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Abstract

In this paper we study an extension of the Gram-Charlier (GC) density in Jondeau and Rockinger
(2001) which consists of a Gallant and Nychka (1987) transformation to ensure positivity without pa-
rameter restrictions. We derive its parametric properties such as unimodality, cumulative distribution,
higher-order moments, truncated moments, and the closed-form expressions for the expected shortfall
(ES) and lower partial moments. We obtain the analytic k -th order stationarity conditions for the un-
conditional moments of the TGARCH model under the transformed GC (TGC) density. In an empirical
application to asset return series, we estimate the tail index; backtest the density, VaR and ES; and im-
plement a comparative analysis based on Hansen’s skewed-t distribution. Finally, we present extensions
to time-varying conditional skewness and kurtosis, and a new class of mixture densities based on this
TGC distribution.
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1 Introduction

Densities based on polynomial expansions (PE) have drawn great attention to model the departures from

normality of the empirical return distributions. For instance, in a recent study, Bagnato, Poti and Zoia (2015)

present a simple theorem that links the higher-order moments (skewness and kurtosis) of a polynomially

expanded parent distribution to those of the resulting distribution. Within this framework, the Gram-

Charlier (GC) probability density function (pdf) in Jondeau-Rockinger (2001) (henceforth, JR) is a PE

density with the standard Normal as parent pdf. The GC distribution is very tractable theoretically

and empirically mainly because its two parameters correspond directly to skewness and excess kurtosis.

The following references, without being exhaustive, provide a research line on the development of the GC

distribution: Beber and Brandt (2006), Polanski and Stoja (2010), Cheng, Philip, Zhou, Wang and Lo

(2011), Ñíguez and Perote (2012), Liu and Luger (2015), Lönnbark (2016), León and Moreno (2017), Zoia,

Biffi and Nicolussi (2018) and Del Brio, Mora-Valencia and Perote (2020).1

A well-known problem of the GC density function is that it can render negative values. This issue has

been mainly dealt with through two approaches. On the one hand, by means of parametric restrictions that

ensure the GC pdf has positive probabilities, as in JR (2001). On the other hand, using density function

transformations based on the methodology of Gallant and Nychka (1987) (GN henceforth). The latter

approach was followed by León, Rubio and Serna (2005) (hereafter LRS) to define a positive GC density

function with conditional autoregressive higher-order moments. The LRS model has been proven useful for

numerous financial econometric applications; see, for instance, White, Kim and Manganelli (2010), Alizadeh

and Gabrielsen (2013), Auer (2015), Gabrielsen, Kirchner, Liu and Zagaglia (2015), Anatolyev and Petukhov

(2016), Kräussl, Lehnert and Senulyté (2016), Narayan and Liu (2018) and Wu, Xia and Zhang (2019).

Henceforth, the LRS density will be referred to as the transformed GC (TGC) since it is the result

of transforming the GC density in JR (2001) in order to obtain a well-defined density without parameter

restrictions. However, unlike the GC density parameters, the TGC ones do lose their direct interpretation

as skewness and excess kurtosis. In this paper we study the TGC’s parametric properties providing its true

higher-order moments and other features of the TGC pdf such as the conditions for unimodality, allowable

ranges of skewness and kurtosis, closed-form formulae for (i) the cumulative distribution function (cdf), (ii)

one-sided truncated TGC moments, and (iii) asymmetric risk measures such as expected shortfall (ES) and

lower partial moments (LPMs).

We illustrate the practical use of this pdf through an application to modeling asset returns. For that

purpose, we implement the threshold GARCH (TGARCH) model of Zakoïan (1994) for the conditional

volatility. We test the performance of our model through an in-sample analysis, and out-of-sample (OOS)

exercises for backtesting VaR and ES as well as for density forecasting. We derive the analytic expressions

for the k-th order stationarity conditions for the unconditional moments of the errors under the TGARCH

with TGC density for the standardized errors (henceforth, TGC-TGARCH). Indeed, the second and fourth

moments will receive special attention and so, the unconditional variance and kurtosis. Besides, we test

the finiteness of the unconditional moments through the robust tail-index method of Gabaix and Ibragimov

(2011). As a result, we provide stronger evidence respecting the one obtained from the second and fourth

order stationarity conditions driven by the TGC-TGARCH parameter estimates. The data we use comprises

1Within this literature, a special mention deserves the GC applications to option pricing in Corrado and Su (1996), Corrado

(2007), León Mencía and Sentana (2009) (LMS hereafter) and Schlögl (2013).
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stock indexes, exchange rates, a commodity and a cryptocurrency. For comparison purposes, we consider

both the Normal distribution as the benchmark as well as the symmetric-GC pdf of Zoia et al. (2018), which

we refer to as GCK hereafter. Our choice of the latter is based on that, unlike the TGC, the GCK does

model directly kurtosis. Hence, in our comparison analyses we can easily isolate the effect of skewness on

the performance of the density. Besides, we also compare the TGC’s performance with the popular skewed-t

distribution of Hansen (1994). Furthermore, a robustness check of the conditional variance under the TGC

is done using the nonlinear asymmetric GARCH (NAGARCH) of Engle and Ng (1993) as an alternative to

the TGARCH.2 We evaluate density forecasting performance through p-value discrepancy plots (Davidson

and MacKinnon, 1998) together with proper scoring rules in Amisano and Giacomini (2007). VaR and ES

forecasting accuracies are tested via the backtesting procedures in Du and Escanciano (2017).

Finally, we highlight two possible extensions left for future research although we show some previous

results here. First, we extend the TGC to incorporate time-varying (TV) higher-order moments where the

dynamics for the implied TGC parameters are driven by the specification in, among others, Lalancette and

Simonato (2017), which accounts for asymmetric responses of conditional skewness and kurtosis to positive

and negative shocks. Our in-sample analysis results show that modeling the TGC with TV higher-order

moments clearly contributes to improving goodness-of-fit. The empirical evidence from our daily conditional

skewness series is also reinforced by using an asymmetry measure beyond the third central moment and

specifically, the one based on the return distribution’s tails proposed in Jiang, Wu, Zhou and Zhu (2020).

Second, we present a mixture of TGC (MTGC hereafter) densities that features higher flexibility than the

TGC for capturing large ranges of kurtosis under a rather similar model framework to that in Alexander

and Lazar (2006).

The remainder of the paper is structured as follows. Section 2 deals with the GC pdf as a set-up base

of our analysis. In Section 3 we characterize the TGC pdf and study its parametric properties. In Section 4

we apply the TGC for modeling the conditional distribution of asset returns under the TGARCH structure,

and analyze the power-law tail properties. Section 5 provides an empirical application to asset return

series. Section 6 presents two possible extensions of the TGC linked to lines for further research. Section

7 provides a summary of the conclusions. Appendix 1 includes some properties of the Hermite polynomials

used throughout the paper. Appendix 2 includes all proofs, and also the k-th order stationarity conditions

for the unconditional moments under the NAGARCH model. Appendix 3 presents the estimation results

of the NAGARCH under the TGC pdf (henceforth, TGC-NAGARCH). The robust tail-index estimation

results for the asset returns are provided in Appendix 4. Finally, Appendix 5 shows a sensitivity analysis

based on a simulation procedure that aims to study the theoretical behavior of the implied tail index from

Kesten’s equation.

2 The GC distribution

The GC pdf is defined according to following the polynomial expansion density:

g (x,θ) = φ (x)ψ(x,θ), (1)

2The NAGARCH model is also known as NGARCH, see Christoffersen (2012).
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where x ∈ R, θ = (θ1, θ2)
′ is the parameter vector, φ (·) is the pdf of the standard Normal distribution and

ψ(·) is defined as
ψ(x,θ) = 1 +

θ1√
3!
H3(x) +

θ2√
4!
H4(x), (2)

such that Hk (·) denote the (normalized) Hermite polynomials in (70) in Appendix 1. The associated cdf,

i.e. G (x,θ) =
∫ x
−∞ g (u,θ) du, is given by

G (x,θ) = Φ (x)− θ1

3
√

2
H2 (x)φ (x)− θ2

4
√

3!
H3 (x)φ (x) , (3)

where H2(x) = x2−1√
2
, H3(x) = x3−3x√

3!
and H4(x) = x4−6x2+3√

4!
. More details about (3) and other properties

of the GC distribution can be seen in León and Moreno (2017).

2.1 Higher-order moments

It is verified that the first noncentral moments of x with pdf in (1) are given by Eg [x] = 0, Eg
[
x2
]

= 1,

Eg
[
x3
]

= θ1 and Eg
[
x4
]

= θ2 + 3. Thus, x is a standardized random variable (rv) such that θ1 and

θ2 correspond, respectively, to the skewness, s, and the excess kurtosis, ek, of g (x,θ). We can adopt the

following notation: θ1 = s and θ2 = ek. Since g (·) can take negative values for certain values of (s, ek), JR

(2001) obtain numerically a restricted space Γ for possible values of (s, ek) where the polynomial function of

degree four in (2) becomes non-negative for every x, i.e. ψ(x,θ) ≥ 0. As a result, the points in Γ verify that

0 ≤ ek ≤ 4, |s| ≤ 1.0493 and the range of s in Γ depends on the level of ek. The maximum size for skewness

is reached for ek = 2.4508. From now on, the well-defined GC pdf refers to g (x,θ) subject to θ ∈ Γ. The

envelope of Γ is exhibited, in continuous-line, in the left panel of Figure 1 (with ek and s in the x-axis and

y-axis, respectively).

Figure 1: The left panel exhibits the GC positivity frontier (continuous line) and its unimodality frontier (dash line).

The right panel plots the GC density for θ1= 0 (symmetric distribution) and different values of excess kurtosis, θ2.
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2.2 Unimodality

Figure 1 (left panel) also plots the frontier (dashed-line) of the GC unimodal region, which tally with the

curves of Draper and Tierney (1972). The unimodality of g (·) does hold if there is only one real root in
the fifth-degree polynomial given by the condition: xψ − dψ/dx = 0 with ψ(·) in (2). Note that if g (·) is
unimodal then θ2 < 2.4 as shown analytically in Zoia (2010). The right panel of Figure 1 graphs the GC

density with θ1 = 0 (symmetric distribution) and different values of excess kurtosis, θ2, where unimodality

is verified if θ2 = 2 but not for θ2 = 3.5. The GC distribution coincides with the standard Normal for the

case of θ2 = 0.

3 The transformed GC distribution

As an alternative to the numerical method implemented in JR (2001) for building the restricted parameter

set Γ which ensures the positivity to the pdf in (1), Gallant and Tauchen (1989) suggested to square the

polynomial component ψ(·,θ) in (2). As a result, we can obtain a new pdf q (·), which we call the transformed
GC (TGC), and given by

q (x,θ) = λφ (x)ψ2(x,θ), (4)

where the parameter λ verifies that the pdf in (4) is well-defined and hence, the integral of q (·) must be equal
to one. The inverse of λ is given by the expression: 1/λ = 1 + γ21 + γ22 where γ1 = θ1/

√
3! and γ2 = θ2/

√
4!.

Note that, by transforming g (·) into q (·) the parameters in q (·) are not restricted now. However, by doing
so and unlike the GC pdf, they cannot be interpreted as higher moments of the new density. Both skewness

and kurtosis under (4) are indeed non-linear functions of θ1 and θ2. If we expand the square of ψ(x), we can

rewrite (4) as

q (x,θ) = λφ (x)
[
1 + 2γ1H3 (x) + 2γ2H4 (x) + 2γ1γ2H3 (x)H4 (x) + γ21H

2
3 (x) + γ22H

2
4 (x)

]
. (5)

Note that (4) is nested in a more general pdf that belongs to the SNP class introduced by GN (1987) and,

also, by LMS (2009) who studied its parametric properties. Thus,

pn (x,ν) =
φ (x)

ν′ν

(
n∑
k=0

νkHk (x)

)2
, (6)

where ν = (ν0, ν1, . . . , νn)
′ ∈ Rn+1 and ν0 = 1 to solve the scale indeterminacy in (6). Definitively, the pdf

in (6) directly nests (4) when n = 4, ν1 = 0, ν2 = 0 and νk = γk for k = 3, 4. In short q (x,θ) is a restricted

model of p4 (x,ν) when ν1 = ν2 = 0.

Proposition 1. Consider the pdf q (·) in (5), then

Ψk (x) = λ−1Eq [Hk (u) I (u ≤ x)] = λ−1
∫ x

−∞
Hk (u) q (u,θ) du

= Γk00 (x) + 2γ1Γk30 (x) + 2γ2Γk40 (x) + 2γ1γ2Γk34 (x) + γ21Γk33 (x) + γ22Γk44 (x) , (7)

where k ∈ N and Γkij (x) = Eφ [Hk (u)Hi (u)Hj (u) I (u ≤ x)] such that I (A) = 1 ⇔ A is verified

(otherwise, I (A) = 0). The general expression of Γkij (·) can be rewritten as Γkij (x) =
∑n
l=0 ωn,lBl (x),

such that n = k + i+ j, ωn,l are coeffi cients, and Bl (x) =
∫ x
−∞ ulφ(u)du is given in (73), see Appendix 2.

Proof. The equation (7) is obtained straightforwardly. �
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The cdf for the TGC distribution is obtained as

Q (x,θ) =

∫ x

−∞
q (u,θ) du = λΨ0 (x) , (8)

where Ψ0 (·) is given in (7) for k = 0. Note that Q (x,θ) = Γ000 (x) = Φ (x) is the standard Normal cdf. The

expressions of Γ0ij (·) in Ψ0 (·) are in Appendix 2.

3.1 Higher-order moments

Proposition 2. The first four noncentral moments of the random variable x with (5) as pdf are given by

Eq [x] = 4λγ1γ2, Eq
[
x3
]

= 2
√

6λγ1 + 48λγ1γ2,

Eq
[
x2
]

= 6λγ21 + 8λγ22 + 1, Eq
[
x4
]

= 4
√

6λγ2 + 72λγ21 + 120λγ22 + 3.
(9)

Proof. See Appendix 2. �

Let z denote the standardized rv of x, then z = a (θ) + b (θ)x where a = −bEq [x], b = 1/σx and

σ2x = Eq
[
x2
]
− Eq [x]

2. Hence, the pdf of z is obtained as 1
b q
(
z−a
b

)
. Both skewness and kurtosis of z are

given by

sz = Eq

[
(a+ bx)

3
]

= a3 + 3a2bEq [x] + 3ab2Eq
[
x2
]

+ b3Eq
[
x3
]
, (10)

kz = Eq

[
(a+ bx)

4
]

= a4 + 4a3bEq [x] + 6a2b2Eq
[
x2
]

+ 4ab3Eq
[
x3
]

+ b4Eq
[
x4
]
. (11)

Figure 2 exhibits the skewness and excess kurtosis region (shaded area) for the TGC distribution given

the above equations (10) and (11). Note that it contains part of the GC envelope. It is also displayed in

dashed-line the skewness-excess kurtosis boundary (for a standardized distribution) ensuring the existence

of a density, i.e. s < ±
√
ek + 2. If we consider a grid for θj ∈ [−20, 20] with length of 0.01 where j = 1, 2,

then the TGC verifies that −1.4536 ≤ ekz ≤ 2.7208 and |sz| ≤ 1.2224. Hence, it does allow thinner tails

than those of the Normal distribution. The maximum size of sz is reached for ekz = 1.0643. Both maximum

and minimum values of ekz are obtained for sz = 0. It can be seen that levels of ekz larger than 2.7208 are

not captured under the TGC and so, it is less flexible than the GC for more leptokurtic distributions.

Figure 2: Allowable skewness and excess kurtosis region for TGC pdf (shaded area). The dash-line represents the

skewness-excess kurtosis boundary. The GC envelope is represented by the continuous line.

6



Figure 3 depicts the skewness function (10). The left panel displays the range of sz as θ1 varies between

−5 and 5 given some selected values of θ2, i.e. sz
(
θ1, θ2

)
where θ2 ∈ {−3, 0, 3}. Note that the graph of

sz
(
θ1, θ2

)
behaves like an odd function with respect to θ1: sz

(
−θ1, θ2

)
= −sz

(
θ1, θ2

)
. The sign of sz

coincides with that of θ1 for θ2 = 0 as exhibited in the curve sz (θ1, 0). The maximum size of sz is also

obtained for θ2 = 0. The right panel shows the dynamics of sz as θ2 varies while θ1 is fixed, i.e. sz
(
θ1, θ2

)
with selected values for θ1 just the same as those for θ2 in the left panel. It is verified that sz (0, θ2) = 0 and

sz
(
−θ1, θ2

)
= −sz

(
θ1, θ2

)
when θ1 6= 0 (symmetry respecting the x-axis, denoted as θ2). We can see that

sz decreases (increases) if θ2 increases for θ1 = −3
(
θ1 = 3

)
.

Figure 4 is constructed in the same way as Figure 3 but now it exhibits the excess kurtosis function,

ekz, with kz defined in (11). The left and right panels display ekz
(
θ1, θ2

)
and ekz

(
θ1, θ2

)
, respectively.

Note that in the left panel, the graph ekz
(
θ1, θ2

)
behaves like an even function with respect to θ1:

ekz
(
−θ1, θ2

)
= ekz

(
θ1, θ2

)
. Hence, the sign of θ1 does not influence the behavior of ek. As a result,

we can see in the right panel that ekz
(
θ1, θ2

)
= ekz

(
−θ1, θ2

)
when θ1 6= 0. Higher values of ek are obtained

(in most cases) for θ1 = 0.

Figure 3: The left panel displays the skewness function sz
(
θ1, θ2

)
for θ1 given θ2 ∈ {−3, 0, 3}. The right panel

shows the range of skewness function sz
(
θ1, θ2

)
for θ2 given θ1 ∈ {−3, 0, 3} .

Figure 4: The left and right panels display excess-kurtosis functions ekz
(
θ1, θ2

)
and ekz

(
θ1, θ2

)
, for θ1, θ2 ∈

{−3, 0, 3} , respectively.

7



3.2 Unimodality

The unimodality of q (·) in (5) does hold if there is only one real root in the ninth-degree polynomial given by

the condition: 2ψdψ/dx− xψ2 = 0 with ψ(·) in (2). The left panel in Figure 5 contains the TGC unimodal

region such that the unimodality is verified for 0 ≤ ek < 2.7. Note that the unimodality property leads to

a slightly upper bound for ek under TGC than GC as can be exhibited when also plotting the GC frontier

under unimodality. The right panel in Figure 5 exhibits the values of θ1 and θ2 such that the unimodality

is verified.

Figure 5: The left panel contains the TGC unimodal region (shaded area) in terms of skewness-excess kurtosis. The

right panel exhibits the values of θ1 and θ2 such that unimodality holds. The dash line is the usual GC envelope.

Note that (10) and (11) are non-linear functions of θ1 and θ2. We are interested in studying the

sensitivity of these higher moments with respect to both parameters, and for the sake of simplicity we

consider the unimodality region. For that purpose, we simplify the non-linear relationship by adjusting a

multivariate polynomial curve fitting to each higher-order moment series. Specifically, following Amédée-

Manesme, Barthélémy and Maillard (2019), we implement a quadratic response surface model, i.e.

y = β0 + β1θ1 + β2θ2 + β3θ
2
1 + β4θ

2
2 + β5θ1θ2 + ε, (12)

where y denotes either sz or kz,3 and ε is a random variable with E (ε) = 0 and V (ε) = σ2ε. It is verified

that the R-squared is very high in both least squares regressions and all coeffi cients are significant. These
3Because of symmetry in Figure 5 (left panel) respecting the x-axis, we run equation (12) with sz > 0 and kz as dependent

variables. Similar conclusions are obtained for sz < 0.
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results are available upon request. Next, we obtain the elasticity measures defined as Ey,θi = ∂y
∂θi

θi
y , where

∂y
∂θi

= βi + 2βi+2θi + β5θj for i = 1, 2 and i 6= j. The main results are the following. First, Esz,θ1 > 0

and Ekz,θ2 > 0 for all points (θ1, θ2) that belong to the unimodal region. Second, |Esz,θ1 | > |Esz,θ2 | and

|Ekz,θ2 | > |Ekz,θ1 | in most cases. Finally, although both θ1 and θ2 influence sz and kz, the former seems to

be more relevant for skewness while the latter is so for kurtosis.

3.3 Asymmetric risk measures

We obtain the closed-form expressions under the TGC distribution for both ES and LPM.

3.3.1 VaR and Expected shortfall

Let xα = Q−1 (α) denote the α-quantile (or VaR), i.e. Q−1 (α) = inf {x |Q(x,θ) ≥ α}. The ES of the

random variable x with pdf q (·) in (5) is given by

ESq (α) = Eq [x |x ≤ xα ] = α−1λΨ1 (xα) , (13)

where Ψ1 (·) is obtained in (7) for k = 1, and the expressions of Γ1ij (·) in Ψ1 (·) are in Appendix 2. Finally,

the ES under the GC distribution with pdf g (·) in (1) and xα = G−1 (α) as the α-quantile with cdf G (·) in

(3), is easily obtained as

ESg (α) = Eg [x |x ≤ xα ] =
1

α
Γ100 (xα) +

γ1
α

Γ130 (xα) +
γ2
α

Γ140 (xα) . (14)

3.3.2 Lower partial moments

The LPMs, see Fishburn (1977), of order m for x with pdf in (5) and threshold of τ is defined as

LPMq (τ ,m) =

∫ τ

−∞
(τ − x)

m
q (x,θ) dx. (15)

The LPM of order 1 is easily obtained as

LPMq (τ , 1) = τQ (τ ,θ)−Q (τ ,θ)ESq (Q (τ ,θ)) , (16)

with ESq (Q (τ ,θ)) = Eq [x |x ≤ τ ] given in (13). The LPM of order 2 is

LPMq (τ , 2) = τ2Q (τ ,θ)− 2τQ (τ ,θ)ESq (Q (τ ,θ)) + Eq
[
x2I (x ≤ τ)

]
, (17)

where Eq
[
x2I (x ≤ τ)

]
=
√

2λΨ2 (τ) + Q (τ ,θ), such that Ψ2 (·) is obtained in (7) for k = 2, and the

expressions of Γ2ij (·) in Ψ2 (·) are in Appendix 2. Note that, Eq
[
xkI (x ≤ τ)

]
where k ∈ N \ {0} can

easily be rewritten in terms of the one-sided k -th truncated moment, i.e. Eq
[
xkI (x ≤ τ)

]
= Q (τ ,θ)

Eq
[
xk |x ≤ τ

]
.
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3.4 Alternative positive transformations

The SNP density in (6) nests some other GC expansion transformations used in the literature so as to ensure

positivity. First, we consider the case of squaring the terms of equation (2). This approach can be seen in

Ñíguez and Perote (2012) with pdf defined as

q̃ (x,ν) = λφ (x)
[
1 + ν21H

2
3 (x) + ν22H

2
4 (x)

]
, (18)

where ν = (ν1, ν2)
′ ∈ R2 and 1/λ = 1 + ν21 + ν22. The non-central moments are easily obtained in the

following result:

Corollary 1. The first four noncentral moments of the random variable x with (18) as pdf are given by

Eq̃ [x] = 0, Eq̃
[
x3
]

= 0,

Eq̃
[
x2
]

= 6λν21 + 8λν22 + 1, Eq̃
[
x4
]

= 72λν21 + 120λν22 + 3.
(19)

Proof. It is obtained straightforwardly given some results of Proposition 2. �

Let z denote again the standardized rv of x with (18) as pdf, then z = bx where b = 1/
√
Eq̃ [x2]. Hence,

the skewness of z is zero and the kurtosis of z is given by

kz =
3
(
24λν21 + 40λν22 + 1

)
(6λν21 + 8λν22 + 1)

2 . (20)

It can be shown that the maximum and minimum levels of ekz are about 1.69 and −1.47, respectively.

Note that ekz = 1.69 is much lower than the maximum value of ekz = 2.72 under the TGC distribution with

pdf in (5).

Second, if one only aims to capture higher excess kurtosis levels under these kind of positive

transformations, then an easy approach can be the following restricted SNP density:

qn (x, νn) = λφ (x)
[
1 + ν2nH

2
n(x)

]
, (21)

where νn ∈ R and 1/λ = 1 + ν2n. Note that (21) can be obtained by eliminating all squared hermite

polynomials H2
k(x) such that 0 < k < n and all products Hi(x)Hj(x) with i 6= j from the SNP pdf in (6).

Note that all odd moments related to (21) are equal to zero.

Corollary 2. Let z be the standardized rv of x with (21) as pdf, i.e. z = bx where b = 1/
√
Eqn [x2], then

the kurtosis of z is given by

kz (n) =
2
√

6λν2n
(
A4nn +

√
3A2nn

)
+ 3(√

2λν2nA2nn + 1
)2 , (22)

where Ajnn = Eφ
[
Hj (x)H2

n (x)
]
.

10



Proof. It is obtained straightforwardly from some results of Proposition 2. �

It can be shown that the excess kurtosis in (22) does increase with n such that ekz ranges from 0 (n = 1)

to about 6.1 (n = 10).

4 Model for returns

We assume the asset return process rt is defined as rt = µt + εt with εt = σtzt, where µt and σ
2
t denote the

conditional mean and variance of rt given by µt = E [rt |It−1 ] and σ2t = E
[
(rt − µt)

2 |It−1
]
such that It−1

is the information set available at t− 1 and zt are the innovations with zero mean, unit variance and Dt as

the distribution with TV parameter set, i.e. zt ∼ Dt (0, 1). Note that Dt nests the simple case of constant

parameters across time of the distribution of zt, i.e. zt ∼ i.i.d. D (0, 1). We adopt alternative distributions

for zt. Respecting the conditional variance, we start considering the TGARCH of Zakoïan (1994), which

models directly the volatility σt instead of σ2t and provides for the leverage effect. In short, we model the

return series {rt} as

rt = µt + εt, εt = σtzt, zt ∼ Dt (0, 1) , (23)

σt = α0 + βσt−1 + α+1 ε
+
t−1 − α−1 ε−t−1, (24)

such that α0 > 0, β ≥ 0, α+1 ≥ 0 and α−1 ≥ 0. We use the notation: ε+t = max (εt, 0), ε−t = min (εt, 0).

4.1 Moment conditions of TGARCH under TGC density

We can rewrite (24) as

σt = α0 + ct−1σt−1, (25)

where

ct = β + α+1 z
+
t − α−1 z−t . (26)

Following He and Teräsvirta (1999), and Franq and Zakoian (2010) (FZ hereafter) for the existence of the

k -th moment of εt in (23), it is necessary that E
(
|zt|k

)
<∞ and also the k -th order stationarity condition

of σt, i.e. E
(
σkt
)
< ∞ with σt in (25) if and only if E

(
ckt
)
< 1. The following result provides recursively

the expressions of E
(
ckt
)
, and henceforth denoted as $k.

Proposition 3. Let $k = E
(
ckt
)
with ct in (26) for the TGARCH model (25) with zt ∼ i.i.d. D (0, 1), then

for k ≥ 2 :

$k =
(
α+1
)k
E
(
zkt
)

+
[
(−1)

k (
α−1
)k − (α+1 )k]E [(z−t )k]− k∑

j=1

(
k

j

)
(−β)

j
$k−j , (27)

11



where

$1 = β −
(
α−1 + α+1

)
E
(
z−t
)
. (28)

Proof. Consider E
(
zkt
)

= E
[(
z+t
)k]

+E
[(
z−t
)k]

and E
[(
z+t
)i (

z−t
)j]

= 0 ∀i, j > 0, then we easily obtain

(27). �

Corollary 3. The TGARCH unconditional variance of εt in (23), denoted as σ2ε = E
(
ε2t
)
, with $2 < 1

and zt ∼ i.i.d. D (0, 1) is given by

σ2ε = E
(
σ2t
)

=
α20 (1 +$1)

(1−$1) (1−$2)
, (29)

where $1 is the equation (28) and

$2 = β2 +
(
α+1
)2

+
[(
α−1
)2 − (α+1 )2]E [(z−t )2]− 2β

(
α−1 + α+1

)
E
(
z−t
)
. (30)

Proof. Following FZ (2010) it is easily obtained (29), and (30) by using (27).

Proposition 4. Let zt ∼ i.i.d. TGC (0, 1,θ) in (23) represents the standardized TGC distribution, i.e.

zt = a + bxt ∼ i.i.d. D (0, 1) such that xt ∼ TGC(θ) with pdf in (5). Hence, the general expression of

E
[(
z−t
)k]

is obtained as

E
[(
z−t
)k]

=
∫ −a/b
−∞ (a+ bxt)

k
q (xt) dxt

=

k∑
j=0

(
k

j

)
ak−jbjEq

[
xjI (x ≤ −a/b)

]
, (31)

where

Eq
[
xjI (x ≤ −a/b)

]
= λ

√
j!Ψj (−a/b,θ)−

[j/2]∑
n=1

(−1)
n
j!

n! (j − 2n)!2n
Eq
[
xj−2nI (x ≤ −a/b)

]
, (32)

with Ψj (·) given in (7).

Proof. It is straightforward by using (72) in Appendix 1. �

Note that Eq
[
xj−2nI (x ≤ −a/b)

]
from the right-hand side of the equation (32) is equal to

Eq [I (x ≤ −a/b)] = Q (−a/b,θ) for j − 2n = 0, and Eq [xI (x ≤ −a/b)] = Ψ1 (−a/b) for j − 2n = 1.

Corollary 4. The equation of $4 in (27) with zt ∼ i.i.d. D (0, 1) is given by

$4 =

4∑
k=0

ψ4,kE
[(
z−t
)k]

, (33)

where

ψ4,0 = β4 + 6β2
(
α+1
)2

+ 4β
(
α+1
)3
sz +

(
α+1
)4
kz, (34)
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such that sz and kz are given in (10) and (11), and

ψ4,1 = −4β3
(
α+1 + α−1

)
, ψ4,2 = 6β2

[(
α−1
)2 − (α+1 )2] ,

ψ4,3 = 4β
[(
α−1
)3

+
(
α+1
)3]

, ψ4,4 =
(
α−1
)4 − (α+1 )4 . (35)

Proof. It is obtained recursively by using (27). �

Next, we are interested in obtaining E
[(
z−t
)k]

under the standardized TGC distribution so as to derive

the closed-form expressions of $k in (28), (30) and (33).

Corollary 5. Consider zt ∼ i.i.d. TGC (0, 1,θ), i.e. zt = a+ bxt ∼ i.i.d. D (0, 1) such that xt ∼ TGC(θ)

with pdf in (5), then E
[(
z−t
)k]

for k ≤ 4 are given by

E
(
z−t
)

= aQ (−a/b,θ) + bλΨ1 (−a/b,θ) , (36)

E
[(
z−t
)2]

=
(
a2 + 2b2

)
Q (−a/b,θ) + 2abλΨ1 (−a/b,θ) +

√
2b2λΨ2 (−a/b,θ) , (37)

E
[(
z−t
)3]

=
(
a3 + 3ab2

)
Q (−a/b,θ) + 3

(
a2b+ b3

)
λΨ1 (−a/b,θ)

+3
√

2ab2λΨ2 (−a/b,θ) +
√

3!b3λΨ3 (−a/b,θ) , (38)

and

E
[(
z−t
)4]

=
(
a4 + 6a2b2 + 3b4

)
Q (−a/b,θ) + 4

(
a3b+ 3ab3

)
λΨ1 (−a/b,θ)

+6
√

2
(
a2b2 + b4

)
λΨ2 (−a/b,θ) + 4

√
3!ab3λΨ3 (−a/b,θ)

+
√

4!b4λΨ4 (−a/b,θ) . (39)

Proof. It is obtained by using (31) and (32). �

The expressions for $k in (27) under the Normal distribution, initially obtained by FZ (2010), can be

derived from the TGC density with θ1 = θ2 = 0 in the equations for E
[(
z−t
)k]

in Corollary 5, and they are

shown for k = 1, 2, 4 in (80), see Appendix 2.

Consider $k < 1, then FZ (2010) provides the following result for the TGARCH model in (25):

E
(
σkt
)

=

k∑
j=0

(
k

j

)
αj0$k−jE

(
σk−jt

)
. (40)
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Corollary 6. The TGARCH unconditional kurtosis of εt in (23), denoted as kε = E
(
ε4t
) [
E
(
ε2t
)]−2

, such

that $4 < 1 in (33) and zt ∼ i.i.d. D (0, 1) is given by

kε = kz
E
(
σ4t
)

[E (σ2t )]
2 =

kz
(1−$4)σ4ε

4∑
j=1

(
4

j

)
αj0$4−jE

(
σ4−jt

)
, (41)

where kz = E
(
z4t
)
, σ2ε is the equation (29) and E

(
σ4−jt

)
is obtained recursively in (40).

Proof. It is straightforward. �

4.2 Power-law tail property

Suppose there exists a positive real number ζ > 0 such that E
(
c ζt

)
= 1 with ct in (26). According to

the theory in Kesten (1973), the stationary solution of the stochastic difference equation (25) follows a

heavy-tailed distribution:

P {σt > x} ∼ Ax−ζ as x→∞,

where ζ is the tail index of σt and A > 0 is the tail scale.4 Suppose that E
(
|zt|ζ+ε

)
< ∞ for some ε > 0,

then Mikosch and Starica (2000) derive the following result:

P {|εt| > x} = P {|σtzt| > x} ∼ E
(
|zt|ζ

)
P {σt > x} as x→∞.

In short, |εt| has a similar tail behavior as σt, i.e. the tail index of |εt| equals ζ. For the existence of the

p-th moment of εt, it must be verified that E (|εt|p) < ∞. Since the value of ζ characterizes the maximal

order of finite moments of εt, then

E (|εt|p) <∞ if p < ζ and E (|εt|p) =∞ if p ≥ ζ. (42)

According to (42), it is verified that E (|εt|) <∞ if only if ζ > 1. The second moment E
(
ε2t
)
<∞, and thus

σ2ε <∞, if and only if ζ > 2. In short, consider zt ∼ i.i.d. D (0, 1), then $1 < 1 in (28) if ζ > 1 and $2 < 1

in (30) if ζ > 2. Similarly, the fourth moment E
(
ε4t
)
<∞, and hence kurtosis kε <∞ in (41), if and only if

ζ > 4. This condition implies $4 < 1 in (33). Finally, the particular case of $k in (27) for k = 1, 2, 4 with

zt ∼ i.i.d. TGC (0, 1,θ) is obtained using Corollary 5.

4.3 Conditional log-likelihood

The conditional density of rt can be expressed in terms of the conditional pdf of xt in (4) as

f (rt |It−1 ) =
1

btσt
q

(
zt − at
bt

|It−1
)
, (43)

4See Gabaix (2009) for an introduction to power-law distributions.
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where at = a (θt), bt = b (θt), θt = (θ1t, θ2t) is measurable with respect to the information set It−1 and

θit = θit (ϑi) such that ϑi is the parameter vector underlying the dynamics of θit as can be seen in section

6. The log-likelihood function corresponding to a particular observation rt, denoted as lt, is given as

lt = − lnσt (ϕ)− ln b (θt)−
1

2
ln (2π) + lnλ (θt)

−1

2

(
zt (ϕ)− a (θt)

b (θt)

)2
+ ln

[
ψ

(
zt (ϕ)− a (θt)

b (θt)

)]2
, (44)

where zt (ϕ) = (rt − µt (ϕ)) /σt (ϕ) and ϕ is the parameter vector to model both the conditional mean and

variance. We will consider in our empirical application in section 5 the following case: (i) µt = µ, σt in

(24), and hence ϕ =
(
µ, α0, β, α

+
1 , α

−
1

)
, and (ii) θt = θ. Finally, this particular case means that (43) can be

replaced by the expression: f (rt |It−1 ) = 1
bσt
q
(
zt−a
b

)
.

4.4 Conditional asymmetric risk measures

Let F (rt |It−1 ) denote the cdf of rt with the corresponding pdf in (43),

F (rt |It−1 ) =

∫ rt

−∞
f (u |It−1 ) du = Q

(
rt − κ0t
κ1t

|It−1
)
, (45)

where Q (· |It−1 ) is the conditional cdf of Q (·) in (8) and both κ0t = µt+atσt and κ1t = btσt are measurable

respecting It−1. The conditional α-quantile (or VaR) of the stock return rt is given by rα,t = F−1(α |It−1 ).

Then,

rα,t = κ0t + κ1tQ
−1
t (α) , (46)

such that Q−1t (α) = inf {x |Q(x |It−1 ) ≥ α} is the conditional α-quantile of xt with q (· |It−1 ) as pdf.

The conditional ES of rt is easily computed as

ESt (α) = Et−1 (rt |rt ≤ rα,t )

= κ0t + κ1tEt−1 (xt |xt ≤ xα,t ) , (47)

where Et−1 (xt |xt ≤ xα,t ) is the conditional version of (13) and xα,t = (rα,t − κ0t) /κ1t with rα,t as the VaR

in (46). Note that Et−1 (·) denotes the shortening of E (· |It−1 ).

The conditional LPM of order 1 and τ as the threshold of rt is given by

LPMt (τ , 1) =

∫ τ

−∞
(τ − rt) f (rt |It−1 ) drt

= (τ − κ0t)Qt (τ t)− κ1tQt (τ t)Et−1 (xt |xt ≤ τ t ) , (48)

15



where Qt (·) denotes Q (· |It−1 ) and τ t = (τ − κ0t) /κ1t. Finally, the conditional LPM of order 2 is

LPMt (τ , 2) =

∫ τ

−∞
(τ − rt)2 f (rt |It−1 ) drt

= (τ − κ0t)2Qt (τ t)− 2 (τ − κ0t)κ1tQt (τ t)Et−1 (xt |xt ≤ τ t )

+κ21tEt−1
[
x2tI (xt ≤ τ t)

]
. (49)

5 Empirical application

5.1 Dataset and summary statistics

The data used are daily percent log returns computed as rt = 100 ln (Pt/Pt−1) from samples of daily closing

prices {Pt}Tt=1 for Eurostoxx50 and Nikkei indexes, Japanese Yen to U.S. dollar (JAP-US) and U.S. dollar

to pound sterling exchange rates (US-UK) and West Texas Intermediate Crude Oil, all obtained from the

New York Stock Exchange, sampled from January 14, 1999 to January 14, 2019 for a total of T = 5, 218

observations. We also consider Bitcoin prices sampled from from July 18, 2010 to July 31, 2018 (T = 2, 936).

All data series were obtained from Datastream, apart from Bitcoin series downloaded from coindesk.com.

Table 1 exhibits summary statistics of all data returns. Clearly, all the series show high leptokurtosis with

the Bitcoin presenting the largest kurtosis (14.96) and the Oil the smallest (7.23). The skewness is negative

in all series, with the largest (in absolute value) corresponding to US-UK (−0.58) and the smallest to the

Eurostoxx (−0.08). In all cases, the Jarque-Bera (J-B) test rejects the null of normality, motivating the use

of alternative distributions to the Gaussian for modeling returns.

Table 1: Summary statistics for daily percent log returns

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

Mean 0.008 -0.002 -0.001 -0.005 0.027 0.389

Median 0.017 0.016 0.005 0.000 0.000 0.203

Max 11.644 11.965 3.710 4.474 16.414 42.458

Min -11.186 -11.102 -6.582 -8.312 -17.092 -49.144

Std. dev. 1.457 1.560 0.684 0.582 2.375 5.735

Skewness -0.235 -0.085 -0.473 -0.583 -0.170 -0.320

Kurtosis 7.445 8.896 8.096 14.482 7.235 14.967

J-B stat 4363 7564 5839 28953 3924 17565

Observations 5217 5217 5217 5217 5217 2935

This table presents the summary statistics for daily percent log returns. The Jarque-Bera (J-B) statistic is
asymptotically distributed as a Chi-square with two degrees of freedom, χ22. The critical value of χ

2
2 for the 5%

significance level is 5.99. The sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from
January 15, 1999 to January 14, 2019; and for Bitcoin returns is from July 19, 2010 to July 31, 2018.
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5.2 Estimation results

Initially, we adopt some density functions with constant parameters across time for the conditional

standardized returns in (23), i.e. zt ∼ i.i.d. D (0, 1). We consider the following cases: (i) the standard

Normal distribution (N hereafter), i.e. D (0, 1) = N(0, 1); (ii) the GC symmetric density, proposed by

Zoia et al. (2018), which gathers positive excess kurtosis (GCK hereafter), i.e. D (0, 1) = GC(0, ek); and

(iii) D (0, 1) is the standardized TGC distribution denoted as TGC(0, 1,θ), i.e. zt = a + bxt such that

xt ∼ TGC(θ) with pdf in (4). The conditional mean and volatility of rt in (23) are given by µt = µ and σt

in (24).

A comparative analysis for the models in-sample goodness-of-fit is also carried out through likelihood

ratio (LR) tests. In particular, we employ Vuong’s LR test (LRV) (1989) for two nonnested i and j models.

The LRV statistic is based on the null hypothesis of being the two candidate models equally close to the

true specification, and it is defined as

LRVi,j = T−1/2 (LLi − LLj) /sT
d→ N (0, 1) , (50)

such that LLk denotes the log-likelihood value for model k, and sT is the sample standard deviation obtained

in the usual manner, i.e.

s2T = T−1
T∑
t=1

(
ln
(
lit/l

j
t

))2
−
(
T−1

T∑
t=1

ln(lit/l
j
t )

)2
, (51)

where lkt denotes the log-likelihood corresponding to a particular observation t for model k.

Table 2 presents the estimation of the TGARCH model under TGC, GCK and Normal (henceforth, TGC-

TGARCH, GCK-TGARCH and N-TGARCH) for the whole sample of each return series. A first observation

is that the TGARCH parameter estimates are very similar under any of the three considered densities and

so, to simplify the presentation, only the estimates under the TGC-TGARCH are reported in the table.

These estimates show that the returns for all assets exhibit volatility clustering and asymmetric response to

good and bad news. Specifically, we find that for the Bitcoin series the TGARCH parameter estimates differ

significantly from those of the other series reflecting rather different volatility patterns. Second, both TGC

and GCK density parameters are significant for all series.5 Note that the GCK parameters are not reported

for the sake of simplicity. Third, all series except Bitcoin verify the second-order stationarity condition, i.e.

the estimate of $2 in (30) is lower than one, for both TGC and GCK. It is also verified that the unconditional

standard deviations, denoted as σε in (29), are close to the sample ones in Table 1 for the two distributions.

For instance, the estimation of σε under TGC-TGARCH is equal to 1.723 (1.507 under GCK-TGARCH)

and its sample standard deviation is 1.457 for Nikkei. Respecting the N-TGARCH (not exhibited in Table

2), it is verified that $2 < 1 for all series including Bitcoin but the estimation of σε is around 21, which

is far away from the sample standard deviation of 5.7, suggesting a poor fit for Bitcoin. The N-TGARCH

estimations of σε for the other return series are worse than those under TGC and GCK when comparing to

the sample standard deviations in Table 1.

5We have also estimated the GC with pdf in (1) and found similar parameter estimates as the ones in Table 2 for the TGC.
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In regard to the TGARCH models’fit, the TGC yields higher log-likelihood (LL) values than the GCK

and Normal for all return series. The LR tests for TGC and GCK versus the Normal, not reported but

available, reject the Normal as the null at any significance level. The results of the LRV test in (50) for

TGC and GCK (denoted as i and j, respectively) show that the TGC provides statistically significant better

in-sample goodness-of-fit than the GCK for all return series, except for the Bitcoin for which, although the

LL values are higher under the TGC, the difference is not statistically significant. The Akaike information

criteria (AIC) reinforce the LR tests. Lower AIC values indicate better goodness-of-fit, AICN is higher than

both AICGCK and AICTGC .

Finally, we provide a robustness check for the specification of the conditional variance. Thus, we analyze

whether there are differences in the fit of the TGC pdf when the conditional variance is modelled through

the NAGARCH as an alternative to the TGARCH. Our results, see Table A3 in Appendix 3, show that the

TGC-NAGARCH estimation gathers very similar conditional variance dynamics than the TGC-TGARCH

in Table 2. If anything, we observe a slightly lower persistence (lower value of β) for Nikkei and Eurostoxx50.

The NAGARCH second-order stationarity condition is also not verified for Bitcoin, i.e. $1 > 1 in (83), see

Appendix 2. The LRV test results show that differences for the NAGARCH under i =TGC and j =GCK in

(50) are not statistically significant.

5.3 Tail-index estimation

We employ the methodology of Gabaix and Ibragimov (2011) to obtain robust estimates of the tail index ζ

together with its confidence interval at 95%. Remember that $2 < 1 ($1 < 1) in TGARCH (NAGARCH)

model is equivalent to ζ > 2. Our results, presented in Table A4 in Appendix 4, show that the null H0 : ζ = 2

is rejected for all return series in favor of the one-sided alternative Ha : ζ > 2 for both 5% and 10% truncation

levels. In short, we find evidence in favor of finite unconditional variance for all return series, although there

is a contradiction for Bitcoin since $2 > 1 under TGARCH in Table 2 and $1 > 1 under NAGARCH in

Table A3 in Appendix 3. We also study the finiteness of the unconditional third and fourth moments of such

returns. For all series except Bitcoin the null H0 : ζ = 4 is not rejected at 5% truncation level, although

we cannot reject H0 : ζ = 4 in favour of Ha : ζ > 4. Respecting the 10% truncation level, H0 : ζ = 4 is

always rejected. Note that the estimation of $2 under the NAGARCH does only report values of $2 lower

than one for JAP-US and US-UK. Respecting testing H0 : ζ = 3, we can reject it in favour of Ha : ζ > 3 for

Nikkei at both truncation levels, JAP-US at 5% truncation level and US-UK at 10%.

Finally, the implied tail-index estimation for asymmetric GARCH models could be obtained numerically

through simulations from Kesten’s equation following the studies in Chan, Li, Peng and Zhang (2013) for

ARCH; and Zhang, Li and Peng (2019) for GARCH.6 However, this issue is beyond the scope of this paper.

Nonetheless, in Appendix 5 we provide an advance on this research line for the case of NAGARCH. Table A5

presents results of a sensitivity analysis of the tail-index estimation through Kesten’s equation for different

values of$2, see equation (84) in Appendix 2, according to alternative values of the excess kurtosis parameter

under the GC pdf in (1). As expected, we find that the higher $2 the lower the tail index. In short, our

6We are indebted to the referee for suggesting this point.
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results do agree with the empirical evidence of the non-existence of higher-order unconditional moments

(skewness or kurtosis, or both) for financial returns series, see Ibragimov, Ibragimov and Walden (2015), and

references therein.

5.4 Backtesting the density

For all the backtesting procedures, we take the first T -N observations for the first in-sample window and an

OOS period of length N = 1, 000 using a daily constant-sized rolling window. Indeed, we adopt a two-stage

estimation method to each window as can be seen, among others, in Zhu and Galbraith (2011). The mean

and TGARCH parameters are estimated by quasi-maximum likelihood (QML), then the TGC and GCK

density parameters are obtained by ML using the standardized residuals, zt, from the first stage.

5.4.1 P-value discrepancy plots

First, we test the density forecasting performance of the models following the methodology in Diebold,

Gunther and Tay (1998). The application of this methodology is based on the cdf evaluated at the one-

step-ahead realized returns through the OOS period. The resulting so-called probability integral transforms

(PIT) sequences verify that {ut}Nt=1 ∼ i.i.d. U(0, 1) under the correct one-step ahead cdf specification with

ut = D (rt |It−1 ) where D (· |It−1 ) denotes a conditional cdf. We use the p-value plot methods in Davidson

and MacKinnon (1998) applied to compare models forecasting performance. Thus, if the model is correctly

specified the difference between the cdf of ut and the 45 degree line should tend to zero. The empirical

distribution function of ut can be easily computed as

P̂pt(y%) =
1

N

N∑
t=1

I(ut ≤ y%), (52)

where I(ut ≤ y%) is an indicator function and y% is an arbitrary grid of % points.7 Alternatively, the p-

value discrepancy plot (i.e. plotting P̂pt(y%) − y% against y%) can be more revealing when it is necessary to
discriminate among specifications that perform similarly in terms of the p-value plot. Consequently, under

correct density specification, the variable P̂pt(y%)− y% must be close to zero.
Figure 6 presents in panel 1 the p-value discrepancy plots for all models and series. A first observation

that emerges from the plots is that the TGARCH models under TGC and GCK perform overall better than

the Normal. We find that PITs from the TGC depart further from those of the GCK and Normal for mid

quantiles (center of the distribution). It is worth noting the clustering of the GCK’s plots with those of the

Normal in the center of the distribution. With the exception of the Bitcoin series, for which there are no

visually noticeable differences between the TGC and GCK, the former provides better fit of the left-tail of

the distribution for the rest of the series, as can be seen in panel 2 (zoom in panel 1 for the left-tail) by the

smaller distance of the TGC plots to the x-axis.

7We use the following % = 215 points grid: y% ∈ {0.001, 0.002, ..., 0.01, 0.015, ..., 0.99, 0.991, ..., 0.999}, since it highlights the
goodness-of-fit in the distribution tails.
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Table 2: Estimation results of TGC-TGARCH model

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

µ
-0.0091

(0.017)

0.0016

(0.015)

0.0031

(0.009)

-0.0018

(0.007)

0.0168

(0.028)

0.2407
∗

(0.102)

α0
0.0353

∗

(0.009)

0.0271
∗

(0.005)

0.0078
∗

(0.003)

0.0043
∗

(0.002)

0.0163
∗

(0.005)

0.3566
∗

(0.164)

β
0.9155

∗

(0.012)

0.9218
∗

(0.009)

0.9483
∗

(0.008)

0.9494
∗

(0.001)

0.9572
∗

(0.007)

0.7168
∗

(0.063)

α+1
0.0333

∗

(0.009)

0.0162
∗∗∗

(0.009)

0.0490
∗

(0.008)

0.0504
∗

(0.018)

0.0234
∗

(0.007)

0.3484
∗

(0.074)

α−1
0.1332

∗

(0.017)

0.1359
∗

(0.014)

0.0597
∗

(0.011)

0.0631
∗

(0.012)

0.0729
∗

(0.012)

0.3717
∗

(0.082)

θ1
-0.0653

∗

(0.018)

-0.0538
∗

(0.017)

-0.0386
∗

(0.018)

-0.0289
∗∗∗

(0.018)

-0.0806
∗

(0.017)

-0.0231

(0.033)

θ2
0.3134

∗

(0.034)

0.2880
∗

(0.035)

0.4649
∗

(0.035)

0.2864
∗

(0.038)

0.3813
∗

(0.035)

0.9846
∗

(0.053)

$2 0.9657 0.9768 0.9809 0.9887 0.9921 1.0147

σε 1.7230 1.8002 0.7745 0.6934 3.3806 - - - -

$4 0.9652 0.9924 0.9669 0.9828 0.9964 - - - -

LLTGC -8738.13 -8654.96 -4952.65 -4049.52 -11235.17 -4615.58

LLGCK -8751.06 -8666.09 -4967.91 -4054.59 -11260.13 -4618.38

LLN -8806.89 -8713.08 -5094.35 -4097.99 -11348.96 -4788.81

LRV 2.6106
∗

2.5366
∗

3.5232
∗

1.6842
∗∗

4.5188
∗

1.0543

AICTGC 3.3512 3.3193 1.9000 1.5538 4.3085 3.1476

AICGCK 3.3560 3.3234 1.9057 1.5555 4.3179 3.1492

AICN 3.3772 3.3412 1.9539 1.5720 4.3517 3.2649

Model specification: rt = µ+ εt, εt = σtzt, zt ∼ i.i.d. TGC (0, 1,θ) , σt = α0 + βσt−1 + α+1 ε
+
t−1 − α−1 ε−t−1.

This table presents ML estimates of parameters of the TGC-TGARCH model for percent log return series. The
sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from January 15, 1999 to January
14, 2019 (total: 5,217 obs.); and for Bitcoin returns it is from July 19, 2010 to July 31, 2018 (total: 2,935 obs.).
Heteroscedasticity-consistent standard errors are provided in parentheses below the parameter estimates. (∗) and
(∗∗) indicate significance at 1% and 5% levels, respectively. The second-order and fourth-order moment stationarity
conditions of TGC-TGARCH must verify $k< 1, k = 2, 4, see equations (30), (33) and Corollary 5. Let σε denote
the TGC-TGARCH unconditional standard deviation of εt. AIC denotes the Akaike information criterion (the lower
the AIC value, the better the goodness-of-fit). LLj denotes the log-likelihood value for j-TGARCH model where
j = TGC,GCK,N . Finally, LRV denotes the nonnested LR test statistic of Vuong (1989) in (50) for i = TGC and
j = GCK under TGARCH model.
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Panel 1: Full density

Panel 2: Left 10% tail

Figure 6: P-value discrepancy plots for PIT series obtained from TGARCH model under TGC, GCK and Normal
pdfs. Return series: Nikkei, Eurostoxx50, JAP-US, US-UK, Oil and Bitcoin. The out-of-sample period for Nikkei,
Eurostoxx50, JAP-US, US-UK and Oil returns covers from March 17, 2015 to January 14, 2019; and for Bitcoin
returns is from November 4, 2015 to July 31, 2018. Predictions: 1000.
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5.4.2 Proper scoring rules

Second, to evaluate the relative density forecasting performance of the models we use strictly proper scoring

rules described in Amisano and Giacomini (2007). A scoring rule is a loss function Υ(f̃t, rt) whose arguments

are the density forecast f̃t = ft−1(rt) and the future realization of the return, rt. In this paper, we use the

weighted logarithmic scoring rule:

Υj(f̃t, zt) = ωj(zt) ln f̃t. (53)

This is a strictly proper scoring rule that rewards accurate density forecasts by setting a high probability to

the event that actually occurred. The weight functions ω1(zt) = φ(zt), ω2(zt) = Φ(zt) and ω3(zt) = 1−Φ(zt)

emphasize, respectively, the center, the right-tail and the left-tail. The density forecast models can be ranked

by comparing their average scores:

Υj(f̃t, zt) = N−1
N∑
t=1

Υjt(f̃t, zt). (54)

So, we prefer model f if Υj(f̃t, zt) > Υj(g̃t, zt), and prefer model g otherwise. The null hypothesis

H0 : E
[
Υj(f̃t, zt)−Υj(g̃t, zt)

]
= 0 is tested through the Diebold and Mariano (1995) (DM hereafter)

test.

Table 3: Density Forecasting

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

TGC

left

center

right

-0.5768

-0.2562

-0.5773

-0.6871

-0.3265

-0.6354

-0.6957

-0.3082

-0.6424

-0.7686

-0.3191

-0.6915

-0.6957

-0.3082

-0.6424

-0.5768

-0.2562

-0.5773

GCK

left

center

right

-0.6394

-0.2953

-0.6456

-0.6919

-0.3312

-0.6484

-0.7124

-0.3185

-0.6616

-0.7762

-0.3223

-0.6982

-0.7124

-0.3185

-0.6616

-0.6393

-0.2953

-0.6456

N

left

center

right

-0.6785

-0.3371

-0.6789

-0.7011

-0.3396

-0.6589

-0.7308

-0.3337

-0.6753

-0.7890

-0.3295

-0.7069

-0.7308

-0.3337

-0.6753

-0.6785

-0.3371

-0.6789

This table presents the results of average logarithmic scores in (54) for one-step-ahead density forecast from TGARCH
model under TGC, GCK and Normal (N) pdfs. Return series: Nikkei, Eurostoxx50, JAP-US, US-UK, Oil and Bitcoin.
The out-of-sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from March 17, 2015 to
January 14, 2019; and for Bitcoin returns is from November 4, 2015 to July 31, 2018. Predictions: 1000.

Table 3 presents the results of the weighted average scores for the alternative TGARCH models. A first

observation that stands out is that all TGC’s weighted scores are higher than those of the GCK and Normal

for all series. The Normal provides systematically the lowest scores. Besides, differences in models’scores

are statistically significant as the DM test rejects the null of equal score for all cases. These results show

that the TGC provides the statistically significant better performance to forecast the tails and the center of

the return densities.
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5.5 Backtesting VaR and ES

We evaluate the forecasting performance for the left-tail of the return conditional distribution under

alternative density specifications for zt. Given a nominal coverage rate α, the one-day TGC-TGARCH

VaR is

V aRt (α) = κ0,t + κ1,tQ
−1 (α) , (55)

where κ0,t = µ+aσt and κ1,t = bσt. Let ht(α) = I (rt < V aRt (α)) denote the violation or hit variable. The

quadratic loss function, proposed by López (1999), incorporates the exception magnitude and so, it provides

useful information to discriminate among similar models according to the unconditional coverage test, and

it is given by

QLt (α) = (rt − V aRt (α))
2 × ht(α). (56)

The sample average of (56) for the OOS period of N days is

AQL (α) = N−1
N∑
t=1

QLt (α) . (57)

5.5.1 Backtesting VaR

We are interested in checking whether the centered violations {ht(α)− α}∞t=1 follow a martingale difference
sequence (MDS), which implies zero mean property and no correlation. Testing MDS leads to both the

unconditional backtest (or unconditional coverage test) and conditional backtest (or independence test).

The null hypothesis for the unconditional backtest, H0,U : E [ht(α)] = α, corresponds to the following test

statistics, proposed by Kupiec (1995), which converges asymptotically to a standard Normal distribution,

i.e.

UV aR (α) =

√
N
(
h(α)− α

)√
α (1− α)

a∼ N (0, 1) , (58)

where h(α) is the sample average of
{
ĥt (α)

}N
t=1

such that ĥt (α) = I (ût ≤ α) with ût as the estimation

of ut = F (rt |It−1 ) in (45). For testing the null hypothesis for the conditional backtest, H0,C :

E [ht(α)− α |It−1 ] = 0, we implement the approach by Escanciano and Olmo (2010) based on the Box-

Pierce test statistic:

CV aR(m) = N

m∑
i=1

ρ̂2j
a∼ χ2

m
, (59)

which is asymptotically a chi-square distribution with m degrees of freedom such that ρ̂j is the j-th lag of

the sample autocorrelation defined as ρ̂j = γ̂j/γ̂0 where

γ̂j =
1

N − j

N∑
t=1+j

(
ĥt (α)− α

)(
ĥt−j (α)− α

)
. (60)

5.5.2 Backtesting ES

The unconditional and conditional ES backtests are the analogues of the above VaR ones. Du and Escanciano

(2017) provide the ES backtest based on the notion of cumulative violations (CV), which accumulates the
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violations across the tail distribution and can be rewritten as

Ht (α) =

∫ α

0

ht (u) du

=
1

α
(α− ut) I (ut ≤ α) . (61)

Note that the equation (61) measures the distance of the returns from the corresponding α-quantile in

(55) during the violations. It is shown that {Ht(α)− α/2}∞t=1 follows the MDS property. Thus, the null
hypothesis for the unconditional backtest is H0,U : E [Ht(α)] = α/2 and the related test statistics is given

by

UES =

√
N
(
H(α)− α

2

)√
α
(
1
3 −

α
4

) a∼ N (0, 1) , (62)

whereH(α) is the mean of
{
Ĥt (α)

}N
t=1

such that Ĥt (α) = 1
α (α− ût) I (ût ≤ α). The null for the conditional

backtest hypothesis is H0,C : E [Ht(α) |It−1 ] = α/2 with corresponding test statistics the Box-Pierce one

given by

CES(m) = N

m∑
i=1

ρ̂2j
a∼ χ2

m
, (63)

such that ρ̂j = γ̂j/γ̂0 is the j-th lag of the sample autocorrelation with

γ̂j =
1

N − j

N∑
t=1+j

(
Ĥt (α)− α

2

)(
Ĥt−j (α)− α

2

)
. (64)

5.5.3 Backtesting results

Following Kerkhof and Melenberg (2004) and others, a larger coverage level α for ES than VaR is selected

to compare both risk measures. The coverage level for ES is twice (or close to twice) than that of VaR,

indeed. Table 4 shows the results of the descriptive analysis of violations. First, we find that for the low

coverage levels suggested by the Basel Committee (i.e. VaR(1%), ES(2.5%)) the TGC-TGARCH performs

much better than the other TGARCH models for all series except for Bitcoin, where both TGC and GCK

provide rather the same performance and beat the Normal. Note that this evidence is in line with what we

can infer from Figure 6, if we study the left-tail risk by considering only the first ten discrepancy p-value

points exhibited in panel 2, where the TGC p-value discrepancy points are the closest to the x-axis for all

series. In short, the skewness implied in the TGC contribute to a better fit, respecting the symmetric GCK,

of the very far left-tail of the return distributions. Second, for higher coverage levels, i.e. VaR(5%) and

ES(10%), the TGC is always better than the GCK. Nevertheless, for JAP-US and Bitcoin series the Normal

beats the TGC. Third, we report the significance at five percent level of both unconditional and conditional

backtesting for VaR and ES. We set m = 5 in (59) and (63). It is verified that the null hypotheses are

accepted for JAP-US, US-UK and Bitcoin for both TGC-TGARCH and GCK-TGARCH. Note that for

Eurostoxx50 the null of conditional backtest for VaR(5%) is always rejected, and the same goes for Oil for

ES(10%). We also find many rejections under the N-TGARCH.

Finally, the previous VaR results are reinforced by the magnitude of exceptions for VaR measured through

the AQL statistic in (57) and presented in Table 5. First, we find that the TGC (Normal) yields always
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the lowest (highest) AQL values for the 1% level. Note that only for Bitcoin the AQL value under GCK is

slightly lower than under TGC. Second, for the 5% level, the Normal provides a better performance than i)

GCK in all series, and ii) TGC for JAP-US and Bitcoin.

Table 4: Descriptive analysis of violations

VaR(1%) ES(2.5%) VaR(5%) ES(10%) VaR(1%) ES(2.5%) VaR(5%) ES(10%)

Nikkei Eurostoxx50

TGC 14 15.38 44 43.21 7 8.36 40c 37.89u

GCK 18u 17.40 46 45.75 7 9.68 41c 40.17

N 18u 19.40u 46 45.26 12 11.49 41c 38.90u

JAP-US US-UK

TGC 12 13.77 53 50.22 11 14.98 53 53.71

GCK 12 14.82 54 51.34 12 16.40 56 55.26

N 19u 20.60u 52 49.48 18u 19.56u 54 53.81

Oil Bitcoin

TGC 13 11.97 52 52.06c 6 7.66 48 45.09

GCK 13 14.21 56c 55.35c 6 7.48 54 47.85

N 16 18.36 54c 53.45c 16 18.09 47 44.48

This table shows the violations for VaR and the cumulative violations given in (61) for ES from TGARCH model
under TGC, GCK and Normal (N) pdfs. We also reports the significance for (i) the VaR backtesting tests in (58)
and (59), and (ii) the ES backtesting tests in (62) and (63). We set m = 5 in the Box-Pierce test statistic for the two
conditional backtests. The superscripts u and c indicate significance at five percent level for the unconditional and
conditional backtests, respectively. Return series: Nikkei, JAP-US, Oil, US-UK, Eurostoxx50, Bitcoin. The out-of-
sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from March 17, 2015 to January 14,
2019; and for Bitcoin returns is from November 4, 2015 to July 31, 2018. Predictions: 1000.

Table 5: Average quadratic loss (AQL)

VaR(1%) VaR(5%) VaR(1%) VaR(5%) VaR(1%) VaR(5%)

Nikkei Eurostoxx50 JAP-US

TGC 0.0186 0.0725 0.0554 0.0925 0.0057 0.0213

GCK 0.0229 0.0772 0.0585 0.0951 0.0062 0.0218

N 0.0279 0.0761 0.0625 0.0943 0.0089 0.0211

US-UK Oil Bitcoin

TGC 0.0432 0.0599 0.0135 0.1277 0.1299 0.7575

GCK 0.0439 0.0605 0.0193 0.1402 0.1292 0.8524

N 0.0457 0.0601 0.0326 0.1345 0.2872 0.7235

This table exhibits the results of the AQL in (57) for VaR from TGARCH model under TGC, GCK and Normal
(N) pdfs. Return series: Nikkei, JAP-US, Oil, US-UK, Eurostoxx50, Bitcoin. The out-of-sample period for Nikkei,
Eurostoxx50, JAP-US, US-UK and Oil returns covers from March 17, 2015 to January 14, 2019; and for Bitcoin
returns is from November 4, 2015 to July 31, 2018. Predictions: 1000.

25



5.6 Comparative analysis

This section provides a comparison of the TGC distribution and the popular skewed-t (ST) distribution of

Hansen (1994) with parameters δ ∈ (−1, 1) and υ > 2 that control for skewness and kurtosis, respectively.8

Table 6 reports the estimates of the ST-TGARCH model. To avoid duplicity, we do not display the TGARCH

estimates as they are very similar to those of the TGC-TGARCH in Table 2. The estimation results show

that both υ and δ are significant, except the skewness parameter δ for Bitcoin. The results from the LRV test

in (50) for both ST and TGC pdfs under the TGARCH, i.e. T−1/2 (LLST − LLTGC) /sT
d→ N (0, 1), show

that for Nikkei, Eurostoxx50 and Bitcoin, the TGC provides better fit than the ST, although differences are

not statistically significant for Bitcoin. Whilst for JAP-US, US-UK and Oil, the ST provides better fit, with

differences being statistically significant only for JAP-US.

The p-value discrepancy plots in Figure 7 show that there are very small differences between ST and

TGC density forecasts. The plots for JAP-US and Bitcoin show larger differences. For the former the TCG

seems to perform better for the lower range whilst the ST performs better for the upper. For Bitcoin, it is

apparent that the ST performs better overall, although for both tails the TGC does it better. Finally, Table

7 reports the VaR backtesting results for the ST-TGARCH, which provide further evidence of its similar

performance in most cases with respect to the TGC-TGARCH (see Tables 4 and 5). Note that for Oil and

Bitcoin there are more violations and higher AQL values under the ST.

Figure 7: P-value discrepancy plots for PIT series obtained from TGC-TGARCH and ST-TGARCH models. Return
series: Nikkei, Eurostoxx50, JAP-US, US-UK, Oil and Bitcoin. The out-of-sample period for Nikkei, Eurostoxx50,
JAP-US, US-UK and Oil returns covers from March 17, 2015 to January 14, 2019; and for Bitcoin returns is from
November 4, 2015 to July 31, 2018. Predictions: 1000.

8We thank the referee for pointing out this analysis of comparing distributions.
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Table 6: Hansen’s ST estimation results

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

υ
8.2869∗

(0.9007)

8.8975∗

(1.1085)

5.5675∗

(0.4258)

8.8001∗

(1.2199)

6.6174∗

(0.6128)

2.4338∗

(0.1196)

δ
-0.0672∗

(0.0185)

-0.0683∗

(0.0195)

-0.0351

(0.0179)

-0.0371∗

(0.0174)

-0.0758∗

(0.0179)

-0.0258

(0.0201)

LRV -3.83∗ -22.3∗ 2.48∗∗ 1.19 1.02 -0.17

This table presents the ML estimates of Hansen’s ST parameters where δ ∈ (−1, 1) and υ > 2 control for skewness
and kurtosis, respectively. Mean and TGARCH equation estimates for ST are very similar to those under TGC (Table
2), thus they are not presented here to avoid duplicity. The sample period for Nikkei, Eurostoxx50, JAP-US, US-UK
and Oil returns covers from January 15, 1999 to January 14, 2019 (total: 5,217 obs.); and for Bitcoin returns it is
from July 19, 2010 to July 31, 2018 (total: 2,935 obs.). Heteroscedasticity-consistent standard errors are provided in
parentheses below the parameter estimates. (∗) and (∗∗) indicate significance at 1% and 5% levels, respectively. LRV
denote the Vuong’s (1989) nonnested LR test statistic in (50) for i = ST and j = TGC under TGARCH model.

Table 7: Backtesting results for ST-TGARCH model

VaR(1%) ES(2.5%) VaR(5%) ES(10%) VaR(1%) ES(2.5%) VaR(5%) ES(10%)

Nikkei Eurostoxx50

14 15.13 44 43.76 7 8.41 40c 38.51u

(0.0183) (0.0734) (0.0554) (0.0930)

JAP-US US-UK

13 13.93 46 47.27 11 14.91 55 54.61

(0.0060) (0.0217) (0.0432) (0.0601)

Oil Bitcoin

13 12.84 54c 54.48c 10 15.60 67u,c 62.10u,c

(0.0156) (0.1360) (0.2124) (1.1522)

This table shows the violations for VaR and the cumulative violations given in (61) for ES under the ST-TGARCH
model. We also reports the significance for (i) the VaR backtesting tests in (58) and (59), and (ii) the ES backtesting
tests in (62) and (63). We setm = 5 in the Box-Pierce test statistic for the two conditional backtests. The superscripts
u and c indicate significance at five percent level for the unconditional and conditional backtests, respectively. The
results of the AQL in (57) are provided in brackets. Return series: Nikkei, JAP-US, Oil, US-UK, Eurostoxx50,
Bitcoin. The out-of-sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from March 17,
2015 to January 14, 2019; and for Bitcoin returns is from November 4, 2015 to July 31, 2018. Predictions: 1000.
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6 Extensions

There are at least two admissible extensions of the TGC framework in this paper. The first one follows

recent results in the literature which show the importance of TV conditional higher-order moments with

asymmetric response to positive and negative shocks; see e.g. Feunou, Jahan-Parvar and Tédongap (2016),

and Lalancette and Simonato (2017). The TGC pdf allows a natural extension to model directly clustering

and asymmetries in skewness and kurtosis. The time-varying version of the TGC pdf is denoted as TV-TGC.

The second extension relates to the proposal of a mixture of TGC pdfs which can significantly improve the

TGC ability to capture larger ranges of kurtosis.

6.1 Time-varying conditional higher-order moments

The conditional skewness and kurtosis of rt are defined, respectively, as sr,t = E
(
ε3t |It−1

)
/σ3t and kr,t =

E
(
ε4t |It−1

)
/σ4t . If we let the pdf of xt in (4) exhibit TV parameters and µt = µ in (23), then sr,t = sz,t and

kr,t = kz,t are now TV conditional daily higher-order moments where sz,t and kz,t are obtained by plugging

θi,t into equations (10) and (11). The dynamics equation for θi,t is given by

θi,t = ϕ0i + ϕ1iθi,t−1 + ϕ+2iz
+
t−1 + ϕ−2iz

−
t−1. (65)

This specification, although initially proposed by JR (2003) under Hansen’s ST distribution for the

innovation zt, has also been implemented, among others, by Feunou et al. (2016) who consider the skewed

generalized error (SGE) distribution; Anatolyev and Petukhov (2016) under the SGE assuming time variation

only for the parameter more related to skewness; Lalancette and Simonato (2017) for the Johnson Su
distribution, and León and Ñíguez (2018) who develop the conditional SNP distribution in LMS (2009).

Table 8 only exhibits the ML parameter estimates for θi,t in (65). Several features can be observed. First,

there is evidence that the TGARCH model under the TV-TGC does capture skewness and kurtosis clustering

since ϕ11 and ϕ12 are significant for all return series.
9 Second, we find evidence of asymmetric response,

of both skewness and kurtosis, to positive and negative shocks in all return series except Bitcoin. Third,

the LR test (H0: TGC and H1: TV-TGC) and AIC show that the TV-TGC model provides statistically

significant improvements of goodness-of-fit respecting the TGC. Fourth, it is also reported the mean and

standard deviation values of the TV conditional (daily) higher-order moment series. These mean values are

rather the same to those obtained under the TGC model with constant conditional higher-order moments.

Figure 8 exhibits in panel 1 both the constant and TV daily conditional skewness series for all asset returns.

The same graphics for the daily conditional kurtosis are exhibited in panel 2.

Finally, in order to provide more evidence on the significance of the returns’daily conditional skewness,

we employ a distribution-based asymmetry measure defined as the probability difference between the return

distribution upside potential and the downside loss.10 This measure does provide more accurate information

on the distribution asymmetry than the skewness, which limits to the third-moment. In particular, we use

the conditional version of the excess tail probability (ETP) of Jiang, Wu, Zhou and Zhu (2020), which is

9The TGARCH parameter estimates are not included to save space, as they are very similar to those in Table 2.
10The LPM of order zero in (15), i.e. m = 0.
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defined as

ETPt (τ) =

∫ +∞

τ

f (rt |It−1 ) drt −
∫ −τ
−∞

f (rt |It−1 ) drt (66)

= 1−Q
(
τ − κ0t
κ1t

|It−1
)
−Q

(
−τ − κ0t
κ1t

|It−1
)
,

where f (· |It−1 ) is the conditional pdf for rt in (43) with TV-TGC distribution for zt, expressed in terms of

the non-standardized TV-TGC pdf with cdf given by Q (· |It−1 ) according to (8). For the threshold level τ ,

we finally set a value of two standard deviations in accordance to the returns’sample standard deviations in

Table 1.11 Hence, the first and second terms in (66) measure the cumulative chances of large gains and large

losses, respectively. If ETPt is positive (negative), the probability of large gains is higher (lower) than the

probability of large (losses). Thus, we should expect a big coincidence between positive (negative) daily ETP

and positive (negative) daily skewness values. Our results show a very high percentage of similarity between

the two asymmetry measures. Namely, we find 98% for Nikkei, 95% for Eurostoxx, 96% for JAP-US, 97%

for US-UK, 97% for Oil, and a little lower of 80% for Bitcoin.

In short, the TV-TGC model seems to gather well the dynamics in the higher-order moments of the asset

returns. The forecasting performance of this model as well as confidence intervals based on the ETP measure

should constitute further research steps as it falls out ot the scope of this paper.

6.2 Mixture of TGC distributions

In this section we analyze the MTGC distribution. Our aim is to develop a more flexible TGC density

specification capable of providing higher ranges of kurtosis.

The random variable εt in (23) follows a two-component mixed Normal (M2N) with GARCH if the

conditional distribution of εt is M2N with zero mean, i.e. εt |It−1 ∼ M2N
(
p,µ,σ2t

)
where p = (p, 1− p)′

with 0 < p < 1, µ = (µ1, µ2)
′ and σ2t =

(
σ21t, σ

2
2t

)′
, and the conditional pdf is given by

hM2N (εt |It−1 ) =

2∑
j=1

pj
1

σjt
φ(
εt − µj
σjt

), (67)

with µ1 =
(
1− p−1

)
µ2 in order to ensure that E (εt |It−1 ) = 0, and σ2jt = α0j + α1jε

2
t−1 + βjσ

2
jt−1. More

details of this model such as the conditions of stationarity, persistence and other properties can be seen in

Haas, Mittnik and Paolella (2004) and Alexander and Lazar (2006).

Now, we consider that εt follows a two-component mixed TGC (M2TGC) with GARCH if the conditional

distribution of εt is M2TGC with zero mean. Thus, εt |It−1 ∼ M2TGC
(
p,µ,σ2t ,θ1,θ2

)
such that

p = (p, 1− p)′ with 0 < p < 1, θj = (θ1j , θ2j)
′, µ is the location parameter vector and σ2t is the vector of

strictly positive scale parameters, and the conditional pdf is given by

hM2TGC(εt |It−1 ) =

2∑
j=1

pj
1

bjσjt
qj(εjt,θj), (68)

where εjt =
(
εt − µj − ajσjt

)
/ (bjσjt) with µ1 =

(
1− p−1

)
µ2 as the condition of zero mean, σ

2
jt is a GARCH

structure, and qj (·) denotes the TGC pdf in (4) with θj = (θ1j , θ2j)
′. Note that the pdf in (67) is nested in

(68) when the parameter vector θj = 0 for j = 1, 2. The random variable εt can be expressed as

εt =

{
µ1 + σ1tz1t, with prob. p,

µ2 + σ2tz2t, with prob. 1− p,
(69)

11Jian et al. (2020) use a range from 1 to 1.5 standard deviations in their empirical analysis.
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such that zjt in (69) is the standardized TGC defined as zjt = aj + bjxjt such that xjt ∼ i.i.d. TGC (θj)

with qj (·) in (4) as pdf, aj = −bjEqj [xjt], bj =
(
Eqj

[
x2jt
]
− Eqj [xjt]

2
)−1/2

and the non-central moments:

Eqj [xjt] = 4λjγ1jγ2j , Eqj
[
x2jt
]

= 6λjγ
2
1j+8λjγ

2
2j+1 with γ1j = θ1j/

√
3! and γ2j = θ2j/

√
4!, see Proposition

2. The conditional moments of εt, such that E (εt |It−1 ) = 0, are easily obtained by using the binomial

expansion. Thus,

E
(
εkt |It−1

)
=

2∑
j=1

pj

k∑
i=0

(
k

i

)
µk−ij σijtEqj [(aj + bjxjt)

i
].

A more detailed study such as fitting this model to data falls out of the scope of the paper but it remains as

an interesting avenue for further research.

7 Conclusions

We analyze the parametric properties of a new density obtained as a result of applying the Gallant and

Nychka (1987) method to the Gram-Charlier (GC) density in Jondeau and Rockinger (2001) in order to

ensure positivity within the whole parametric space. This density is referred to as the transformed GC

(TGC). We provide a thorough analysis of the TGC’s statistical properties deriving the conditions for

unimodality, allowable ranges of skewness and kurtosis, closed-form expressions of the distribution function,

moments, one-sided truncated moments, expected shortfall and lower partial moments. We also obtain the

analytic expressions for the k-th order stationarity conditions and study the power-law tail property for the

unconditional moments of the errors from the TGARCH model under the TGC density, or TGC-TGARCH

model.

We also study the performance of the TGC-TGARCH model through an empirical application to

forecasting financial risk. In order to isolate the effect of skewness, we compare the TGC with the symmetric

GC of Zoia et al. (2018). The Normal distribution is used as the benchmark model. The model ability to

forecast both cdf and pdf is tested through p-value discrepancy plots and strictly proper scoring rules in

Amisano and Giacomini (2007), respectively. We also employ the VaR and ES backtesting methods of Du

and Escanciano (2017). For comparative analysis purposes, we extend our empirical study to the TGARCH

under the Hansen’s skewed t distribution, or ST-TGARCH model. Our last section deals with two possible

lines for further research with some initial results already presented here. Specifically, the first consists on

an extension of the TGC model to the TGC with time-varying skewness and kurtosis; and the second the

TGC mixture distribution as a way to augment the range of kurtosis provided by the TGC.

Finally, we also consider the following avenues as interesting for future research. First, the tail-index

estimation through Kesten’s equation for asymmetric GARCH-family models as an extension to the work

of Zhang et al. (2019). Second, the multivariate extensions of the univariate distributions dealt within the

paper. For instance, either GC or TGC distributions as possible marginal ones with dependence structures

based on alternative copulas such as (i) the Fourier expansions approach of Ibragimov and Prokhorov (2017),

or (ii) the dynamic copula extension of the multivariate skewed t distribution of Demarta and McNeil (2005),

developed by Christoffersen, Errunza, Jacobs and Langlois (2012). Third, in the spirit of the latter research

line, possible extensions of the multivariate SNP framework by Ñíguez and Perote (2016).
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Table 8: TV-TGC model estimation results

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

ϕ01

-0.1114∗

(0.050)

-0.0178

(0.028)

-0.0157∗∗∗

(0.021)

-0.0606∗

(0.031)

-0.1568∗

(0.034)

0.0427

(0.032)

ϕ11

-0.4894∗

(0.528)

0.4464∗

(0.779)

0.5002∗

(0.140)

-0.5536∗

(0.149)

-0.8741∗

(0.055)

0.6635
∗

(0.465)

ϕ+21

0.0473

(0.029)

0.0125

(0.033)

0.0422∗∗

(0.030)

0.0582∗∗∗

(0.029)

0.0262

(0.016)

-0.0292

(0.073)

ϕ−21

0.0152

(0.026)

0.0339

(0.043)

0.0431

(0.021)

0.0113

(0.023)

0.0001

(0.014)

0.1195

(0.066)

ϕ02

0.4853

(0.115)

0.0197

(0.036)

0.5066∗

(0.131)

0.5623∗

(0.075)

0.0751

(0.049)

1.5115∗

(0.156)

ϕ12

-0.7134∗

(0.221)

0.7005∗

(0.092)

-0.3372∗

(0.235)

-0.9621∗

(0.011)

0.6044∗

(0.109)

-0.4858∗

(0.140)

ϕ+22

0.0778

(0.057)

0.1978∗

(0.052)

0.1222

(0.052)

-0.0246

(0.018)

0.1593∗

(0.050)

-0.2218

(0.082)

ϕ−22

-0.0977∗∗∗

(0.041)

-0.0006

(0.038)

-0.1574∗

(0.051)

0.0194

(0.017)

-0.0466

(0.039)

-0.0626

(0.125)

LLTV -TGC -8731.26 -8643.46 -4941.91 -4045.72 -11226.51 -4607.26

LR 13.74∗ 23.01∗ 21.47∗ 7.59∗ 17.32∗ 16.64∗

AICTV -TGC 3.3497 3.3161 1.8970 1.5535 4.3063 3.1440

skewTGC -0.1803 -0.1463 -0.1157 -0.0787 -0.2308 -0.0687

skewTV -TGC -0.1821 -0.1236 -0.0954 -0.0756 -0.2213 -0.0169

s.d. skewTV -TGC (0.105) (0.066) (0.144) (0.119) (0.088) (0.241)

kurtTGC 3.8682 3.7845 4.3499 3.7736 4.0881 5.5585

kurtTV -TGC 3.9016 3.8786 4.3078 3.7551 4.0909 5.4742

s.d. kurtTV -TGC (0.262) (0.441) (0.289) (0.156) (0.307) (0.278)

The parameter dynamics implied in the TV-TGC distribution of zt: θi,t = ϕ0i+ϕ1iθi,t−1+ϕ
+
2iz

+
t−1+ϕ

−
2iz

−
t−1, i = 1, 2.

This table presents ML estimates of the TV-TGC coeffi cients in the previous parameter equations of θi,t for percent
log return series. The sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from January
15, 1999 to January 14, 2019 (total: 5,217 obs.); and for Bitcoin returns it is from July 19, 2010 to July 31, 2018
(total: 2,935 obs.). Heteroscedasticity-consistent standard errors are provided in parentheses below the parameter
estimates. (∗), (∗∗) and (∗∗∗) indicate significance at 1%, 5% and 10% levels, respectively. LLTV -TGC denotes the
log-likelihood value for the TV-TGC. LR denotes the likelihood ratio test statistic for TV-TGC versus TGC. Finally,
AICTV -TGC denotes the Akaike information criterion (the lower the AIC value, the better the goodness-of-fit). Both
skewTGC and kurtTGC correspond to the skewness and kurtosis for the standardized return zt under the TGC model
with constant conditional skewness and kurtosis. Both skewTV -TGC and kurtTV -TGC correspond to the sample means
of the daily time-varying conditional skewness and kurtosis series. Finally, the standard deviations for the skewness
and kurtosis series are in parentheses below skewTV -TGC and kurtTV -TGC .
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Figure 8: Plots of series of TV-TGC conditional skewness and kurtosis. The horizontal line correspond to the
estimated skewness and kurtosis from the TGC model. The sample covers the last 1,000 observations of the whole
sample period, for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from March 17, 2015 to January 14,
2019; and for Bitcoin returns it is from April 11, 2015 to July 31, 2018.
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Appendix 1 (Hermite polynomials)

The normalized Hermite polynomials, Hk (x), can be expressed recursively for k ≥ 2 as

Hk(x) =
xHk−1(x)−

√
k − 1Hk−2(x)√
k

, (70)

with initial conditions H0 (x) = 1 and H1 (x) = x. The set {Hk (x)}k∈N constitutes an orthonormal basis

with regard to a weighting function φ(x), which is the pdf of the standard Normal distribution. The

orthonormality property means that Eφ[Hk(x)Hl(x)] = δkl, where δkl is the Kronecker delta (δkl = 1 if

k = l while δkl = 0 otherwise) and the operator Eφ[·] takes the expectation with φ(x) as pdf. It is verified

that even and odd degree Hermite polynomials lead to even and odd functions, respectively. We can also

express Hk (x) in terms of xk by considering the following result from Blinnikov and Moessner (1998):

Hk (x) =
√
k!

[k/2]∑
n=0

(−1)
n

n! (k − 2n)!2n
xk−2n, (71)

where [·] rounds its argument to the nearest integer toward zero. Given (71), we can now write xk in terms

of Hk (x) as follows:

xk =
√
k!Hk (x)−

[k/2]∑
n=1

(−1)
n
k!

n! (k − 2n)!2n
xk−2n. (72)

If we substitute recursively the powers of x on the right side of equation (72) by the same equation, we finally

obtain xk as a polynomial transformation of a set of Hermite polynomials of degrees lower or equal than k.

Appendix 2 (Proofs)

Let mk (x) denote the one-sided truncated standard Normal moment of order k given by E
[
zk |z ≤ x

]
with

pdf φ (z) /Φ (x), then a recursive formula (see Liquet and Nazarathy, 2015) is obtained for k ≥ 1 as mk (x) =

(k − 1)mk−2 (x) − xk−1φ (x) /Φ (x), where m−1 (x) = 0 and m0 (x) = 1. Let Bk (x) =
∫ x
−∞ zkφ(z)dz, then

Bk (x) = mk (x) Φ (x). We can obtain a recursive expression for Bk (x) as

Bk (x) = (k − 1)Bk−2 (x)− xk−1φ (x) , k ≥ 2 (73)

where B0 (x) = Φ (x) and B1 (x) = −φ (x). The recursion formula in (73) is also obtained, in a very slightly

different way, in Skoulakis (2019) and it will be useful for all our proofs.

a) Equations of Γkij (·). Consider ξkij = 1/
√
k!i!j!, the equation in (71) and Bk (x) in (73), then we obtain

all equations Γkij (·) in Proposition 1 that we need to compute (8), (13), (17), (32) and Corollary 5. Then,

we have
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i) For k = 0 :

Γ030 (x) = ξ030 [B3 (x)− 3B1 (x)] ,

Γ040 (x) = ξ040 [B4 (x)− 6B2 (x) + 3B0 (x)] ,

Γ033 (x) = ξ033 [B6 (x)− 6B4 (x) + 9B2 (x)] ,

Γ034 (x) = ξ034[B7 (x)− 9B5 (x) + 21B3 (x)− 9B1 (x)],

Γ044 (x) = ξ044 [B8 (x)− 12B6 (x) + 42B4 (x)− 36B2 (x) + 9B0 (x)] .

(74)

ii) For k = 1 :

Γ100 (x) = B1 (x) ,

Γ130 (x) = ξ130 [B4 (x)− 3B2 (x)] ,

Γ140 (x) = ξ140 [B5 (x)− 6B3 (x) + 3B1 (x)] ,

Γ133 (x) = ξ133 [B7 (x)− 6B5 (x) + 9B3 (x)] ,

Γ134 (x) = ξ134 [B8 (x)− 9B6 (x) + 21B4 (x)− 9B2 (x)] ,

Γ144 (x) = ξ144 [B9 (x)− 12B7 (x) + 42B5 (x)− 36B3 (x) + 9B1 (x)] .

(75)

iii) For k = 2 :

Γ200 (x) = ξ200 [B2 (x)−B0 (x)] ,

Γ230 (x) = ξ230 [B5 (x)− 4B3 (x) + 3B1 (x)] ,

Γ240 (x) = ξ240 [B6 (x)− 7B4 (x) + 9B2 (x)− 3B0 (x)] ,

Γ233 (x) = ξ233 [B8 (x)− 7B6 (x) + 15B4 (x)− 9B2 (x)] ,

Γ234 (x) = ξ234 [B9 (x)− 10B7 (x) + 30B5 (x)− 30B3 (x) + 9B1 (x)] ,

Γ244 (x) = ξ244 [B10 (x)− 13B8 (x) + 54B6 (x)− 78B4 (x) + 45B2 (x)− 9B0 (x)] .

(76)

iv) For k = 3, 4 :

Γ333 (x) = ξ333 [B9 (x)− 9B7 (x) + 27B5 (x)− 27B3 (x)] ,

Γ334 (x) = ξ334 [B10 (x)− 12B8 (x) + 48B6 (x)− 72B4 (x) + 27B2 (x)] ,

Γ344 (x) = ξ344 [B11 (x)− 15B9 (x) + 78B7 (x)− 162B5 (x) + 117B3 (x)− 27B1 (x)] ,

Γ444 (x) = ξ444 [B12 (x)− 18B10 (x) + 117B8 (x)− 324B6 (x) + 351B4 (x)− 162B2 (x) + 27B0 (x)] .

(77)

b) Proof of Proposition 2 (moments). According to (72), we can express the first four powers of x as

a function of the Hermite polynomials, i.e. x = H1 (x), x2 =
√

2H2 (x) +H0 (x), x3 =
√

3!H3 (x) + 3H1 (x)

and x4 =
√

4!H4 (x)+6
√

2H2 (x)+3H0 (x). Then, we can easily obtain Eq
[
xk
]

=
∫ +∞
−∞ xkq (x) dx as follows:

Eq [x] = 2λγ1γ2A134,

Eq
[
x2
]

=
√

2λγ21A233 +
√

2λγ22A244 + 1,

Eq
[
x3
]

= 2
√

3!λγ1 + 2
√

3!λγ1γ2A334 + 6λγ1γ2A134,

Eq
[
x4
]

= 2
√

4!λγ2 +
√

4!λγ21A334 +
√

4!λγ22A444 + 6
√

2λγ21A233 + 6
√

2λγ22A244 + 3,

(78)

where Aijk = Eφ [Hijk (x)] =
∫ +∞
−∞ Hijk (x)φ (x) dx with Hijk (x) = Hi (x)Hj (x)Hk (x) verifying that
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Aijk = 0 if i+ j + k is an odd number and

A233 = ξ233 [n8 − 7n6 + 15n4 − 9n2] ,

A134 = ξ134 [n8 − 9n6 + 21n4 − 9n2] ,

A244 = ξ244 [n10 − 13n8 + 54n6 − 78n4 + 45n2 − 9] ,

A334 = ξ334 [n10 − 12n8 + 48n6 − 72n4 + 27n2] ,

A444 = ξ444 [n12 − 18n10 + 117n8 − 324n6 + 351n4 − 162n2 + 27] ,

(79)

where ξijk = 1/
√
i!j!k! and n2k = Eφ

[
x2k
]

= (2k)!
2kk!

. Then, A233 = 3
√

2, A134 = 2, A244 = 4
√

2, A334 = 3
√

6,

A444 = 6
√

6 and finally, we obtain (9).

c) Equations of ωk under Normal-TGARCH. If zt ∼ i.i.d. N (0, 1), then E
(
z−t
)

= −1/
√

2π,

E
[(
z−t
)2]

= 1/2, E
[(
z−t
)3]

= −
√

2/π, E
[(
z−t
)4]

= 3/2, and $k = E
(
ckt
)
for k = 1, 2, 4 given by

$1 = β +
1√
2π

(
α−1 + α+1

)
,

$2 = β2 +

√
2

π
β
(
α−1 + α+1

)
+

1

2

[(
α−1
)2

+
(
α+1
)2]

, (80)

$4 = β4 + 2

√
2

π
β3
(
α−1 + α+1

)
+ 3β2

[(
α−1
)2

+
(
α+1
)2]

+ 4

√
2

π
β
[(
α−1
)3

+
(
α+1
)3]

+
3

2

[(
α−1
)4

+
(
α+1
)4]

.

d) Equations of E
(
ckt
)
under NAGARCH. Let εt = σtzt with zt ∼ i.i.d. D (0, 1), then the NAGARCH

model of Engle and Ng (1993) for the conditional variance is given by

σ2t = α0 + α1(εt−1 − δσt−1)2 + βσ2t−1, (81)

with α0 > 0, β ≥ 0, α1 ≥ 0 and δ ∈ R. Following He and Terasvirta (1999), we can rewritte (81) as

σ2t = α0 + ct−1σ
2
t−1 such that ct = β + α1(zt − δ)2. We can obtain recursively $k = E

[
ckt
]
for k ≥ 2 :

$k = αk1E
[
z2kt
]

+ αk1

2k∑
j=1

(
2k

j

)
(−δ)j E

[
z2k−jt

]
−

k∑
j=1

(
k

j

)
(−β)

j
$k−j , (82)

where

$1 = β + α1
(
1 + δ2

)
. (83)

Note that $1 < 1 and $2 < 1 are the second and fourth-order stationarity conditions such that E
(
σ2t
)
<∞

and E
(
σ4t
)
<∞, respectively. For k = 2 in (82), we obtain:

$2 = β2+2α1β
(
1 + δ2

)
+ α21(kz−4δsz+6δ2+δ4), (84)

where sz is the skewness and kz is the kurtosis of zt.
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Appendix 3 (TGC-NAGARCH model)

Table A3 displays the estimation results for the NAGARCH under the TGC pdf.

Table A3: TGC-NAGARCH estimation results

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

µ
-0.0123

(0.017)

0.0077

(0.016)

0.0028

(0.009)

0.0006

(0.007)

0.0131

(0.027)

0.1076
∗

(0.071)

α0
0.0469

∗

(0.012)

0.0319
∗

(0.007)

0.0050
∗

(0.002)

0.0026
∗

(0.001)

0.0270
∗

(0.010)

1.0026
∗

(0.642)

β
0.8614

∗

(0.020)

0.8513
∗

(0.017)

0.9474
∗

(0.012)

0.9404
∗

(0.015)

0.9433
∗

(0.011)

0.7191
∗

(0.060)

α1
0.0814

∗

(0.011)

0.0718
∗

(0.010)

0.0429
∗

(0.008)

0.0521
∗

(0.016)

0.0401
∗

(0.007)

0.3998
∗

(0.107)

δ
0.6995

∗

(0.101)

0.9632
∗

(0.135)

0.1191

(0.145)

0.1175

(0.130)

0.5929
∗

(0.118)

0.0680

(0.093)

θ1
-0.0677

∗

(0.018)

-0.0563
∗

(0.017)

-0.0404
∗

(0.017)

-0.0218

(0.018)

-0.0789
∗

(0.017)

-0.0626
∗

(0.029)

θ2
0.2966

∗

(0.034)

0.2795
∗

(0.035)

0.4604
∗

(0.035)

0.2859
∗

(0.037)

0.3763
∗

(0.035)

0.9932
∗

(0.053)

$1 0.9826 0.9898 0.9909 0.9933 0.9975 1.1208

σε 1.6423 1.7669 0.7379 0.6267 3.2978 - - - -

$2 1.0005 1.0161 0.9882 0.9943 1.0031 1.9950

LRV 1.1560 1.1505 -1.0285 0.4147 0.8011 0.1631

Model specification: rt = µ+ εt, εt = σtzt, zt ∼ i.i.d. TGC (0, 1,θ) , σ2t = α0 + α1(εt−1 − δσt−1)2 + βσ2t−1.

This table presents ML estimates of parameters of the TGC-NAGARCH model for percent log return series. The
sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers from January 15, 1999 to January
14, 2019 (total: 5,217 obs.); and for Bitcoin returns it is from July 19, 2010 to July 31, 2018 (total: 2,935 obs.).
Heteroscedasticity-consistent standard errors are provided in parentheses below the parameter estimates. (∗) and
(∗∗) indicate significance at 1% and 5% levels, respectively. Let $k = E

(
ckt
)
where $1 = β + α1

(
1 + δ2

)
, then

the second-order stationarity condition of the NAGARCH must verify $1< 1. The implied unconditional standard
deviation of εt is given by σε=

√
α0/ (1−$1). The fourth-order stationarity condition under TGC-NAGARCH must

verify $2< 1 with $2 given in (84). Finally, LRV is the nonnested Vuong’s (1989) LR test statistic in (50) for
i = TGC and j = GCK under NAGARCH.
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Appendix 4 (Tail-index estimation)

Table A4 exhibits the robust estimates of ζ (instead of the popular Hill’s estimator), denoted as ζ̂RS , obtained

through the OLS approach using the log-log rank-size (RS) regressions from Gabaix and Ibragimov (2011).

The standard error of ζ̂RS is equal to ζ̂RS
√

2/n where n < T with T as the total number of observations.

For n, we set the most commonly used values for extreme observations, i.e. n = k0 × T with k0 = 5%, 10%.

The 95% confidence interval for ζ is given by ζ̂RS ± 1.96× ζ̂RS
√

2/n.

Table A4: Tail-index estimates and confidence intervals

Nikkei Eurostoxx50 JAP-US US-UK Oil Bitcoin

Panel 1: Truncation 10%

ζ̂RS 3.42 3.15 3.33 3.49 3.23 2.52

s.e. (ζ̂RS) 0.21 0.19 0.21 0.22 0.20 0.21

95%CIRS (3.00, 3.83) (2.77, 3.53) (2.93, 3.74) (3.06, 3.91) (2.84, 3.62) (2.11, 2.93)

Panel 2: Truncation 5%

ζ̂RS 3.64 3.55 3.65 3.41 3.51 2.91

s.e. (ζ̂RS) 0.32 0.31 0.32 0.30 0.31 0.34

95%CIRS (3.02, 4.28) (2.94,4.15) (3.02, 4.28) (2.83, 4.00) (2.91, 4.11) (2.24, 3.57)

ζ̂RS denotes the tail-index estimate, the standard error is s.e. (ζ̂RS) and 95%CIRS denotes the confidence interval at

95% level for the tail index ζ. The sample period for Nikkei, Eurostoxx50, JAP-US, US-UK and Oil returns covers

from January 15, 1999 to January 14, 2019 (T = 5, 217 obs.); and for Bitcoin returns it is from July 19, 2010 to July

31, 2018 (T = 2, 935 obs.).

Appendix 5 (Implied tail index)

We show in Table A5 the results of the simulation procedure to compute numerically the positive real number

ζ > 0 from Kesten’s equation: E
(
c ζt

)
= 1 with ct = β + α1(zt − δ)2 under the NAGARCH, see section

d) in Appendix 2, with ζ∗ = 2ζ as the corresponding tail index. However, respecting the TGARCH the

tail index is directly the solution ζ obtained from Kesten’s equation with ct in (26). For simplicity in the

simulation analysis, without loss of generality, we consider the NAGARCH under the GC pdf in (1) with

parameters: sk = 0 and alternative values of ek. Let $k = E
(
ckt
)
, then the corresponding $2 values by

only changing ek are obtained according to (84). We fix the value of $1 in (83) to 0.9957. This value is

obtained according to the QML NAGARCH parameter estimates for our Oil return series, i.e. α̂0 = 0.0325,

α̂1 = 0.0421, β̂ = 0.9399 and δ̂ = 0.5703. We find, as expected, that the higher $2 the lower ζ
∗.

To obtain ζ from Kesten’s equation, we adopt the following procedure: (i) we draw a random sample for

zt ∼ GC (0, ek) of size Ts = 500, 000 by using the GC cdf in (3), (ii) take the sample average of
{
c
ζ0
i

}Ts
i=1
,

with ci = β̂ + α̂1(zi − δ̂)2 such that {zi}Tsi=1 is the GC random sample, as the estimation of E
(
c
ζ0
t

)
with

ζ0 as a starting value of the unknown ζ, (iii) solve the nonlinear E
(
c ζt

)
= 1 using the ‘fsolve’ function

in Matlab, and (iv) the tail index is computed as ζ∗ = 2ζ. Our simulation procedure is rather similar to

Chan, Peng and Zhang (2012). Indeed, we only use one draw of a large sample size to compute ζ, whilst

the former authors employ an average value of ζ estimates from 1, 000 random samples of much lower size.
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We have checked that our procedure does approximate considerably well the ζ true value. For instance, if

we set ek = 1, then the solution of Kesten’s equation is: ζ = 2.1729 (i.e. ζ∗ = 4.35). Besides, our simulated

averages, as an approximation to $k for different k values, are: $̂1 = 0.9955 (true value is $1 = 0.9957),

$̂2 = 0.9986 (true value is $2 = 0.9990), $̂3 = 1.0114, $̂4 = 1.0375, $̂5 = 1.0822, etc. Thus, the higher k

the higher $k. As a remark, we find the unconditional moments are finite up to order four. In conclusion,

as exhibited in Table A5, for ek ≥ 2 (ek ≤ 1) the unconditional moments exist only up to the third (fourth)

order.

Table A5: Implied tail index

ek 0.5 1 2 3 4

$2 0.9981 0.9990 1.0008 1.0025 1.0043

ζ∗ 4.62 4.35 3.95 3.68 3.47
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