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Abstract

We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas.
This new game is both a generalization of the monotone Karchmer-Wigderson game and an ana-
log of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between
the existing monotone and general games.

Using this game, we prove hazard-free formula size and depth lower bounds that are provably
stronger than those possible by the standard technique of transferring results from monotone
complexity in a black-box fashion. For the multiplexer function we give (1) a hazard-free formula
of optimal size and (2) an improved low-depth hazard-free formula of almost optimal size and
(3) a hazard-free formula with alternation depth 2 that has optimal depth. We then use our
optimal constructions to obtain an improved universal worst-case hazard-free formula size upper
bound. We see our results as a significant step towards establishing hazard-free computation as
an independent missing link between Boolean complexity and monotone complexity.
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1 Introduction

The study of the three-valued strong logic of indeterminacy dates back to Kleene ([Kle38, p. 153],
[Kle52, §64]). It found numerous applications, for example in logic (see e.g. [Kör66], [Mal14]),
in cybersecurity for information flow tracking at the gate level (see e.g. [TWM+09], [HOI+12],
[BHT+17]), the design of real-world circuits that communicate between unsynchronized clock do-
mains (see e.g. [FFL18], [FKLP17], [TFL17], [BLM20]), and in the study of hazards in Boolean
circuits (see e.g. [Got49, Cal58, YR64, Eic65, Muk72, Muk83a, Muk83b, ND92, BS95, BEI01]). The
languages in these areas is different, but the underlying three-valued logic is the same and many
questions and results can be readily transferred between areas. We will use the language of hazards
in circuits in this paper. The use of three-valued logic to study hazards in Boolean circuits dates all
the way back to Goto [Got49], who used 0 and 1 to denote the Boolean values and used the symbol
1
2 to denote the third value, which stands for any undefined, oscillating, unstable, or otherwise
somehow flawed state. In this paper we use the symbol u := 1

2 to denote this third state. Goto
modeled the Boolean operations ∧ (and) and ∨ (or) as min and max, respectively, and the ¬ (not)
operation as 1− x, which defines the behaviour of the three types of gates on inputs from {0, u, 1}.
Hence a Boolean circuit C on n inputs1 computes a function {0, u, 1}n → {0, u, 1} by induction over
the circuit structure. The design of the gate behaviour as min, max, and 1−x is the result of a more
general construction principle that is called the hazard-free extension2 f̄ : {0, u, 1}n → {0, u, 1} of
a Boolean function f : {0, 1}n → {0, 1}. It is defined as follows.

A binary string a ∈ {0, 1}n is called a resolution of a ternary string α ∈ {0, u, 1}n if for all
1 ≤ i ≤ n with αi 6= u we have αi = ai, i.e., all entries u are replaced by 0s and 1s. Note that the
set of all resolutions a of α forms a subcube of {0, 1}n. For a Boolean function f : {0, 1}n → {0, 1}
and for an input α ∈ {0, u, 1}n we define the evaluation of the function f̄ : {0, u, 1}n → {0, u, 1}
at α via

f̄(α) :=











1 if for all resolutions a of α we have f(a) = 1

0 if for all resolutions a of α we have f(a) = 0

u otherwise.

(1.1)

A Boolean circuit C that computes a Boolean function f : {0, 1}n → {0, 1} is called hazard-free if
for all α ∈ {0, u, 1}n we have C(α) = f̄(α). An α where these two functions differ is called a hazard.
For example, consider the circuit in Part (a) of Figure 1 that computes the multiplexer function
C(s, x0, x1) = MUX(s, x0, x1) = xs for all (s, x0, x1) ∈ {0, 1}3. We observe that C has a hazard
at (u, 1, 1), because C(u, 1, 1) = u ∨ u = u, whereas C(0, 1, 1) = C(1, 1, 1) = 1. The circuit can be
made hazard-free at the expense of using more gates, see Part (b) of Figure 1 (this construction
can be found for example in [FFL18, Fig. 6a] and [IKL+19, Fig. 1b]).

Designing small hazard-free circuits for computing Boolean functions is a fundamental goal in
electronic circuit design. Huffman [Huf57] proved that all Boolean functions can be implemented by
hazard-free circuits and he already noted the large growth of the number of gates in his examples.
Eichelberger proved the first lower bound on hazard-free complexity in the restricted model of DNF
formulas, which is given by the number of prime implicants of the function that is computed. The
very recent paper [IKL+19] formally defines the notion of hazard-free complexity and shows that for
monotone functions the hazard-free complexity and the monotone complexity coincide. Fortunately,

1All circuits in our paper have a single output.
2The function f̄ is called the hazard-free extension of f (see [IKL+19]), or alternatively the ternary extension (see

[MSB12]) or the metastable closure (see [FFL18]).
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¬s x0 s x1

(a) A size-optimal for-
mula, but with a hazard at
(s, x0, x1) = (u, 1, 1).

∨

∧ ∧

¬s x0 s x1

∨

∧

x0 x1

(b) The common hazard-free for-
mula. There is visible symmetry
between x0 and x1.

∨

∧

x0 ∨

x1 ¬s

∧

x1 s

(c) A size-optimal hazard-free
formula. The symmetry is bro-
ken.

Figure 1: Different De Morgan formulas for MUX1

good lower bounds are known on the monotone complexity of monotone Boolean functions (see
[Raz85a, Raz85b, And87, AB87, Raz87, Tar88, GS95, KW90, RW92, RM99, HR00, GP14, PR17]).
A direct consequence of [IKL+19] is that the exponential gap between Boolean circuit complexity
and monotone circuit complexity transfers directly into an exponential gap between Boolean circuit
complexity and the hazard-free circuit complexity. [Juk21] proves that every Boolean circuit that
computes a monotone function and that is optimal with respect to hazard-free complexity must
automatically be a monotone circuit. Hence the study of hazard-free complexity does not yield any
new insights into monotone functions, but it is a natural generalization of monotone complexity
to the domain of all Boolean functions. This suggests that the study of hazard-free complexity, in
particular of non-monotone functions, should be of independent interest (apart from its applicabil-
ity in practice). As a first step in this direction, [IKL+19] prove lower bounds for non-monotone
functions by using monotone circuit lower bounds for the hazard-derivative of the function, because
the monotone complexity of the hazard-derivative of f is a lower bound on the hazard-free com-
plexity of f . All existing lower bounds known for hazard-free computation are derived from this
wealth of known monotone complexity lower bounds.

However, the hazard-derivative method cannot always prove optimal lower bounds, because
some functions with high hazard-free complexity have hazard-derivatives of only low monotone
complexity (compare Proposition 3.1 with Theorem 5.12). We call this problem the monotone
barrier. In this paper we take a radically different approach than all previous papers and translate
notions from communication complexity to the hazard-free setting. The result is a new type of
the Karchmer-Wigderson game that exactly describes the hazard-free De Morgan formula size and
depth. Our new game is at the same time a hazard-free analog of the classical Boolean Karchmer-
Wigderson game (Remark 4.5) and a generalization of the monotone Karchmer-Wigderson game to
the set of all Boolean functions: it coincides with the monotone Karchmer-Wigderson game when
played on monotone functions (Theorem 4.10). In other words, the difference between the monotone
Karchmer-Wigderson game and the Boolean Karchmer-Wigderson game is precisely the presence
of hazards in the Boolean game. We use this new definition to precisely determine the hazard-free
formula size (Theorems 5.8 and 5.12) and the depth of hazard-free formulas of alternation depth3 2
(Theorem 6.5) of the multiplexer function MUXn : {0, 1}n+2n → {0, 1}, which is a (non-monotone)

3Alternation depth is one plus thee maximum number of changes in the type of the gate in root-to-leaf paths.
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Boolean function on n+ 2n input bits, defined via

MUXn(s1, . . . , sn, x0,0,...,0, x0,0,...,0,1, x0,0,...,1,0, . . . , x1,1,...,1) := xs1,...,sn.

Our result breaks the monotone barrier, i.e., the hazard-derivatives of the multiplexer have lower
complexity than the bound we prove. To obtain matching upper and lower bounds on complexity
we use the Karchmer-Wigderson game interpretation to give two new efficient hazard-free imple-
mentations of the multiplexer function: One is optimal for the formula size and one is optimal for
the depth of hazard-free formulas of alternation depth 2.

In contrast to monotone complexity, which is mainly a theoretical concept, hazard-free com-
plexity has applications in practice, not only in cybersecurity ([TWM+09], [HOI+12], [BHT+17]),
but also for designing real-world circuits, for example when a distributed system of agents with un-
synchronized clock domains performs a parallel computation, see [FKLP17, FFL18, TFL17, LM16,
BLM17, BLM18, BLM20]. The hazard-free circuit depth (which is equal to the hazard-free formula
depth) is a main parameter in this research area, directly correlated to a circuit’s execution time.

An interesting incremental approach towards proving super-polynomial formula size lower
bounds for explicit functions, is to make progress by proving good lower bounds for formulas
with more and more NOT gates [Fis75, TNB96, BNT98]. In Section 8, we show that instead of
considering all implicants and implicates, we can choose any subset of implicants and implicates
to obtain upper and lower bounds on limited hazard-free formulas, formulas that are guaranteed
to be hazard-free on some inputs but not others. That is, we can parameterize our game by the
number of undefined inputs so that it interpolates between the hazard-free game and the general
Boolean game. This gives us a natural way to make progress towards proving super-polynomial
Boolean formula size lower bounds by proving super-polynomial lower bounds for more and more
limited hazard-free formulas, until we prove a lower bound on formulas that may have hazards
on any input. Limited hazard-free formulas are also of interest in practice, for example when it is
known that the unstable bit can only appear in the position where two adjacent Gray code numbers
differ [FKLP17, LM16, BLM17, BLM18, BLM20]. We are not aware of any applications of limited
negation circuits for designing real-world circuits.

1-1 Exact Bounds

In Section 5 we determine the exact hazard-free formula complexity of the multiplexer function.
We achieve this by using a combination of an improvement in the upper bound (Huffman’s [Huf57]
construction gives only sizeu(MUXn) ≤ 4n + 2n3n−1) and an analysis of the hazard-free Karchmer-
Wigderson game for the lower bound:

sizeu(MUXn) = 2 · 3n − 1.

We note that there are De Morgan formulas (with hazards) of size 3 · 2n − 2 computing MUXn

[Weg87], i.e., size(MUXn) ≤ 3 · 2n − 2. Our upper bound construction is a recursive application
of the improved implementation of MUX1 in Figure 1(c). To prove the lower bound we reduce
the Karchmer-Wigderson game for MUXn from a communication game for the subcube intersection
problem. Its communication matrix is highly structured, so that its rank can be determined and be
used to find the lower bound. The subcube intersection problem is the hazard-free generalization
of the classical equality problem from communication complexity and could be of independent
interest, especially for proving other hazard-free formula lower bounds.

Since all derivatives ofMUXn have monotone formulas of size at most (n+1)2n (Proposition 3.1),
the separation that we achieve breaks the monotone barrier. Therefore, our lower bound is the first
to separate the Boolean complexity and the hazard-free complexity of a function while breaking the
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monotone barrier4. We consider this an important step forward towards establishing hazard-free
computation as a new theoretical device that can serve as a true generalization of monotone circuit
complexity.

Considering the depth (which is the same for circuits and formulas), we immediately obtain
depthu(MUXn) ≥ log2(3)n ≥ 1.58n. This lower bound separates the hazard-free circuit depth com-
plexity and Boolean circuit depth complexity of MUXn, because depth(MUXn) ≤ depth2(MUXn) ≤
n+log2(n) (see Theorem 5.1, Section 3.5 in [Weg87]). Analogously to formula size, since all deriva-
tives of MUXn have monotone circuits of depth at most n + log2(n) + 1 (Proposition 3.1), our
separation breaks the monotone barrier.

In Section 6 we focus on the depth of hazard-free formulas of alternation depth 2 for MUXn.
These formulas are interesting in practice because certain programmable logic arrays produce im-
plementations that have alternation depth 2. We prove the exact complexity of the multiplexer
function using a combination of a new protocol for the upper bound and a hazard-free Karchmer-
Wigderson game for the lower bound:

depthu2(MUXn) = 2n+ 2.

Hence, in this restricted model we can precisely determine the depth complexity. For the proof we
exploit an old result by Huffman: the fact that in this restricted model Alice must communicate
her prime implicant to Bob before Bob starts communicating. Therefore small-depth formulas can
exist if and only if there are short prefix codes that allow Alice to communicate her prime implicant
efficiently to Bob. Then we show that there are prefix codes that achieve a depth upper bound
of 2n + 2, but they cannot achieve 2n + 1. One key idea is a distinction of cases between prime
implicants of logarithmic size and prime implicants of super-logarithmic size.

For general hazard-free formula depth the upper bound of 2n + 2 is not optimal for MUXn,
because we show in Theorem 5.14 that the depth is at most 2n+ 1. Note that this is significantly
lower than the depth 3n achieved by the formula of optimal size in Theorem 5.8, and strictly
lower than the depth that can be achieved by any formula of alternation depth 2. Moreover,
the size of this formula is only a factor of 5

4 more than the optimal size, so we think that this
is an excellent size-depth trade-off. This construction is done recursively using the hazard-free
Karchmer-Wigderson game. It is crucial in this recursion that the induction hypothesis is not the
monochromatic partitioning of the communication matrix of MUXn−1, but of an enlarged matrix
that can be partitioned monochromatically using the same depth.

All upper bounds and lower bounds are proved using the framework of hazard-free Karchmer-
Wigderson games. The lower bound proofs rely heavily on this framework. The game also played
a crucial role in deriving the upper bounds given in Theorems 5.14 and 6.5. The upper bound in
Theorem 5.8 can also be be proved without using the game (see Remark 5.7).

1-2 Universal Upper Bounds

One of the most fundamental and oldest questions in electronic circuit design is finding an upper
bound on the size of circuits or formulas that holds for all Boolean functions [Sha49]. For Boolean
circuits and formulas, this question has been very satisfactorily answered. It is known that any

4Note that breaking the monotone barrier can also be achieved using Khrapchenko’s method for the parity function
[Khr71], which was interpreted as a Karchmer-Wigderson game in [KW90], but for the parity function the hazard-
free complexity and the Boolean complexity coincide (every implementation of parity is automatically hazard-free):
Parity requires Θ(n2) formula size, but the derivatives of parity are all equal to the OR function, which requires
Θ(n) formula size. For the parity function the Boolean Karchmer-Wigderson game coincides with our hazard-free
Karchmer-Wigderson game, so we obtain the same bounds.

4



n-bit Boolean function has circuits of size (1+ o(1))2n/n [Lup58] and almost all Boolean functions
require circuits of size (1+o(1))2n/n [RS42, Sha49, Lut92, FM05]. For Boolean formulas, the lower
bound is 2n/ log(n) [RS42, Sha49], almost matched by the upper bound (1 + o(1)) 2n

logn [Lup60].
For hazard-free circuits, the situation is very similar to that of Boolean circuits: any n-bit

Boolean function has a hazard-free circuit of size O(2n/n) (see, e.g., [Juk21, Section 7]), thus
matching Lupanov’s upper bound [Lup58] up to constants. Since hazard-free circuits are also
Boolean circuits, Riordon and Shannon’s lower bound of 2n/n for almost all functions continues to
hold for hazard-free circuits.

For hazard-free formulas, this question is still open. Huffman [Huf57] gives hazard-free imple-
mentations for any function by representing it as a DNF where the set of terms is the set of all prime
implicants of the function. Since a function on n variables may have as many as Ω(3n/

√
n) prime

implicants [CM78] and each prime implicant may contain as many as n literals, this translates into
a worst-case bound of O(

√
n · 3n) on the hazard-free formula complexity.

We make progress on this question by studying the multiplexer function. In electronic
circuit design, the multiplexer is often used as a programmable logic device. Indeed, given
any Boolean function f : {0, 1}n 7→ {0, 1}, we can implement it as: f(x1, . . . , xn) =
MUXn(x1, . . . , xn, f(0, 0, . . . , 0), . . . , f(1, 1, . . . , 1)). This implementation of f is hazard-free if the
implementation of MUXn is hazard-free. Therefore, any hazard-free formula upper bound for MUXn

gives an upper bound for the hazard-free formula complexity of all n-bit Boolean functions. Theo-
rem 5.8 gives such an improved upper bound of 2 ·3n−1 for the multiplexer function and hence our
construction gives a new best worst-case hazard-free formula size implementation of size 2 · 3n − 1,
which was O(

√
n · 3n) before.

Observe that in the world of Boolean circuits, Boolean formulas, and hazard-free circuits, the
multiplexer upper bound is only a polynomial (in n) multiplicative factor away from the optimal
bound. We show in Theorem 5.12 that our new bound is optimal for the multiplexer function. This
means that we cannot improve the universal upper bound further by directly using the multiplexer
function. However, the best known lower bound for hazard-free formulas for n-bit functions is still
the 2n/ log(n) given by a counting argument. This creates an interesting situation that is different
from the other three settings described in this section.

• If there are n-bit functions such that the hazard-free formula size is asymptotically more than
2n/ log(n), then a tight lower bound can be proved by only using some argument that exploits
the semantic property of hazard-freeness, such as the hazard-free Karchmer-Wigderson game
we introduce in this paper. This is in contrast to the other settings where tight lower bounds
can be obtained using a counting argument that only exploits the structure (or syntax) of the
model.

• Otherwise, all n-bit functions have hazard-free formulas that smaller than the optimal hazard-
free formula for the multiplexer function by a multiplicative factor that is exponential in n.
This is also in stark contrast to the situation in the other three settings.

2 Preliminaries

Formulas. A Boolean formula is a Boolean circuit whose graph is a tree. That is, it is a formula
over the De Morgan basis {∨,∧,¬}. The ∨ and ∧ gates have fan-in two and ¬ gates have fan-in
one. Using De Morgan’s laws (which also work over the three-valued logic) the negations can be
moved to the leaves: all internal nodes are labeled with ∨ or ∧ and all leaves are labeled with
literals xi or ¬xi. This is called a De Morgan formula. The size of a De Morgan formula F ,

5



denoted size(F ), is defined to be the number of leaves in it5. The depth of a formula F , denoted
depth(F ), is defined to be the length of the longest root-to-leaf path in F . For a Boolean function
f : {0, 1}n → {0, 1}, we denote the minimal size of a De Morgan formula computing f by size(f)
and the minimal depth of a formula computing f by depth(f). Similarly, in the hazard-free setting,
let sizeu(f) and depthu(f) denote the minimal size and minimal depth of a hazard-free De Morgan
formula computing f , respectively. For a monotone function f let size+(f) and depth+(f) denote the
minimal size and minimal depth of a monotone formula computing f , respectively. The alternation
depth of a formula is one plus maximum number of changes to the type of the gate in the sequence
of gates in a root-to-leaf path. For example, the alternation depth of the formula in Figure 1(b) is
2 and that of the formula in Figure 1(c) is 3. We denote the minimal size and depth of hazard-free
formulas of alternation depth d using sizeud(f) and depthud(f), respectively.

Implicants and Implicates. For a Boolean function f : {0, 1}n → {0, 1} the preimage of a
value c ∈ {0, 1} is denoted by f−1(c). For the hazard-free extension f̄ : {0, u, 1}n → {0, u, 1} the
preimage of γ ∈ {0, u, 1} is denoted by f̄−1(γ). Elements α ∈ f̄−1(1) are called implicants of f .
A prime implicant is an implicant in which no value from {0, 1} can be replaced by a u such that
it is still an implicant, i.e., a prime implicant is an implicant that is maximal with respect to the
number of us. Elements α ∈ f̄−1(0) are called implicates of f . A prime implicate is an implicate
in which no value from {0, 1} can be replaced by a u such that it is still an implicate, i.e., a prime
implicate is an implicate that is maximal with respect to the number of us. We occasionally identify
an implicant α with the Boolean function that is 1 exactly on the hypercube of resolutions of α, and
an implicate β with the Boolean function that is 0 exactly on the hypercube of resolutions of β. An
implicant or implicate α can also be identified with the set of literals {xi | αi = 1}∪{¬xi | αi = 0}.
Communication. We assume familiarity with the basic definitions of communication complexity
(see, e.g., [KN96, RY20]). Let K : A×B → 2O be a function that maps tuples to nonempty subsets
of a set O. For the purposes of this paper we will only be interested in deterministic communication
complexity where Alice gets α ∈ A, Bob gets β ∈ B and their goal is to determine some value in
K(α, β) while minimizing the communication (number of bits) exchanged. Let Π be a deterministic
communication protocol solving K. Then the communication cost of Π, denoted CC(Π), is defined
to be the maximum number of bits exchanged on any pair of inputs (α, β) when following Π.
Let CC(K) denote the minimum cost over all protocols solving K. Recall that the leaves of a
protocol induce a partition of A×B into combinatorial rectangles. We denote the number of such
combinatorial rectangles in a protocol Π by monorect(Π) and the minimum number of leaves in a
protocol solving K by monorect(K).

We will often work with the communication matrixMK of dimensions |A|× |B| associated with
a function K. The rows and columns of MK are indexed by the elements of A and B, respectively.
The (α, β)-th entry ofMK is defined to be K(α, β). The leaves of a protocol Π solving K partitions
the communication matrix MK into monorect(Π) many monochromatic combinatorial rectangles,
where a combinatorial rectangle A′ ×B′ (A′ ⊆ A, B′ ⊆ B) is called monochromatic if there exists
o ∈ O with ∀(α, β) ∈ A′ ×B′ : o ∈ K(α, β). We will often use K and MK interchangeably.

5If all ∧ and ∨ gates have fan-in two, then the number of leaves is always exactly one more than the number of
gates (not counting negation gates) in F , which is a measure often used to describe circuit size.
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3 Hazard-Derivatives and the Monotone Barrier

Let f be a Boolean function on n variables. Its hazard derivative is a Boolean function on 2n
variables denoted df(x; y) that evaluates to 1 if and only if f̄(x ⊕ u · y) = u, i.e., there are two
resolutions of x⊕ u · y, say a and b, such that f(a) = 0 and f(b) = 1. In other words, the function
f is not constant in the subcube of all resolutions of x⊕ u · y. Notice that for a fixed value a of x,
the restriction of df to y, i.e., the function df(a; y) : {0, 1}n → {0, 1}, is a monotone function.

The key observation that connects hazard-free circuits to monotone circuits is that given a
hazard-free circuit C for f and any Boolean string a, we can construct a monotone circuit for
df(a; y) that is no larger in size than C, see [IKL+19, Thm. 4.9]. Therefore, in order to prove
lower-bounds for hazard-free circuits for f , one only needs to identify a Boolean string a such that
df(a; y) is a hard function for monotone circuits, i.e., has high monotone circuit complexity. This
allows us to transfer a wealth of known monotone circuit lower bounds to the hazard-free world.

The best known construction for hazard-free De Morgan formulas for MUXn has size 2 · 3n − 1
(See Theorem 5.8). Can we use derivatives to prove that this is optimal? No. We show that all
derivatives of MUXn have monotone De Morgan formulas of size at most (n + 1)2n. This is an
instance of the monotone barrier.

3.1 Proposition. Fix any a ∈ {0, 1}n+2n . The function dMUXn(a; y) : {0, 1}n+2n → {0, 1} has
monotone De Morgan formulas of size at most (n+ 1)2n.

Proof. Let (sa, xa) ∈ {0, 1}n × {0, 1}2n denote the selector and data bits of a. Analogously, we
partition the sequence of Boolean variables y into n variables sy and 2n variables xy. For b ∈ {0, 1}n,
we define the formula Db(y) =

∧

i:bi 6=sa
i

syi . Note that Db(y) = 1 if and only if b is a resolution of

sa ⊕ u · sy. Suppose MUXn(a) = 1 (The other case is symmetric). We now define Fb(y). If x
a
b = 1,

we define Fb(y) := Db(y) ∧ xyb . If xab = 0, we define Fb(y) := Db(y). We have Fb(y) = 1 if and only
if [b is a resolution of sa ⊕ u · sy and xab ⊕ u · xyb 6= 1]. Hence Fb(y) = 1 if and only if there exists
b′ ∈ {0, 1}2n such that (b, b′) is a resolution of a ⊕ u · y with MUX(b, b′) = 0. We claim that the
formula

∨

b∈{0,1}n Fb(y) is an implementation of dMUXn(a; y). This is because dMUXn(a; y) = 1
exactly when there is a resolution of a ⊕ u · y that evaluates to zero under MUXn. Finally, this
formula is a monotone De Morgan formula of size at most (n + 1)2n, because each Fb(y) has size
at most n+ 1.

The above proposition shows that the derivative method cannot yield a lower bound bigger than
(n+1)2n for hazard-free De Morgan formulas for MUXn. We now proceed to develop a framework
that will allow us to prove that 2 · 3n − 1 is the optimal size for MUXn. This is the first result
that proves a hazard-free circuit lower bound without relying on an existing monotone circuit lower
bound, i.e., that breaks the monotone barrier.

4 A Karchmer-Wigderson Game for Hazard-free Computation

In this section we give a natural generalization of the classical Karchmer-Wigderson game, which
captures the complexity of hazard-free computation. We begin with recalling the framework of
Karchmer-Wigderson games [KW90].

4.1 Definition ([KW90]). Let f : {0, 1}n → {0, 1} be a Boolean function. The Karchmer-
Wigderson game of f , denoted KWf , is the following communication problem: Alice gets a ∈ {0, 1}n
with f(a) = 1, Bob gets b ∈ {0, 1}n with f(b) = 0 and their goal is to determine a coordinate i ∈ [n]
such that ai 6= bi.

7























000 00u 001 u00 100 1u0 110
010 2 2 2, 3 2 1, 2 1 1
01u 2 2 2 2 1, 2 1 1
011 2, 3 2 2 2, 3 1, 2, 3 1, 3 1, 3
u11 2, 3 2 2 2, 3 2, 3 3 3
101 1, 3 1 1 3 3 3 2, 3
1u1 1, 3 1 1 3 3 3 3
111 1, 2, 3 1, 2 1, 2 2, 3 2, 3 3 3





















(a) The communication matrix MKWu

MUX1

.





















000 00u 001 u00 100 1u0 110
010 2 2 2 2 1 1 1
01u 2 2 2 2 1 1 1
011 2 2 2 2 1 1 1
u11 2 2 2 2 3 3 3
101 1 1 1 3 3 3 3
1u1 1 1 1 3 3 3 3
111 1 1 1 3 3 3 3





















(b) The monochromatic partition of MKWu

MUX1

. It is a

result of applying the construction from Lemma 7.1 to
Figure 1(c).

Figure 2: The communication matrix MKW
u

MUX1

and a monochromatic partition.

They also gave the following monotone version of the game.

4.2 Definition ([KW90]). Let f : {0, 1}n → {0, 1} be a monotone Boolean function. The monotone
Karchmer-Wigderson game of f , denoted KW+

f , is the following communication problem: Alice gets
a ∈ {0, 1}n with f(a) = 1, Bob gets b ∈ {0, 1}n with f(b) = 0 and their goal is to determine a
coordinate i ∈ [n] such that 1 = ai 6= bi = 0.

The seminal work of Karchmer and Wigderson [KW90] showed that the communication com-
plexity of the KWf game (resp., KW+

f game) characterizes the size and depth complexity of De
Morgan formulas (resp., monotone formulas).

4.3 Theorem ([KW90]). Let f : {0, 1}n → {0, 1} be a Boolean function. Then,

depth(f) = CC(KWf ), and size(f) = monorect(KWf ).

Let f : {0, 1}n → {0, 1} be a monotone Boolean function. Then,

depth+(f) = CC(KW+
f ), and size+(f) = monorect(KW+

f ).

We now extend the Karchmer-Wigderson games to the hazard-free setting. For a Boolean
function f : {0, 1}n → {0, 1}, recall from (1.1) that f̄ : {0, u, 1}n → {0, u, 1} is the hazard-free
extension of f .

4.4 Definition (Hazard-free Karchmer-Wigderson game). Let f : {0, 1}n → {0, 1} be a Boolean
function. The hazard-free Karchmer-Wigderson game of f , denoted KWu

f , is the following commu-
nication problem: Alice gets α ∈ {0, u, 1}n with f̄(α) = 1, Bob gets β ∈ {0, u, 1}n with f̄(β) = 0
and their goal is to determine a coordinate i ∈ [n] such that αi 6= βi and furthermore αi 6= u and
βi 6= u.

An example of a communication matrix for this game is shown in Figure 2. Observe that, for
all (α, β) ∈ f̄−1(1) × f̄−1(0), there exists an i ∈ [n] such that αi 6= βi, αi 6= u and βi 6= u 6, which
implies that all cells in the communication matrix are nonempty.

4.5 Remark. Note that the wordy condition “αi 6= βi and αi 6= u and βi 6= u” is equivalent to the
simple αi⊕βi = 1, which is in complete analogy to ai⊕ bi = 1 in the classical Karchmer-Wigderson

6Assume the contrary. Then α and β must have some resolution in common, which we call a. Hence f(a) = 1
and f(a) = 0, which is a contradiction.
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game, see Def. 4.1, whereas we will show in Theorem 4.10 that our game is actually a generalization
of the monotone Karchmer-Wigderson game to the domain of all Boolean functions.

Now using this generalized game KWu

f we characterize the complexity of hazard-free De Morgan
formulas for Boolean functions.

4.6 Theorem. Let f : {0, 1}n → {0, 1} be a Boolean function. Then,

depthu(f) = CC(KWu

f ), and sizeu(f) = monorect(KWu

f ).

The proof is a natural generalization of the proof of Theorem 4.3 and is provided in Section 7.

4.7 Remark. We remark that a variant of the game KWu

f has been considered in prior works
[H̊as98, FMT21]. In this variant, the inputs to Alice and Bob remains the same but the goal is
different. More formally, Alice gets α ∈ f̄−1(1), Bob gets β ∈ f̄−1(0) and their goal is to determine
a coordinate i ∈ [n] such that αi 6= βi. That is, now a coordinate where one of them has u and the
other has 0 or 1 is a valid answer. This is the subtle but crucial difference with respect to our game
(Definition 4.4), where we forbid such answers by requiring that αi 6= u and βi 6= u.

4-1 Restriction to prime implicants and prime implicates

We now prove that we can restrict our attention to small (in some cases significantly smaller)
submatrices of the communication matrix. We will use this restricted version of the game to
show that for monotone functions the hazard-free Karchmer-Wigderson game is equivalent to the
monotone Karchmer-Wigderson game, see Theorem 4.10.

4.8 Theorem. For any function f , the complexity (works for size and also for depth) of the game
KWu

f remains unchanged even if we restrict Alice’s input to prime implicants and Bob’s input to
prime implicates.

Proof. The complexity of the restricted game is obviously at most the complexity of the original
game, since the game is now being played on a submatrix of the original matrix. For the other
direction, observe that given an arbitrary implicant α and an arbitrary implicate β, Alice can
choose a prime implicant α′ that is obtained by flipping some stable bits in α to u and Bob can
choose a prime implicate β′ that is obtained by flipping some stable bits in β to u, and play the
restricted game on the input (α′, β′). Any valid answer in the restricted game is also a valid answer
in the original game, since we are only flipping stable bits to u. This proves that the complexity
of the original game is at most the complexity of the restricted game. Therefore, both games have
the same complexity.

For example, consider the communication matrix of KWu

MUX1
given below, where we restricted

the rows and columns to prime implicants and prime implicates. It is a submatrix of Figure 2(a).





00u u00 1u0
01u 2 2 1
u11 2 2, 3 3
1u1 1 3 3



. (4.9)

We will use this equivalent reduced form of the hazard-free Karchmer-Wigderson game in the rest
of the paper.

There is a natural counterpart to Theorem 4.8 in the monotone world: in Definition 4.2, we can
assume without loss of generality that Alice’s input has minimal number of ones and Bob’s input
has maximal number of ones. We show that we can view the hazard-free Karchmer-Wigderson
game as a generalization of the monotone Karchmer-Wigderson game.
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4.10 Theorem. Let f : {0, 1}n → {0, 1} be a monotone function. Then, the games KWu

f and KW+
f

are equivalent.

Proof. First, we show that the complexity of KWu

f is at most that of KW+
f . Using Theorem 4.8, we

can assume that Alice’s input is a prime implicant and Bob’s input is a prime implicate. Since f
is monotone, any prime implicant of f contains only 1s and us. Similarly, any prime implicate of f
contains only 0s and us. Now, Alice can flip every u in her input to 0 and Bob can flip every u in
his input to 1 and play the game KW+

f . Notice that by Definition 4.2, the output of this game will
be a position where Alice’s and Bob’s input had different stable values originally.

For the other direction, Alice can flip every 0 in her input to u and Bob can flip every 1 in his
input to u. Since f is monotone, Alice still has an input in f̄−1(1) and Bob still has an input in
f̄−1(0). Now, the output of the game KWu

f on these new inputs will also be a valid output for the

game KW+
f since all stable bits in Alice’s input are 1 and all stable bits in Bob’s input are 0.

5 Hazard-Free Formulas for the Multiplexer Function

We now use the hazard-free Karchmer-Wigderson game to give improved constructions of hazard-
free formulas as well as proofs of their optimality. Our starting point is the observation that the
commonly used hazard-free formula for MUX1 in Figure 1(b) is not optimal w.r.t. size. We find
an optimal formula for it (Figure 1c) which in turn leads to an optimal formula of size 2 · 3n − 1
for MUXn. Following the discussion in Subsection 1-2, this upper bound also applies to all n-bit
Boolean functions and improves upon Huffman’s construction [Huf57]. However, a gap between
the upper and lower bound still remains. We begin with some necessary basics on the multiplexer
function.

5-1 The Multiplexer Function and its Communication Matrix

Recall, the multiplexer functionMUXn : {0, 1}n+2n → {0, 1} is a Boolean function on n+2n variables
defined as

MUXn(s1, . . . , sn, x0, x1, . . . , x2n−1) = xbin(s1,...,sn), (5.1)

where bin(s1, . . . , sn) is the natural number represented by the binary number s1s2 · · · sn. We will
be studying the communication matrix MKW

u

MUXn

of the hazard-free game KWu

MUXn
. Following

Theorem 4.8, we will restrict our attention to the submatrix given by prime implicants and impli-
cates of MUXn. The following proposition gives the structure of the prime implicants and prime
implicates.

5.2 Proposition. For any n ≥ 1 and any string α ∈ {0, u, 1}n, there exist unique strings α′ ∈
{u, 1}2n and β′ ∈ {0, u}2n such that αα′ ∈ {0, u, 1}n+2n is a prime implicant of MUXn and αβ′ ∈
{0, u, 1}n+2n is a prime implicate of MUXn.

Proof. For α ∈ {0, u, 1}n, consider the string α′ ∈ {u, 1}2n that has 1s at positions indexed by
the resolutions of α and that has us elsewhere. We have MUXn(αα

′) = 1 showing that αα′ is an
implicant. We now show it is a prime implicant. If any 1s in α′ are made a u, then the output
becomes a u, because a resolution of α now indexes into a u. If any Boolean value in α is made a u,
then at least one resolution of the selector bits is a position in the data bits that is a u. Therefore
this implicant is minimal. This is also that only prime implicant that can be obtained by extending
α because the α′ part is minimal and all 1s in it are necessary. The argument for prime implicates
is symmetric.

The following proposition states the inductive structure of communication matrices of MUXn.
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000uuu 0u00uu 01u0uu u00u0u uu0000 u1u0u0 10uu0u 1uuu00 11uuu0
001uuu x0 x0 s2 x0 x0 s2 s1 s1 s1, s2
0u11uu x0 x0, x1 x1 x0 x0, x1 x1 s1 s1 s1
01u1uu s2 x1 x1 s2 x1 x1 s1, s2 s1 s1
u01u1u x0 x0 s2 x0, x2 x0, x2 s2 x2 x2 s2
uu1111 x0 x0, x1 x1 x0, x2 x0, x1, x2, x3 x1, x3 x2 x2, x3 x3
u1u1u1 s2 x1 x1 s2 x1, x3 x1, x3 s2 x3 x3
10uu1u s1 s1 s1, s2 x2 x2 s2 x2 x2 s2
1uuu11 s1 s1 s1 x2 x2, x3 x3 x2 x2, x3 x3
11uuu1 s1, s2 s1 s1 s2 x3 x3 s2 x3 x3





























.

Figure 3: The communication matrix for KWu

MUX2
.

5.3 Proposition. The communication matrix of KWu

MUXn
, when restricted to prime implicants

and prime implicates, has the following inductive structure:
• For n = 1,

MKW
u

MUX1

=





00u u00 1u0
01u x0 x0 s
u11 x0 x0, x1 x1
1u1 s x1 x1



.

• For n ≥ 2,

MKW
u

MUXn

=





0 u 1
0 M0 M0 s1
u M0 M0 ∪M1 M1

1 s1 M1 M1



,

where the row (resp., column) labeled γ ∈ {0, u, 1} represents the set of prime implicants
(resp., prime implicates) with s1 = γ. We define the formulas

F0 = MUXn−1(s2 . . . , sn−1, x0, . . . , x2n−1−1) = MUXn(0, s2, . . . , sn, x0, x1, . . . , x2n−1),

F1 = MUXn−1(s2, . . . , sn, x2n−1 , . . . , x2n−1) = MUXn(1, s2, . . . , sn, x0, x1, . . . , x2n−1),

and matrices M0 := MKW
u

F0

, M1 := MKW
u

F1

, s1 stands for a block matrix of all entries s1,

and M0∪M1 is obtained by taking entry-wise union of M0 and M1. In other words, M0∪M1

represents the matrix where the (i, j) entry equals (M0)i,j ∪ (M1)i,j.
Note that in the communication matrix we have changed the entries from indices of variables to
their labels, as in instead of 1, 2, 3 we write the more intuitive symbols s1, . . . , sn, x0, x1, . . . , x2n−1

for better readability (cp. (4.9)).

See Figure 3 for the example of MKW
u

MUX2

.

Proof of Proposition 5.3. For n = 1 the proof follows by inspection and when n ≥ 2 it follows from
the following recursive decomposition: MUXn = MUX1(s1, F0, F1).

We also need the following well-known general technique used in communication complexity
that allows us to exploit repeated submatrices within a communication matrix.

5.4 Proposition. Let M be a communication matrix such that M =

(

A A
A A

)

or M =
(

A A
)

.
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Then,

CC(M) = CC(A) and monorect(M) = monorect(A).

Proof. Since A is a submatrix of M , the following inequalities are self-evident

CC(M) ≥ CC(A) and monorect(M) ≥ monorect(A).

For the other direction we treat only the case M =

(

A A
A A

)

, as the other case follows because

(

A A
)

is a submatrix of

(

A A
A A

)

. We consider a protocol Π of A. Using Π we give a protocol Π′

for M such that CC(Π′) = CC(Π) and monorect(Π′) = monorect(Π).
Without loss of generality, assume Alice is the first player to start in Π and she sends a bit to

indicate whether her input lies in the set of rows R1 or R2 such that the disjoint union R1 ⊎R2 is
the set of all rows in A. Now let R′

1 be the union of rows R1 from each copy of A within M and R′
2

be the union of rows R2 from each copy of A within M . Clearly, R′
1⊎R′

2 is the set of all rows in M .
Then in Π′ too, Alice will start by sending a bit to indicate whether her input lies in R′

1 or R
′
2. Upon

receiving the message from Alice, Bob now communicates using completely analogous adjustments
to the protocol Π. The two players proceed in this way and keep making these adjustments until
they reach the end of Π. From the protocol it follows that at the end of Π′ each rectangle in M
is a union of the same rectangles from each copy of A, and thus monochromatic. Clearly, we also
have CC(Π′) = CC(Π) and monorect(Π′) = monorect(Π). Since Π is an arbitrary protocol for A, we
obtain CC(M) ≤ CC(A) and monorect(M) ≤ monorect(A).

5-2 Size optimal hazard-free formula

We now give the size optimal hazard-free formula for the multiplexer function. As a simple appli-
cation of Theorem 4.6, we begin with finding optimal formulas for MUX1.

5.5 Proposition. The optimal (size and depth) hazard-free De Morgan formula for MUX1(s, x0, x1)
has size 5 and depth 3.

Proof. Consider the communication matrix of KWu

MUX1
shown below,





00u u00 1u0
01u x0 x0 s
u11 x0 x0, x1 x1
1u1 s x1 x1



.

We find the following protocol for KWu

MUX1
by inspection:





00u u00 1u0
01u x0 x0 s
u11 x0 x0 x1
1u1 s x1 x1



. (5.6)

Using Lemma 7.2 with the above protocol, we obtain the hazard-free formula for MUX1 shown in
Figure 1c. The optimality of depth follows from the optimality of size. We defer the proof of the
optimality of size to Theorem 5.12, the general case of MUXn.

5.7 Remark. To demystify the construction in Figure 1c we note that it is simply the hazard-free
DNF of MUX1, the formula (s ∧ x1) ∨ (¬s ∧ x0) ∨ (x0 ∧ x1), with an application of distributivity of
∧ over ∨ to reduce the size.

Now, using the recursive decomposition of MUXn we obtain the following upper bound.
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5.8 Theorem. The multiplexer function MUXn has hazard-free formulas of size 2 ·3n−1 and depth
3n for all n ≥ 1.

Proof. We construct the formula inductively. The construction for MUX1 is given by Propo-
sition 5.5. Recall that we can write MUXn(s1, . . . , sn, x0, . . . , x2n−1) recursively as the formula
F = MUX1(s1, F0, F1), where

F0 = MUXn−1(s2, . . . , sn, x0, . . . , x2n−1−1) and F1 = MUXn−1(s2, . . . , sn, x2n−1 , . . . , x2n−1).

By the induction hypothesis, both F0 and F1 have hazard-free formulas of size 2 · 3n−1 − 1 and
depth 3(n−1). Using the hazard-free formula for MUX1, given in Figure 1c, to implement F yields
a formula of size 2 · 3n − 1 and depth 3n for MUXn.

It remains to prove that the constructed formula F is hazard-free. Using Lemma 7.1, it suffices
to show that the protocol using F correctly solves the hazard-free KW-game KWu

MUXn
. In other

words, the communication matrix of KWu

MUXn
is partitioned into monochromatic rectangles by the

protocol given by F . From the monochromatic partition of KWu

MUX1
in (5.6), the structure of the

communication matrix of KWu

MUXn
(Proposition 5.3) and Proposition 5.4, we obtain the following

monochromatic partition of MKW
u

MUXn

as a block matrix, where Mi :=MKW
u

Fi

for i ∈ {0, 1}, and s1
stands for a block matrix of all entries s1:





0 u 1
0 M0 M0 s1
u M0 M0 M1

1 s1 M1 M1



,

where the row (resp., column) labeled γ ∈ {0, u, 1} represents the set of prime implicants (resp.,

implicates) with s1 = γ. Using Proposition 5.4, we can partition the whole

(

M0 M0

M0 M0

)

at the

same cost for partitioning a single M0. The same is true for M1 with the block
(

M1 M1

)

. This
gives a monochromatic partition of MKW

u

MUXn

with size 3 · (2 · 3n−1 − 1) + 2 = 2 · 3n − 1 and depth

3(n − 1) + 3 = 3n as claimed.

We now prove that the above construction for MUXn is optimal with respect to size. For this
purpose, we study the communication problem associated with the following subcube intersection
function,

subcube-intersectn : {0, u, 1}n × {0, u, 1}n → {0, 1},
where subcube-intersectn(α, β) = 1 iff the subcubes defined by α and β in {0, 1}n intersect, i.e., if
α and β have a common resolution. We note that the subcube intersection function is the same as
the equality function when restricting its domain of definition to Boolean values only. The equality
function is widely used in classical communication complexity for proving lower bounds. We also
note that the subcube intersection function cannot be implemented by any circuit over {0, u, 1}
(and hence in particular is not the hazard-free extension of any Boolean function), even for n = 1,
because subcube-intersect1(u, u) = 1, but subcube-intersect1(0, 1) = 0 7. Let us see how the subcube
intersection problem helps in capturing the complexity of the hazard-free game KWu

MUXn
.

7In any circuit implementation, if C(α) = 1, then for all resolutions a of α we also have C(a) = 1, which is
easily seen by induction. Alternatively, this can be seen by the fact that all gates (and hence the whole circuit) are
monotone with respect to the partial order of stability (u ⊑ 0, u ⊑ 1, 0 and 1 incomparable), so switching unstable
inputs to stable inputs can only keep an output u or switch an output from u to a stable value, but not change a
stable output.
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5.9 Lemma. The subcube-intersectn communication problem reduces to the communication prob-
lem KWu

MUXn
with no extra cost. That is, a monochromatic partition of the communication matrix

of KWu

MUXn
is also a monochromatic partition for the communication matrix of subcube-intersectn.

Proof. Given inputs α, β ∈ {0, u, 1}n to the subcube-intersectn problem, Alice and Bob modify their
input as follows without communication.

• Alice constructs α′ ∈ {u, 1}2n such that α′ has ones only at the positions indexed by the
subcube of resolutions of α.

• Bob constructs β′ ∈ {u, 0}2n such that β′ has zeroes only at the positions indexed by the
subcube of resolutions of β.

Now they can solve the game KWu

MUXn
on inputs αα′ and ββ′. Observe that if the subcubes α and

β intersect then answers to KWu

MUXn
lie in the set of data variables {x0, . . . , x2n−1}, otherwise they

lie in the set of selector variables {s1, . . . , sn}. Therefore, from the answers to the KWu

MUXn
game

they can deduce whether the subcubes intersect or not, again without communication.

Using the rank lower bound technique of [MS82] (See also [KN96, Lemma 1.28] and the discus-
sion following the lemma.), we know that

monorect(subcube-intersectn) ≥ 2 · rank(Msubcube-intersectn)− 1, (5.10)

where Msubcube-intersectn is interpreted as a matrix over R with 0s and 1s as entries. We prove the
following tight bound on the rank of Msubcube-intersectn :

5.11 Lemma. The communication matrix of subcube-intersectn is of full rank. That is, the rank
of Msubcube-intersectn equals 3n for all n ≥ 1.

This immediately implies our size lower bound:

5.12 Theorem. Any hazard-free formula for MUXn requires 2 · 3n − 1 leaves for all n ≥ 1.

Proof. Using Theorem 4.6, it is sufficient to show that the communication matrix of KWu

MUXn

requires 2 · 3n − 1 monochromatic rectangles, i.e., monorect(KWu

MUXn
) ≥ 2 · 3n − 1. This is readily

checked:

monorect(KWu

MUXn
)
Lem. 5.9

≥ monorect(subcube-intersectn)

(5.10)

≥ 2 · rank(Msubcube-intersectn)− 1
Lem. 5.11

= 2 · 3n − 1.

It now remains to prove Lemma 5.11.

Proof of Lemma 5.11. We prove it by induction on n. For the base case, n = 1 and the communi-
cation matrix Msubcube-intersect1

is as follows:





0 u 1
0 1 1 0
u 1 1 1
1 0 1 1



.

Clearly rank(Msubcube-intersect1
) = 3. Now consider the communication matrix of Msubcube-intersectn .

We claim that it looks as follows:





0 u 1
0 Msubcube-intersectn−1

Msubcube-intersectn−1
0

u Msubcube-intersectn−1
Msubcube-intersectn−1

Msubcube-intersectn−1

1 0 Msubcube-intersectn−1
Msubcube-intersectn−1



,

where the row labeled γ ∈ {0, u, 1} represents the set of rows labeled with α ∈ {0, u, 1}n such that
α1 = γ and similarly for the columns. The validity of the claim follows from inspection that on
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fixing the first variables we either know the answer or have self-reduced it to a smaller instance.
Therefore, we obtain:

Msubcube-intersectn =





1 1 0
1 1 1
0 1 1



⊗Msubcube-intersectn−1
,

where ⊗ is the Kronecker product of matrices. Hence, using the fact that rank is multiplicative
with respect to Kronecker product, we have

rank(Msubcube-intersectn
) = rank(Msubcube-intersect1

) · rank(Msubcube-intersectn−1
).

Now using the induction hypothesis completes the proof.

Translating the size lower bound to depth gives the following corollary.

5.13 Corollary. For all n ≥ 1, depthu(MUXn) ≥ ⌈log2(2 · 3n − 1)⌉.

5-3 Formulas of improved depth

The lower bound from Corollary 5.13 on hazard-free formula depth is at least 1 + (log2 3) · n for
large n. However, our construction in Theorem 5.8 gives an upper bound of 3n. We now give an
improved construction (Theorem 5.14) with respect to depth while increasing the size by a factor
of 5

4 . In contrast, the depth-optimal version of Huffman’s construction (Proposition 6.2) is larger
than the optimal size hazard-free formula by a multiplicative factor that is exponential in n.

5.14 Theorem. The multiplexer function MUXn has hazard-free formulas of depth 2n+1 and size
at most 5

2 · 3n − 3
2 for all n ≥ 1.

From Theorem 4.6 we know it is sufficient to give a protocol Π solving the hazard-free Karchmer-
Wigderson game of MUXn such that CC(Π) ≤ 2n+1 and monorect(Π) ≤ 5

2 · 3n − 3
2 . We consider a

monochromatic extension of KWu

MUXn
. We extend the communication matrix of KWu

MUXn
as follows

to define the extended version e-KWu

MUXn
:















prime implicates

prime implicants MKW
u

MUXn

0















. (5.15)

In other words, the communication matrix of the extended version e-KWu

MUXn
is obtained by adding

a block of rectangle with all 0s to either the set of rows of KWu

MUXn
(as shown above) or the set

of columns. We note that the added block could have any number of rows in the former case
or any number of columns in the latter. Further we will always require that the extended part
be filled with a number that does not appear in KWu

MUXn
. Observe that 0 doesn’t appear in the

communication matrix of KWu

MUXn
. However we could have used any other number that doesn’t

appear in KWu

MUXn
. We will denote all such extensions by e-KWu

MUXn
. The following matrix is an
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example of e-KWu

MUX2
.

































000uuu 0u00uu 01u0uu u00u0u uu0000 u1u0u0 10uu0u 1uuu00 11uuu0
001uuu x0 x0 s2 x0 x0 s2 s1 s1 s1, s2
0u11uu x0 x0, x1 x1 x0 x0, x1 x1 s1 s1 s1
01u1uu s2 x1 x1 s2 x1 x1 s1, s2 s1 s1
u01u1u x0 x0 s2 x0, x2 x0, x2 s2 x2 x2 s2
uu1111 x0 x0, x1 x1 x0, x2 x0, x1, x2, x3 x1, x3 x2 x2, x3 x3
u1u1u1 s2 x1 x1 s2 x1, x3 x1, x3 s2 x3 x3
10uu1u s1 s1 s1, s2 x2 x2 s2 x2 x2 s2
1uuu11 s1 s1 s1 x2 x2, x3 x3 x2 x2, x3 x3
11uuu1 s1, s2 s1 s1 s2 x3 x3 s2 x3 x3

0 0 0 0 0 0 0 0 0

































Clearly the following proposition holds.

5.16 Proposition. A protocol Π for e-KWu

MUXn
gives a protocol Π′ for KWu

MUXn
such that CC(Π′) ≤

CC(Π) and monorect(Π′) ≤ monorect(Π).

Proof. Follows from the definition (5.15) of e-KWu

MUXn
.

Therefore, to prove the depth bound in Theorem 5.14 we will give a protocol for e-KWu

MUXn

with communication cost at most 2n+ 1.

5.17 Lemma. There is a protocol solving e-KWu

MUXn
such that its communication cost is at most

2n+ 1.

Proof. From Proposition 5.3 we know that the communication matrix of KWu

MUXn
looks as follows





0 u 1
0 M0 M0 s1
u M0 M0 ∪M1 M1

1 s1 M1 M1



,

where we define the formulas F0 = MUXn−1(s2, . . . , sn, x0, . . . , x2n−1−1) and F1 =
MUXn−1(s2, . . . , sn, x2n−1 , . . . , x2n−1) and matrices Mi := MKW

u

Fi

for i ∈ {0, 1}. Therefore, the

matrix of extended version e-KWu

MUXn
looks as follows









0 u 1
0 M0 M0 s1
u M0 M0 ∪M1 M1

1 s1 M1 M1

0 0 0









.

We now give a protocol to partition this matrix into monochromatic rectangles. This will be done
inductively.

Base case: n = 1. The matrix of e-KWu

MUX1
can be monochromatically partitioned as follows











00u u00 1u0
01u x0 x0 s

u11 x0 x0, x1 x1

1u1 s x1 x1

0 0 0











.
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This is obtained from the protocol where Alice sends the first bit indicating whether her input lies
in the top or bottom part of red line. Then Bob sends a bit indicating whether his input lies in the
left part or the right part of the blue line(s). Finally Alice sends one last bit to indicate whether
her input lies in the top or bottom part of the orange line(s). Clearly the communication cost is 3.

Induction step: n ≥ 2. Now Alice and Bob send one bit of communication each to reduce
e-KWu

MUXn
to the following partition









0 u 1
0 M0 M0 s1
u M0 M0 ∪M1 M1

1 s1 M1 M1

0 0 0









.

Observe that the top-right block

(

s1
M1

)

is the matrix of an e-KWu

MUXn−1
. The bottom-right block

(

M1 M1

0 0

)

can be solved, using Proposition 5.4, at the cost of solving

(

M1

0

)

which is a block of

e-KWu

MUXn−1
. Similarly, the top-left block

(

M0 M0

M0 M0 ∪M1

)

can be solved, using Proposition 5.4,

at the cost of solving M0 which is a block of KWu

MUXn−1
. Therefore, by Proposition 5.16 it has less

complexity (size and depth) than e-KWu

MUXn−1
. Finally, note that the bottom-left block

(

s1
0

)

just

needs one bit of communication to monochromatically partition it. Therefore, we have

CC(e-KWu

MUXn
) ≤ 2 + max

{

CC(e-KWu

MUXn−1
), 1

}

≤ 2 + CC(e-KWu

MUXn−1
),

≤ 2n + 1,

where the second inequality follows because n ≥ 2 and the third follows from the induction hy-
pothesis.

As an illustration of the induction step in the proof above, we present a detailed example of
e-KWu

MUX2
with a decomposition into one block of e-KWu

MUX1
(red), two blocks of e-KWu

MUX1
(green)

that can be solved at the cost of solving a single e-KWu

MUX1
using Proposition 5.4, four blocks of

MUX1 (blue) that can be solved at the cost of solving a single MUX1 using Proposition 5.4, and
one (yellow) block of two identities that can be solved with depth 1. Therefore, the total depth is
at most 5.

































000uuu 0u00uu 01u0uu u00u0u uu0000 u1u0u0 10uu0u 1uuu00 11uuu0
001uuu x0 x0 s2 x0 x0 s2 s1 s1 s1, s2
0u11uu x0 x0, x1 x1 x0 x0, x1 x1 s1 s1 s1
01u1uu s2 x1 x1 s2 x1 x1 s1, s2 s1 s1
u01u1u x0 x0 s2 x0, x2 x0, x2 s2 x2 x2 s2
uu1111 x0 x0, x1 x1 x0, x2 x0, x1, x2, x3 x1, x3 x2 x2, x3 x3
u1u1u1 s2 x1 x1 s2 x1, x3 x1, x3 s2 x3 x3
10uu1u s1 s1 s1, s2 x2 x2 s2 x2 x2 s2
1uuu11 s1 s1 s1 x2 x2, x3 x3 x2 x2, x3 x3
11uuu1 s1, s2 s1 s1 s2 x3 x3 s2 x3 x3

0 0 0 0 0 0 0 0 0
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We are now ready to prove Theorem 5.14.

Proof of Theorem 5.14. As mentioned in the beginning we will give a protocol to partition the
communication matrix of KWu

MUXn
into monochromatic rectangles such that the communication

cost of this protocol is at most 2n + 1 and the number of monochromatic rectangles is at most
5
2 · 3n − 3

2 for all n ≥ 1.
Our protocol is the same as the one given in the proof of Lemma 5.17 with the small twist that

we can save 1 monochromatic rectangle each time we encounter a KWu

MUXn
matrix instead of a

e-KWu

MUXn
matrix. More formally: sizeu(KWu

MUXn
) = sizeu(e-KWu

MUXn
)− 1, because the additional

entries in the matrix for e-KWu

MUXn−1
are not present in the matrix for KWu

MUXn−1
. Therefore the

upper bound on depth follows readily and is not affected by this change.
To bound the size we consider the following recurrence for the number of monochromatic rect-

angles that we get in our partition of the communication matrix of e-KWu

MUXn
:

T (n) = (T (n− 1)− 1) + T (n− 1) + 2 + T (n− 1).

We first argue that T (n) indeed counts the number of monochromatic rectangles in the partition
of e-KWu

MUXn
We recall the partition given by the induction step in Lemma 5.17.









0 u 1
0 M0 M0 s1
u M0 M0 ∪M1 M1

1 s1 M1 M1

0 0 0









.

The first summand (T (n−1)−1) on the right in the recurrence is the contribution from the top-left
part of the above matrix. There is a saving of 1 because we are only interested in counting the
rectangles that cover the KWu

MUXn
entries. This saving of 1 is possible, because the additional

entries in the matrix for e-KWu

MUXn−1
are not present in the matrix for KWu

MUXn−1
.

The second summand T (n − 1) on the right in the recurrence is the contribution from the
top-right part of the above matrix. There are no savings here.

The third summand 2 on the right in the recurrence is the contribution from the bottom-left
part of the above matrix. There are no savings here.

Finally, the fourth summand T (n − 1) on the right in the recurrence is the contribution from
the bottom-right part of the above matrix. There are no savings here. Thus, solving the recurrence
T (n) = 5

2 · 3n − 1
2 . (from the base case in Lemma 5.17). We save an additional 1 monochromatic

rectangle at the very end, because are interested in KWu

MUXn
and not e-KWu

MUXn
gives an upper

bound of 5
2 · 3n − 3

2 on the size.

6 Alternation Depth Two and Two-round Protocols

In this section, we determine the hazard-free depth complexity of formulas of alternation depth 2
computing MUXn. We assume without loss of generality that the output gate is an ∨ gate since
the prime implicants and prime implicates of MUXn are symmetric. We exploit the correspondence
between hazard-free formulas of alternation depth 2 and two-round communication protocols of
the form: Alice sends some string, Bob replies with some string, and they settle on an answer (See
Lemmas 7.1 and 7.2).

We begin by proving a property of hazard-free formulas of alternation depth 2 that has been
observed in [Huf57]. We present a proof for completeness.
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6.1 Proposition. Let n ≥ 1. In any two-round communication protocol for MUXn, for different
prime implicants, Alice must send different strings to Bob in the first round. Equivalently, in any
hazard-free formula of alternation depth 2 computing MUXn, for any prime implicant α, there is at
least one ∧ gate g in the formula such that the subformula at g is exactly the ∧ of literals in the
prime implicant α.

Proof. Let α, β ∈ {0, u, 1}n be two distinct prime implicants of MUXn (See Proposition 5.2). Then
Bob must receive different strings from Alice for these two inputs to Alice, which can be seen as
follows. Suppose Bob receives the same string from Alice for prime implicants α and β. Without
loss of generality (i.e., we can swap α and β) α 6= un and there exists a position i such that
{0, u, 1} ∋ βi 6= αi ∈ {0, 1}. Let α′ be the prime implicate obtained from α by flipping the ith

bit. Clearly, the only answer to the input (α,α′) is i and i is a wrong answer for the input (β, α′).
Therefore, Alice must send different strings to Bob for α and β.

Now, we prove the equivalent statement for formulas. Consider an arbitrary hazard-free for-
mula F forMUXn of alternation depth 2. For any prime implicant α ofMUXn, since F is hazard-free,
we have F (α) = 1. This is possible only if there is a topmost ∧ gate g in F such that g(α) = 1.
Since the formula has alternation depth 2, the subformula at g is simply an ∧ of literals. Since it
evaluates to 1 on α, this set of literals has to be a subset of the literals in α. It cannot be a proper
subset because of minimality of prime implicants.

We now observe a slightly weaker (than Theorem 6.5) depth lower bound using known results.
We define the size of a prime implicant α as |{i | αi 6= u}|.
6.2 Proposition. For n ≥ 1, we have sizeu2(MUXn) = 4n + 2n3n−1 and depthu2(MUXn) ≥ 2n+ 1.

Proof. Consider an arbitrary hazard-free formula F of alternation depth 2 computing MUXn. By
Proposition 6.1, for each prime implicant α of MUXn, there is at least one subformula that computes
α. Therefore, the size of F must be at least the sum of the sizes of all prime implicants. We now
compute the sum of the sizes of all prime implicants of MUXn. The size of any prime implicant
where the selector bits have exactly i us is n− i+ 2i. This is because the other n− i selector bits
must have Boolean values, and the subcube indexed by these selector bits contains 2i points, which
must all have value 1 in the data bits. There are

(n
i

)

ways to choose i positions for the selector
bits with unstable values. For each such choice, there are 2n−i ways to set the remaining selector
bits. Therefore, the sum of the sizes of all prime implicants in MUXn is

∑n
i=0

(n
i

)

2n−i(2i +n− i) =
4n + 2n3n−1, giving us the required size lower bound (This is also an upper bound using [Huf57]).
We readily conclude depthu2(f) ≥ ⌈log2(4n + 2n3n−1)⌉ = 2n+ 1.

We now show that the existence of low-depth hazard-free formulas of alternation depth 2 is
linked to the existence of certain short prefix codes.

6.3 Lemma. Let n ≥ 1. For d ≥ 0, there is a hazard-free formula of alternation depth 2 and depth
d for MUXn if and only if there is a prefix code for the set of all prime implicants of MUXn such
that for any i where 0 ≤ i ≤ n, each prime implicant with exactly i us in the selector bits is encoded
using at most d− ⌈log2(2i + n− i)⌉ bits.

Proof. Let i be the number of us in the selector bits of the prime implicant given to Alice. First, we
determine a tight bound on the number of bits that Bob must transfer based on i (after Alice has
transferred her prime implicant to Bob). Once Bob has received the prime implicant from Alice,
the final answer could be any of the selector bits with Boolean values (n − i possibilities) or any
of the data bits in the subcube indexed by Alice’s selector bits (2i possibilities). Since there are
2i + n− i distinct answers possible, Bob must use at least ⌈log2(2i + n− i)⌉ bits in his reply. This
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bound is tight. Once Bob receives the prime implicant from Alice, he can reply with the answer
using at most ⌈log2(2i + n− i)⌉ bits. Therefore, a two-round protocol of depth d exists if and only
if there is a prefix code for the prime implicants that uses at most d − ⌈log2(2i + n − i)⌉ bits to
encode prime implicants with i us in the selector bits.

We now prove that the optimal depth for hazard-free formulas with alternation depth 2 is 2n+2.
This is the only depth lower bound in this paper that does not follow directly from a size lower
bound. We will need the well-known Kraft’s inequality giving a necessary and sufficient condition
for the existence of a prefix code.

6.4 Theorem ([CT91, Theorem 5.2.1]). For any binary prefix code, the codeword lengths ℓ1, . . . , ℓm
must satisfy the inequality

m
∑

i=1

2−ℓi ≤ 1.

Conversely, given a set of codeword lengths that staisfy this inequality, there exists a prefix code
with these codeword lengths.

6.5 Theorem. For n ≥ 2, we have depthu2(MUXn) = 2n+ 2.

Proof. From Lemma 6.3 we know that it suffices to find the minimal d for which there exists a
prefix code for the set of all prime implicants of MUXn such that for any i, 0 ≤ i ≤ n, each prime
implicant with exactly i us in the selector bits is encoded using at most d − ⌈log2(2i + n − i)⌉
bits. We know that there are

(n
i

)

2n−i many prime implicants with exactly i us. Now using Kraft’s
inequality (Theorem 6.4) we have that the lengths of the encoding for each prime implicant must
satisfy the following inequality

n
∑

i=0

(

n

i

)

2n−i · 2−(d−⌈log2(2
i+n−i)⌉) ≤ 1.

Rearranging we obtain
n
∑

i=0

(

n

i

)

2n−i · 2⌈log2(2i+n−i)⌉ ≤ 2d.

For a fixed n, define the function Ψ(i) := ⌈log2(2i + n − i)⌉ − i, where 0 ≤ i ≤ n. Note
that for all i ∈ {0, 1, . . . , n}, Ψ(i) ≥ 0 and further Ψ(i) is an integer. Now consider ψ(i) :=
log2(2

i + n − i) − i. Clearly from the definitions we have Ψ(i) = ⌈ψ(i)⌉ for all i ∈ {0, 1, . . . , n}.
From elementary calculus it follows that ψ(i) is a continuous function that is decreasing in the
interval [0, n]. Furthermore observe that at i = 0, ψ(0) = log2(n + 1) and Ψ(0) = ⌈log2(n + 1)⌉,
and at i = n − 1, Ψ(n − 1) = ⌈ψ(n − 1)⌉ = 1. Therefore when n ≥ 2, Ψ(0) ≥ 2, and thus by the
continuity of ψ there exists a t ∈ {1, . . . n− 1} such that for all i ∈ {t, . . . , n− 1}, Ψ(i) = 1. Choose
the minimal such t. In the following we will work with this minimal t.

Now breaking the summation at t− 1 we get
t−1
∑

i=0

(

n

i

)

2n−i · 2Ψ(i)+i +
n−1
∑

i=t

(

n

i

)

2n−i · 2Ψ(i)+i +

(

n

n

)

2n ≤ 2d.

Dividing by 2n+1 on both sides we obtain
t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 +
n−1
∑

i=t

(

n

i

)

2Ψ(i)−1 +

(

n

n

)

1

2
≤ 2d−n−1. (6.6)

Up to this point we only reformulated the property of the existence of a prefix code with the
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desired properties. We now prove the theorem by first considering the lower bound and then the
upper bound.

Now by the minimality of t and the integrality of Ψ, for 0 ≤ i ≤ t − 1, Ψ(i) ≥ 2, and for
i ∈ {t, . . . , n − 1}, Ψ(i) = 1. Thus, plugging these values in the left hand side of the above
inequality we see that the left hand side is strictly greater than 2n. Hence, we have

2n < 2d−n−1.

Therefore, we get that d > 2n+ 1, when n ≥ 2.
We further observe that t is at most ⌈log2 n⌉, because for all i ∈ {⌈log2 n⌉, . . . , n − 1}, we have

Ψ(i) = 1. We now claim that using t ≤ ⌈log2 n⌉ and d = 2n + 2, the inequality (6.6) is satisfied.
Plugging the value of d and using the fact that Ψ(i) − 1 = 0 for i ∈ {t, . . . , n − 1} we can rewrite
inequality (6.6) as follows

t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 +
n−1
∑

i=t

(

n

i

)

+

(

n

n

)

1

2
≤ 2n+1. (6.7)

Now using
∑n+1

i=0

(n+1
i

)

= 2n+1, we obtain
t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 +

n−1
∑

i=t

(

n

i

)

+

(

n

n

)

1

2
≤

n+1
∑

i=0

(

n+ 1

i

)

.

Moving the second summand to the right hand side we have
t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 +

(

n

n

)

1

2
≤

n+1
∑

i=0

(

n+ 1

i

)

−
n−1
∑

i=t

(

n

i

)

.

Rewriting again we get
t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 +

(

n

n

)

1

2
≤

t−1
∑

i=0

(

n+ 1

i

)

+

n+1
∑

i=t

(

n+ 1

i

)

−
n−1
∑

i=t

(

n

i

)

.

Further rewriting leads to
t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 +

(

n

n

)

1

2
≤

t−1
∑

i=0

(

n+ 1

i

)

+
n−1
∑

i=t

[(

n+ 1

i

)

−
(

n

i

)]

+

(

n+ 1

n

)

+

(

n+ 1

n+ 1

)

.

Now using the Pascal’s rule,
(n+1

i

)

−
(n
i

)

=
( n
i−1

)

, to simplify the second summand on the right
hand side we have

t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 +

(

n

n

)

1

2
≤

t−1
∑

i=0

(

n+ 1

i

)

+
n−1
∑

i=t

(

n

i− 1

)

+

(

n+ 1

n

)

+

(

n+ 1

n+ 1

)

.

Rewriting and simplifying we obtain,
t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 +

(

n

n

)

1

2
≤

t−1
∑

i=0

(

n+ 1

i

)

+

n−2
∑

i=t−1

(

n

i

)

+ n+ 1 + 1.

Rewriting the right hand side again gives us
t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 +

(

n

n

)

1

2
≤

t−1
∑

i=0

(

n+ 1

i

)

+
n
∑

i=t−1

(

n

i

)

+ 1.

Moving the second summand on the left hand side to the right and simplifying we have
t−1
∑

i=0

(

n

i

)

2Ψ(i)−1 ≤
t−1
∑

i=0

(

n+ 1

i

)

+

n
∑

i=t−1

(

n

i

)

+
1

2
.
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Now we first observe that the right hand side is strictly greater than 2n. Using t ≤ ⌈log2 n⌉ we now
show that the left hand side is at most 2log

2
2 n+2 log2 n. Thus showing that the inequality is satisfied.

Using the fact that Ψ(i)− 1 ≤ Ψ(0)− 1 ≤ ⌈log2(n+ 1)⌉ − 1 ≤ log2 n and simplifying the left hand
side, we obtain the following upper bound on it

n

t−1
∑

i=0

(

n

i

)

.

Now using
∑k

i=0

(n
i

)

≤ 2H(k/n)·n for k/n ≤ 1/2 and H being the Shannon entropy function, we can
further bound it by

n · 2H( t−1

n
)·n.

Now since t− 1 ≤ log2 n, we obtain the following upper bound on it

2log2 n+log22 n+log2 n,

where we used H(log2 n/n) · n ≤ log22 n + log2 n. For n ∈ {1, . . . , 38} we verified eq. (6.7) with a
computer calculation, see Section 10. The fact that n ≥ log22 n + 2 log2 n for all n ≥ 39 completes
the proof.

Appendix

7 Proofs for the hazard-free Karchmer-Wigderson game

In this section we prove Theorem 4.6. We split the proof into two lemmas.

7.1 Lemma. Let f : {0, 1}n → {0, 1} be a Boolean function and F be a hazard-free De Morgan
formula computing it. Then,

CC(KWu

f ) ≤ depth(F ), and sizeP(KWu

f ) ≤ size(F ).

7.2 Lemma. Let f : {0, 1}n → {0, 1} be a Boolean function and Π be a protocol for the hazard-free
KW-game KWu

f . Then,

depthu(f) ≤ CC(Π), and sizeu(f) ≤ sizeP(Π).

The proofs of Lemmas 7.1 and 7.2 are natural generalizations of their corresponding counterparts
in the original setting of the KW-game. However, for the sake of completeness and to highlight the
differences, we present the proofs below.

Proof of Lemma 7.1. (Formula to Protocol.) Let F be a hazard-free De Morgan formula computing
the function f . It suffices to show a protocol Π solving KWu

f such that CC(Π) ≤ depth(F ) and

sizeP(Π) ≤ size(F ). Let α ∈ f̄−1(1) be Alice’s input and β ∈ f̄−1(0) be Bob’s input.
In the protocol Π both players keep track of a subformula G of F such that G(α) = 1 and

G(β) = 0. We being at the root of F , i.e., G = F . By the hazard-free property of F , we have
G(α) = F (α) = f̄(α) = 1 and G(β) = F (β) = f̄(β) = 0. Now depending on the type of gate at the
root of G, we decide which player sends the message.

If G = G0 ∨ G1, then it is Alice’s turn. Observe that, since G(α) = 1, there exists i ∈ {0, 1}
such that Gi(α) = 1. Again by a similar reasoning, we also have G0(β) = G1(β) = 0. Thus, Alice
can send a single bit to Bob indicating a child which evaluates to 1. Then they both move to the
corresponding subformula.

If G = G0 ∧ G1, then it is Bob’s turn. Again by a similar reasoning, G(α) = 1 and G(β) = 0,
we deduce that G0(α) = G1(α) = 1 and there exists i ∈ {0, 1} such that Gi(β) = 0. Thus, Bob
can send a single bit to Alice indicating a child which evaluates to 0 and they both move to the
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corresponding subformula.
If G is a leaf of F and is labeled with literal xi or ¬xi for some i ∈ [n], then the protocol returns

the coordinate i as answer.
Clearly, the number of bits exchanged on any input equals the depth of the leaf reached and the

number of leaves in the protocol Π equals the number of leaves in F . That is, CC(Π) = depth(F )
and sizeP(Π) = size(F ). The correctness of the protocol follows from observing that when G is
a literal and G(α) = 1 and G(β) = 0 then the variable corresponding to the literal has different
(Boolean) values in the certificates α and β.

We now give the translation from protocols to formulas.

Proof of Lemma 7.2. (Protocol to Formula.) Let Π be a protocol solving KWu

f . It suffices to show

a hazard-free formula F computing f such that depth(F ) ≤ CC(Π) and size(F ) ≤ sizeP(Π).
Let T be the protocol tree of Π. We will convert the tree T into a hazard-free formula F for f .

Every internal node in the tree is associated with a player whose turn it is to send the message. To
obtain F we first replace every internal node in T as follows:

• If it is associated with Alice, then replace it with ∨,
• If it is associated with Bob, then replace it with ∧.

Now consider a leaf ℓ ∈ T and suppose that the output at this leaf is some coordinate i ∈ [n].
Let Aℓ × Bℓ be the set of inputs that reaches this leaf ℓ. This is a monochromatic combinatorial
rectangle. By definition of KWu

f , exactly one of the following cases holds:
(i) for all α ∈ Aℓ, αi = 1 and for all β ∈ Bℓ, βi = 0, or
(ii) for all α ∈ Aℓ, αi = 0 and for all β ∈ Bℓ, βi = 1.

In the first case we label the leaf ℓ in F with the literal xi, while in the second we label it with ¬xi.
Clearly the constructed formula F has depth and size equal to CC(Π) and sizeP(Π), respectively.
So it remains to argue the correctness of the transformation. That is, we need to verify that F is
indeed a hazard-free formula for f . It suffices to show the following:

for every node v ∈ F , the subformula G rooted at v satisfies G(α) = 1 for all α ∈ A
and G(β) = 0 for all β ∈ B, where A × B is the set of the inputs that reach the node
corresponding to v in the protocol tree T .

The correctness now follows by applying this claim to the root of F (note that for the root we
have A = f̄−1(1) and B = f̄−1(0)). We prove the claim by induction on the depth of nodes in the
formula.
Base case: depth = 0. The claim holds for the leaf nodes by our construction (i.e., by our choices
of their labels).
Induction step: Suppose the claim holds for the children v0 and v1 of a certain node v ∈ F .
We will now show that it also holds for v. Let G,G0, G1 be the subformulas rooted at v, v0, v1,
respectively. We assume, w.l.o.g., that G = G0 ∨ G1. (The other case being symmetric.) Let
v′, v′0, v

′
1 ∈ T be the corresponding nodes to v, v0, v1 ∈ F . Let A × B be the inputs reaching v′ in

T . Since G = G0 ∨G1, it is Alice’s turn to send the message. Therefore, Alice’s message partitions
A into A0 and A1 such that A0 ×B is the inputs reaching v′0 and A1 ×B is the inputs reaching v′1.
Thus, by induction hypothesis, we have

• for all α ∈ A0, G0(α) = 1 and for all β ∈ B, G0(β) = 0,
• for all α ∈ A1, G1(α) = 1 and for all β ∈ B, G1(β) = 0.

This in turn implies that for all α ∈ A, G(α) = G0(α) ∨ G1(α) = 1 and for all β ∈ B, G(β) =
G0(β) ∨G1(β) = 0.
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8 Limited hazard-freeness

Avoiding all hazards can be very expensive (see [IKL+19, Juk21]) and sometimes is not needed, be-
cause we might have additional information about the input, for example when composing circuits.
Under the (physically realistic in that setting) assumption that the input contains at most one u,
the counter in [FKLP17] outputs the number of 1s in the input, encoded in binary Gray code with a
single u, such that both resolutions of the output correspond to numbers whose difference is 1. Note
that in the usual binary bit representation one has to flip 4 bits to go from 7 = 01112 to 8 = 10002,
hence any hazard-free counter would output uuuu on input 1111111u, so the Gray code is used.
When composing circuits, this additional information about the position of the u can be useful,
which is shown for the task of sorting Gray code numbers in [LM16, BLM17, BLM18, BLM20].
Another interesting class of hazards that should be avoided are the inputs where the number of us
is bounded from above. This is the setting of k-bit hazard-freeness from [IKL+19].

Theorem 4.6 as stated is not directly applicable in these settings, as it only characterizes hazard-
free formulas, i.e., formulas that are hazard-free with respect to all inputs. However, we can also
treat formulas that avoid only certain hazards.

8.1 Proposition. Given sets A and B with f−1(1) ⊆ A ⊆ f̄−1(1) and f−1(0) ⊆ B ⊆ f̄−1(0).
The hazard-free KW-game where Alice gets input from A and Bob gets input from B characterizes
formulas that is hazard-free on inputs in A ⊎B.

The proof is a straightforward generalization of the proof of Theorem 4.6.

8.2 Example. Consider the function MUX2(s1, s2, x00, x01, x10, x11). We proved in Theorem 5.12
that any hazard-free formula for MUX2 requires 17 leaves. Suppose we only want to avoid hazards
where both selector bits are unstable. Note that every other possible hazard is covered by the eight
prime implicants and eight prime implicates of MUX2 labeling the rows and columns of the following
matrix. Therefore, we can obtain an improved upper bound for this task by showing that the following
game has a protocol of size smaller than 17.

























000uuu 0u00uu 01u0uu u00u0u u1u0u0 10uu0u 1uuu00 11uuu0
001uuu x00 x00 s2 x00 s2 s1 s1 s1, s2
0u11uu x00 x00, x01 x01 x00 x01 s1 s1 s1
01u1uu s2 x01 x01 s2 x01 s1, s2 s1 s1
u01u1u x00 x00 s2 x00, x10 s2 x10 x10 s2
u1u1u1 s2 x01 x01 s2 x01, x11 s2 x11 x11
10uu1u s1 s1 s1, s2 x10 s2 x10 x10 s2
1uuu11 s1 s1 s1 x10 x11 x10 x10, x11 x11
11uuu1 s1, s2 s1 s1 s2 x11 s2 x11 x11

























Indeed, the above colouring yields a protocol of size 16. We can also show that we cannot do better.
Substitute s1 = s2 =

(

1 0
0 0

)

and x00 = x01 = x10 = x11 =
(

0 0
0 1

)

. This yields the following 16 × 16
(block) matrix. Note that if the original communication matrix had a protocol that yields fewer than
16 combinatorial rectangles, then this block matrix must have rank less than 16 since all substituted
matrices are rank one. However, the block matrix is full-rank, showing that 16 leaves are required.
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0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1
1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1



























































9 Hazard-free formula depth reduction

In this section we show that the standard depth reduction process for Boolean circuits and formulas
works in a hazard-free way. Let F be a hazard-free formula. In the Boolean depth reduction process
we take a gate that has roughly the same distance to the root as it has to its deepest leaf and we
write

F (x) = F ′(G(x), x)

where G is the subformula of that gate. Now we observe that

F (x) = F ′(G(x), x) = MUX1(G(x), F
′(0, x), F ′(1, x)) =: F̃ (x) (9.1)

which can be used iteratively to convert a Boolean formula to logarithmic (in the size of F ) depth.
If the implementation of MUX1 is hazard-free, then this depth-reduction process preserves the
hazard-freeness of a formula, as the next claim shows.

9.2 Claim. Assume that a hazard-free implementation of MUX1 is used in (9.1). If F is hazard-
free, then F̃ is also hazard-free.

Proof. Consider the case when F̃ (α) = u. It remains to show that F (α) = u. The hazard-freeness
of the multiplexer implementation implies that there are the following three cases:

• G(α) = 0 and F ′(0, α) = u

• G(α) = 1 and F ′(1, α) = u

• G(α) = u and F ′(0, α) and F ′(1, α) are not both equal to the same Boolean value (in fact,
they potentially have value u).

In the first two cases, by definition of F ′ and G we see that F (α) = F ′(G(α), α) = u. In the third
case we see that F ′(u, α) = u. Using the fact that G(α) = u implies that F (α) = F ′(G(α), α) =
u.

By using standard techniques for finding the subformula G (See Lemma 1.3 in [Juk12]), we can
show that the balanced formula has depth 3 log3/2(m)+O(1) and size O(m2.92) where m is the size
of the original formula.
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10 Sagemath Source Code for the Finite Cases

The following sagemath (version 9) code is used to verify Equation (6.7) up to n = 38.

def blog(k):

return float(log(k,2))

def Psi(i,n):

return int(ceil( blog(2^i+n-i) ))-i

def t(n):

return int(ceil(blog(n)))

def LHS(n):

return sum([binomial(n,i)*2^(Psi(i,n)-1) for i in [0..t(n)-1]]) + \

sum([binomial(n,i) for i in [t(n)..n-1] ]) + 0.5

def RHS(n):

return 2^(n+1)

for n in [1..38]:

if RHS(n)>=LHS(n):

print("ok")

else:

print("problem")
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