t(37) = —2.04, p=0.048; GAD67+ vs. GIN+: t(40) =
—0.226, p=0.778; GFP— vs. GAD67+: t(35) = —3.66, p = 0.002*, * = tests significant at p < 0.017 with Bonferroni correction). d Same analysis as (c)
but restricting the analysis to only the later (5-50 ms) responses (Kruskal-Wallis, H(2) = 30.5, p < 0.001; post-hoc t-tests: GFP— vs. GIN+: t(37) =
—6.42, p<0.001*; GAD67+ vs. GIN+: t(40) = —5.92, p <0.001*; GFP— vs. GAD67+: t(35) = —1.14, p = 0.324, * = tests significant at p <0.017 with
Bonferroni correction).

interneurons and excitatory neurons in layer 2/3, which we have network organization and function that other forms of stimulation
studied here.) Second, our finding that GAD67+ interneurons’  cannot, particularly with respect to inhibitory microcircuits*1:42.
spikes rapidly convey information about a signal encoded with One aspect of interneuron specialization for information cod-
synchronous activity, while GIN+ interneurons gradually accu-  ing that we have not explored in this paper is the role of network-
mulate information about a signal encoded with different rates of level interactions between interneuron classes. For example, it is
activity, fits with what is broadly known about the biophysics of known that PV+ and SST+ interneurons can be connected to
these cell types. Specifically, the rapid membrane time-constants, one another?8, which would mean that the coding properties of
and rapid spiking properties of FS PV+ interneurons3® fits with  one neuron type could affect the other directly. This may have
rapid transmission of information about synchronous inputs, been the case in our data here, given that we could not guarantee
while the adaptive spiking responses of SST+ interneurons?* fits ~ that polysynaptic interactions were not involved in generating
with long latency responses to high rate inputs3”-38. Moreover, ~some of the information processing we observed. However, our
our computational model (Fig. S7) and analyses of the relation- computational model (Fig. S7) suggests that at least the core
ship between firing-rate and mutual information (Fig. S8), further  aspects of the information coding specialization observed here
support the idea that differences in spiking properties can explain  can be explained in a cell-autonomous manner. Nonetheless,
the differences we observed between FS and RS cell types. network interactions are an important consideration here, espe-
Our data suggest that there are potential divisions of labour in  cially when we consider the potential role of oscillations in
information encoding in the neocortical microcircuit. Both shaping synchrony and rate across a network, and the role of
GADG67+ and GIN+ subtypes carried information about the 1-bit ~ interneurons in regulating oscillations*3.
signal regardless of the encoding format we used, but our results It is important to note that our study was limited by a number of
imply that, roughly, GAD67+ cells, which are FS interneurons, factors. First, we were performing our experiments ex vivo, and
rapidly provide more information about synchronous network there are likely important differences in interneuron activity in vivo
activity, while GIN+ interneurons gradually accumulate infor- that relate to factors such as movement or neuromodulation??.
mation about the rate of activity in the surrounding neurons. Second, because we were using single-photon excitation with no
Given this, the synchronous activation of excitatory neurons in  optical inhibition, we could not guarantee fine-grained optogenetic
the circuit?*4% may activate perisomatic inhibition more strongly, ~ control over a small population of excitatory neurons (Fig. S2), so it
while recurrent or top-down signals that build-up over time may must be recognized that we were likely activating the recorded
activate distal dendritic inhibition more strongly. This would also  neurons directly sometimes, and certainly we were activating more
suggest that reports that synchrony and rate can carry distinct than 10 presynaptic neurons and triggering recurrent, polysynaptic
information about sensory stimuli®!? may link certain aspects of  activity. It should, however, be noted that any lack of control in the
sensory stimuli with certain forms of inhibition to pyramidal specific spike-timing and population size of activated neurons does
neurons. Future work should examine whether the information not affect our findings of different sensitivity to the encoded
carried by FS and RS interneurons reflects signals communicated  information, since all tissue samples used in this study are affected
by the synchrony and rate of pyramidal cell activation, respec- by these sources of variability equally. Third, our dataset did not
tively. Such investigations would ideally be done using similar include morphological information for the neurons, which also
patterned optical activation approaches to ours, but in vivo, as  helps to determine classifications of interneurons!’. As such, the
data suggests that patterned optical activation can reveal aspects of ~ cells in our study may have actually belonged to subclasses which
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Fig. 9 Conditional mutual information between responses in recorded neurons and rate code correlates with first and second components of
electrophysiological features in GAD67+ and GIN+ interneurons. a Conditional mutual information between average membrane potential and 1-bit
rate coded signal correlated with first and second principal components (PC1 and PC2, respectively) of electrophysiological features in the early
window (PC1: Pearson's r = —0.65, p < 0.001; PC2: Pearson's r =0.52; p <0.007). b Same as (a) but comparing later average membrane potential
responses (PC1: Pearson’s r = —0.54; p < 0.001. PC2: Pearson's r = 0.46, p = 0.002). ¢ Conditional mutual information between spike counts and 1-bit
rate coded signal correlated with first and second principal components of electrophysiological features in the early window (PC1: Pearson's r = 0.19,
p=0.237; PC2: Pearson's r=—0.28, p=0.078). d Same as (¢) but comparing spike counts in later window (PC1: Pearson's r = —0.56, p < 0.007;

PC2: Pearson's r=0.36, p = 0.018).

could have further refined our results. Hopefully, the relationship
between morphology and information coding specialization will be
explored by follow-up studies. And finally, our findings cannot
directly inform us about whether these codes are actually used for
computation in vivo. That requires behavioural responses from
animals to determine whether downstream circuits utilize the
information encoded with rate or synchrony*%. Nonetheless, we
believe that our findings are informative and can help to guide
future work that attempts to examine potential divisions in coding
in the neocortical circuit in vivo.

In summary, we found evidence that different subtypes of
neurons in the neocortical microcircuit are differentially sensitive
to information encoded with the synchrony or rate of activity in
the surrounding network. This supports the idea that the brain is
capable of multiplexing information through activation of distinct
interneuron subtypes.

Methods

Animals. GIN-GFP (FVB-Tg(GadGEP)45704Swn/J; JAX#003718) and GAD67-
GFP animals (CB6-Tg(Gad1-EGFP)G42Zjh/J; JAX#007677) were obtained from
Jackson Laboratory. Mice were weaned at 21 days, in a temperature controlled
room with a 12 h light/dark cycle. Mice were given food and water, ad libitum.
All procedures were in accordance with the regulations provided by the Canadian
Council for Animal Care and approved by the Local Animal Care Committee at the
University of Toronto Scarborough.

Viral Microinfusion. Mice 5-7 weeks old received bilateral microinfusion of
AAV1-CamKii-hChR2(H134R)- mCherry. WPRE.hGH (Addgene, #26975-AAV1)
into layer 2/3 of the barrel cortex (—1.3 mm AP, +3.1 mm ML, —1.1 mm DV).

Mice were treated with ketoprofen (5 mg/kg) and anesthetized with isofluorane
(4% induction, 2% maintenance). The anesthetized animal was then placed on a
stereotaxic frame (Stoelting) and holes drilled in the skull above the coordinates of
interest. To inject the viral vectors, a Hamilton Neuros Syringe (Hamilton, #65460-
05) was connected to a microinjector (QSI, Stoelting) to infuse the virus at a
volume of 0.15 pL per side with a rate of 0.05 uL/min. After each injection, the
syringe was left in the brain for another 5 min to allow for sufficient diffusion of the
virus. Following surgery, mice were treated with 0.5 ml of 0.9% saline sub-
cutaneously and received ketoprofen post-operatively for 2-3 days. Based on the
extent of mCherry expression, we typically observed expression up to 200-250 pm
away from the injection site. This encompassed layer 2/3, but also layer 4, and in a
small number of animals, the superficial portion of layer 5.

Immunohistochemistry. To confirm whether GIN-GFP and GAD67-GFP targeted
SST+ and PV+ cells, respectively, brains from each transgenic line were fixed with
4% paraformaldehyde (PFA) via transcardial perfusion. After 2 days of fixation, the
brains were sliced at 50 um thickness using a vibratome (Leica).

For PV staining, free-floating brain sections of the barrel cortex were first
washed in PBS and then incubated in 1% H,O, in PBS for 30 min at room
temperature. Slices were then blocked with PBS containing 10% goat serum, 3%
bovine serum albumin, and 0.05% Triton-X-100 for 2 h at room temperature.
Afterwards, sections were incubated in PBS blocking buffer containing mouse anti-
PV primary antibody (Thermofisher, 1:500) overnight at 4 °C. The next day, slices
were washed in PBS and then incubated in PBS blocking buffer containing goat
anti-rabbit secondary antibody conjugated with an Alexafluor 594 (Life
Technologies, 1:500) for 1h at room temperature.

For SST staining, free-floating brain sections of the barrel cortex were first
washed in PBS and then incubated in 1% H,O, in PBS for 30 min at room
temperature. Slices were then blocked with the same blocking solution as above for
2h at room temperature. Afterwards, sections were incubated in PBS blocking
buffer containing mouse anti-SST primary antibody (Novus, 1:500) overnight at
4°C. The next day, slices were washed in PBS and then incubated in PBS blocking
buffer containing goat anti-rabbit secondary antibody conjugated with an
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Alexaflour 594 (Life Technologies, 1:500) for 1h at room temperature. Following
this, tyramide signal amplification (TSA) was performed by incubating the sections
in Rhodamine TSA reagent (1:30,000, diluted in 0.1 M Borate Buffer with 0.01%
H,0,) for 30 min at room temperature.

Following staining, slices were washed with PBS, mounted onto gelatin-coated
slides, and covered with a coverslip using Fluoshield (Sigma-Aldrich). Images were
obtained using a confocal laser scanning microscope (Zeiss) with a x10 objective.

For cell counting experiments, L2/3 of the barrel cortex was imaged and was
counted for GFP+, PV+ and SST+ cells. Approximately 4-6 sections/mouse were
counted and averaged, with 4-6 mice/group. Genotypic specificity (total numbers
of PV+ or SST+ cells/total numbers of GFP+ cells x 100), and efficiency (total
numbers of GFP+ cells/total numbers of PV+ or SST+ cells x 100) were calculated
using these averages.

Ex vivo slice electrophysiology. Mice (GAD67-GFP: n = 25, GIN-GFP: n =19)
aged 7-12 weeks were anesthetized with 1.25% tribromoethanol (Avertin) and
underwent cardiac perfusion using a chilled cutting solution containing (in
mM): 60 sucrose, 25 NaHCO3, 1.25 NaH,PO,, 2.5 KCl, 0.5 CaCl,, 2 MgCl,, 20
D-glucose, 3 Na-pyruvate and 1 ascorbic acid, injected at a rate of ~1 mL/min.
After 5-8 min of perfusion, the brain was quickly removed and cut coronally
(350 um thickness) with a vibratome (VT1000S) in chilled cutting solution to
obtain slices of the barrel cortex. Once cut, these slices were then transferred into
a recovery chamber comprising of a 50:50 mix of warm (34 °C) cutting solution
and artificial cerebrospinal fluid (aCSF) containing (in mM): 125 NaCl, 25
NaHCO;, 1.25 NaH,PO,, 2.5 KCl, 1.3 CaCl,, 1 MgCl,, 20 D-glucose, 3 Na-
pyruvate, and 1 ascorbic acid. Following 30 min-1h of incubation, the slices
were then transferred into an incubation chamber with room temperature aCSF.
Within the recording chamber, aCSF was heated to 32 °C using an in-line heater.
Whole-cell current-clamp recordings were made using glass pipettes filled with
(in mM): 126 K D-Gluconate, 5 KCI, 10 HEPES, 4 MgATP, 0.3 NaGTP, 10 Na-
phosphocreatine. Glass capillary pipettes were pulled with a Flaming/Brown
pipette puller with tip resistances between 4 and 8 MQ. Patched cells were
monitored for series resistance throughout recordings, and those that exceeded
30 MQ were not included in this study.

Patterned illumination with a digital micromirror device. To optically encode a
1-bit random signal into the activity of L2/3 neurons, we used one-photon
patterned illumination with a digital micromirror device (Polygon400, Mightex).
After viral infusion surgery, and 2-3 weeks for expression (see above) we pre-
pared slices and excited ROIs containing mCherry+ neurons in the slice. To
target optical activation to as few neurons as possible, while maintaining reliable
spiking responses in activated cells, we used software to draw circular ROIs of
15 um in diameter (PolyScan V2, Mightex) around mCherry+ cells. These ROIs
defined discs of illumination. We always drew the ROIs such that only a single
mCherry+ neuron could be seen within the ROI. We cannot guarantee that no
other cells that expressed ChR2 were ever contained within the ROIs, but we can
say that we never observed more than one mCherry+ cell per ROL The light
used to activate the cells was generated from an LED with a 470 nm wavelength,
and the optical power at the microscope stage was set to ~14 mW/mm?, which
we found to be sufficient for driving reliable spiking responses in targeted
neurons.

To test the spatial specificity of our patterned illumination setup and determine
whether it could reliably induce spiking, we conducted whole-cell patch-clamp
recordings from ChR2+ layer 2/3 pyramidal cells in the barrel cortex while
illuminating circular patterns of blue light placed 25 pm apart in sequential order
(see Fig. S2) in both the dorsal-ventral axis as well as the medial-lateral axis of the
slice (470 nm, ~14 mW/mm?). To determine the probability of spiking based upon
the spatial distance of the light spot, the median probability of a spike occurring
was calculated as well as the 95% confidence interval for the median via
bootstrapping (n = 1000).

As such, to limit the spread of optical activation, we chose to limit our
recordings to regions of tissue that showed sparse infection. More specifically, we
drew ROIs around mCherry+ cells that were >50 um away from their nearest
neighbouring mCherry+ cell, as indicated when using PolyScan V2 software. This
helped to ensure the fidelity of spiking soon after the onset of illumination of
mCherry+ cells (Fig. S2¢). Also, note from Fig. S2¢ that cells >50 pm away from the
ROI would be expected to spike much later than cells centred on the ROL

Encoding a 1-bit random signal with synchrony or rate of ROI activation. To
examine the responses of different neuron types to synchrony and rate of optically
induced activity we developed protocols for encoding a random 1-bit signal

(0 versus 1) in a brain slice. To do this, we drew 10 discs of illumination centred on
mCherry+ neurons, that were in close proximity to the mCherry— patched cell. As
previously stated, in order to mitigate unintended cross-stimulation of ROIs, we
tried to space out the spots from each other by at least 50 um, as we had previously
observed that the probability of spiking dropped significantly if a spot was placed at
least 50 um distance from a cell (Fig. S2). A one-bit signal, s(t), was encoded in the
optogenetically-driven activity over 10 ROIs using either a rate or temporal code.
Under a rate code, neurons were driven by pulses xX (f) sampled from 10

independent inhomogenous Poisson process with rates, AR(f), depending on the
value of s(t), such that:

R [ 5 Hz, ifs()=1
ro= {0.5 Hz if s(t) =0 ey
xR(t) ~ Poisson(A*(£)) )

Under a synchrony code, neurons were driven by pulses x|, sampled from 10
independent homogeneous Poisson processes or from a single homogeneous
Poisson process, creating states of uncorrelated (s(f) = 0) and perfectly correlated
(s(t) =1) pulses:

. T .
W) = { PO.ISSOD(AT ), ?f st =1 3)
Poisson(A,.y) if s(t) =0

The rate AT was set to the mean rate of the the rate-coded signal, i.e. AT = E[AR
(] =2.7 Hz.

Electrophysiological characterization. Electrophysiological characteristics for
each neuron were estimated from 500 ms current injection steps (;;) ranging from
—80 pA to 400 pA in 40 pA increments. Eleven features were extracted in total
including: (1) resting membrane potential (V,es, mV), (2) input resistance (R;p,
MQ), (3) cell capacitance (Cpem> PF), (4) membrane time-constant (Tyem, ms), (5)
rheobase (I5, nA), (6) f-1 slope (', Hz/nA), (7) spike adaptation ratio, (8) sag
amplitude (Vi mV), (9) spike threshold (Vg, mV), (10) spike amplitude (Vimp
mV), and (11) spike half-width (T}, ms). Standard calculations were used for
these features!$4%46, but briefly, we will note the following for clarity:

®  Spike times were identified as times at which membrane potentials crossed
—20 mV with a positive gradient.

®  Rheobase Iy (current at which non-zero spike counts occur) and f-I slope,
f', were estimated by fitting the piecewise-linear scalar function f(I) =
max (0, f-(I — I,) to spike counts at each Ij step value. Many cell types
display spike accommodation with non-linear above-rheobase f-I relation-
ships. We defined f-I slope to mean the initial slope above rheobase.
Therefore, we fit this function to sub-rheobase and up to the first five
above-rheobase spike counts inclusively.

®  Spike adaptation ratio was estimated as the ratio between the last and first
spike-time intervals (the difference between spike times). This requires a
minimum of three spikes to estimate. For spike-trains with >7 spikes, the
last two and first two intervals were used to estimate the ratio to improve
estimate quality. Only the spike train from the highest I;,; was used to
estimate this feature.

® V. was estimated as the average membrane potential in the 10 ms prior to
current injection.

® V. was estimated as |min(V) — V | at Ijpj=—80nA during current
injection.

® V), was estimated from all extracted spikes. A window around each
identified spike time was used to extract action potential V(¢) traces and the
z-scored slope z(V'(t)) of each action potential was calculated. Vy was
estimated as the membrane potential at which z(V’(¢))>0.5

®  V.mp Was estimated as Vi, = max(V) — Vj

® Ty, was defined as the duration of an action potential for which V(t) >
(Vamp — Vp) and was averaged across all extracted action potentials.

® R;, measurements were calculated and averaged across membrane
potentials resulting from sub-rheobase, non-zero current injection. Ry,
was calculated using Ohm’s law as (V.. — Viest)/Iinj Where the steady-state
membrane potential V., was estimated as the temporally averaged
membrane potential over the last 10 ms of current injection

® T, measurements were taken from membrane potential decay 100 ms
after sub-rheobase non-zero current injection. Estimates were calculated by
fitting a single-order exponential function of the form V(t) =(V,—
) exp(—t/Tpem) + 1 and averaged

®  Cem Was calculated as Toem/Rin

Principal components analysis and hierarchical clustering. Principal compo-
nents analysis of each cell’s electrophysiological characteristics was conducted
using the sklearn python package?’. To generate the dendrogram, we used the
scipy.cluster package to implement hierarchical clustering®®. Ward’s method was
used to calculate the distance between each cluster.

Mutual Information. Mutual information I(r; s)*° between the response (f) of the
recorded neuron and the one-bit signal s(¢) was used to assess the sensitivity of the
recorded neurons to the synchrony encoding of the signal:

I(r;s) = H(r) + H(s) — H(r,s) (4)

where H(r), H(s) and H(r, s) are the entropy of the response, signal and joint
entropy of the signal and response, respectively. The responses of the neurons, r(t),
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were defined as mean membrane potential (e.g. Fig. 7a, b) or the spike counts (e.g.
Fig. 7¢, d) over the given temporal window.

Since temporal correlations increase amongst inputs when rates increase (Fig.
$6), we could not directly calculate the mutual information between the rate of
activations and the responses. Instead, the mutual information was conditioned on
the number of ROIs activated y(t) = Z}il x,(t) to discern how sensitive the
recorded neuron was to the rate-coded signal:

I(r;sly) = H(r,y) + H(s,y) — H(r,s,y) — H(y) (5)

where H(r, y), H(s, ), and H(r, s, y) are the joint entropy of the response and
number of active ROIs, the signal state and number of active ROIs, and the
response, signal state, and active ROIs, respectively, whereas H(y) is the entropy of
the number of active ROIs.

To estimate the entropy of discrete variables U (such as signal state, number of
active ROISs, spike counts), we used the standard definition of entropy as the
weighted average of the log probability mass function4>%9, i.e.

H(U) = —%:Pu(u)logzPU(u) 6)

with the convention Py (u)log,Py(u) = 0 if Py(u) =0 applied.

Similarly, the entropy of continuous random variables (average membrane
potential) was estimated by constructing histograms to approximate the probability
density function of the variable with a discrete probability mass function, i.e.:

B
H(u) = —Au Y- P(u; — Au/2 <u<u; + Au)log ,P(u; — Au<u<u; + Au/2) (7)
i=1

along histogram bin midpoints u; with bin width Au. The number of bins B was
chosen as the maximum of Sturges’ formula®! and the Freedman-Diaconis rule®2:
IQR(u)

B= max(ZW,logzn +1). 8)

where 7 is the size of data u, and IQR is the interquartile range.

Statistics and reproducibility. All data analysis code was written in python 2.7
using tools from the scientific computing ecosystem (numpy>3>4, scipy*®,
matplotlib>, scikit-learn*’, pandas®®, neo®’).

To determine whether the mean mutual information was different between each
cell type, we ran a One-Way ANOVA, or Kruskal-Wallis test if Levene’s test
indicated unequal variances between groups. We also applied post-hoc individual,
two-tailed t-tests for differences between pairs of groups, or Welch’s t-test if
Levene’s test indicated unequal variance. Bonferroni corrections for multiple
comparisons were applied for each test. All tests were run using scipy.

Spiking neuron simulation. Simulations of spiking neuron were used to examine
the effect of intrinsic properties controlling the responsiveness of neurons to rate or
synchrony codes. We used adaptive exponential-integrate-and-fire (AdExp)>8-60
neuron models in our simulations since they are sufficiently flexible to reproduce
firing statistics of fast-spiking and regular-spiking interneurons, while retaining a
low-dimensional parameter space that is simple to tune.

The AdExp Neuron model describes the evolution of the membrane potential
V,, and adaptation current w of a point neuron, i.e.,

av,, V,—V
Chn 3 —81(Viy — Ep) + g Ap exp (A—TT> = 8cur(Vim — Egrur) — W+ Iy
(©)]
d
de_t} =a(V, —E)—w (10)

where C,, is membrane capacitance, g;, is leak conductance, Ej, is leak reversal
potential, V7 is a soft threshold membrane potential, A is a sharpness parameter
controlling exponential activation, goryr is the total conductance of excitatory
input synapses, Egrur is the reversal potential of excitatory input synapses, Iip; is
injected current, 7,, is the time-constant of adaptation current decay, and a is a
parameter coupling the adaptation current to the membrane potential.

As with other integrate-and-fire neuron models, the variables are permitted to
evolve under these dynamics until a spike event is triggered, i.e., when V,,, > Vi,
where Vi, = Vy+ 5A7 to prevent numerical overflow. When this occurs, the
membrane potential V,, and adaptation current w are reset according to

Vm <« Vl’CSCt (1 1)

(12)

where Vi is the post-spike reset membrane potential, and b is the jump of spike-
triggered adaptation.

We used a mixture of parameter estimates from our own data, hand-tuning
according to phase portraits in ref. 0, and literature review®1:62 to determine
parameters for FS and RS interneurons

We can group subsets of these parameters to describe how they influence
neuron behaviour: i) linear leaky integration (C,,, g1, Ep), ii) spike threshold
(A1, V), iii) adaptation (7, a, b), and iv) reset (V). Additionally, we

w<w+b

Table 1 Table of parameters used to model fast-spiking (FS)
and regular-spiking (RS) interneurons using adaptive
exponential-integrate-and-fire neurons.

Neuron Type

Group Parameter FS RS
Leaky integrator C 60 pF 60 pF
a. 6nS 3nS
E —70mV —70mV
Threshold Ar TmV 4mV
Vi —43mV —62mV
a /64 1/100
Adaptation Ty Tms 100 ms
a OnS 0.001nS
b 0pA 40 pA
Reset Vieset —70mV —70mV

Parameters are split into groups that describe their contribution to the firing statistics of the cell.

incorporated a degree of heterogeneity in neurons by sampling V7, b, and C,, from
Gaussian distributions N'(V, aVy), N(b, b/400), N(C,,, C,,/100) respectively.
Parameters for each neuron type are listed in Table 1. These parameters imbue FS
neurons with no adaptation, as such dynamics are solely determined by leaky
integration and spike-threshold parameters. In contrast, these parameters imbue
RS neurons with adapting spike patterns, along with (on average) a larger
membrane time constant and lower spike-threshold than ES cells. This corresponds
to our own data, in which RS cells have lower rheobase and larger membrane time
constants than FS cells.

For simulation of our rate and synchrony coding experiments, we incorporated
a population of 10 presynaptic single-exponential excitatory synapses

do(® i
W e
gD gD 4 h (post—spike) (14)

where g corresponds to the conductance of the synapse at input i, 7, = 5 ms is the
synaptic decay time-constant, and h controls the jump in synaptic conductance
post-spike.

Simulations were conducted using Brian 2.4%%, using Euler integration with a
time step of 0.1 ms (exact solutions used for synapses).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data for this work is publically available on Dryad (https://datadryad.org/stash/share/
OVVBYWXRW7iWnNuxzRsMghIpA2D2QJXUuY59i0NZHO04).

Code availability
Code for this work is publically available on GitHub (https://github.com/lyprince/
nc_paper).
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