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Bacterial microcompartments (BMCs) are self-assembling

prokaryotic organelles consisting of a polyhedral

proteinaceous shell and encapsulated enzymes that are

involved in CO2 fixation or carbon catabolism. Addressing how

the hundreds of building components self-assemble to form the

metabolically functional organelles and how their structures

and functions are modulated in the extremely dynamic bacterial

cytoplasm is of importance for basic understanding of protein

organelle formation and synthetic engineering of metabolic

modules for biotechnological applications. Here, we highlight

recent advances in understanding the protein composition and

stoichiometry of BMCs, with a particular focus on

carboxysomes and propanediol utilization

microcompartments. We also discuss relevant research on the

structural plasticity of native and engineered BMCs, and the

physiological regulation of BMC assembly, function and

positioning in native hosts.
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Introduction
Intracellular compartmentalization and self-assembly of

proteins into large supercomplex structures underpin

most biological activities in living organisms. Bacterial

microcompartments (BMCs) are a paradigm of proteina-

ceous compartmentalizing organelles widespread in pro-

karyotes [1] (Figure 1). These nanoscale organelles (typi-

cally 100–400 nm in size) sequester key metabolic

pathways in the cytoplasm to enhance metabolic
www.sciencedirect.com 
performance. Bioinformatic analysis suggested that

23 types of BMC genetic operons or loci have been

identified in up to 80% of the bacterial phyla [2]. An

increasing number of new types of BMCs have been

predicted in 45 phyla across diverse bacterial species

[3]. All BMCs exhibit some common building principles:

self-assembly, encapsulation, modularity, shell perme-

ability, and structural plasticity.

(1) Self-assembly: BMCs consist of thousands of protein

peptides, which are highly efficient in recognizing

and interacting with each other to form the mega-

dalton-sized organelles.

(2) Encapsulation: BMCs sequester multiple cargo

enzymes that catalyze a series of biochemical reac-

tions and toxic or volatile metabolic intermediates

within an outer shell (Figure 1). This facilitates

generation of a catalytically favorable microenviron-

ment for the enclosed enzymes and pathways to

enhance metabolism, enzyme stability and coopera-

tion, and prevent unnecessary side reactions.

(3) Modularity: The BMC loci comprise contiguous or

dispersed clusters of genes required for BMC forma-

tion, function and regulation (Figure 2). These genes

encode BMC shell components and cargo enzymes,

as well as ancillary proteins for protein/complex

assembly, metabolite transporters, regulatory pro-

teins, and cytoskeletal proteins likely required for

intracellular partitioning. The shell structure is gen-

erally conserved among distinct BMCs and is con-

structed of a series of homologous shell proteins

(Figure 1). Shell proteins exist mainly in three forms:

hexamers (BMC-H, containing one Pfam00936

domain) and pseudohexameric trimers (BMC-T, with

two Pfam00936 domains) that tile the shell facets, and

pentamers (BMC-P, with one Pfam03319 domain)

that cap the vertices of the polyhedral shell [1,4]. A

Bacterial Microcompartment Database, MCPdb

(https://mcpdb.mbi.ucla.edu/), has recently been

developed to facilitate searching the structures of

BMC proteins and assemblies [5].

(4) Shell permeability: The shell proteins are perforated by

a central pore that varies in size, permitting selective

passage of metabolites in and out of the BMC [6�,7�].
The concave side of shell proteins faces the cytoplasm

and the convex side faces the BMClumen[8] (Figure 1).

These features are crucial for the shell semi-permeabil-

ity to control the metabolic activities within the BMC.

(5) Structural plasticity: The structural variations of

BMCs and flexible protein–protein interactions
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Figure 1
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Overview of bacterial microcompartments (BMCs).

(a) Electron microscopy of a bacterial cell showing BMC polyhedrons (top) and a schematic model of the icosahedral BMC structure (bottom). (b)

Models and structures of the BMC-H (CcmK2, PDB ID 2A1B), BMC-T (CcmP, PDB ID 5LSR), and BMC-P (CcmL, PDB ID 2QW7) proteins that are

the building components of the BMC shell. (c) Schematic representation of the functions of two representative BMCs: the carboxysome (anabolic

BMC) and PDU metabolosome (catabolic BMC). The BMC shell encases signature cargo enzymes and prevents the escape of CO2 or toxic

propionaldehyde. Abbreviations: CA, carbonic anhydrase; 3-PGA, 3-phosphoglycerae; RuBP, ribulose 1,5-bisphosphate; Ado-B12, coenzyme B12

or adenosylcobalamin; HS-CoA, coenzyme A; B12(I), cob(I)alamin; B12(III), cob(III)alamin; Pi, inorganic phosphate.
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Figure 2
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Diagram of the genomic organization of the a-carboxysome and b-carboxysome and PDU metabolosome operons in representative bacterial

species.

Genes encoding structurally and/or functionally similar proteins are presented in the same colors. Double-slash lines represent gaps between

separated BMC operons.
may enable fine tuning of BMC assembly and shell

permeability in response to a varying environment

(see details below).

These structural and regulatory features provide the

framework for the metabolic factories to play pivotal roles

in autotrophic CO2 fixation and catabolic processes and

promoting bacterial fitness in specific environmental

niches [9]. Moreover, they hold the promise for rationally

repurposing BMC structures in various applications in

synthetic biology [10,11], such as biofuel production

[12��,13].

According to their distinct functions, BMCs can be cate-

gorized into anabolic BMCs (carboxysomes) and catabolic

BMCs (metabolosomes). The carboxysome is the central

CO2-fixing organelle in all cyanobacteria and many che-

moautotrophs. The metabolosomes degrade diverse car-

bon substrates in heterotrophs; the experimentally char-

acterized metabolosomes include propanediol utilization

(PDU), ethanolamine utilization (EUT), glycyl radical

enzyme-associated microcompartments (GRM), choline

utilization (GRM2), fucose and rhamnose utilization

(GRM5 and PVM), and 1-amino-2-propanol utilization

(RMM) metabolosomes [14,15].

Recent technological advances in structural biology,

microscopy, synthetic biology, proteomics, bioinformatics

and computational modeling provide an unprecedented
www.sciencedirect.com 
opportunity to understand the assembly principles of

BMCs [3,8,12��,13,16,17,18�,19�,20,21��,22��,23��,24��].
In this review, we will focus on the recent advances in

elucidating the composition, stoichiometry, structural

plasticity and physiological regulation of BMCs, in par-

ticular the carboxysomes and PDU metabolosomes.

Protein composition and stoichiometry of
BMCs
b-carboxysome protein stoichiometry

The stoichiometric ratios of different building compo-

nents and their interactions are key factors in driving the

assembly and architecture of BMCs [17]. However, we

still have limited knowledge about the actual protein

composition and stoichiometry of BMCs. Cyanobacterial

carboxysomes were the first discovered BMCs by electron

microscopy (EM). Carboxysomes encapsulate carbonic

anhydrase (CA) and the primary carboxylating enzymes,

ribulose-1,5-bisphosphate carboxylase oxygenase

(Rubisco). Bicarbonate (HCO3
�) in the cytosol can dif-

fuse across the shell through the central pores of shell

proteins, and is then converted to CO2 by CA; the shell

can prevent unwanted entry of O2 and diminish CO2

leakage into the cytosol. These mechanisms ensure the

development of a CO2-rich and oxidizing microenviron-

ment within the carboxysome to improve Rubisco car-

boxylation [25]. Recently, increasing efforts have focused

on building carboxysomes in heterologous organisms to

boost CO2 fixation and cell growth [26,27,28��,29].
Current Opinion in Microbiology 2021, 63:133–141
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Based on the forms of enclosed Rubisco, carboxysomes

can be divided into two different classes: a-carboxysomes

and b-carboxysomes. The b-carboxysome of the rod-

shaped cyanobacterium Synechococcus elongatus PCC7942

(Syn7942) has been extensively characterized. The

Syn7942 b-carboxysome shell is formed by BMC-H pro-

teins (CcmK2, CcmK3, CcmK4) that tile the shell facets,

the BMC-P protein CcmL that occupies the vertices of

the polyhedron, and the BMC-T proteins (CcmO,

CcmP). The core enzymes involve b-type CA (CcaA)

and the key CO2-fixing enzyme Rubisco (comprising

RbcL and RbcS, denoted as RbcL8S8) (Figure 1). Assem-

bly of functional Rubisco and b-carboxysomes also

requires ancillary proteins, such as Rubisco assembly

factor 1 (Raf1) and RbcX [21��,30].

To determine the exact stoichiometry of building com-

ponents in the b-carboxysome, Sun et al. tagged a collec-

tion of carboxysome proteins (CcmK3, CcmK4, CcmL,

CcmM, CcmN, RbcL, CcaA, RbcX) with fluorescent

proteins, and then counted the copy numbers of these

proteins in single b-carboxysomes by quantifying the

discrete bleaching steps of tagged fluorescent proteins

using single-molecule fluorescence microscopy [22��].
The research revealed that the internal enzyme Rubisco

is the most abundant component among all b-carboxy-
some proteins (853 copies, under moderate light, Table 1).

The Rubisco content of the b-carboxysome is up to two

folds greater than that of the a-carboxysome [31], consis-

tent with the highly dense packing of Rubisco within the

b-carboxysome [32]. The second most abundant protein

is CcmM (�700 per b-carboxysome), which serves as a

linker protein binding Rubisco to the shell via the recruit-

ment protein CcmN and induces phase separation into a

liquid-like Rubisco matrix [19�]. Protein quantification

also offered the unique opportunity to evaluate the spe-

cific stoichiometric ratios of different carboxysome pro-

teins, such as CcmK4 and CcmK3, which may be func-

tionally correlated at the physiological context. Recently,

CcmK4 and CcmK3 have been indicated to form hetero-

hexamers with a 1:2 stoichiometry in the b-carboxysome

[33�].

PDU metabolosome protein stoichiometry

The majority of BMCs are the metabolosomes that are

found in a variety of bacteria and archaea including

human gut microbes. The functionally distinct metabolo-

somes share universal biochemical reactions catalyzed by

a signature enzyme, an aldehyde dehydrogenase, an

alcohol dehydrogenase, and a phosphotransacylase. In

the model pathogen Salmonella enterica serovar Typhi-

murium LT2 (S. Typhimurium LT2), the PDU meta-

bolosome is constructed by 22 different types of proteins

that are encoded by genes clustered in a single pdu operon

(Figure 2). The core enzymes include diol dehydratase

(PduCDE), phosphotransacylase (PduL), aldehyde dehy-

drogenase (PduP), alcohol dehydrogenase (PduQ), and
Current Opinion in Microbiology 2021, 63:133–141 
propionate kinase (PduW). The signature enzyme

PduCDE catalyzes the conversion of 1,2-propanediol

(1,2-PD) to propionaldehyde, which is then converted

to propionyl coenzyme A (propionyl-CoA) or 1-propanol

by PduP or PduQ, respectively. PduL catalyzes the

conversion of propionyl-CoA to propionyl-phosphate,

which is then converted into propionate by PduW to

generate ATP. There are also other enzymes involved

in the 1,2-PD metabolism, such as cobalamin reductase

(PduS), adenosyltransferase (PduO), diol dehydratase

reactivase (PduGH), and L-threonine kinase (PduX) for

the reactivation of diol dehydratase and vitamin B12

recycling.

To evaluate the accurate protein composition and stoi-

chiometry of PDU metabolosomes, Yang et al. used mass

spectrometry-based absolute quantification and a Qcon-

CAT (concatamer of standard peptides for absolute quan-

tification) strategy to characterize the isolated PDU meta-

bolosomes from S. Typhimurium LT2 [24��]. Unlike the

b-carboxysome in which the cargo enzyme Rubisco is the

predominant component, the most abundant PDU ele-

ment is the BMC-H shell protein PduJ, which accounts

for over 44% of all PDU proteins (Table 1). This sug-

gested a higher ratio of shell/cargo proteins and a rela-

tively less crowded internal environment of PDU meta-

bolosomes than those of the b-carboxysome [22��]. As a

comparison, in the PDU metabolosomes from Citrobacter
freundii, PduB’ appeared as the most abundant protein

(31%) and PduJ only accounted for 18% of all PDU

proteins [34]. This discrepancy probably implied the

species-dependent variation of the PDU metabolosome

protein stoichiometry. Protein quantification analysis also

indicated the stoichiometric links of shell and cargo

proteins, implicating their physiological coordination

(Table 1). For example, the ratio of the trimeric shell

protein PduB to the PduCDE dimer was roughly 1:1, and

the ratio of the PduT trimer to the cargo PduS was 2:1.

The physical associations of the minor proteins PduV,

PduW and PduX with the PDU metabolosome were

characterized using live-cell confocal imaging [24��].

Structural plasticity of BMCs
Unlike the robust and regular BMC structures that we

used to think, more experimental results have shed light

on the plasticity of natural BMC architectures. The

biosynthesis and structures of b-carboxysomes in

Syn7942 are highly regulated in response to environmen-

tal growth conditions. EM and fluorescence imaging

showed that the size of b-carboxysomes and the abun-

dance of individual proteins in the b-carboxysome could

be adaptively modulated in response to changes in light

intensities and CO2 availabilities [22��] (Figure 3,

Table 1).

The BMC architectures are morphologically heteroge-

neous and vary in size and shape in their native hosts.
www.sciencedirect.com
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Table 1

Protein composition and stoichiometry of the Syn7942 b-carboxysome [22��] and S. Typhimurium LT2 PDU metabolosme [24��]

b-carboxysome

Protein Description & function Structure Number of oligomers/monomers per BMC

Air/ML CO2/ML LL HL

CcmK3 Minor shell proteins likely forming CcmK3/4

heterohexamers and CcmK4 homohexamer to

tune shell permeability

BMC-H 15 � 25 29 � 14 14 � 5 14 � 9

CcmK4 BMC-H 52 � 32 94 � 44 52 � 20 51 � 16

CcmL Minor shell vertex protein, required for proper

carboxysome assembly

BMC-P 7.4 � 3.4 13.2 � 4.8 6.8 � 3.0 13.8 � 4.8

CcmM Linker protein that induces Rubisco condensation,

interacts with CcmN to the shell

Monomer 719 � 1433 468 � 425 483 � 366 1176 � 691

CcmN Structural protein, interact with CcmM and the shell

proteins CcmK

Monomer 74 � 51 52 � 28 51 � 20 82 � 34

Rubisco Key CO2-fixation enzyme RbcL8S8 853 � 1150 550 � 832 367 � 687 1507 � 648

CcaA Carbonic anhydrase, encapsulated enzyme in

carboxysomes for the conversion of HCO3
� to CO2

Hexamer 14 � 14 21 � 14 11 � 4 20 � 10

RbcX Rubisco chaperone, required for proper

carboxysome functions

Dimer 20 � 16 19 � 5 20 � 5 20 � 5

PDU metabolosome

Protein Description & function Structure Number of oligomers/

monomers per BMC

WT DpduA

PduA Major shell protein, involved in selective molecular transport and

interaction with PduP

BMC-H 307 � 17 2 � 0

PduB Major shell protein, involved in shell and cargo binding BMC-T 224 � 14 52 � 2

PduB’ major shell protein, not essential for the assembly of PDU

metabolosomes

BMC-T 278 � 17 52 � 4

PduJ major shell protein, essential for the assembly and function of

PDU metabolosomes, interact with PduP

BMC-H 869 � 72 1200 � 148

PduK minor shell protein, involved in spatial organization of PDU

metabolosomes

BMC-H 86 � 7 97 � 7

PduM Structural protein, essential for the assembly and function of PDU

metabolosomes

unknown 56 � 9 50 � 7

PduN Minor shell protein, occupy the vertex of shell BMC-P 12 � 1 12 � 2

PduT Minor shell protein, interact with PduS for electron transport BMC-T 96 � 6 92 � 9

PduU Minor shell protein, not essential for the assembly and function of

PDU metabolosomes

BMC-H 22 � 3 18 � 2

PduC
Subunits of diol dehydratase, the N-terminus of PduD acts as an

encapsulation peptide
Dimer (abg)2

272 � 40 126 � 11

PduD 212 � 23 104 � 12

PduE 188 � 28 102 � 4

PduG
Subunits of diol dehydratase reactivase unknown

76 � 9 81 � 10

PduH 38 � 4 43 � 4

PduL Phosphotransacylase, the N-terminal region acts as an

encapsulation peptide

Dimer 16 � 1 16 � 2

PduO Adenosyltransferase unknown 146 � 15 118 � 7

PduP Aldehyde dehydrogenase, the N-terminal region acts as an

encapsulation peptide

unknown 214 � 31 255 � 29

PduQ Alcohol dehydrogenase unknown 145 � 12 114 � 14

PduS Cobalamin reductase unknown 49 � 4 48 � 6

PduV Sequence similar to Ras-like GTPase superfamily, connecting

with filament-associated PDU metabolosome movement

unknown 7 � 2 6 � 2

ML, moderate light; LL, low light; HL, high light [22��]. The proteins with unknown structures are considered as monomers to show the stoichiometry.
Nanoindentation based on atomic force microscopy

(AFM) demonstrated that the b-carboxysome architec-

ture is mechanically softer than virus capsids, represent-

ing a mechanical signature of the BMC shells [32]. The

absence of specific building components could also result

in BMC structural remodeling, such as the elongated
www.sciencedirect.com 
BMCs when lacking BMC-P at the vertices [35,36]. In

the PDU metabolosome, deleting the major shell protein

PduA resulted in the altered abundance of shell proteins

(such as the rising content of the shell protein PduJ) and

internal enzymes, and thus the modified metabolic activ-

ities [24��]. The results indicated the redundant roles of
Current Opinion in Microbiology 2021, 63:133–141
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Figure 3
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Structural variations of b-carboxysomes in Syn7942 in response to changes in the CO2 levels and light intensities during cell growth [22��].
PduA and PduJ in retaining the assembly and overall

architecture of PDU metabolosomes [37�].

The structural plasticity of BMCs also occurred in specific

protein–protein interactions. Experiments have sug-

gested that disordered scaffolding proteins (CcmM35

in the b-carboxysome and CsoS2 in the a-carboxysome)

drive Rubisco coalescence in the cytoplasm via weak and

transient multivalent interactions [18�,19�], promoting

carboxysome assembly via liquid–liquid phase separation.

Additionally, BMCs contain several paralogs of shell

proteins that are structurally and functionally correlated

to each other. It was proposed that CcmK3 and CcmK4 of

Syn7942 could form heterohexamers in a pH-dependent

manner, with a 2:4 stoichiometry [33�]. Similar CcmK3–

CcmK4 heterohexamers were suggested to exist in the

Synechocystis sp. PCC 6803 b-carboxysomes [38], implying

a general principle that may alter the b-carboxysome shell

structure and permeability. Another fashion to tune the

molecule passage across the shell has been proposed by

the dynamic ‘capping’ of BMC-P and BMC-H shell

proteins in the BMC shells [33�,39]. Consistently, high-

speed AFM has visualized the dynamic self-assembly and

protein–protein interactions of BMC shell proteins [40],

and has revealed that the self-assembly dynamics of shell

facets is sensitive to environmental changes [41].

Although we still do not fully understand the underlying

molecular mechanisms, these assembly and modular

properties may play roles in the intrinsic regulations of

shell assembly and permeability and the structural remo-

deling of BMCs at multiple levels.

In the context of reconstituted shells, both large a-car-
boxysome shells (�100 nm in diameter) [12��] and Klebsi-
ella pneumoniae GRM2 BMC minishells expressed in

Escherichia coli exhibited marked structural variations
Current Opinion in Microbiology 2021, 63:133–141 
[42,43��]. Characterization of the reconstituted Halian-
gium ochraceum BMC shells of �40 nm in diameter iden-

tified the structural plasticity of protein–protein interac-

tions, which are subject to the local and global structural

variations of the synthetic shells [44��]. The structural

flexibility of shell structures has important implications

on the variations of native BMC structures and the tuning

mechanism of shell permeability.

Regulation of BMC biosynthesis and
intracellular positioning
BMC biosynthesis, structure and function are physiolog-

ically integrated into the metabolic and regulatory net-

works of native host cells. Live-cell fluorescent imaging

revealed that the increase in light intensity during cell

growth could stimulate the biosynthesis of carboxysomes,

represented by the increased numbers of carboxysomes

per cell, and the enhanced carboxysomes CO2-fixing

activities [45]. This regulation is closely correlated with

the redox states of the photosynthetic electron transport

chain. The intracellular localization and CO2-fixing activ-

ities of b-carboxysomes in Syn7942 cells were further

demonstrated to be actively modulated under diurnal

light-dark cycles that mimicked the natural growth con-

ditions of cyanobacterial cells [46]. Deletion of the circa-

dian clock protein KaiA altered the number of carboxy-

somes per cell and carboxysome localization, highlighting

the role of the circadian clock in governing carboxysome

biosynthesis and positioning in cyanobacteria [46].

The intracellular spatial positioning and regulation of

carboxysomes are crucial for cell metabolism and growth.

It was proposed that the cell poles play important roles in

b-carboxysome and degradation of inactive or damaged

b-carboxysomes in cyanobacteria [23��,47]. Moreover,

equal segregation of b-carboxysomes between daughter
www.sciencedirect.com
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cells is required to retain carboxysome inheritance during

cell division [48]. The specific localization of carboxy-

somes within cyanobacterial cells was suggested to be

mediated by interactions with cytoskeleton components

such as ParA [48] (also termed McdA [49]). Recently, a

McdAB system was identified to determine b-carboxy-
some partitioning in Syn7942, through the interactions of

McdB with both carboxysomes and McdA [49]. It was

further indicated that the McdAB systems exist among

b-cyanobacteria that possess b-carboxysomes [50].

Recently, the McdAB-like system has also been identi-

fied in a-carboxysome-containing proteobacteria, sug-

gesting a common mechanism underlying the in vivo
positioning of both a-carboxysomes and b-carboxysomes

[51]. This mechanism might be extendable to the sub-

cellular positioning of other BMCs across the bacterial

kingdom.

Conclusions
The natural self-assembling features of BMCs and their

significance in metabolic enhancement have attracted

increasing interest in fundamental understanding of pro-

tein self-assembly and repurposing BMC structures for

diverse biotechnological purposes. Advanced understand-

ing of BMC protein stoichiometry, structural plasticity

and regulation spotlighted the variations and tunability of

native BMC structure and function, and the prospects for

rational design and reprograming of BMCs for specific

functions in a controllable manner. It would be interest-

ing to explore the diverse mechanisms that govern the

functional stoichiometry and assembly of different types

of BMCs. In addition, understanding the protein compo-

sition and the roles of individual components of BMCs

has fostered synthetic engineering of BMCs and shell

structures with the ‘minimal’ composition

[8,27,43��,44��,52�]. Future efforts can focus on how to

select the minimal required building components and

encapsulation strategies and how to adjust the stoichio-

metric ratios of distinct components and protein–protein

interactions, to obtain specific BMC structures, efficient

cargo encapsulation and programable shell permeability.

To manipulate the functional performance of engineered

BMC structures, we also need to consider how to ensure

their functional integrity in the metabolic and regulatory

networks of the heterologous hosts. This may involve

genetic engineering and modulation of necessary auxil-

iary proteins, regulatory factors and other cellular

components.
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