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Abstract

Semi-supervised approaches for crowd counting attract
attention, as the fully supervised paradigm is expensive and
laborious due to its request for a large number of images
of dense crowd scenarios and their annotations. This paper
proposes a spatial uncertainty-aware semi-supervised ap-
proach via regularized surrogate task (binary segmentation)
for crowd counting problems. Different from existing semi-
supervised learning-based crowd counting methods, to ex-
ploit the unlabeled data, our proposed spatial uncertainty-
aware teacher-student framework focuses on high confident
regions’ information while addressing the noisy supervision
from the unlabeled data in an end-to-end manner. Specif-
ically, we estimate the spatial uncertainty maps from the
teacher model’s surrogate task to guide the feature learn-
ing of the main task (density regression) and the surro-
gate task of the student model at the same time. Besides,
we introduce a simple yet effective differential transforma-
tion layer to enforce the inherent spatial consistency reg-
ularization between the main task and the surrogate task
in the student model, which helps the surrogate task to
yield more reliable predictions and generates high-quality
uncertainty maps. Thus, our model can also address the
task-level perturbation problems that occur spatial incon-
sistency between the primary and surrogate tasks in the stu-
dent model. Experimental results on four challenging crowd
counting datasets demonstrate that our method achieves su-
perior performance to the state-of-the-art semi-supervised
methods.

1. Introduction
The task of crowd counting in computer vision is to in-

fer the number of people in images or videos. There is
an ever-increasing demand for automated crowd counting
techniques in various applications such as public safety, se-
curity alerts, transport management etc..

With the help of Convolutional Neural Network (CNN)’s
feature learning ability, current state-of-the-art methods
[1, 51, 47, 57, 39, 36] gained excellent counting perfor-

mance by regressing the corresponding density maps of the
input images, where the summed value in a density map
gives the total count numbers. To train a robust and accu-
rate crowd counting estimator, most of the existing methods
[18, 34, 22, 17, 7, 33] relied on substantial labeled images,
where head centres must be annotated for training. How-
ever, the annotation process can be labour-intensive and
time-consuming. For example, JHU-Crowd [42] dataset
contains labels of 1.51 millions people whilst NWPU-
Crowd [48] dataset contains annotations of 2.13 millions
people, which takes 3000 human hours in total. Hence, re-
ducing annotation efforts while maintaining good counting
performance is our goal in this paper. More specifically, we
study the counting estimator in a semi-supervised manner
where limited labeled data is used; on the other hand, the
unlabeled data is leveraged to improve our model’s robust-
ness and performance.

Previous semi-supervised crowd counting methods tend
to minimize the expensive label work through active learn-
ing [60, 20], synthetic images [49, 50], or pseudo-ground
truth [40, 21]. However, they did not consider the unlabeled
data or synthetic data’s intrinsic noisy supervision due to
the inherent data uncertainties [27]. Uncertainty estimation
has been explored in other computer vision tasks, such as
segmentation [10, 53, 2] or detection [56, 5], etc.. There
are two significant types of uncertainty [9]: epistemic un-
certainty, which accounts for the uncertainty in the model
parameters and can be addressed when given enough data;
aleatoric uncertainty corresponds to inevitable noisy pertur-
bation existing in the data itself. Solving the aleatoric un-
certainty is a crucial problem since crowd images contain
inherent noises such as complex backgrounds, massive oc-
clusions and illumination variations etc.. Few recent ap-
proaches [27, 28] have considered the uncertainty quantifi-
cation in the crowd counting task in a fully-supervised man-
ner. They adopted [9] to estimate the mean and variance
of the assumed Gaussian distribution of the density map,
where the variance is served as a measure of uncertainty.

In this work, we exploit the aleatoric uncertainty in
a semi-supervised manner to alleviate the noisy supervi-
sion in uncertain spatial regions due to the complex back-
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Figure 1. Overview of the very recent work [21], baseline model [44], and our proposed method. (a): [21] utilized surrogate task (binary
segmentation) to boost the feature extractor with labeled and unlabeled data so as to enhance the performance of the density regressor.
(b): Mean-Teacher [44] is a commonly used semi-supervised framework through exploiting the consistency learning on the student and
the teacher models’ outputs under different input-level noise perturbations (ξ, ξ′) and model-level noise perturbation (Dropout [43] of the
student and teacher models). We refer to it as the baseline model in this paper. (c): Our Mean-Teacher based semi-supervised framework.
Note that we only input the unlabeled data into the teacher model because this work aims to explore the unlabeled data’s uncertainty. The
estimated ‘hard’ and ‘soft’ spatial uncertainty maps aim to assist the consistency learning (upon binary segmentation and density regression)
between the student and teacher models; one can alleviate the unlabeled data’s inevitable noisy supervision. The student model’s binary
segmentation is regularized by the inherent consistency regularization with approximated segmentation to address the spatial predictions’
perturbation issues between binary segmentation and density regression tasks in the student model.

grounds and massive occlusions challenges from the unla-
beled crowd images [27]. Previous crowd counting methods
[59, 35, 4] prove that the spatial region information from the
binary segmentation task is essential to tell the crowd and
background locations, which will help the density map re-
gressor to focus on the region of interest and improve the
counting performance. In our work, the binary segmenta-
tion provides spatial information and serves as a surrogate
task to estimate the uncertain spatial regions (e.g. uncertain
crowd locations). With the estimated spatial uncertainty, we
assist the unsupervised consistency learning (upon binary
segmentation and density regression) between the student
model and the teacher model based on the Mean-Teacher
[44] semi-supervised learning framework. Fig 1 (b & c)
shows the overview structure of our method and the re-
implemented Mean-Teacher framework [44] for the crowd
counting task. Note that, in our work, the student model
and the teacher model share a similar structure (Feature ex-
tractor, binary segmentation module, density regressor). We
update the teacher model’s parameters as an exponential
moving average (EMA) of the student model’s parame-
ters. Because ensembling the student model’s predictions at
different training steps can enhance the performance of the
teacher model’s predictions [11]; in which case, the teacher
model can generate ‘targets’ for the student model to learn
from. However, as mentioned above, those ‘targets’ con-
tain spatial-wise uncertainty; thus, we purify the ‘targets’
with the estimated ‘hard’ and ‘soft’ uncertainty map during
training.

Apart from the aforementioned novel components, we
also study how to learn an excellent surrogate task (bi-
nary segmentation) predictor to produce reliable and con-
sistent spatial uncertainty that the main task (density re-
gression) has in the student model. Note that, followed by

[44], only student model is used for the inference process.
Specifically, we introduce a simple yet effective differen-
tiable transformation layer to approximate the binary seg-
mentation maps from the density map predictions of the
unlabeled input in the student model. We then employ
an unsupervised inherent consistency loss between the pre-
dicted segmentation maps and the approximated segmenta-
tion maps to guarantee the consistent spatial feature learn-
ing between two different tasks in the student model. The
underlying motivations are twofold: (1) the surrogate and
the main task may introduce an inherent prediction pertur-
bation on spatial regions due to the domain gap of feature
learning from multi-tasks [25]. Our ablation experiment re-
sults prove that this perturbation will lead to noisy super-
vision upon two tasks, thus reducing the performance. (2)
The proposed transformation layer itself is simple. How-
ever, it brings several benefits with the inherent consistency
loss. For example, the estimated uncertainty from a reg-
ularized surrogate task can indicate more reasonable and
consistent spatial uncertain regions that the main task has,
which further enhances the consistency between the surro-
gate and the main task. In other words, with the proposed
transformation layer, the estimated uncertainty and consis-
tency regularization can benefit from each other to advance
the counting performance. Our experiment results demon-
strate that the proposed consistency regularization mecha-
nism can boost the model’s performance in both supervised
and semi-supervised manner.

In summary, this work makes the following contribu-
tions: (1) We propose a surrogate task to estimate the un-
certain spatial regions from the unlabeled data under the
semi-supervised Teacher-Student framework, which can al-
leviate the inevitable noisy supervision from the unlabeled
data. (2) We propose a differentiable transformation layer
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that enables the inherent spatial consistency regularization
between the surrogate task (binary segmentation) and the
main task (density regression) in the student model, which
can enhance the model to estimate high-quality uncertainty
maps from the unlabeled data, thus improve our model’s
counting performance. (3) We conduct extensive exper-
iments on four well-known challenging counting bench-
marks. Quantitative results demonstrate that our methods
outperform existing semi-supervised crowd counting meth-
ods. Besides, with less than half of the labeled data, our
method can achieve comparable performance with the fully-
supervised state-of-the-art methods.

2. Related Works
2.1. Supervised Density-based Crowd Counting

Recently, fully-supervised density map regression-based
counting methods with CNN achieved good performance.
Approaches like [3, 58, 55] proposed a multi-column net-
work to regress the density map in terms of combining local
and global features to tackle the scale variation challenges.
Other works [26, 8, 54] employed visual attention mecha-
nisms to address other issues, such as background noise in
crowded cluster scenarios and various density levels from
scale variations. Apart from single-task learning, recent
works introduced auxiliary task learning frameworks, i.e.
classification [35, 38], localization [16, 29, 15, 14, 24], or
segmentation [59, 35, 4], which attains additional spatial
and semantic information supplement from the joint learn-
ing auxiliary tasks. The above methods focus on improving
the counting performance in a fully-supervised paradigm.
However, annotating the crowd counting dataset is labour-
intensive and time-consuming work. In this paper, we made
efforts on minimizing the expensive labelling work in a
semi-supervised manner.

2.2. Learn to count with limited data

Relieving the crowd counting annotation efforts by us-
ing weakly/semi-/un-supervised learning mechanism has
attracted researchers’ attention for the past two years. For
example, Liu et al. [19] leveraged a large number of unla-
beled images and introduced a pairwise ranking loss to esti-
mate the density map. Along the same line, Yang et al. [52]
proposed a soft-label sorting network to regress the count-
ing numbers rather than density map, which results in a
performance reduction because of the difficult optimization
from the input images to the target of scalar. Further, Wang
et al.[49, 50] focused on a different direction, where they
combined the synthetic images and realistic images to min-
imize the annotation burden. However, there is a domain
gap between the synthetic and real-world scenarios; thus,
they need further manual selections from the synthetic data.
More recently, pseudo-labeling based semi-supervised ap-

proaches [40, 21] estimated the pseudo-ground truth of the
unlabeled data, which is then used to supervise the network
and improve the performance. Similarly, active learning-
based methods [60, 20] annotated the most informative im-
ages instead of the whole training dataset and learned to
count upon them. These methods can be effectively per-
formed on the unlabeled data, but the model may be misled
by the inevitable noisy supervision from the unlabeled data
due to the aleatoric uncertainties [27], such as massive oc-
clusions, complex backgrounds, etc.

2.3. Most Related Works

The framework of the most recent state-of-the-art
method [21] is shown in Fig.1 (a), where the surrogate
task (binary segmentation) learning mechanism is used to
learn a robust feature extractor in a semi-supervised man-
ner. We believe that learning a better feature extractor can
be more reliable towards the unlabeled data’s noisy super-
vision. However, there are some fundamental limitations in
their framework: (1) The unlabeled data are only used to
train the feature extractor and the binary segmentation pre-
dictor, aiming to avoid noise from unlabeled data contami-
nating the density regressor. However, it also leads to a side
effect that only limited labeled data is used to train the den-
sity map predictor, subject to sub-optimal results. (2) Due
to the unlabeled data’s inevitable inherent noise, their model
may provide incorrect predictions with spuriously high con-
fidence because of the noisy supervision. This challenge
has also been observed in other weakly/semi-/un-supervised
crowd counting methods [30, 45, 40, 19, 52]. (3) The inher-
ent prediction perturbation on spatial regions between the
binary segmentation task and the density regression task
may mislead the feature extractor’s feature learning. In
other words, the spatial inconsistency exists in the binary
segmentation and density regression task.

We propose a semi-supervised model to address all the
limitations mentioned above, and a simplified diagram of
the model is shown in Fig.1 (c). Firstly, we introduced novel
‘hard’ uncertainty and ‘soft’ uncertainty from the teacher
model to assist the student network to learn high-confident
binary segmentation and density map predictions of the un-
labeled data. This can alleviate the inevitable noisy super-
vision from the unlabeled dataset. Secondly, we proposed
a novel differentiable transformation layer that converts the
predicted density maps into approximated binary segmenta-
tion maps, where the inherent consistency loss is employed
to avoid the prediction perturbations issues. Thirdly, be-
cause of the proposed uncertainty map and inherent consis-
tency regularization, the feature extractor, binary segmenta-
tion predictor and density regressor in the student model of
our work can benefit from both the labeled and unlabeled
data and avoid sub-optimal issues; details of the proposed
components are explained in the following sections.
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3. Methods
The ground truth of the density map is generated by [12].

The binary segmentation ground truth mask is generated
from the density map ground truth. Specifically, the value
for each pixel in the binary ground truth mask is set to 1, if
the pixel value of the density map is greater than 0, and 0,
otherwise.

The proposed Teacher-Student framework structure is il-
lustrated in Fig.2. The uncertainty map is estimated from
the surrogate task with unlabeled data in the teacher model.
Then we use the uncertainty map to assist the surrogate and
the main task feature learning in the student models. The
inherent consistency regularization between the surrogate
task (binary segmentation) and the main task (density re-
gression) in the student model improves its robustness re-
garding task-level spatial crowd region consistency.

3.1. Uncertainty Map Estimation

Different from the recent fully-supervised Gaussian dis-
tribution uncertainty-based [9] crowd counting method [28,
27], we propose a semi-supervised method to estimate the
spatial uncertainty from the surrogate task (binary seg-
mentation) in the teacher model with the unlabeled data,
then use the uncertainty to assist the binary segmentation
and density regression tasks feature learning in the student
model so as to address the noisy supervision. This design
is motivated by three considerations: (1) For crowd count-
ing, the inevitable noise exists in many scenes, such as mas-
sive occlusions, complex backgrounds, etc., which results
in uncertain crowd regions [27]. So, the guidance of the
proposed spatial uncertainty from the binary segmentation
can be essential to alleviate the effects of noise. (2) Without
the annotations in the unlabeled inputs, the predicted out-
puts from the teacher model may be unreliable and noisy.
Therefore, an uncertainty-aware learning scheme is essen-
tial for the student model to assess the uncertainty and con-
duct a more reliable consistent feature learning. (3) The
uncertainty estimated from the binary segmentation task in-
dicates the uncertain locations of the crowd, which should
be considered in the density regression task. Because the
non-crowd regions should only maintain zero pixel values
in the density map, the density regressor may produce larger
pixel values due to the unlabeled data’s spatial noise.

Recent domain adaptation studies [23, 46, 61] indicated
that due to the domain gap, the models trained on source
domain tend to produce under-confident, i.e. high-entropy
predictions on the target domain. We found that such a
phenomenon also exists in semi-supervised crowd counting
tasks. Specifically, in our model, the outputs of the binary
segmentation with unlabeled data in the teacher model tend
to produce under-confident regions (the boundary along
crowd regions). As mentioned in Section. 1 , this is because
of the inevitable noise of the unlabeled data. Please refer to

Fig. 3 for the qualitative uncertainty visualisation. To ad-
dress this challenge, we adopt Shannon Entropy [32] as the
metric to measure the randomness of the information [31],
which is referred to as the uncertainty in this work. We then
propose the ‘hard’ and ‘soft’ uncertainty maps to purify the
learning process with the unlabeled data. Formally, given
a C-dimensional softmax predicted class score P (H,W,C)

x

from a H×W input image x, the Shannon Entropy I(H,W )
x

is defined as:

I(H,W )
x = −

C∑
c=1

P (H,W,C)
x � logP (H,W,C)

x , (1)

where � is Hadamard Product; C is the number of classes,
which is 2 in our work because of the binary segmen-
tation. In practice, we perform T times stochastic for-
ward passes on the teacher model under random dropout
and Gaussian noise input for each unlabeled input image.
Therefore, we obtain a set of softmax probability vectors:{
P t
}T
t=1

from the segmentation branch, then the predicted
class score P (H,W,C) is equal to 1

T

∑T
t=1 P

t, thus we can
obtain I(H,W ) with equation 1.

With the assistance of the approximated Shannon En-
tropy I(H,W ), we design two strategies to address the spa-
tial uncertainty upon binary segmentation and density re-
gression tasks between the student model and the teacher
model, respectively. Firstly, the ‘hard’ uncertainty map
Uh is introduced to guide the consistency learning on bi-
nary segmentation. In detail, we set a threshold and fil-
ter out the relatively unreliable binary segmentation pre-
dictions of the teacher model and select only the certain
predictions as the target for the student model to learn
from. In practice, the ‘hard’ uncertainty map Uh is equal to
1(IH,W < threshold), where 1(·) is a indicator function.
Secondly, the ‘soft’ uncertainty map Us is proposed to as-
sist the consistency learning on the density regression task.
The uncertain crowd regions do contain noisy density map
predictions; however, only relying on the spatial uncertainty
and filtering out the uncertain density map predictions may
mislead the density regression or even add more noises. In
addition to the spatial uncertainty, there are also other un-
certainties caused by perspective distortions, non-uniform
distribution, weather changes, etc.. Our ablation study ex-
periments prove that the ‘soft’ uncertainty maps are more
friendly than ‘hard’ uncertainty maps regarding to the con-
sistency learning upon density map regression, thus advanc-
ing a performance boost. We retain all the density map pre-
dictions of the teacher model and introduce the ‘soft’ uncer-
tainty map as a weighted mask to assign different weights
to each pixel on the density map prediction according to
the spatial certainty level. In detail, for these relatively reli-
able regions (pixels), we assign them more weights during
the training to enforce the consistent learning to focus on
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Figure 2. The pipeline of our uncertainty-aware framework for semi-supervised crowd counting enabled by the regularized surrogate task.
The student model is optimized by minimizing the supervised density regression loss LSd, the binary segmentation loss LSb on the labeled
data; the unsupervised inherent consistency loss Lc′ on both the unlabeled data and labeled data, the unsupervised consistency loss LCb

and LCd on the unlabeled data. The estimated spatial uncertainty (‘hard’ and ‘soft’ uncertainty maps) from the teacher model guides the
student to learn more reliable targets from the teacher. P (H,W,C)′ and MD

′ are the outputs of the predicted class score and density map
from the teacher model, which serves as the targets for the student model to learn from through consistency loss LCb and LCd respectively.

the certain prediction regions, while the relatively uncer-
tain regions are still involved during the training with lower
weights. In practice, we normalize the estimated Shannon
Entropy I(H,W ) into range (0, 1) as Î(H,W ), then define the
‘soft’ uncertainty map Us as: Us = M ∗ (1 − Î(H,W )) ,
where M is the constant value of weighted mask to control
the Us pixel values.

With the estimated ‘hard’ and ‘soft’ uncertainty map,
the uncertainty-aware unsupervised consistency loss (LCd

& LCb) upon the main task (density regression) and surro-
gate task (binary segmentation) between the teacher and the
student models can be guided during the training. Details
will be shown in Section. 3.3.

3.2. Regularized Surrogate Task via Transforma-
tion Layer

In Fig.1 (a), recent method [21] utilized surrogate task
to learn a robust feature extractor, which leads to the in-
directly improved performance of density regressor. How-
ever, they did not consider the potential prediction pertur-
bation on spatial regions due to the domain gap of feature
learning from multi-tasks [25]; in which case, the binary
segmentation can learn a different interest of the spatial re-
gions compared with the one of the density regressor. To
address the challenge, we proposed a simple yet effective
differential transformation layer σ(·) to approximate the bi-
nary segmentation maps from the density regressor’s out-
put. In this way, we build a spatial regularization between
the two tasks to address the potential inherent prediction
perturbation issues in [21]. Meanwhile, the inherent con-
sistency loss (Lc′) is employed between the binary seg-

mentation predictions (MB) and the approximated binary
segmentation maps (MAB) to regularize the surrogate task
learning.Note that, MB ∈ RH×W×1 is the feature map
of the corresponding crowd channel of the predicted class
score P (H,W,C) ∈ RH×W×2.

Following the same process that we generate the bi-
nary segmentation ground truth mask from the density map
ground truth, to convert the predicted density maps into ap-
proximated binary segmentation maps, an intuitive way is to
use the Heaviside step function to set all the positive pixel
values in the predicted density maps to 1 and zero pixel val-
ues to 0. However, it is impractical in training because of
the non-differentiability. Hence, we proposed a simple yet
effective differential transformation function to guarantee
that purpose. With the output from the density regressor
MD, and the differential transformation layer σ(·), the ap-
proximated binary segmentation map MAB is defined as:

MAB = σ(K ∗MD) = 2 ∗ Sigmoid(K ∗MD)− 1, (2)

whereK is a very large constant, which is set as 6000 in our
work. Notably, as shown in Fig.2, MD is a non-negative
density map prediction because of the use of ReLu as the
activation. In terms of such transformation function σ(·),
the spatial consistency can be enforced between the two dif-
ferent tasks in a trainable manner. Specifically, the density
regressor focuses on the pixel values regression, while the
binary segmentation predictor aims for semantic and spatial
reasoning. Thus, the natural task-level prediction difference
on spatial crowd regions of these two tasks can be regular-
ized by an unsupervised inherent consistency loss function
Lc′ between the MB and MAB .
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3.3. Loss Function

We optimize the student model using the supervised loss
(density regression, binary segmentation) on the labeled
data and the unsupervised consistency loss on the unlabeled
data. The whole network is end-to-end trainable, and the
total loss function Ltotal comprising five loss terms:

Ltotal = LSd+α·LSb+Lc′+λ·(α·Uh�LCb+·Us�LCd),
(3)

where � is Hadamard Product, L2 loss is used for the
supervised density map regression LSd; categorical cross-
entropy loss is used for supervised binary segmentation LSb

in the student model. Besides, α is a hyper-parameter to
trade-off between the main task (density regression) and
surrogate task (binary segmentation), which is set as 0.1 in
our work. As for the unsupervised consistency loss, firstly,
L2 loss is used for unsupervised inherent consistency loss
Lc′ between the binary segmentation predictions and the
approximated binary segmentation maps from density map
predictions in the student model; secondly, ‘hard’ uncer-
tainty map Uh is used to assist the unsupervised consis-
tency loss LCb upon the binary segmentation and ‘soft’ un-
certainty map Us is used for unsupervised density map re-
gression consistency loss LCd. Here, we choose Euclidean
distance as the consistency metric for LCd and LCb. λ
are adopted from [11] as the same time-dependent Gaus-
sian ramp-up weighting coefficient to trade-off between the
supervised loss and unsupervised loss. This is to avoid the
network get stuck in a degenerate solution, where no mean-
ingful prediction of the unlabeled data is obtained [11].

4. Experiments
4.1. Data sets

ShanghaiTech [58] consists of 1198 images, containing
a total amount of 330165 people with head centre point
annotations. This dataset has two parts: SHA includes
482 images and is divided into a training (300) and testing
(182) subset. SHB includes 716 images and is divided into
400 images for training and 316 images for testing. UCF-
QNRF [6] is a large crowd dataset, consisting of 1,535 im-
ages with about 1.25 million annotations in total. As in-
dicated by [6], 1201 images are used for training; the re-
maining 334 images form the test set. JHU-Crowd [41]
is a recent challenging large-scale dataset that containing
4372 images with 1.51 million annotations. This dataset is
divided into 2272 images for training, 500 images for vali-
dation, and 1600 images for testing. NWPU-Crowd [48] is
current the largest public crowd counting dataset, contain-
ing 5109 images with over 2.13 million annotations. The
dataset includes 3109 training images and 500 validation
images; due to no access to the testing images; instead, we

keep their validation images to evaluate our model’s per-
formance. Note that, we set 50% of the training images as
the labeled data and the rest as the unlabeled data. In par-
ticular, for ShanghaiTech (part A, part B), UCF-QNRF and
NWPU-Crowd, we use 10% of the labeled training images
as the validation dataset.

4.2. Implementation Details

Code is available at: https:
//anonymous.4open.science/r/
d8fcc5eb-57a6-4b78-a332-db3024499e6b/
We adopt a truncated VGG-16 [37] as the backbone
network, which is the same as [18, 13, 21, 44, 19].
Additionally, following [44], two dropout layers with a
drop out rate of 0.5 are added into the feature extractor to
introduce model-level perturbations. The dropout is turned
on during the training and turned off during the testing.
Please refer to supplementary for detailed model structure.
We update the teacher model’s weight θ′ as an EMA of the
student model’s weight θ during the training step, such as
θ′t = ζ · θ′t−1+(1− ζ) · θt, where t is the tth training step,
and ζ is the EMA decay to control the update rate, which is
empirically set as 0.999 in our work. For Shannon Entropy
estimation, we set T = 8 as the stochastic forward passes
times to balance the model’s performance and training
efficiency. Besides, we set the threshold as a Gaussian
ramp-up function from 3/4 maximum uncertainty value
to maximum uncertainty value for’ hard’ uncertainty map
estimation. For the ‘soft’ uncertainty map estimation, the
weight value M is set as 7. Details of the hyper-parameter
setting in our work can be found in the supplement.

The training data set is augmented by randomly cropping
the input images, the density maps ground truth, and the bi-
nary segmentation ground truth with fixed size 128 × 128
at a random location; then randomly horizontal flipped the
image patches with the probability of 0.3. We trained our
model up to 600 epochs or stop early when the network has
converged, with an initial learning rate of 7e-5 and divided
by 5 every 200 epochs. The batch size is set as 16, con-
sisting of 8 labeled images and 8 unlabeled images. All the
training processes are performed on a server with 8 TESLA
V100, and all the testing experiments are conducted on a
local workstation with a Geforce RTX 2080Ti.

5. Results
In this section, we present our experimental results on

the crowd counting tasks compared to previous state-of-the-
art methods. Following the previous methods, we adopt
Mean Absolute Error (MAE) and Root Mean Squared Er-
ror (RMSE) to evaluate the counting performance. The re-
sults of ablation study are also shown to demonstrate the im-
portance of the various components in our framework, such
as the number of labeled and unlabeled images, ‘soft’ and
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Figure 3. Qualitative results on SHA test dataset. In the ‘hard’ uncertainty maps, the yellow pixels represent uncertain regions and the
black pixels are certain regions. In the ‘soft’ uncertainty maps, the different color represents different weight mask values according to the
color bar; higher value denotes more certain regions. The estimated ‘soft’ uncertainty indicates that the crowd regions’ boundary is more
uncertain than other regions, which is reasonable because of the complex backgrounds.

Methods SHA SHB QNRF JHU-Crowd NWPU-Crowd
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Fully-Supervised
CACC [18] 62.3 100.0 7.8 12.2 107.0 183.0 100.1 314.0 93.6 489.9

CSR-Net [13] 68.2 115.0 10.6 16.0 119.2 211.4 85.9 309.2 104.9 433.5
Ours (Fully) 66.9 125.6 12.3 17.9 119.2 213.3 80.1 305.3 105.8 445.3

Semi-supervised

Mean-Teacher [44] (Baseline) 88.2 151.1 15.9 25.7 147.2 249.6 121.5 388.9 129.8 515.0
L2R [19] 86.5 148.2 16.8 25.1 145.1 256.1 123.6 376.1 125.0 501.9

Sindagi et al. [40] 89.0 - - - 136.0 - - - - -
Liu et al. [21] - - - - 138.9 - - - - -

Ours (Label-Only) 94.6 152.0 19.2 31.9 152.9 266.1 133.3 415.0 141.0 625.6
Ours (Semi) 68.5 121.9 14.1 20.6 130.3 226.3 80.7 290.8 111.7 443.2

Table 1. Quantitative results on four crowd counting datasets. Our model achieves superior performance than the other semi-supervised
methods in terms of MAE with the same setting of 50% labeled data on four datasets.

‘hard’ uncertainty maps, differential transformation layer,
respectively. Quantitative results are shown in Tab.1, 2, 3
and Fig.4. Fig. 3 show the qualitative results. More qualita-
tive results can be found in the supplementary. More quanti-
tative results compared with previous methods ([21, 40, 44])
under different number of labeled data settings are shown in
the supplementary.

5.1. Crowd Counting Results

Fig.3 shows qualitative results; specifically, we present
the predicted and approximated segmentation maps, and the
visualized uncertainty maps to demonstrate our model’s co-
hesion, along with the contribution of spatial uncertainty
guidance and inherent consistency regularization. In partic-
ular, we compare our model with previous semi-supervised
methods [19, 21, 40, 44]. The results of [21, 40] are re-
trieved from their published papers, and we re-implement
the rest methods [19, 44] through running their public
code. Note that, [21] adopts the same backbone (VGG-16
[37]) as our model; they build their model based on CSR-
Net [13], which achieves a comparable performance un-
der fully-supervised manner with ours (i.e. Ours (Fully)
in the Tab. 1). [40] adopts a more powerful backbone
producing superior performance than Ours (Fully) under
fully-supervised manner. So the comparison with them in
a semi-supervised manner can be seen as straightforward
and reasonable. Additionally, we add binary segmenta-

tion module into the Baseline model [44] to maintain sim-
ilar model parameters as Ours (Semi); however, without
the proposed transformation layer and uncertainty maps,
the Baseline model achieves relatively 18.5 % higher MAE
compared with Ours (Semi) on four datasets. To make an
intuitive comparison, we also present different prediction
results with our proposed model: (1) Ours (Label-Only):
trained with half labeled data on the student model (with-
out transformation layer). (2) Ours (Semi): trained with
half labeled and half unlabeled data on the student and
teacher model simultaneously; inferred with student model
only. (3) Ours (Fully): trained with all the labeled data
on the student model (without transformation layer). Note
that, the transformation layer works as an activation func-
tion, which hardly increases the size of the model. Tab.1
shows that Ours (Semi) outperforms the Ours (Label-Only)
by a large margin with average 25.1% performance gain
in terms of MAE on four datasets, which is benefits from
the proposed uncertainty maps, differential transformation
layer and unlabeled data. In particular, our model achieves
comparable performance with only 50% labeled data, com-
pared with Ours (Fully) with 100% labeled data in SHA
and JHU-Crowd dataset. Furthermore, to present compre-
hensive comparisons, we also show the performance of pre-
vious state-of-the-art crowd counting methods [13, 18] with
the same backbone network as ours under a fully supervised
manner. Tab.1 shows our method outperforms other semi-
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supervised methods in terms of MAE and RMSE on all four
datasets under the same test settings and achieves a compa-
rable performance to the previous state-of-the-art fully su-
pervised works in SHA and JHU-Crowd dataset.

5.2. Ablation Study

We investigate the effect of each component in our pro-
posed model. Our model is robust to the hyper-parameters;
results of more ablation studies, such as coefficients of the
loss function, threshold of ‘hard’ uncertainty map, weights
of ‘soft’ uncertainty map, etc., can be found in the supple-
mentary.

Ablation on Number of Labeled & Unlabeled Im-
ages: We examine the performance of Baseline [44] and
Ours (Semi) with a different number of labeled & unlabeled
images. We conduct experiments on the SHA dataset by
varying the number of labeled images from 30 to 150 while
fixing the number of unlabeled images to be 150; or vary-
ing the number of unlabeled images from 30 to 150 while
fixing the amount of labeled images to be 150. The per-
formance are shown in Fig.4, where it shows Ours (Semi)
achieves consistent superior performance over the Baseline
[44], which demonstrate the robustness of our method.

100.1 97.6 93.8 90.3 88.285.1
79.7

75.3 71.6 68.5
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110

30 60 90 120 150

M
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93.8 91.1 90.3 89.1 88.2
91.9

84.3
76.6
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M
AE

Number of Unlabeled Images

Baseline Ours(Semi)

Figure 4. The impact of the number of labeled & unlabeled images.
Evaluated on SHA dataset in terms of MAE.

Ablation on Uncertainty Map: We conduct several ex-
periments to evaluate the impact of the proposed uncertainty
maps (Unc). Firstly, we remove both the ‘hard’ and ‘soft’
uncertainty maps and keep the rest model structure. No-
tably, the concept of ’surrogate task’ is used for spatial un-
certainty estimation from binary segmentation task in this
work; if we remove the uncertainty module, the binary seg-
mentation task will only be served as information supple-
ment for intermediate feature learning. Secondly, we add
either ‘hard’ uncertainty map or ‘soft’ uncertainty map re-
spectively to evaluate the effectiveness of each of them.
Thirdly, we add two ‘hard’ uncertainty maps to verify the
effectiveness of the proposed ‘soft’ uncertainty map with re-
spect to the consistency learning on the density regression.
Finally, we add both ‘hard’ and ‘soft’ uncertainty maps
(Ours) for further comparison. Tab.2 shows that our model
with both uncertainty maps achieves average 15.5% and
16.0% performance gain via MAE compared with that with-
out uncertainty map employed on SHA and JHU-Crowd
datasets, respectively. This proves that our proposed un-

certainty maps can assist the feature learning between the
student and teacher model and further improve the perfor-
mance.

Methods SHA JHU-Crowd
MAE RMSE MAE RMSE

w/o Unc 81.1 143.1 96.1 311.9
w/ ‘Hard’ Unc 77.3 137.0 92.7 304.0
w/ ‘Soft’ Unc 73.1 130.8 85.3 296.2

w/ two ‘Hard’ Unc 72.1 128.9 83.2 294.8
w/ both Unc (ours) 68.5 121.9 80.7 290.8

Table 2. Performance comparison of the effectiveness of the pro-
posed uncertainty maps. Compared with the ‘hard’ uncertainty
maps, the ‘soft’ uncertainty maps can bring average 6.5% superior
performance improvement via MAE on two datasets.

Ablation on Transformation Layer: We perform sev-
eral experiments to analyse the impact of the proposed
transformation layer (Trans). In detail, we remove the trans-
formation layer and inherent consistency loss (Lc′ ), and
keep the rest components in our model. Then we employ the
transformation layer, and Lc′ upon (1) labeled data only, (2)
unlabeled data only, (3) both of the labeled and unlabeled
data to demonstrate the performance gain. Tab.3 shows that
applying transformation layer only on the unlabeled data
can gain close results to ours, and only applying transfor-
mation layer on the labeled data results in average 4.4%
performance decline via MAE on two datasets compared
with ours. The above proves that the performance gain of
our model in terms of the proposed differential transforma-
tion layer is mainly from the unlabeled data.

Methods SHA JHU-Crowd
MAE RMSE MAE RMSE

w/o Trans 74.8 131.0 89.3 301.2
w/ Trans on Label 73.2 129.5 86.8 296.3

w/ Trans on unlabeled 70.7 123.9 82.1 293.4
w/ Trans on both (ours) 68.5 121.9 80.7 290.8

Table 3. Ablation study on the impact of the proposed differential
transformation layer. When applying the transformation layer on
both the unlabeled and labeled data, ours achieves average 9.1%
performance gain than the model without transformation layer via
MAE on two datasets.

6. Conclusions

We propose a spatial uncertainty-aware semi-supervised
crowd counting methodology via regularized surrogate task
to alleviate the inevitable noisy supervision from the un-
labeled data. We have demonstrated its potentials in reduc-
ing annotations efforts while maintaining good performance
upon four challenging crowd counting datasets. It is antici-
pated that our approach will be widely applicable in the real
world.
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