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Abstract 
 

Introduction 

Anti-PD-1/PD-L1 immunomodulatory (IM) therapy has revolutionised the treatment of non-small cell 

lung cancer (NSCLC).  The only ‘biomarker’ currently-validated for predicting response of these 

tumours to IM therapy is the extent of PD-L1 expression as detected by immunohistochemistry 

(IHC).  Despite the overall success of this therapy in patients with NSCLC, PD-L1 expression is an 

imperfect predictor, some patients with tumours displaying low expression responding strongly, and 

some with high expression not at all.  The thesis considers why PD-L1 expression is an imperfect 

predictor and how it might be improved. 

Methods 

The research described in the first part of this thesis considered the impact of pre-analytical 

conditions on PD-L1 expression.  This examined not only the effect of how tumours are sampled, but 

the influence of specimen processing and fixation and conditions of storage, the latter employing a 

novel tissue ageing acceleration chamber and mass-spectrometry. The second part describes 

examination of heterogeneity of expression in a series of resected NSCLCs in which the primary 

tumour was accompanied by nodal metastases.  Biological and artefactual heterogeneity within and 

between tumour deposits was assessed at different scales using a novel ‘squares method’ and 

‘digital sampling’.   The third part describes assessment of the tumour immune environment (TME), 

specifically interrogation of immune cell populations, employing a combination of techniques 

including traditional IHC, multiplex IHC, multiplex immunofluorescence and image analysis. The 

fourth and final part of the work involved an assessment of digital pathology and image analysis with 

integrated machine-learning algorithms as a tool to improve accuracy and consistency in assessing 

PD-L1 expression. 

Results 

PD-L1 expression is consistent across different types of specimen; loss of its immunogenicity can be 

reduced by storage in cold and dry conditions, particularly when combined with a desiccant.  

Approximately 20-25% of resected NSCLCs demonstrated tumoural heterogeneity such that 

sampling from different sites might produce clinically-relevant differences in PD-L1 expression.  This 

can be minimised, but not reduced entirely, by generous sampling.  The TME of NSCLCs can be 

differentiated by assessing different immune cell populations, but only in specimens containing 

sufficient tissue and routine, small, diagnostic specimens will prove difficult to analyse in this way.  

Image analysis and algorithms are potentially powerful tools that can reduce intra- and inter-

observer consistency when assessing PD-L1 expression, but require learning and experience for their 

effective use. 

Discussion 

The research described in this thesis confirms that assessment of PD-L1 expression by IHC is a 

powerful, but imperfect biomarker, and indicates also that its utility can be improved.  Accuracy and 

consistency in its interpretation can be increased by optimising pre-analytical conditions.  Tumour 

heterogeneity is a more complex problem; whilst availability of multiple, generous, good quality 

samples improves accuracy, the confounding effect of this fundamental fact of the biology of PD-L1 

expression cannot be removed entirely.  Techniques to interrogate the TME yield powerful data but, 

at present, most are too expensive, too complicated and require too much tissue to be useful in the 

routine clinical setting.  Image analysis, machine learning and algorithms are becoming established 

techniques and are clearly of value, but possibly largely in improving confidence in and consistency 

of interpretation.  
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Chapter 1 - Introduction 

1.0 Lung cancer and treatment options 

Lung cancer is the third most common cancer globally, affecting over two million people each year. 

Lung cancer is the biggest cause of cancer death and kills around 1.8 million people annually, which 

is more than breast, prostate and colorectal cancers (the first, second and fourth most common 

cancers respectively) combined.1 There are over 46,000 new cases of lung cancer and over 35,000 

deaths from lung cancer in the UK each year which accounts for nearly a quarter of all UK cancer 

deaths. Despite these sobering statistics, UK survival has seen an improvement in 1 year survival rate 

from around 15% in the 1970s to around 35% today, with longer-term survival seeing improvement 

from around 3% in the 1970s to around 10% today.2 The vast majority of this increase in survival has 

occurred in the last two decades since the dawn of stratified medicine and targeted therapeutics, 

including the use of tyrosine kinase inhibitors (TKIs) for specific genomic alteration in cancer cells, 

and, more recently, immuno-modulatory (IM) therapy. 

Lung cancer is traditionally divided into histological subtypes, with the majority (80-85%) classified as 

non-small cell lung cancer (NSCLC), of which the most common subtype in the UK is adenocarcinoma 

(ADC), followed by squamous cell carcinoma (SCC) with a relatively small number of large cell 

carcinomas or not-otherwise-specified (NSCLC-NOS) depending on specimen type.2, 3 The majority of 

successful targeted medicines in lung cancer have been for NSCLC, with few new successful 

treatments developed for small cell and neuroendocrine tumours, with a corresponding poor 

prognosis for these diseases.  

1.0.0 Development of stratified treatments in advanced NSCLC 

Since the 1980s the mainstay of treatment for advanced NSCLC has been platinum based 

chemotherapy (XCT), but it was only in 2008 that different chemotoxic agents were shown to be 

associated with variable survival data based on differentiating squamous from non-squamous 

NSCLC.4, 5 Although there have been more recent advances in chemotoxic agents, XCT still carries 

with it significant toxicity and relatively poor overall response, and attempts to use molecular and 

genetic markers to guide XCT use in NSCLC has been met with minimal success.6 In 2004, a Phase II 

clinical trial illustrated the first non-chemotoxic agent as having efficacy in NSCLC: bevacizumab, a 

monoclonal antibody (MAb) targeted against VEGF-A (vascular endothelial growth factor A) which 

inhibits angiogenesis within the tumour microenvironment (TME), was used alongside carboplatin (a 

platinum based chemotoxic agent) and shown to have favourable clinical outcomes.7 However, 

patients with SCCs of the lung had increased toxicity and an unfavourable side-effect profile, and as 
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such the 2006 Phase III clinical trial that earned bevacizumab its license to be used in NSCLC 

excluded SCC patients,8 as did other subsequent landmark trials.9 Therefore the use of bevacizumab 

was not only a significant landmark in terms of using non-chemotoxic agent for treating advanced 

NSCLC, but also that it highlighted the importance of stratifying patients by tumour characteristics.  

At a similar time the discovery of EGFR (epidermal growth factor receptor) overexpression as a major 

driver of NSCLC survival in a subset of patients resulted in the successful development and use of 

TKIs to inhibit this activity. Activated EGFR acts to increase cell proliferation and survivability via a 

number of mechanisms including the MAPK activated Ras/ERK (Extracellular signal-regulated kinase ) 

pathways and the PI3K/Akt (Phosphoinositide 3-kinases/Protein Kinase B) pathway, with these 

becoming constitutively activated in the presence of mutant EGFR, and thus leading to significant 

oncogenic driven tumour cell survival.10 TKIs targeted against EGFR mutants have seen considerable 

success in treating NSCLC, with the first EGFR TKI, gefitinib, receiving its license for use as second line 

treatment in 2003.11 However, the two Phase II clinical trials that led to this approval did not stratify 

patients by the presence of EGFR mutants, and whilst these still showed positive results12, 13 several 

Phase III clinical trials looking at EGFR TKIs in the first and second line setting that also did not 

stratify by EGFR mutant status failed to reach their outcomes.14-16 Conversely, Phase III studies that 

did stratify patients by specific EGFR mutants showed considerable benefit when treated with EGFR 

TKIs17, 18 leading to the widespread recommendations and subsequent requirement for EGFR mutant 

testing from 2009 onwards to stratify NSCLC patients for targeted treatment.11, 19 However, three 

significant issues limit the effectiveness of EGFR TKIs. The first issue is the presence or absence of 

specific  EGFR mutants: exon 19 deletions and the missense mutation L858R in exon 21 respond 

favourably, but other mutations, such as exon 20 mutations are minimally sensitive to TKIs, and 

other mutations are of no or unknown clinical relevance.10, 20 The second is that almost all patients 

commenced on EGFR TKIs develop resistance to treatment within 2 years, with secondary mutations 

such as T790M and C797S, the activation of alternative intra-cellular signalling mechanisms, 

histological transformation and other processes implicated.21 Whilst other treatment approaches for 

resistant tumours include 3rd generation EGFR TKIs (e.g. osimertinib and rociletinib) have seen 

success, tumours eventually develop resistance to these as well.22 The third issue limiting EGFR TKI 

use is that sensitive EGFR mutants only account for around 10-20% of NSCLC patients in Europe, 

although in certain populations, particularly Asian populations, the prevalence is much higher, often 

over 50%. 23, 24 Other oncogenic driver mutations besides EGFR activation have been well 

characterised in NSCLC and include ALK gene rearrangements, BRAF mutants, ROS1 gene 

rearrangements and several others (Fig 1.0.0) which are largely mutually exclusive. Although several 

of these oncogenic drivers have TKIs targeted against them (e.g ALK and ROS1 mutants may be 
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targeted by lorlatinib) many others, included the commonest KRAS mutations, have no effective 

treatment at present.25  

 

 

 

Therefore a new diagnosis of NSCLC should be accompanied with an interrogation of the genetic 

landscape of the tumour which looks for the oncogenic driver mutations that have approved TKIs as 

a minimum of pathological work-up. Many tumours will not be suitable candidates for TKI 

treatment, however, and most that are will develop resistance, so there remains a requirement for 

more treatment options in advanced NSCLC. More recently, the development of IM therapy has seen 

improvements in clinical outcomes for NSCLC patients whom have no targetable mutation, with 

long-term survival reported for many patients and occasional reports of exceptional responders 

surviving in excess of 5 years with metastatic disease,26-28 making this an exciting prospect for further 

increasing the repertoire of stratified medicines for NSCLC patients.  

1.0.1 History of cancer immunotherapy 

The notion that the immune system can be used to successfully target cancer maybe erroneously 

thought of as a modern concept. Some fairly anecdotal but fascinating reports of tumours 

spontaneously regressing post-infection have been reported for some 3000 years since the ancient 

Egyptian physicians noted this phenomena.29 Erysipelas, a particular form of cellulitis now known to 

Figure 1.0.0 Oncogenic drivers in NSCLC. A – Early stage , B – Late stage. Targeted therapy 

against many of the drivers are approved or are in development and include EGFR, ALK, ROS1, 

BRAF, RET, MET and NTRK, though effective targeted treatment against many drivers remain 

elusive. Modified from Skoulidis et al. 2019.²⁵ 
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be caused predominantly by group A β-haemolytic streptococci (or streptococcus pyogenes) was 

noted to be associated with spontaneous regression of tumours by Busch in 1868, in what is the first 

known example of using an intentional infection to target cancer.30 In 1882 Fehleisen, whom had 

independently noted the same phenomena, repeated the experiment and identified streptococcus 

pyogenes as the bacterial agent responsible for this.31 William Coley noted similar observations in his 

cohort of sarcoma patients, and went as far a developing ‘Coley’s toxins’ in which he developed 

various streptococci (the details on which, from his 1909 paper include the use of 1lb of beef used to 

make a ‘bacterial broth’) which was first tested on dogs and then humans with sarcoma. Coley 

reported tumour regression and cure in advanced sarcoma in many hundreds of patients.32-34 

However, unsurprisingly, many of Coley’s patients died from sepsis, added to which the technical 

difficulty of growing the bacteria and the lack of supportive studies that replicated the results, this 

approach generally fell out of favour. Throughout the next 100 years opinions varied in the general 

consensus of whether the immune system could be a genuine factor in targeting tumours or not.35 

Furthermore, shortly after Coley’s experiments, Alexander Fleming and his contemporaries 

developed benzylpenicllin, the first broad-spectrum antibiotic, and a better understanding of the 

role of bacteria and illness was understood, which undoubtedly contributed to the notion of using 

bacteria to target cancer as unpalatable.36 In 1967, the first (and to date only) established use of 

bacteria to treat cancer was developed. Morales, Eidinger and Bruce utilised Bacillus Calmette-

Guérin ((BCG), an avirulent form of tuberculosis causing bacteria) to treat non-muscle invasive 

bladder cancer,37 which subsequent work has shown to be a result of immune activity targeted 

against the tumour cells, albeit only successfully in approximately 60% of patients.38 Despite a few 

papers in the 1970s still questioning the role of immunity targeting cancer, a large number of papers 

in the 1980s and 1990s demonstrated beyond doubt that the immune system plays a significant anti-

cancer role.35  

The biggest success in immunotherapy for treating advanced cancer has been targeting immune 

checkpoints that act as natural regulators of immune cell activity. Tumours can exploit the 

immunosuppressive activity of immune checkpoints, gaining considerable survival benefit, and the 

targeting of these immune checkpoints by MAbs is the preeminent form of IM therapy in cancers to 

date (Fig 1.0.1). In 1996, inhibition of CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) which is 

chiefly characterised by its ability to inhibit activated cytotoxic T-cells, improved immune mediated 

anti-tumoural response in animal models,39 and in 2011 anti-CTLA-4 MAbs (ipilimumab) became the 

first checkpoint inhibitor approved to treat cancer (stage IV melanoma) by the FDA (USA Food and 

Drug Administration).40 CTLA-4 inhibition was trialled in various other tumours, but saw little initial 

success in NSCLC. The development of antibodies against another immune-checkpoint, PD-1 
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(progammed-cell-death-protein-1) followed, with one such IM therapy (pembrolizumab) gaining 

approval to use in advanced melanoma in 2014 by the FDA, followed by another (nivolumab) in the 

same year.41, 42 In 2015, both anti PD-1 agents were approved for use in advanced NSCLC.43, 44 In 

2016, MAbs targeted against the main ligand for PD-1, PD-L1 (programmed death ligand one) 

(atezolizumab) was approved in NSCLC and urothelial cancers.45 IM therapy targeting this interaction 

of PD-1 and PD-L1, the ‘PD-1/PD-L1 axis’ has seen a rapid expansion in their approval, with trials for 

virtually every tumour type in progress. Approval in NSCLC at various stages has been granted, as 

well as a wide variety of other cancers including gastric, breast, head and neck and urothelial 

carcinomas.46-54 The use of PD-1/PD-L1 IM therapy in the context of NSCLC is broad, including single-

agent use or combined with XCT and/or CTLA-4 IM therapy, and utilised at various stages of NSCLC, 

including more recently efforts to use it in the neoadjuvant setting.55, 56 Many other immune related 

therapies being developed including CAR-T (Chimeric antigen receptor T cells), TCR (T-cell receptor) 

gene-modified T-cell therapy, oncolytic viruses and tumour vaccines, but this thesis is concerned 

chiefly with the inhibition of the PD-1/PD-L1 immune checkpoint process in the context of NSCLC.  

1.1 PD-1 and PD-L1; a brief introduction 

1.1.0 PD-1 

PD-1 (also known as CD279) was first described in 1992 as a transmembrane receptor with a mature 

form length of 268 amino acids (50-55kda (kilodaltons)) with four extracellular N-glycosylation sites 

expressed on many immune cells, including T-cells, B-cells, NK-cells (natural killer), macrophages and 

DCs (dendritic cells), and is particularly upregulated on tumour specific T-cells.57, 58 PD-1 acts as an 

inhibitor of both the adaptive and innate immune systems and has a diverse role, but its function is 

best understood and characterised within the context of T-cells. PD-1 is selectively upregulated in 

activated T-cells in response to ongoing antigen exposure.59 Its main function is to act as a co-

inhibitory signal when an APC (antigen presenting cell) presents antigens to a T-cell. When bound by 

a suitable ligand (e.g. PD-L1) PD-1 intracellular tyrosine is phosphorylated and activated, which 

results in the recruitment of SHP-1 (Src homology 2 domain-containing protein tyrosine 

phosphatase-1) and SHP-2 to the C-terminal ITSM, (immunoreceptors tyrosine-based switch motif), 

which is the site of PD-1 intra-cellular activity. These phosphatases act to counter the stimulatory 

signals being sent from CD28, via inhibition of ZAP70 (Zeta-chain-associated protein kinase 70) and 

CD3δ which in turn inhibits the PI3K/AKT and RAS/ERK signalling pathways, which results in the 

decreased activation of transcription factors such as AP-1 (Activator protein 1), NFAT (Nuclear factor 

of activated T-cells) and NF-κB (Nuclear factor-κB), which drive T-cell activation, proliferation, 

effector functions and survival.60, 61 
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Figure 1.0.1 Principles behind 

immune-checkpoint inhibition.  

A – APCs present antigens to 

cytotoxic T-cells via class II MHCs. 

The T-cell requires co-stimulation via 

interaction of CD80/CD86 on the 

APC with CD28 on the T-cell, which 

results in cytotoxic activity against 

the tumour cell.  

B – Regulation of cytotoxic activity 

includes the expression of immune 

checkpoints on T-cells including 

CTLA-4, which also binds to 

CD80/CD86 but with a higher affinity 

than CD28 and acts as a co-inhibitor, 

and PD-1, which is bound by PD-L1 

expressed by both APCs and tumour 

cells directly, which also acts as an 

co-inhibitor, resulting in decreased 

cytotoxic activity and immune 

escape by the tumour cell. 

C – Monoclonal antibodies targeted 

against the immune checkpoints 

include (1) PD-L1 (e.g. atezolizumab) 

(2) PD-1 (e.g. nivolumab, 

pembrolizumab) and (3) CTLA-4 (e.g. 

ipilimumab) which prevent co-

inhibition of the T-cell, resulting in 

reversal of immune escape and 

renewed cytotoxic activity against 

the tumour cell.  

APC, antigen presenting cell; MHC, 

major histocompatibility complexes; 

TCR, T-cell receptor; PD-1, 

programmed cell death protein 1; 

PD-L1, programmed death ligand 1; 

CTLA-4, cytotoxic T-lymphocyte-

associated protein 4) 
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PD-1 can also activate PTEN (Phosphatase and tensin homolog), thereby further inhibiting PI3K/AKT 

pathway62 and inhibit PKCδ (Protein Kinase C-δ) signalling further reducing NF-κB activity.60, 61, 63-65 

These are summarised in Fig 1.4.0.  

Ultimately, the activation of PD-1 results in the inhibition, dysfunction, and eventual cell death of T-

cells, and as PD-1 is upregulated specifically in response to antigens this can be a beneficial 

mechanism (e.g. in autoimmune disorders or with ineffective immune responses) but also harmful, 

particularly in the context of ongoing antigenic stimulation from cancer cells resulting in less 

effective immune responses.  

1.1.1 PD-L1 and PD-L2 

PD-1 has two main ligands: PD-L1 and PD-L2. PD-L2 is less well characterised and has received less 

attention than PD-L1, although it appears to play a similar role in generating immunosuppressive 

activity via PD-1 and has a distinct expression pattern. It may be a distinct predictor of response to 

anti-PD-1 therapy, but its role in within cancers is thought to be much less significant than PD-L1.66-70 

PD-L1 (also known as B7-H1) is a 290 amino acid transmembrane glycoprotein that was renamed to 

PD-L1 when it was discovered to interact with PD-1.71, 72 The classic mechanism of action described 

for PD-L1 is to bind to PD-1 expressed on activated T-cells in order to inhibit their cytotoxic, and 

therefore anti-tumoural activity. Professional APCs are critical to this process as T-cells cannot 

recognise soluble antigens and require tumour neoantigens to be presented to them via class II 

MHCs which, alongside CD28 mediated co-stimulation, results in the activation of naïve T-cells and 

subsequent T-cell proliferation and differentiation, cytokine production and beginnings of the T-cell 

mediated adaptive immune response.73, 74 As part of normal constitutive activity, the regulatory 

processes involved that act to regulate self-tolerance and excessive activity of T-cells include the 

activity of immune checkpoints such as CTLA4 and the PD-1/PD-L1 axis.75 The exploitation of these 

immune checkpoints by tumour cells and the subsequent targeting of these is the fundamental basis 

for PD-1/PD-L1 IM therapy. (Fig 1.0.1). This thesis will largely be concerned with this ‘classic’ 

mechanism of action, although alternative pathways and variants are considered as appropriate 

throughout. For the avoidance of confusion, ‘PD-L1’ used throughout this work refers to the mature, 

290 amino-acid length, membrane bound glycoprotein, unless otherwise specified.  

PD-L1 has been shown to be expressed in several normal tissue types, such as epithelial and immune 

cells within the tonsil, endothelial cells including the myocardial endothelium, cortical thymic 

epithelial cells, and syncyciotrophoblasts, and has been shown to have an immuno-regulatory 

function in some of these tissues.70, 76-78 PD-L1 is also expressed widely and heterogeneously in many 

solid tumours, including NSCLC, gastric, breast, melanoma, mesothelioma and other cancers.73 The 
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expression of PD-L1 is used to determine treatment to PD-1/PD-L1 IM therapy, but to understand 

the role of the PD-1/PD-L1 axis in cancer, a more comprehensive review of the relationship between 

cancer cells and immune cells must first be understood. 

1.2 Cancer and the immune system  

1.2.0 Cancer cells and immune cells 

The relationship between the immune system and cancer cells is an intimate and inexorably linked 

one, even at the earliest stages of tumour development. Certain immunoincompetent groups are 

more at risk of developing specific cancers (e.g Kaposi’s sarcoma in immunodeficient patients79) and 

around 25% of cancers have an origin related to infection (e.g. Hepatitis C is associated with 

hepatocellular carcinoma) or other inflammatory processes (e.g. prostatitis is associated with 

prostate cancer).80, 81  

The early detection and eradication of cancerous and pre-cancerous cells by the immune system, or 

immunosurveillance, is an extension of the immune system’s ability to detect and eradicate 

abnormal cells in the non-malignant setting, such as viral or bacterial infections. The notion that the 

immune system could target cancer cells was suggested by Ehrlich in 190982 and more formally 

conceived as immunosurvellance by Burnett and Thomas in the 1950s. 83, 84 However, this work was 

mostly conducted in animal models, and various immuno-deficient mice models failed to show 

conclusive evidence of higher rates of tumours and it wasn’t until the 1990s that definitive data 

could be generated that showed immunocompromised mice were indeed associated with increased 

rates of malignancy.85-87 In 2002 Schreiber’s group described the concept of immunoediting based on 

these observations and is thought of as the selective growth of tumour cells due to their innate 

ability to overcome immune responses targeted against them.88 Therefore the immune response 

targeted against tumour cells is a chief factor in determining the final cancer cell populations 

present; susceptible tumour cells are eradicated, but tumour cells with innate protection against the 

immune response become the dominant cell population, and thus immunity conveys both pro-

tumoural and anti-tumoural activity.89, 90 

1.2.1 Immunoediting 

The immunoediting theory involves 3 phases of immune response to the tumour: elimination, 

equilibrium and immune escape.88, 89 Although direct evidence is limited, elimination is considered 

the earliest response to cancer cells – where spontaneous destruction and regression of tumours 

occur as a result of T-cell activity and related mechanisms destroying pre-cancerous cells before they 

are able to develop more advanced immune defences.91, 92 As a result, tumours maybe 
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spontaneously eradicated without a clinical manifestation of the disease.93 During the equilibrium 

phase, this dominance is lost, the immune system is unable to destroy or eradicate the tumour – but 

it still has capacity to prevent tumour growth, aggressive invasion and metastases. Again there is 

little direct evidence of this phase, but there is evidence that cancer cells can become “dormant”, 

thereby temporarily evading immune cell scrutiny, which allows them to reactivate at a later date – 

and indeed tumours in patients can remain quiescent for months and even years with an immune 

insult the potential triggering factor for tumour growth and aggressive behaviour.94-96 

The final phase, immune escape, is the phase most patients are encountered, and the phase at 

which most research is undertaken, and is when the immune response is insufficient to limit or 

control the tumour growth, including the invasion or metastatic spread of cancer cells. An effective 

immune response against tumours requires the expression of neoantigens on tumour cells, and a 

conducive TME, the regulation of which plays a major role in immune escape.  Neoantigens are 

abnormal surface proteins expressed on tumour cells that have not been encountered by the host 

immune system and therefore not avoided by self-tolerance mechanisms, and identify these cells as 

‘foreign’ to the adaptive immune process. A lack of neoantigens maybe due to low mutational 

burden tumours,97 selective presentation of neoantigens by the tumour cells98 or modulation of 

neoantigen expression secondary to IM therapy99 all of which may lead to immune escape. 

Modulation of the TME by recruiting immunosuppressive cells to the TME can increase immune self-

tolerance of tumour cells and decrease the effectiveness of cytotoxic elements acting directly 

against the tumour cells.100  Another mechanism of immune escape is the expression of immune-

checkpoints within the TME, which can directly inhibit the cytotoxic T-cells within the TME, and is 

the predominant pathway by which PD-1/PD-L1 is believed to exert a tumour survival benefit (Fig 

1.4.0), with several other checkpoints such as TIM-3 (T cell immunoglobulin and mucin domain-

containing protein 3), IDO1 (Indoleamine 2, 3-dioxygenase 1), LAG-3 (Lymphocyte-activation gene 3), 

and CTLA4 also described, many of which are the target of ongoing clinical trials (Fig 1.3.0).75, 101 The 

modulation of the TME to achieve immune escape also involves regulation of cytokines, apoptotic 

pathways and other immunosuppressive pathways, and PD-1 and PD-L1 appear to mediate many of 

these. Therefore an overview of the various elements of the TME is necessary to fully appreciate the 

role of PD-1 and PD-L1 in cancer immune escape.  

1.3 The Tumour microenvironment 

1.3.0 Components of the TME 

The TME is a complex structure that is composed of tumour cells, pre-malignant cells, non-tumour 

cells as well as extra-cellular matrix (ECM) and vasculature. Communication is a dynamic process 
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between all of these components and includes the production and expression of growth factors, 

cytokines, chemokines and exosomes. The focus of this thesis in regards to cells modulating the TME 

is predominantly that of the interaction of immune cells and tumour cells, however virtually every 

other cell type may play an important role in modulating the immune function of the TME. For 

example, normal fibroblasts have typically anti-tumoural activity by expressing anti-tumour 

cytokines (e.g. TNF-α (Tumour-necrosis factor α)) and suppressing tumour growth through 

modulation of the ECM,102 whereas cancer associated fibroblasts (CAFs) (a heterogenous group of 

fibroblasts of probable multiple cell type origin) secrete growth factors and chemokines that 

stimulate tumour cell growth and survival and encourage the migration of other cells to the TME and 

are thus typically regarded as pro-tumoural in activity.103 Furthermore, CAFs secrete numerous 

immunosuppressive cytokines (e.g. TGF-β (Transforming growth factor β), help manufacture 

collagen and matrix metalloproteinases (MMPs) that inhibit effective lymphocyte infiltration, and a 

sub-population of CAFs have been shown to express immune checkpoints including PD-L1 thereby 

contributing significantly to an immunosuppressive pro-tumoural TME.104 Pericytes have been 

shown to regulate the TME by helping immune cells infiltrate the TME and adipocytes expressing PD-

L1 may further contribute to immune escape.105, 106  

Of particular relevance are the immune cells present within the TME: including T-cells, B-cells, NKs, 

DCs, MDSCs (myeloid derived suppressor cells), macrophages and neutrophils. As with many other 

aspects of the TME, these cells types can be divided into subcategories which typically play either a 

pro-inflammatory anti-tumoural role, or an immunosuppressive pro-tumoural role.  

1.3.1 T-cells in the TME 

T-cells play a diverse role in adaptive immunity. They can be classified into various subtypes, with 

anti-tumour T-cell subtypes including cytotoxic (CD8+ve) T-cells, Thelper (Th) (CD4+ve) cells and pro-

tumoural T-cell subtypes including regulatory T-cells (Tregs) (FoxP3+ve). Th cells represents a diverse 

category of T-cells classically categorised as Th1, Th2, Th17 and Treg. Th1 play a role in immune 

surveillance and regulating intracellular pathogens and are associated with autoimmune disorders, 

Th2 help eliminate extracellular parasites and play a role in allergies and asthma, Th17 target 

extracellular bacteria and fungi and are also associated with autoimmune disorders, and Tregs play a 

role in immune tolerance and the regulation of immune responses, and are associated with immune 

suppression of TMEs.107, 108 For the purposes of clarity, throughout this thesis CD4+ve T-cells will 

refer to non-Treg Th cells specifically. CD4+ve T-cells play a major role in assisting CD8+ve T-cells, 

both of which are involved in initial tumour development91 and can help destroy tumour cells via 
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cytokine mediated pathways (e.g. IFN-γ (Interferon-γ) and TNF-α) and the activation of DC mediated 

cell death.109  

 

 

 

 

CD4+ve T-cells within the TME have been shown to upregulate expression of PD-1 (and other 

immune checkpoints such as TIM3 and LAG3) and decrease cytotoxic cytokine expression,110 

Fig 1.3.0 Immune checkpoint receptors and their ligands. Modified from Pardoll 2012.⁷⁵ 
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suggesting a contributing role of T-cell exhaustion (described later) in CD4+ve T-cells to immune 

escape. Despite this, CD4+ve T-cells and the role they play within the context of TMEs and PD-1/PD-

L1 mediated escape has generally received less attention than other T-cell types.  

Tregs mediate immunosuppressive activity within the TME via a number of mechanisms, including 

the expression of CTLA4, production of immunosuppressive cytokines (e.g. IL-10 (Interleukin-10), 

TGF-β), the direct destruction of T-cells via granzyme mediated cytotoxicity, the competitive 

consumption of IL-2 and the conversion of ATP (Adenosine triphosphate) to adenosine, thereby 

reducing ATP-driven T-cell cytotoxicity which ultimately results in the suppression of CD8+ve and 

CD4+ve T-cells activity.108, 111-115Despite these immunosuppressive features acting in contrast to 

CD4+ve and CD8+ve T-cells, their activation is still dependent on TCR and CD28 mediated signalling, 

and the fact they can also express PD-1 implies this will result in Treg inhibition and eventual 

exhaustion.  Indeed the blockade of PD-1, which typically results in increased immune and anti-

tumoural activity, can also increase Treg activity and enhance its immunosuppressive functions.108, 

116  

The most studied T-cell in the context of PD-1/PD-L1 mediated immune escape targeted by PD-1/PD-

L1 IM therapy are the cytotoxic CD8+ve T-cells. The increasing knowledge of the role that PD-1/PD-

L1 plays outside CD8+ve T-cells can go some way to explaining much of the variable response to IM 

therapy, but the major mechanism of action is still believed to mediated by these cells. As such, 

cytotoxic T-cells are a major focus of this thesis, and the steps required to traffic CD8+ve T-cells to 

the TME and their activity within the TME is discussed in more detail in Chapter 7. In brief, within the 

TME CD8+ve T-cells are activated by neoantigen presentation via class II MHCs on APCs with co-

stimulation by CD28 mediated signalling and extracellular cytokine activity. Once activated, CD8+ve 

T-cells can exert cytotoxic activity on targeted tumour cells via several pathways: the release of lytic 

granules (e.g. perforin that forms pores in target cells, and various granzymes that activate apoptotic 

pathways within the target cells) in a Ca2+ mediated fashion, Fas signalling in an Ca2+ independent 

fashion that activates caspase mediated apoptosis and the release of cytotoxic cytokines (e.g. IFN-γ, 

TNF-α).117, 118 The presence of co-stimulatory mediated PD-1 on CD8+ve T-cells, and the binding of 

this by PD-L1 within the TME to inhibit cytotoxic activity is the cornerstone rationale behind PD-

1/PD-L1 IM therapy.  

It is also worth mentioning that the activity of T-cells, the regulatory nature of PD-1/PD-L1 and the 

impact of IM therapy on these areas is not limited to cells within the TME. Indeed the role of PD-1 in 

preventing auto-immune disorders is well described, and dysregulation in this pathway is implicated 

in many such diseases, including Type 1 Diabetes Mellitus, multiple sclerosis, rheumatoid arthritis 
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and others. 119, 120 Perhaps unsurprisingly therefore, autoimmune toxicities and subsequent irAEs 

(immune related adverse events) that result from treatment by PD-1/PD-L1 IM is a major clinical 

challenge, as their impact on immune checkpoint inhibition is not limited to the TME, and virtually 

every organ in the body maybe affected by this. 121 

1.3.2 Other immune cells within the TME 

Two important immune cell types for CD8+ve mediated cytotoxicity are DCs and TAMs, as a result of 

their professional APC behaviour. DCs play a pivotal role in linking innate and adaptive immune 

systems together and are the most effective professional APCs and play a critical role in presenting 

neoantigens to T-cells in the TME.122 As such they are major targets of tumour cell mediated immune 

escape via the tumour cell’s ability to negatively regulating DCs’ efficiency and functionality as 

APCs.123 Various immunosuppressive cytokines (e.g. TGF-β, IL-13, IL-10 GM-CSF (Granulocyte-

macrophage colony-stimulating factor)) within the TME can directly inhibit DC activity or convert DCs 

to immunosuppressive immune cells such as M2 TAMs and MDSCs.123-125 Tregs can also inhibit DCs 

by the expression of CTLA4, resulting in increased DC expression of PD-1 and by the expression of 

inhibitory cytokines IL-10 and TGF-β.126, 127 Expression of immune checkpoints, including PD-L1, 

appear to inhibit DC function, and in turn the blockade of PD-L1 can improve DC mediated anti-

tumoural activity.123, 128  

Macrophages are classically split into polarised subtypes: M1 which have pro-inflammatory 

behaviour and are therefore associated with anti-tumour activity, and M2 which have tissue repair 

and cell proliferation behaviours, and are therefore associated with tumour promoting activity.129 

M1 are typically activated by anti-tumoural cytokines such as IFN-γ and TNF-α mediated pathways 

whereas M2 are activated by immunosuppressive cytokines (e.g. IL-10, IL-13).130, 131 TAMs can be 

composed of macrophages polarising in either direction, but are mostly considered to resemble pro-

tumoural M2 macrophages. As a result, TAMs can promote proliferation and metastases of tumour 

cells, promote angiogenesis and inhibit anti-tumour T-cell activity.130, 132 The plasticity of 

macrophages is such that they can be polarised in a particular direction depending on other features 

and TAMs may therefore play both anti-tumoural and pro-tumoural roles within the TME, with this 

plasticity a possible target in regulating cancer progression.130, 133 As macrophages also play a role as 

professional APCs, the expression of PD-L1 in macrophages contributes to tumour immune escape, 

provides macrophage protection against T-cell cytotoxic activity134 and may play a role in 

macrophage proliferation and activation135 with an overall trend towards M2 phenotype 

polarisation.136 PD-1 is also expressed by macrophages within the TME and appears to inhibit 

phagocytosis of macrophages and also exert M2 phenotype polarisation.133 Despite their role as 



14 
 

APCs presenting neoantigens to T-cells, TAMs, and in particular PD-1/PD-L1 expressing TAMs, overall 

appear to generate an immunosuppressive TME.  

Other immune cells within the TME also interact with PD-1/PD-L1 axis. B-cells are traditionally 

described as key regulators of adaptive immunity by the production of antibodies once terminally 

differentiated to plasma cells. However they also play a diverse role within immune responses by 

functioning as APCs, producing cytokines and chemokines and regulating the activation and 

expression of T-cells.137 B-cells are composed of multiple subtypes but typically play an 

immunosuppressive, pro-tumoural role within the TME, with specific subtypes (e.g. CD40 +ve) 

potential targets for clinical trials.138 An important classification of B-cell subtypes are B-regulatory 

cells (Bregs) that play a role in inflammation, auto-immune disease and cancer139 and exert an 

immunosuppressive activity by expression of immunosuppressive cytokines (e.g. IL-10, TGF-β) and 

the upregulation of FoxP3+ve Tregs and CTLA4 expression.140 The role of Bregs specifically in NSCLC 

is not well characterised139 but PD-L1 expression has been shown to be higher on Bregs versus other 

B-cell subtypes, and that PD-L1 expression on Bregs may play a key role in suppressing non-Treg 

expressing PD-1 T-cells and increasing Tregs, thereby further contributing to immunosuppressive 

pro-tumoural activity.141, 142  

Neutrophils are a key component of innate immunity with phagocytic activity and a role in producing 

reactive oxygen species (ROS) and toxic neutrophil granules. Their role in infectious disease and 

auto-immunity is well characterised, but their role is less well understood in the context of the TME. 

Tumour infiltrating neutrophils (TANs) within the TME play a predominantly pro-tumoural role by 

promoting tumour cell proliferation and invasion, angiogenesis and inducing T-cell apoptosis.143 

However, TANs can also play a anti-tumoural role via cytotoxic activity by production of ROS and the 

recruitment and activation of CD4+ve and CD8+ve T-cells and may have a similar ‘polarisation’ of N1 

and N2 subtypes similar to macrophages.144, 145 In regards to PD-1/PD-L1 interaction, TANs have been 

shown to express PD-L1146 and recently that blocking PD-1/PD-L1 interaction enhances anti-tumoural 

cytotoxic activity of TANs.147  

NKs are part of the innate immune system and can regulate other parts of innate immunity as well 

as adaptive immune cells. They produce a large number of cytotoxic cytokines such as IFN-γ, TNF-α, 

and GM-CSF. Self-tolerance of NKs is mediated by self-antigens presented via class I MHCs on host 

cells. Loss of class I MHC in tumour cells prevents inhibition of NKs and results in direct and indirect 

cytotoxic activity, and therefore suggests a predominantly anti-tumoural role of NKs.148 NKs have 

been shown to express PD-1 in normal patients and in tumour patients149 and helps mediate CD8+ve 

cytotoxic activity within the TME.150 The blockade of an inhibitory receptor expressed on both NKs 
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and T-cells (NKG2A) may have increased efficacy alongside blockade of PD-1/PD-L1 in increasing NKs 

cytotoxic anti-tumoural behaviour.151  

MDSCs are key innate immune cells and play a predominantly pro-tumoural role by exerting 

significant immunosuppressive activity on innate and adaptive immune responses by multiple 

mechanisms including expression of immunosuppressive cytokines (e.g. IL-10 and TGF-β) and 

depletion of amino-acids required for effective T-cell function.152, 153 MDSCs have also been shown to 

express PD-L1, the blockade of which has been shown to inhibit PD-L1 mediated inhibition of T-cells 

and reduced immunosuppressive cytokine production.154, 155 Furthermore, the presence of MDSCs in 

NSCLC has been shown to be associated with poorer response to PD-1/PD-L1 IM therapy.156, 157  

1.3.3 Cytokine activity within the TME 

The ability of immune cells to impact the TME is frequently via the production of various cytokines. 

Their specific relationship to PD-1/PD-L1 is discussed later, but, as with immune cells, cytokine 

activity is complex and can have both pro-tumoural and anti-tumoural activity depending on other 

features within the TME. For example, IFN-γ (a type II interferon cytokine) produced by T-cells and 

NK cells typically acts in an anti-tumoural fashion by inducing tumour cell cycle arrest and apoptosis 

by direct mechanisms or by modulating the immune aspect of the TME such as by inhibiting 

immunosuppressive Tregs, MDSCs and M2 macrophages. However, IFN-γ can also play a role in pro-

tumoural activity by encouraging tumourigenesis and angiogenesis and increasing tumour immune 

tolerance, including the upregulation of PD-L1 expression in tumour cells and APCs.158-160 TNF-α is 

produced by CD4+ve T-cells, NK, macrophages and other cells and is a cytotoxic molecule induced by 

the MAPK, NF-Kb and apoptosis pathways. Despite the strong cytotoxic activity it typically portrays, 

TNF-α can also increase the numbers of MDSCs and neutrophils in the TME which can result in 

increased tumour growth by angiogenesis and amplification of inflammation.60, 161 Many interleukins 

are upregulated within the TME and have a diverse range of activity, for example, IL-1β is induced by 

a number of pathways including MAPK, mTOR (Mechanistic target of rapamycin) and NF-KB, and is 

expressed by NK, macrophages, T-cells and fibroblasts. It promotes inflammation and macrophage 

differentiation towards M1 and differentiation of B cells to plasma cells, and increases IFN-γ levels, 

cytotoxic T-cells and T-cell polarisation to Th1. Despite this IL-1β can also increase 

immunosuppressive M2 macrophages and increase VEGF and FGF (fibroblast growth factor) that 

support angiogenesis and metastasis, and indeed IL-1β is thought to play a key role in NSCLC 

tumourigenesis, with its presence an indicator of poorer survival for these patients.162-164 TGF-β has 

also been shown to have both anti-tumoural and pro-tumoural activity, and is a potent tumour-

suppressor in pre-malignant cells, but in later stages promotes tumour metastases.165  
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There are many more cytokines active within a typical TME, but these illustrate that the role of any 

given factor is complex, with both potential pro-tumoural and anti-tumoural activity. TMEs may 

therefore be thought of as being generally immunosuppressive and pro-tumoral or cytotoxic and 

anti-tumoural, but is realistically composed of a dynamic mixture of these properties. Therefore 

effectors and regulators of immune-mediated tumour responses must be looked at in the broader 

context of other factors within then TME, rather than by considering each in isolation. As the 

components of the TME are dynamic and change over time, a single tumour sample can provide an 

accurate snapshot of the tumour-immune relationship, but it is important to remember the previous 

and future activity of the TME not captured by a single specimen.   

1.4 The role of PD-1/PD-L1 in mediating tumour immune escape 

1.4.0 Alternative mechanisms of action 

In addition to the conventional mechanism of action described above (Fig 1.0.1), PD-L1 has also been 

shown to modulate immune response to cancer by a number of other pathways, including PD-1 

independent pathways, most of which are pro-tumoural in effect. One of these is PD-L1’s ability to 

directly alter mechanisms within tumour cells, so called ‘tumour intrinsic pathways’, which includes 

inducing anti-apoptotic survival in tumour cells in a ‘reverse signal’ pathway from PD-1 

stimulation,166 acting as a direct defence against IFN-γ via the STAT3 pathway in tumour cells, which 

can be reversed by PD-L1 blockade167 and inducing mTOR mediated survival, inhibiting autophagy 

and increasing glycolysis in a PD-1 independent fashion.168-170 PD-L1 can also induce 

immunosuppressive features within the TME outside of direct T-cell inhibition. For example, PD-L1 

expression on macrophages appears to be associated with M1/M2 polarization, altered cytokine 

activity and macrophage antigen expression, that may have an overall immunosuppressive effect 

including inducing T-cell anergy133 and PD-L1 mediated signalling on T-cells that results in the indirect 

recruitment of MDSCs which also increase the immunosuppressive nature of the TME.171 

Furthermore, PD-L1 has splice variants, soluble forms, variants with homodimerisation abilities as 

well as a large number of post-translational modifications, the full role of which has not been well 

characterised.172-174 

PD-1 can also exert immunosuppressive activity outside of the classic PD-1/PD-L1 axis. PD-1 may 

cause anergy of T-cells without PD-L1 via the SHP2 mediated activity on PI3K and ERK pathways via 

distinct Ca2+ mediated mechanisms.175  

Therefore, although different tumours may share PD-L1 expression as their primary method of 

immune escape – the direct mechanisms and downstream effects by which it evades the immune 
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response are not necessarily the same. Indeed even within the same tumour multiple mechanisms of 

PD-L1 mediated immune escape processes maybe active.  

The basic principle, however, is that PD-L1 and PD-1 can play an integral role in mediating tumour 

immune escape, predominantly through the ‘classic mechanism’ of direct inhibition of cytotoxic 

CD8+ve T-cells, resulting in their dysfunction and eventual cell death, but also by evoking a more 

immunosuppressive TME through tumour intrinsic pathways and the regulation of various cytokines 

and immune cells. Given the diverse range of immunosuppressive activity that PD-1 and PD-L1 can 

achieve, the multiple pathways of regulating PD-1 and PD-L1 expression will now be explored.  

1.4.1 Regulation of PD-1 expression 

The regulation of PD-1 expression is not well characterised. It is known to be very low in naïve T-cells 

but rapidly upregulated when activated. This process is in part regulated by TGF-β176 as well as 

various interleukins (e.g. IL-2, IL-6, IL-12 and IL-21).177, 178 Binding of the TCR or activity of various 

cytokines may regulate PD-1 expression via transcriptional factors (e.g. NFATc1 (Nuclear factor of 

activated T-cells C1), AP-1, NF-κB and STATs (Signal transducer and activator of transcription).60, 179 

PD-1 expression can also be effected by epigenetic regulation (e.g. histone modification, miRNAs 

(micro-ribose nucleic acid) and methylation) and protein regulation (e.g. FBXO38, TOX, FUT8), but 

overall remains a poorly characterised area.60, 179  

1.4.2 Regulation of PD-L1 expression – genetic and epigenetic factors 

PD-L1 expression is regulated by several cell survival pathways known to play a role in cancer 

survival. (Fig 1.4.0) Activation of the MAPK pathway (a protein kinase signalling cascade that 

catalyses several pathways, including the Raf/MEK/ERK pathway indicated in driving many tumours 

including KRAS and EGFR mutant oncodriven NSCLCs) upregulates PD-L1 expression, and MEK 

inhibition downregulates PD-L1 expression.180-182 The PI3K/Akt pathway (an intra-cellular signalling 

pathway that plays a role in cell survival, growth and proliferation, in both T-cells and in tumours, 

and can also be activated by EGFR mutants) has also been implicated in upregulating PD-L1 

expression, possibly as a result of PTEN inactivation.183, 184 The JAK (Janus kinase)/STAT pathway (also 

an intra-cellular signalling pathway responsible for growth factors and cytokine production 

indication in a number of tumours, including EGFR driven NSCLC) has also been shown to potentially 

be able to upregulate PD-L1.184, 185 These three pathways can be activated by a large number of 

upstream signals, suggesting that PD-L1 upregulation via these pathways is a normal function in 

modulating immune response. However, they also provide potential mechanisms for how tumour 

cells, such as EGFR mutant driven tumours, can upregulate PD-L1 in a manner that may not be 
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reactive (IE the upregulation is a result of aberrant activation of cell signalling pathways, rather than 

as a result of selective tumour cell survival from PD-L1 mediated immune escape) which may also 

explain why EGFR mutant patients are generally quite resistant to PD-1/PD-L1 IMs even in the 

context of PD-L1 positivity, and why PD-L1 expression that is constitutively expressed in this fashion 

is a poor candidate for response to IM therapy.186, 187  

miRNAs can also play a role in regulating PD-L1. Typically miRNAs act to regulate proteins by binding 

to mRNA (messenger RNA) and promoting its degradation or inhibiting its translation.188 Direct 

binding of various miRNAs to PD-L1 mRNA has been shown to occur in a variety of cancers, including 

NSCLC.60, 189, 190 miRNAs can also inhibit PTEN which acts to suppress PD-L1, resulting in the indirect 

promotion of PD-L1191 and can induce PD-L1 via STAT3 in NSCLC.192 miRNAs also play a role in IFN-γ 

mediated PD-L1 expression; when IFN-γ upregulates PD-L1 it also regulates various miRNAs, 

including miR-513 and miR-155. IFN-γ upregulates miR-155 and downregulates miR-513 that 

increases the overall amount of PD-L1 expression.193, 194 miR-200 has also been shown to 

downregulate PD-L1 expression levels, and suppression of miR-200 by ZEB1 appears to play a role in 

NSCLC progression and metastases.189. These processes are summarised in Fig 1.4.0 

1.4.3 Regulation of PD-L1 expression – cytokines and environmental factors 

IFN-γ is generally considered to be the main cytokine responsible for upregulating PD-L1 expression. 

IFN-γ induces PD-L1 expression through the JAK/STAT3 and PI3K-AKT signalling pathways, leading to 

immune escape,136 although it is interesting to note that there is an overlap, though nonetheless 

distinct pathway of PD-L1 upregulation by IFN-γ in different tumour types, including, for example, 

JAK2/STAT1/IFR-1 in gastric cancer195 and MEK/ERK signalling pathway in myeloma.196 However IFN-γ 

expression is associated with both pro-tumoural and anti-tumoural activity: high levels of IFN-γ 

expression are associated with anti-tumoural activity as its limits angiogenesis, prevents metastases 

and limits expression of immunosuppressive cytokines,197 but treatment with IFN-γ conveys a worse 

survival in melanoma198 and ovarian cancer199 with no success seen in NSCLC patients beyond some 

early clinical trials.200, 201 Therefore the expression of IFN-γ alone is not enough to be considered anti-

tumoural or pro-tumoural, and although it can help to elicit immune escape via PD-L1 upregulation, 

IFN-γ expression requires context to properly interpret.  TNF-α is also involved in PD-L1 regulation. 

TNF-α can induce  inflammation, apoptosis, necrotic cell death and impair tumour cell 

proliferation,60, 161 but can also promote tumour cell proliferation in a number of tumours, including 

skin and ovarian as well as the proliferation and metastases of NSCLC202, 203 and contributes to 

immune escape via immunomodulatory pathways including the upregulation of PD-L1 expression, by 

mechanisms that are both distinct 204 and the same as IFN-γ.194  
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Various interleukins also play an important role in the regulation of PD-L1 expression. Interleukins 

play a diverse role in immunity, cell survival and anti-tumoural activity, and their behaviour can vary 

depending on context, as already described for IL-1β. However, most are thought of as having 

predominantly anti-inflammatory activity (e.g. IL-10, IL-13) or pro-inflammatory activity (e.g. IL-1β, 

IL-6, IL-23).205 Immunosuppressive interleukins such as IL-27 and IL-10 can induce PD-L1 in T-cells and 

tumour cells, including in NSCLC,206, 207 as can pro-inflammatory interleukins such as IL-6, IL-12 and 

IL-17.208-210 Many of these pathways are not fully understood, but some overlap with IFN-γ and TNF-

α pathways, and others have distinct pathways, but again the overall regulation of PD-L1 by these 

pathways is best understood in the context of other cytokine activity.  

TGF-β can both upregulate and downregulate PD-L1 depending on context, although it typically acts 

to upregulate PD-L1 in NSCLC specifically.60 Hypoxia-inducible factors (HIFs) regulate protein 

expression in hypoxic conditions,211 and has been shown to upregulate PD-L1 in a various immune 

and cancer cells in these conditions.154, 212 Although there is no direct evidence of HIFs regulating PD-

L1 in NSCLC per se, patients receiving both an anti-angiogenic agent (bevacizumab) and anti-PD-L1 

therapy (atezolizumab) with XCT in non-squamous NSCLC had superior outcomes to patients only 

receiving either bevacizumab with XCT or atezolizumab with XCT213 suggesting HIFs plays a clinically 

significant role. 

Virtually all of the environmental factors within the TME that are indicated in regulating reactive PD-

L1 expression can have pro-tumoural or anti-tumoural activity depending on other variables. The 

mere presence alone of any of these remains insufficient to ascertain if it is acting in an overtly pro-

tumoural or anti-tumoural fashion by the encouragement or suppression of immune-escape, and 

this reinforces the need to look at as much detail of the TME and immune features in relationship to 

each other as possible.  

The expression of PD-1 and PD-L1 is a frequent occurrence in NSCLC, and despite the complexity and 

variation of the TME within and between tumours, there remains a significant proportion of patients 

whom respond favourably to PD-1/PD-L1 IMs. Many patients do not respond to IM therapy, 

however, even in the context of their tumours expressing PD-L1. The limitations of detecting PD-L1 

Fig 1.4.0 PD-1/PD-L1 axis intra-cellular signalling A – Regulatory pathways that increase PD-L1 expression 

by increased gene expression, translation or stabilisation of protein. (Interleukins can use similar 

pathways – IL-17 uses PI3K/Akt pathway, IL-6, IL-17, IL-25, IL-27 uses JAK/STAT signalling etc. to 

upregulate PD-L1 expression (not shown)). B – Downstream signalling of PD-1 when bound by ligand 

resulting in increased cell survival and cytotoxic activity of activated CD8+ve T-cell. Full-line arrows 

indicate increased activity of target, dotted arrows indicate reduced activity of target.  
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via current clinical methods (and therefore resulting in possible false-negatives and false-positives of 

PD-L1 expression) will be discussed later, but an overview of the potential mechanisms to resistance 

to PD-1/PD-L1 IM therapy in the context of assumed genuine expression will now follow.  

1.5 PD-1/PD-L1 inhibitor resistance 

Primary resistance to PD-1/PD-L1 IMs  is when there is no response or minimal response following 

the commencement of therapy, whereas secondary resistance is described in tumours that initially 

respond to treatment but fail to do so over time.  Mechanisms of resistance may contribute to either 

or both, as a result of the dynamic nature of the TME.  

1.5.0 Primary resistance – PD-L1 heterogeneity and constitutive expression 

PD-L1 expression is clearly an important factor for deciding PD-1/PD-L1 IM therapy, but PD-L1 

negative tumours can respond to treatment, and PD-L1 positive tumours may not.46, 49 One 

explanation is that of tumour heterogeneity, in which various components of a tumour maybe highly 

variable over time and space. This is discussed in greater detail in Chapter 6 (Tumour heterogeneity), 

but in short, PD-L1 expression is not necessarily uniformly expressed across a tumour or between 

metastatic sites. Sampling with biopsies or needle aspirates will by necessity only include a small 

part of the overall tumour burden, and so for a highly heterogenous marker like PD-L1, any given 

sample may not be wholly representative of the disease as a whole, and therefore may mislead 

attempts to guide IM therapy decisions. PD-L1 expression may also be constitutive, rather than 

reactive, driven by pathways such as the MAPK, PI3K and JAK pathways, and in the context of 

tumours with no immune response, or tumours that are utilising other mechanisms of immune 

escape, may play no role in cell survival, and therefore the use of PD-1/PD-L1 IMs would be of 

limited value. This is discussed in greater detail in Chapter 7 (The tumour microenvironment), but as 

above, innate genetic and reactive immune regulatory processes of PD-L1 expression both play key 

roles but maybe quite distinct in predicting response to therapy. In addition, as has been described, 

PD-L1 can exert immunosuppressive activity in a PD-1 independent fashion, which would particularly 

limit the effectiveness of PD-1 IM therapy. Therefore although PD-L1 expression maybe genuinely 

associated with mediating immune escape, multiple mechanisms of PD-L1 mediated immune escape 

maybe present within a single tumour, not all of which would necessarily respond to PD-1/PD-L1 IM 

therapy.  

1.5.1 Primary resistance – TILs and T-cell dysfunction 

The presence, density and type of TILs (tumour infiltrating lymphocytes) is an important factor in 

immune escape and probable response to IM therapy. An immune response must be present, 
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sufficiently robust and of the correct type to be ideal candidates for IM therapy. In addition, shared 

properties of TILs can be both intuitively favourable and unfavourable for IM therapy; for example, 

high levels of PD-1 expression would imply the PD-1/PD-L1 axis is the main mechanism of immune 

escape, but high PD-1 expression is also associated with T-cells that are exhausted,214 and so this 

may be a favourable or unfavourable marker of response to treatment, depending on the status of 

the T-cells.  

T-cell anergy is a key process in regulating peripheral tolerance and can be induced by a number of 

mechanisms. It is a relatively rapid process occurring at the time of antigen exposure to the T-cell 

and results in the T-cell becoming functionally inactive. This anergic state can occur by several 

mechanisms including insufficient co-stimulation at the time of antigen presentation, binding in the 

presence of immunosuppressive cytokines (e.g. TGF-β, IL-10), the presence of immunosuppressive 

immune cells (e.g. MDSCs, TAMs) or the activity of co-inhibitory signals (e.g. PD-1, CTLA4).215, 216 This 

is particularly relevant within the context of cancer as tumour cells typically act as poor APCs, 

expressing few co-stimulatory factors and upregulate immune checkpoint expression and indeed 

tumours inducing T-cell anergy has been previously demonstrated.217, 218 T-cells in an anergic state 

are still capable of becoming effector T-cells, but this process is likely mediated by various factors 

such as the presence of cytokines (e.g. IL-2 and IL-15),219-221 the absence of which may be a barrier to 

reversing anergy. PD-1/PD-L1 IM therapy may therefore be limited in efficacy in the context of 

anergic T-cells, though this remains an under characterised area.  

Unlike T-cell anergy, which is a rapid process occurring at the earlier stages of tumour development, 

T-cell exhaustion is a mechanism of T-cell dysfunction that results from long-term exposure to 

antigens. T-cell exhaustion has been best characterised in CD8+ve cytotoxic T-cells and was first 

described in chronic viral infections such as hepatitis C and HIV but has now been indicated in 

playing a critical role within cancers as a major route for lack of immune response within the TME.214, 

222, 223 T-cells are initially activated and gain their cytotoxic and effector functions but, as the insult 

persists and continuous antigen stimulation remains, they become unable to act as effector cells, 

gradually losing functions, such as cytotoxic activity, proliferation, cytokine/chemokine production, 

and, at very late stages, die from apoptosis. Immune checkpoints including PD-1 are upregulated, 

transcription of genes coding for cytokine receptors are downregulated, genes coding for migratory 

and adhesive processes are altered and there are profound metabolic changes all resulting in 

ineffective T-cell function. 214, 223, 224. T-cell exhaustion is further induced by immunosuppressive 

immune cells (e.g. MDSCs, Tregs, TAMs), cytokines (e.g. IL-10, TGF-β) and immune checkpoints 

including PD-1 and CTLA4.214 T-cell exhaustion as a result of chronic viral infections has been shown 

to be regulated by PD-1 and IL-10 mediated pathways independently of each other, with the 
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blockade of either associated with recovery of exhausted T-cells to active effector status222 and the 

combined blockade of PD-1 with other immune checkpoints such as TIM3 and LAG3 also associated 

with recovering exhausted T-cells secondary to chronic viral infections.225, 226 The same reversal of T-

cell exhaustion as a result of PD-1/PD-L1 IM therapy in cancer has not been consistently observed, 

with various mechanisms including the upregulation of multiple immune checkpoints, the 

downregulation of CD28, and PD-1 mediated metabolic changes all potential causes for T-cell 

exhaustion irreversible by PD-1/PD-L1 IM therapy,227, 228 though it has been demonstrated that 

blockade of multiple immune checkpoints maybe more effective than IM monotherapy in cancer229, 

230 and may be superior at reversing T-cell exhaustion. 231 There is no specific marker for T-cell 

exhaustion, although the upregulation of immune checkpoints including PD-1, LAG3, TIM3 and 

CTLA4 have been shown to be correlated with more severe exhaustion states,225 which may partially 

explain the rationale for improved response with dual IM blockade. In any case, the presence of 

severely exhausted T-cells within the TME maybe a key factor for PD-1/PD-L1 IM resistance even in 

the context of PD-L1 expression and TIL presence.  

1.5.2 Primary resistance – TMB/Neoantigenicity 

Tumours that have a higher rate of mutations (tumour mutational burden; TMB) are typically 

associated with the greatest environmental insult as a precursor to malignancy (Fig 1.5.0), for 

example malignant melanoma is associated with ultraviolet radiation exposure, and SCC of the lung 

is associated with smoking.232 These mutations are essentially random, and contribute to many 

factors of oncogenesis and ongoing tumour survival and aggression, including driver mutations 

(EGFR/ALK), metastases and so forth. The probability of a tumour expressing neoantigens increases 

with a higher TMB, though this is not a perfect correlation.(Fig 1.5.0) At present there is no direct 

marker of neoantigen rate, so measurement of TMB maybe used as an imperfect surrogate. The use 

of this as a biomarker is discussed later, but there is evidence that there is a higher TIL rate of CD8+ 

T-cells in tumours with higher TMB,233 and indeed there is some evidence that a higher TMB rate 

confers superior response to anti-PD-1 treatment in NSCLC234 with a synergetic predictive ability 

when combined with PD-L1 status,235 although more recent data has shown this not to be wholly 

consistent.236, 237 However, higher TMB tumours (e.g. melanoma and NSCLC) are generally more 

immunogenic and generally see the best response rates to immunotherapy, including anti PD-1/PD-

L1 IM, whereas the low TMB tumours (e.g. pancreas and prostate cancer) are less immunogenic and 

generally respond more poorly to immunotherapy.238 Thus neoantigen levels, or markers of “non-

self”, are important in both initiating and maintaining an immune response, and the bigger this 

immune response is, the more profound response to anti PD-1/PD-L1 treatment may be. Whilst 

NSCLC have high TMBs on average, many will be relatively low (Fig 1.5.0) and as this does not 
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necessarily translate to high neoantigenicity, any therefore immune response against the tumour 

maybe muted.   

 

 

1.5.3 Primary resistance – other inhibitory mechanisms 

Resistance to IM therapy may come from epigenetic silencing of genes responsible for stimulating 

anti-tumoural response. For example, silencing of the chemokines CXCL9 and CXCL10 that stimulate 

Th1 via IFN-G has been implicated as mechanisms of resistance to IM therapy, and success in using 

Fig 1.5.0 TMB in solid tumours. A-  TMB and predicted neoantigen levels for several solid tumour 

types. A general but imperfect correlation between overall TMB and neoantigens are seen. Lung 

ADC and SCC are highlighted via red arrows. B – TMB variation across 30 tumour classes. Whilst 

NSCLC (red arrows) is on average at the high end, many cases for NSCLC, particularly for ADC, fall 

between 0.1 and 1 mutations /mbp, and therefore have a relatively low TMB. Modified from 

Buttner et al. 2018.²⁶⁶    
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epigenetic silencers in improving T-cell effectiveness, inhibiting tumour progression and enhancing 

PD-L1 therapy has also been seen.239 The loss of tumour suppressor genes may also contribute to 

resistance; for example loss of  PTEN has been associated with PD-L1 resistance probably through 

the downregulation of CD8+ve T-cells and upregulation of immunosuppressive cytokines such as 

VEGF and CCL2.240, 241 Other immune checkpoint inhibitors may be expressed in TMEs at the same 

time as PD-L1 such as TIM3, LAG3 and CTLA4.242 These alternative immune checkpoint molecules are 

not routinely looked for in clinical specimens, but may be active alternative routes of immune 

escape by tumour cells. T-cells can express adenosine A2A receptors, that act as immune checkpoint 

proteins, and a high level of adenosine within hypoxic regions of the TME would activate these and 

result in another pathway to immune suppression.243  

Beyond these mechanisms, other pathways of resistance are likely to exist, and within a tumour 

several immune inhibitory mechanisms that may or may not include the PD-1/PD-L1 axis might be 

active in parallel. Furthermore, the blockade of PD-1/PD-L1 in the context of multiple immune 

escape mechanisms may lead to the tumour favouring a different pathway, thus resulting in 

secondary resistances.  

1.5.4 Secondary resistance 

Secondary resistance is likely to occur as a result of changes within tumour cells and other cells 

within the TME, particularly the immune cells. Immunoediting resulting in a change of tumour cell 

populations may occur by actively downregulating neoantigen expression or by the “natural 

selection” process of allowing the most immunogenic cells to die, leaving the least immunogenic, 

and therefore cancer cells least likely to respond to IM therapy, as the dominant cell class within the 

TME. Direct evidence for this is minimal, but one study demonstrated in NSCLC patients that 

neoantigen loss in response to combined PD-1 and CTLA-4 IM therapy through both such 

mechanisms: the elimination of tumour subclones, and the deletion of chromosomal regions that 

contained truncal alterations.99 Other mechanisms that have been suggested include the 

upregulation of other immune-escape mechanisms in place of PD-1, such as TIM3,244 and the 

mutation of genes involved in responding to immune mechanisms such as  JAK1/JAK2 mutations that 

result in a lack of response to T-cell mediated IFN-G release.245 As PD-L1 and PD-1 can both act to 

generate immune escape by mechanisms not described in the classic PD-1/PD-L1 axis, primary 

resistance maybe a predominance of immune escape mediated by these alternative pathways, and 

secondary resistance caused by an upregulation of their impact.  

Most of the mechanisms outlined as potential reasons for resistance come with several questions 

however: are these mechanisms applicable to all tumour types? Do different immune-checkpoint 
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inhibitors share some, all or none of these features? Does PD-1/PD-L1 specific resistance have 

multiple mechanisms of resistance that are seen even within the same tumour?  

There are additional unknown questions such as the longer term changes on the immune system’s 

ability to mount responses to tumours caused by PD-1/PD-L1 IM therapy. For example, Pauken et al. 

2016 found that, although PD-1 blockade could reverse some activity of exhausted T-cells to effector 

cells, the ability of these T-cells to become T memory cells was lost. This is perhaps particularly 

relevant in patients with recurring tumours, and it is currently unknown if this would result in 

resistance to PD-1/PD-L1 IM therapy in the setting of a recurrent tumour after previously successful 

treatment by IM therapy.246 

However, whilst immune escape mechanisms outside the classic axis exist, and the possible 

pathways to resistance are many, the fact remains that many NSCLC patients do respond to PD-

1/PD-L1 IM therapy, and this suggests the ‘classic’ PD-1/PD-L1 axis is a major mechanism of immune 

escape for many tumours. An important next step is to be able to better predict which tumours 

predominantly use this method of immune escape, and therefore which patients will best respond 

to PD-1/PD-L1 therapy.  

To date, the only clinically validated predictive biomarker for assessing response to PD-1/PD-L1 IM 

therapy is PD-L1 expression by immunohistochemistry (IHC). This thesis will explore in greater details 

many limitations of this approach, but IHC is the de facto method of analysing protein expression in 

the majority of tissue samples used clinically, due to the relatively inexpensive costs, ease and speed 

of IHC.247 A brief overview of the strengths and weakness of IHC with particular regards to PD-L1 will 

be given here.  

1.6 Predicting response to PD-1/PD-L1 IM therapy 

1.6.0 Immunohistochemistry: a brief overview of a typical pathway.  

The use of immunostaining to highlight features of tissue began in the 1930s and was gradually 

developed throughout the 20th century as a highly effective, specific and relatively cheap tool now 

used in clinical pathology laboratories globally.247, 248 IHC is the practice of using antibodies that bind 

to a specific epitope region of a protein of interest (primary antibodies) combined with a dye that 

will allow visualisation of this event, often another antibody conjugated to a chromophore 

(secondary antibody). A typical IHC workflow is presented here: tissue selected for IHC is prepared 

by producing FFPE (formalin fixed paraffin embedded) samples in which tissue is ‘fixed’ within 

formalin (a formaldehyde based fixative, typically ‘10% neutral-buffered formalin’ (NBF) that 

contains approximately 4% formaldehyde.), a process that prevents the degradation of tissue by 
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decomposition or autolysis, and preserves the cellular architecture and composition of tissue, and 

then dehydrated before the addition of paraffin, which embeds the tissue into a paraffin wax block. 

FFPE blocks can then be sectioned, in which a microtome is used to produce thin (usually 2-4µm) 

slices of tissue that can be floated onto water before being placed on glass slides. (More detail is 

given in Chapter 3 (Materials and Methods) and Chapter 4 (The effect of pre-analytical conditions on 

PD-L1 expression)). A by-product of formalin fixation is cross-linking, in which nucleic acid based or 

amino-acid based intra-cellular components are bound together, resulting in the formation of DNA 

and/or protein crosslinks, which can result in ‘epitope masking’; a process that results in antibodies 

unable to correctly bind to their respective proteins. More detail is given in Chapter 4, but ‘antigen 

retrieval’ (AR) is the process of breaking crosslinks so that epitope regions are no longer masked, 

usually by heat or enzymatic methods. Next, blocking of proteins within the tissue may be required 

to prevent non-specific binding of the antibodies (and therefore non-specific staining) which is 

particularly important if using the avidin-biotin complexes (ABCs) frequently used for IHC assays, as 

biotin is a frequently found in many human tissues, although alternative approaches, such as the 

Roche Ventana Optiview (used for the PD-L1 clones SP263 and SP142) uses a nonendogenous 

hapten based approach that minimises this issue and reduces non-specific staining.249 Blocking of 

endogenous enzymes may also be required, for example endogenous peroxidase can interfere with 

assays using horseradish peroxidase (HRP)-conjugated antibodies and will need to be blocked (e.g. 

SP263 uses 3% hydrogen peroxide). The next step involves selecting a primary antibody to bind to 

the protein of interest. For PD-L1, many primary antibodies used for IHC are available, including 

SP263, SP142, 22C3, 73-10, 28-8, E1L3N and others, each with distinct epitope regions and staining 

patterns, the focus of which is discussed in more detail in Chapter 2 (Literature review). Generally 

these are monoclonal rabbit antibodies which means they are highly specific, prone to less variation 

and highly reproducible, but requires adherence to a stricter set of assay protocols and are more 

sensitive to artefactual loss of staining than polyclonal antibodies. The secondary antibody, that 

binds to the primary antibody and provides the visualisation component must also be selected, with 

the commonest secondary antibody being the chromophore DAB (3, 3'-diaminobenzidine) which 

binds to HRP to produce a brown stain easily distinguishable from the blue of haematoxylin 

counterstain on microscopy (Fig 1.6.0).  HRP/DAB is stable, permanent, resistant to many 

environmental variables and can be visualised under a standard brightfield microscope, although it 

can produce background staining even with blocking steps in place and is not an inherently easy to 

quantify stain. 
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Several steps can be taken at this stage in order to amplify the signal from the secondary antibody, 

which can improve the visualisation of the antibody but makes it harder to standardise 

quantification, particularly as this is not always performed and can vary between assays (e.g. SP263 

does not require amplification, but SP142 does). Finally, a counterstain is applied to the tissue, (for 

HRP/DAB this is typically haematoxylin), so that the specific cellular location of the DAB staining can 

be identified. ‘Controls’ are pieces of tissue with known expression levels that are required to 

determine if a successful reaction has occurred: a positive control will provide evidence the assay 

has been successfully completed, and a negative control that there is not excess background and 

non-specific staining, as well as to allow for the comparison of different sections stained in different 

runs to ensure consistency of the assay. An example of PD-L1 IHC is shown in Fig 1.6.0. 

Fig 1.6.0  A NSCLC immunolabelled for PD-L1 (SP263) showing its typical location on tumour cell 

membranes by the brown chromophore DAB. There is weaker cytoplasmic expression, which is 

ignored in terms of scoring if unaccompanied by membranous staining.  Some immune cells are 

also stained. The blue counterstain of haematoxylin allows for the cellular component of the DAB 

staining to be identified.  
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The practice of using IHC to detect PD-L1 means it can be applied in the majority of clinical labs 

worldwide, although variation between platforms and antibodies is an area of significant concern. In 

addition, the nature of the tightly regulated IVD (in-vitro diagnostic) assays required for PD-L1 IHC 

means individual labs are less able to make changes to the protocol. Whilst this can ensure 

consistency, it also means tissue is susceptible to pre-analytical variation that can have a significant 

impact on the final result. The assessment of PD-L1 IHC is discussed in more detail in Chapter 3, but 

it is important to note that unlike many stains, the presence or absence of DAB staining in the 

correct cellular components is not sufficient to produce a clinical report; the quantity of staining is 

also necessary, and pre-analytical and analytical variation are key factors that can dramatically alter 

the quantification of PD-L1 expression. IHC is not an assay inherently designed for quantification, 

and as has been discussed, differences in assays, including AR and amplification can dramatically 

alter chromophore levels, rendering comparisons between clones challenging. This is discussed more 

fully in Chapter 2 and Chapter 5 (Analytics and post-analytics: Digital pathology and PD-L1 

interpretation).  

Other techniques for assessing PD-L1 expression levels include immunofluorescence (the use of a 

fluorophore instead of a chromophore), multiplex IHC and mass-spectrometry, all of which may be 

able to better quantify PD-L1, either by inherent advantages of the technique or though use with 

digital image analysis, as well as to provide simultaneous details about other relevant proteins from 

the same piece of tissue. Some of these (non-clinically validated) techniques are discussed later in 

this thesis.  

1.6.1 PD-L1 IHC to guide IM therapy 

Many of the indications for the use of PD-1/PD-L1 IMs is based on the predictive power of PD-L1 

expression by IHC. The complex nature of PD-L1 IHC is illustrated by the myriad ways in which a 

tumour is defined as ‘PD-L1 positive’, its inconsistent predictive behaviour, and the wide variety of 

assays and clones that can be used, hence PD-L1 IHC’s variable status as a companion or 

complementary diagnostic. (Table 1.6.0). PD-L1 expression levels may rely only on scoring PD-L1 

positive tumour cells (e.g. to generate a tumour proportion score (TPS)) or both tumour cells and 

immune cells together (to generate a combined positive score (CPS)) or the tumour cell and immune 

cell components are scored separately (such as TC/IC scoring for SP142). Furthermore, the 

percentage cut-off for any of these to determine positive or strong positive tumours varies between 

clones and tumours (Table 1.6.0, 11, 250-253). For NSCLC, however, a TPS is generally used (with the 

exception of the SP142 clone), and throughout this thesis a percentage TPS will be given to describe 

PD-L1 expression unless otherwise specified.  



30 
 

 

Clone Cancer with associated PD-L1 scoring level 

 NSCLC Gastric Cervical Urothelial HNSCC 

22C3 ≥1% ≥50% TPS ≥1% CPS ≥1% CPS ≥10% CPS ≥1% CPS 

      

 Urothelial Breast NSCLC 

SP142 ≥5% IC ≥1% IC ≥50% TC or ≥10% IC; ≥1% TC or ≥1% IC 

      

 NSCLC Urothelial 

SP263 ≥1% ≥25% TPS ≥25% TC; ICP >1% + IC ≥25%; ICP = 1% + IC = 100% 

      

 NS-NSCLC HNSCC Urothelial Melanoma 

28-8 ≥1% ≥5% ≥10% TPS ≥1% TPS ≥1% TPS ≥1% ≥5% TPS  
 

 

A brief overview of some of the current approvals for PD-1/PD-L1 IM therapy in NSCLC and their 

relationship to PD-L1 IHC illustrates the complexity and variability of the situation: indications that 

require the use of PD-L1 IHC as a companion diagnostic (in which a specific assay and result is 

required for prescription of a specific therapy in a specific clinical context) in NSCLC include 

pembrolizumab for 1st line metastatic treatment (TPS ≥50%)48, 254 or in 2nd/3rd line metastatic 

treatment (TPS ≥1%).255 Use of PD-L1 IHC testing as a complementary diagnostic (in which an assay 

can be used to help guide therapeutic decisions) includes nivolumab for 2nd/3rd line metastatic non-

squamous NSCLC (TPS ≥1%)47 or to guide a number of other PD-1/PD-L1 IM indications even if 

increased benefit for PD-L1 positive patients is not seen, such as pembrolizumab as 1st line therapy 

combined with XCT in metastatic NSCLC,256, 257 nivolumab as 1st line therapy combined with 

ipilimumab in stage 4/recurrent NSCLC258 or 2nd/3rd line metastatic squamous NSCLC,46 atezolizumab 

in metastatic NSCLC as 1st line combination therapy with XCT259 or bevacizumab,213 or as 2nd/3rd line 

metastatic NSCLC monotherapy.49, 260 Therefore PD-L1 IHC as a companion diagnostic has a relatively 

small number of uses, whereas PD-L1 IHC as a complementary diagnostic has a broader array of 

applications. This is a constantly developing field both in NSCLC and in other tumour types, but the 

use of PD-L1 IHC in the clinical context is now firmly established, with new indications a frequent 

occurrence.  

 

Table 1.6.0 PD-L1 IHC clone, scoring approach and ‘cut-off’ for classifying ‘PD-L1 positive’ by   

tumour type according to FDA in-vitro diagnostics approvals. 
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1.6.2 Stratified medicine and PD-L1 as a biomarker 

Stratified medicine, targeted therapies and predictive biomarkers have revolutionised the treatment 

landscape of many diseases, including advanced NSCLC. The process is far from straightforward, 

however. In an ideal situation a specific therapeutic agent would be developed alongside a 

predictive biomarker designed to be used as a companion diagnostic and these would then be 

approved at the same time, such as when PD-L1 IHC (22C3 clone) was approved as a companion 

diagnostic for prescribing pembrolizumab for patients with advanced NSCLC in 2015.254 This gave a 

clear remit for the use of a PD-L1 IHC assay and prescription of a specific PD-1 IM therapy. Drug 

development and predictive assays are not always so clearly linked; for example, in the same year, 

the 28-8 clone was also approved as a complementary diagnostic for nivolumab,47 and atezolizumab 

was subsequently approved for use regardless of PD-L1 expression levels.49 Hence the current 

situation is one in that PD-L1 positivity is either required, used as a guide, or not required at all, for 

prescribing PD-1/PD-L1 IMs, depending on specific circumstances.  

It is to be expected that the approach to designing and using companion and complementary 

diagnostics focusing on a specific target will change over time however. For example, the well 

characterised use of scoring HER2 (human epidermal growth factor receptor 2) for prescribing 

trastuzumab in breast cancer was initially based on expression by IHC, but companion diagnostics for 

this indication have diversified and now include ISH (in-situ hybridisation) and broad NGS (next-

generation sequencing) based panels.261, 262 Change in the use of PD-L1 IHC has also been seen as 

clinical trial design has evolved: in the early clinical trials for PD-1 inhibitors, PD-L1 expression by IHC 

either wasn’t performed, was only performed retrospectively and/or was only performed on a 

subcohort of the treated patients.46, 263-265 Contemporary trials generally all use PD-L1 IHC to assess 

PD1/PD-L1 IMs, however, and in clinical practice it is recommended to perform PD-L1 IHC as a reflex 

test in several tumour types, including NSCLC,266 indicating a shift away from testing for PD-L1 only in 

specific circumstances, and a general acceptance of testing all NSCLC patients.  

Despite this, the use of PD-L1 IHC to predict treatment is not a simple or consistent situation. In the 

Checkmate 057 trial an association between PD-L1 expression and favourable outcome was noted 

for previously treated patients with advanced non-squamous NSCLC treated with nivolumab,47 using 

a cut-off of 1% TPS (with increasing responses using ≥5% and ≥10% cut-offs). The Keynote-010 trial 

treated advanced NSCLC in the second line setting and recruited only patients of ≥1% TPS, and found 

them to have a superior PFS (progression free survival) with pembrolizumab255 and in the Keynote-

024 trial patients with advanced NSCLC whom had a PD-L1 TPS of ≥50% had superior PFS when 

treated with pembrolizumab in the first line setting.48 This initial data seemed to point in the 
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direction that PD-L1 positivity was therefore a useful predictive biomarker for PD-1 IM therapy, and 

higher levels of expression seemed to convey a more favourable outcome. Even for the Checkmate-

017 trial, which saw benefit in advanced squamous-NSCLC treated with nivolumab but saw no 

stratification by PD-L1 expression, it is fair to point out not all patients had tissue available to test, 

and what was tested was a mixture of fresh and archived tissue, and so was possibly an outlier in 

terms of the benefits of PD-L1 expression.46 

Unfortunately, not all trials provided such clear data for the benefit of stratifying patients by PD-L1 

expression: Checkmate 026 looked at treating advanced NSCLC patients with ≥1% PD-L1 expression 

with nivolumab in the first line setting but failed to reach its target outcomes.267 This failure was 

blamed on various reasons, including a cohort more likely to respond favourably to XCT (a 

subsequent statement paper cited reasons including that the cohort generally had small tumour 

burdens and was composed of a high proportion of women) and that there was a relatively low 

proportion of patients with high PD-L1 expression (≥50%).268 The OAK trial found benefit to all 

advanced NSCLC patients treated with atezolizumab in the second line setting, and whilst higher PD-

L1 expression was associated with superior response, benefit over XCT was still significantly better, 

albeit to a lesser degree, for the PD-L1 negative cohort.49 (Fig 1.6.1) 

Taken together, these results seem initially to be incompatible: several studies show the benefit of 

PD-1/PD-L1 IM therapy only in PD-L1 expressers, but other studies show the benefit is there for all 

patients regardless of PD-L1 status. However, several factors could explain these apparent 

discrepancies, including the unknown variation of efficacy between the PD-1/PD-L1 IMs or the 

different patient cohorts between studies. Other variations between clinical trials includes the use of 

different PD-LC IHC clones to study expression, the use of different ‘cut-off’s to define positivity, the 

use of different specimen types between and within studies and unknown variables such as variation 

in pre-analytical factors.  

The difference between predictive biomarkers that share the same target has been shown to be 

clinically relevant in other settings with known variation in detection rates between technologies 

even for matched patient samples. For example there maybe variation between matched samples 

for ALK translocation by detection by IHC or FISH.269  

PD-L1 IHC adds further complexity by the sheer number of IHC clones available, the different 

platforms the assays can be performed on, the differences in interpretation, and the heterogeneity 

of tumours. It is also interesting to note that for many of these studies there are a small number of 

‘rapid-progressors’ in the IM treated arm, with survival curves showing an initial cross over, in which 

at the earliest stage XCT patients perform better than IM therapy, implying that, for some patients, 
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IM therapy will produce worse outcomes, even if PD-L1 positive, even in the context of a cohort that 

overall has benefit from IM therapy.49, 258, 270 (Fig 1.6.2). This suggests the expression of PD-L1 alone 

is not a discriminatory feature for predicting rapid progressors and illustrates a lack of understanding 

in how best to classify PD-L1 expression.  

 

 

 

The results of clinical trial data summarised in Fig 1.6.1 and Fig 1.6.2 illustrates that PD-L1 IHC 

provides important biological information, but does not translate easily to consistent clinical 

guidance. The optimisation and maximal accuracy of PD-L1 IHC to achieve consistent results is the 

first step to improving prediction of response to PD-1/PD-L1 IM therapy. In so doing, not only will 

better treatment guidance be available, but effective stratification of patients reduces waste, 

minimises unnecessary toxic exposure and improves cost effectiveness of treatment. The second 

step is a consideration of which factors within the TME could prove to be powerful additional 

biomarkers to use in conjunction with PD-L1 IHC. It is clear the complexity of the TME means that 

any single cell type, cytokine or immune marker, including PD-L1, is not necessarily consistently 

associated with pro-tumoural or anti-tumoural activity, and therefore no single marker will be a 

reliable predictor of response to IM therapy.  

Fig 1.6.1 Survival analysis curves showing overall survival (OS) in two seminal PD-1/PD-L1 IM 

trials A – Keynote 010 B – OAK. A1 + B1 show high PD-L1 expressers with significant benefit from 

IM therapy over XCT. A2 shows that all comers (≥1% TPS) and B2 shows that PD-L1 negative 

patients both still benefit from IM therapy over XCT, albeit to a lesser degree than high PD-L1 

expressers. Modified from Herbst et al. 2016²⁵⁵ and Rittmeyer et al.2017.⁴⁹ 
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In order to do so, this thesis will first consider what is already known about PD-L1 IHC and the 

potential reasons for its variable performance as a predictive biomarker by performing a 

comprehensive literature review on this topic. 

 

 

 

 

 

Fig 1.6.2 Survival analysis curves showing overall survival (OS) in three trials A  - Keynote 042 B  - 

Checkmate 227 C – OAK. All three trials show PD-L1 positive patients have superior OS when treated 

with IM therapy over XCT, but also show an early-phase ‘cross-over’ of survival curves in which IM 

therapy conveys worse survival for a subcohort of PD-L1 positive patients. 
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 Chapter 2 – Literature Review 

The purpose of this literature review is to summarise the current knowledge base on the limitations 

of PD-L1 expression by IHC as a predictive biomarker for PD-1/PD-L1 IM therapy, with a focus on its 

use in NSCLC specifically. The data and findings in other tumour types may yield additional 

interesting information, and so relevant papers have been included as appropriate. I have split the 

literature review into different sections that reflects how this thesis has approached the problem of 

overcoming the limitations of PD-L1 expression by IHC as a predictive biomarker. Firstly, the impact 

of pre-analytics is considered: if handling or usage of tissue results in a false change of PD-L1 

expression, and thus is not a true reflection of the genuine biology occurring within the selected 

sample. Secondly, the analytics and interpretation of PD-L1 IHC is explored: if changes in PD-L1 

expression vary as a result of using different antibody clones or assays to detect PD-L1, and what  

the variation between and within the pathologists performing the interpretation is. Finally, 

heterogeneity is looked at: what is the variation of PD-L1 expression within a sample, between 

samples, and over time? By focusing on these three areas to ascertain our knowledge of when 

variation is artefactual, when “variation” is related to interpretation, and when variation is genuine, 

this literature review will highlight areas of general consensus and areas where our current 

knowledge is lacking.  

The literature review was initially performed in September 2017, but this rapidly developing area has 

led to a significant increase in the general body of data available, and reflects our increasing 

knowledge in this area. Thus a repeated literature review was performed in August 2019. The search 

process and terms are shown in Fig 2.1.0 and Table 2.1.0 respectively, but to illustrate this point, 

only 61 papers were included in the initial search, with over double that number included in the final 

review. The nature of this rapidly developing field is such that simply searching for “PD-L1” in 

SCOPUS returns 507 hits for a ten year period of 2000 to 2010, 1,369 hits in a five year period of 

2011 to 2015, but over 3,000 hits in 2019 alone. Therefore this literature review accepts it may not 

contain the most recent of developments, but for the large part accurately reflects the overall body 

of knowledge pertaining to the use of PD-L1 expression as a biomarker, and, in some cases, 

highlights where a general consensus has been agreed, and where areas of contention still require 

debate.  

2.0 Initial findings 

Two databases, SCOPUS and Pubmed were searched with the term “PD-L1” using Boolean operators 

and 21 additional terms to generate 18 unique searches on the 2nd August 2019 (Table 2.1.0). The 

intent was to include original research articles only. A total of 2,474 hits were returned, with 149 
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articles finally selected for the in-depth literature review. Reviews, abstract/poster only returns, 

articles in non-English and articles dealing with non-NSCLC were excluded, although 28 non-NSCLC 

papers of particular interest, seminal findings or when there are no equivalent NSCLC papers were 

included. This process has been summarised in Fig 2.1.0.  

 

 

Fig 2.1.0 Flow chart of the literature review process illustrating total number of return articles 

from initial search and rationale for inclusion/exclusion of papers.  
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Search Term* Results Excluded Included 

    

“PD-L1” AND:    

“pre-analytical” 6 3 3 

“fixation” 15 8 7 

“specimen age” 78 66 12 

“sample age” 85 4 8 

“storage” 6 4 2 

“Decalcification” 1 0 1 

“EDTA” 4 3 1 

“cold” AND “Ischaemia”** AND “time” 1 0 1 

    

“PD-L1” AND:    

“IHC comparison” 125 75 50 

“Clones comparison” 29 24 5 

“Post-translational modification” 7 4 3 

“Immunohistochemistry” AND “Soluble” 23 15 8 

    

“PD-L1” AND:    

“Heterogeneity” 206 158 48 

“Concordance” 117 69 48 

“Paired” 99 88 11 

“Cytology” 264 241 23 

“EBUS” 17 5 2 

    

“PD-L1” AND “XCT” AND 
“immunohistochemistry” AND 
“expression” AND “lung” 

378 368 10 

“PD-L1” AND “Radiotherapy” AND 
“immunohistochemistry” AND 
“expression” AND “lung” 

128 122 6 

 Total (with duplicates) 249 

 Grand total 149 

 

2.1 Pre-analytics 

7 unique terms were used for the pre-analytical part of the literature review (Table 2.1.0). It is 

interesting to note the IASLC (International association for the study of lung cancer) guidelines for 

pre-analytical conditions include suggestions for 10 parameters, with a chief focus on fixation and 

Table 2.1.0 Results for articles by search term with numbers included and excluded. Grand total 

removes duplicate papers that appeared in multiple searches.  

*These are for initial search returns and therefore some articles appear in multiple searches. 

**American and British spelling terms are both used where appropriate; for example ischaemia 

and ischemia were both searched for in this context. 

EBUS: endobronchial ultrasound; EDTA: Ethylenediaminetetraacetic acid 
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storage/specimen age. Additional parameters include cold ischaemia time and decalcification, 

though there is little hard data to evidence these suggestions in the context of PD-L1 specifically; 

indeed searching for these terms with PD-L1 return very small numbers of relevant articles (Table 

2.1.0). This reflects a general issue with PD-L1 IHC in that best practice for IHC has been applied from 

knowledge from generic immunochemistry data, but it is only with hindsight that the particularly 

delicate nature of PD-L1 IHC, and the uniquely critical nature of the quantification of PD-L1 

expression suggests that there are gaps in our knowledge about when specimens should be 

considered inadequate or inappropriate due to pre-analytical conditions. Manufacturers of the PD-

L1 clones have been clear to make the point that they have not been validated under certain 

conditions, and there is a general lack of information of the effect of certain pre-analytical 

parameters on PD-L1 expression. None the less, PD-L1 analysis is performed on tissues that, in a 

global context, have been subjected to a massive variation in pre-analytical conditions, and the 

clinical implications of this is generally unknown.  

Most of the focus and data for pre-analytical conditions effecting PD-L1 expression, and questions 

surrounding the use of specific samples, has been around the age of the sample, and questions 

pertaining to fixation, and these are therefore the chief factors considered in this part of the 

literature review.  

2.1.0 Pre-analytics - Fixation 

Possibly the earliest paper that mentions the potential effect of fixation on PD-L1 expression is 

Thompson et al. 2005,271 whom compared a cohort of FFPE renal cell carcinomas stained for PD-L1 

(5H1 clone) with previous work performed on fresh-frozen specimens of renal cell carcinomas in 

2004 and 2005. In their fresh-frozen cohorts, they found 37% of patients were positive for PD-L1, but 

only 24% in the FFPE cohort, with the cross-linking properties of formalin blamed for this 

discrepancy. It is also possible that differences in patient population or problems pertaining to 

heterogeneity or the 5H1 clone could be partially to blame, but it was not until major work in the 

NSCLC area came to light that this area was majorly addressed again in the literature. 

Manufacturers’ manuals for the clinically validated clones Dako-Agilent 22c3 and 28-8 and Roche-

Ventana SP263 and SP142 all explicitly state they are for use in FFPE tissue, and typically make no 

mention of either fresh-frozen tissue or other fixative methods.250-253 Fresh-frozen is not typical for 

routine clinical tissue samples, and the effects of using formalin on PD-L1 expression has been 

considered in subsequent papers. Differences between histology and cytology specimens is 

considered in more depth later in this review, but the question of the use of cytology specimens is 



39 
 

key due to the prevalence of non-formalin based fixatives used in cytology specimens, though again 

this is rarely touched upon specifically in the literature.  

Rebelatto et al. 2016 discuss an optimised approach to the specific use of SP263 clone in patients 

samples of NSCLC and HNSCC (Head & Neck squamous cell carcinoma) as well as cell line ADCs.272 In 

addition to other findings, they recommend that alcohol based fixatives, such as 95% alcohol and 

AFA (Alcohol Formalin Acetic acid), as well as Glyoxal based Prefer fixative, should be avoided as 

they cause a loss of PD-L1 staining intensity, but 10% NBF, zinc formalin and Z5 (a zinc based fixative) 

do not. It should be noted, however, that although this paper is a comprehensive overview of the 

effects of pre-analytical parameters that may affect PD-L1 expression, the verification studies in this 

study used a single-cut off point of 25% to divide samples into either “high” or “low/negative”, (in 

keeping with the Phase 1 clinical trials using SP263 at the time 243.) However, this single cut-off is 

problematic in that significant differences in PD-L1 expression, including changes around the more 

frequently used clinical cut-offs of 1% and 50% will be missed in assessing the effect of pre-analytical 

variation. Indeed this is a common limiting factor in studies that compare PD-L1 expression; very 

typically only one or two cut-offs are used to determine if changes are present, without the 

recording of specific percentage changes, and therefore large changes either side of the ‘cut-off’ are 

not included (for example, a change from 30% to 100% may not be recorded if a ≥25% ‘cut-off’ 

threshold is used) and small percentage changes around the cut-off (for example, a change from 

20% to 25%) may falsely emphasise the impact of certain parameters, particularly as smaller changes 

maybe more susceptible to variation from inter-observer interpretation or tumour heterogeneity. 

Notwithstanding this limitation, the fact that non-formalin based fixatives appear to decrease PD-L1 

expression, is an interesting finding, and one that appears to confirm the validity of formalin as the 

de facto fixative of choice.  

Wang et al. 2018 looked at four separate fixative methods in 1,419 NSCLC cytology, small biopsy and 

surgical specimens. 10% NBF, Cytolyt (Methanol based fixative), alcohol followed by NBF, or TissuFix 

(formaldehyde and alcohol mix) were used and the specimens were scored for PD-L1 TPS using the 

22C3 clone, categorising samples into negative, weakly positive or strongly positive (using <1%, 1-

49% and ≥50% TPS cut-offs respectively).273 Overall they found no difference in PD-L1 expression 

between the different fixatives types. They note that in previous studies the effect of methanol on 

reducing immunohistochemical staining intensity was largely limited to nuclear stains (ER, TTF-1 etc.) 

and largely unaffected in membranous stains, of which the relevant scoring of PD-L1 is an example 

of. Their results echo this, in that membranous PD-L1 expression is unaffected. They conclude that 

10% NBF remains their fixative of choice.  
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Jain et al. 2018 compared fixatives via matched cytology specimens and small biopsies in 26 NSCLC 

patients; using 10% NBF for the small biopsies and CytoRich Red (Formalin and alcohol mix fixative) 

for the cytology specimens. PD-L1 expression was assessed using the SP263 clone, and the same 

protocol for histology and cytology specimens was used.274 Specimens were split into either “high” 

or “low/negative” using a 25% TPS cut-off point. 23 of 26 cases (88.4%) were concordant for PD-L1 

expression, regardless of the fixative used. Although there was some concern around false negatives 

and aberrant nuclear staining, the overall conclusion was that alcohol-based fixatives are generally 

suitable for using in tissues for PD-L1 analysis.  

Lloyd et al. 2019 provide a comprehensive comparison of different fixatives’ effect on PD-L1 

expression by comparing 5 different preservative/fixative methods in human ADC cell lines of known 

high PD-L1 expressing phenotype.275 ThinPrep PreservCyt, ThinPrep CytoLyt (both methanol-based), 

normal saline, RPMI (Roswell Park Memorial Institute) medium (both preservatives rather than 

fixatives) and 10% NBF were used to fix the cells before cell block preparation and staining for PD-L1 

with the 28-8 clone. Lloyd’s group used a slightly more involved scoring process than is usual, in 

which cells are placed into a category (1-5) that account for location and completeness of staining as 

well as cell viability, with each individual cell within a sample counted and placed into one of these 5 

categories by three independent pathologists. Some changes in cell viability were noted (e.g. CytoLyt 

had significantly more non-viable cells than formalin). No false positives were noted in the negative 

cell line, regardless of fixative used, and the majority of cells in the known strongly expressing cell 

lines demonstrated some form of PD-L1 expression, though this did include cytoplasmic or other 

staining patterns in some instances (96.3-99.8% of cells). Interestingly inter-pathologist concordance 

had different variations depending on fixative type – for example weak intensity scoring was most 

disparate in PreservCyt, but the largest discrepancy in 10% NBF and CytoLyt was complete 

membranous staining. PreservCyt demonstrated the largest amount of weak staining cells, (34.2% vs 

16.1%). The overall conclusion was that different fixatives can affect morphology and staining 

quality, and thus PD-L1 interpretation should be adjusted in view of this. They conclude formalin 

based fixatives are acceptable, but CytoLyt preparations should probably be avoided. In addition, 

though the cell blocks were generally created using the plasma-thromboplastin method, a duplicate 

group of specimens were fixed with PreservCyt using the Cellient cell block preparation, which in 

their hands provided the most consistent scoring between pathologists, provided the best 

morphology and most amount of membranous staining, leading them to suggest this may be the 

preferred option in cytology samples. However, this platform is not practically available in all labs, 

and these results would ideally need to be duplicated using patient samples, rather than cell lines, 

and with other PD-L1 clones.  
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Taken together these papers suggest that fixative types can have an effect on the expression of PD-

L1, but that the industry standard of formalin based fixatives, in keeping with the manufacturers’ 

instructions, is probably the best way to ensure consistent staining, even in the context of cytology 

based samples. However, they also demonstrate a recurring theme in wider attempts to answer 

questions around what effects PD-L1 expression: the clones, types of specimen and scoring methods 

all vary between studies; which means making firm conclusions based on these various studies is 

problematic. It also demonstrates the relatively small numbers of studies attempting to answer 

these questions.  

The question of the effect of fixation timings has also been addressed by a small number of studies. 

Forest et al. 2019 looked at a small number of NSCLC samples (excluding negative and 

heterogeneously expressing samples) as well as placental tissue.276 Tissues samples post-surgery 

(cold ischaemia <15 minutes) were placed into 10% NBF at 6 different time points, from immediate 

to 24 hours delay. A total of 5 NSCLCs were included, and the 22C3 and EL13N clone were used to 

assess PD-L1 expression, with the percentage of placental villi scored, and for the NSCLC samples the 

percentage of positive tumour cells given, as well as the intensities of staining. In this modestly sized 

study, with samples selected for homogenous expression, there was no difference seen in delay of 

fixation.  

Kawachi et al. 2019 addressed the question of fixation duration in 10% NBF, and looked at 55 NSCLC 

samples fixed for either 12-24 hours or 96-120 hours, and then stained for PD-L1 using both 22C3 

and SP263 clones.277 This group compared the mean TPS between the fixative groups, and found no 

difference to PD-L1 expression regardless of length of duration. However, although the differences 

were small (1.4% to 2.5%) and non-significant, a mean TPS change means little without the context 

of clinical guideline cut-off categories (the difference between 0 and 1% is maybe clinically relevant, 

for example). This finding was echoed by Kai et al. 2019 whom looked at 4 different NBF fixation 

times (ranging from 6 hours to 1 week) using the 22C3 clone (as well as Her-2 expression), albeit in 

32 gastric cancer patients.278 Taken together these results imply fixation time does not significantly 

affect PD-L1 expression, but these small sized studies, using different interpretation approaches, 

would need larger follow-up studies before the question of fixation time can be entirely dismissed, 

particularly when prolonged fixation is known to alter other IHC stains.279  

These papers represent the majority of published data on the effects of different fixatives and 

fixation time on PD-L1 expression, and generally imply that, as long as a formalin-based fixative is 

used, this area of pre-analytics does not repeatedly cause major concerns for the effect it may have 

on PD-L1 analysis by IHC.  
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As noted, papers that only use dichotomous cut-offs for PD-L1 expression may still miss important 

data or over-emphasise small changes, but conversely only recording mean TPS changes without 

reference to clinical cut-offs may underrepresent the clinical impact of differences. The 

inconsistency of reporting PD-L1, as well as the myriad other variations between studies does make 

comparisons challenging, and as will be demonstrated, this is a common theme when looking at PD-

L1 IHC.  

2.1.1 Pre-analytics – Specimen Age 

An important question in the suitability of specimens for PD-L1 expression analysis is the age of the 

specimens. This is important for two reasons: the first is the clinical and biological relevance of an 

older specimen in regards to how representative it is of the patient’s current disease status, and the 

second is the possibility of older tissue falsely representing the status of PD-L1 by artefactual under- 

or over- staining. The first will be discussed later in this thesis, but the second concern will be 

considered here in detail.  

The first major phase II/III clinical trials for the use of nivolumab (Checkmate 063, Checkmate 017, 

Checkmate 057 etc.)46, 47, 280 looked at PD-L1 expression retrospectively, whilst trials at a similar time 

for pembrolizumab (Keynote 001, Keynote 010, Keynote 024 etc.)48, 254, 281 incorporated the use of 

PD-L1 expression to stratify patients much earlier in the clinical trial pathway. In both cases, 

however, and in several subsequent trials, it seems apparent that PD-L1 expression was tested on a 

variety of different samples, including both fresh samples and archived samples from different 

patients, and it was only with some of the retrospective analysis that much thought appeared to be 

given to the age of the samples having a potential effect on PD-L1 expression, with Herbst et al. 2016 

producing an abstract at ASCO’s (American Society of Clinical Oncology) annual meeting that showed 

they found minimal difference in outcome for patients stratified for treatment using either fresh or 

archived tissue in the Keynote 010 cohort, using either the 1% or 50% cut-off value.281 However this 

data was not followed up on in a publication, and no specific numbers were given. They do state that 

for the 50% cut-off value, 40% of archival and 45% of fresh samples demonstrated this level of 

positivity, but based on the study sample size (1,034), and the number of samples acquired fresh 

(578) or from archive (456), this is in fact a difference of 260 patients in the fresh group and 182 

patients in the archived group, which is a relative decrease between fresh and archived of 30%; a not 

inconsiderable quantity of patients not eligible for the 50% cut-off depending on if they used fresh or 

archived samples. This abstract does have the benefit of being backed up by clinical outcome data, 

but is one of several pieces of data that showed varied and conflicting reports on the age of the 

specimen and the effect it has on PD-L1 expression.  
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Manufacturers generally recommend FFPE blocks are sectioned and stained for PD-L1 as soon as 

possible, and generally within 1-6 months for most applications250-253 and the IASLC guidelines 

recommend using blocks no older than 3 years of age,282 but the data for this is mixed. Calles et al. 

2015 first suggested that blocks older than 3 years old should be avoided based on their cohort of 

114 KRAS-mutant NSCLC patients.283 They used a non-clinically validated clone (9A11) with a cut-off 

of 5% of tumour cells deeming a sample ‘positive’. Based on this, they found FFPE blocks older than 

3 years of age had lower numbers of patients positive for PD-L1 than from blocks newer that 3 years 

(39% of cases positive in the newer samples, dropping to 15% of cases in 3 years or older). This was 

echoed by Midha et al. 2017, another ASCO meeting abstract, that looked at data from the 

ATLANTIC trial, which used the SP263 clone to assess PD-L1 expression on 1546 NSCLC patients’ 

samples, using a 25% cut-off for “positive”.284 They also found a large drop off of positive rates after 

3 years (around 30% of cases positive in the newer samples, dropping off to 13% of cases in 3 years 

or older samples). 

This loss of PD-L1 expression in older specimens is seen in other studies at different time points: 

Hata et al. 2017 found a drop-off in specimens older than 12 months (54.2% vs 26.4%), (though they 

could not confirm this in multivariate analysis) from 96 samples from 77 NSCLC patients using the 

28-8 clone.285 They used a semi-quantitative method to generate an H-score based on number of 

positive cells and intensity, (ranging from 0 to 300, 300 being 100% of cells positive at level “3” 

intensity), with a H score of ≥1 taken to be positive, ≥5 moderately and ≥10 strongly positive, with a 

final confirmation by pathologists. This loss was seen even with the observation that re-biopsied 

patients may have PD-L1 expression go up or down over time. Boothman et al. 2019 looked at 1,590 

patients’ samples from the ATLANTIC trial using the SP263 clone, and split these samples according 

to age (4 categories, from ≤3 months to >3 years) and used a 25% cut-off to deem samples as 

‘positive’. They found samples newer than 3 months were significantly more likely to express PD-L1 

at higher levels than older samples, with positive rates decreasing with age (34.3% vs 30.3% vs 29.4% 

vs 20.2% across categories increasing with age, p=0.039).286 Interestingly, however, they also studied 

123 patients with paired samples that were newer and older than 3 months; in this sub-cohort the 

majority had no change (74%) but 6.5% of patients had a decrease of PD-L1 expression over time 

and 19.5% of patients had an increase over time. The effects of treatment did not seem to be behind 

these changes, but it is uncertain if this is genuine temporal heterogeneity or an artefact of older 

samples.  

Giunchi et al. 2018 looked at 58 NSCLC patients and created TMAs from their samples. They used the 

SP142 clone and scored both the tumour cells and TILs to give a combined positive score of 1+ (<5% 

of cells), 2+ (5-50%) and 3+ (>50%) and compared samples from 2014 to ones from 2015 (~4 and ~3 
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years old at time of publication respectively).287 They found a significant reduction in PD-L1 

expression in the older samples for tumour cells (25.9% vs 15% p=0.018) though the numbers are 

small (15 cases vs 9 cases) and this was not seen for TILs. Their conclusion is that archived tissue is 

suitable for PD-L1 analysis, but caution should be used for tissues older than 1 year, though this 

conclusion is confusing as the article is published in 2018, some 3 years after their most 

contemporary tissue. The problems with SP142 in the context of NSCLC are discussed later in this 

thesis, but suffice to say it is not the preferred clone and so studies using this must be interpreted 

with caution.  

Despite these papers showing generally consistent evidence that older tissue sees a loss of PD-L1 

expression, not all published data does.  

Kim et al. 2017 looked at multiple clones in 97 resected NSCLC specimens with matched TMAs using 

22C3, SP263, SP142 and the research clone E1L3N. The major findings of this paper are discussed 

later. They used raw percentages to generate TPSs in increments of 5%, as well as dichotomous 

divisions using cut-offs of 1%, 5%, 10%, 25% and 50%. The study did not look at age of tissue as a 

primary outcome but they do mention that their tissues (collected over a 2 year period of 2015-

2016) did not differ in terms of PD-L1 expression based on age of the FFPE block; an observation 

consistent for all clones.288 Nakamura et al. 2018 looked at the question of aged tissue specifically, 

and used specimens from lung cancer patients with a wide variety of sampling techniques (surgery, 

bronchoscopy biopsies, CT guided biopsies, lymph node biopsies and pleural biopsies) stained for 

PD-L1 with both 22C3 and 28-8 clones, and categorised into non-expressing (<1%) low-expressing (1-

49% for 22C3, 1-10% for 28-8) and high expressing (≥50% for 22C3, and ≥10% for 28-8) PD-L1 

tumours.289 The tumours were sub classified by age using a cut-off of 6 months or newer (“fresh”) or 

older than 6 months (“archived”), and they found no significant difference in PD-L1 expression 

between fresh or archived tissue for either clone, though it should be noted the numbers for fresh 

(n=109) were much larger than archived (n=28). Wang et al. 2018 looked at 1326 specimens of 

NSCLC from surgical resections, small biopsies or cytology cell blocks (composed of EBUS-FNAs (Fine 

needle aspirates), pleural/pericardial fluids, EUS (endoscopic ultrasound) FNAs, FNAs and 

bronchoalveolar lavage).290 PD-L1 expression was looked for using the 22C3 clone and scored to 

generate a TPS and categorised as negative, weak positive or strongly positive (<1%, 1-49% and 

≥50% TPS respectively). When considering age as a factor specifically, they used a cut-off of 50% and 

split samples into <1 year, 1-2 years and >2 years and found no significant difference between age 

categories for PD-L1 expression.  
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Taken together, these papers initially seem to refute the conclusion that age is a factor for affecting 

PD-L1 expression in FFPE blocks. However, it should be noted that these papers all deal with tissue 

or cut-offs less than 3 years of age, and in the majority of cases that see a sharp drop off in PD-L1 

expression, 3 years or greater seems to be a consistent finding. Indeed, Gagne et al. 2019 looked 

specifically at addressing the value of the 3 year cut-off based on its inclusion within the IASLC 

guidelines.291 Using 1249 NSCLC patient specimens of various types, they stained for PD-L1 using the 

22C3 clone to generate a TPS and categorised into negative, weak positive or strongly positive (<1%, 

1-49% and ≥50% TPS) categories. Tissue specimens were split by age into 4 categories (<1 month, 1-

12 months, 1-3 years and >3 years) and they found a significant reduction in PD-L1 expression based 

on the weak and strongly positive categories for specimens older than 3 years (p=0.0031), and unlike 

previous studies, they found this to be a consistent finding in multivariate analysis that considered 

various demographic and pathological characteristics.  

Finally, if FFPE blocks are generally robust for most immunochemical stains, unstained sections are 

generally accepted as being more fragile.292, 293 This phenomena means that tissue destined for 

immunochemical analysis is generally stained as soon as possible after sectioning, and indeed 

manufacturers of the PD-L1 clones recommend staining sections as soon as possible.250-253 Not all IHC 

assays are as equally susceptible to loss when using aged tissue,294 but oestrogen receptor (ER) and 

progesterone receptor (PR) IHC, which, similar to PD-L1 IHC, have a scoring element including 

staining intensity and quantity, and are used for guiding treatment decisions in cancer patients, have 

been shown to be vulnerable to this (Fig 2.1.1)5, 295. Given the variability of  PD-L1 expression by IHC 

and the quantitative element of scoring, it seems reasonable to suggest that PD-L1 IHC maybe 

vulnerable to this loss as well, and if so it could have important clinical ramifications. This has not 

been widely studied, but Sato et al. 2018 looked at resected NSCLC specimens from 12 patients 

which had 5 serial sections stored and stained for PD-L1 using the 28-8 clone from time zero to 8 

weeks.296 This small study found that older sections had a stepwise loss of PD-L1 expression, and 

that sections should therefore be stained as soon as they are ready. Hendry et al. 2017 found 

samples sectioned fresh compared to the same samples sectioned 4 years previously had increased 

levels of PD-L1 expression intensity and significantly more cases reaching the 50% cut-off threshold 

for both the 22C3 clone (8.2% vs 3.7% p=0.019) and the SP263 clone (13.3% vs 3.3%, p<0.001) in 

TMAs (tissue microarrays) constructed from 368 NSCLC patients.297 However, Rebelatto et al. 2016 

found there was no difference in PD-L1 (SP263) expression in tissue sectioned and tested at 0 days 

to those sectioned and tested at different time points for up to one year, though as discussed 

previously this study used a single cut-off of 25% TPS and this alone is not the best indicator of 

change in PD-L1 expression.272  
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Notwithstanding the typical problems with attempting to synthesise a conclusion based on various 

papers looking at a specific aspect of PD-L1 expression (differing clones, differing specimen types, 

lack of multivariate analysis etc.) the general body of data suggests that FFPE blocks are fairly robust 

for PD-L1 expression provided they are not older than 3 years of age, but samples from before that 

Fig 2.1.1 Composite image of two studies that have looked at predictive IHC stains used to guide 

treatment decisions in breast cancer and demonstrate the susceptibility of staining loss in older 

tissue sections. A – Oestrogen receptor expression from tissue freshly cut to 30 day old tissue, 

modified from DiVito et al. 2004.²⁹⁶ B – Progesterone receptor expression in B1 - Freshly cut 

section, B2 – 6 month old section. Modified from Fergenbaum et al. 2004.⁵ 
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time are at significant risk of having falsely reduced PD-L1 expression. Tissue sections are probably 

quite susceptible to PD-L1 expression loss over time, but there is little direct evidence of this.  

Genuine biological change of PD-L1 expression over time (temporal heterogeneity) is discussed more 

fully later in this literature review, but it is worth mentioning here that artefactual change in PD-L1 

expression in older specimens is only partially the problem. There is also the ethical dilemma of 

choosing to subject patients to sampling in order to gain contemporary tumour tissues, which 

involves invasive procedures carrying a non-zero morbidity and mortality risk, against using older, 

easily accessible, but less clinically relevant tissue. Whilst previous work has attempted to laydown 

guidelines in this area,298 there is no simple solution, and it is worth bearing in mind that whilst 

tissue less than 3 years old may have no artefactual change in PD-L1 expression, it may bear little 

resemblance to a tumour that has metastasised and evolved over the same time period.  

2.1.2 Pre-analytics – Specimen types 

An important aspect of pre-analytics is how a specimen is retrieved from the patient, and how 

variations in the acquisition, storage and transport of such specimens might affect the eventual 

outcome. As most specimens validated via the major clinical trials were either biopsies or surgical 

specimens, ‘histology’ specimens are the recommended tissue of choice in terms of providing 

relevant clinical information. However, a considerable number of initial diagnostic specimens are 

‘cytology’ specimens, that is, specimens in which the architecture of tissue is lost, and the diagnosis 

is made on cellular characteristics alone. Indeed, over a third of patients have only cytology 

specimens available for diagnosis in advanced NSCLC,299 and it may be the most contemporary 

specimen available. Thus the question of the validity of cytology specimens is a critical one, but 

particularly challenging in that cytology specimens typically contain less material, represent a variety 

of tumour sites (primary, regional lymph nodes, pleural fluids etc.) and variation in terms of 

collection (e.g. smaller gauge needles than core biopsy), storage (often non-formalin based fixatives) 

and processing (typically cell blocks are produced for IHC), and indeed a difference in how they may 

be interpreted. Direct comparisons of fixatives has been discussed above, and the question of inter-

tumoural heterogeneity between sites of tumour follows in this review, (though it should be noted 

that the use of cytology and histology specimens is a potentially confounding factor in a number of 

studies), but a consideration of cytology specimens in general, including direct comparisons between 

cytology and histology specimens, will be considered here.  
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2.1.2.0 Suitability of cytology specimens 

Stoy et al. 2017 looked at the suitability of cytology specimens in 22 patients whom underwent 

EBUS-TBNA (transbronchial needle aspiration) or CT (computer-tomography)-guided aspirations of 

regional lymph nodes (LNs) (54.5%) or primary lung lesions (45.5%), with specimens placed in Cytolyt 

to prepare cell blocks for PD-L1, stained with 28-8. 2 cases (9%) were inadequate, but there was no 

difference in success rate between sampling methods or by needle gauge (5 sizes ranging from 19-

guage to 25-gauge).300 30% of the samples were PD-L1 positive (by 1% cut-off), which is perhaps a 

little low, but 2 cases had matched histology samples from the same location, which were found to 

be concordant (though the authors do not specify TPS) and one with histology from another location 

(primary vs regional LN) which was found to be different (90% at the primary lesion, 5% via the 

cytology LN), although the authors do note the histology specimen was taken 37 days previously, 

and prior to treatment. The authors conclude that cytology specimens are largely adequate for PD-

L1, but provide only minimal data for concordance with histology specimens. Biswas et al. 2018 

looked at 50 retrospective cases of NSCLC whom underwent EBUS TBNA and assessed the adequacy 

of the samples for PD-L1 by 22C3 as well as for ALK FISH and NGS for driver-mutations. 82% of the 

samples were adequate for all three testing methodologies, with a further 4% suitable for PD-

L1/NGS or PD-L1 alone, and 8% insufficient for testing at all, suggesting that cell blocks derived from 

EBUS-TBNAs generally provide adequate material for both PD-L1 and other critical predictive 

profiling.301 Arriola et al. 2018 looked at a variety of cytology techniques and compared them to 

concurrent core biopsies using 22C3. Techniques included conventional cell blocks, cell-transfer cell 

blocks (CTCBs) from smears, and direct smears from a variety of primary and secondary sites.302 

Generally speaking cell blocks and direct smears performed well, with good levels of concordance to 

their matched histology (80% and 94.4% respectively) but CTCBs performed poorly, being only 

adequate in 70% of cases and with poor concordance (62% for ≥1% TPS, dropping to 17% for ≥50% 

TPS) with the authors concluding that smears and cell blocks are adequate substrates, but 

unconventional cytology approaches are not reliable for PD-L1 IHC. In addition, though direct smears 

provided good concordance, they were the most challenging to interpret with 22% deemed 

‘challenging’ due to a variety of factors. Noll et al. 2018 also looked at direct smears and cell blocks 

compared to histology samples in 41 cases.303 The specimens were from a variety of sites and not all 

were concurrent, but using 22C3 they showed a generally high level of agreement, superior for 

direct smears, when compared to the matched histology core biopsy (cell block 84% concordance, 

direct smear 97% concordance), crossing a ≥50% clinically relevant TPS group in 6 cases and 1 case 

respectively.  
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A number of other papers included cytology specimens as part of a study comparing various PD-L1 

clones. Tsao et al. 2018 which reported the Blueprint study (discussed in more detail later) 

commented on the use of cytology specimens, and compared the ICC (Intraclass correlation 

coefficient) between multiple pathologists interpreting PD-L1 by various clones, and found generally 

good results for TPS scoring on both glass and digital slides (ICC 0.78 and 0.85 for all clones 

combined respectively) which was only slightly lower than histology specimens (ICC 0.89 and 0.93 

for the same).304 Villaruz et al. 2019 also compared different PD-L1 clones, and included a number of 

cytology specimens (grouped with small biopsies) but did specifically mention that for both 22C3 and 

SP263 the cytological nature of the specimen made no difference to PD-L1 expression rates.305 Kim 

et al. 2019 compared 3 different PD-L1 clones in various NSCLC samples, which included 8 (18%) 

cases of cytology from either EBUS-TBNA or FNAs, but were included with other histology samples as 

‘small biopsies’ and were typically compared to surgical specimens for PD-L1 expression analysis.306 

Overall concordance between small biopsies and surgical specimens was reasonable for all three 

clones at various TPS cut-offs (Concordance + Kappa: 22c3 73-96%, K 0.323-0.649; SP263, 72-91%, K 

0.143-0.587; SP14265-80%, K 0.146-0.468), but due to various sampling sites and grouping it is 

difficult to interpret these results.  

These studies provide evidence that sampling cytology specimens per se provide suitable quantity 

and quality for PD-L1 IHC, but the impact the different sampling techniques may have on PD-L1 

expression requires a more direct comparison to histology samples.  

2.1.2.1 Matched cytology and histology specimens 

The most direct and robust method of comparing differences between cytology and histology 

specimens is by sampling the same tumour site by both methods to produce matched specimens, 

and comparing the resultant PD-L1 expression. Studies using matched specimens vary from use of 

predominantly matched specimens to comparing only a few, and these will be considered here.  

Skov & Skov 2017 looked at 86 paired cytology and histology specimens of various types stained with 

both 22C3 and 28-8.307 As discussed later 22C3 and 28-8 cannot be considered the same, but they 

are similar, as the authors demonstrated (R² of 0.95). Comparing cytology to matched histology 

specimens they found reasonable concordance for both clones at various cut-offs (R² ranges from 

0.87 to 0.89 depending on cut-offs and clones). Although the confounding factors in this study 

include the wide range of sampling techniques, varying locations of specimen origin, and an 

unspecified number of cases waiting up to a month between section cutting and staining, it does 

however illustrate that PD-L1 expression across two clones is consistent in cytology specimens, 

despite these issues. Heymann et al. 2017 looked at 214 specimens from 188 patients and included 
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surgical resections, biopsies and various cytology specimens from different sites.308 PD-L1 via 22C3 

was scored for TPS, but only a TPS of ≥50% was considered positive. In regards to cytology, the 

average PD-L1 TPS was non-significantly higher than histology (39% vs 25% p=0.083), but there were 

only 4 cases of matched histology and cytology specimens with sufficient tissue, those these all 

showed agreement. The authors also looked at various sampling techniques compared to each 

other: for matched cases overall concordance was good (n=23, 91%), but the study is limited by a 

mix of sample types, often with many years between sampling, or treatment intervals, meaning the 

effects of inter-tumoural, iatrogenic and temporal heterogeneity are difficult to separate from 

variation due to sampling technique. Sakakibara et al. 2017 looked at a variety of samples taken 

from NSCLC patients, primarily focusing on EBUS-TBNA of regional lymph nodes compared to 

bronchial biopsies of primary tissue, resections or resected whole regional lymph nodes.309 Various 

comparisons between each specimen type were made, the highest correlation being between 

regional lymph nodes sampled as cytology versus histology (R² = 0.93), followed by cytology of 

lymph nodes versus primary lung biopsy or resection (both R² = 0.75), which in fact had a higher 

correlation than lung resection versus lung biopsy (R² = 0.52). Unfortunately, although 97 specimens 

were included in total, only 27 had matched pairs, and in addition a research clone (EPR1161) was 

used. Despite these issues, this paper demonstrates a high level of adequacy for cytology specimens 

(98.9%) and between 0.75-0.93 R² concordance between cytology and histology regardless of 

sample site or location, although no clinical categories were used, and the characteristics of this 

clone are relatively unknown.  

Ilie et al. 2018 compared 70 matched samples of histology and cytology with the 22C3 clone on 2 

different LDTs (laboratory developed tests) by 2 independent pathologists.310 ICCs were generally 

high regardless of the LDT or assay used when comparing histology to cytology (0.884-0.898), though 

cytology specimens were a mixture of bronchial washings and pleural fluid, with concordance 

generally poorer for pleural fluid (ICC 0.815-0.835) than bronchial washings (0.950-0.963). When 

using clinical cut-offs the concordances were similarly good (≥1% cut-off = 97% concordance, ≥50% 

cut-off 96% concordance). They also found the LDTs compared well to the validated platform, 

though slightly better for histology (ICC 0.999-1) than for cytology (ICC 0.936-0.947). Xu et al. 2018 

compared 52 matched pairs of histology and cytology from EBUS or CT-guided procedures (they do 

not specify procedure or location, but do mention ‘some’ cases were from mediastinal lymph nodes, 

thus the question of primary or secondary tumour is not known) taken within a month of each other 

and stained for 22C3. Overall concordance was good: 81% of cases showed concordance using a 1% 

TPS cut-off (Cohen’s Kappa 0.423) but when split by tumour type concordance was noticeably 

poorer for SCC over ADC (79% vs 83%, Cohen’s Kappa 0.35 vs 0.54).  
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Russell-Goldman et al. 2018 looked at various lung cancers in 46 patients with paired cytology and 

histology, of various specimen types and various primary and secondary sites.311 However the 

majority of cytology specimens were primary FNAs and taken concurrently from the same site as the 

histology specimens, and as a result found concordance generally good by E1L3N (Spearman’s 0.78), 

though much poorer for immune cell scoring (Spearman’s 0.23) and with lower inter-observer 

agreement (ICC 0.47-0.67 vs 0.96). Hernandez et al. 2019 looked at 52 paired cytology and histology 

specimens from a variety of primary and secondary locations and by various sampling methods, 

mostly concurrent, and, curiously, used a ≥50 tumour cell threshold for adequacy (when adequacy is 

generally taken at ≥100 tumour cells)266, 282, though in fact 28% of their cases had fewer than 100 

tumour cells.312 Despite this, they illustrated reasonable concordance between histology and 

cytology specimens by 22C3 (67% concordance, Cohen’s Kappa 0.51) which increased if only 

matched samples from primary tumour were considered (83% concordance Cohen’s Kappa 0.74). 

The authors noted no significant difference in patients treated vs untreated, but the effects of 

treatment on PD-L1 expression is discussed in more detail later.  

Grosu et al. 2019 looked purely at pleural effusions compared to histology samples in 82 matched 

pairs by 22C3 and found generally good concordance by both overall TPS correlation (0.79) and by 

clinical categories of negative, weak or strong (<1%, 1-49% and ≥50% TPS) positive (0.76), despite 

variation in time between samples and XCT  delivered in some patients between sampling.313 

Generally, the pleural fluids were found to be more positive than the histology specimens by both 

cut-offs (≥1% TPS 56% vs 60%, ≥50% TPS 20.7% vs 24.4%). Sakata et al. 2018 compared 61 pairs of 

tissue samples from patients who underwent primary NSCLC resection and had a follow-up EBUS 

TBNA within 1 year.314 Any PD-L1 positivity defined as ≥1% TPS was present for 48% of patients, but 

overall concordance between the specimens was generally high, (≥1% TPS - 87% concordance, ≥50% 

TPS 82% concordance) The majority of the EBUS specimens were from regional lymph nodes (69%) 

and showed little difference in concordance (86% and 83% concordance for the same cut-offs.) 

The majority of cytology specimens in these papers included needle aspirates processed to form cell 

blocks prior to IHC, but a small number of papers using matched specimens also included direct 

smears. Munari et al. 2019 is a paper in a series of studies by this group using the same main cohort, 

from which they extracted 53 pairs of resections and FNAs as direct smears for histology and 

cytology comparisons.315 At ≥50% TPS levels generally good concordance was found (90.6%) but 

poorer for ≥1% TPS (81.1%) with a Pearson’s correlation of 0.9 if treated as a continuous variable. 50 

cases also had matched core biopsies, which showed good correlation with the resections (92%) and 

only slightly worse when compared to the FNA smears (88%). However, the paper largely focused on 

the ≥50% cut-off, and did not provide complete data on 1% cut-offs, and also included some mixed 
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findings around 10%. Overall the authors conclude that TPS of 10-49% may warrant further 

sampling, but that smears are a reasonable substrate for PD-L1 analysis.  Jain et al. 2018 looked at 26 

matched primary core biopsies versus primary cytology specimens (bronchial brushings/washings 

with 5 cases also having direct smears).274 The overall concordance between cytology and histology 

was 88%, but they use only a single cut-off of ≥25% TPS using SP263. The authors also note the 

interpretative difficulties of using direct smears, but this paper is at least limited to only primary 

tumours with concurrent collection of both samples, minimising the impact of heterogeneity.  

Capizzi et al. 2018 looked at 50 paired direct smears and biopsies, with samples coming from both 

lymph nodes and primary tumour, though these were of unspecified numbers and there was no split 

analysis.316 They compared three PD-L1 clones on the histology samples but used a duplex stain of 

SP263 and CD68 to make the cytological comparison and found a reasonable number of cases were 

concordant when split into negative, weak or strong positive (90%, K 0.364), increasing if using a 

50% TPS cut-off only (K 0.626). Lozano et al. 2019 compared direct smears to a combination of 

cytology cell blocks and histology specimens (grouped together as FFPE specimens) from a variety of 

primary and secondary sites.317 Despite the fact the authors did not separate out the cell blocks from 

the histology samples and a variety of sites were included, overall concordance between direct 

smears and FFPE tissue was good using 1%, 1-49% and 50% TPS groupings (97.3% concordance). A 

subset of samples (57) were stained for both 22C3 and SP263, and found there was minimal change 

between the clones for concordance of direct smears to FFPE (98.2% and 96.5% respectively). 

However, the authors again noted the difficulty in interpreting the direct smears for PD-L1.  

Taken together, these papers suggest that cytology smear samples maybe suitable for PD-L1 

analysis, though they generally seem to be challenging to interpret, which, as discussed later is a 

problem for inter-pathologist concordance, which may negate the usefulness of these specimens for 

PD-l1 IHC.  

2.1.2.2 Unpaired cytology and histology specimens  

A number of papers made indirect or non-matched comparisons of cytology to non-cytology 

specimens for assessing the use of these for PD-L1 expression. Evans et al. 2018 looked at over 

10,000 cases of NSCLC with 22C3.318 Cytology specimens were more likely to express PD-L1 at ≥50% 

TPS cut-off versus biopsies or resections (39.2% vs 29% and 22.5% respectively, p<0.001), however 

this significance is lost when comparing sampling methods in only pleural or lymph node samples 

(p=0.086, p=1 respectively) with the authors concluding that overall, the use of cytology specimens 

is suitable. This paper highlights the specific issue of comparing different sampling methods across 

multiple sites, and the potential confounding factor of heterogeneous expression, as well as the 
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issue of not using matched tissue, but does none the less provide a large dataset that shows that 

cytology specimens are no different to histology specimens, although with a tendency to slightly 

overestimate PD-L1 expression. Torous et al. 2018 looked at 232 non-matched specimens including 

94 cytology specimens from a variety of sites including TBNAs, pleural fluids and FNAs.319 Overall 

they found no significant difference between specimens based on sampling methodology, by 1% or 

50% cut-offs, or by increasing 10% TPS increments (p=0.57), with similar rates of cases falling into 

weak-positive (21.3% vs 25.3% cytology and histology respectively) and strong-positive (35.1% and 

34.8% cytology and histology respectively). Mei et al. 2019 looked at 265 patients with lung cancer 

(predominantly NSCLC) which included 100 cytology specimens, of which 96% were adequate for PD-

L1 analysis by 22C3.320 There were similar rates of PD-L1 positive cases for both 1% and 50% TPS cut-

offs comparing cytology to histology (56% vs 52% and 31% vs 28.5% respectively). Samples were 

unmatched and came from various sites but the comparable rates of positive samples led the 

authors to conclude the suitability of cytology specimens, though again cytology was slightly higher 

for PD-L1 expression on average. Wang et al. 2018 also found a higher rate of PD-L1 expression in 

cytology specimens.290 They looked at 1419 specimens that included 371 cytology specimens stained 

by 22C3, with no difference in adequacy noted between sampling methods. Cytology specimens 

significantly expressed higher rates of positivity than both surgical specimens and histology 

specimens at ≥50% TPS cut-off (42% vs 29% and 36% respectively), but included multiple sites 

including pleural fluids, EBUS, EUS and FNAs. There was no significant difference between biopsies 

and surgical specimens, however. They also included 27 matched samples, which showed significant 

correlation (r=0.925, p<0.001). 

Higher average TPSs in cytology specimens in unmatched studies may reflect the inclusion of various 

biological sites. Conversely, as summarised in Table 2.1.1, cytology specimens may favour trends 

towards higher or lower TPS scores in any given study, but overall there is no definite trend. As with 

all aspects of understanding the limitations of PD-L1, many of these papers include samples of 

varying age, fixation, sampling sites, treatment effects and so forth, and thus the individual effect of 

‘cytology’ is hard even to define, let alone compare. However, the general body of evidence would 

suggest that, with correct handling of other factors, the acquisition and use of cytology specimens 

should not be a barrier for PD-L1 analysis. This is perhaps further reinforced with the widespread 

acceptance and use of other IHC assays in cytology specimens 321 with evidence they are suitable for 

other predictive assays, such as ER, PR and HER2 expression in metastatic breast cancer. 322 

However, it is worth remembering there are inherent limitations to cytology specimens, particularly 

samples from lymph node aspirates, that are relevant to PD-L1 assessment. 
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As will be discussed in chapter 7, cytology specimens lose architectural features, and so many 

aspects of the TME cannot be fully examined. Perhaps most relevantly, whilst PD-L1 expression in 

NSCLC is limited to tumour cell scoring only (with the exception of the SP142 clone), many other 

tumour types involve immune-cell scoring as either a separate or combined component. Whilst the 

nature of a lymphocyte as a genuine TIL or not can be ascertained with biopsy samples from most 

primary tumour tissues, a fine-needle aspirate from a lymph node renders this distinction 

impossible, and therefore cannot be used to score immune-cell PD-L1 expression. Thus whilst 

cytology specimens are not a barrier to exploring PD-L1 expression per se, their use depends on the 

specific clinical context.  

2.1.3 Pre-analytics – Other 

Pre-analytical conditions outside of fixation and storage are important but under evidenced in 

regards to PD-L1 specifically, and as previously mentioned, IASLC guidelines thus refer to general 

good practice and knowledge from other immunochemical protocols to guide the parameters for 

these conditions: cold ischaemia time should be fewer than 30 mins and no more than 1 hour, the 

paraffin embedded sections should be 3µm to 5µm, de-calcification should be avoided but EDTA is 

best used if necessary, and so forth.282, 323 There is, however, a limited number of articles that do 

discuss some of these other pre-analytical conditions and these will be discussed here.  

Forest et al. 2019 is a small study that looked at decalcification in NSCLC samples (excluding negative 

and heterogeneously expressing samples) as well as placental tissue specimens.276 Each sample was 

divided into multiple pieces, and after 24 hours of fixation in 10% NBF a piece from each sample was 

placed in either EDTA or DC3 Qpath decalcifier (a chlorhydric acid based de-calcifier) for 6 differing 

time periods ranging from 4 hours to 24 hours. A separate parallel study looked at placing the tissue 

in EDTA or DC3 for 1 day, 3 days or 5 days. PD-L1 expression on each piece of tissue was then 

assessed using the 22C3 and research only E1L3N clone. In the samples de-calcified for less than 24 

hours, DC3 caused a significant reduction in PD-L1 expression by 22C3 by 4 hours, with only a non-

significant trend for EDTA even by 24 hours. Staining intensity of 22C3 tissues was reduced at 8 

hours for DC3 but took until 20 hours for the same decreased in the EDTA samples. Within the 24 

hour period there was no significant loss of staining or staining intensity for the E1L3N samples. For 

the longer de-calcification periods, PD-L1 expression loss was seen in DC3 by day 1, but 48 hours was 

required before significant loss was seen using EDTA, though there was significant loss of PD-L1 

expression intensity for both agents at all time points. For the E1L3N clone a significant loss in PD-L1 

expression was seen by day 3 for DC3, but with no loss for EDTA even at day 5. Staining intensity was 
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significantly reduced in E1L3N stained tissue using DC3 by day 1, but only a non-significant loss in 

intensity for the EDTA samples by day 5.  

At the time of the literature review this was the only significant paper to address the issue of 

decalcification, but two further papers that look at this issue are worth including here.  

Strickland et al. 2020 performed a similarly comprehensive, albeit small study, on the use of various 

de-calcification agents and their effect on PD-L1 expression.324 10 placentas and 10 non-neoplastic 

lungs (selected for PD-L1 expressing macrophage populations) were fixed in 10% NBF and then 

divided into multiple pieces and placed into 4 different decalcifying agents: EDTA, FA/MC (formic-

acid based) 12% hydrochloric acid (HCl) and DeCal STAT (23% HCl) for 4 different time periods each 

(1, 2, 6 and 24 hours) as well as a control piece for each sample that was not decalcified. TMAs were 

generated from the tissue and were stained for PD-L1 using the 22C3 clone and a H-score based on 

quantity and intensity of PD-L1 expression was assigned (as described earlier). For the EDTA and 

FA/MC samples there was no loss of PD-L1 expression or intensity in the placental specimens. For 

the 12% HCl and STAT samples there was significant loss of PD-L1 expression by 24 hours, with 

almost total loss for the STAT group in the placental tissues. In the lung tissues with macrophages 

expressing PD-L1, no loss was seen at any time point for the EDTA group, with a mild to moderate 

loss seen by 24 hours for the FA/MC group. Again the 12% HCl and STAT group fared poorly, with 

loss seen in both groups by 1 hour, and again almost total loss by 24 hours in the STAT group. Their 

conclusion was that EDTA, and to a lesser extent FA/MC were suitable decalcification agents for use 

with tissue destined for PD-L1 expression. These findings were echoed in a study by Pontarollo et al. 

2020 whom looked at 84 NSCLC bone metastases specimens de-calcified using EDTA or formic acid 

over a wide range of non-specified times (4 hours + for biopsies, 4-15 days for surgical specimens) 

and stained for PD-L1 using the 22C3 clone.325 The samples were grouped into TPS categories of 1-

49% or ≥50%. There was no significant difference found in the rate of PD-L1 expression using these 

cut-offs between the de-calcified (n=39) versus non-decalcified specimens (n=45). Though there was 

no comparison between EDTA and formic acid, and no comment was made on intensity loss, these 

findings fit with the general consensus that EDTA is the de-calcification agent of choice.  

There is little available data on other pre-analytical factors specific to PD-L1, though Rebelatto et al. 

2016 do mention some relevant findings in addition to those mentioned above: using SP263 in 

NSCLC and HNSCC, they found no significant change in PD-L1 expression across tissue section 

thickness (from 3µm to 7µm) and there was no difference in expression depending on cold 

ischaemia time ranging from 0 to 24 hours or in slides stored at cold (2-8°C) or hot (30°C) conditions, 

though this study has consistently seen minimal change despite a wide variation of pre-analytical 
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factors that has seen difference in PD-L1 expression in other studies, and is likely due to the use of a 

single cut-off of 25% TPS to discern variation.272 

Pre-analytical conditions therefore seem to have an effect on immunochemical expression in 

general, and this includes the specific use of PD-L1. The variation in findings between different 

studies simply highlights the lack of consistency between labs and if anything clearly illustrates the 

need for pre-analytical conditions to be robustly uniform and controlled between sites in order to 

minimise false change in PD-L1 expression. A consistent approach to these factors is important, but 

there remains several areas of limited evidence, and the question of how best to minimise pre-

analytical variation, and how to overcome these effects is not fully answered at present.  

2.2 Analytics 

Variation in analytical factors include differing PD-L1 IHC antibodies, epitope retrieval methods and 

signal amplification, but there is little freely available data in regards to analytical factors affecting 

PD-L1 expression, as the nature of the specific PD-L1 antibodies, including epitope binding regions 

are largely propriety, with studies that have looked at this showing various data: 28-8, SP263, SP142 

have both intracellular and extracellular binding regions, whilst 22C3 is predominantly extracellular 

and some of the antibodies may have overlapping but non-identical epitope binding regions.326, 327 

The clinically validated clones, 22C3, SP263, SP142 and 28-8 are all available as companion or 

complementary diagnostic tools that are used on specific platforms with validated protocols. 

Generally the advice is to use these where possible over LDTs,266, 282 though where this is unavailable 

or impractical, reasonably good results can be attained with LDTs, as long as there is sufficient 

quality assurance steps.328, 329  

2.2.0 Analytics – PD-L1 clones, LDTs and inter-pathologist concordance 

Given the data pertaining to PD-L1 epitope binding regions, the studies that have shown PD-L1 

antibody clones to have variable binding characteristics and distinct epitope mapping results and the 

visibly different staining pattern between the clones, it is unsurprising that many studies have 

looked to compare the similarities and differences of PD-L1 clone’s staining pattern and quantity. 

Furthermore, as each series of clinical trials focusing on specific anti PD-1/PD-L1 therapies with 

different PD-L1 clones to guide therapy, and the scoring approach to each differed, the need to see 

which clones were equivalent became vitally important for guiding prediction of IM therapy. It is 

improbable that most clinical laboratories would have access to all validated platforms, and the 

logistics and communication required to ensure specific testing was applied to each sample would 

almost certainly lead to delay.266 The most likely outcomes from this include: multiple testing of 
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different PD-L1 clones on samples (but this would waste tissue and be excessively expensive), testing 

would be ignored or only used in requested cases (but this would result in unsatisfactory numbers of 

patients being tested and unnecessary delays in acquiring results) or, as the simplest solution, a 

single clone on a single platform would be used in any given lab for NSCLC PD-L1 testing, and the TPS 

score would be used to guide therapy, depending on the particular cut-offs for any given IM. 

However, though this final approach is the most efficient and cost effective, this does require the 

PD-L1 diagnostic assays to be equivalent and for any clone used to give a universal TPS such that the 

relevant IM can be appropriately prescribed. This also requires scoring to be concordant between 

different pathologists regardless of the clone used, and the equivalence of using clones on non-

approved platforms to create a LDT. As this review will now explore, this is not simple to achieve.   

2.2.0.0 Early papers comparing PD-L1 IHC clones and LDTs 

Scheel et al. 2016 is one of the first attempts to rationalise the different scoring criteria between 

each PD-L1 clone, and even go as far to generate an attempt at unifying the different approaches 

into a “Cologne Score”.330 Despite the lack of uptake of the Cologne Score (with the simpler percent 

based TPS becoming the de facto scoring approach), it is an important early paper that looked at 

multiple clones in NSCLC. A total of 30 NSCLC resections (18 ADC and 12 SCC) were scored in two 

rounds, the first using LDTs (E1L3N and SP142), and the second 4 different clones and their validated 

assays (SP263, SP142, 22C3, 28-8), with 9 pathologists included for scoring. Differences in staining 

type between the clones was observed and, even blinded, the pathologists were able to sort the 

images by antibody. Overall the findings were similar between the four clinically validated clones, 

but in four particular cases they noted that 28-8 and 22C3 were generally similar in intensity and 

total number of cells stained, but that SP263 was more intense and stained more cells, and SP142 

was more intense than 28-8 and 22C3 but stained fewer cells, and these differences would have 

potentially changed clinical categories for specimens using cut-offs of 1% or 50%. They also found 

inter-observer concordance to be moderate: (Kappa 0.47-0.5 for the “Cologne Score” and Kappa 0.6-

0.8 for the percent based cut-offs). They also note the concordance between assays for immune-cell 

scoring was very poor and inter-observer concordance for the same was very low (Kappa 0.12-0.25). 

Despite the relatively modest size of this paper, it does highlight some findings that are generally 

echoed in subsequent papers: SP142 stains fewer tumour cells but more immune cells, SP263 has a 

cleaner, more intense, staining pattern, inter-observer concordance is modest without being 

excellent, and immune-cell scoring with PD-L1 in NSCLC generally results in poor inter-pathologist 

concordance. In addition, attempts to rationalise scoring which have resulted in more complex 

categorisation prove both to be unpopular and less accurate for inter-observer concordance than 

simple scoring approaches.  
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A few months later Neuman et al. 2016 published work that looked at another key factor pertaining 

to PD-L1 clones by asking if a single clone can be used on different platforms to achieve comparable 

results.331 Using the 22C3 clone they compared staining on the validated Dako autostainer Link48 to 

the Roche-Ventana BenchMark XT (using two types of Ventana detection kit on the BenchMark XT: 

OptiView and UltraView). A validation cohort of 41 NSCLC cases were selected and multiple 

pathologists scored these using the 22C3 on the Dako platform, and re-scored after an undefined 

washout period with cases assigned negative, weak or strongly positive TPSs (1%, 1-49%, ≥50%). 

Intra-observer concordance utilising these groups was perfect (Pearson’s correlation = 1). Two 

pathologists then scored the case cohort that used the Ventana platform and detection kits. 66 

protocols were used to optimise the process before the selected protocol was used in the 

comparison of PD-L1 scoring. The UltraView approach had agreement in 87.8% of cases, and the 

Optiview approach 85.3% of cases (in fact, a difference of one case). The Ventana protocols also 

showed high levels of intra-observer concordance (Pearson’s 0.94). Most importantly, using the 

Ventana platform weak-negative cases were mis-classified as negative, and overall weaker staining 

or loss of staining within germinal centres was seen. This paper has several findings that are again 

echoed in later papers: high levels of concordant results are achieved when using the validated 

platforms, LDTs using differing platforms can be used to achieve comparable results but 

considerable time and effort is required to set these up, with a need for external validation very 

apparent, and even slight changes in protocol can change weak staining cells to negative in a manner 

than is clinically relevant.  

It is worth at this point exploring some other data pertaining to the use of LDTs and the general 

finding that LDTs, if used improperly, can provide very poor and discordant results, but if optimised 

and utilised effectively, they can generate very comparable results to the validated platforms.  A 

significant study in this regard is from Adam et al. 2018 which looked at 7 centres, each providing 6 

cases of NSCLCs of varying known PD-L1 expression, and used 28-8, 22C3, SP263, SP142 and E1L3N 

on a wide variety of platforms and scored to generate a TPS.328 Between centres, for the validated 

assays of 28-8, 22C3 and SP263, a generally good concordance was found between centres (0.79-

0.94), but poorer when comparing the clones against each other (0.71-0.89). LDTs for each clone 

were compared to the validated assay, with E1L3N and SP142 compared to the validated SP263 

assay. Using a weighted kappa concordance threshold of 0.75, they found only 51.8% of LDTs were 

concordant. Despite this, several other studies have reported LDTs can achieve good concordance if 

sufficiently optimised. Cogswell et al. 2017 used 28-8 and E1L3N as LDTs as well as using the 

validated 28-8 assay on a variety of tissues, including NSCLC tissues and cell lines to score a TPS.332 

They found the two clones were very similar when both using the same LDT protocol, but that the 
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validated protocol for 28-8 was generally more sensitive, with less non-specific staining. This study 

was limited, however, by small sample size and few matched cases. Villaruz et al. 2019 compared 

22C3 and SP263 on the same platform (Ventana Benchmark Ultra).305 The similarities of the clones 

are discussed later, but they also illustrate that very comparable results (0.89) between the clones 

can be attained using LDTs if sufficient effort is made to optimise them. Generally speaking LDTs may 

be suitable, but only if sufficient time and robust validation is implemented. It is also worth noting 

that although several studies use the correlation of average TPS scores to compare clones, this is not 

necessarily the best approach as the absolute change in TPS maybe small but still sufficient to re-

categorise tumours into different clinical groups.  

2.2.0.1 PD-L1 protein abundance and the use of TMAs to assess PD-L1 concordance 

The considerable problem of PD-L1 expression heterogeneity, discussed in more depth in this thesis 

later, is likely to be a significant factor when using TMAs, but nonetheless several studies have used 

these in PD-L1 clone comparisons studies. Smith et al. 2016 compared the research clone E1L3N to 

SP263 using TMAs from 100 NSCLC specimens.333 The authors describe a process of developing and 

optimising the analytical process including antigen retrieval and primary antibody concentrations 

before an agreed optimised process for both clones was used in the main study. Two pathologists 

were blinded and scored all the cases independently. They used an H-score incorporating the 

number of positive tumour cells as well as staining intensity, as described earlier to give a score of 0-

300. Tumour associated immune cells were also scored and given as a percentage of positive 

immune cells of all immune cells at any staining intensity. This paper also included subjective 

feedback on how much the pathologists ‘liked’ each stain for each case, with the results strongly 

favouring the SP263 clone, with the greater staining intensity cited as the main reason. SP263 found 

more cases to be positive than E1L3N, and the H-score was also generally higher, with more cases 

with positive immune cells found as well. Finally, inter-pathologist concordance for SP263 for the 

tumour cells was higher (R² 0.87 vs 0.82). Given the greater sensitivity, the equivalent specificity, 

higher pathologist preference and concordance, SP263 was deemed to be the superior clone. Whilst 

this highlights the effectiveness of SP263, E1L3N is a research clone, not validated for clinical use, so 

it was always highly improbable E1L3N would be considered the superior choice.  

Hendry et al. 2018 looked at previously constructed TMAs from two samples each of 355 lung cancer 

patients from one cohort and one sample each from 68 cases from another cohort.297 Tissue was 

stained for 22C3, 28-8, SP263 and SP142, with 22C3 used both on the approved Dako Link 48, and 

also on the Ventana Benchmark Ultra using the SP263 protocol. A pathologist scored each case to 

generate a TPS and IC score, excluding alveolar macrophages. Intensity of staining was recorded only 
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for the two 22C3 assays. Both absolute TPS/IC scores were captured, as well as groupings of the 

cases into cut-offs by the respective clones instructions (1% and 50% for 22C3, 1% for 28-8, 25% for 

SP263 and 50% TPS/ 10% IC for SP142). SP142 returned consistently lower TPSs than the other 

clones, and SP263 consistently higher, with 22C3 and 28-8 generally similar to each other. (Mean TPS 

3.57, 12.05, 9.2 and 9.46 respectively). Curiously IC staining was highest for 28-8 and lowest for 

SP142, in contrast to most other studies. TPS overall concordance between the assays was 0.674, 

raising to 0.755 if SP142 was excluded, but highest between 22C3 and 28-8 (0.812), and lowest 

between SP263 and SP142 (0.525). Concordance for IC was generally poor for all clones (0.212) and 

for pairwise comparisons (0.027 – 0.403). Using clinical cut-offs for each clone as defined above 

compared to each other, the overall correlation was poor (0.43), with a total of 24.8% of cases being 

discordant between clones. Using specific cut-offs of ≥50% and ≥1% TPS showed variation between 

the clones, with SP142 consistently scoring fewer cases as positive, but a close agreement between 

the other 3 clones at ≥50% (9%, 101.1% and 11.8% classified as positive). The two 22C3 assays 

showed high degrees of concordance (overall 0.921 correlation, with kappa of 0.897 for ≥50% TPS 

cut-off) with 5.3% of cases discordant between them. The authors state the limitations of using small 

tissue samples as TMAs, and discuss the problems of heterogeneity (discussed in more detail later in 

this review), with only 88% of cases showing the same result in both cores. None the less, this paper 

illustrated an oft repeated finding that SP142 stains fewer tumour cells, and SP263 stains more, with 

corresponding changes in clinical groupings. Using a different platform to the approved one shows 

good, but imperfect correlation, though it is uncertain which is more ‘correct’. This paper is also one 

of a small number to correlate ‘ PD-L1 positive’, defined using each different clones’ ‘cut-off’ (as 

opposed to using the same cut-off for each clone); with the findings that this approach does not 

improve concordance between the clones, once again demonstrating the difficulty in applying the 

clinical cut-offs consistently between them. Marchetti et al. 2017 looked at 4 different centres in 

which 100 NSCLC cases were used to generate TMAs and then stained for both 22C3 and SP263, and 

were assessed by 4 pathologists to generate TPSs using 1% and 50% TPS cut offs. Inter-pathologist 

concordance for each clone was good for 50% (0.95-0.97) but poor for 1% TPS (0.77 vs 0.82).334 

SP263 stained more intensely, but again good concordance between the clones was found at 50% 

TPS (0.99) but poorer when using 1% (0.80). 

A number of studies utilised alternative detection techniques to compare PD-L1 protein abundances 

by multiple approaches. Brunnström et al. 2017 looked at 55 NSCLC samples, from which two 1mm 

cores were extracted to be stained with 28-8, 22C3, SP142 and SP263.335 Seven pathologists scored 

the slides independently and were blinded to the clones, and each case assigned a score of 0-5 

based on TPS cut-offs (from <1% to ≥50%) using any membranous staining. This study also collected 
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RNAseq data for 35 of the cases for PD-L1 mRNA. A consensus score for each case and clone was 

taken if the majority (≥4) of pathologists agreed. In 5% of cases, there was no majority agreement, 

and the consensus score was thus taken to be the median (in fact, equivalent to the mean in these 

same cases). Five or more pathologists agreed in only 86% of cases. Using these consensus scores, 

considerable variation between the clones were found with difference cut-offs. Using a ≥1% cut-off, 

16-44% of case were deemed positive, and using a ≥50% cut-off, 5% to 24% of cases were deemed 

positive, in both instances SP142 scoring the fewest positive, and SP263 scoring the most positive. 

Correlation of the clones using pair-wise comparison was highest for 28-8 and 22C3 (0.88-0.91) and 

poorest for SP142 versus any other clone (0.45-0.63). Inter-observer concordance varied from 0.71-

0.96, with SP142 showing the highest concordance, and SP263 the lowest. This study also found that 

using a ≥50% cut-off resulted in fewer cases changing clinical groups by different clones compared to 

a ≥1% cut-off (p<0.01), with as many as 20% of cases being re-classified using the ≥1% cut-off. 

Interestingly, the highest correlation of mRNA and PD-L1 TPS was for SP263 (rho 0.780) and lowest 

for SP142 (0.643). This suggests that SP263’s trait of staining more tumour cells for PD-L1 is a more 

accurate observation of PD-L1 protein levels. The authors conclude that SP263, 22C3 and 28-8 are 

reasonably concordant, but that inter-pathologist concordance is a source of error for scoring PD-L1, 

particularly at the 1% cut-off threshold.  

Soo et al. 2018, a study that looked at various samples for performing PD-L1 analysis, and included 

20 specimens composed of histology and cytology specimens, stained PD-L1 by 22C3, 28-8, SP142, 

SP263 and E1L3N, and scored by three pathologists to generate TPS scores in 0%, 1% and 5% TPS 

increments thereafter.336 This study also assessed PD-L1 mRNA levels by RNAscope. PD-L1 IHC were 

compared pairwise, and when considering TPS as a continuous variable, correlations were generally 

average: SP142 compared to other clones was generally very poor (R² 0.31- 0.62), with the best 

correlation between 22C3 and E1L3N (0.72). Of note, correlation of SP263 and 22C3 was very poor 

(0.29) as was 28-8 with either 22C3 (0.42) or SP263 (0.41). Specimen type had no major impact of 

grouping of PD-L1, interestingly, given the inclusion of cytology specimens. Using each clones’ 

respective cut-off according to clinical trials, the number of cases deemed ‘positive’ ranged from 

33% (28-8, SP263) to 72% (22C3), with SP142 scoring 56% positive. Only 6 cases had positive PD-L1 

mRNA present, and only the non-clinically validated clone E1L3N correlated significantly with RNA 

levels. Interestingly, if using the SP142 clone with the SP263 protocol, a higher level of correlation 

between the clones could be achieved (0.71). This paper had a small study size, but showed 

potential significant variation between clones, which interestingly did not correlate well with PD-L1 

mRNA. 



63 
 

Gaule et al. 2017 looked at 6 different clones, 4 clinically validated (SP142, SP263, 22C3, 28-8) and 2 

research clones (9A11, E1L3N).337 TMAs were generated from cell lines, normal tissue and 30 NSCLC 

samples. PD-L1 was analysed using both IHC and quantitative immunofluorescence (QIF), and 

optimisation of each clone was performed (though minimal data is included in the manuscript on 

this process). No pathologist TPS scoring was performed, rather the positive pixel counting tool from 

Aperio was performed on the samples.338 Each clone was compared pairwise, with generally high 

levels of concordance seen in the cell lines (0.83-0.96) and poorer concordance for tissue samples 

(0.42-0.68). Additional comparison using cell-line microarrays also found high levels of concordance 

between the clones, (0.76-0.99) with E1L3N being the biggest outlier. The stated aim of the authors 

was to show correlation of protein abundance and they cite heterogeneity as the primary reason for 

poorer correlation between tissue samples. However, positive pixel staining will also include non-

specific, immune cell and cytoplasmic tumour cell staining and is therefore not directly linkable to 

TPS, and has been discussed, it is the subtle differences that change clinical grouping of tumours that 

is the biggest challenge.  

Parra et al. 2017 compared a large number of clones, nine in total, in NSCLC and cell lines, and 

compared IHC results to Western blot results, to ascertain the suitability of each clone to detect PD-

L1.339 Of the original nine clones, only six passed validation by Western blot and IHC for subsequent 

use in the study: 22C3, SP263, SP142, 28-8 and the research clones E1L3N and E1J21.  The Western 

blot analysis revealed a molecular mass band around 43kDA in most cell lines for all of these clones 

except 22C3. Two pathologists were blinded and scored the cell lines and tissue samples to generate 

a H-score based on quantity and intensity of staining (0-300) using Aperio Image Toolbox analysis 

software. Three cores of tissue from each tissue sample were averaged and included both tumour 

cell and immune cell positivity. The pathologists also used light microscopy to score the samples with 

a TPS and a third pathologist used in cases without an agreement to form a consensus score. 

Curiously, SP142 had the highest median H-score, but the in-depth data found generally good 

correlation between clones, but poor between SP263 and 28-8 (0.342), 22C3 (0.321) and E1L3N 

(0.345) and SP142 (0.373) with SP263 consistently returning higher H-scores, as well as consistently 

scoring the highest number of cases as ‘positive’ using cut-offs as ≥1%, ≥5% or ≥50%. The authors 

note that SP263 achieved this in both the tumour defined regions, but also the stromal regions, and 

suggest the image analysis software had a tendency to over score tissue, and thus oversight by 

pathologists was wholly necessary. This paper again highlights that absolute correlation of clones, 

either in terms of absolute protein abundance, or its specific location within the tissue, is only part 

of the issue between varying clones – correct interpretation to allow for precise clinical 

categorisation is arguably the harder, and more important task. Furthermore, when using scoring 
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methods that integrate staining intensity, SP142, that typically stains fewer tumour cells compared 

to other clones, may receive a disproportionately high H-score, possibly as a result of more intense 

staining secondary to antibody amplification, which other clones may not use.  

2.2.0.2 Large studies comparing multiple PD-L1 clones 

NSCLC was the primary focus of most early PD-L1 IHC studies, though it is interesting to note that 

similar limited studies in other tumour types were also being reported, for example in prostate 

(SP263 vs E1L3N)340 and melanoma (SP142 vs E1L3N).341 None-the-less, with multiple PD-L1 clones 

now developed for IHC in NSCLC, a series of larger studies comparing multiple different clones for 

concordance were reported, largely in 2017 and 2018. A general consensus of agreement was 

suggested, illustrated in the IASLC guidelines and largely based on the Blueprint study, although 

more recent data suggests that no two clones should be considered absolutely equivalent.  

Rimm et al. 2017 was a major study looking at 28-8, 22C3, SP142 and E1L3N in 90 NSCLCs and scored 

by 13 pathologists.342 The 3 clinically validated clones were compared to E1L3N as a LDT, although at 

the time, SP142 was not quite validated, so it was considered a LDT for the purposes of the paper. 

Again, an attempt at a unified scoring system was made (given the complex suggested scoring 

system provided by Roche-Ventana for SP142) in which a TPS and immune cell proportion score 

(ICPS) were given for each section, using a range of six categories for TPS (A-F) and three for ICPS (A-

C). The line “the score of TPS or ICPS is based on membranous and cytoplasmic staining of any 

intensity” was not clarified in the supplementary tables, so it is uncertain if TPS was limited purely to 

membranous staining as is generally now accepted. The inter-pathologist concordance for TPS was 

generally good (0.83 to 0.88 for each antibody), but for ICPS very poor (0.17-0.23). Specific 

concordance for the TPS as the cut-offs of 1% and 50% were poorer, however, at 0.54 and 0.75 

respectively. The average score for the TPS and ICPS for all pathologists was used to compare each 

clone pair-wise against each other, and found every pairing (except 28-8 versus E1L3N) were 

statistically different, though these ranged in small differences of TPS from only 0.246 to 1.2. They 

found the ICC to be 0.81, raising to 0.97 when excluding SP142 for TPS, and 0.27 raising to 0.8 for 

ICPS, reflecting the generally poor ability of SP142 to stain for tumour cells, but strong ability to stain 

for immune cells. The authors concluded that 28-8 and E1L3N were practically equivalent, and whilst 

22C3 showed statistically less staining, the change was minimal, and was only found when using the 

pathologists’ average score. This paper again demonstrates the issue that absolute variation 

between clones for TPS might be small, but the specific categorisation into clinical cut-off groups 

remains a significant hurdle. Inter-pathologist concordance is not perfect, with immune cells a 
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particular challenge, and a complicated scoring system does little to help this, and indeed has found 

little utility outside this study.  

Ratcliffe et al. 2017 looked at 493 NSCLC samples using the SP263, 22C3 and 28-8 clones, and scored 

by a single pathologist using each manufacturer’s instructions (cut-offs of 25%, 1%/50% and 

1%/5%/10% TPS respectively) as well as TPSs given as 5% increments.343 A second pathologist 

performed an independent review of 200 of the cases, with appropriate wash-out periods for both 

pathologists between scoring the same cases for different clones. Each clone was compared pair-

wise at each 5% increment, with Spearman correlations for each clone at any cut-off over 0.9. 

Interestingly the lowest correlations (0.91) were seen at the ≥1% cut-off, with the highest (0.97) at 

the ≥50% cut-off. The overall percentage agreement was thus >0.9 for each clone compared to any 

other in the 493 samples, but this dropped when comparing the second pathologist’s results in the 

200 sample sub-cohort: again ≥50% cut-off achieved a high correlation (0.945 -0.975) but was worse 

at lower levels, with poorest concordance seen with the ≥1% cut-off (0.759-0.77). This paper 

highlights that, for most cases, particularly at higher TPS scores, the differing clones and differing 

pathologists return similar results, but the critical cut-offs at lower values, particularly  around 1%, is 

a problematic issue in a significant minority of cases.  

A major study in this area was Tsao et al. 2018, which was the final paper of the Blueprint study, an 

IASLC sponsored study in which 22C3, SP142, SP263, 28-8 and 73-10 (the first paper to include this 

latter clone) PD-L1 clones were compared by 24 experienced pulmonary pathologists, in 71 cases of 

NSCLC (and 10 case of small cell lung cancer (SCLC)) from various sampling methodologies on 

validated platforms and protocols.304 A TPS was generated for all assays and results divided into 

seven categories (from <1% to 80-100%), as well as an IC scored generated based on the SP142 

interpretation approach. The overall inter-pathologist concordance ranged from 0.80 to 0.93 (for 

both digital and glass slide, with glass slide slightly higher), with higher concordances achieved if 

excluding cytology and the SCLC specimens. (0.88 to 0.95). K statistics for various cut-offs were all 

>0.7, though they note this was weakest at the ≥1% and ≥80% cut-offs; the extremities of 

expression. The authors then used the mean TPS values across all pathologists for each assay and 

sample, and compared these both as a cohort and pairwise. 22C3, 28-8 and SP263 were the most 

similar, with SP142 consistently scoring lower TPSs, and 73-10 the highest. Pairwise comparison 

found the greatest similarity between 22C3 and 28-8, with SP263 scoring slighter higher TPSs on 

average. Inter-pathologist scoring of ICs was very poor (k 0.08 – 0.28), with the highest range 

achieved using the SP142 clone. The authors concluded that IC remains challenging, but for TPS, the 

22C3, 28-8 and SP263 could be considered interchangeable, despite the higher sensitivity of the 

latter.  
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A number of other larger studies published at a similar time showed similar results. Batenchuk et al. 

2018 looked at 1,930 samples of various cancer types, including 412 NSCLC, with paired 22C3 and 

28-8 staining already performed.344 NSCLC cases had a TPS scored using negative, weak and strong 

positive categories (<1%, 1-49% and ≥50% TPS) and 5% categories of TPS. In terms of absolute TPS 

difference, less than 10% difference between clones was noted in 94.6% of cases. Both clones scored 

higher or lower at points, with 22C3 slightly more often scoring higher TPSs in NSCLC (10.9% vs 6.6%) 

with overall concordance between the clones at various cut-offs generally being very high (0.90-

0.95). Villaruz et al. 2019 looked at 302 NSCLC samples and compared SP263 and 22C3 on the same 

platform (Benchmark Ultra) as LDTs, and included cytology specimens as well as small biopsies and 

resections.305 Two approaches were used to score TPS; one as negative, weak and strongly positive, 

and one using ≥1%, ≥5% or ≥10% cut-offs. They found SP263 to be on average slightly higher scoring 

than 22C3, with SP263 placing more cases in the ≥50% group (60 vs 40 cases) but overall good 

concordance (0.88). This group also had clinical outcome response for 44 patients treated with 

either pembrolizumab, nivolumab or atezolizumab. Using best-overall-response, they found a cut-off 

of ≥1%, ≥5% or ≥10% was associated with superior outcome if assessed by 22C3, but only for ≥10% 

by SP263, though the authors note the variation in drugs, line of treatment, and the fact not all 

approaches were, at that point, in keeping with standard of care. This group again highlights the 

high, but imperfect, correlation between 22C3 and SP263, and has the data to highlight these have 

potential clinical ramifications. 

Velcheti et al. 2018 looked at a cohort of 6024 patients with NSCLC that had been tested with PD-L1 

by either 22C3, 28-8, SP142, or LDTs that included the SP263 clone.345 PD-L1 TPS were captured and 

categorised as negative, weak or strong positive (<1%, 1-49% and ≥50%). SP142 again consistently 

scored more cases as negative or a lower TPS, but there was no significant difference between 22C3 

and 28-8. Using a ≥50% cut-off, 22C3 found 32.8%, 28-8 found 31.8%, SP263 20% and SP142 10.3% 

of cases positive. (LDTs as a single group found 22.6% of cases positive at ≥50%). These data would 

suggest further evidence of 22C3 and 28-8 as equivalent, and SP263 as not, but the SP263 was 

included as LDTs in this paper, and as previous work has shown, without sufficient optimisation LDTs 

can be quite unreliable. However, the question of the similarity between these 22C3 and SP263 is 

further examined by two papers from the same group, Munari et al. 2018 and Munari et al. 2019.346, 

347 The former constructed TMAs from 198 NSCLC cases and stained for 22C3 and SP263 and TPS 

scored and categorised with either a ≥1% or ≥50% TPS cut-off by two blinded pathologists, with a 

minimum of 30% tumour content and 5 cores for each case being available. 22C3 was used both on 

the validated platform and on the Ventana platform as a LDT. Using a ≥1% dichotomous cut-off, the 

average number of cases classified as ‘positive’ was 23.7%, 31% and 40.3% for the 22C3, 22C3 LDT 
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and SP263 respectively, and 7.6%, 9.8% and 15.6% using the ≥50% cut-off for the same, again 

highlighting the increased average TPS for SP263 vs 22C3. Overall concordance between 22C3 and 

SP263 was average (k 0.518, 0.390 for each pathologist), rising slightly when comparing SP263 to the 

22C3 LDT (k 0.624 and 0.572), and similar when comparing the two 22C3 assays (k 0.595 and 0.583). 

Inter-observer agreement, overall, was also modest (k >0.6). Munari et al. 2019 looked at 165 

resected NSCLC cases (some of which from the previous study) from which TMAs were constructed. 

PD-L1 was stained for by 22C3, SP263 and E1L3N and a TPS scored as before. Only cores with >30% 

tumour content were included, and only the highest scoring cores for any case were used, which due 

to heterogeneity is a potential flaw in this study. In addition, direct comparison was made between 

E1L3N and 22C3, and E1L3N and SP263, but not directly between the two clinically validated clones 

as per their previous study. Comparison of E1L3N and SP263 showed good correlation at ≥1% cut-off 

(0.95) and ≥50% (0.98) with 5.4% of cases differently categorised. E1L3N and 22C3 showed less 

strong correlation at ≥1% cut-off (0.77) and ≥50% (88.2) with 31% of cases differently categorised. 

SP263 was therefore considered closer to E1L3N with stronger intensity of staining than that seen by 

22C3, and not concordant to 22C3, though no direct comparison was made. Inter-observer 

concordance at ≥1% varied for each clone (k 0.73-0.87) as well as for ≥50% TPS (k 0.76-082). The 

authors generate a potential flow chart for assessing PD-L1 that potentially involves staining a 

sample multiple times for PD-L1 by different clones which seems impractical in the routine clinical 

setting. Despite this, however, there is again the observation that SP263 is more intense, stains more 

cells, and is therefore not wholly interchangeable for 22C3, particularly at the ≥1% cut-off threshold. 

Tseng et al. 2018 looked at 211 NSCLC specimens from both cytology and histology and stained 

matched specimens for both 22C3 and SP263.348 PD-L1 was assessed by two pathologists and a TPS 

score generated. Using a ≥1% cut-off, 22C3 found 47.4% of patients to be positive, and SP263 27%, 

and for a ≥50% cut-off 12.8% for both clones. Concordance between the matched specimens 

increased with higher cut-offs, from 76.8% for ≥1%, 81.5% for ≥10%, 90.8% for ≥25% and 94.3% 

agreement for a ≥50% TPS cut-off. 34 patients also had data for patient outcome after treatment 

with nivolumab or pembrolizumab, with the only significant factor for improved overall response 

rate being strong expression by SP263, but not by 22C3. In addition PFS was significantly different 

using strong expression by SP263 (p=0.008) but again, not for 22C3 (p=0.061). This paper highlights 

important recurring findings: lower cut-offs, particularly ≥1% are difficult to achieve concordance, 

and differences between 22C3 and SP263 have potential clinical ramifications in regards their ability 

to determine positivity. Saito et al. 2018 which studied 420 resected NSCLC specimens, which were 

stained for both 22C3 and 28-8 and scored to give a TPS, found average concordance between them, 

though higher concordance at lower TPSs (≥1%, ≥25% and ≥50% cut-off correlation k 0.763, 0.677 
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and 0.643 respectively) with 22C3 consistently returning higher TPSs and more positive cases, 

indicates 28-8 and 22C3 are not equivalent. 

2.2.0.3 Small studies comparing multiple PD-L1 clones 

Kim et al. 2017 looked at 97 resected NSCLC cases split into two groups, a ‘training set’ utilising 

TMAs, and a ‘validation set’ utilising whole slides.288 SP263, 22C3, SP142 and E1L3N were used to 

stain for PD-L1 and the analysis performed by two pathologists, whom gave TPS results in 5% 

increments, and also scored for immune cells for SP142. In their hands 22C3 had the highest TPS on 

average and the most intense membranous staining, followed by SP263 and E1L3N, with again 

SP142 having the lowest TPS scores. The clones were compared pair-wise, and for TPS cut-offs of 1-

25% 22C3 and SP263 had reasonable concordance (k >0.7) but much poorer for ≥50% cut-offs (k 

0.467), with EL13N showing very good concordance with SP263 (k = 0.905), with 8% of cases being 

re-classified depending on the clone used. Interestingly they note that substituting the validated cut-

off of ‘positive’ for one clone for a different one for another actually reduces agreement, with the 

authors concluding each clone should indeed use its respective cut-off point. They also had 50 

matched cases with both TMAs and whole slides, of which only 14 cases were positive for PD-L1, and 

of which seven had differences in TPS, one significantly so (90% vs 15% TPS).  

Fujimoto et al. 2017 compared SP263, 28-8, 22C3 and SP142 in 40 NSCLC patient samples, and also 

captured clinical outcome data.349 They categorised the samples as negative, weak or strongly 

positive (<1%, 1-49% and ≥50% TPS), and four pathologists were used to generate concordant 

scores, with re-staining and re-examination if necessary to reach a consensus, with each clone 

compared pairwise. They found reasonable concordance between 22C3, SP263 and 28-8 (k 0.64-

0.71), albeit with slightly lower TPSs for 28-8, but significantly lower TPS scores and poor 

concordance when comparing SP142 to other clones (0.39-0.55). Using ≥50% as a cut-off and 

excluding SP142, the agreement rate was for 90% of cases, but much poorer using the ≥1% cut-off 

(65% of cases). Again this study highlights a reasonable but far from perfect concordance between 

clones, with particularly respect to the ≥1% cut-off. Unlike many of these studies, the authors also 

captured clinical outcome data, with some patients receiving nivolumab (it is not clear what 

percentage of patients did, and the cohort included patients with tumours harbouring EGFR and ALK 

mutants/translocations) and showed that generally speaking, higher PD-L1 expressing patients had 

superior outcomes to weak PD-L1 expressing patients, and better again than those with negative 

samples. PFS times for strong positive versus PD-L1 negative were significantly better if determined 

by SP263, 22C3 or 28-8, but non-significantly longer by the SP142 clone, with non-significant findings 

for all clones in the weak expressers. Between the clones, excluding SP142, there were four 
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discordant cases using the ≥50% cut-off, and for these the response rate was poorer than the 

concordance cases, but the authors admit these numbers are too small to generate any conclusions 

Krawczyk et al. 2017 used 48 NSCLC resections to study PD-L1 with 22C3 and SP142 (as well as ALK 

and EGFR status) and scored a TPS and categorised as negative, weak or strong positive (<1%, 1-49% 

and ≥50% TPS).350 22C3 categorised more cases as positive than SP142 using a ≥1% cut-off (72.9% vs 

60.4%), ≥5% cut-off (66.7% vs 39.6%) and ≥50% cut-off (45.8% vs 22.9%), the latter two cut-offs 

being statistically significant, with SP142 having weaker staining as well as fewer positive tumour 

cells. Xu et al. 2017 looked at 135 NSCLC samples, with each having matched samples stained for 

both 22C3 and SP142.351 A TPS was generated for both clones, with 22C3 using negative, weak or 

strong positive (<1%, 1-49% and ≥50% TPS) and SP142 used TC1, TC2 or TC3, although various TPS 

cut-offs were used for direct comparison of clones. SP142 demonstrated generally weaker staining, 

with poor concordance of the clones using the 22C3 scoring algorithm (k 0.481) with SP142 generally 

scoring lower TPSs, and even worse concordance using the SP142 scoring algorithm for both (k 

0.324). Pang et al. 2018 also demonstrate the lower sensitivity of SP142 by comparing 84 NSCLC 

cases of SP142 and SP262 that found a low concordance (k 0.53).352 Despite using a ≥25% cut-off for 

SP263 versus ≥1% cut-off for SP142, SP263 still consistently returned more positive cases. 

2.2.0.4 PD-L1 clone concordance in other studies 

A number of other studies for which PD-L1 clone comparisons was not the primary focus of the 

paper nonetheless reported data on clone concordance.  

Scheel et al. 2018 was a study primarily setup to compare interlaboratory concordance by comparing 

22C3, SP263, 28-8 and SP142 on both validated platforms and by LDTs in 21 NSCLC cases used to 

create TMAs.353 Their main finding was a high concordance between sites, and that with sufficient 

effort LDTs can achieve comparable quality. However, their findings for PD-L1 TPS was also 

comparable to some of the previous studies. Multiple pathologists scored the cases by TPS into one 

of six categories (from <1% to ≥50%) or one of three (1%, 1-49% and ≥50% TPS). As before a 

similarity in type of staining was seen for the first three clones (linear membranous staining) but a 

difference for SP142 (granular and/or linear deposits) a finding widely commented on in the studies 

mentioned here. They found 22C3 and 28-8 to be equivalent, SP263 to have a higher average TPS 

score, and SP142 to have a lower average TPS score.  

Skov & Skov 2017 was primarily a study looking at comparing cytology and histology but also found a 

strong correlation between 22C3 and SP263 in both histology specimens at various TPS cut-offs 

(0.93-0.99) and cytology specimens (0.93-0.98).307 Beck et al. 2019 looked at 80 samples from NSCLC 
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biopsies, stained for both 22C3 and SP263 and a TPS score was generated using cut-offs at ≥1%, 

≥25% and ≥50%.354 Overall correlation between the clones was good (0.892), though slightly poorer 

at each cut-off, respectively 0.878, 0.698 and 0.790. Even unconventional sampling techniques for 

PD-L1 appeared to show good concordance between clones: Lozano et al. 2019, primarily comparing 

smears to histology also compared 22C3 and SP263 in 55 matched cases and found good 

concordance (0.93) using a cut-off of ≥1% or ≥50% on cytology specimens, and ever higher 

concordance on the histology specimens (0.98).317  

 

 

 

Fig 2.2.0 Composite image of four studies that compared different PD-L1 IHC clones in NSCLC. 

Despite different approaches and specimens used between the studies, they all illustrate similar 

findings: SP142 stains fewer tumour cells, the similarity of 22C3, SP263 and 28-8, with a slightly 

cleaner, more intense stain for SP263.  A – Hendry et al. 2017 B – Soo et al. 2018 C – Scheel et al. 

2018 D – Tsao et al. 2018.  
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Sheffield et al. 2016 primarily looked at heterogeneity of expression, but used four PD-L1 clones 

(SP142, 28-8, E1L3N and RBT-PDL1) and simply stated the agreement was high, but gave minimal 

data: a Kappa of 0.67.355 Capizzi et al. 2018, already considered in this review for its cytological 

comparison also stained 50 biopsies with 22C3, 28-8 and SP263.316 They compared each clone in turn 

to a ‘gold standard’, which was in fact whichever clone stained any given sample with the highest 

TPS, which is of dubious logic. By their approach they found concordance to the gold standard to 

vary (22C3 K 0.554, 28-8 K 0.698, SP263 0.908) which probably just reflects the fact SP263 stained 

with the greatest TPS in most cases, and, unfortunately no further direct analyses was made.  

Despite the large number of studies comparing PD-L1 clones, the massive variation between studies 

in terms of specimens used and scoring approaches, and the apparently discordant results between 

many of them, several trends have emerged in regards to certain clones. The overall evidence 

suggests that SP142 consistently scores lowers TPSs, that 22C3, 28-8 and SP263 clones are generally 

similar, although SP263 trends towards higher TPSs than other clone (Fig 2.2.0). LDTs can achieve 

comparable results, but only if significant input into their optimisation is utilised. Inter-pathologist 

concordance is highly variable, with a reasonable level achievable for TPS, but generally very poor 

for IC scoring. Finally, despite several papers showing apparent concordance of clones, the majority 

show agreement of less than 90%, and most don’t have clinical outcome data. For those that do, 

there is enough difference between the various clones to suggest that even the minor differences 

between 22C3, SP263 and 28-8 are likely to have clinical ramification in only a minority of cases. 

Perhaps the biggest limiting factor of these studies is the lack of consistency between them: some 

are large international studies with expert pathologists, some are smaller single centre studies, some 

use whole section slides and matched cases, and some compare cohorts using TMAs and so forth. 

This highlights in general the problem of attempting to rationalise the optimal approach to using PD-

L1 IHC as a predictive biomarker. Furthermore, inherent limitations of immunochemistry limit its 

ability to provide consistent results, and may go some way to explaining why the predictive power of 

PD-L1 is not more reliable than it is.  

2.2.1 Analytics- limitations of immunochemistry 

There are generic limitations to immunochemistry, not least the fact it was designed as a diagnostic 

aid that allowed for the presence of specific proteins to be detected and their spatial profile to be 

determined and not as an inherently quantitative technology. Therefore attempts to use IHC to give 

a percentage score is potentially limited. As seen above, in additional to the widely used TPS, 

attempts have included various different cut-offs, as well as H-scores and other scoring methods 

that include intensity of staining and cell type. Ultimately the more complex approaches fail to be 
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used routinely, probably because of the time consuming nature that shows no better concordance. 

In addition, the PD-L1 protein itself can exist in states which may render it less susceptible to 

detection by IHC. Post-translational modification (PTM) of proteins is a well-recognised biological 

pathway for changing or optimising the function or structure of a protein, and PD-L1 can undergo 

various PTMs, though these have not been fully characterised. A comprehensive overview of PTM of 

PD-L1 is outside the scope of this literature review, but N-linked glycosylation, serine/threonine 

phosphorylation, ubiquitination and acetylation all play roles in the modification of PD-L1.150, 356, 357 

Glycosylation is a particularly important aspect: non-glycosylated PD-L1 has a relatively short half-life 

(4 hours) and will undergo phosphorylation before being degraded by the 

ubiquitination/proteasome pathway.356, 358 N-linked glycosylation stabilises the half-life of PD-L1 and 

plays a role in PD-L1/PD-1 interaction.150, 356, 359 Few studies have looked at the effect of PTMs on the 

detection of PD-L1 by IHC, but Morales-Bentazos et al. 2017 showed with the use of MS (mass-

spectrometry) that heavily glycosylated PD-L1 cannot be detected by IHC.360 The effect of all PTMs 

on detection by IHC is unknown, but may at least partially explain why the absence of PD-L1 in some 

specimens may still see clinical benefit from PD-1/PD-L1 IMs.  

PD-L1 (and PD-1) are largely studied in the context of membrane-bound forms. However, soluble PD-

L1 (sPD-L1) can also exist. It is far from fully characterised; it is uncertain if generation is via 

proteolytic cleave of the membrane bound form, or via alternative splicing as seen for TNF-α and 

soluble CTLA4 respectively.361, 362 It has been shown that sPD-L1 can come from both tumour cells 

and immune cells,363, 364 with a potentially distinct regulatory mechanism to that of PD-L1.365 The role 

of sPD-L1 is uncertain, though there is evidence it can bind to PD-1 in the context of lung cancer366 

and generally speaking its presence is associated with poor OS in various cancers, including 

NSCLC.367-369 sPD-L1 may therefore be an important component in achieving immune escape. 

Detection of sPD-L1 has largely been made in the context of plasma samples, rather than from tissue 

samples, but the consistent finding is that there is no correlation between sPD-L1 levels and PD-L1 

expression by IHC in NSCLC,370 RCC (renal cell carcinoma),371 Gastric cancer,372 ovarian cancer373 or 

HCC (Hepatocellular carcinoma) .374 To further muddy the waters, splice variants of PD-L1 resulting in 

secreted variants that appear to homodimerise but still infer an active immunosuppressive function 

have been described, and require potentially distinct IHC approaches to be appropriately 

detected.174  

These variable forms of the PD-L1 protein may have greater or lesser roles in regulating the TME, 

and may be very susceptible, or, not at all susceptible, to PD-1/PD-L1 IM therapy, the prediction of 

which is ultimately the most important consideration for the use of PD-L1 IHC. However, it is 

important reminder than if reliable detection and quantification of a membrane bound variant of 
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PD-L1 is challenging enough, we must also remember the myriad other forms that may not be 

detectable by conventional means.  

2.3 Heterogeneity of PD-L1 expression  

So far in this review I have considered the various ways in which pre-analytics may affect PD-L1 

detection (a false representation of what is genuinely there) and how different clones can both 

under or over represent PD-L1 expression (incorrect results from what protein is visible), and that 

the interpretation of the assays can also lead to poor concordance (incorrect results from 

interpretation error). The final major hurdle for achieving the greatest accuracy with PD-L1 IHC is 

that of tumour heterogeneity, and the heterogeneous expression of PD-L1 therein. PD-L1 expression 

is typically scored as a percentage, which by definition will result in certain tumours not uniformly 

expressing PD-L1 in all cells (Fig 2.3.0). The difficulty in studying heterogeneity of tumours is 

compounded by the multiple ways in which a tumour can be sampled: a core needle biopsy, an EBUS 

FNA, or a resected lung all provide vastly different quantities and qualities of tumour cell content, 

may use different fixatives and so forth. I have attempted to extricate the specific details of some of 

these aspects from papers considered within this review, but a considerable number of relevant 

studies use both cytology and histology to study heterogeneity, and thus bring a number of 

confounding factors with them.  

I have split PD-L1 expression heterogeneity into 4 distinct types: intra-tumoural (variation within a 

single tumour site), inter-tumoural (variation between different tumour sites), temporal (change 

over time) and what I termed ‘iatrogenic heterogeneity’, in that treatments including XCT, XRT 

(radiotherapy) and IM can all variably effect PD-L1 expression. It is worth noting most of these 

heterogeneities can be confounding factors of each other; for example, metastases tend to occur 

over time, but also represent distinct background tissues for tumours to invade into, thus having 

elements of both inter-tumoural and temporal heterogeneity, or in studies that used matched 

samples but from different time points. Studying heterogeneity is therefore challenging, but I have 

chosen to split papers into the type of heterogeneity that they predominantly provide data on.   

2.3.0 PD-L1 Heterogeneity – Intra-tumoural heterogeneity 

Intra-tumoural heterogeneity, that is, expression of PD-L1 that varies across a single site of tumour, 

is a significant factor that has the potential to account for ‘sampling error’ in that a biopsy from a 

single site within a heterogeneous tumour may produce a falsely high or falsely low PD-L1 

expression when considering the total PD-L1 expression within the tumour. (Fig 2.3.1). The 

underlying biology as to why this variation in PD-L1 expression occurs (or doesn’t) and what impact it 



74 
 

has on clinical response is not fully characterised. Intra-tumoural heterogeneity may partially explain 

why apparently PD-L1 negative tumours respond to PD-1/PD-L1 IM therapy or why positive tumours 

respond poorly, as small biopsies and samples do not fully represent a tumour’s PD-L1 expression 

levels.  

 

 

One of the earliest papers to consider heterogeneous PD-L1 expression within a single sample as a 

potentially relevant factor in tumour related mediation of immune responses in NSCLC is Konishi et 

al. 2004, whom studied 52 NSCLC sections for PD-L1 (MIH1 clone) and compared these to various 

clinical outcomes and the presence of immune markers.375 They found focal expression of PD-L1 in 

all their cases, and in regions with high PD-L1, they found lower levels of PD-1 expressing TILs, and 

Fig 2.3.0  Heterogenous PD-L1 expression in NSCLC in which strength of expression varies across 
the field and is absent from some tumour cells. Thus even in this single field, tumour cells with 
no PD-L1 expression, and both weak and strong intensity of PD-L1 expression can be observed.  
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proposed this contributed to the tumour induced immunosuppressive features of PD-L1 positive 

tumours. However, at this point in history the clinical impact of these findings was not apparent, and 

very little is in the literature until some 10 years later when the IM therapeutic options were in 

clinical trials. The potential impact heterogeneity had on sampling error was initially considered in 

regards to intra-tumoural heterogeneity, and these will be considered here.  

2.3.0.0 Quantitative immunofluorescence to assess PD-L1 intra-tumoural heterogeneity 

Velcheti et al. 2014 looked at two cohorts of NSCLC totalling 544 patients,376 from which TMAs were 

constructed, with mRNA for PD-L1 RNA assessed by RNAScope, and IHC and immunofluorescence 

(IF) for PD-L1 protein using the 5H1 antibody, with QIF using an automated quantitative analysis 

(AQUA)377 approach, which allows for measurements of a protein concentration within defined 

cellular compartments. This study largely focused on the QIF and mRNA findings, and showed that 

25% and 36% of patients, from each cohort respectively, demonstrated PD-L1 expression above a 

defined cut-off of expression, with 53% and 51% of patients demonstrating the same for PD-L1 

mRNA. In regards to heterogeneity, at least two TMA hotspots were evaluated from each specimen, 

and the results for each could be compared, and generated linear regression coefficients of 0.53 and 

0.59 for each cohort, demonstrating intra-tumoural heterogeneity of PD-L1 expression even within 

small TMAs (0.6µm diameters) from the same specimens. The authors acknowledge that this is not 

something to be dismissed, though they say it may not present a major issue, but admit that TMAs 

may under-represent genuine heterogeneity, and these are not in keeping with routine clinical 

diagnostic specimens. McLaughlin et al. 2016 also used the AQUA method of QIF to assess PD-L1 as 

well as IHC by use of the E1L3N and SP142 clones.378  49 NSCLC cases were included and were 

composed of TMAs and matched whole-slide sections. As anticipated from other studies, there was 

poor concordance between E1L3N and SP142 in both assays, significantly so for QIF. Heterogeneity 

across the samples for PD-L1 expression was considerable and variable: co-efficient of variations 

(COV) between field-of-views (FOV) for individual cases ranged from 6.75% to 75.24% for E1L3N and 

12.17% to 109.61% for SP142. Rehman et al. 2017 used the AQUA method of QIF using the SP142 

clone, but in their case looked at 35 resected cases of otherwise untreated NSCLC on three blocks of 

primary tumour for each case.379 By doing so intra-tumoural heterogeneity within each block and 

between the blocks could be studied by utilising whole-tissue sections. Five pathologists scored each 

whole-tissue section independently to generate a TPS, whilst a modified AQUA QIF approach was 

used to analyse the IF stained samples across the large tissue sections. No categories were used, so 

ICC only was captured, but these showed good inter-pathologist concordance (ICC 94%) but poorer 

inter-block concordance (ICC 75%), which was slightly improved using the QIF (ICC 95% and 88% for 

the same). Stroma scoring for PD-L1 was poorer in both respects (Inter-pathologist ICC 27%, Inter-
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block 75%). QIF only was used to assess intra-block heterogeneity, and generally found that variation 

within a block was greater than between blocks (91% vs 9% field of view variance), suggesting that a 

single block is sufficient to provide an overall assessment of heterogeneity.  

 

 

 

 

2.3.0.1 Using TMAs to assess PD-L1 intra-tumoural heterogeneity 

Several other studies used TMAs as a measure of looking at intra-tumoural heterogeneity. 

Casadevall et al. 2017 constructed TMAs from 144 NSCLC resections by sampling two distinct regions 

from each primary tumour to generate 288 cores in the array.380 SP142 was used to score for PD-L1, 

and the TC 1/2/3  and IC 1/2/3 scoring methodology utilised. ADC and SCC were considered 

separately due to both their distinct morphologies, and the differences in sampling the cores to 

maximise intra-tumoural heterogeneity (SCC used distance, ADC were selected based on variable 

morphology by H&E (haematoxylin and eosin)). Between the matched cores in the TMA, ADCs 

Fig 2.3.1 Intra-tumoural PD-L1 expression heterogeneity which illustrates the potential for 

sampling error. In the bottom left corner an area of strong uniform PD-L1 expression of tumour 

cells is seen (red arrow), but the majority of the rest of the tumour is negative for PD-L1 (blue 

arrow).   
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demonstrated significant discordance of both TC (kappa 0.465) and IC (k 0.260), and this was even 

poorer for SCCs (TC = K 0.275; IC = k 0.124). When using a single cut-off of ≥5% TPS (TC2), these were 

improved, (ADC K 0.585, SCC k 0.543). These results overall demonstrate significant intra-tumoural 

heterogeneity, even if only using two TMA cores, although the tissues themselves were from 2004-

2015, with some potentially 13 years old at the time of analysis. In addition, the use of SP142 means 

these are likely to generally underestimate PD-L1 expression. Li et al. 2017 constructed TMAs from 

190 NSCLC patient specimens from 2008-2010, and utilised two cores (2mm) from each case to be 

stained with 22C3 and scored to give a TPS and classified into negative, weak or strong positive (0%, 

1-49%, 50%). Two pathologists scored each case (inter-pathologist agreement K 0.94), with 

discrepant cases reviewed to achieve consensus.381 Using a ≥1% cut-off only 36.9% of cases were 

positive, likely a result of using older tissue samples. Using the categories as above, and comparing 

the matched cores, the discordant rate was 18.9% (K 0.630), with a fairly equal split between cores 

over or underestimating PD-L1 expression. Using a single cut-off the discordant rates improved to 

13.2% (K 0.711) and 6.8% (K 0.685) for ≥1% and ≥50% respectively. When comparing the TMAs to 

their matched whole tissue section, and looking for completely negative versus any positivity, the 

discordance rate was 2.6%, including, oddly, 3 cases positive in the TMAs, but entirely negative in 

the whole sections. Notwithstanding the use of older tissue, these results indicate again the 

relatively small but significant issue of intra-tumoural heterogeneity.  

A number of papers, using similar approaches, found PD-L1 intra-tumoural heterogeneity to be 

rather more prevalent. Gniadek et al. 2017 constructed TMAs from 150 NSCLC cases, and sampled 4 

cores (0.6mm diameter) from each specimen at random, with at least 3 in each case adequate for 

analysis. SP142 was used with a ≥1%, ≥10% or ≥50% TPS cut-off category utilised.382 Based on a ≥1% 

cut-off, 39% of cases were positive, dropping to 11% for a ≥50% cut-off. Comparing the cores to each 

other showed that 13.3% of all cases had at least one core entirely negative and another positive for 

PD-L1, with heterogeneity of some description observed in many cases. The presentation of results 

in this study is not as comprehensive as it could be, but they do conclude that when using a ≥1% cut-

off, a single TMA core will only be concordant in 87% and 90% of cases in ADC and SCC respectively, 

and 85% and 95% of cases when using a ≥50% cut-off in the same, and thus a single biopsy is likely, 

in a large number of cases, to not be fully representative of PD-L1 expression. Nakamura et al. 2017 

generated Spiral Arrays, a technique similar to TMAs, but designed specifically to characterise 

tumour heterogeneity and optimised on NSCLC samples, and utilises a reeled layer of tissue.383, 384 

Prospective patient specimens of NSCLC were collected, as well as a small number of retrospectively 

collected SCLCs and large-cell carcinomas, totalling 138 cases. The spiral arrays were stained with 28-

8 and a TPS scored and categorised using ≥1%, ≥5%, ≥10% and ≥50% cut-offs, and discordance 
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between pathologists discussed to reach a consensus score. Each array was split into eight segments 

to assess heterogeneity, with six selected to be compared to their matched whole tissue section. 

Positivity across the cohort using ≥1% was 30.4%, dropping to 15.2% for a ≥50% cut-off. Again data 

might have been presented more comprehensively, but the main finding was that between 50-76% 

of positive cases, depending on which cut-off was used, had half or more of their respective eight 

segments return a PD-L1 negative result. Their conclusion that intra-tumoural PD-L1 expression 

heterogeneity is a common finding is valid, but the translation of this in clinical terms when using 

Spiral Arrays is uncertain. Hendry et al. 2018, as already described, looked at a large number of 

previously constructed TMAs of NSCLC cases and looked at a variety of outcomes.297 A short section 

in the results found that 515 cases (stained either with 22C3, SP263, 28-8 or SP142) showed the ICC 

between cores was quite variable, depending on clone, from 0.355 (22C3) to 0.600 (SP142). Using 

the cut-offs defined for each clone, overall they found a discordance rate of 12% between the cores 

as a measure of intra-tumoural heterogeneity. Gagne et al. 2018 also used TMAs to study 214 

resected ADCs from between 2003 and 2012, and extracted up to five cores (1mm diameter, 

minimum of 3 cores) for every case to represent diverse areas of morphology. E1L3N was used and a 

TPS score generated, with ≥1%, ≥10% and ≥50% cut-offs used to define positivity. Using a ≥1% cut-

off, 67.7% of patients were positive, reassuringly so given the older specimens used, dropping to 

37.8% for a ≥50% cut-off. Variation between the cores using a ≥1% cut-off demonstrated 

heterogeneity in 39.8% of cases, and 32.4% and 22.4% of cases for ≥10% and ≥50% cut-offs 

respectively. When focusing on samples with at least one core negative for PD-L1, heterogeneity 

with respect to each cut-off was seen in 55.5%, 41.4% and 26.5%, demonstrating a considerable risk 

of false negative results. They also noted some variation in PD-L1 expression between morphological 

subtypes of ADC, such that mean TPS scores for solid and micropapillary were higher than acinar, 

papillary and lepidic patterns. This phenomenon is not well characterised, but has been noted in 

other studies, for example Koezuka et al. 2019, which looked at a variety of aspects relating to 

general ADC heterogeneity, noted that in their small number of PD-L1 positive tumours (6 cases, 

22C3), expression was heterogeneous in all cases; specifically the solid and papillary components 

were positive, but the acinar components were not.385 Evans et al. 2020 looked at a large number of 

NSCLC (10,005 cases, 22C3) and found higher PD-L1 TPS in solid and micropapillary, and low 

expression in lepidic, mucinous and papillary adenocarcinomas.318  

Munari et al. 2017 was the first of two papers by the same group that constructed TMAs from 

resected NSCLC as surrogates of small biopsies in a bid to assess intra-tumoural heterogeneity, and 

ultimately provided data on the minimum required quantity of tissue to overcome this phenomena. 

In this first paper SP263 was used to create TMAs utilising multiple cores (up to five) from 239 
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surgically resected NSCLCs and scored to classify into one of five groups (0%, 1-4%, 2-5%, 10-49%, 

≥50% TPS).386 40% of the cases were positive using a ≥1% cut-off, of which 52% were discordant 

between cores. When using a ≥50% cut-off, the discordance was higher (66%). When considering the 

entire cohort the discordance rate was lower (20%, K 0.53, for 1%, 7.9% K 0.48 for 50%). Based on 

these data the authors suggested at least four cores are required to attain an accurate result. The 

second paper was Munari et al. 2018 in which they constructed TMAs from NSCLC patients, 

consisting of 268 patients who had no treatment prior to surgical resection. They took five cores 

(1mm diameter) from each specimen to construct the TMAs, taken from ‘diverse areas’. SP263 was 

used to stain for PD-L1 and scored independently by two blinded pathologists, with a third utilised in 

discordant cases, and a TPS score was generated and then grouped into negative, weak or strongly 

positive (<1%, 1-49%, >50% TPS).387 Using a ≥1% TPS, 61% of cases were negative, and a ≥50% cut-off 

90%, this high negative rate possibly accounted for by the fact that specimens were from 2003-2017 

and therefore potentially 15 years old at the time of analysis. Inter-pathologist concordance was 

extremely good for ≥1% and ≥50% cut-offs (K 0.98 and 0.91 respectively). The majority of cases had 

five cores to assess, and based on cases that demonstrated heterogenous expression on the whole 

slide, (104 cases (38.8%)), concordance rates between the cores was 93% and 88% for a ≥1% and 

≥50% cut-off respectively. Based on their findings, the authors also concluded that three cores were 

sufficient to provide enough tissue to adequately assess PD-L1 even in heterogenous cases. Whilst 

this appears to be true in this cohort, the fact that the inter-observer agreement was so high, and 

the fact their previous paper was from the same overall cohort of patients (in which they suggested 

four cores as a minimum) might suggest these specimens were particularly favourable in regards to 

this analysis, and the authors admit the limitations in using TMAs for studying heterogeneity.  

2.3.0.2 Small biopsies to assess PD-L1 intra-tumoural heterogeneity 

Several studies looked at PD-L1 intra-tumoural heterogeneity by comparing small biopsies of NSCLC 

with the corresponding matched resection block, on the basis that a block of NSCLC will be sufficient 

to provide an accurate PD-L1 expression assessment. Kitazono et al. 2015 looked at 79 patients with 

NSCLC who had a small biopsy prior to surgical resection, (including 12 (15.2%) who had needle 

aspiration of the primary tumour).388 No data was given on the time between initial sampling and 

surgical resection, and so temporal heterogeneity is potentially a factor as well. PD-L1 was assessed 

using a research clone (Prosci-Inc 4059) and assessed by two pathologists to give a H-Score (0-300), 

presumably together to generate an agreed result. Using the H-score, samples were grouped as 0, 1-

50, 51-100 or 101-300. Using a ≥1 score cut-off as positive, concordance between the biopsies and 

resections was good (92.4%, K 0.8366), but dropped if a score of ≥51 was used as a cut-off (83.5% 

and k 0.3969), with the authors concluding this was overall a reasonable level of agreement. 
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However, Ilie et al. 2016 found poor concordance in PD-L1 expression between biopsies and 

matched resected tissue.389 They looked at 160 resected NSCLC specimens with matched biopsies of 

the primary tumour (although 12 (7%) were biopsies of metastatic deposits in regional lymph nodes) 

stained for SP142 and scored for both TC and IC. Using the SP142 scoring system (TC 1/2/3, IC 1/2/3) 

they found a discordance rate of 48% (k 0.218) for any positivity, slightly improving for high positive 

tumours (TC3/IC3) with a discordance rate of 20% (k 0.528), and similar if only using a TC score 

(discordance 20% k 0.396), with the interesting finding that in all cases the biopsies underestimated 

the PD-L1 expression levels. It might be anticipated that heterogeneity would see a number 

overestimated as well, but again this study does not mention the time between primary biopsy 

sampling and surgical resection, and as we have seen age of tissue is a known factor of under 

representing PD-L1 expression. In addition, this study used SP142 which has been shown to be 

problematic in NSCLC, but nonetheless provides data that intra-tumoural heterogeneity is a 

potentially significant factor. Gradecki et al. 2018 looked at 51 patients with pre-treatment biopsies 

and subsequent resections of their NSCLC from 2011 to 2014.390 They used the SP142 clone to stain 

for PD-L1, though curiously in their hands, based on previous (presumably unpublished) work this 

was found to be concordant with 22C3 in ≥95% of cases. They gave virtually no information as to 

what this previous work entailed to arrive at this concordant rate, but as this review has noted, this 

is a much higher concordant rate than might be expected. They scored PD-L1 for a TPS and used 

<1%, 1-49% and ≥50% groupings. Using a ≥1% cut-off they found 58.8% of resections to be positive, 

which is perhaps much higher than might be expected with the SP142 clone, and 15.7% of cases 

were positive using a ≥50% cut-off, which is perhaps still a little on the high side for SP142. This point 

notwithstanding, they found four cases (7.8%) to be discordant between core biopsy and resection 

with the ≥50% cut-off, and twice this number discordant with a ≥1% cut-off, with an overall 

concordance rate recorded as 92.2% (K 0.7). Though the authors make the reasonable conclusion 

that based on their data a core biopsy may well be representative, this is yet another study using a 

clone generally not used in NSCLC (SP142) or, in the case of other studies, non-clinically validated 

clones, which does bring into question the applicability of these conclusions to routine diagnostics. 

Kim et al. 2019 also looked a pre-resection small biopsies and compared them to the matched 

resected tissue, but looked at these with three PD-L1 clones (SP263, SP142 and 22C3).306 They 

looked at 46 NSCLC patients who met this criteria. Unfortunately, 18% of these included cytology 

specimens (PCNA (percutaneous needle aspiration) and EBUS-TBNA) but were not separated from 

the small biopsies in the analysis, and also included a potentially small but unspecified number of 

samples from regional lymph node metastases. These discrepancies notwithstanding, the paper 

focuses on the use of small biopsies for PD-L1 staining by three different clones, each scored for a 
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TPS and categorised with various cut-offs at ≥1%, ≥5%, ≥10% and ≥50%. 26 cases were stained for 

22C3, and the concordance between the biopsies and resections ranged from 96% (K 0.649) to 73% 

(K 0.455) depending on cut-off. However the concordance was worse for SP142 (20 cases) with 

concordances ranging between 65% (K 0.146) and 80% (K 0.231). SP263 was the only clone used on 

all 46 cases, and had a concordance rate of between 72% (K 0.143) and 91% (K 0.292). The highest 

Kappa achieved was 0.649, with agreements generally poor. This may well reflect the mixed nature 

of the ‘small biopsies’ and relatively small number of samples. Bizarrely, the authors conclude that 

small biopsies are “reliable compared with… surgical specimens in patients with NSCLC”, but 

confounding factors such as inter-tumoural heterogeneity and variation in sampling techniques 

could not be separated in this paper. Despite evidence that discordance is a significant issue, it is 

challenging to ascertain how much of this is due to intra-tumoural heterogeneity, but these papers 

do nicely illustrate the challenge of comparing various studies that all take such different 

approaches. For example, where most of these studies used retrospective tissue, often sampled 

many years prior to analysis, Tsunoda et al. 2019 took a prospective approach to compare small 

biopsies to their matched resections in 30 NSCLC cases.391 In total they looked at 153 cases sampled 

by various means, which included a small number of cytology specimens (23 EBUS-TBNAs), and they 

made no comment as to whether any of the EBUS sampled specimens might have been from 

regional lymph node metastases, and therefore include an element of inter-tumoural heterogeneity. 

This notwithstanding, specimens were stained with 22C3 and each scored for a TPS and categorised 

into <1%, 1-49% and ≥50% categories. As might be expected, these categories were composed of 

roughly a third each of all specimens (34.6%, 31.4% and 31.4% respectively). Comparing the 30 cases 

of small biopsies to their resections, they found a concordance rate of 86.7%.  

Elfving et al. 2019 combined previous approaches by using pre-operative biopsies and surgical 

resections, but also used the latter to construct TMAs to assess intra-tumoural heterogeneity.392 58 

NSCLC cases from between 2006-2010 were selected, with two cores (1mm diameter) from each 

resection used to construct the TMAs. SP263 was used to stain the tissues and scored by two 

pathologists independently to generate a TPS, with a consensus reached in cases of disagreement, 

and positive cut-offs of ≥1% and ≥50% used for analysis. Using a ≥1% cut-off 48% of resections were 

positive, and 19% using the ≥50% cut-off, which is maybe slightly low for SP263, but possibly 

accounted for by the use of older tissue. The proportion of positive samples by each method was not 

significantly different, with the agreement between biopsies and resections found to be reasonable 

(K 0.69 and 0.83 for ≥1% and ≥50% respectively) with the inverse finding when comparing TMAs to 

the resections (K 0.83 and 0.69 for ≥1% and ≥50% respectively). Taking the resection score to be 

correct, biopsies were incorrect for 16% and 5% for each cut-off, and 9% for both cut-offs using the 
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TMAs. The authors conclude, quite reasonably, that small biopsies might therefore misclassify 

patients by PD-L1 score. Their approach suggests that possibly two smaller biopsies from separate 

regions of the tumour might be more accurate than 1 larger biopsy from a single site.  

2.3.0.3 Whole sections from resected NSCLCs to assess PD-L1 intra-tumoural heterogeneity 

Scorer et al. 2018 looked at comparing whole sections of tumour acquired from commercial 

sources.393 They looked at one small cohort of 15 patients, (5 NSCLC, 5 NHSCC and 5 UC (urothelial 

carcinoma)) as well as a larger cohort composed of 200 NSCLC patients. For the first cohort they 

selected two blocks of tumour from each case, serially sectioned them 51 times and stained sections 

2, 25 and 50 for PD-L1 with the SP263 clone (1 and 50 were H&E) and scored for a TPS at <1%, 1-4%, 

5-9%, 10% and 5% increments thereafter, and categorised subsequently using ≥1%, ≥10%, ≥25% and 

≥50% cut-offs for positivity. The second cohort was from Ratcliffe et al. 2017, and had two sections 

taken from each block, at least 70µm apart, and prepared with at least seven months between them 

(though sectioned fresh at each time point) to allow for sufficient wash-out periods between 

scoring.343 These were also stained for SP263 and scored with the same approach. IC scoring was 

also captured. For TPS scores of any cut-off, concordance was perfect within blocks in any of the first 

cohort cases, though it was as low as 70% in some cases for IC scoring. In the second cohort, the OPA 

(overall percentage agreement) ranged from 91% (≥1% cut-off) to 98.5% (≥25% cut-off), with 

negative and positive percentage agreements generally favourable (81.4% to 100%), though again 

this was poorer for IC scoring. Between block analysis in the first cohort again found 100% 

concordance for OPA, except for ≥50% cut-off in NSCLC (OPA 80%), with again wider ranges for IC 

scoring (60-100% OPA). This paper demonstrates that tissue quantities in the range of a whole 

section from a tumour is typically representative of the entire tumour’s PD-L1 expression, and is 

therefore sufficient quantity of tissue to overcome intra-tumoural heterogeneity. Rehman et al 

2017, described above, used QIF on whole tissue sections and found that variation within a block 

was generally greater than between blocks (91% vs 9% field of view variance), suggesting that a 

single block is sufficient to provide an overall assessment of intra-tumoural heterogeneity.379 

Broadly speaking intra-tumoural heterogeneity is a significant issue, with the perhaps predictable 

conclusion that the more tissue sampled, the less likely sampling error will result in inaccurate PD-L1 

expression analysis. TMAs are more problematic than small biopsies, which are more problematic 

than whole sections of resected tumour. Clearly where these are available, larger pieces of tumour 

are preferable, but the reality of NSCLC sampling is that small biopsies are the typical diagnostic 

specimens utilised for scoring PD-L1, and thus PD-L1 intra-tumoural heterogeneity remains a 

challenge.   
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2.3.1 PD-L1 Heterogeneity– Inter-tumoural and temporal heterogeneity 

If intra-tumoural heterogeneity can be overcome with sufficient sampling of the primary lesion, it 

does not help address the fact that inter-tumoural heterogeneity between samples may result in 

discrepancies between tumour sites. Many diagnostic specimens in NSCLC are from regional lymph 

node metastases, or distant metastases, and the question of how representative they are of the 

primary lesion is an important one. Perhaps more importantly, there is the question of what 

differences between lesions may mean for patient response to treatment, and what biological 

processes underpin these changes. To begin to understand this, we must first appreciate the scope 

of inter-tumoural heterogeneity by a review of the studies that have attempted to quantify this 

issue. As metastases occur over time, and several studies have not sampled primary and metastatic 

tissue concurrently, the issue of temporal heterogeneity as a confounding factor must also be 

considered for these papers.  

Pinato et al. 2016 took an unusual approach to studying heterogeneity by using post mortem FFPE 

blocks from patients diagnosed with various types of lung cancer but whom had received no 

treatment for it, totalling 98 patients from between 1970 and 2005.394 They looked at inter-tumoural 

heterogeneity by constructing TMAs using multiple samples from both primary and metastatic 

tumour, with PD-L1 stained for with E1L3N and deemed ‘positive’ if ≥5% TPS with at least moderate 

staining by two pathologists. Though these were scored independently the authors merely state the 

results were ‘consistent’. 76% of the patients had metastases suitable for this analysis in addition to 

the primary tumour. 66% of the cohort were NSCLC, with SCLCs also included. Only eight (12%) of 

the NSCLC patients were PD-L1 positive in the primary tumour, of which 16 of the 19 (84%) matched 

metastatic samples were negative. Conversely, of the remaining negative primary NSCLC cases, only 

one had a PD-L1 positive matched metastatic deposit. All SCLC cases were negative. The low rate of 

PD-L1 positive expression can probably be put down to both the requirement of ‘moderate’ staining 

of ≥5% or greater, and, possibly more importantly, the age of the specimens. As previously seen, old 

blocks tend to lose PD-L1 expression, and even the most contemporary in this study was some 10 

years old at the time of the analysis. Despite multiple sampling of primary sites, unfortunately no 

comment was given to intra-tumoural heterogeneity (despite the title of the paper), but it does 

provide evidence of inter-tumoural heterogeneity.  

2.3.1.0 PD-L1 Inter-tumoural heterogeneity between primary lung and regional lymph node 

metastases 

Comparison of primary lung tumour and regional lymph node metastases, given the high prevalence 

of the latter as diagnostic specimens,299 is an important comparison which is the focus of several 
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studies. Sheffield et al. 2016 constructed TMAs (0.6mm diameter) of matched non-squamous NSCLC 

primaries and nodal metastases from 78 patients with a core from each site. PD-L1 was stained for 

by SP142, 28-8, E1L3N and RBT-PDL1 (a rabbit monoclonal research clone) and scored by 3 

pathologists independently (with consensus scoring for discrepant cases) by an H-score (0-300). PD-

L1 mRNA was also assessed with RNAscope. 28 (35%) of the primary tumours were positive based on 

at least two of the four antibodies with an H-score of ≥1, with 28 (36%) of the lymph nodes also 

positive using the same method. Comparing the primary and nodal metastases found 17 (22%) of 

cases were discordant between them. They also compared mRNA for PD-L1 and found varying levels 

of concordance for each clone, with the lowest agreement for SP142 (R2 0.53) and highest for 28-8 

(R2 0.76), suggesting SP142 does indeed under represent PD-L1 expression, though the authors do 

not comment on this. Kim et al. 2015 studied PD-L1 and PD-L2 as well as PD-1+ve and CD8+ve TILs in 

77 resected lung SCC with matched nodal disease. E1L3N was used for PD-L1, and scored into a 4 

category bin using both TPS and staining intensity (with 2+ (weak/moderate TPS ≥10% and 3+ 

(strong staining with TPS ≥10%) taken to be positive) with discordance between primary and 

matched nodal metastases seen in 29.7% of cases, with both negative and positive ‘conversion’ seen 

for both PD-L1 and PD-L2. Uruga et al. 2016 looked at 109 resected NSCLCs with matched nodal 

metastases (split into N1 and N2 as per TNM staging)395 using representative sections stained with 

E1L3N and independently scored by three pathologists (with consensus scoring for discrepant cases) 

and split into TPS categories by ≥1%, ≥5% or ≥50% cut-offs. A total of 66 cases had sufficient tissue in 

the nodal metastases, with overall correlation of scores to matched primary tumour reasonable for 

N1 (r = 0.7173, P <0.00001) and less so for N2 (r = 0.4990, p = 0.0036). When using the TPS 

categories, the differences were significantly discordant, ranging from 15% to 18% of N1, and 9.4% 

and 38% for N2. The authors also compare N1 to N2 but it is not certain if these are matched or just 

overall analysis. They do, however, state that differences are maybe due to divergent histology 

between the primary and matched nodal metastases.  

A few studies looked at both regional lymph node metastases and intra-tumoural heterogeneity. A 

unique example is Liu et al. 2018 whom focused purely on adenosquamous (ADSC) carcinomas of 

the lung. 72 patients with ADSC underwent surgical resection of which 21 (52.5%) had matched 

regional lymph nodes. E1L3N was used and scoring via TPS and using ≥1% and ≥5% cut-offs, and re-

scored including TILs to generate a CPS. 48.6% of primary tumours were positive in any component 

for TPS. Discordance between adenomatous and squamous components was moderate when using 

a TPS (≥1% cut-off: 42.2%, K 0.477, ≥5% cut-off 51.9% K0.527) but also seen for a CPS (38.6% K 0.338, 

51.6% K 0.493 for ≥1% and ≥5% respectively). When comparing matched regional lymph node 

samples, they found similar levels of concordance for TPS (57.8% K0.477, 48.1% K 0.527 for ≥1% and 
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≥5%) respectively and CPS (61.4%, K 0.338, 48.4% K 0.493 for ≥1% and ≥5% respectively). They also 

looked at morphology of the metastatic sites, and comparing like for like (e.g. squamous component 

of metastasis to squamous component of primary) found much better concordance for squamous 

components (90% K 0.792 80% K0.596 for ≥1% and ≥5%), and moderately improved for 

adenomatous components (77.8%. 74.1%, K not given), and found that 38.9% of patients had 

different histological patterns between the primary tumour and metastatic site. This highlights a 

significant role of inter-tumoural variation in regional lymph nodes, but also attempts to explain this 

may be coupled with morphological changes between sites, as variation is also seen intra-tumourally 

due to this reason. This is, however, easier to ascertain in ADSCs, given the clear morphological 

difference in regions, but these remain a small percentage of NSCLC and it is not certain how easily 

translatable these are to other types of NSCLC. Keller et al. 2018 studied 378 lung SCCs by 

constructing TMAs using eight cores (0.6mm diameter) from a section of primary tumour, and whole 

tissue section in a cohort of 41 N2 patients to compare the TMAs to the primary tumour and to the 

lymph node metastases. E1L3N and SP142 were both used and scored by a single pathologist to 

generate TPS and categorise using <1, 1-49 and ≥50% categories. A final score TPS as a mean of the 

eight cores was generated for analysis. Although not the primary purpose of the study, they do 

mention differences between SP142 and E1L3N: generally SP142 scored more cases as negative 

(62% vs 44%), and fewer as strong positive (13% vs 20%). Comparing primary to N2 nodal metastases 

TPS found a significant correlation of the clones (p value only given no R or correlation amount) and 

category agreement in 85% of cases using three categories, and 98% using a ≥50% cut-off. They also 

noted that correlation of TMAs to whole section TPS was good (R 0.781, p <0.001) with a 

concordance rate between cores of 29 (of 41 cases) for both E1L3N and SP142 using the three 

categories. Comparing primary to N2 nodal metastases in 40 cases found a significant correlation 

(again only a p value only given) with agreement into the three categories in 60% and 70% for E1L3N 

and SP142 respectively, rising to 90% and 95% for a ≥50% cut-off. This study backs up the notion that 

sufficient primary sampling will overcome intra-tumoural heterogeneity, and that eight TMA cores 

may be sufficient, but there is a difference again between both PD-L1 clones and between primary 

and regional lymph nodes.  

A number of other studies looked at various sites of metastases, but for which regional lymph nodes 

were the predominant site, though they do not distinguish between the sites during analysis. Kim et 

al. 2017 looked at 146 patients with lung ADC with matched metastases, totalling 161 paired 

samples, (15 patients had multiple metastases included) of which 83.2% were regional lymph nodes 

and the majority (127) were synchronous metastatic samples.396 Samples were stained with E1L3N 

and scored using a ≥1%, ≥5%, ≥10% or ≥50% cut-off for TPS, scored by two pathologists and a 
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consensus score reach in cases of discrepancy. Primary tumours were positive for PD-L1 in 41 cases 

(28.1%) to 19 cases (13%) using ≥1% and ≥50% cut-offs respectively. Concordance between matched 

samples was 75.2% (K 0.433), with the highest concordant rates between negative (<1%) and strong 

(≥50%) expressers (87.2% and 84.7% respectively), but only 20.8% concordance for other expressers. 

Dichotomising the groups by ≥1% and ≥50% TPS improved overall concordance to 80.1% (k 0.492) 

and 90.7% (k 0.598) respectively. They also noted that EGFR mutant patients had a slightly worse 

concordance than EGFR wild-type (71.9% vs 74.4% respectively), as well as for smokers vs non-

smokers (80.6% vs 71.2% respectively). They also looked at a small number of metachronously 

metastatic or distantly metastatic disease as separate findings; the former had comparable 

concordance rates for ≥1% and ≥50% (76.5% and 88.2% respectively) but poorer for distant 

metastases overall (59.3%). The authors conclude that the different samples may be helpful for 

analysing a patient’s overall PD-L1 status, but the concordance rates would urge caution. They 

cannot explain the reason for poorer concordance for PD-L1 expressers not at the extremes of 

expression, though it might perhaps be explained by the fact that negative tumours are less likely to 

induce PD-L1 at all, and very strong will include constitutive expressers, but weak expressers may 

represent the most active and dynamic tumours in regards to their immune escape profile. Munari 

et al. 2018 looked at 84 cases of NSCLC of which the majority (67) were from regional lymph nodes, 

all of which were synchronous, but also included a smaller number of metachronous distant 

metastases and nine local recurrences (median 40 months range 8-91 months for local 

recurrence).346 SP263 was used (using a <1, 1-49, ≥50% TPS groupings). They specifically mention all 

discordant cases were for regional lymph nodes, but only occurred in nine cases at ≥1% cut-off (12% 

K0.75) and seven cases at ≥50% cut-off (9.3% k 0.61). Local recurrences was only a small cohort, but 

discordance was found in three (33%) and one (11%) of cases using a ≥1% and ≥50% cut-off 

respectively. 

2.3.1.1 PD-L1 Inter-tumoural heterogeneity between primary lung and distant metastases 

Various other studies focused on a range of distant metastases. Kim et al. 2017 studied 37 NSCLC 

patients who underwent surgical resection between 2005 and 2012, all of which had paired 

metastatic samples available, including contralateral lung, brain and pleura, in what are presumably 

largely or entirely metachronous incidences (the authors don’t specify but do mention median and 

range of recurrence time (17.8, 2.5-52.5 months)).397 Staining was with SP142 and used TPS ranges 

of <5%, 5-49% and ≥50% alongside intensity to generate an H-score. Two pathologists scored the 

specimens and agreed a consensus in cases of discrepancy. Overall concordance between the 

matched samples was 78.4% (K 0.374) , with an equal split of cases expressing more or less PD-L1 in 

the metastases. The authors also used RISH (propriety RNA ISH)398 to study PD-L1 RNA levels in 
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matched specimens, and found a poorer concordance (62.% (K 0.186)), with slightly more cases 

expressing less PD-L1 in the metastases, which may reflect a more variable level of PD-L1 mRNA than 

protein, and again suggests these two metrics are not equivalent. Mansfield et al. 2016 focused on 

multifocal lung cancers, and used morphology and NGS to determine if these were independent 

primaries or related intra-pulmonary metastases.399 67 specimens from 32 patients were included 

(including one large cell neuroendocrine and one sarcomatoid carcinoma), with 23 patient sets 

found to be independent primaries and nine intrapulmonary metastases. E1L3N was used and 

scored TPS in 5% increments, with ≥5% considered positive, with IC scored in the same fashion. Only 

25% of cases were positive for PD-L1 by TPS. Of the 32 patients, 12 (37.5%) were discordant 

between specimens, of which 11 were in cases of independent primaries for both TPS (K -0.31) and 

IC (k 0.02), and only one discordant case in the intrapulmonary metastases for TPS (K 0.73) and IC (K 

0.34). The authors also performed agreement analysis and noted that the degree of positivity within 

one specimen does not predict the positivity of a paired lesion. Evans et al. 2018 was a study 

primarily considering the molecular heterogeneity of NSCLC specimens by looking at 10,005 NSCLC 

cases scored for PD-L1 as well as for their EGFR, ALK or KRAS status. 22C3 was used to score a TPS 

and provide categories (<1, 1-49 and ≥50%) by 2-3 pathologists with discordant cases discussed to 

reach consensus scores. Mutant genes had variable effects on PD-L1 expression, with rare EGFR 

variants and ALK translocations associated with higher TPSs. Although not the primary aim of the 

paper, they do note that pleural metastases and regional lymph node metastases have generally 

higher rates of PD-L1, both of which remained apparent regardless of sampling technique, including 

cytology, in the region of around 10-20% increase in TPS versus lung samples. However, these 

samples were not matched and were simply cohort comparison, so the value of this is lessened, 

although it does represent a considerable size cohort.  

Several studies have focused on brain metastases specifically. Mansfield et al. 2016b looked at 146 

paired primary NSCLC specimens and matched brain metastases from 76 patients (including one 

SCLC), the majority of which were whole-tissue sections, and included a range of time intervals from 

sampled primary and metastases (synchronous in eight cases, median interval 11 months).400 E1L3N 

was used, with scoring the same as Mansfield et al. 2016a399, with the exception that only 2 or 3+ 

intensity of PD-L1 staining was included. There was discordance in ten cases for TPS (14%, k 0.71) 

and 19 cases for IC (26%, K 0.38). The authors also give some information on temporal 

heterogeneity, by comparing cases attained within six months to those attained after, with the 

former faring slightly better (discordant TPS in two (3%) versus eight (11%) cases respectively, IC 

eight (11%) and eleven (15%) respectively)), though this was not statistically significant. Zhou et al. 

2018 looked at 25 NSCLC patients with matched brain metastases from cases from 2006 to 2014.401 
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PD-L1 was stained with 6E8 (research antibody), which the authors note has been used before in a 

clinical trial, though this was only a Phase I novel anti-PD1 monoclonal antibody in oesophageal 

SCC.402 Its similarity to other clones is therefore unknown, but they used a TPS ≥5% as positive, ≥50% 

as strong positive, and IC ≥10% was also recorded. Seven cases (28%) were discordant between 

matched specimens for TPS, and worse for IC (10 cases, 40%). In their study EGFR status had no 

effect on concordance. Though a small study with a novel clone, it adds further data to suggest a 

significant inter-tumoural heterogeneity between primary and brain metastases, and this is higher 

for ICs than for TPS, though as we have seen scoring of IC is consistently more challenging. Teglasi et 

al. 2019 studied 61 matched lung ADC and brain metastases for PD-L1 with the SP142 clone to 

create TMAs using 3 cores (2 mm diameter) taken from each sample.403 TPS and IC were both scored 

(TPS ≥1%, ≥5%, ≥50% IC 0-3) by two pathologists with discordant cases discussed to generate a 

consensus score. Overall TPS generated a Pearson R of 0.464, which was poorer if using any given 

TPS cut-off (0.390, 09.409, 0.393 for 1%, ≥5%, ≥50% respectively). IC generally had no significant 

correlations, with only IC3 stated to be so (R 0.322). This paper is perhaps limited by the use of 

SP142, and as with many factors explored in this review, uses a slightly different approach to other 

similar papers, but nonetheless describes significant inter-tumoural heterogeneity.  

In contrast to these findings, Wang et al. 2019 studied 580 consecutive cases of NSCLC with 

metastatic samples from various sites from between 2016 and 2018.404 Sites included brain, bone, 

non-regional lymph nodes and others. They also included 101 specimens with regional lymph nodes, 

and included a variety of samples including cytology specimens, though these were mostly fixed with 

10% NBF. The 22C3 clone was used and scored by three pathologists, with consensus scoring for 

discordant cases, and assigned a TPS and split into negative, weak and strong positive categories 

(<1%, 1-49%, ≥50% TPS) and also, separately, given an intensity score (0 - 3+). 547 cases were 

adequate, with overall expression of PD-L1 in metastatic tissues distributed as one might expect: 

33.7%, 28.7% and 37.6% for <1, 1-49 and ≥50% respectively, and were not significantly different 

between sites, including regional lymph nodes. 35 patients had multiple metastatic sites, and of 

these six were discordant between them, though overall there was no significantly different TPS 

scores either by continuous TPS or by categories. For such a large prospective study, this is a rather 

disappointing set of findings. Although overall distribution was as expected, (roughly a third in each 

category) they had no primary tumour for comparison. It does add strength to the notion that a 

tumour site or sampling methodology does not change PD-L1 expression per se, but they cannot 

comment on the likelihood of any given tumour changing expression as it metastasises to a new site. 

Their bold conclusion that any site will yield appropriate clinical information is, therefore, not in 

keeping with the strength of their study. Russell-Goldman et al. 2018, mentioned previously for 
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cytology comparison, also had a small number of cases from different anatomical sites (15) and 

compared these to those samples acquired from the same site and found a much poorer correlation 

for PD-L1 expression by SP263 (Pearsons 0.84 vs 0.08).311  

Cho et al. 2017 also looked at local recurrence as well as metastatic samples in NSCLC patients.405 

They selected 91 patients with samples at two time points, the first mostly primary NSCLC (92.3%) 

with the rest diagnosed via metastatic deposits, and the second time point being a mixture of local 

recurrence (60.4%) and distant metastases (39.6%). The median time point between collection was 

20.2 months (range 0.1-94) with 91.2% of specimens collected >3 months apart. This study also 

makes note of treatment during the interval period, of which just under half (47.3%) received either 

XCT, XRT, additional surgery or TKIS. PD-L1 expression was looked for via 22C3 and scored for TPS 

and categorised into negative, weak and strong positive categories (<1%, 1-49%, ≥50% TPS). Overall 

concordance between matched samples across the entire cohort when using a ≥1% cut-off was 67%, 

including negative to positive and positive to negative cases. When using categorical variables to 

compare samples the concordance is poorer at 57%. Despite this, when looking at TPS as a 

continuous variable, they found no significant difference between matched specimens based on 

time of sampling, treatment type or collection method (surgical resection vs. biopsy), though the 

authors note the study was not powered for these sub-group analyses. Despite their overall 

concordance of 67%, this highlights that temporal heterogeneity has a role to play, though it is 

disappointing there was not more comment on local recurrence versus metastatic disease 

differences. It also highlights the point that TPS as a continuous variable may provide falsely 

reassuring concordances, but when treated as clinically relevant categorical data the differences 

may be more pronounced.  

Overall the data suggests inter-tumoural heterogeneity, both in synchronous or metachronous 

samples, represents a significant challenge for PD-L1 expression, in that PD-L1 often varies between 

sites and it is impossible to know how representative any single sample is of a patients overall 

tumour PD-L1 expression. Perhaps more importantly the question of what effect this heterogeneity 

has clinically remains unknown. What is apparent from this review is the difficulty in comparing all 

the various studies that look at the same issue, but often from many different perspectives. In many 

articles a single issue or a small number of questions are asked, but based on other data from other 

papers, the reliability of these results may be bought into question. For example, many studies 

looking at heterogeneity used tissue older than three years of age, but we know from other studies 

this will likely result in high false negative rates. Many studies used multiple pathologists to score 

PD-L1 but make no or minimal comment on inter-pathologist concordance agreement, and it is 
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interesting to note that in studies where inter-observer variation is not a primary outcome, 

agreement is generally much more favourable than papers which do address this specifically.  

The clones used vary between papers, and the studies, of course, have confounding factors, many of 

which are unavoidable, but they are all slightly different, using different approaches, with different 

assay conditions and asking subtly different questions. An attempt to make overall conclusions is 

therefore very challenging! However the general consensus seems to be heterogeneity, intra-, inter-, 

or temporal are a significant issue. Adding further data to this are similar studies that have looked at 

PD-L1 expression heterogeneity in other tumour types, with intra-tumoural, inter-tumoural or 

spatial heterogeneity seen in breast cancer,406, 407 malignant mesothelioma,408 head and neck 

cancers,409 colorectal cancers,410 lymphomas411 and various tumours that have metastasised to the 

lung.412, 413 The inescapable conclusion is that heterogeneity of PD-L1 expression is a significant 

factor in assessing patients for IM therapy, but the full impact of this on clinical decision making is 

not, at present, fully understood.  

2.3.2 Heterogeneity – iatrogenic heterogeneity 

A difficulty in dealing with inter-tumoural variation is the issue of separating local recurrence, 

independent lung primaries, regional lymph node metastases or distant metastases from each other 

for analysis, as well as the confounding factors of temporal heterogeneity. As an additional 

challenge, several studies include patients whom underwent various treatments, (or no treatment at 

all), in the intervening time period between sampling, potentially impacting PD-L1 expression. The 

question of specific treatments and what effect they may have on PD-L1 expression in NSCLC will be 

discussed here.  

Some attempts at in vitro effects of treatment on PD-L1 expression have been previously made, with 

the limitations this entails. Shen et al. 2017 used NSCLC cell lines exposed to ionising radiation (6 Gy)  

and stained for PD-L1 (MAB1086 clone) pre and post radiation, and found generally that this 

resulted in an increase in PD-L1 and proposed mechanisms by which this may occur, and suggested 

that IM therapy for patients receiving radiotherapy maybe more effective.414 Several studies have 

looked at the effects of XCT in various cancer cell lines, with both increases415 or decreases416 of PD-

L1 expression seen, probably as a result of the specific XCT regime used and/or cell line looked at.417  

Generally, specific treatments are associated with a trend across a cohort, but in almost all studies 

there are instances of both increases and decreases of PD-L1 expression following treatment. Zhang 

et al. 2016 looked at a sub-population of their NSCLC cohort (n=30) treated with neoadjuvant XCT 

and with matched pre-surgical biopsies and surgical resection stained for PD-L1 (Abcam, 
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unspecified).418 Across this cohort they see a general trend of fewer positive cases (56.6% to 43.3%). 

Similarly, Sheng et al. 2016 looked at 32 NSCLCs with pre-treatment biopsies, treated with 

neoadjuvant XCT and matched surgical resection.419 PD-L1 by E1L3N was positive in 75% of cases, 

which as a cohort overall decreased to 37.5% by TPS, and also via an H-Score (95 to 75). This was a 

significant change, and interestingly they noted the inverse trend in IC (43.8% to 56.2%) expression. 

However, though the cohort’s overall trend was a decreased PD-L1 expression, in their figures they 

still show a minority of cases that do increase post XCT.  

Song et al. 2016 recruited 76 primary SCC of the lung and used a non-clinically validated clone 

(Proteintech Unspecified) with H-score of ≥5 deemed to be positive.420 Patients had pre-surgical 

biopsies taken, followed by platinum based XCT, and then a surgical resection of the primary lung 

tumour. The paired specimens were compared to each other, with the initial biopsies positive for 

PD-L1 in 52.6% of cases, and increasing to 61.8% in the surgical specimens, and they also noted that 

in addition to the nine cases that went from negative to positive, two cases also went from positive 

to negative. They also noted EGFR had no effect on PD-L1 expression. Omori et al. 2017 looked at 

the effect of various adjuvant therapies on 76 NSCLC patients on PD-L1 expression by E1L3N and 

found an overall decrease in PD-L1 expression (50% positive to 36% positive) with 24% of cases 

changing category from positive to negative or strong positive to weak positive, but also found 14% 

of cases increased PD-L1 across the same categories.421 Treatment with EGFR TKIs had a significant 

change towards more positive expression, however, and trended towards more positive change in 

receiving XCT. It should be noted that they used older samples, and this may account for the low 

initial PD-L1 expression rate, and they also, for reasons not fully explained (though presumably 

related to their use as internal controls), excluded samples if internal macrophages were negative. 

Rojko et al. 2018 also looked at neoadjuvant XCT in 41 lung cancer patients, including four SCLC 

cases, using SP142 and scored for both TC and IC.422 They found overall 22% and 7.3% of cases 

decreased or increased in TC after XCT respectively, however they found the inverse for IC scoring 

(24.4% increased and 19.5% decreased). They conclude TC PD-L1 positivity is significantly decreased 

after XCT, but in fact demonstrate that most patients have no change, and for those that do the 

change can be both more or less positive. Fujimoto et al. 2017 looked at 35 pairs of NSCLC samples, 

with pre-treatment biopsy, neoadjuvant concurrent XCT/XRT and then surgical resection scored with 

28-8.349 Overall PD-L1 levels decreased in the second sample, (16 cases) but four cases demonstrated 

an increased TPS. Of the 15 unchanged cases, 11 were negative pre and post treatment. 
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Table 2.3.0 Papers studying the 

effect of PD-L1 expression from 

samples pre- and post-treatment. 

A variety of treatments and cohorts 

were examined, but there is no 

definite trend for PD-L1 expression 

to decrease or increase following 

the administration of any given 

treatment type.   

1ry, Primary; TC, tumour cell; IC, 

Immune cell; TPS, tumour 

proportion score; NSCLC, non-small 

cell lung cancer; FFPE, formalin fixed 

paraffin embedded; RT, 

radiotherapy; IM, 

immunomodulatory therapy 
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The majority of these papers have shown an overall trend for PD-L1 TPS to decrease following 

treatment, largely XCT, but a number of papers also show the inverse. Haratake et al. 2017 is a case 

series of four NSCLC patients who had pre-treatment biopsy followed by neo-adjuvant therapy 

(XCT/XRT/IM) prior to surgical resection.423 22C3 was used to score a TPS. Three patients had 0% TPS 

on initial biopsy, with two of them becoming positive post treatment. They conclude treatment 

therefore results in positive conversion, but the very small sample size and mixed treatment options 

mean these results should be interpreted with caution. Sakai et al. 2019 reviewed 17 cases treated 

with adjuvant XCT, with matched pre and post treatment biopsies, (23.5% of the post-treatment 

biopsies were from regional lymph nodes and distant metastases) stained with 22C3 with ≥1% TPS as 

‘positive’, and found specimens to have an overall trend towards increasing expression of PD-L1 post 

treatment (43.8% to 64.7% of cases PD-L1 positive), with a similar finding in metastatic cases only 

were included (33.3% to 69.2% of cases).424 They specifically mention seven cases becoming ‘more 

positive’, though they do not mention if any cases become ‘more negative’ or not. Shin et al. 2019 

looked at neoadjuvant XCT in 86 patients with matched pre-treatment biopsies and surgical 

resections, stained with E1L3N and used various cut-offs (<1%, 1%-5%, 5%-50% and ≥50% TPS)) and 

found a general increase in PD-L1 expression after treatment (52.3% vs 75.6% of cases), and noted 

30% of patients went from negative to positive, but only 7% went from positive to negative, and also 

noted that a generally increased PD-L1 TPS was typically only seen in patients who did not respond 

to XCT.425 Guo et al. 2019 looked at 63 lung cancer cases (including nine neuroendocrine) treated 

with neoadjuvant XCT with matched pre-treatment biopsies and surgical resections stained with 

22C3.426 Using a cut-off of ≥1% TPS only 17.5% of pre-treatment cases were positive, though this 

raised to 39.7% post-treatment, though there were also 2 patients who had PD-L1 reduced. The 

same results were echoed when scored for IC (19% and 71.4%). Interestingly, in contrast to Shin et 

al. 2019, they note in their cohort that changes in PD-L1 were more associated patients with poorer 

response to XCT.  

Thus treatment itself seems to be associated with both general increase and decrease in PD-L1 TPS, 

though often this is across a cohort, and some papers make no mention of the more clinically 

relevant change across cut-offs. It is also important to note that in virtually every study, there were 

specific patients for whom both increases or decreases in PD-L1 were seen. The effect of treatment 

has been largely limited to XCT, but it is fair to assume the future will see further studies considering 

the effects of IM itself. The study that did include IM consisted of only 4 cases, so it is difficult to 

extract too much meaningful data. However, a more consistent finding was that PD-L1 expression on 

immune cells almost always increased across a cohort after treatment. These results are 

summarised in Table 2.3.0. Anti-cancer treatment, particularly XCT and XRT, induce significant 
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immune-related changes within the TME, partially as a result of the apoptotic and necrotic impact of 

these treatments and the subsequent cytokine activity they induce.427 Indeed pre-IM XRT has been 

suggested by some groups as a means of evoking a profound immune response prior to immune 

checkpoint blockade, including in NSCLC. 428, 429 It is outside the scope of this thesis to provide a 

comprehensive overview of this approach, but suffice to say that whilst this is an exciting area which 

much promising early data, the widespread and dramatic impact that XRT has on the TME is far from 

predictable, and thus the use of IMs in combination with XRT remains a challenging area. 

Importantly, anti-cancer treatment may effect PD-L1 expression, (and indeed many other factors 

within the TME) but due to the inconsistent nature of these changes, this ‘iatrogenic heterogeneity’ 

is difficult to separate from concurrent temporal heterogeneity. Therefore patient/sample matching 

to minimise the impact of these changes is therefore of utmost importance. Finally, most of the 

studies looking at treatment effects on PD-L1 expression were retrospective with specimens 

potentially many years old, and many utilising small biopsies, both of which may also impact PD-L1 

expression due to heterogeneity or pre-analytical variation.   

2.4 Literature review conclusion 

The number of studies involving PD-L1 has increased steadily since the use of PD-1/PD-L1 IM 

therapy. However, certain areas that have seen intense scrutiny in previous years now receive far 

less attention as an generally accepted consensus is achieved for certain aspects of PD-L1 IHC. For 

example, it is generally accepted that the SP142 clone scores fewer tumour cells but more immune 

cells than other clones, and SP263 and 22C3 are very similar, though not identical, and as such there 

are fewer papers comparing these clones in 2019 than there were in 2018. Some consensus has 

been reach for other aspects, such as the fact that approved IVD assays are generally more reliable 

than LDTs, though the latter can be used with sufficient optimisation, and inter-observer 

interpretation of PD-L1 varies considerably between studies, and remains a problematic issue. Other 

areas remain under evidenced; with most data on pre-analytical conditions having little or no PD-L1 

specific evidence, for example. The issue of tumoural heterogeneity is a widely accepted phenomena 

but is perhaps under characterised and no easy solution to reliably overcome the impact of this on 

assessing PD-L1 expression.  

This literature review has been concerned with the use of PD-L1 IHC and what impact pre-analytical, 

analytical, interpretation and heterogeneity factors will have on its ability to reliably assess PD-L1 

expression so as to guide PD-1/PD-L1 IM therapy. Before additional biomarkers or supplementary 

features can be looked for, it is key that PD-L1 IHC is as optimised and accurate as it can be, and so 
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the first set of objectives for this thesis must be concerned with contributing to this body of 

knowledge by addressing gaps relating to PD-L1 IHC, as determined by this literature review.  
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Chapter 3 -  Materials and methods 

The specific materials and methods used within each set of experiments is detailed within the 

relevant chapter. However, some techniques are used multiple times throughout several projects, so 

for ease of reference and to minimise repetition, these will be shown here. In addition, the main 

materials and equipment, as well as details pertaining to the different patient/tissue cohorts 

alongside a brief overview of the statistical approaches utilised throughout this thesis will also be 

given in this chapter.  

3.0 Materials 

3.0.0 General Materials and Equipment 

• Ventana BenchMark ULTRA (Ventana Medical Systems, Inc) 

• Leica ST5020 Multistainer (Leica Biosystems) 

• Leica CV5030 Fully Automated Glass Coverslipper (Leica Biosystems) 

• Dako CR10030 Fully automated coverslipper (Agilent Technologies) 

• Leica RM2135 rotary microtome (Leica Biosystems) 

• Leica DM4000 B Microscope (Leica Biosytems) 

• Aperio CS2 Scanscope slide scanner 

• Roche Ventana DP200 slide scanner 

• SuperFrost Plus Adhesion slides (Thermo Scientific) 

• X-tra Adhesive slides (Leica Biosytems) 

3.0.1 Reagents and antibodies 

• Ventana PD-L1 (SP263) Rabbit Monoclonal Primary Antibody (~1.61μg/ml) 

• Ventana Bluing Reagent (0.1M Li₂CO₃, 0.5M Na₂CO₃) 

• Ventana Hematoxylin II counterstain reagent (≤60%) 

• OptiView DAB IHC Detection Kit (OptiView) composed of: 

o Copper (5.0g/l) 

o H₂O₂ (0.04%) 

o DAB (0.2%) 

o HRP Multimer (<40μg/ml) 

o HQ Universal Linker (<50μg/ml) 

o Peroxidase inhibitor (3.05) 

• Leica Gill II Hematoxylin (Ethylene Glycol <30% w/w, Acetic Acid <2%w/w, Aluminum sulfate 

<2% w/w) 
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• Leica Aqueous Eosin 1% 

• Ventana EZ Prep 10x Concentrate (diluted 2l in 20l deionised H₂O) (Cola Terge LFD-C 30-50% 

w/w) 

• Ventana ULTRA LCS (Predilute) (White mineral oil (petroleum) 50-70%w/w) 

• Ventana Reaction Buffer Concentrate 10x (diluted 2l in 20l deionised H₂O) (Acetic acid 3-5% 

w/w, Poly(oxy-1,2-ethanediyl), .alpha.-dodecyl.omega.-hydroxy- 1-3%w/w) 

• Ventana ULTRA Cell Conditioning (ULTRA CC1)  

• Ventana ULTRA Cell Conditioning (ULTRA CC2) – (1,2-Ethanediol 5-10%w/w, Sulfuric acid 

monododecyl ester sodium salt (1:1) 1-5%w/w, Citric acid monohydrate 1-5%w/w, 

Disulfurous acid, sodium salt (1:2) 1-3%w/w) 

• Ventana SSC 10x (diluted 2l in 20l deionised H₂O) Sodium Chloride Sodium Citrate buffer 

 

3.0.2 Software 

• Aperio ImageScope - Pathology Slide Viewing Software (Leica Biosystems)430 

• QuPath (https://qupath.github.io – opensource digital slide viewer)431 

• uPath Roche Ventana slide image software and MDT resource432  

• IBM SPSS version 25 

• Microsoft Office  

• Graphpad Prism version 6.01 

• Photoshop CC 2019 

• R 3.6.1 via RStudio 1.2.1335 

 

3.1 Patient and specimen cohorts 

Tumours were classified according to the then current World Health Organisation 2015 criteria or 

the current 2018 criteria and staged according to the then current seventh edition of the Union for 

International Cancer Control (UICC) TNM staging system or the current 8th edition depending on the 

age of the sample.3, 395, 433 

3.1.0 Liverpool Lung Project (LLP Cohort) 

The LLP is an ongoing prospective study that collects lung cancer and case-control tissues from 

patients receiving treatment for their lung cancer in the Merseyside region, alongside clinical 

outcome and demographic data and is core funded by the Roy Castle Lung Cancer Foundation. The 

https://qupath.github.io/
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tissue is stored as part of a biobank for patients with informed consent. The LLP cohort included in 

this thesis is a subset of patients from the LLP biobank selected as 139 consecutive patients with the 

following criteria: NSCLC diagnosis, N1 or N2 metastatic status, surgical resection of the NSCLC 

undertaken and surgical tissue being available. Demographic and pathological details of the cohort 

are included in Chapter 6 (Table 6.1.0). In brief, cases came from patients with surgical resections 

undertaken in 2009-2015, included a range of morphological NSCLC diagnoses, ranged in staging 

from T1-T4, M0-M1 with all having N1/N2 disease, represented across all lung lobes and a variety of 

other pathological features including necrosis and pleural invasion, with demographics including 

smokers and non-smokers and a mixture of patients receiving adjuvant XCT, radiotherapy, 

chemoradiotherapy or no adjuvant treatment. (No patients received neo-adjuvant therapy or IM 

therapy). In essence this represents a broad but realistic depiction of the NSCLC population with 

nodal disease with all tissue taken prior to systemic therapy. FFPE blocks and all glass slides (H&E in 

all cases, diagnostic IHC and ALK IHC where performed) were retrieved from the RLUH (Royal 

Liverpool University Hospital) pathology department archives and included all stored surgically 

resected tissue alongside any pre- or post- surgical samples for each patient. All blocks and slides 

were manually reviewed to confirm morphological diagnosis (2 cases were re-classified from 

adenosquamous to squamous cell carcinoma under the approval of Prof. Gosney) and the quantity 

and quality of the remaining tissue in the FFPE blocks. Cases were excluded if there was insufficient 

tissue remaining, a non-NSCLC diagnosis made, if significant neuroendocrine components were 

present, or if blocks and slides were missing to the extent confirmation of the inclusion criteria could 

not be made. 16 cases were thus excluded to leave 120 cases to be used, for which the term ‘LLP 

cohort’ will refer to throughout this thesis. Ethical approval for the use of these specimens was given 

by the Liverpool Research Ethics Committee (Reference number 97/141).  

3.1.1 Clatterbridge Cancer Centre (CCC Cohort) 

The CCC is the regional oncology tertiary referral centre and covers a population of 2.3million across 

Merseyside, Cheshire and the Isle of Man. As part of a collaborative project with CCC, the IMPULSE 

study (Immune-checkpoint inhibitors in NSCLC: using molecular characterisation of the TME from 

pre and post IM therapy patient samples to improve efficacy of the anti PD-1/PD-L1 class of drugs) 

was formed. This study cohort is composed of patients with advanced/metastatic NSCLC whom have 

been treated with anti-PD-1/PD-L1 IM therapy at CCC between September 2016 and September 

2018. The major part of this cohort consists of patients who were not alive at the time of the study 

and included 309 patients with NSCLC with a range of TNM stages, morphological diagnoses, 

pathological and demographic features. They also represent a range of treatments, but all patients 

received either pembrolizumab, atezolizumab or nivolumab, alone or in combination with 
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chemoradiotherapy or ipilimumab. FFPE blocks and glass sections, including H&E, diagnostic IHC and 

previously performed PD-L1 IHC with the 22C3 clone as part of clinical workup was retrieved from 

RLUH and Whiston Hospital pathology departments. All tissue blocks and slides were reviewed to 

confirm diagnosis and to check remaining tissue quantity and quality.  Cases were excluded if FFPE 

blocks were not available, if there was insufficient tissue remaining, a non-NSCLC diagnosis made or 

if significant neuroendocrine components were present. A total of 253 cases were ultimately 

included for which the term ‘CCC cohort’ will refer to throughout this thesis. The demographic data 

for these are provided in Chapter 8 (Table 8.2.). Ethical approval 20/EM/0091.  

3.1.2 Other cohorts 

The LLP cohort was used throughout the thesis in multiple projects, and the CCC cohort was used on 

a small number of projects in the thesis, both with future work planned. In addition, a number of 

small cohorts were collected for specific projects, details of which are given here.  

The Merseyside-Salford (MS cohort) consisted of 60 pairs of cytology specimens collected via 

prospective acquisition of EBUS-FNAs during bronchoscopic examination of patients for the explicit 

use of comparing fixatives on PD-L1 expression. Bronchoscopy is an expert procedure requiring 

many years of experience to master and outside my skillset, and thus involved collaboration with 

respiratory physicians, for whom this technical procedure is a routine process, over a time period of 

March 2018 to February 2019 (Dr Andrew Wight, Dr Hock Tan, Dr Victoria Tippett and Dr Seamus 

Grundy are respiratory consultant physicians based at Arrow Park Hospital, Aintree University 

Hospital and Salford Royal). The sampling site for each patient was regional intra-thoracic lymph 

nodes with metastatic deposits of NSCLC, with patients undergoing the procedure as part of routine 

clinical follow-up for diagnosis and/or staging of known or suspected lung cancer under clinically 

validated conditions. Each patient’s tumour deposit was assessed during the bronchoscopy, and if 

adequate material was present, and patient was tolerating the procedure well, a second pass of the 

lymph node would be performed, to provide a pair of samples for each patient. Further details are 

provided in Chapter 4.  

The Royal Liverpool University Hospital (RLUH cohort) consisted of 122 prospectively collected 

NSCLC specimens of various types, including cytology EBUS FNAs, small biopsies, pleural fluids and so 

forth. These came from three pathologists reported as part of clinical predictive profiling at the 

RLUH on new diagnoses of NSCLC, (myself, Prof Gosney, Dr Piya Parashar) and were all reported for 

PD-L1 (SP263 clone) from August 2019 to February 2020. The H&E and PD-L1 sections were collected 

and used to create anonymised digital slide images for explicit use with the PD-L1 interpretative 
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machine-learning based algorithm. Cases were excluded if insufficient tissue was present for PD-L1 

interpretation. Further details are provided in Chapter 5.  

The Eli Lilly Cohort consisted of 65 commercially acquired samples of NSCLC, gastric cancer, tonsil 

and placenta from Asterand Bioscience (Detroit, MI, USA), US Biomax (Rockville, MD, USA), Tristar 

Technology Group (Washington, DC, USA), and Indiana University Health Methodist Hospital biobank 

(Indianapolis, IN, USA) in either tissue microarray (TMA) or whole section format. Tissue blocks were 

obtained between 2012 and 2018. Some 1206 tissue sections were evaluated from 35 gastric 

carcinomas [tubular adenocarcinoma], 10 NSCLCs [2 primary squamous cell carcinoma (SCC) and 8 

primary adenocarcinoma (ADC)], 6 tonsil, and 6 placenta samples. This work was performed during 

my secondment at Eli Lilly & Co in Indianapolis (IN, USA) and so the FFPE tissue retrieval, storage and 

preparation was performed by Eli Lilly & Co staff (Michael Soper, Dimple Das). These were used 

within the context of this thesis for the pre-analytical and analytics studies. Further details are 

provided in Chapter 4 and Chapter 5.  

The vast majority of the work performed within this thesis has been on tissue sections cut from FFPE 

tissue. Most projects required at least H&E and PD-L1 IHC to be prepared, with others requiring the 

placement of tissue onto glass slides prior to subsequent analysis by various assays. This preparation 

is given here.  

3.2 Methods 

3.2.0 Microtomy 

Microtomy was used to prepare tissue from FFPE blocks onto microscope slides for further use 

including H&E staining, PD-L1 IHC, multiplex IHC, multiplex immunofluorescence (mIF) and MS. 

FFPE blocks were placed on an ice tray for 10 minutes tissue side down. Each block is then removed 

and 4μm sections were cut using the microtome (Leica RM21350). These were placed onto a water 

bath pre-heated to 45°C and then removed onto appropriate slides (Generally speaking, X-tra 

adhesive for H&E and MS, Superfrost plus for IHC). Slides are dried in an oven at various 

temperatures and for various times depending on specific protocols.  

3.2.1 Haematoxylin and eosin staining 

Tissue is prepared onto slides as per microtomy. Slides are dried for 2 hours in an oven at 50°C. They 

are then stained for H&E using the Leica ST5020 Multistainer: The slides were washed in Xylene to 

deparaffinise them (5 minutes) then washed through absolute alcohol (x2, 20 seconds) and washed 

again in deionised water (20 seconds). The slides were placed in Gill’s (II) Hematox (5mins), washed 
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in deionised water (20 seconds), 0.2% acid water (20 seconds), deionised water (20 seconds), Scott’s 

tap water (150 seconds), deionised water (20 seconds), absolute alcohol (20 seconds) and then 

placed in Eosin (20 seconds). The slides were then washed in deionised water (45 seconds), absolute 

alcohol (x2, 30 seconds) and finally in xylene (45 seconds), after which they are coverslipped (Leica 

CV5030 Fully Automated Glass Coverslipper).  

3.2.2 PD-L1 SP263 immunohistochemistry  

Tissue is prepared onto slides as per microtomy with an additional step: a FFPE block of anonymised 

control tissue (placenta for the LLP cohort, multiblock of tonsil, placenta and tumour for other 

cohorts) acquired from LCL (Liverpool Clinical Laboratories) is sectioned following the same method 

in microtomy and a section placed on each slide to act as a positive control for the SP263 antibody, 

in accordance with the manufacturers recommendations. IHC staining for PD-L1 with the SP263 

antibody is performed according to the manufacturers guidelines.251 The slides are placed in an oven 

for one hour at 60°C. They are then stored in a fridge at 2°C for a maximum of six weeks (typically 

<48 hours). Slides are then placed in the Ventana BenchMark ULTRA and stained using the 

manufacturer’s protocol for SP263 IHC.251 The slides are then removed and placed in EZ prep and 

washed with tap water for 5 minutes. The slides are then coverslipped (Dako CR10030 Fully 

automated coverslipper). 

3.2.3 Digital slide scanning and viewing 

All glass slides were reviewed post cover slipping to assess tissue and staining quality adequacy and 

then scanned to create a digital image of the slide using the Aperio CS2 Scanscope slide scanner and 

Aperio Scancope console software at 20x maginifcation or the Roche Ventana DP200 at 20x 

magnification (true magnification 200x). These images were pseudo-anonymised by removing 

specimen label details and assigning them arbitrary numbers for the purposes of interpretation. 

Images were viewed on either Aperio ImageScope software, the opensource QuPath software 

package or the Roche uPath system.430-432  

3.2.4 Scoring PD-L1 expression 

Interpretation of PD-L1 expression is more complex than other IHC stains and requires a careful 

analysis of the correct cellular component, as well as a quantitative analysis of these features. PD-L1 

expression by IHC varies between clones and tissue types, but all tissue scored in this thesis is NSCLC 

(with a small number of exceptions) and generally speaking the SP263 clone or 22C3 clone have 

been used (again, with a small number of exceptions). For SP263 and 22C3, a tumour proportion 

score (TPS) is generated from each specimen and is calculated as: 
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TPS = (Total number of PD-L1 positive tumour cells/total number of tumour cells)*100 

I have received specialist training in both SP263 and 22C3 interpretation by authorised trainers at 

the start of this thesis, and I now also sit as an expert assessor on a panel for UKNEQAS PD-L1 

assessment, as well as having reporting several hundred NSCLC PD-L1 cases clinically per year, and 

have given numerous talks on the pitfalls and challenges of PD-L1 IHC, in addition to the work 

performed during this thesis. 

  

Fig 3.2.0 Assessment of PD-L1 expression A - PD-L1 expression in tonsil showing strong epithelial 

staining and weaker germinal centre staining. This is an ideal control tissue to use on slides with 

tissue stained for PD-L1 due to these properties. B-D PD-L1 expression in NSCLC showing 

different levels of TPS by conventional clinical groupings of negative, weak positive and strong 

positive: B - <1% TPS C – 1-49% TPS D - ≥50% TPS. 
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Detailed guides in the interpretation of PD-L1 are given by each clone’s manufacturer250-253 as well as 

guidelines from the IASLC,282 but a brief summary of the salient points of assessing PD-L1 IHC in 

NSCLC will be given here.  

An initial assessment of the H&E section is required to validate the quantity and quality of tissue 

present. A minimum of 100 viable tumour cells are required. A negative control slide should also be 

provided to confirm the absence of aberrant PD-L1 staining. On the PD-L1 IHC slide, positive controls 

are first assessed to ensure adequacy and accuracy of the assay, with the preferred positive control 

being tissue tonsil, as well as known positive and negative tumours. Tonsil tissue is particularly 

convenient as the epithelial components have strong membranous staining for PD-L1, with the 

germinal centres expressing weaker staining, both of which must be present (Fig 3.2.0). Partial or 

complete membranous staining of a tumour cell means that a cell can be scored as PD-L1 positive, 

including weak membranous (visible at 20x) or convincing membranous granular staining; 

cytoplasmic or nuclear staining only do not qualify. The total number of tumour cells in the specimen 

are calculated, as are the number of positive tumour cells to give a percentage TPS, example shown 

in Fig 3.2.0. Any other staining is not included, and common challenges include: macrophage 

staining, lymphocyte staining, strong cytoplasmic staining, crush artefact, diathermy artefact, 

necrosis, edge artefact, pre-analytical conditions including poor fixation and non-specific staining, all 

of which may falsely change the TPS, typically by false positives. In my experience the most 

challenging areas are admixed macrophages that can mimic tumour cells, the close proximity of PD-

L1 positive TILs to PD-L1 negative tumour cells and the aberrant expression of PD-L1 by necrotic or 

apoptotic cells. Examples of these are shown in detail in Chapter 5. With experience and careful 

review of the H&E, these errors can be minimised.  

The same basic approach is used when scoring a TPS for SP263, 22C3, 28-8 or E1L3N clones. For the 

SP142 clone the scoring is slightly different. The current approach to SP142 in NSCLC is that tumours 

scoring a TPS of <50% TPS (or TC of 2 or less) are then assessed for immune cell or ‘IC’ score, in 

which the area of the tumour covered by PD-L1 positive immune cells is calculated, with IC scores 

given as 0-3 (IC0 1<1%, IC1 ≥1-5%, IC2 ≥5-10%, IC3 ≥10%).434 These are NSCLC specific, and other 

tumour types may require the generation of a CPS (combined positive score) in which both tumour 

cells and immune cells are scored at the same time, but this approach has not been validated in 

NSCLC. A final note is that the TPS (or IC) required to define a tumour as ‘PD-L1 positive’ varies 

between tumours, indications and clinical trials, and is discussed in more detail later in this thesis, 

but for NSCLC the typical clinical management of patients for PD-1/PD-L1 IM therapy is by the 

division of patients into weak positive (1-49% TPS) or strong positive (≥50% TPS), although 

exceptions do exist.  
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3.3 Statistics 

Throughout this thesis a number of different statistical tests have been used, selected as being most 

appropriate for each dataset and for each question to be addressed. Every chapter will contain the 

most important and relevant findings, positive or negative, but to avoid repetition, a brief overview 

of the assumptions used to determine which statistical tests to use and the interpretation of the 

statistical tests used throughout this work is given here.  

Assumptions for parametric tests include normality of data, homogeneity of variance and 

independence of observations. Additional assumptions, depending on the test, include linearity, 

skewness/kurtosis, and equality of group sizes and if data is continuous or categorical and measured 

on a nominal, ordinal, interval or ratio scale. To determine the validity of these assumptions the data 

collected throughout this thesis are assessed in the following way. Checking for distribution of data 

is first performed visually through the use of histograms, density plots and Q-Q plots, with 

subsequent formal testing by Shapiro-Wilk if deemed necessary (p<0.05, null hypothesis rejected 

and data is not normally distributed). Homogeneity of variance is checked for by Levene’s test 

(p<0.05, null hypothesis rejected and data groups have unequal variance). Independence of samples 

will determine if the use of a repeated measures (or equivalent) test is used, and analysed on a case 

by case basis, as is the type of variable (e.g. use of continuous data on a ratio scale (TPS from 0 to 

100) or categorical data on an interval scale (TPS is negative <1%, weak 1-49% or strong ≥50%)). Data 

descriptives include skewness (parametric testing suitable if ±2) and kurtosis (parametric testing 

suitable if ±7) and group sizes (very unequal group sizes can potentially impact parametric tests). 

Linearity of data is checked for visually by scatterplots and numerically by Pearson’s correlation 

coefficient if assumptions are met (e.g. if variables are measured on intervals, or if data is normally 

distributed etc.) and Spearman’s rank-order correlation if not.   

Data are thus described to ascertain the appropriate test, with statistical tests for significance 

chosen as detailed in Table 3.3.0 As much of the data in this thesis involves the use of TPSs, which 

generally have a heavy negative skew and non-normal distribution, non-parametric testing was 

typically recommended. However, medians of TPS datasets tend to be very low relative to the data 

range (1-2) but means are typically higher (around 50), and parametric testing can still be utilised in 

larger datasets even if not normally distributed. Thus, for completeness, means are typically 

included within this thesis, and results by non-parametric testing are confirmed by parametric 

testing, with any significant differences highlighted within the text. By analysing data in this manner, 

it is hoped to improve the robustness of the included results.   
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Statistical analysis was performed using IBM SPSS statistics software, version 25 (IBM Corp, Armonk, 

NY, USA), GraphPad Prism, version 6.01 (GraphPad Software Inc, CA, USA) or R 3.6.1 via RStudio 

1.2.1335 (RStudio Inc, MA, USA). All significances taken as p<0.05.  

Further statistical testing particular to each project is described in more detail within the relevant 

chapter.  

 

Data Statistical test of significance 

2 groups of data  

Paired, parametric  Paired T-test 

Paired, non-parametric Wilcoxon matched-pairs signed-rank 

Unpaired, parametric 
Independent samples t-test (± Welch's 
correction for variance) 

Unpaired, non-parametric Mann-Whitney U/Wilcoxon signed-rank 

  

≥ 3 groups of data  

Paired, parametric Repeated measures one-way ANOVA 

Paired, non-parametric Freidman Test 

Unpaired, parametric Ordinary one-way ANOVA 

Unpaired, non-parametric Kruskal-Wallis 

  

Post-hoc tests  

One-way ANOVA - equal variances (all data) Tukey's 

One-way ANOVA - equal variances (subset of 
data) Dunn's 

One-way ANOVA - unequal variances (n<50) Dunnett's T3 

One-way ANOVA - unequal variances (n≥50) Games-Howell 

Kruskal-Wallis Dunn-Bonferroni 

  

Interrater reliability analysis  

Continuous data  
Intraclass correlation coefficient (Two-Way 
Random-Effects Model) 

Categorical data Cohen's Kappa 

  

Others  

Cross-tabulated proportions (2x2) Fisher's exact test 

Cross-tabulated proportions (> 2x2) Chi Squared Goodness of Fit 

 

 

 

 

Table 3.3.0 Types of data this thesis has used and the associated statistical test to look for 

significant differences between groups.  
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Chapter 4 – The effect of pre-analytical conditions on PD-L1 expression  

4.0 Introduction 

Pre-analytical conditions include any part of specimen handling up to the point of analysis. Pathology 

specimens selected for PD-L1 IHC include biopsies, surgical specimens and FNAs, and require a well 

characterised pathway of processing to be transformed from freshly sampled tissue to a substrate 

suitable for clinical assays. Each step has the potential to impact tissue quality and is therefore a 

potential risk factor for changing PD-L1 expression levels such that falsely raised or falsely lowered 

PD-L1 levels maybe ultimately observed. A brief overview of a typical tissue pathway from sampling 

to sectioning, that includes pre-analytical factors of potential impact is given here. 

4.0.1 Sampling methods 

Different sampling methods have their own intrinsic benefits and downsides, and in many instances 

the various sampling techniques are used together to optimise the treatment pathway; the use of 

both histology specimens (core biopsies, surgical specimens etc.) and cytology specimens (FNAs, 

bronchial washings, etc.) in lung cancer for diagnosis, including diagnostic IHC stains is well 

established.435-437 Differences between the sampling techniques can affect the quantity and quality 

of tissue, though sampling via FNA is not a barrier to predictive profiling even by NGS per se, (as 

results are typically concordant with biopsy or surgical specimens), rather it is the issue of tissue 

insufficiency that raises the biggest concern.308, 438-440 One particular aspect of PD-L1 expression as a 

predictive biomarker is the quantitative nature of interpretation, and so even subtle variations in 

expression may be of clinical significance. The impact of different sampling techniques on PD-L1 

expression is difficult to separate from other factors, such as tumour heterogeneity, but as many as 

a third of NSCLC patients have only EBUS samples for diagnostic and predictive profiling, including 

for PD-L1,299 and therefore any potential impact on PD-L1 expression scoring as a result of sampling 

technique should be considered.  

Once tissue has been removed from the body it is either chilled (e.g. with dry ice) for transport and 

potential analysis (for example, a frozen section for intra-operative diagnosis) before being placed in 

a fixative, or, alternatively, the tissue specimen is immediately placed in a fixative. Cytology 

specimens, such as FNAs, will be placed immediately into fixative for further processing, though a 

direct smear of cells onto slides for assessment is often also performed. Both processing of the 

cellular fluids to create FFPE ‘cell blocks’ from which conventional sections can be made, or the use 

of the direct smears can be used for IHC. In all instances, fixation is a critical step: the type of 

fixative, the effect of delay in fixation and the total fixation time may adversely affect IHC intensity 
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and overall PD-L1 expression.272, 274, 275, 323 Manufacturers’ manuals for the clinically validated clones 

22C3, 28-8, SP263 and SP142 all explicitly state they are for use in FFPE tissue, and typically make no 

mention of either fresh-frozen tissue or other fixative methods.250-253 Most histology specimens are 

indeed formalin fixed, but the use of other fixatives, particularly in regards to cytology specimens is 

an important question.  

4.0.2 Tissue fixation 

A complete review of the biochemistry of formalin fixation falls outside the scope of this thesis, but 

broadly speaking the objective of any fixative is to prevent the degradation of tissue by 

decomposition or autolysis, and to preserve the cellular architecture and composition of tissue, 

including proteins and carbohydrates, such that the tissue is able to undergo processing to form thin 

sections of tissue (typically 3-5µm) for subsequent analysis. Fixation requires penetration through 

the tissue by the agent of choice, hence this may require ‘opening’ of larger specimens: a series of 

incisions to ensure internal aspects are equally accessible to the fixative. Broadly, the 4 main groups 

of fixatives are aldehydes, (including formaldehyde which is the active component of formalin), 

alcohol (including methanol and ethanol), oxidising agents and metallic group fixatives. Each group 

fixes tissue by distinct mechanisms, and each has benefits and downsides, with the agent of choice 

usually selected based on anticipated processing needs. Formalin is the most widely used fixative 

due its cost, ease of use and wide range of applications, and typically used as 10% NBF (~4% 

formaldehyde in water with 1% methanol).441 As it penetrates tissue, formaldehyde binds to amino 

and imino groups of amino acids and DNA to form Schiff bases, which acts as an intermediary 

between other amino groups and subsequently forms a crosslink between cellular components, 

including ‘protein to protein crosslinks’ and ‘protein to DNA crosslinks’.441-444 The formation of these 

crosslinks occurs within minutes, but typically requires 24-48 hours for a whole specimen to be 

completely fixed in this manner. Crosslinks formed at this stage are reversible, which is crucial for 

immunogenic assays including IHC as crosslinking can alter the 3D structure of proteins, and is non-

specific, and thus wholly unrelated proteins maybe linked to each other. In both instances, the 

immunogenicity of a specimen will be adversely effected by the presence of crosslinks, as the 

epitope binding region of an antigen maybe disrupted (if discontinuous) or ‘masked’ (if linear). 

Antigen retrieval (AR) methods which can reverse crosslinking are therefore deployed to overcome 

this, but it should be noted that prolonged fixation in formalin can result in permanent covalent 

binding between proteins and DNA, and thus reduce the immunogenicity of tissue in a manner in 

which AR is ineffective.441, 443 
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 Alcohol based fixatives have been considered as alternatives to formalin as they do not cause 

crosslinking, and would thus overcome the need for AR. Alcohol fixation essentially works by 

dehydrating tissue which results in coagulation and denaturing of proteins, mostly cytosolic and 

extracellular proteins, though this can harden the tissue, negatively affecting morphology, including 

the damage of cell membrane structures, microtubules and nuclear contents, and thus is normally 

reserved for smaller specimens such as those used for cytology.445-447 When combined with other 

chemicals, however, alcohol-based fixatives can result in good preservation of tissue morphology, 

and hence is a major component of a number of commercial fixatives (UMFIX, CytoLyt etc), which 

have been demonstrated to be equivalent, if not superior to 10% NBF for IHC, and assays requiring 

extraction of DNA or RNA, including for NGS.448-454 Despite this, due to increased costs, lack of robust 

evidence in all areas, and a system largely dependent on formalin, alcohol based fixatives are the 

exception in clinical histology laboratories.  

Once suitably fixed, the tissue must be further processed, either by inclusion of all available tissue if 

small biopsies or cytology specimens, or the macroscopic dissection of larger specimens for 

informative areas, such that the tissue can be embedded in paraffin wax, to produce FFPE tissue 

blocks, from which sections of tissue can be sliced and floated onto glass slides ready for analysis.  

4.0.3 Specimen age and storage 

Another important pre-analytical factor in the suitability of specimens for PD-L1 expression analysis 

is the age of the specimens. This is important for two reasons: the clinical and biological relevance of 

an older specimen in regards to how representative it is of the patient’s current disease status, and 

the possibility of older tissue falsely representing the status of PD-L1 by under or over staining. The 

former is dealt with in Chapter 6 (Heterogeneity of PD-L1), and the latter considered more 

comprehensively in the literature review. In brief, several studies have found that FFPE blocks stored 

for periods over a year should be avoided as there is a high risk of under expression of PD-L1,283-285, 

287, 291 though use of tissue stored for less time, such as 6 months, seems to be less susceptible to this 

loss,236, 286, 289 with IASLC guidelines recommending the use of blocks no older than 3 years of age.282  

One of the major issues in old tissue is antigen degradation that results in a loss of immunogenicity 

and under staining of IHC stains. This phenomena is not fully understood, and there is variation of 

the severity of this between tissues, protein targets and specific antibody clones. The reasons for 

loss of immunogenicity is complex: a review by Engel et al. 2011 looked at 29 pre-analytical factors 

and found that 15 of these affected immunogenicity of FFPE stored tissue such that IHC staining was 

negatively impacted; including fixation – (including delay to fixation, type of fixation and duration of 

fixation), dehydration, paraffin impregnation, slide drying and slide storage.455 Environmental factors 
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of storing FFPE tissue is a major area in which attempts to find the underlying cause of immunogenic 

loss have been made, with a wide range of factors implicated, including pre-storage pre-analytical 

factors, storage time, ultraviolet A (UVA) exposure, oxidation, humidity, and temperature.292, 293, 295, 

456-459   

For PD-L1 IHC specifically, manufacturers of the PD-L1 clones recommend the immediate staining of 

sections for PD-L1 once prepared,250-253 and indeed it has been demonstrated that unstained 

sections rapidly lose their immunogenicity for PD-L1,296 with IASLC guidelines recommending storage 

of tissue in a cool temperature away from light, heat and humidity.282 The use of stored FFPE 

sections for IHC is not typical practice in the routine clinical laboratory, with FFPE blocks typically 

sectioned as required for reflex testing or on an ‘as requested’ basis. However, the underlying 

mechanism of loss of antigenicity in FFPE tissue is not fully characterised and the use of sections to 

study this phenomena is beneficial in that it saves tissue, likely reflects the same process that occurs 

in stored FFPE blocks and is time effective. In addition, there are scenarios in which FFPE sections are 

stored and transported over longer periods of times, and therefore the ideal storage conditions of 

tissue for any given biomarker is an important consideration. For example, in the development of 

companion diagnostics during international clinical trials, the tissue samples may come from 

multiple countries, but the biomarker in development maybe only tested at a single site, or some 

included countries may not allow for the collection of FFPE blocks for clinical trials. Indeed there is 

considerable variation between countries in regards to ethical, legal and regulatory practices in 

regards to FFPE tissue.460 Anticipating the impact of storage conditions on the biomarker would be 

hugely valuable in their development. To that end, understanding the reasons for antigenicity loss, 

and having an environment in which loss can be minimised would be useful for both routine storage 

of clinical tissues and in the development of novel assays.  

The work that follows in this chapter therefore sets out to address three major questions pertaining 

to the pre-analytical factors’ impact on PD-L1 staining. Firstly, the impact of sample type on PD-L1 

expression by a retrospective review of over 2,000 clinically reported cases. Secondly, the use of 

differing fixatives, by considering cytology specimens that have been fixed in either alcohol or 10% 

NBF. Thirdly, the role of environmental factors on stored unstained FFPE sections by using a 

controlled environment to alter temperature, humidity and oxygen levels. In so doing, the specific 

impact of these factors on PD-L1 expression can be better characterised, and practical advice of 

clinical relevance can be generated.  
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4.1 Methods 

4.1.0 Review of retrospective cases 

A search of the LCL pathology database was performed using Telepath (Reflection for UNIX 1985-

2008) with the following parameters: a two year period between January 1st 2018 and December 31st 

2019; SNOMED (Systematised Nomenclature of Medicine Clinical Terms) procedure code (P) 

“P6000” (PD-L1 analysis) to generate a list of consecutive NSCLCs tested for PD-L1. All returned cases 

were reviewed for suitability as having a NSCLC diagnosis (including ADC, SCC, NSCLC NOS) and 

excluded if there was incomplete data, a non-NSCLC diagnosis, or no attempt at PD-L1 IHC was 

performed. The remit of LCL over this time period included regional and extra-regional testing of PD-

L1 for a number of centres, and so included specimens from across Merseyside, Greater Manchester 

and Cumbria, and all cases were stained for PD-L1 with SP263 clone as per main methods section.  

Manual review of listed cases was then performed to extract the following data: diagnosis, specimen 

type and PD-L1 TPS to generate a raw data spreadsheet of information. This data was extracted and 

collated by my colleague Dr Felicity Elwin. Additional review of data to ensure completeness was 

then performed, and the TPS scores, including the return of ‘insufficient tissue’ (fewer than 100 

viable tumour cells) were stratified and grouped by specimen type to account for both sampling 

methodology (bronchial washings and brushings, aspirates, tissue biopsies, resections) and 

anatomical site of sampling (primary lung tissue, regional lymph node, distant metastases, 

pleural/pericardial metastases). PD-L1 TPS scores were categorised as negative (<1%), weak (1-49%) 

or strong (≥50%) positive for PD-L1.  

4.1.1 Use of alcohol or formaldehyde based fixatives  

This used the Mersey-Salford cohort as described in the main methods section. As previously 

detailed, 60 paired specimens of EBUS-FNAs were collected during bronchoscopy, with two passes of 

regional lymph node metastatic deposits taken to provide each pair. The tissue collected from the 

first pass of each lymph node was placed into the alcohol-based fixative of choice, depending on the 

centre (CytoRich Red or CytoLyt), with tissue from the second pass of each lymph node placed into 

10% NBF. In so doing this minimises the confounding factors of tumour heterogeneity, both spatially 

and temporally, ensures no delay to fixation, and minimises inter-procedural variation. After routine 

diagnostics were performed by regional pathology teams to determine diagnosis/staging and 

predictive profiling, specimens were then collated anonymously for this study, and labelled as “Pair 

1”, “Pair 2” etc. All specimens were prepared into FFPE cell blocks with the aid of cytology BMS 

(Claire Chadwick): all specimens were centrifuged for 10 minutes at 2500 rpm, and the supernatant 
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was decanted. Specimens fixed in CytoRich Red had an additional intermediate fixation step of 30 

minutes to 2 hours in 10% NBF before processing. Resulting pellets from the CytoLyt specimens were 

placed into an alcoholic preservative solution (PreservCyt; Hologic UK, Ltd). After decantation of the 

supernatant from all specimens after a second spin, agar was placed onto the pellet to produce a 

solid cell block. Pellets were then bio-wrapped, placed into a labelled histology cassettes, and 

processed overnight (12 hours) in a Leica Peloris III HistoCore processor. All specimens, CytoRich 

Red–fixed or CytoLyt-fixed, had a post-fixation step in 10% NBF for a minimum of 45 minutes while 

they were in the processor. The specimens were placed through different gradients of alcohol, 

xylene, and paraffin wax. The FFPE blocks produced at this point were then sectioned and stained for 

H&E and PD-L1 (SP263) as previously described. Due to the assistance of Claire, the specimens were 

thus prepared as “Pair 1”, “Pair 2” etc. in a blinded fashion in that I was unable to determine which 

of any given pair were fixed in alcohol or in formalin. Each section was scored by myself to give a 

TPS, and then re-scored independently by Prof. John Gosney, whom was also blinded to the nature 

of the fixatives. Discrepancies between scorers was resolved by generating a consensus score with 

both pathologists reviewing via a multi-headed microscope. Thus each pair was given a TPS score for 

both specimens (or rated as inadequate if fewer than 100 viable tumour cells were present) and the 

nature of the fixative revealed post-analysis. TPS scores for each fixative could thus be compared as 

a cohort.  

4.1.2 Environmental factors 

This study used the Eli Lilly cohort as described in Chapter 3. A mixture of gastric carcinoma, NSCLC, 

placenta and tonsil tissues were used. This work was performed during my secondment at Eli Lily & 

Co, where the acceleration chamber construction, processing of tissue and scanning of slides was 

performed by Eli Lilly & Co staff. Comparison of storage conditions involved the microtomy of FFPE 

tissues to create sections of tissue (performed immediately prior to the commencement of each 

experiment) in either normal storage conditions or within the acceleration chamber with variable 

environmental conditions. Normal storage conditions referred to a monitored and controlled 

laboratory environment with a relative humidity range of 14.4–80.5% (average 46.8%) and a 

temperature range of 20.1–31.0 °C (average 21.6 °C) where tissue sections were not exposed to 

direct light. The acceleration chamber was contained within an incubator (Panasonic MIR-154-PA, 

Seacaucus, NJ, USA) without direct light exposure where humidity, oxygen concentration, and 

temperature could be regulated and measured. Oxygen concentration was maintained and 

monitored using an oxygen meter [Apogee Instruments Oxygen Meter (MO-200); Logan, UT, USA] 

and humidity levels were measured using a Lockdown Hygrometer (Lockdown Vault Accessories; 

Columbia, MO, USA). A series of preliminary experiments were performed to ascertain the 
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conditions required to suitably accelerate loss of antigenicity of FFPE sections, such that loss of pan-

cytokeratin (pan-CK) and PD-L1 by IHC could be observed in a step-wise fashion to significant levels 

of loss over an approximately 4 week period. The baseline parameters to achieve this desirable loss 

of accelerated antigenicity were found to be environmental conditions of 37°C, 100% oxygen, and 

humidity of ~80% (range 75–85%). Each variable could be changed to create different temperatures 

(20 °C vs 37 °C vs 60 °C), oxygen levels (100% vs 20% oxygen) and humidity (~80% vs ~45%), with 

experiments aimed to be run for 4 weeks, but at our discretion the experiments could be terminated 

early (if extremely rapid loss was seen) or extended further (if no discernible loss was seen). The use 

of desiccant to protect against chamber conditions involved the use of sections placed within the 

chamber in a closed box, sealed in a protective bag (Minigrip Commercial LLC UV Protection Bag; 

Alpharetta, GA, USA) with desiccant (Fisherbrand Humidity Sponge Desiccant; Lenexa, KS, USA) and a 

humidity indicator card (WiseSorbent Technology (Marlton, NJ, USA)).  

IHC was performed in a similar manner to that detailed in the methods sections; briefly, serial 

sections were cut at 4-µm thickness and allowed to dry at room temperature overnight. IHC staining 

for PD-L1 was performed using four different anti-PD-L1 clones: 22C3 and 28-8 as per 

manufacturer’s guidelines;252, 253 E1L3N and SP142 as LDTs using EnVisionTM FLEX detection (High 

pH) on the Autostainer Link 48 (Agilent). Immunostaining for pan-CK was assessed as a control using 

an antihuman CK, clone AE1/AE3. A representative section from each block was stained for H&E on 

day 0 of each experiment. All stained tissue sections were scanned on an Aperio ScanScope AT Slide 

Imager (Leica Biosystems; Buffalo Grove, IL, USA) at ×40 magnification, and images viewed on Aperio 

ImageScope (v12.3.2).430 

For each series of experiments the glass slides and digital images were reviewed to score antigenicity 

of the IHC stains. For NSCLC a TPS score was generated as previously described for the 22C3, 28-8 

and E1L3N clones. SP142 was scored for a TPS, but this clone also requires individual scoring of the 

tumour cell component and the immune cell component to generate a TC/IC score, and gastric 

carcinomas are clinically assigned a combined positive score (CPS) that counts both positive tumour 

and relevant immune cells,461 and thus a CPS score was used in these instances. For the placenta and 

tonsil tissues, as well as for pan-CK stains in all tissues, a TPS/CPS is not possible to be generated. 

Instead the digital images of all sections (including the NSCLC and gastric cancer PD-L1 sections) 

were reviewed in Aperio ImageScope and assessed using the Aperio ImageScope integrated image 

analysis ‘Positive Pixel Count v9’338 by annotating regions of interest and allowing the ‘positive pixel 

count’ to be generated. The number of positive pixels taken as a proportion of the total number of 

tissue pixels was used to define the positivity score and given as either absolute values (positivity 

index) or as a percentage change relative to the corresponding sample at day 0 (positivity %). For the 
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NSCLC and gastric cancer sections scored by PD-L1, the TPS/CPS thus provides a measure of the 

quantity of relevant cells being stained in a clinically relevant manner, and the positivity score 

provides an objective measure of the intensity of staining, and quantification of IHC staining 

intensity change between sections.  

Mass-spectrometry (MS) was used in this project as an assessment of PD-L1 protein quantities, 

discussed more fully in Chapter 7 (The Tumour Microenvironment), and to quantify potential 

oxidation within the FFPE tissues. MS was performed by Protypia with fuller methods detailed in 

previously published work.360, 462 In brief, two PD-L1 peptides found in the extracellular domain 

(LQDAGVYR and AEVIWTSSDHQVLSGK, referred henceforth to as LQD and AEV respectively) were 

analysed. These were selected as LQD contains no easily oxidisable residues, and LQD levels are 

comparable to IHC levels of PD-L1 by E1L3N360 thus LQD was used as a measure of PD-L1 abundance. 

Conversely, AEV contains an oxidisable tryptophan (ω) and lies within the recognition sequence for 

the 22C3 antibody. Thus AEV and ω-oxidation products of AEV could be detected as a measure of 

oxidation, with potentially relevant findings for the impact on 22C3 expression levels. In addition, 

global MS analysis was performed that used 274 methionine (Μ)-containing peptides. The 

biochemistry of M-oxidation is outside the scope of this thesis, but briefly the oxidation of 

methionine residues is one of the common post-translational modifications of proteins with 

ultimately can result in the loss of conformational stability, decrease the biological activity of 

proteins and play a role in protein ageing.463 MS has been used extensively to characterize M-

oxidation in proteins, and tandem MS (MS/MS) (that is, the selection and fragmentation of already 

fragmented ions based on m/z by a second MS) can identify the presence and location of this 

modification.464 Thus the detection of M-Oxidation products by MS in a global analysis of these 274 

peptides is a measure of oxidation within the tissue sample as a whole.  

4.1.3 Statistics 

Descriptive exploration of data for testing of assumptions prior to formal statistical testing was 

performed as described in the methods chapter. For the retrospective case reviews data was 

unpaired and did not fit assumptions for parametric testing, therefore the Mann-Whitney U test was 

used to compare two groups, and Kruskal-Wallis with Dunn-Bonferroni post-hoc analysis was used 

for comparison of multiple groups, with Chi-Square testing to compare clinical categories. For the 

different fixatives in cytology specimens segment, data did not meet assumptions for parametric 

testing but was paired, so Wilcoxon matched-pairs signed-rank was used to compare means, and 

Chi-Square testing to compare clinical categories. For the acceleration chamber experiments, 

comparisons of multiple groups over time were performed using repeated measures ANOVA with 



114 
 

Bonferroni correction and Tukey’s post-hoc analysis. Comparisons of two groups at a single point 

were performed using independent samples or paired Student’s t test as appropriate. Relationships 

between variables were assessed using Pearson’s correlation and, if appropriate, linear regression. 

Analysis of the effect of incubation conditions on methionine oxidized peptides compared the 

baseline condition and day 28 accelerated degradation condition and used peptide count data for 

peptides with at least ten spectral counts using Fisher’s exact test (two-sided). The Wilcoxon Signed 

Rank test was used to determine significance in the number of oxidized peptides between the 

baseline and day 28 conditions. All significances were taken as p<0.05.  

4.2 Results  

4.2.0 Retrospective case review of PD-L1 expression by sampling method 

A total of 2,016 consecutive NSCLC specimens scored by SP263 were included for analysis. Overall 

distribution of PD-L1 TPS into negative, weak or strong were roughly equal (32% vs 30% vs 31% 

respectively) with an overall 7% inadequate rate. (Table 4.2.0). Separating data by NSCLC 

morphology found no significant difference of distribution of TPS into clinical groups (p=0.081) or of 

TPS means (p=0.404) with similar inadequate rates noted (Table 4.2.0) 

Division of samples by sampling technique found that biopsies, resections and aspirates generally 

followed a similar distribution, and although bronchial washings/brushings had fewer strong positive 

rates there was no significant difference between the numbers in each clinical group (p=0.079) with 

a non-significant change in mean TPS (p=0.503), Table 4.2.0. Representative images of strong PD-L1 

expression in different tissue types is shown in Fig 4.2.0 

Division of samples by cytology versus histology also found no significant changes in clinical groups 

(p=0.075) or mean TPS (p=0.992) and similar inadequate rates (7% vs 8%). (Table 4.2.0) 

Division of samples by anatomical site found similar distribution of cases into clinical groups for 

tissue from primary lung, regional lymph nodes and distant metastases, but a significantly increased 

mean TPS in pleural/pericardial specimens versus primary tissue (40 vs 30 p=0.008) and regional 

lymph nodes (40 vs 30 p=0.009) and a significantly increased number of pleural/pericardial cases in 

strong positive clinical group than non-pleural/pericardial samples. (44% vs 32% p=0.003). (Table 

4.2.1) 
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  N % PD-L1 n(%):  <1%  1-49% ≥50%  Inadequate  

Total 2016  100  653 (32) 595 (30) 629 (31) 139 (7) 

Specimen 
Type 

             

Biopsies 1240 62  382 (31) 395 (32) 382 (31) 81 (7) 

Aspirates 695 34  237 (34) 181 (26) 218 (32) 59 (8) 

Resections 61 3  26 (39) 14 (23) 21 (34) 0 

BW/BBs 20 1  8 (40) 6 (30) 3 (15) 3 (15) 

Morphology              

ADC 1132 56  374 (33) 315 (28) 358 (31) 89 (8) 

SCC 695 34  220 (31) 238 (34) 204 (29) 33 (5) 

ADSC 13 <1  3 (23) 3 (23) 5 (38) 2 (15) 

NSCLC-NOS 161 8  49 (30) 38 (24) 58 (36) 16 (10) 

Other 15 <1  7 (47) 3 (20) 4 (27) 1 (7) 

Histo/Cyto        

Histology 1302 65  409 (31) 409 (31) 403 (31) 81 (7) 

Cytology 714 35  241 (34) 186 (26) 227 (32) 60 (8) 

 

 

 

Typically only adenocarcinoma NSCLCs will metastasise to body cavities, thus a further subdivision of 

specimens concerning only ADCs revealed pleural fluids to have significantly greater mean TPS than 

primary lung  samples (40 vs 27 p=0.005) and distant regional lymph nodes, (40 vs 32 p=0.034) and 

trended towards greater versus distant metastases (40 vs 26 p=0.084). Although all pericardial fluids 

had a TPS of 100%, there were only 4 in the cohort and these were not included in a separate 

analysis. Pleural biopsies trended towards higher average TPS versus non pleural specimens, but no 

significance was reached. These results are summarised in Fig 4.2.1. Representative images of strong 

PD-L1 expression in pleural fluid, pleural biopsies and pericardial fluid are shown in Fig 4.2.2.  

 

Specimen Number PD-L1 TPS 
<1% (%) 

PD-L1 TPS     
1-49% (%) 

PD-L1 TPS ≥50% 
(%) 

Average 
TPS 

Primary 603 35 31 34 27 

Regional lymph nodes 252 39 26 35 32 

Distant Metastases 51 33 33 34 26 

Pleural Biopsy 28 29 25 46 38 

Pleural fluid 110 21 34 45 40 

Pericardial fluid 4 0 0 100 94 

Table 4.2.0 PD-L1 expression by SP263 in different NSCLC specimens by sampling methodology 

and by morphology. BW, bronchial washings; BB, bronchial brushings; ADC, adenocarcinoma; 

SCC, squamous cell carcinoma; ADSC, adenosquamous carcinoma; NSCLC NOS, non-small cell 

lung carcinoma not otherwise specified 

Table 4.2.1 PD-L1 expression by SP263 in different NSCLC specimens by anatomical location 
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Fig 4.2.0 PD-L1 expression assessed by SP263 IHC in NSCLC for high (≥50%) TPS in four different 

specimen types:   A – Core biopsy, B – Pleural fluid aspirate, C - Bronchial washings, D – Resection 

of primary lung tumour  

Fig 4.2.1 PD-L1 TPS average for lung adenocarcinomas in different specimens. Pleural fluid is 

significantly higher than primary tissue and regional lymph nodes. Bars represent mean ± SEM, 

*=p<0.05, **=0<0.01.    
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Fig 4.2.2 H&E and PD-L1 expression (SP263) for: A – Pleural fluid aspirate; B – Pleural Biopsy; C – 

Pericardial Aspirate. Overwhelming positivity of tumour cells and strikingly strong expression is 

observed in all 3 examples. 
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4.2.1 Impact of different fixatives on PD-L1 expression in paired cytology specimens 

A total of 60 pairs of EBUS FNA specimens were included to provide 120 samples: 60 fixed in 10% 

NBF, and 60 fixed in alcohol. Of the alcohol fixed cases, 12 (20%) were fixed in Cytolyt, the rest were 

fixed in CytoRich Red. The fixatives, diagnosis, and TPS scores for both pathologists, including a 

consensus score is show in Table 4.2.2.  

 Diagnosis Alcohol   Formalin   Alcohol fixative 

  Path 1 Path 2 Cons. Path 1 Path 2 Cons.  

1 ADC INS INS INS INS INS INS CytoLyt 

2 ADC 0 0 0 0 0 0 CytoLyt 

3 SCC 0 0 0 0 0 0 CytoLyt 

4 NSCLC NOS INS INS INS 20 20 20 CytoLyt 

5 ADC INS INS INS INS INS INS CytoLyt 

6 ADC 10 20 15 10 20 15 CytoLyt 

7 ADC 100 100 100 100 100 100 CytoLyt 

8 NSCLC NOS 0 0 0 0 0 0 CytoLyt 

9 SCC 50 50 50 50 50 50 CytoLyt 

10 ADC <1 <1 <1 INS INS INS CytoRich Red 

11 ADC 0 0 0 0 0 0 CytoRich Red 

12 ADSC 80 80 80 80 80 80 CytoRich Red 

13 ADC 30 30 30 30 30 30 CytoRich Red 

14 SCC <1 <1 <1 <1 <1 <1 CytoLyt 

15 SCC 70 70 70 70 70 70 CytoRich Red 

16 ADC 60 70 60 60 70 70 CytoLyt 

17 SCC <1 <1 <1 <1 <1 <1 CytoRich Red 

18 SCC 0 0 0 0 0 0 CytoRich Red 

19 ADC 0 0 0 0 0 0 CytoRich Red 

20 ADC 60 60 60 60 60 60 CytoRich Red 

21 SCC 90 90 90 90 80 90 CytoRich Red 

22 ADC INS INS INS 0 0 0 CytoRich Red 

23 SCC INS INS INS 50 50 50 CytoRich Red 

24 ADC 80 70 80 80 90 90 CytoRich Red 

25 NSCLC NOS 100 100 100 100 100 100 CytoRich Red 

26 ADC 95 95 95 95 90 95 CytoRich Red 

27 ADC 0 0 0 0 0 0 CytoRich Red 

28 ADC <1 <1 <1 <1 <1 <1 CytoRich Red 

29 SCC 90 80 85 INS INS INS CytoRich Red 

30 SCC 0 0 0 0 0 0 CytoRich Red 

31 ADC 90 80 85 INS INS INS CytoRich Red 

32 SCC 90 90 90 90 90 90 CytoRich Red 

33 ADC 1 1 1 1 1 1 CytoRich Red 

34 SCC 70 70 70 70 70 70 CytoRich Red 

35 ADC 1 1 1 1 1 1 CytoRich Red 

36 ADC 20 25 20 20 20 20 CytoRich Red 

37 ADC 0 0 0 0 0 0 CytoRich Red 

38 ADC 90 90 90 90 90 90 CytoRich Red 

39 ADC 0 0 0 0 0 0 CytoRich Red 
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40 SCC <1 <1 <1 INS INS INS CytoRich Red 

41 SCC 0 0 0 0 0 0 CytoRich Red 

42 SCC INS INS INS 90 90 90 CytoRich Red 

43 ADC 0 0 0 0 0 0 CytoRich Red 

44 ADC 0 0 0 0 0 0 CytoRich Red 

45 ADC 0 0 0 0 0 0 CytoRich Red 

46 ADC 0 0 0 0 0 0 CytoRich Red 

47 Basaloid SCC <1 <1 <1 <1 <1 <1 CytoRich Red 

48 ADC 90 90 90 90 90 90 CytoRich Red 

49 ADC 100 100 100 100 100 100 CytoRich Red 

50 ADC <1 <1 <1 <1 <1 <1 CytoRich Red 

51 ADC 0 0 0 0 0 0 CytoRich Red 

52 ADC <1 <1 <1 <1 <1 <1 CytoRich Red 

53 ADC <1 <1 <1 INS INS INS CytoRich Red 

54 SCC 2 2 2 2 2 2 CytoRich Red 

55 ADC 30 30 30 30 30 30 CytoRich Red 

56 ADC 95 95 95 95 95 95 CytoRich Red 

57 ADC 100 100 100 100 100 100 CytoRich Red 

58 ADC 95 95 95 95 95 95 CytoRich Red 

59 ADC 99 100 99 99 95 99 CytoRich Red 

60 ADC 5 5 5 5 5 5 CytoRich Red 

 

 

 

 

Of the 120 samples, a total of 13 (10.8%) were insufficient, and there was no significant difference 

between the fixatives for insufficient rate; 2 cases being insufficient for both fixatives, 4 insufficient 

for alcohol only, and 5 insufficient for 10% NBF only (p=0.974). There was no significant difference 

comparing TPS means for 10% NBF vs alcohol (35 vs 35, p=0.194), nor any difference in clinical 

groups, as all 60 pairs remained in the same clinical category (p=0.974). Separating the groups into 

alcohol fixatives also found no significant difference in mean TPS comparing CytoLyt to 10% NBF (28 

vs 29 p=0.351), CytoRich Red to 10% NBF (36 vs 37 p=0.323), or CytoLyt to CytoRich Red (28 vs 37, 

p=0.112). Representative images of PD-L1 expression in paired cytology specimens are shown in Fig 

4.2.3.  

Table 4.2.2 PD-L1 expression by SP263 in 60 paired specimens of EBUS FNAs scored by two 

pathologists, with concordance scores and fixative details.  

Cons., consensus score; INS, insufficient; ADC, adenocarcinoma; SCC, squamous cell carcinoma; 

NSCLC, non-small cell lung carcinoma not otherwise specified.  
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4.2.2  PD-L1 loss in normal conditions 

PD-L1 loss in stored tissue sections has been previously demonstrated, and to confirm we could 

replicate this and attempt to quantify the amount of PD-L1 expression loss in FFPE tissue sections, 

TMA sections containing 35 gastric carcinomas were stored for up to 24 months in normal storage 

conditions. Sections were stained for E1L3N and SP142 at day 0, 4.5 months and 24 months. Positive 

pixel count scoring (positivity) demonstrated that both clones showed significant loss of PD-L1 

expression scores over time as expected: average positivity score for E1L3N was 0.197, 0.107 and 

0.074 at 0, 4.5 and 24 months respectively, (0 vs 4.5 p=0.05, 0 vs 24 p<0.001) and for SP142 was 

0.128, 0.075 and 0.074 at 0, 4.5 and 24 months respectively (0 vs 4.5 p<0.001, 0 vs 24 p<0.001). 

However, only E1L3N has any appreciable loss between 4.5 and 24 months, but this was not 

significant (0.107 vs. 0.074 p=0.285) with SP142 having almost no change (0.075 vs 0.074 p=0.890). 

Fig 4.2.3 Expression of PD-L1 (SP263) in two pairs of EBUS FNAs, with one (A) containing 

squamous carcinoma (TPS, 2%) and the other (B) containing adenocarcinoma (TPS, 90%). One 

aspirate of each pair was fixed in an alcohol-based fixative, and (A2, B2) the other was fixed in 

formalin (A1, B1). There was no discernible qualitative or quantitative difference according to 

fixation in any of the 50 pairs studied.  
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Fig 4.2.4 PD-L1 expression in aged tissue and tissue under accelerated conditions. Representative 

PD-L1 expression assessed by E1L3N IHC in gastric carcinoma under normal atmospheric 

conditions (A-C) and in NSCLC under acceleration conditions (D-F). A Day 0, B 4.5 months, C 24 

months; D Day 0, E Day 9, F Day 28.  

Fig 4.2.5 PD-L1 expression in gastric cancer TMAs over 24 months for E1L3N (A) and SP142 (B). 

E1L3N has a stronger average signal than SP142 with a significant loss in PD-L1 expression only 

seen by 24 months. SP142 has a significant reduction in PD-L1 expression by 4.5 months, but 

with no further discernible loss at 24 months. (Bars represent mean ± SEM, **=p<0.01)  
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CPS assessments for the gastric cancer TMAs were higher on average for E1L3N than for SP142 (CPS 

40 vs 30; p < 0.05). Clinically relevant loss of CPS (from ≥1% to <1%) was seen by 4.5 months for both 

clones (E1L3N 13% of cases, SP142 20% of cases) with further loss by 24 months (E1L3N 33% of 

cases, SP142 37% of cases) (Fig 4.2.6).  

  

 

 

 

4.2.3 PD-L1 loss in accelerated conditions 

To determine whether the natural loss of immunoreactivity could be reproduced in an accelerated 

fashion, tissues were subjected to controlled environmental stress. Storing unstained sections of the 

NSCLCs in the acceleration chamber at 100% oxygen, 37 °C, and 80% humidity resulted in repeatable 

stepwise loss of PD-L1 expression over 28 days comparable with loss, in effect, seen over 24 months 

in ambient conditions (Fig. 4.2.4 D-F).The NSCLC tissues were stained and assessed for PD-L1 

expression using multiple antibody clones. Image analysis of these demonstrated day 0 PD-L1 

expression was broadly equivalent for 22C3 and 28-8, with a slightly increased average expression 

for E1L3N, and markedly lower average expression for SP142, in keeping with what might be 

expected. For the 22C3, 28-8, and E1L3N clones a stepwise loss of PD-L1 expression is seen over 28 

days within the acceleration chamber. The low immunostaining by SP142 at day 0 resulted in 

minimal further detection of expression decrease across NSCLC specimens thereafter. These results 

are shown in Fig 4.2.7.  
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Fig 4.2.6 PD-L1 expression in gastric cancer TMAs over 24 months for E1L3N (A) and SP142 (B) by 

CPS for all positive cases (≥1%) and strongly positive cases (≥50%) with a reduction of both 

categories in both clones over time.  

A B 
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PD-L1 expression by TPS found similar numbers of positive (TPS ≥1%) and strongly positive (TPS 

≥50%) cases when assessed with the 22C3 (seven and four cases, respectively), 28-8 (nine and four 

cases, respectively), and E1L3N (9 and 5 cases, respectively) clones, but fewer positive and strongly 

positive cases for SP142 (three and one, respectively). Loss of PD-L1 TPS in NSCLC sections to levels 

below these prescribing guideline cut-offs occurred for all clones at varying time points, with over 

half of cases changing from diagnostically positive to diagnostically negative by day 19 for 22C3 (TPS 

≥1% and ≥50%), day 9 for 28-8 (TPS ≥1% and ≥50%), and day 9 for positive and day 19 for strongly 

positive for E1L3N (Fig. 4.2.8) 

Fig 4.2.7 PD-L1 expression by positive pixel count in NSCLC sections over time in the acceleration 

chamber with conditions of 100% oxygen, 80% humidity, and 37°C for 22C3, 28-8, E1L3N, and 

SP142 PD-L1 clones. Significant reduction in PD-L1 expression is measured against day 0 values. 

Bars represent mean ± SEM. *p<0.05.   
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4.2.4 Effect of humidity and temperature on immunoreactivity loss by IHC for PD-L1 and pan-CK 

In order to further understand the relative contribution of major environmental conditions on tissue 

immunoreactivity, the effect of oxygen, humidity, and temperature on PD-L1 (E1L3N) and pan-CK 

(AE1/AE3) IHC expression was assessed on tonsil and placenta tissue sections stored in the 

acceleration chamber. 

First, the baseline acceleration chamber conditions were used to study the effect of these IHC assays 

in these tissues. By day 28 significant loss of PD-L1 and pan-CK positivity was seen in both placenta 

and tonsil [average positivity day 0 vs day 28: PDL1 in placenta 0.528 vs 0.088 (100% vs 17%); p < 

0.001, tonsil 0.123 vs 0.018 (100% vs 15%) p < 0.001; CK in placenta, 0.626 vs 0.259 (100% vs 41%); p 

= 0.05, tonsil 0.319 vs 0.219 (100% vs 69%); p < 0.05]. Control slides kept at normal ambient 

Fig 4.2.8 PD-L1 expression by clinical cut-offs in NSCLC sections over time in the acceleration 

chamber with conditions of 100% oxygen, 80% humidity, and 37 °C for 22C3, 28-8, E1L3N, and 

SP142 PD-L1 clones. Bars represent number of cases in series with PD-L1 expression equal or 

above TPS clinical cut-off thresholds for all positive cases (≥1%) and strongly positive cases 

(≥50%). SP142 specific TC scoring is included.   
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conditions had no significant loss of either PD-L1 or pan-CK expression by day 28 for both placenta 

and tonsil tissue.  

Changing the temperature in the acceleration chamber had a significant impact on the rate of IHC 

signal loss. Increasing the temperature to 60°C (in the context of elevated oxygen and humidity) 

resulted in extremely rapid loss of PD-L1 expression: by day 7 PD-L1 expression was reduced to 8% 

and 3% positivity in placenta and tonsil respectively. These conditions degraded PD-L1 so quickly 

that the experiment was terminated before day 28. Conversely, decreasing the temperature to 20°C 

reduced immunoreactivity loss, resulting in no statistically significant loss of PD-L1 in placenta tissue 

by day 28 [average positivity, 0.538 vs 0.257 (100% vs 48%); p = 0.174] or pan-CK in both placenta 

and tonsil tissue [average positivity, placenta 0.615 vs 0.215 (100% vs 35%); p = 0.284, tonsil 0.293 vs 

0.247 (100% vs 84%); p = 0.423] with a significant reduction seen only for PD-L1 expression in tonsil 

by day 28 [average positivity 0.135 vs 0.07 (100% vs 52%), p < 0.05] though this was significantly less 

than the loss seen under 37 °C conditions [average positivity of PD-L1 in tonsil by day 28, 20 °C vs 37 

°C: 0.07 vs 0.02 (52% vs 14%) p < 0.05], results summarized in Fig 4.2.9.  

Reducing humidity had a significant impact on the rate of IHC signal loss. Decreasing humidity to 

45% (in the context of elevated oxygen and temperature) resulted in no significant loss of PD-L1 

expression in tissues, such that the experiment was significantly extended. At 28 weeks a significant 

loss in tonsil was seen to occur [0.183 vs 0.021 (100% vs 10%); p < 0.05], but even at 39 weeks no 

significant loss in placenta was seen [0.639 vs 0.408 (100% vs 64%); p = 0.201], and the experiment 

was terminated at this point. The rate of PD-L1 expression loss in reduced humidity conditions was 

slowed to the extent that both placenta and tonsil tissue demonstrated loss by 39 weeks at 45% 

humidity similar to, or less than, 1 week at 80% humidity [average positivity for placenta 0.41 vs 0.17 

(64% vs 27%); p = 0.13, and tonsil 0.018 vs 0.019 (10% vs 10%); p = 0.93]. Average positivity of PD-L1 

in placenta and tonsil at 28 days under 45% and 80% humidity are shown in Fig. 4.2.9. 



126 
 

 

 

 

 

 

4.2.5 Effect of oxygen on PD-L1 expression 

Reducing oxygen levels in the incubation chamber to 20% (in the context of elevated temperature 

and humidity) had no significant effect on the rate of loss or total quantity of either PD-L1 or pan-CK 

Fig 4.2.9 PD-L1 expression in placenta and tonsil FFPE sections incubated in the acceleration 

chamber under different environmental conditions at day 28; a–d: 100% oxygen and 80% 

humidity at either 20 °C or 37 °C, then stained for PD-L1 (E1L3N) or pan-CK (AE1/AE3): A Placenta 

PD-L1, B Tonsil PD-L1, C Placenta pan-CK, D Tonsil pan-CK. 100% oxygen and 37 °C at either 45% 

or 80% humidity at day 28, E Placenta PD-L1, F Tonsil PD-L1. Control conditions: 20 °C, 

atmospheric humidity and oxygen. Bar represents mean ± SEM. *p < 0.05, **p < 0.01, ***p < 

0.001. 
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expression measured in either placenta or tonsil tissue [day 28 positivity, 100% vs 20% oxygen: PD-

L1, placenta 0.074 vs 0.08 (14% vs 16%); p = 0.918; tonsil 0.0079 vs 0.016 (7% vs 14%); p = 0.937; 

pan-CK, placenta 0.43 vs 0.45 (68% vs 71%) p = 0.918; tonsil 0.21 vs 0.22 (61% vs 64%); p = 0.937]. 

Results shown in Fig 4.2.10.  

 

 

 

 

 

Furthermore, there was minimal evidence of oxidation by MS. Detection of LQD was comparable to 

PD-L1 TPS at day 0 (r² = 0.7436, p<0.0013, Fig 4.2.11 A), but whereas decrease in PD-L1 levels was 

seen overtime by IHC in the standard acceleration conditions, at day 9 and day 28 no loss of either 

LQD or AEV was seen, indicating no genuine loss of PD-L1 protein, but also no oxidation of PD-L1 

proteins. (Fig 4.2.11 B) Increased variation in measured PD-L1 abundance was seen at day 9 and day 

28 for both peptides, relative to day 0, which may be an artefact of the storage conditions, but 

Fig 4.2.10 PD-L1 expression in placenta and tonsil FFPE sections incubated in the acceleration 

chamber under different environmental conditions at day 28; a–d: 100% oxygen and 80% 

humidity at either 20 °C or 37 °C, then stained for PD-L1 (E1L3N) or pan-CK (AE1/AE3): A Placenta 

PD-L1, B Tonsil PD-L1, C Placenta pan-CK, D Tonsil pan-CK. 100% oxygen and 37 °C at either 45% 

or 80% humidity at day 28, E Placenta PD-L1, F Tonsil PD-L1. Control conditions: 20 °C, 

atmospheric humidity and oxygen. Bar represents mean ± SEM. *p < 0.05, **p < 0.01, ***p < 

0.001. 
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comparison of the MS peak areas did not show any apparent loss, again indicating no genuine loss of 

PD-L1 protein (Fig 4.2.11 B).  

 

 

 

 

 

 

 

 

 

 

 

 

Having confirmed PD-L1 protein was detected by MS and was stable at 28 days, evidence of 

oxidation was looked for detection of AEV oxidation products, however, none were found, nor was 

there any change in AEV, suggesting no evidence of PD-L1 protein oxidation. Global proteome 

analysis did detect some significant levels of oxidation in the methionine peptides at day 28 in the 

accelerated condition NSCLC samples, as well as in naturally aged placenta and tonsil at 2 years 

(Dunn’s test, NSCLC adj. p = 9 × 10−14; placenta adj. p = 1 × 10−34; tonsil adj p = 8 × 10−58) but 

despite being significant, the measured change was only modest and could not account for the near 

total loss of PD-L1 IHC expression seen in paired samples.  

4.2.6 The impact of desiccant on preventing immunoreactivity loss  

Because humidity was determined to be a major factor in loss of tissue immunoreactivity, the effect 

of storing slides with or without desiccant in the acceleration chamber set to baseline conditions of 

100% oxygen, 37 °C and 80% humidity over 28 days was examined. This was accomplished by 

measuring the expression of PD-L1 (E1L3N) and pan-CK IHC using positive pixel count scoring 

(positivity) on placenta and tonsil tissue sections stored over 28 days. Upon removal of slides from 

the sealed container stored within the acceleration chamber, the humidity level was recorded as 

Fig 4.2.11 PD-L1 protein by MS. A – Correlation of PD-L1 peptide LQD with PD-L1 22C3 

expression by IHC at day 0. B – PD-L1 peptides LQD and AEV at days 0, 9 and 28 in NSCLC sections 

stored in the acceleration chamber at 100% oxygen, 80% humidity and 37 °C. No significant 

change in the PD-L1 peptides with no easily oxidisable residues (LQD) or with an oxidisable 

tryptophan (AEV) implying no genuine loss and no significant oxidisation of the PD-L1 protein.  

A B 
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<30% using the enclosed indicator card. Slides stored with desiccant showed no significant loss of 

either PD-L1 or pan-CK expression in any tissue at day 28 [Average positivity day 0 vs day 28: PD-L1 

in placenta 0.57 vs 0.53 (100% vs 93%); p = 0.083, tonsil 0.088 vs 0.073 (100% vs 83%); p = 0.555, 

pan-CK in placenta, 0.74 vs 0.72 (100% vs 97%); p = 0.311, tonsil 0.33 vs 0.30 (100% vs 91%); p = 

0.185]. Qualitative assessment of sections showed slides stored with desiccant demonstrate 

expression loss similar to sections stored under normal atmospheric conditions, with appreciable 

loss of PD-L1 expression in sections stored without desiccant. To a lesser extent, loss of pan-CK was 

observed (Fig 4.2.12). Significant loss of PD-L1 immunoreactivity was seen for placenta tissue stored 

within the acceleration chamber, with appreciable, but non-statistically significant loss 

demonstrated in tonsil tissue. (Fig 4.2.13). 

 

 

 

 

A 

B 
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Fig 4.2.12 IHC expression in FFPE tissue sections at days 0, 1, 3, 7, 14, 21, and 28 for A – PD-L1 

(E1L3N) in placenta, B - PD-L1 (E1L3N) in tonsil, C – Pan-CK in placenta, D – Pan-CK in tonsil. For 

each figure, the first row shows tissue sections stored under normal ambient conditions and the 

second and third row shows tissue sections within the acceleration chamber at 100% oxygen, 37 

°C and 80% humidity both without (second row) and with (third row) desiccant. The reduction in 

staining loss overtime in the acceleration chamber with the use of desiccant is seen for both IHC 

assays and both tissues.  

C 

D 
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4.2.7 PD-L1 immunoreactivity loss on specific cell types  

Tonsil tissue stained for PD-L1 with E1L3N stored in the acceleration chamber with conditions of 

100% oxygen, 80% humidity and 37°C over 28 days was assessed for expression loss difference 

between crypt epithelium cells and germinal centre immune cells. Day 0 sections showed strong 

staining within the crypt epithelium, and weaker staining within the germinal centres, in keeping 

with known PD-L1 expression variation between these cell types.282 Loss is seen in a stepwise fashion 

over time, with no difference in the rate of loss seen between the crypt epithelia and the germinal 

centres. Due to the weaker immunoreactivity associated with these immune cells at baseline, 

however, signal loss in this cell type was appreciated earlier in the time course and was particularly 

noticeable when scanning tissues at lower magnification. This observation suggests clinical scoring 

guidelines that rely upon characterization of weaker staining cells may be impacted differentially by 

storage conditions. These results are illustrated in Fig 4.2.14. 

Fig 4.2.13 PD-L1 expression by positive pixel count in placenta (A-C) and tonsil (D-F). Control 

conditions (A + D): 20°C, atmospheric humidity and oxygen. Case sections stored in the 

acceleration chamber with conditions of 100% oxygen, 80% humidity, and 37°C without (B + E) or 

with (C + F) desiccant. B and E represent sections stored without desiccant and demonstrate a 

noticeable loss of PD-L1 signal, significant for placenta and non-statistically significant for tonsil 

(likely due to small sample size). Similar patterns are seen between the control sections and 

those stored with desiccant for both placenta and tonsil. Significant reduction in PD-L1 

expression is measured against day 0 values. Bars represent mean ± SEM. *p<0.05.  

PD-L1, programmed-death ligand-1. 
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4.3 Discussion 

Pre-analytical conditions play an important role in ensuring accuracy and consistency in IHC assays; 

changes in antigenicity and expression levels as a result of tissue storage or processing will return 

false positive or false negative results, which could potentially render patients ineligible for 

treatments they may benefit from, or subjected to treatments which provide no benefit but expose 

them to a risk of toxicity. Predictive IHC assays that have a quantitative element are particularly 

vulnerable to loss both in terms of the number of cells deemed ‘positive’ and the intensity of 

staining and result in these undesirable clinical situations.  

4.3.0 Impact of sampling methods on PD-L1 expression 

The impact of sampling methods can be difficult to fully explore due to confounding factors, such as 

tumour heterogeneity or other pre-analytical factors, but remains a potentially important source of 

variation in IHC staining. As a result, the question of differing sampling methodologies on predictive 

biomarkers has been previously studied, including IHC for ER, PR and HER2 in breast cancer, that 

have been in clinical use for many years longer than PD-L1 IHC has. A meta-analysis looking at 21 

papers found a generally good correlation between surgical resections and core biopsies for ER - 

92.8% (K0.78) and PR 85.2% (K0.66),465 with comparable results for both biomarkers also seen when 

comparing FNAs to core biopsies.466 Meric-Bernstam et al. 2014 looked at a panel of IHC antibodies 

as well as by protein arrays to compare breast resections and core biopsies, and concluded that 

some proteins are more sensitive to variation and loss than others,467 and indeed where ER and PR 

might remain similar regardless of sampling technique, Ki67 and HER2 often see much more 

variation.466, 468, 469 This probably reflects the underlying biology to some extent: Ki67 as a measure of 

proliferation can have a spectrum of expression patterns, whereas ER tends to be either strongly or 

Fig 4.2.14 Tonsil tissue stained for PD-L1 with E1L3N in sections stored in the acceleration 

chamber with conditions of 100% oxygen, 80% humidity and 37°C at day 0 (A), day 14 (B), and 

day 28 (C). Loss of both crypt epithelial and germinal centre staining is seen, with more rapid loss 

of the weaker staining of cells within the germinal centres.  



133 
 

weakly expressed in most tumour cells within a specimen. None the less, this reinforces the 

importance that pre-analytical conditions may have on proteins with a broad range of expression, 

including PD-L1.  This review of 2,016 cases of PD-L1 expression by SP263 illustrated that there was 

no significant difference between samples by sampling method or by division into cytology and 

histology. Indeed, in keeping with the overall findings of the literature review, sampling technique 

per se does not seem to effect PD-L1 IHC, and this cohort is a typical one for PD-L1 expression: 

approximately a third of samples negative, a third weakly positive and a third strongly positive for 

PD-L1. Sampling technique may be an important factor for certain predictive biomarkers, but PD-L1 

appears to be reasonably resistant to this variation. The most striking difference was dividing the 

samples by anatomical site, with pleural/pericardial fluids consistently having more cases strongly 

positive for PD-L1. This will be explored in more detail in Chapter 8 (Predicting response to PD-1/PD-

L1 immunomodulatory therapy), but, in the context of the wider analysis, this is more likely to be a 

result of biological heterogeneity rather than sampling artefact.  

4.3.1 Impact of fixatives on PD-L1 expression 

Having established that sampling methodology is not a significant cause of PD-L1 variation, the use 

of differing fixatives was considered. This is particularly important for cytology specimens as many 

cytology fixatives include the use of alcohol and have been noted to alter antigenicity compared with 

formalin in a wide variety of tissues and IHC targets.470 A number of studies have looked at tissue 

specimens fixed in various fixatives prior to being assessed for PD-L1, with some inconsistent results 

surrounding the use of alcohol based fixatives in that their use may cause a loss of PD-L1 staining 

intensity272, 275 or have no effect.274, 290 However, other studies studying the impact of fixation or the 

use of cytology specimens for PD-L1 expression typically have variation in anatomical sites, variation 

in the nature of the specimens or even the use of unmatched pairs, and with so many potential 

confounding factors it is difficult to appreciate the true scale of any variation when seen.272, 274, 275, 290, 

303, 307-309, 311, 315, 316, 319, 471, 472 In contrast, this study used matched pairs taken in an identical fashion, 

from the same site at the same time and processed as cytology specimens. Our study found there 

was no difference between 10% NBF fixed or alcohol fixed NSCLC samples, either by average TPS, 

clinical groupings, or indeed by failure rate due to insufficient viable tumour cells, and the intensity 

and quality of staining was maintained regardless of fixative used. One explanation is that post-

fixation in formalin may reverse the deleterious effects of alcohol fixation on protein denaturation441, 

473 though it has been shown that alcohol fixed smears, which have no exposure to formalin, can also 

be suitable substrates for PD-L1.274, 315, 316 From a practical perspective, it would be reasonable to 

state that cytology specimens processed to form cell blocks are suitable for PD-L1 IHC, but it may be 

prudent to ensure a post-fixation step with formalin when doing so.  
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4.3.2 Impact of storage conditions on PD-L1 expression 

The impact of storage conditions on FFPE tissue antigenicity is an important pre-analytical 

consideration in NSCLC, as patients with recurrent or advanced disease may not be fit for re-

sampling, and so a previously gained sample might be the only tissue on which to perform predictive 

profiling – particularly crucial if their initial sample was not tested at the time of diagnosis for PD-L1 

(for example, their centre did not practice reflex testing or their diagnosis was prior to local use of 

PD-1/PD-L1 IM). The impact of temporal or iatrogenic heterogeneity resulting in a genuine change in 

PD-L1 status is considered later in this thesis, but storage conditions may impact antigenicity such 

that a false change is seen. Generally speaking FFPE blocks are fairly robust for most IHC assays, with 

blocks as old as 60 years able to produce interpretable IHC stains.294, 474-477 However, whilst the 

general observation that certain antibody targets are more prone to loss than others, any given 

protein of interest varies between studies: IHC for ER has been shown to have no loss in FFPE blocks 

even 40 or 60 years of age,475, 476 but also found to have considerable loss, even at 6 months, with 

total loss seen by 1 year,294, 474, 477 with mixed observations of loss seen for PR, HER2 and other IHC 

stains. As previously detailed, the loss of PD-L1 in FFPE blocks is reasonably low in blocks under 6 

months, but blocks 3 year or older are at high risk of antigenicity loss and falsely low levels of PD-L1 

expression.283-285, 287, 291 Even more fragile are stored FFPE sections, with loss of a wide panel of IHC 

markers seen at 6 months.5 What is particularly striking across these studies is the range of 

antibodies effected: both polyclonal and monoclonal antibodies may be affected, and loss may occur 

in assays that target the nucleus, cytoplasm, or membranes of cells and specific IHC signal loss can 

vary between studies depending on factors such as fixation and the antibodies used.5, 295, 341, 456, 474, 

478, 479  

The mechanisms of antigen degradation have been explored previously, with a variety of potential 

factors thought to influence the loss, including oxidation, humidity, high temperature and variation 

in tissue processing.292, 293, 295, 456-459 Our initial thought that oxidation could potentially have an 

impact on antigenicity has been seen previously295, 459 and indeed the MS global proteome analyses 

indicated that conditions that facilitate accelerated wet-air oxidation caused a statistically significant 

degree of oxidation that was similar to that seen in placenta and tonsil samples stored under 

ambient conditions for 2 years. However, this extent of oxidation was likely insufficient to account 

for the reduction in PD-L1 immunostaining by IHC either in the acceleration experiments, or under 

normal ambient storage conditions. Furthermore, we found no evidence that changing the storage 

conditions from low to high oxygen content affected PD-L1 or pan-CK detection by IHC to any 

significant degree. Previous studies have considered the impact of minimising the effects of 

oxidation on storage tissue through the use wax-coating unstained sections for the duration of 
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storage, with some studies finding this had no effect on preventing IHC staining loss478, 480, 481 and 

others finding it was preventative, particularly in the context of increasing the beneficial effects of 

cold storage.295, 479, 482 Blind et al. 2008 considered the role of oxidation through the use of hydrogen 

peroxide but found this has no effect on immunogenicity.459 Oxidation undoubtedly appears to play 

a role in stored tissue, but its impact on antigenicity is variable, and seemingly minimal on PD-L1 

IHC.459  

Previous work suggested that humidity or the fixation process can have an effect on antigen 

degradation.292, 442, 483, 484 Aldehyde induced crosslinks between proteins, DNA or chromatin are 

reversible by AR. In 1991 the first article on AR was published,485 and it has been more recently 

acknowledged by a major pioneer of this approach that despite AR not being fully understood, 

(probably as a result of incomplete knowledge surrounding aldehyde induced crosslinking), it is still 

widely accepted and used because it delivers reliable results.442, 486 However, what is generally 

agreed is that a step is required to break or reverse the crosslinks, and this is typically heat-induced 

or via proteolytic means (such as by broad proteolytics as proteinase K, trypsin or pepsin).442, 487 

There is also evidence that aldehyde induced crosslinks can also undergo spontaneous hydrolysis, a 

process that is catalysed by higher temperatures488, 489 and our results are consistent with previous 

reports that the presence of water and high temperature are a major cause of antigen loss in FFPE 

tissue.292, 456, 480 Indeed temperature appears to be a reasonably consistent factor in contributing to 

antigenicity loss in stored tissue: storage at high temperatures results in increased loss of IHC 

staining,456, 459 and storage at cold temperatures (~4°C) generally results in a reduced loss,456, 457, 459, 

479-482, 490 with further reduction in loss seen if using even colder storage (-20°C)481 such that storage 

at -80°C results in no loss of IHC staining intensity of quantity even after 9 years or more of 

storage.491 Water appears to have a more complex relationship with antigenicity: excessive 

dehydrating or rehydrating of tissues during pre-analytical processing could negatively impact IHC 

staining, as could storage in humid conditions.292, 295, 455, 484, 492 Therefore, one mechanism by which 

antigen expression may be lost is heat catalysed hydrolysis of susceptible protein–protein crosslinks, 

resulting in a change in crosslinked protein structures and loss of discontinuous epitope sites or 

masking of linear sites. The crosslinking process increases accessibility to some antigens and renders 

others inaccessible through masking of epitopes.483, 486 The mechanism of crosslinking and antigen 

masking is not fully understood, but the masking of antigens in FFPE tissue is more likely with 

specific amino acid sequences493, 494 and, importantly, discontinuous epitopes,494, 495 that are also 

particularly susceptible to loss in high temperatures.484 Anti-PD-L1 IHC clones detect a variety of 

epitope regions, many of which are believed to be discontinuous (28-8, SP263, and SP142)326, 327, 496 

possibly explaining why PD-L1 IHC is particularly sensitive to loss of immunoreactivity. An alternative 
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explanation for this observation includes the possibility that extracellular epitopes recognized, for 

example, by 22C3 and 28-8 are particularly accessible, and therefore more susceptible to 

environmental humidity during tissue storage.  

Interestingly, the effect observed with the acceleration chamber was prevented with the use of 

desiccant stored alongside the sections, to the extent that loss of immunogenicity was the same as 

tissue stored in normal atmospheric conditions. This suggests that humidity during storage is a major 

driving force behind immunoreactivity loss. This may be due to epitope conformational changes 

driven by hydration, which occurs over time during storage. The practical implications of this finding 

are significant: desiccant may provide an effective method of preventing antigen loss that could be 

immediately implemented into clinical or research protocols involving the storage and 

transportation of tissue. This would provide an attractive alternative to other more complicated, 

time-consuming, and expensive methods of preventing loss such as microwave heating, recoating in 

paraffin wax, storage under vacuum, or the use of nitrogen chambers.293, 295, 453, 457, 497 

4.3.3 Limitations 

An important note throughout all of these studies is that, regardless of the environmental impact of 

storage on IHC staining, different antibodies were variably effected by these conditions. For 

example, Ramos-Vara et al. 2014 found the almost total loss of IHC for 3 markers when stored in 

light (CD45, CD68 and TTF-1) could be largely reduced by storage in darkness, but other markers 

(p63, PR) suffered no loss in either condition.457 Some antibodies appear to be consistently more 

robust or more fragile than others, but crucially, the clinically relevant markers of ER, PR and HER2 

had considerable variation between papers. Therefore, a limitation in this study is that not all the 

clinical PD-L1 clones were subjected to conditions in the acceleration chamber, and the variation 

between PD-L1 clones and tissues may vary considerably in terms of the magnitude of antigenicity 

loss.  

Other limitations in the acceleration chamber study include sample sizes: while over a thousand 

tissue sections were included in the analysis, sample sizes were small for some conditions, perhaps 

accounting for non-statistically significant trends in certain experiments. Positivity as defined by 

pixel counting was complemented by TPS/CPS scores in tumours to give clinical relevance, but the 

equivalent is not possible in placenta and tonsil; therefore, although significant loss can be 

quantitatively demonstrated with good reproducibility the point of clinically relevant loss does not 

translate for these tissues. Although PD-L1 expression by IHC did broadly correlate with MS findings, 

not all cases did, and these discrepancies could be accounted for by PD-L1 protein post-translational 

modifications including glycosylation which may not be detected by IHC but are detectable by MS.360 
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Labelled internal peptide standards used in the targeted analysis of PD-L1 indicated that peak areas 

were reduced in some, but not all, samples. While the cause of this is uncertain, the possibility 

cannot be ruled out that the accelerated degradation conditions may have altered those specimens 

in a manner that reduced recovery of the labelled standards. Inspection of the MS peak areas for the 

endogenous PD-L1 peptides indicated no loss of protein during accelerated incubation. Finally, the 

acceleration incubator has demonstrated that select environmental conditions reproducibly affect 

the loss of IHC expression, but this has focused on PD-L1 and pan-CK in specific tissues. The 

application of this approach as a wider tool in understanding antigen loss under ambient conditions, 

and the optimal conditions to predict storage effect on novel biomarkers in development requires 

further study.  

In summary, pre-analytical conditions are important factors to consider in ensuring accurate and 

consistent PD-L1 IHC stains. Sampling methods and fixation should not be considered major barriers 

to the use of PD-L1 IHC per se, and the inclusion of cytology specimens for predictive IM therapy is 

therefore wholly appropriate for NSCLC, and most likely other tumour types. FFPE sections should 

not be left for any significant period of time prior to staining for PD-L1, but if necessary, they should 

be submitted to the same optimised storage conditions that FFPE blocks are, which this study would 

suggest is cold, dry conditions, with the use of desiccant.   
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 Chapter 5 – Analytics and post-analytics: Digital pathology and PD-L1 interpretation 

5.0 Introduction 

In the previous chapter, the effect of pre-analytics on PD-L1 expression by IHC was explored in order 

to ascertain the impact of tissue handling and storage prior to the assay of choice being applied. This 

chapter will focus on the use of differing assays for PD-L1 assessment, and the subsequent 

interpretation of them with digital pathology and image analysis assistance.   

5.0.0 Analytics  

There are many different IHC assays for assessing PD-L1 expression, each with their own specific 

properties and characteristics. In addition to the 4 clinically validated clones (SP263, SP142, 28-8 and 

22C3) there are a number of other clones used in research or clinical trials, including 73-10, E1L3N, 

E1J2J, 5H1 and others. There are also numerous platforms on which PD-L1 assessment can be 

performed (e.g. Ventana Benchmark Ultra, Dako Omnis, Leica Bond-III etc). As a result, and as 

explored extensively within the literature review, even the 4 clinically validated clones cannot be 

considered equivalent to each other. The IASLC guidelines and manufacturers recommendations are 

that the clones are used as part of an approved IVD assay, with specific parameters determined on a 

specific platform. Even when adhering to these consistent approaches however, there is significant 

variation between clones, and even subtle variation can be important when tumours are close to 

critical cut-offs for clinical grouping, (e.g. 1% or 50% TPS) and can be enough to categorise samples 

into different categories depending on which clone has been used.297, 304, 305, 353, 498, 499 Several studies 

have considered the impact of LDTs, in which various PD-L1 clones are used on different platforms 

with modifications of assay parameters to best suit the individual laboratories requirements. With 

sufficient standardisation and optimisation, LDTs can be suitable for providing equivalent tests to the 

validated IVD assays, but inconsistencies and inadequacies are common. Furthermore, IVD assays, in 

addition to a potentially more rigorous and comprehensive development than LDTs, are often the 

only assays that have undergone a formal clinical performance evaluation. 500 Thus whilst 

comparison of LDTs to IVD assays is a reasonable approach in order to save money and time, and 

broaden the use of a biomarker, it is generally accepted that an approved IVD assay will result in the 

highest accuracy.266, 305, 328, 331, 332, 353  

Throughout this thesis, the majority of work has used the SP263 clone on the Ventana Benchmark 

Ultra following strict IVD assay protocols. This has been beneficial due to its validation as a clinical 

complementary diagnostic, my familiarity with scoring it due to my clinical experience, its 

widespread use in research, and my ongoing collaboration with Roche Ventana (whom manufacture 
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the clone) that has allowed for applications of novel technologies to the stained tissue. However the 

22C3 clone on the Dako ASL48 was used for the CCC cohort (as this was the assay of choice in 

routine clinical practice at our laboratory at the time of these patients’ diagnosis), and so the 

concordance of these two clones are of particular relevance. Studies that compared 22C3 and SP263 

generally find them to be similar288, 304, 305, 328, 343, 344, 499, 501, but not necessarily equivalent.297, 305, 353, 498 

Comparing different studies against each other is challenging, as they vary in regards to the 

platforms used, the tissue samples involved and other pre-analytical and analytical factors, including 

different pathologists’ interpretation. This project will consider the use of different PD-L1 clones 

tested in the same laboratories, in order to minimise pre-analytical variables, and scored by the 

same pathologist (myself) in order to reduce inter-observer variation, with a view to providing some 

data to the applicability of the SP263 specific findings of this thesis to other PD-L1 clones.  

5.0.1 Post-analytics: Interpretation of PD-L1 expression 

PD-L1 expression is one of the most difficult IHC assays to interpret. IHC stains are typically 

interpreted in a qualitative fashion: the presence or absence of staining, the intensity of staining and 

the location of staining in regards to the cells of interest and the cellular components of interest. 

Interpreting PD-L1 expression by IHC requires all of these, but also has a quantitative requirement to 

produce a percentage score of relevant cells staining for PD-L1. The clinical implications of scoring 

PD-L1 can render patients eligible or ineligible for specific treatments, and at crucial clinical 

categories the difference in treatment decisions can be made by a difference of just 1%.297, 304, 305, 353, 

498, 499 As a result, advice is for pathologists to be trained in the interpretation of specific clones and 

for a regular case-load involving PD-L1 interpretation to ensure ongoing clinical competency.266, 282, 

323  

Challenges involved in PD-L1 expression include the expression of PD-L1 by immune cells, 

particularly macrophages that can be difficult to distinguish from tumour cells on non-H&E sections, 

the aberrant expression by necrotic, apoptotic and other non-viable tumour cells, and the 

interpretation of the cellular location of the stain (Fig 5.0.1) These largely qualitative features can be 

overcome by an experienced pathologist whom can reliably differentiate these findings with the aid 

of H&E sections and interpretation guides, but an arguably greater challenge is that of the 

quantitative nature of PD-L1 IHC interpretation. PD-L1 scoring in NSCLC requires a percentage score 

of the number of positive tumour cells over the total number of tumour cells – the TPS – and is a 

requirement for guiding clinical management of patients.47, 48, 254, 255 Whilst various guides have been 

developed to aide pathologists with this, it remains a challenging area. The use of novel technologies 

to help assist the pathologist with the quantification of PD-L1 IHC would likely prove to be an 
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invaluable tool and one that may help better predict response to PD-1/PD-L1 IMs. The use of digital 

pathology and image analysis software to augment pathologists’ quantitative interpretation has 

seen success in more straight forward IHC stains502, 503 but applying these techniques for the more 

complex PD-L1 expression is likely to be significantly more challenging.  

5.0.2 Digital pathology and image analysis 

The use of digital pathology, that is, the scanning of glass slides to produce images viewable on a 

computer screen, has been recognised as being equivalent to conventional pathology in a wide array 

of pathological areas,504-507 including general IHC508 and PD-L1 expression analysis,304 and also 

provides an array of practical advantages such as ease of sharing cases over wide geographical 

distances, the permanent storage of images and a more convenient platform for a variety of uses 

including education EQAs and MDTs (Multi-disciplinary teams).509-513 The digitisation of pathology 

slides allows for ambitious novel applications, including the use of ‘big data’, and machine learning 

to produce predictive models or be combined with other data sets such as radiology or ‘omics’ 

data.512, 514 The complexity of these methods means most are still in development, although the 

limited use of supervised deep learning software has been approved by the FDA.515, 516 

A more immediately applicable use for digital pathology is its use as an augmentation of the routine 

pathologist’s workload with digital image analysis. Current approaches include assessing nuclear 

pleomorphism and mitosis, or measuring distances for tumour depth or surgical margins.517, 518 The 

use of digital pathology in interpreting IHC stains has been plausible for some time, as the nature of 

the staining makes it easier for a computer to interpret than H&E,519-521 and can be sufficiently 

accurate to quantify predictive markers such as ER and PR in breast carcinomas.502, 503 The use of 

these approaches to assisting PD-L1 interpretation is an exciting prospect, and would help to 

combine pathologists’ expertise in PD-L1 expression qualification (i.e. what should be counted) with 

the computers’ ability in PD-L1 expression quantification (i.e. how much there is).  

5.0.3 Inter-observer concordance of PD-L1 interpretation 

Inter-observer disagreement between pathologists is a widely recognised phenomenon in a variety 

of areas, including morphological diagnostics522 predictive IHC stains such as Her-2,523 and classifying 

immune-infiltration patterns524and it has been suggested that inter-observer discordance in 

interpreting PD-L1 might account for even more variability than the use of different PD-L1 clones.335 

The use of digital pathology to assist in inter-pathologist concordance has been attempted in a 

variety of areas,525, 526 and the use of digital pathology and image analysis to improve inter-observer 

concordance in interpreting PD-L1 would be a valuable tool. If digital pathology slides and 
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algorithmic assistance can be used to reliably score PD-L1 expression and provide a more accurate 

‘absolute value’ for a TPS, it would be hoped that improved inter-observer scoring would also be 

seen, and therefore minimise the impact of a considerable source of potential error.  

 

 

  

 

 

Fig 5.0.1 Challenges in assessing PD-L1 expression to generate a TPS. A – TIL expressing PD-L1, B, 
C – Macrophages expressing PD-L1. D – Tumour cells with faint cytoplasmic staining for PD-L1 
(red arrows) 
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This chapter therefore sets out to address the issues of differing PD-L1 clones and their equivalency 

to each other when scored by a single pathologist. The accuracy in interpreting PD-L1 through the 

use of digital pathology and algorithmic image analysis will be explored as well as its ability to impact 

inter-pathologist concordance scored by multiple pathologists. Finally, the benefits and limitations of 

digital pathology and the image analysis tools utilised in this project will also be considered in their 

potential application to routine pathology workloads.  

5.1 Methods 

5.1.0 Comparing PD-L1 22C3 and SP263 IHC antibody clones 

A retrospective review of 1,400 consecutive NSCLC cases scored for PD-L1 by a single pathologist in 

the routine clinical setting was performed to collect data on tumour type, specimen type and PD-L1 

TPS. Data was fully anonymised and divided according to the PD-L1 clone used, so that a comparison 

between pathological metrics, including TPS, specimen type and anatomical location of specimen 

could be made to look for differences in the quantity of staining between the 22C3 and SP263 

clones. Average TPS and clinical categories (<1%, 1-49% and ≥50% TPS) were used to compare the 

clones.  

5.1.1 Comparing PD-L1 22C3, 28-8, E1L3N and SP142 IHC antibody clones 

10 cases of NSCLC from the Eli Lilly cohort underwent staining for 4 different PD-L1 clones as 

described in Chapter 4. In Chapter 4, these findings mostly pertained to the variable loss of PD-L1 

expression over time due to storage conditions, but the differences between the clones will be 

described in more detail here. A TPS for each section and clone (on unaged tissue) is scored for each 

case alongside a positive pixel count using the Aperio ImageScope integrated image analysis ‘Positive 

Pixel Count v9’ algorithm338 and compared to each other using TPS values, clinical categories and 

positive pixel counts.  

5.1.2 uPath and use of the PD-L1 IHC interpretation algorithm 

Glass slides of tissue sections stained for H&E and PD-L1 (SP263) as per main methods section were 

scanned using the Roche DP200 scanner at 20x magnification  to produce *.BIF images. Regions of 

interest (ROI) were applied to the glass slide snapshots to ensure all tissue of interest was included 

before being scanned at full magnification (Fig 5.1.0). Images were digitally transferred to the uPath 

system where each case was manually assigned their respective H&E and PD-L1 tag. The uPath 

system is a Roche developed digital pathology platform that allows for viewing of digital images of 

scanned slides and the correlation of these data with other clinical details and demographic details, 

with an ultimate objective of being developed into a tool for use by all aspects of the MDT.432  Each 
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PD-L1 section can be viewed in uPath alongside its H&E and assessed to give a manual TPS (Fig 

5.1.1). The PD-L1 tagged images could then be analysed by the Roche-PD-L1-algorithm (RPA).527 The 

RPA is a Roche developed image analysis tool that identifies and distinguishes PD-L1 positive tumour 

cells from PD-L1 negative tumour cells and ignores other cell types. It is currently for use in research 

only and is being improved and developed in a continuous fashion. Due to collaboration with Roche 

as part of the Northern Pathology Imaging Consortium (NPIC), Liverpool was the first site in the UK 

to have access to the RPA and my research the first UK based project to involve its use. Images of 

PD-L1 sections viewed on uPath can then have annotations drawn around the tissue of interest so as 

to include these areas for PD-L1 assessment and have the RPA applied to these regions. (Fig 5.1.2) 

Each annotation returns a total tumour cell count, a positive for PD-L1 cell count and a negative for 

PD-L1 cell count to give a TPS, which would then be averaged to include all annotations across the 

section, to give an unadjusted RPA TPS (Fig 5.1.2). Each case was then reviewed with the 

corresponding unadjusted RPA TPS to reach a final agreed TPS for each section based on the RPA 

and pathologists’ assessment. Alternatively, the RPA can be applied to the entire section without the 

use of annotations. Four TPSs could thus be generated for each case:  

• A manual TPS (no use of the RPA) 

• Whole-section TPS (RPA applied to the entire slide) 

• Unadjusted RPA TPS (RPA applied to annotated regions) 

• RPA assisted TPS (Combined score using RPA and pathologists’ judgement) 

Whenever the RPA is used throughout this project, both an unadjusted and RPA assisted TPS is 

generated as a minimum.  
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Fig 5.1.0 DP200 slide scanner user interface. Regions of interest (turquoise) are applied around 
the tissue of interest. Control tissue can be included or ignored as per user preference.  
 

Fig 5.1.1 uPath view of NSCLC stained for PD-L1 and H&E. Images are registered so as one image 
is moved, the other is moved synchronously. This allows for manual scoring of PD-L1 alongside 
the relevant area of tumour on H&E.  
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5.1.3 RPA in the LLP cohort 

Cases from the LLP cohort were assessed for PD-L1 using uPath and RPA to act as a training set in 

order to provide familiarity with the uPath system and RPA platforms. A manual TPS of glass slides 

via traditional microscope assessment was compared to manual scoring by the uPath system and 

Fig 5.1.2 Applying annotations to NSCLC tissue in uPath. A - Multiple annotations are drawn 
around each area of interest. B – Higher power view of annotated region. C – Annotated region 
with RPA applied; note the PD-L1 positive cells (red) and PD-L1 negative cells (blue). The stroma 
and anthracotic pigment in the central area is ignored. D – Final data for all annotations: 8 ROI 
totalling 6717 tumour cells, 4889 PD-L1 positive cell, 1828 PD-L1 negative cells to give an 
unadjusted RPA TPS of 72.8%.  
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both compared to an unadjusted RPA TPS and an agreed RPA TPS. Average TPS and clinical 

categories (<1%, 1-49% and ≥50% TPS) were used to compare scoring methods by Spearman’s 

correlation, ICC, Cohen’s Kappa and predictive values. Discrepancies between manual TPS and RPA 

TPS were reviewed to provide qualitative data on the limitations of the algorithm and to understand 

specific pathological features that presented the RPA with an interpretive challenge. Based on these 

findings, a training set was developed, with examples of strengths and weaknesses of the RPA, in a 

bid to develop an approach that would allow for other users to be introduced to the uPath system 

and RPA.  

5.1.4 Training to use the RPA 

Two pathologists from the RLUH (Professor John Gosney and Dr Piya Parashar), both of whom report 

pulmonary pathology and are trained in and regularly report PD-L1 assessments in NSCLC, agreed to 

participate in this study. Using the initial training set developed above, I introduced them to the use 

of uPath and RPA. They then participated in an inter-observer and intra-observer project as detailed 

in the following section, during which I collated their qualitative feedback about the algorithm and 

their suggestions for use of the RPA and the limitations of the RPA. A final training approach was 

then developed that incorporated the views of all pathologists and their experience over the course 

of this project, to produce a potential training series and webinar designed to introduce any 

pathologist to the use of RPA within uPath.  

5.1.5 RLUH Cohort – Intra-observer concordance 

107 cases from the RLUH cohort were assessed for PD-L1 expression intra-observer concordance in 

the following way. 83 cases were scored by myself manually using the uPath viewer. After a 6 week 

washout period these were re-scored using the RPA to give both unadjusted and agreed RPA TPSs. A 

subsequent manual rescoring of the specimens was performed following another six week washout 

period, and final rescoring with the RPA after another six week washout period resulted in six scores 

across four assessments by the same pathologist of the same 83 cases: two manual, two unadjusted 

RPA and two RPA agreed TPSs. Separately, 25 cases were scored independently by pathologist A or 

pathologist B and re-scored by the same pathologist using the RPA after a 6 week washout period. 

Intra-observer concordance using manual and/or RPA TPSs for each of the three pathologists could 

thus be recorded.   

5.1.6 RLUH Cohort - Inter-observer concordance 

50 cases from the RLUH cohort were scored for a PD-L1 TPS by two pathologists independently of 

each other in the following way. 25 cases were scored manually for a TPS by either pathologist A or 
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pathologist B, and re-scored manually by Pathologist C. The other 25 cases were scored with the RPA 

by either pathologist A or pathologist B, and re-scored with the RPA by Pathologist C. In this way 

inter-observer concordance between two pathologists could be compared using either manual 

scoring or RPA scoring for PD-L1 expression.  

5.1.7 Eli Lilly Cohort – Inter-observer concordance 

To establish an idea of inter-observer variation when using digital pathology and annotations in a 

relatively simple fashion, 3 colleagues (Dr Aaron Gruver, Ms Dimple Das, Mr Michael Soper) applied 

the positive pixel count algorithm to 30 TMA cores from the Eli Lilly cohort stained for PD-L1 (E1L3N 

clone). In so doing the variation between 4 observers, including two non-pathologists, when using a 

digital system could be calculated.  

Finally, all 122 cases from the RLUH cohort were assessed for PD-L1 expression using the RPA 

applied to the entire section and compared to the agreed RPA TPS and the manual TPS for each case.  

5.1.8 Statistics 

Comparison of clones for PD-L1 was performed using Wilcoxon signed-rank test for TPSs as a 

continuous variable and Chi Squared Goodness of Fit test for TPSs divided into clinical categories of 

negative, weak and strong positive (<1%, 1-49%, ≥50% TPS).  Comparison between scoring 

techniques for PD-L1 TPS was performed using Spearman’s correlation, and ICC for raw TPSs and 

Cohen’s kappa for TPS scores divided into clinical categories. Negative predictive value (NPV), 

positive predictive value (PPV) and OPA was calculated for differing PD-L1 scoring approaches using 

a dichotomous division of ≥1% or ≥50% TPS, with an OPA also calculated for both cut-offs. All 

significances are taken as p<0.05.  

5.2 Results 

5.2.0 22C3 vs SP263 

A total of 1,400 cases scored for PD-L1 expression were identified in this retrospective review. 1000 

cases were scored by the SP263 clone and 400 by the 22C3 clone, examples shown in Fig 5.2.0. 

There was no significant difference in mean TPS 32 vs 30 (p=0.235), and no significant difference in 

the categorisation of tumours into clinical categories (p=0.115), results shown in Table 5.2.0. 

Distribution of specimens by anatomical locations and sampling technique are similar for both 

clones. Data shown in Table 5.2.1 
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Clone SP263 22C3 

Total 1000 400 

<1% 332 (33) 119 (30) 

1-49% 304 (30) 117 (29) 

>50% 306 (31) 140 (35) 

Inadequate 58 (6) 24 (6) 

 

 

.  

 

 

 

 

 

Table 5.2.0  PD-L1 expression by either SP263 or 22C3 clones across 1,400 NSCLC specimens 
separated into clinical categories of negative, weak or strong positive expression (<1%, 1-49%, 
≥50% TPS).  

Fig 5.2.0 Examples of PD-L1 expression by SP263 (A1-A3 A1-A3) or 22C3 (B1-B3 A1-A3) A1/B1 – 
Strong (≥50%) TPS A2/B2 – Weak (1-49%) TPS A3/B3 – Negative (<1%) TPS. SP263 generally 
produces a sharper and more intense stain than 22C3.  
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 SP263 (n) (%) 22C3 (n) (%) 

Specimen     

Biopsies 308 31 156 39 

Aspirates 659 66 226 57 

Resections 26 3 15 4 

BWs/BBs 7 1 3 1 

Site     

Primary 559 56 179 45 

Regional LN 271 27 134 34 

Pleura 74 7 37 9 

Distant Mets 96 10 50 13 

 

 

5.2.1 22C3 vs 28-8 vs E1L3N vs SP142 

10 cases of NSCLC from the Eli Lilly cohort were scored for PD-L1 by 4 different clones to give a TPS 

score and a positive pixel count for each case. (Table 5.2.2).  

 

Case TPS  Positive pixel Count 

 22C3 28-8 E1L3N SP142 22C3 28-8 E1L3N SP142 

1 50% 60% 80% 2% 0.183 0.523 0.480 0.024 

2 100% 99% 100% 60%  0.567 0.523 0.646 0.199 

3 95% 90% 95% <1%  0.531 0.395 0.538 0.023 

4 60% 70% 80% 20%  0.250 0.277 0.312 0.106 

5 1% 2% 1% 0%  0.135 0.110 0.151 0.019 

6 0% 0% 0% 0%  0.015 0.044 0.025 0.009 

7 <1% 1% 50% 0%  0.035 0.083 0.149 0.024 

8 2% 2% 2% 0%  0.091 0.123 0.122 0.050 

9 <1% 1% 1% 0% 0.109 0.121 0.086 0.021 

10 1% 1% 1% 0%  0.164 0.157 0.176 0.029 

Average 31% 33% 41% 8% 0.21 0.24 0.27 0.05 

 

 

There was a significant reduction in PD-L1 TPS of SP142 compared to 22C3 (8% vs 31% p=0.008), 28-

8 (8% vs 33% p=0.007) and E1L3N (8% vs 41% p=0.007) with no significant difference seen between 

22C3, 28-8 and E1L3N (31% vs 33% vs 41% p=0.093). A significant reduction in staining intensity by 

positive pixel count was also seen for SP142 against 22C3 (0.05 vs 0.21 p=0.005), 28-8 (0.05 vs 0.24 

Table 5.2.1 PD-L1 expression by either SP263 or 22C3 clones across 1,400 NSCLC specimens 
separated into specimen type and anatomical site of sample.   

Table 5.2.2 PD-L1 expression by 22C3, 28-8, E1L3N or SP142 in 10 matched NSCLC specimens 
scored by TPS or per Aperio Positive Pixel Count algorithm.  
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p=0.005) and E1L3N (p=0.005), with no significant difference seen between 22C3, 28-8 and E1L3N 

(0.21 vs 0.24 vs 0.27 p=0.082). Placing the tumours into clinical categories for PD-L1 expression also 

showed a significant reduction in strong and weak positive cases for SP142 compare to 22C3 

(p=0.02) 28-8 (p=0.007) and E1L3N (p=0.008) but no significant difference between 22C3, 28-8 and 

E1L3N (p=0.156). Results are summarised in Fig 5.2.1. An illustrative example of staining for each PD-

L1 IHC clone is shown in Fig 5.2.2.  

 

5.2.2 Scoring PD-L1 expression with the RPA in the LLP cohort 

113 cases from the LLP cohort were assessed for PD-L1 (SP263) expression manually and with the 

RPA with a minimum of a 6 week washout period between each scoring attempt. Four scores were 

thus acquired: the glass slide (conventional microscopy) manual TPS, the digital manual (using 

uPath) TPS, the unadjusted RPA score, and the RPA assisted TPS. Manual scoring by microscope and 

digital pathology correlated well (ICC 0.981 p<0.0001, Fig 5.2.3) with a high level of agreement for 

placing tumours into clinical categories (Cohen’s Kappa 0.828 p<0.0001). Use of the unadjusted RPA 

TPS generally resulted in poorer levels of correlation and agreement for clinical categories, but use 

of the RPA assisted score showed good correlation with both microscope and digital manual scoring 

for overall TPS (ICC 0.935, 0.948 p<0.0001 respectively) and placement into clinical categories 

(Cohen’s Kappa 0.72, 0.789 p<0.0001 respectively). Results are shown in Table 5.2.3 and Fig 5.2.3. 

0

1

2

3

4

5

6

7

8

22C3 28-8 E1L3N SP142

C
as

es
 (

n
)

PD-L1 Clone

Matched NSCLC cases in clinical TPS categories by 
PD-L1 IHC clones

<1% 1-49% ≥50%

Fig 5.2.1   PD-L1 expression by 22C3, 28-8, E1L3N or SP142 in 10 matched NSCLC specimens 
scored by TPS and separated into clinical categories of negative, weak or strong positive 
expression (<1%, 1-49%, ≥50% TPS).  
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 Correl. Sig? ICC Sig? Kappa Sig? 

Glass vs Dig. Man 0.97 Y (p<0.0001) 0.981 Y (p<0.0001) 0.828 Y (p<0.0001) 

Glass vs unadj. RPA 0.875 Y (p<0.0001) 0.876 Y (p<0.0001) 0.479 Y (p<0.0001) 

Dig Man vs aunadj. RPA 0.876 Y (p<0.0001) 0.885 Y (p<0.0001) 0.497 Y (p<0.0001) 

RPA assist vs       
unadju. RPA 

0.883 Y (p<0.0001) 0.897 Y (p<0.0001) 0.464 Y (p<0.0001) 

Glass vs RPA assist 0.935 Y (p<0.0001) 0.956 Y (p<0.0001) 0.72 Y (p<0.0001) 

Dig Man vs RPA assist 0.948 Y (p<0.0001) 0.968 Y (p<0.0001) 0.789 Y (p<0.0001) 

Fig 5.2.2  Examples of PD-L1 expression by 22C3 (A), 28-8 (B), E1L3N (C) or SP142 (D) in a 
matched NSCLC specimens 

 

Table 5.2.3 Correlation and scoring agreement of assessing 113 cases of NSCLC for PD-L1 (SP263) 
by manual glass slide (glass), manually via uPath (Dig. Man), or with the aid of RPA to give an 
unadjusted RPA TPS (unadj. RPA) and a RPA assisted TPS (RPA assist).  
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The predictive values of unadjusted RPA and RPA assisted TPSs, using digital manual scores as the 

‘ground truth’ are shown in Table 5.2.4. Cohen’s Kappa was generally poor for the unadjusted RPA 

scores largely as a result of misclassification of <1% TPS tumours as ≥1% TPS. Only 1 case (4%) was 

scored as <1% TPS when using unadjusted RPA TPSs compared to 24 cases (96%) using the RPA 

assisted TPSs.  

 

Fig 5.2.3 Linear regression for scoring 113 cases of NSCLC for PD-L1 (SP263) comparing manually 
via conventional microscopy on glass slides to A) the agreed score of the RPA and B) the 
unadjusted RPA 
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 OPA NPV PPV 

Unadj. RPA 1% 0.79 1 0.78 

Unadj. RPA 50% 0.93 0.94 0.95 

RPA assist 1% 0.9 0.73 0.98 

RPA assist 50% 0.96 0.96 0.97 

Unadj. RPA Both 0.71   

RPA assist Both 0.86   

 

5.2.3 Qualitative data from the LLP cohort 

The LLP cohort is composed entirely of resection cases, and was used to understand the strengths 

and limitations of the algorithm. Careful application of the annotations was required to achieve 

accurate and helpful guidance by the RPA. For certain tumours this became time-consuming and 

difficult to the extent it defied realistic expectations of RPA use. For example, wide-spread punctate 

necrosis, tumour infiltrating immune cells, and acellular debris were virtually impossible to avoid 

annotating incorrectly in areas for some tumours, (Fig 5.2.4, Fig 5.2.5 B1-B2). The RPA itself is not 

perfect; it would occasionally not include bland looking tumour cells or include stromal cells in 

scoring, but the RPA algorithm could reliably ignore anthracotic pigment, and generally managed 

well with differing tumour cell types (e.g. acinar adenocarcinoma, keratinising squamous cell 

carcinoma etc.) and was generally consistent and accurate when applied to carefully drawn 

annotations (Fig 5.2.5 A1-A2, Fig 5.2.6).  There were 15 occasions when the RPA assisted score and 

the manual score classified the cases into different clinical categories. All 15 cases were re-reviewed, 

and in 14 cases (12% of the LLP cohort) the RPA assisted score was felt to be more accurate than the 

original manual score. The unadjusted RPA for these 15 cases was typically very poor. The major 

difference was felt to be related to the algorithm helping to more accurately quantify patchy and 

multi-focal staining across large sections of tissue in cases close to both the ≥1% and ≥50% TPS cut-

off.  

Learning curve data was not formally assessed, but it was agreed by all pathologists that there was a 

period of learning the basic strengths and limitations of the RPA before the user felt confident in its 

application. Time to report was also not formally captured, but it was felt that it took considerably 

longer to report a case during this learning period than manual scoring would take. Furthermore, the 

learning period was also required for the users to identify which cases were not suitable for use with 

the RPA. For example, a cytology specimen with relatively intact morphology may seem like a 

suitable candidate for use, but if a significant degree of single tumour cells admixing with 

Table 5.2.4 Predictive power of using either unadjusted RPA (Unadj.RPA) or RPA assisted (RPA 
assist) to score PD-L1 relative to original manual assessment.  
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macrophages has occurred, it may render the specimen, at least in part, less accurate for assessment 

with the RPA. It was also felt that the initial learning phase combined with an introductory lesson or 

tutorial on the use of the RPA would minimise this time period. However, once the RPA had been 

used on a number of cases (agreed to be between 10-20 cases, but not formally assessed) time 

reporting was felt to be likely only moderately longer than conventional reporting at worst and 

equivalent at best.  

Once the learning period had elapsed, and the appropriate use of the RPA established, it was felt 

that the RPA provided an increased measure of ‘confidence’ to the user: when scoring the specimen 

for a TPS, if the algorithm assisted score was similar to the value identified as the probable TPS by 

the pathologist, it conveyed an increased sense of confidence that this is the ‘true’ TPS value. 

Conversely, if the RPA assisted score was significantly different to the TPS identified as a likely value, 

it triggered a more thorough re-evaluation of the case. Outcomes of re-evaluation included a 

dismissal of the RPA assisted score as a result of algorithm error, specimen unsuitability, inaccurately 

drawn annotations and so forth, or an agreement to change the TPS as a result of the RPA.  

 

 

 

 

Fig 5.2.4 False scoring of PD-L1 (SP263) by the RPA. Acellular debris (A) can cause false positives 

(red) and false negatives (blue) to be scored by the RPA, as seen in B. Care needs to be taken 

when drawing annotations to avoid excess inclusion of these areas.  
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Fig 5.2.5 Necrosis and PD-L1 (SP263) positive TILs in NSCLC sections. A1-A2 – Area of well 

circumscribed necrosis and TILs (A1) can be annotated around accurately (A2). B1-B2 – Area of 

tumour admixed with necrosis and apoptotic tumour cells (B1) which is nearly impossible to 

annotate accurately (B2).  

TILS, tumour infiltrating lymphocytes.  

 

Fig 5.2.6  NSCLC tumour stained for PD-L1 (SP263) with TILs and necrosis (A) with RPA applied to 

the entire area (B). Despite inclusion of TILs and necrosis, PD-L1 positive areas (red) and PD-L1 

negative areas (blue) are generally accurately confined to tumour cells.  
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5.2.4 Intra-observer concordance for scoring PD-L1 

Intra-observer concordance for PD-L1 for three separate pathologists was scored using the RPA and 

manual approaches across 107 cases. There was variation in ICC (0.832-0.956) and Cohen’s Kappa 

(0.455-0.719) between the pathologists. Intra-pathologist concordance was improved for scoring PD-

L1 if using the RPA both times (ICC 0.993, Kapp 0.98). Results shown in Table 5.2.5.  

 Correl Sig ICC Sig Kappa Sig 

Path 2 Man vs RPA 0.889 Y (p<0.0001) 0.832 Y (p<0.0001) 0.719 Y (p<0.0001) 

Path 3 Man vs RPA 0.881 Y (p=0.002) 0.905 Y (p<0.0001) 0.455 Y (p=0.029) 

Path 1 Man vs RPA 0.925 Y (p<0.0001) 0.872 Y (p<0.0001) 0.675 Y (p<0.0001) 

Path 1 Man vs Man 0.98 Y (p<0.0001) 0.956 Y (p<0.0001) 0.842 Y (p<0.0001) 

Path 1 RPA vs RPA 0.985 Y (p<0.0001) 0.993 Y (p<0.0001) 0.98 Y (p<0.0001) 

Variation between pathologists for their respective unadjusted RPA scores compared to their agreed 

RPA adjusted scores are shown in Table 5.2.6.  

RPA assisted vs       
unadjusted RPA 

Correl Sig ICC Sig Kappa Sig 

Path 1  0.93 Y (p<0.0001) 0.892 Y (p<0.0001) 0.88 Y (p<0.0001) 

Path 2  0.833 Y (p<0.0001) 0.799 Y (p<0.0001) 0.689 Y (p<0.0001) 

Path 3  0.908 Y (p<0.0001) 0.919 Y (p<0.0001) 0.818 Y (p<0.0001) 

 

5.2.5 Inter-observer concordance for scoring PD-L1 

Inter-observer concordance for PD-L1 between three pathologists was compared for both manual 

scores and RPA assisted scores for 50 matched cases. Overall inter-observer agreement was good for 

both scoring techniques, with an improvement in both ICC (0.962 vs 0.986) and Cohen’s Kappa 

(0.808 vs 0.878) when using the RPA to assist scoring. Results shown in Table 5.2.7 

 

 Correl Sig ICC Sig Kappa Sig 

Manual 0.945 Y (p<0.0001) 0.962 Y (p<0.0001) 0.808 Y (p<0.0001) 

RPA assisted 0.962 Y (p<0.0001) 0.986 Y (p<0.0001) 0.878 Y (p<0.0001) 

Table 5.2.5   Intra-pathologist correlation and scoring agreement of 107 NSCLC cases for PD-L1 

(SP263) by manual scoring on uPath (Man) or by RPA assisted (RPA) for a TPS.  

Correl., Correlation; ICC, intraclass correlation co-efficient; Sig, significance. RPA, Roche-PD-L1-

algorithm 

Table 5.2.6   Intra-pathologist correlation and scoring agreement of 107 NSCLC cases for PD-L1 

(SP263) comparing unadjusted RPA TPSs to RPA assisted TPSs for each pathologist.  

Table 5.2.7   Inter-pathologist correlation and scoring agreement of 50 NSCLC cases for PD-L1 

(SP263) comparing manual scoring on uPath (Manual) to RPA assisted for a TPS 
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Each pathologist drew annotations independently and to differing numbers and sizes (Mean 

annotations for each pathologist: (5 (range 1-10), 10 (range 1-26), 23 (range 1-40)). Example shown 

in Fig 5.2.7. 

 

 

5.2.6 Inter-observer concordance for positive pixel count algorithm 

Four users applied the positive pixel count algorithm on 30 TMA cores from the Eli Lilly cohort to 

assess for inter-user variability in simple specimens. Concordance between the scorers was nearly 

perfect. Results shown in Table 5.2.8.  

 Correlation Sig ICC Sig 

Scorer 1 vs 2 0.991 Y (p<0.0001) 1 Y (p<0.0001) 

Scorer 1 vs 3 1 Y (p<0.0001) 1 Y (p<0.0001) 

Scorer 1 vs 4 1 Y (p<0.0001) 1 Y (p<0.0001) 

Scorer 2 vs 3 0.993 Y (p<0.0001) 1 Y (p<0.0001) 

Scorer 2 vs 4 0.991 Y (p<0.0001) 1 Y (p<0.0001) 

Scorer 3 vs 4 1 Y (p<0.0001) 1 Y (p<0.0001) 

All   1 Y (p<0.0001) 

 

  

Fig 5.2.7   Case assessed for PD-L1 (SP263) using uPath to draw annotations for RPA assistance. A 

– 13 annotations by pathologist C B – 4 annotations drawn by pathologist B.  

 

Table 5.2.8 Inter-observer correlation and scoring agreement of 30 TMA cores stained for PD-L1 

(SP263) when using the Aperio Positive Pixel count algorithm.  
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5.2.7 Whole section scoring with the RPA 

122 cases were scored using a manual TPS, an RPA assisted TPS or with the RPA applied to the whole 

section (WS) with no adjustment by a pathologist. Agreement for WS TPSs was generally poor 

compared to either manual or agreed TPSs. Results summarised in Table 5.2.9 and Fig 5.2.8. 

 Correl Sig ICC Sig Kappa Sig 

RPA vs Man 0.965 Y (p<0.0001) 0.954 Y (p<0.0001) 0.818 Y (p<0.0001) 

RPA vs WS 0.797 Y (p<0.0001) 0.762 Y (p<0.0001) 0.446 Y (p<0.0001) 

WS vs Man 0.777 Y (p<0.0001) 0.698 Y (p<0.0001) 0.353 Y (p<0.0001) 

 

 

The predictive value of WS and agreed (RPA adjusted) compared to original manual scores are 

shown in Table 5.2.10. 

 NPV PPV OPA 

WS 1% 0.75 0.91 0.76 

WS 50% 0.72 0.96 0.78 

WS Both   0.54 

RPA assist 1% 0.94 0.94 0.94 

RPA assist 50% 0.9 1 0.93 

RPA assist Both   0.88 

 

Specimen Type All Path 1 Path 2 Path 3 

Biopsy 72 12 13 47 

Cytology 40 9 10 21 

Resection 10 4 2 4 

 

 

Table 5.2.10 Predictive power of using the RPA applied to either the whole section (WS) or to 

annotations reviewed by a pathologist (RPA Assist) to score PD-L1 relative to original manual 

assessment.  

 

Table 5.2.9   Correlation and scoring agreement of 122 NSCLC cases for PD-L1 (SP263) comparing 

manual scoring on uPath (Man) to RPA assisted (RPA) and whole-section (WS) TPSs.  

 

Table 5.2.11 Specimen types in the RLUH cohort assessed for PD-L1 expression.  
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5.2.8 Qualitative feedback from the RLUH cohort.   

The RLUH cohort involved biopsies, cytology specimens and resections, reflecting a typical array of 

specimens used in routine diagnosis of NSCLC cases (Table 5.2.11). Certain specimens were not 

suitable for drawing accurate annotations; for example, cytology specimens such as pleural fluid 

aspirates which were composed of single tumour cells or only small groups of tumour cells, admixed 

with mesothelial cells, macrophages, background debris and so forth were virtually impossible to 

annotate in a timely or accurate fashion. (Fig 5.2.9) Other specimens did not require the assistance 

Fig 5.2.8   Linear regression for scoring 122 cases of NSCLC for PD-L1 comparing TPSs from A) 

manual scoring, the RPA applied to the whole section (WS) or B) the RPA applied to annotations 

reviewed by a pathologist (RPA Assisted).  
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of the RPA for an accurate interpretation; for example specimens with no staining for PD-L1 in any of 

the test material, or for small biopsies with homogenous high PD-L1 positivity. (Fig 5.2.10)  Other 

specimens presented a challenge in drawing annotations for the RPA depending on the type of PD-L1 

staining and the nature of the morphology and other features within the tissue. For example, as with 

the LLP cohort, very large pieces of tissue could be heavily infiltrated by TILs and macrophages 

expressing PD-L1, or with large amounts of punctate necrosis (Fig 5.2.11). However, the application 

of the RPA to certain cases proved invaluable; when there were multiple fragments of tissue that 

could not be visualised on screen at the same time, when there was significant heterogeneity of PD-

L1 expression and/or when there were large quantities of tissue without the previously mentioned 

confounding features (Fig 5.2.12). Despite the large list of specimens and indications that warrant 

caution, it was generally felt the RPA added benefit if applied correctly, and that the majority of 

specimens would be suitable for this use.  

 

 

 

Fig 5.2.9 Samples not suitable for RPA A+B – Pleural fluid aspirates with tumour cells admixed 

with mesothelial cells, macrophages, lymphocytes and cellular debris stained for H&E (A) and 

PD-L1 (SP263) (B) Drawing annotations for RPA use is unlikely to yield helpful data in these 

samples.   
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Fig 5.2.10 Samples not requiring RPA A1/A2 – A biopsy of NSCLC with homogenous strong 
staining for PD-L1 (SP263) scored manually as 95% TPS (A). B - Application of RPA returns a TPS 
of 92.5%. B1/B2 – A core biopsy of NSCLC pan-negative for PD-L1 scored manually as 0% TPS (A).  
B – Application of RPA returns TPS of 0.1%. In both instances, RPA can be applied and returns an 
accurate result, but the added benefit is minimal.  
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Fig 5.2.11 Example of when accurate application of RPA is excessively time consuming in NSCLC 

stained for PD-L1 (SP263).   A – Tumour with positive TILs and areas of necrotic cells. B – 

Application of RPA to entire area includes positive TILs and necrotic cells. C – Careful annotation 

results in a more accurate RPA but only a very small area of the tumour is included (D). To 

annotate the entire tumour accurately would be very time consuming and would take far longer 

than an accurate manual review.  
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Fig 5.2.12 Example of when application of RPA adds benefit. A – Biopsy of NSCLC with multiple 

fragments of tissue which cannot all be viewed at high power simultaneously. Manually scored 

as 50% TPS for PD-L1 (SP263). B – Higher power view of a fragment showing tumour with 

heterogenous expression of PD-L1. C – RPA applied to annotated regions shows scoring of 

heterogenous area. D – RPA applied to multiple annotations returns a total of 19,965 tumour 

cells scored, with 10,615 PD-L1 positive and 9,350 PD-L1 negative tumour cells to give a RPA TPS 

of 53.2%, confirming this case is ≥50% TPS.  
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5.2.9 Training webinar to introduce new users to the RPA 

A copy of a training webinar produced as part of this work is attached to the thesis. In summary it 

documents the basics of how to open and view images in uPath with a brief overview of the main 

functions and advantages of digital pathology (Fig 5.2.13). It then focuses on the application of the 

RPA scoring approach, and demonstrates a number of potential pitfalls and benefits outlined in 

Table 5.2.12, as well as examples of worked cases. This is also available online at 

https://www.brighttalk.com/webcast/12161/431368. 

 

Fig 5.2.13 Benefits of digital pathology. A – Parallel viewing of H&E and PD-L1 IHC. B – Increased 

field of vision allows for considerably more tumour to be viewed at once than conventional 

microscopy.  C – Annotations, arrows and measurements are all easily applied to the image and 

can be shared with other viewers. (Green arrows/lines) 
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5.3 Discussion 

5.3.0 Variation of PD-L1 IHC clones 

In NSCLC, a TPS will determine eligibility for PD-1/PD-L1 IM treatment or help to guide treatment 

decisions, but the use of differing PD-L1 IHC clones, TPS cut-offs and IM agents between clinical trials 

has resulted in four different PD-L1 IHC antibodies being clinically validated to assess PD-L1 

expression in a wide variety of indications. Attempts to rationalise this complex situation has 

involved numerous studies that assess the equivalency of different PD-L1 IHC clones, on the basis 

that clones that are concordant could be used in place of each other. In keeping with previous 

papers, this study has shown that SP142 is considerably less sensitive than other clones for staining 

PD-L1 positive tumour cells,288, 297, 304, 330, 335, 336, 342, 345, 350-352, 501 and that 22C3, 28-8 and SP263 are 

similar304, 317, 330, 334, 335, 337, 343, 344, 347, 499, 501. There are appreciable differences in the intensity and 

sharpness of staining, with SP263 generally producing a cleaner and brighter stain (Fig 5.2.0), but 

overall TPSs were essentially similar in distribution between 22C3 and SP263 in this study. These 

were not matched samples, however, and though over 1,400 cases were included, the differences 

between 22C3 and SP263 is sometimes only appreciable on matched cases very close to critical 

clinical cut-offs of ≥1% or ≥50%, and indeed even in papers where concordance of these two clones 

are very high, they fall beneath a 90% concordance rate that is generally considered a minimal level 

of agreement for in vitro assays to be considered equivalent.304, 498, 528 

The underlying cause for differences between PD-L1 IHC clones maybe a result of inherent 

properties of the clones or as a result of analytical variations between the assays. A recent study has 

shown that SP263 and SP142 share the same epitope region, which is cytoplasmic and distinct to the 

extracellular binding regions of the 22C3 and 28-8 clones, which are also distinct from each other. 

E1L3N, a research only clone, has a cytoplasmic epitope region that overlaps considerably with the 

SP263/SP142 site, but is still distinct. Considering the shared region of SP263 and SP142, but the 

consistent observation that SP142 is discrepant for IHC staining, and the similarity of staining for 

SP263, 28-8 and 22C3, that have no epitope region in common, the authors conclude that 

differences between clones is more likely a result of assays, platforms, or indeed tumour 

heterogeneity than variation in antibody binding sites.327 It should be noted that affinity for a binding 

site(s) is typically considered to be more important than the binding site itself,529 so there may 

simply be limitations inherent to each clone that the assays cannot overcome, although with 

sufficient alteration of the SP142 clone assay, staining equivalent to other clones can be achieved.336, 

337, 530  
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In addition to their similar staining and similar TPSs, 28-8, SP263 and 22C3 also share similar 

predictive power for response to PD-1/PD-L1 IMs, whereas SP142 is again an outlier for this 

purpose.501 The difference in PD-L1 IHC staining between clones therefore appears to be driven 

more by analytical variations than inherent properties of the clones themselves. Although the 

difference in staining between clones carries important clinical ramifications, where even subtle 

changes can classify patients differently, the underlying biology is perhaps better represented as 

spectrum of PD-L1 expression. For example, two tumours with a TPS of 0.5% and 1% would 

potentially classify patients into different clinical groups, but the TPS values suggest these two 

tumours are very similar from a PD-L1 expression perspective. Conversely, two tumours scoring a 

TPS of 1% and 49% would potentially classify the patients into the same clinical group, but clearly 

have a much larger variation in terms of PD-L1 expression between them. As the majority of the 

work performed in this thesis is with the SP263 clone, but other studies and clinical laboratories may 

use other validated clones, it is important to consider how relevant findings within this thesis maybe 

to other cohorts of patients and/or other PD-L1 IHC clones. It is reassuring that there is generally a 

minimal difference between the clones in this study as a result of interpretation, and the consistent 

observation that SP142 stains fewer tumour cells is in keeping with other studies. Furthermore, as 

variation between IHC stains seems to be a result of analytical and technical factors, rather than 

inherent properties of the clones themselves, it seems reasonable to suggest that findings from this 

thesis could be applicable to cohorts using clones other than SP263, particularly when using clones 

with similar staining patterns.  

5.3.1 Digital pathology and image analysis for scoring PD-L1 

The use of digital pathology has already been shown to be equivalent to conventional microscopy for 

routine clinical workloads and PD-L1 IHC interpretation specifically.304, 504, 505 This study has shown a 

high concordance between matched cases scored using either conventional microscopy or scanned 

images (Fig 5.2.3) and has inherent advantages for routine work that includes larger fields of view 

easier ability to change magnification and ease of highlighting specific features on a slide. (Fig 

5.2.13). More ambitious uses of digital pathology include automation, machine learning and AI 

approaches, all of which are at various stages of progression.512, 514, 515 Several approaches to semi-

automated or fully-automated interpretation of PD-L1 have been attempted, with generally 

encouraging results seen in malignant melanoma,531 breast cancer532 and NSCLC.533, 534 Concordance 

between fully automated approaches and manual scoring are good, but not yet good enough to be 

applied without pathologist input, with correlation of scores generally around 0.7-0.9.532-534 In this 

study the application of the RPA to the entire section without any annotations, as surrogate measure 

of a fully-automated approach, resulted in similarly good but imperfect concordance of results.  
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The application of semi-automated approaches requires an experienced pathologist to draw 

appropriate annotations around ROIs, and to have the background knowledge of the inherent pitfalls 

of PD-L1 staining to know when an image analysis solution is providing incorrect or inaccurate 

results. Semi-automated approaches are not a panacea for complex interpretation of IHC stains; the 

algorithm is only as good as the annotations drawn, and whilst unadjusted RPA TPSs varied 

considerably between pathologists, the final agreed scores were generally in high levels of 

concordance. The high levels of inter-pathologist concordance in this study is likely a result of the 

generally experienced pathologists involved with PD-L1 scoring, and it is possible that a less 

experienced pathologist may not achieve these levels. However, both intra-pathologist and inter-

pathologist concordances were improved using the RPA to assist scoring, and previous studies have 

shown that improved inter-pathologist concordance is achievable using image analysis techniques.531 

The levels of concordance seen in this study when using image analysis are as high or higher than 

many other studies comparing PD-L1 expression interpretation.304, 330, 342, 347, 379, 535 Using image 

analysis to augment and assist pathologists in a semi-automated fashion appears at present to be 

the best way to ensure accuracy equivalent to a pathologist, as they ultimately decide the final TPS 

to be reported. 

In future developments, it would be hoped the most arduous step of this process, the drawing of 

ROI, can be minimised through the use of image-analysis assisted classification of tumour cells. 

Regrettably the ability of AI to identify morphological distinctions on H&E is limited and the subtle 

differences between a dysplastic cell and a tumour cell is likely to require many years of 

development before it can be routinely relied upon. 536, 537 

5.3.2 Training to use digital image analysis 

A particularly interesting aspect of this study was the opportunity to train experienced pathologists 

in a novel technique. Specific training to introduce pathologists to assessing PD-L1 expression has 

been in place for several years, and previous studies have shown there is a period of learning 

required for using digital pathology in general,266, 323, 504 but there is limited data on the combination 

of these techniques. Correct application of the RPA can result in a helpful, fast and reliable aide in 

scoring PD-L1 that can reduce discrepancies between scorers and provide confidence in the 

quantification aspect of its interpretation. Conversely poor application may be time consuming and 

lead to inaccurate and confusing results. Appropriate training for use of the RPA is therefore an 

important process, and as with conventional PD-L1 interpretation a teaching session to inform new 

users of the limitations and pitfalls of interpretation is a useful place to begin. Likewise, ongoing 

experience is necessary to maintain confidence and competence. The webinar written as part of this 
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project is designed to outline the strengths and weakness of the RPA, but it is up to the individual to 

decide when and if they wish to use it. It is the experience of this project that, despite the long list of 

potential pitfalls to be aware of when using the RPA, the majority of NSCLC specimens requiring PD-

L1 expression would be suitable to apply the RPA and to benefit from its use, but requires 

experience to be able to rapidly determine the appropriate specimens for this.  

This study is limited by the small number of pathologists and modest sample sizes used, as well as 

having no predictive data for response to PD-1/PD-L1 IMs in these cohorts. However, it has provided 

pilot data to ascertain scenarios where the benefit of digital pathology and image analysis assistance 

via the RPA should or should not be used. IHC for assessing PD-L1 expression remains an important 

predictive biomarker, and whilst imperfect, is quick, effective and relatively easy to perform. 

Concordance of interpretation of PD-L1 IHC between pathologists can be improved with the use of 

digital pathology and semi-automated algorithms, and with care and experience can be used to 

augment the pathologists’ interpretative power. 

Whilst there were no predefined success criteria for this study, this initial project has provided the 

opportunity to develop a learning programme and tutorial to understand the RPA, and future work 

will focus on the use of this with a larger number of pathologists whom have a broad range of 

experience in scoring PD-L1 in NSCLC. The current regulatory status of the algorithm is currently 

research only, but it is being developed with an aim to be used as a clinical assisted tool in the UK 

and Europe (as SP263 is not at present validated for use in NSCLC in the USA).  

One critically important aspect of digital pathology is that image analysis is only as good as the 

quality of the image it is being performed on; which means the questions pertaining to pre-analytics, 

analytics and interpretation are all just as relevant to digital pathology as to conventional pathology. 

PD-L1 expression interpretation is also hampered by heterogeneous expression. In certain cases this 

study has demonstrated the benefits of using digital pathology to help interpret heterogeneous 

staining, but if the algorithm is only as good as the annotations, and the annotations only as good as 

the image, and the image only as good as the specimen, it requires the specimen itself to be 

representative of the tumour, a challenge the next chapter will explore in depth.  
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Chapter 6 – Heterogeneity of PD-L1 expression 

6.0 Introduction 

In the previous two chapters, the issues surrounding pre-analytics and analytics led to findings that 

could help ensure that sampled tissue from NSCLCs provide an accurate and consistent 

representation of PD-L1 expression. In this chapter, the issues surrounding aspects of tumoural 

heterogeneity will be considered. This is an important next step in optimising the use of PD-L1 IHC; 

the impact of pre-analytics and analytics are only beneficial as far as the sample available is 

concerned. For a specimen to be truly useful, it must represent the tumour burden of a patient as a 

whole, and insufficient or inappropriate sampling will render all efforts to optimise the pre-analytics 

and analytics meaningless. This chapter will therefore consider the scale of PD-L1 heterogeneity 

specifically, in a bid to understand how representative specimens are in regards to PD-L1 expression 

and other relevant biomarkers.   

6.0.0 Tumour Heterogeneity 

Heterogeneity of malignant tumours is a well-recognised phenomena that is being increasingly 

understood as having clinical and biological significance in a number of solid cancers, including lung, 

colorectal, breast and renal cancers, which can be measured by a variety of metrics including 

pathological and radiological methods.538-541. Lung cancers, especially ADCs, are particularly 

heterogeneous for both morphology and immune markers.378, 380, 386, 542, 543 Molecular heterogeneity 

also exists, with studies such as TracerX and other multi-region sequencing approaches providing in-

depth information pertaining to how the genomics of tumour cells can change over space and time, 

and how various metastatic deposits can be mapped out to define specific clones and sub clones and 

their genetic history.544-547 Variation in clinically relevant mutation expression rates between and 

within tissues, including EGFR, ALK and KRAS, as a result of tumour heterogeneity has been 

previously demonstrated, and this heterogeneity could potentially misclassify patients and render 

them ineligible for a beneficial treatment option.548-552  

The clinical impact of tumour heterogeneity varies between each target of interest, with appropriate 

measures usually put in place to attempt to account for potential issues. For example, although 

testing for EGFR is generally robust enough to be applied to a variety of tissue types, tumoural 

heterogeneity is a significant concern in that it could lead to false negative results.553-555 Approaches 

to help combat the effect of EGFR heterogeneity include the use of more sensitive methods, re-

biopsy of patients, and the use of ‘liquid biopsies’.551, 556, 557 The use of IHC as a diagnostic aid is 

perhaps less affected by tumoural heterogeneity: it can be consistently applied regardless of the 
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anatomical location of the tumour site; an ADC of the lung may express TTF-1 if sampled from lung 

parenchyma or from a metastatic site, and indeed this consistency is why IHC stains can be helpful in 

diagnosing poorly differentiated metastatic cases. However, it is well recognised that no IHC stain is 

100% specific or sensitive, so even morphologically convincing tumours may not always express the 

range of proteins in a ‘textbook’ manner, often as a result of pre-analytical factors, the assay or 

indeed tumour cell heterogeneity.550, 558-561 To help combat this, IHC as a diagnostic aid is typically 

applied as part of a panel of targets which can help ratify diagnostic decisions even if one of the 

assays is equivocally staining. Though this approach has its limitations, IHC stains applied in this 

fashion can help decide the cell type or types present, even if heterogeneous expression is a factor. 

To consider what appropriate measures may be required to counter PD-L1 expression heterogeneity 

by IHC, it is necessary to likewise first determine the scope of the problem, and then attempt to 

suggest and apply solutions to combat it.     

6.0.1 Heterogeneity of PD-L1 expression 

The heterogeneous expression of PD-L1 is a significant challenge to ensure accurate and relevant 

prediction of response to IM therapy. As PD-L1 is not used as a diagnostic aid, but as a predictive 

tool, the underlying biology that leads to PD-L1 expression is perhaps a more important factor than 

for other IHC assays.   

If PD-L1 expression is upregulated as part of an active immune-escape process by the tumour in 

response to immune activity targeted against it,562-565 heterogeneity may represent distinct areas of 

relevant biological and immunological changes across a tumour and between tumour sites. 

However, a tumour expressing PD-L1 constitutively as a result of genetic changes that are 

independent of immune activity189, 563-566 may demonstrate variable loss or gain of PD-L1 expression 

driven by background genomic variation, which is potentially less relevant to guiding therapy. The 

distinction of reactive or constitutive expression is therefore likely an important aspect in regards to 

PD-L1 heterogeneity, but is not ascertainable by PD-L1 IHC alone. Furthermore, there is no panel of 

predictive biomarkers for PD-L1 IMs: the determination of PD-L1 expression is typically made on a 

single assay alone.  

As discussed previously, I have defined the four main types of PD-L1 protein expression 

heterogeneity as intra-tumoural (variation within a single tumour site), inter-tumoural (variation 

between tumour sites), temporal (variation of PD-L1 expression over time) and iatrogenic (PD-L1 

expression changes as a result of treatments). PD-L1 expression is routinely performed on new 

diagnoses of NSCLC and in many centres this is performed as ‘reflex’ testing; meaning that PD-L1 

status will be tested on the first available diagnostic tissue.282, 567 As the initial diagnosis of NSCLC is 
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typically made on small tissue biopsies or cytology specimens, heterogeneity of PD-L1 expression 

represents a practical problem in that these small samples potentially do not fully represent the 

entire tumour mass they are sampled from, and therefore may under or overestimate total PD-L1 

expression levels. Subsequent samples are often not acquired (for example patients may be too 

unwell to undergo another procedure or the tumour is not appropriate for surgical resection), 

resulting in the use of a limited quantity of tissue with which to test for PD-L1. As such, the use of a 

small tissue sample, at a single point in time to make decisions about treatment options is 

potentially affected by all types of heterogeneity. Though these have been considered in more depth 

in the literature review, a brief overview of these types of heterogeneity will be considered here.  

6.0.2 Intra-tumoural and inter-tumoural heterogeneity 

The biggest issue of intra-tumoural heterogeneity is sampling error – if PD-L1 expression in a tumour 

is as shown in Fig 6.0.1 one can easily imagine how a biopsy, which will sample a small area, may be 

taken from different regions, each with vastly differing PD-L1 TPSs (e.g. a biopsy around the yellow 

arrow may return a TPS of 0%, whereas a biopsy from around the red arrow might return a TPS of 

100%), and each, relative to the whole section image, might be wrong. It is well established in clinical 

trial and real-world data that PD-L1 negative patients can still respond to PD-1/PD-L1 IM therapy, 47, 

49, 50, 234 and it is worth considering that in at least some cases the tumours from these patients are 

not wholly negative for PD-L1; instead tumoural heterogeneity resulted in just the available tissue 

being negative for PD-L1. An important question to address, therefore, is what quantity of tumoural 

tissue is required to be fully representative of a tumour mass, especially as many previous studies 

have demonstrated that sampling by small biopsies can result in discrepancies of PD-L1 

expression.388, 390-392, 568  

Many diagnostic specimens in NSCLC are from regional lymph node metastases, or distant 

metastases, and the question of how representative they are of the primary lesion is also an 

important one.299, 569 Indeed if molecular, morphological and diagnostic IHC stains can vary between 

anatomical sites, it seems reasonable to presume that a marker of immune activity will also vary 

between sites. The predictive power of PD-L1 IHC from Phase III clinical trials for PD-1/PD-L1 IMs was 

largely based on the use of primary tissue.46-50 The use of metastatic NSCLC tissue in testing for PD-

L1, however, is a clinical reality, but these are not always concordant with primary tumours,355, 542, 570 

therefore the impact of inter-tumoural heterogeneity is important for ascertaining the relevance of 

clinical trial data, and the impact of sample site selection on deciding treatment. 
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6.0.3 Temporal and iatrogenic heterogeneity 

PD-L1 expression has been demonstrated to change over time, and most patients will receive some 

form of treatment over the course of their disease, with previous work varying on the impact this 

has on PD-L1 expression. Some studies have suggested minimal effect on the expression of PD-L1 by 

either time or treatment399, 405 though a much more consistent observation is that time and 

treatment both effect PD-L1 expression, though the effects of these may increase,423-426 decrease,418, 

421 or both increase and decrease PD-L1 expression.349, 419, 420, 422 The metastatic process occurs over 

time and may occur during the course of treatment regimens, and thus inter-tumoural 

heterogeneity may be impacted by both temporal and iatrogenic changes. 

Therefore, a major challenge is in separating the impact of these different heterogeneity types from 

each other. This study hypothesises that a well-defined cohort is the best approach in attempting to 

quantify the issue. The LLP cohort is ideal for these purposes as it is a cohort of NSCLC patients, all of 

whom underwent surgical resection with no neo-adjuvant therapy. In addition, every selected 

patient had N1 or N2 nodal metastases at the time of surgery with the primary lung NSCLC and 

concurrent nodal metastases sampled, thus providing a ‘snapshot’ of each patient’s tumour burden. 

This allows for the study of intra-tumoural heterogeneity of the primary and metastatic tumours, 

Fig 6.0.1 Intra-tumoural heterogeneity of PD-L1 (SP263) expression in a whole section of 

surgically resected NSCLC. Yellow arrow indicates area of PD-L1 negative expression, Red arrow 

indicates areas of high PD-L1 expression. Biopsies from each site may therefore dramatically 

under or over represent PD-L1 expression as a whole.  
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and inter-tumoural heterogeneity between primary and metastatic sites without the impact of 

treatment or changes overtime acting as confounding factors.  

This will allow for two main outcomes: quantification in a robust cohort of the scale of PD-L1 intra- 

and inter-tumoural heterogeneity, and to look for the association of PD-L1 expression heterogeneity 

with other pathological and clinical outcomes. In so doing the scale of PD-L1 expression intra-

tumoural and inter-tumoural heterogeneity can be understood, and attempts can be made at what 

measures can be practically implemented to help minimise the impact of this on clinical decision 

making.  

6.1 Methods 

6.1.0 Selection of cohort 

All patients from the LLP cohort were reviewed as per the main methods section to ensure suitable 

quantity and qualities of tissue, as well as to confirm a diagnosis of NSCLC. H&E sections prepared at 

the time of original pathological assessment, alongside the FFPE blocks, original reports and data 

from the LLP were used to collect pathological and clinical details for each case. A total of 113 

patients were selected for use in this project. A summary of pathological, clinical and demographic 

findings are shown in table 6.1.0.  

Each patient was assigned an arbitrary case number so that all blocks and sections could be pseudo-

anonymised. All patients had 1-2 blocks of primary tissue, and 1-5 blocks of tissue containing 

concurrent metastases to regional lymph nodes sectioned, prepared and stained for SP263 as 

described in the main methods section, with a parallel section also taken for H&E and labelled with 

pseudoanonymous case numbers. Both H&E and PD-L1 sections were scanned via Aperio CS2 

Scanscope slide scanner at 20x and viewed via Aperio ImageScope or the open source QuPath 

(v0.1.2) software package. Pseudoanonymised whole sections were scored to give a PD-L1 TPS for 

each case by myself, with a review by Professor Gosney to form a consensus score for all cases, 

which could subsequently be linked back to the relevant pathological and clinical details.  
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N/Avg. % 

Total 113 
 

Pathology 
  

Specimen Age (months) 69  (range 39-113) 

Morphology 
 

 

ADC 68 60 

SCC 45 40 

Morphology Subtype 
 

 

ADC - Acinar 33 29 

ADC - Mucinous 17 15 

ADC - Solid 16 14 

ADC - Papillary 2 2 

SCC - Poorly differentiated 6 5 

SCC - moderately differentiated 39 35 

Anatomical location of tumour 
 

 

LUL 28 25 

Lingula 1 1 

LLL 13 12 

RUL 19 17 

RML 6 5 

RLL 29 26 

Multiple Lobe Involvement 17 15 

Tumour size 42 mm (range 15-130) 

Distance to bronchial resection 
margin 

24 mm (range 0 - 70) 

Pleural Status 
 

 

PL0 81 72 

PL1 12 11 

PL2 11 10 

PL3 9 8 

Necrosis present 70 62 

Stage* (at diagnosis) 
 

 

T1** 38 34 

T2*** 55 49 

T3 15 13 

T4 5 4 

Nodal stage (at diagnosis) 
 

 

N1 64 57 

N2 49 43 

N1 & N2 33 29 

ALK positive 0 0 

EGFR positive 6 5 

Pre-surgical specimen - cytology 18 16 

Pre-surgical specimen - biopsy 14 12 

Post-surgical specimen - cytology 6 5 
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Post-surgical specimen - biopsy 2 2 

Clinical/Demographics 
  

Median Age (at diagnosis) 68 Range 46-84 

Gender 
 

 

Male 67 59 

Female 46 41 

OS status - dead 64 57 

COD 
 

 

Lung Cancer (C349) 53 47 

Other 11 10 

Smoking Status 
 

10 

Never 11 11 

Light (≤20 CSMPYs) 12 80 

Heavy (>20 CSMPYs) 90 
 

Adjuvant therapy 
 

5 

TKI 6 65 

XCT 74 40 

Radiotherapy 45 100 

 

 

 

 

 

 

6.1.1 Intra-tumoural heterogeneity 

Intra-tumoural heterogeneity was assessed on multiple levels. The difficulty presented by the 

presence of differing types of intra-tumoural heterogeneity and the absence of any formal 

categorisation of PD-L1 heterogeneity led to the creation of the following approaches that would 

allow for the objective assessment of small-scale, medium-scale and large-scale intra-tumoural 

heterogeneity.  

First, small scale heterogeneity, defined as heterogeneity within an approximately 1 cm² area of 

tumour was assessed using a grid split into 1 mm squares that was overlaid on to the section (Fig. 

6.1.0). Only sections containing a continuous area of viable tumour were assessed; zones of 

confluent necrosis or fibrosis were avoided and sections in which these were extensive were not 

used. The PD-1 TPS was assessed for every 1 mm square to give 100 readings for each 1cm² area. 

The application of this was achieved using QuPath software as illustrated in Fig 6.1.0. 

Table 6.1.0 Pathological and clinical characteristics of the 113 patient samples included in the 

study from the LLP cohort. * Staged according to TNM 7th edition. **Includes T1a-T1c, 

***Includes T2a + T2b. ADC, adenocarcinoma; SCC, squamous cell carcinoma; LUL, left upper 

lobe, LLL, left lower lobe; RUL right upper lobe; RML, right middle lobe; RLL, right lower lobe; 

ALK, Anaplastic lymphoma kinase; EGFR, Epidermal growth factor receptor; OS, overall survival; 

COD, cause of death; CSMPYs, combined smoking pack years; TKI, tyrosine kinase inhibitor.  



177 
 

 

 

 

 

Fig 6.1.0 Creation of a labelled 1cm² area in Qupath by loading a digital image of NSCLC stained 
for PD-L1 (SP263) (A), and then overlaying a grid with spacing set to 1,000 microns (B), after 
which an annotated region can be overlaid to form a 1cm² area, and each mm square assigned 
co-ordinates (C). Individual 1mm squares, from (1,1) to (10,10) can then be scored for a PD-L1 
TPS.  
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Data was captured in a spreadsheet to generate a digital database profile for each case, that could 

be shown as (X,Y) co-ordinate data. Co-ordinate data was used to form matrices which could be used 

in a variety of image viewing approaches, such as the R software Plotly Plugin to create heatmaps, 

with Z stacking based purely on TPS scores. This allows for equal weighting to be given to weak and 

strong staining, with background or immune staining ignored, which allows for easy visualisation of 

PD-L1 expression even at low power (Fig 6.1.1). The mean TPS and COV for each 1cm² area is 

calculated, with the former compared to the whole section TPS, and the latter used as a measure of 

PD-L1 expression variation (heterogeneity).  

 

 

 

 

 

Between one and three 1 cm squares were assessed in every section studied by this ‘squares 

method’ for primary tumours. (Fig 6.1.2). Medium scale heterogeneity, defined as heterogeneity 

between 1 cm squares, could thus be examined in cases with multiple 1cm squares, to give a 

broader assessment of intra-tumoural heterogeneity, by comparing mean TPS and COV for each 

1cm² area. 

In routine clinical practice the largest single piece of tissue used to assess PD-L1 IHC status would be 

a whole slide section from a surgical specimen. These are therefore used as the ‘true’ PD-L1 TPS, but 

to further explore the validity of this assumption, large scale heterogeneity, defined as 

heterogeneity between different tissue blocks, was assessed for primary tumours by scoring the 

entire viable tumour region within each section.  

Fig 6.1.1 Data visualisation. A - NSCLC section stained for PD-L1 (SP263); at this low power 

weaker staining is difficult to appreciate and immune cell staining is difficult to differentiate from 

tumour cell staining. B – Heatmap of the same section using TPS scores only – the relative 

contribution of tumour cell PD-L1 expression from each part of the section is much easier to 

appreciate at low power.  
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Intra-tumoural heterogeneity of nodal metastases was also assessed, but typically lymph node 

metastases have far less total tumour mass than primary tumour. Therefore 1mm squares were 

overlaid across the entire specimen, and any square with ≥100 tumour cells was scored for a PD-L1 

TPS.  

 

 

 

 

6.1.2 Digital core biopsies 

Having established regions of at least 100 mm squares for each case with each mm² area containing 

a PD-L1 TPS; the simulation of digital core biopsies (DCBs) could be achieved. A good quality needle 

core-biopsy will achieve an approximately 1x10mm² -1x20mm² area (Fig 6.1.3). By utilising the 

spatial co-ordinate data and the corresponding TPS at each co-ordinate, multiple mm squares can be 

combined to generate a mean TPS that simulates the TPS result a core biopsy would achieve if taken 

from that tumour. A simulated example is illustrated in Fig 6.1.4, showing parts of overlapping 3 

DCBs. 10 ‘horizontal’ and 10 ‘vertical’ core biopsies can thus be taken from each square to generate 

a total of 20 digital core biopsies per 1cm² area. This is repeated for each 1cm² area in any given 

section, to give 20 to 60 digital core biopsies per section.   

Fig 6.1.2 Medium-scale heterogeneity: NSCLC section stained for PD-L1 (SP63) with multiple 1cm² 

areas overlaid onto the tumour, for which each provides a measure of small-scale heterogeneity, 

but also provides data that can be compared between them for medium-scale heterogeneity. 



180 
 

 

 

 

 

 Fig 6.1.4 Simulation of DCBs in primary NSCLC stained for PD-L1 (SP263). A 1 cm² area (red) with 

visualisation of 3 simulated DCBs (yellow) equivalent to a 1x10mm² area each.  

Fig 6.1.3 Example of a good quality core biopsy of a NSCLC. The core is approximately 1mm wide 

and 20mm long. Core biopsy needles can be pre-set to take 10mm or 20mm cores, but the 

diameter remains fixed at ~1mm, to produce 1x10mm² or 1x20mm² samples of tissue.  
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Comparison of a DCB’s TPS is made to the relevant whole section TPS. To consider the accuracy of 

the DCB in scoring PD-L1 expression, the following approach was made: for every case the TPS score 

for every DCB was compared to the whole-section TPS by utilising the clinical categories of negative, 

weak and strong positive TPS (<1%, 1-49% and ≥50% respectively). If greater than 99% of cores are in 

concordance with the clinical category, it is assumed a single core biopsy is adequate for assessing 

PD-L1 in that tumour. All cases were then assessed for a combination of two DCBs in relation to the 

whole-slide TPS. This was achieved by creating a 20x20 matrix and an average for each two pairs 

taken to return a total of 190 DCBs. This can then be compared to the whole section TPS. In 

instances where two DCBs resulted in less than a 99% correct classification rate of the tumour in PD-

L1 expression categories, the use of three DCBs is explored. All possible combinations of 3 DCBs are 

included (the equivalent of 16,815 averaged TPSs) and every combination score compared to the 

whole-section TPS to see how often it correctly classifies the tumour, again with an agreement in 

99% or greater of instances taken to indicate sufficient tissue is included to correctly classify the 

tumour. This process was repeated for four and five DCBs in any case where fewer than 99% of 

simulated biopsies correctly classified the tumour. Example shown in Fig 6.1.5.  

Metastatic deposits in lymph nodes underwent the same process. Lymph node metastases are much 

smaller than primary tumours, so overlaying a 1cm² grid is impractical. Instead any 1mm square with 

sufficient tissue is included, but co-ordinate data is still captured so that the 1mm squares can be 

known relative to each other. In this way the mean TPS and COV can still be calculated. Attempts at 

core biopsies was also made, albeit these will rarely have the full 10mm² area, instead nodes with 

moderate amounts of metastatic tumour are included, with whatever areas available sampled as for 

a digital core biopsy (Fig 6.1.6). LNs with small amounts of tumour are essentially ‘fully sampled’ 

even with just equivalent to a core biopsy or two, and therefore these have been excluded. For 

larger LNs, digital core biopsies to a maximum of two were considered in the same method as for 

primary tissue. 

 



182 
 

 

 

 

 

 

 

6.1.3 Digital fine needle aspirates 

In addition to the DCBs, digital fine needle aspirates (DFNAs) were also explored in each case as an 

additional metric of ascertaining the quantity of tissue required to correctly classify each tumour’s 

PD-L1 expression. DCBs provide a continuous piece of tissue across two axis to simulate biopsy 

sampling. However, as a section of tissue is a 2D representation of a 3D structure and as the reality 

of sampling is that it can occur across any plane, with movement of tumour likely during the process, 

it does not fully mimic the difficulties of sampling in actuality. 

Fig 6.1.5 DCBs data collection. A – Matrix representing a 1cm² area with ten vertical (Green) and 

ten horizontal (orange) core biopsies, each biopsy taken as the average of 10 1mm² areas. B – 

Combination of any two possible core biopsies from A ; a traffic light system allows rapid 

visualisation of negative (<1% in Green), weak positive (1-49% in yellow) and strong positive 

(≥50% in red). C – Combination of any possible 3 core biopsies from A. Traffic light system allows 

for a general overview, though automated equations are used to harvest the data.  
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In addition, some tumours, particularly metastatic deposits in lymph nodes accessed via EBUS, 

undergo needle aspiration to sample the tumour instead of a biopsy. This requires the movement of 

a needle in multiple planes with constant pressure, and will typically take single cells or small groups 

of cells with minimal architecture preservation. As a result, cytology aspirates might be considered 

to sample tumours in far more random fashion than core biopsies. 

In a bid to replicate this digitally, DFNAs was used to compare multiple 1mm squares to the whole 

section TPS by selecting mm² areas by (X,Y) co-ordinate data at random. 10, 20 and 30, 1mm squares 

were taken at random for each primary tumour. For cases which had not achieved a ≥99% correct 

classification rate by the equivalent of a 30mm² area, DFNA was increased to 40 and 50 1mm 

squares. 10 mm squares at random is equivalent to 1 DCB, 20 mm squares to 2 DCBs and so forth, so 

a comparison between DCBs and DFNAs can also be made.  

6.1.4 Inter-tumoural heterogeneity 

The whole-section TPS from the primary tumour was compared to the TPS from lymph node 

metastases in each case. Lymph nodes identified as separate nodes are scored individually (thus a 

section may have two TPS results if it contains two distinct nodes), otherwise all lymphoid tissue 

Fig 6.1.6 Simulation of DCBs in a lymph node stained for PD-L1 (SP263). Each core (Red) is smaller 

than the 1x10mm² used in primary tissue, with the potential for discontinuous areas to be 

included in a single core. This approach attempts to mimic the sampling of lymph nodes in 

reality.  
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with metastatic deposits on a single slide are included together to generate an overall TPS. All cases 

had at least one N1 or one N2 node included, and for cases with both N1 and N2 disease at least one 

node from each category would be scored for TPS. In instances where any discrepancy between 

primary and metastatic tissue PD-L1 expression was found, all lymph nodes with metastatic tumour 

would subsequently be included. In so doing cases will have primary and metastatic tumour 

compared for PD-L1 expression to assess for inter-tumoural heterogeneity, and a subset of cases will 

have multiple metastatic deposits compared to each other as another metric of inter-tumoural 

heterogeneity. 

6.1.5 Heterogeneity and pathological/clinical features 

Intra-tumoural and inter-tumoural heterogeneity as defined in this project will allow the grouping of 

NSCLC cases by similar patterns of PD-L1 expression in addition to TPS. These groups were used to 

look for relationships to other pathological and clinical features as outlined in table 6.1.0. In so doing 

patient or tumour features that may predict or be affected by PD-L1 expression heterogeneity 

maybe identified as potential areas for further investigation.  

6.1.6 Statistics 

Data analysis, including testing of groups for significance is performed by the same statistical 

approach as outlined in the main methods section. TPS datasets typically failed to meet assumptions 

for parametric testing. Comparisons between primary and metastatic samples are independently 

tested, as though related they are not repeated measures. COV is calculated using the following 

equation: COV = (σ / µ)*100. Statistical significance for the comparisons of COV were performed as 

described by Forkam et al 2009.571 DFNA was performed in Microsoft Excel using the following 

equation: N=INDEX(A:A,RANK(BN,B:B)) where A:A is the array containing each mm squared TPS, B:B 

is the array containing function ‘rand()’, and BN is a randomly selected TPS from A:A, unique to N. 10 

numbers could then be selected from the N:N array to provide 10 random TPS from the original A:A 

array to replicate random sampling of the tumour, increasing to 20, 30, 40 or 50 squares as required. 

DCB arrays as illustrated in Fig 6.1.5 used Boolean TRUE/FALSE operators in relation to TPS cut-offs 

(e.g. =IF(AND(N>=1,N<50),TRUE,FALSE) when ascertaining if N is in the 1-49% category) with sum 

total of TRUE/FALSE returns used to generate percentage accuracies of sampling for each case. 

Kaplan-Meier Log-Rank survival analysis was used to compare PD-L1 heterogeneity expression 

groups for differences in OS.  
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6.2 Results 

6.2.0 PD-L1 intra-tumoural heterogeneity – descriptives 

A visual review of PD-L1 expression in all 113 cases and their matched nodes revealed variable 

patterns of heterogeneity with differences of PD-L1 seen between cm² areas (Fig 6.0.1), mm² areas 

or even single cells (Fig 6.2.0). Expression of PD-L1 varied from uniform expression to wide-spread 

scattered PD-L1 expression or focal/multi-focal expression. (Fig 6.2.2 A-D) In addition, transition 

from positive to negative cells can be abrupt or gradual (Fig 6.2.2 E-F) and tumours can express a 

mixture of these features (Fig 6.2.2 G-H). In both primary and metastatic deposits the invading edge, 

that is, the area of tumour that is infiltrating normal tissue, can be shown to have increased PD-L1 

expression over the rest of the tumour (Fig 6.2.3), but in other cases expression had no apparent 

relationship to anatomy. Tumours could have a mixture of both strong and weak expression for PD-

L1 (Fig 6.2.0, Fig 6.2.1) and to have a mix of both focal and scattered patterns of PD-L1 expression. 

(Fig 6.2.1) A qualitative summary of each cases’ most prominent pattern of heterogeneity (if 

present) is shown in Table 6.2.6.  

6.2.1 Primary NSCLC - Small-scale heterogeneity and digital core biopsies 

There was sufficient quantity and quality (≥ 1 cm² of continuous viable tumour cells) for assessment 

by the ‘squares method’ in 72 cases of primary NSCLC. These were found to have a large range of 

COV (from 0 to 623) with a mean COV of 140, illustrating that cases ranged from no heterogeneity of 

PD-L1 expression (i.e. 0% or 100% TPS) to extremely heterogeneous expression. There was similar 

findings if splitting tumours into morphology for both ADCs (n=42, COV = 120) and SCCs (n=30, mean 

COV = 170). Six cases (8%) had a 1cm² area mean TPS different to its whole section TPS such that it 

would change clinical category. The average difference between whole section TPS and a 1cm² area 

TPS was 1 (p=0.195), with eight cases (11%) have a TPS change of ≥10%.Example of PD-L1 expression 

heterogeneity between 1mm² areas in shown in Fig 6.2.0. 

All 72 specimens had a single DCB and all possible 2 DCBs combinations simulated. Cases with less 

than a 99% correct classification rate at 2 DCBs would be tested for 3 DCBs, increasing to 4 and 5 

DCBs if the ≥99% classification rate cannot be achieved. A total of 437,445 simulated core biopsies in 

72 specimens was thus performed. All 72 cases underwent DFNA sampling for the equivalent tissue 

of 10, 20, and 30 1mm² areas, with cases not achieving ≥99% concordance having 40 or 50 1mm² 

areas. A total of 288 DFNA simulations was thus performed.  These are summarised in table 6.2.0. 
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Fig 6.2.0 Example of small-scale heterogeneity: NSCLC section stained for PD-L1 (SP63). A – 1mm² 

area with a TPS of 95% B – 1mm² area with a TPS of <1%. A and B are from the same 1cm² area 

of primary NSCLC. 

Fig 6.2.1 Patterns of PD-L1 (SP263) expression. A – Weak to strong staining. B – Multi-focal and 

scattered single cells of PD-L1 positive tumour cells.  
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Fig 6.2.2 Patterns of PD-L1 (SP263) expression heterogeneity. A, B –small scale heterogeneity with 

scattered expression. C, D – large scale heterogeneity with areas of focal expression. E – Abrupt 

change from positive to negative cells for PD-L1. F – Gradual change from positive to negative cells for 

PD-L1. G, H – slide and heat map of widespread scattered heterogeneity with a mixture of 

heterogeneity features.  
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Fig 6.2.3 Infiltrating edge of tumour preferentially expressing PD-L1 (SP263). A1 – PD-L1 expression in 

primary NSCLC at low power with increased expression at the border between tumour and non-

malignant tissue. A2, A3 – H&E and PD-L1 of infiltrating border of primary NSCLC at high power. B1 – 

H&E low power view of lymph node with metastatic deposit of NSCLC. B1, B2 – H&E and PD-L1 

expression at infiltrating border of NSCLC in a lymph node at high power.  
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Case TPS Clinical 
Category 

Square 
TPS 

DCB simulations misclassification 
rate (%) 

DFNA Simulations 
misclassification rate 

(%) 

COV 

    1 2 3 4 5 1 2 3 4 5  

1 5 1-49% 5 60 45 28 22 10 1 0 0     408 

2 0 <1% <1 5 0.1       0 0 0     180 

3 1 1-49% 5 18 7 2 0.1   17 4 3 0   231 

4 0 <1% 0 0 0       0 0 0     0 

5 5 1-49% 5 15 6 0.1     13 6 0     185 

6 95 ≥50% 100 0 0       0 0 0     10 

7 30 1-49% 20 0 0       0 0 0     69 

8 20 1-49% 20 0 0       0 0 0     92 

9 0 <1% <1 0 0       0 0 0     459 

10 0 <1% <1 0 0       0 0 0     358 

11 30 1-49% 30 1 6 0.1     1 0 0     86 

12 1 1-49% 1 15 2 0.1     3 0 0     142 

13 1 1-49% 1 55 35 19 14 6 63 52 48 36 30 208 

14 70 ≥50% 70 10 2 0.1     2 0 0     41 

15 0 <1% <1 0 0       0 0 0     198 

16 80 ≥50% 70 0 0       0 0 0     30 

18 0 <1% <1 15 4 0.9     8 2 0     341 

19 5 1-49% 5 20 14 5 2 0.01 10 4 1 0   138 

20 80 ≥50% 85 0 0       0 0 0     15 

22 5 1-49% 5 0 0       0 0 0     163 

24 10 1-49% 1 23 12 4 2 0.01 21 8 3 0   231 

25 0 <1% <1 0 0       0 0 0     248 

26 50 ≥50% 50 25 12 4 4 0.6 42 38 33 28 15 72 

28 1 1-49% 1 25 21 7 8 8 24 6 9 4 0 201 

31 10 1-49% 20 8 0.1       3 0 0     183 

32 0 <1% 0 0 0       0 0 0     236 

33 0 <1% 0 0 0       0 0 0     403 

36 50 ≥50% 55 25 28 25 22 18 32 28 36 12 0 54 

39 10 1-49% 10 0 0       0 0 0     231 

40 85 ≥50% 90 0 0       0 0 0     13 

41 40 1-49% 50 15 6 0.1     10 12 3 0   94 

44 30 1-49% 55 5 4 0.2     6 2 0     91 

46 5 1-49% 5 0 0       0 0 0     48 

48 85 ≥50% 80 0 0       0 0 0     30 

49 80 ≥50% 80 0 0       0 0 0     21 

51 80 ≥50% 80 0 0       0 0 0     36 

52 20 1-49% 30 5 0.1       2 0 0     154 

53 10 1-49% 2 27 19 6 5 5 12 2 0     191 

55 60 ≥50% 55 35 33 35 29 14 36 30 30 24 20 68 

56 90 ≥50% 95 0 0       0 0 0     10 

59 10 1-49% 1 45 19 5 6 1 24 10 3 0   282 

60 50 ≥50% 50 35 35 31 38 30 40 28 24 16 15 68 

61 100 ≥50% 100 0 0       0 0 0     8 

64 35 1-49% 35 30 8 2 0.2   29 10 3 0   137 

69 25 1-49% 25 0 0       10 2 3 0   154 

75 40 1-49% 40 30 26 17 27 15 22 26 1 0   90 

80 40 1-49% 50 35 30 21 27 18 23 36 12 8 8 86 

82 50 ≥50% 50 25 19 15 17 11 18 10 9 4 0 51 

85 10 1-49% 10 0 0       0 0 0     69 

86 90 1-49% 10 5 1 0.1     0 0 0     176 
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87 5 1-49% 5 0 0       0 0 0     162 

89 0 <1% <1 5 0.1       6 10 0     623 

90 0 <1% 0 0 0       0 0 0     0 

91 85 ≥50% 80 0 0       0 0 0     29 

92 0 <1% 0 0 0       0 0 0     0 

93 <1 <1% 1 30 36 24 29 19 27 36 18 16 15 303 

94 <1 <1% <1 40 32 31 27 26 52 54 48 48 45 127 

95 <1 <1% <1 35 30 24 24 15 42 42 36 36 40 196 

96 1 1-49% 1 0 0       3 0 0     176 

100 0 <1% 0 0 0       0 0 0     169 

101 100 ≥50% 100 0 0       0 0 0     0 

102 90 ≥50% 90 0 0       0 0 0     0 

103 0 <1% 0 0 0       0 0 0     243 

105 0 <1% 0 0 0       0 0 0     0 

106 100 ≥50% 100 0 0       0 0 0     3 

107 0 <1% <1 0 0       0 0 0     268 

108 30 1-49% 50 35 13 14 20 14 0 0 0     79 

109 40 1-49% 70 25 13 4 3 0.2 0 0 0     63 

110 5 1-49% 5 5 0.1       0 0 0     135 

111 5 1-49% 5 15 3 0.1     8 0 0     262 

112 75 ≥50% 75 8 0.1       1 0 0     31 

113 20 1-49% 20 5 0       0 0 0     103 

 

 

 

 

 

 

 

 

 

 

 

 

Correct 
Classification rate 

DCB1 DCB2 DCB3 DCB4 DCB5 

Cases % 49 58 72 75 82 

Simulations % 89 93 95 95 97 

 DFNA1 DFNA2 DFNA3 DFNA4 DFNA5 

Cases % 54 67 74 85 89 

Simulations % 92 94 96 97 97 

Table 6.2.0 Small-scale heterogeneity of PD-L1 expression in 72 NSCLCs and the accuracy of sampling 

by DCBs and DFNA for PD-L1 expression. TPSs for DCBs and DFNA are compared to TPSs from the 

section that they were sampled from, and the rate of misclassification by multiple DCBs or DFNA is 

recorded as a percentage of the total number of simulations performed using negative, weak or strong 

positive clinical categories (<1%, 1-49%, ≥50% TPS). COV is a measure of heterogeneity.  

 

Table 6.2.1 Summary of the accuracy of DCBs and DFNAs of NSCLC for scoring PD-L1. Misclassification 

rate is given as a percentage of simulations that resulted in the incorrect classification of a tumour by 

PD-L1 expression, and the percentage of cases affected by this using negative, weak or strong positive 

clinical categories (<1%, 1-49%, ≥50% TPS).  
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The use of a single DCB resulted in a correct classification of a tumour (<1%, 1-49%, ≥50% TPS) in 

89% of all simulations across the entire cohort. The sum total of all misclassifications (11%) occurred 

in 37 cases (51%), with 35 cases (49%) correctly categorised by a single DCB ≥99% of the time. This 

improved to a correct classification rate in 95% of all simulations, resulting in 51 cases (71%) 

correctly categorised by all of their respective three DCB combinations ≥99% of the time. By five 

DCBs, only 3% of all simulations were misclassifying tumours, but this still affected 13 cases (18%) for 

whom even five DCBs failed to correctly classify the tumour ≥99% of the time, with several cases 

being misclassified 20-30% of the time. 

The use of DFNA equivalent to one core biopsy resulted in the correct classification of a tumour in 

92% of all simulations, with 39 cases (54%) correctly categorised by DFNA1 ≥99% of the time. This 

improved with increasing DFNA quantities to a correct classification rate in 97% of all simulations 

when using DFNA equivalent to five (DFNA5) core biopsies, with 64 cases (89%) correctly classified 1 

≥99% of the time. Eight cases (11%) failed to be correctly categorised by DFNA5 ≥99% of the time, of 

which seven cases were the same as those that failed to be correctly categorised by 5 DCBs, with 

several cases being misclassified 40-45% of the time.  

The use of DFNA to the equivalent tissue of 1-5 core biopsies found a similar number of incorrect 

classifications, with a modest non-significant reduction by this method compared to DCBs (8% vs 

11% p=0.252 for 1 DCB/DFNA, 6% vs 7% p=0.990 for 2DCBs/DFNA, 4% vs 5% p=0.683 for 3 

DCBs/DFNA, 3% vs 5% p=0.238 for 4 DCBs/DFNA, 3% vs 3% p=0.980 for 5 DCBs/DFNA). (Table 6.2.1).  

6.2.2 Primary NSCLC - Medium-scale heterogeneity 

A total of 27 cases had sufficient quantity and quality (≥ 2 cm² of viable tumour cells) for assessment 

by the ‘squares method’ in 2 independent squares on a single slide, with eight of these cases having 

sufficient tissue (≥ 3 cm² of viable tumour cells) for three independent squares on a single slide, with 

an overall mean TPS for each square generated. The average TPS difference between 1cm² areas was 

seven (p=0.368), with six cases (22%) changing clinical groups (<1%, 1-49%, ≥50% TPS) between 1cm² 

areas. Six cases (22%) had a TPS change of ≥10% between 1cm² areas, with ten cases (36%) having a 

significant difference in COV between 1cm² areas. Data are shown in Table 6.2.2. 
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Case Whole 
Section 
TPS 

Square 
1 Mean 

Group COV Square 
2/3 

Mean 

COV COV change 
sig.  

Group 
Change? 

TPS 
change 

2 <1 <1 <1% 168 <1 380  N 0 

3 1 5 1-49% 163 5 290  N 0 

4 0 0 <1% 0 0 0  N 0 

5 5 5 <1% 329 5 187  Y 2 

6 95 100 ≥50% 0 100 0  N 0 

7 30 20 1-49% 138 25 70 Y p<0.001 N 6 

      62 52  Y 44/37 

8 20 20 1-49% 245 19 118 Y p=0.05 N 13 

9 0 <1 <1% 260 <1 572  N 0 

      <1 398  N 0 

10 0 <1 <1% 505 <1 360  N 0 

      <1 419  N 0 

11 30 30 1-49% 82 30 111  N 0 

19 5 5 <1% 221 2 137  Y 1 

      1 176  Y 1/0 

22 5 5 1-49% 177 9 164  N 4 

24 10 1 1-49% 137 12 135  N 1 

31 10 20 1-49% 220 15 177  N 6 

      15 187  N 4/2 

36 50 55 ≥50% 31 75 54 Y p<0.001 N 18 

39 10 10 1-49% 119 5 400 Y p=0.018 N 16 

49 90 80 ≥50% 3 99 28 Y p<0.001 N 21 

      85 16  N 15/6 

51 80 80 ≥50% 28 75 38 Y p=0.003 N 7 

55 60 55 1-49% 92 70 50 Y p<0.001 Y 26 

      50 65  Y 10/16 

56 90 95 ≥50% 12 95 9 Y p<0.001 N 3 

61 100 100 ≥50% 1 95 13 Y p<0.001 N 3 

62 2 2 1-49% 139 5 224  N 2 

     2 196  N 0/2 

65 1 1 1-49% 144 1 183  Y 1 

72 0 <1 <1% 139 1 180  N 0 

83 0 <1 <1% 172 <1 200  N 0 

85 10 10 1-49% 158 15 178  N 6 

104 60 <1 <1% 168 <1 380  N 0 

 

 

 

 

 

 

Table 6.2.2 Medium-scale heterogeneity of PD-L1 expression in 27 NSCLCs. 2 to 3 1cm² areas for each 

case are compared for TPS change with 8 cases (30%) having differences in TPS sufficient to change 

clinical categories of negative, weak or strong positive (<1%, 1-49%, ≥50% TPS). COV as a measure of 

heterogeneity is also compared between 1cm² areas, with 10 cases (37%) found to have a significant 

difference.  
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6.2.3 Primary NSCLC - Large-scale heterogeneity 

A total of 61 cases had sufficient tissue in two blocks of primary NSCLC for a whole section of both 

blocks to be assessed for PD-L1 expression. The average TPS change between blocks was 4 

(p=0.910), with four cases (7%) having sufficient difference in TPS to change clinical categories. 12 

cases (20%) had a TPS change of ≥10% between blocks. Results are shown in Table 6.2.3. 

 

Case Block 1 TPS Block 2 TPS Difference Clinical change 

2 0 0 0 N 

4 0 0 0 N 

9 0 0 0 N 

10 0 0 0 N 

15 0 0 0 N 

17 0 0 0 N 

18 0 0 0 N 

21 0 0 0 N 

23 0 0 0 N 

25 0 0 0 N 

30 0 0 0 N 

33 0 0 0 N 

34 0 0 0 N 

35 0 0 0 N 

37 0 0 0 N 

38 0 0 0 N 

43 0 0 0 N 

58 0 0 0 N 

3 1 1 0 N 

13 1 1 0 N 

27 1 1 0 N 

28 1 1 0 N 

45 1 1 0 N 

57 1 1 0 N 

65 1 1 0 N 

66 1 1 0 N 

29 2 2 0 N 

62 2 0 2 Y 

1 5 20 15 N 

5 5 1 4 N 

19 5 1 4 N 

22 5 1 4 N 

42 5 1 4 N 

46 5 5 0 N 

24 10 1 9 N 

31 10 20 10 N 

39 10 10 0 N 

50 10 5 5 N 
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59 10 5 5 N 

85 10 10 0 N 

8 20 25 5 N 

52 20 30 10 N 

7 30 50 20 Y 

11 30 70 40 Y 

64 35 25 10 N 

26 50 40 10 Y 

36 50 55 5 N 

44 50 60 10 N 

60 50 40 10 N 

55 60 80 20 N 

16 80 70 10 N 

47 80 85 5 N 

51 80 75 5 N 

40 85 80 5 N 

48 85 90 5 N 

49 90 80 10 N 

56 90 90 0 N 

63 90 90 0 N 

67 90 90 0 N 

86 90 95 5 N 

6 95 90 5 N 

 

 

 

6.2.4 Lymph node (secondary) metastatic deposits – intra-tumoural heterogeneity 

Using a modified version of the ‘squares method’, small-scale heterogeneity within lymph node 

metastatic deposits was examined. A total of 30 cases were selected with sufficient quantities of 

tissue (>0.5cm² of continuous viable tumour cells). LN metastases demonstrated similar patterns of 

variation in heterogeneity to primary tumour, (Fig 6.2.4 and Fig 6.2.1), however the COV range was 

smaller than primary NSCLC (0-398) with a significantly smaller mean COV (84 vs 140 p<0.0001) 

(Table 6.2.4).  

Metastatic deposits are on average far smaller than primary tumours, so DCBs and DFNAs were only 

performed to the equivalent of two core biopsies/20 1mm² squares for the LN samples. The use of a 

single DCB resulted in the correct classification of a tumour (<1%, 1-49%, ≥50% TPS) in 88% of all 

simulations across the entire cohort. The sum total of all misclassifications (12%) occurred in 30 

cases (33%), with 40 cases (67%) correctly categorised by a single DCB ≥99% of the time. 

 

Table 6.2.3 Large-scale heterogeneity of PD-L1 expression in 61 NSCLCs. A whole section from 2 blocks 

of primary NSCLC is compared for TPS in each case, with 4 cases (7%) having differences in TPS 

sufficient to change clinical categories of negative, weak or strong positive (<1%, 1-49%, ≥50% TPS) 
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Case Whole 
TPS 

Category DCB 1 DCB 2 DFNA 1 DFNA 2 COV 

7 30 1-49% 9 13 1 0 101 

11 70 ≥50% 0 0 0 0 23 

14 45 1-49% 44 45 44 32 67 

19 90 ≥50 0 0 0 0 6 

22 <1% <1% 13 0 0 0 126 

24 80 ≥50% 0 0 0 0 21 

29 90 ≥50% 0 0 0 0 3 

32 25 1-49% 33 13 1 0 133 

35 5 1-49% 0 0 2 0 35 

36 95 ≥50% 0 0 0 0 13 

38 50 ≥50% 47 37 24 16 45 

39 10 1-49% 0 0 0 0 114 

40 10 1-49% 0 0 0 0 85 

41 100 ≥50% 0 0 0 0 0 

42 0 <1% 0 0 0 0 0 

46 5 1-49% 41 21 19 0 289 

48 <1% <1% 0 0 0 0 300 

52 90 ≥50% 0 0 0 0 6 

54 <1% <1% 44 22 24 0 79 

55 <1% <1% 41 48 33 34 197 

58 55 ≥50 0 0 9 4 44 

60 1 1-49% 57 51 42 20 205 

61 80 ≥50% 0 0 0 0 17 

64 90 ≥50% 0 0 0 0 16 

Fig 6.2.4 PD-L1 (SP263) heterogeneity in NSCLC metastatic deposits in lymph nodes. A – A gradual 

change from positive to negative cells with various intensities of staining. B – Focal staining of PD-L1 

with occasional scattered positive tumour cells.  
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65 70 ≥50% 16 5 4 0 34 

66 95 ≥50% 0 0 0 0 5 

67 <1% <1 0 0 0 0 397 

69 5 1-49% 0 0 0 0 54 

71 15 1-49% 0 0 0 0 112 

72 0 <1% 0 0 0 0 0 

 

 

 

 

 

This improved to a correct classification rate in 91% of all simulations, resulting in 42 cases (70%) 

correctly categorised by all of their respective two DCB combinations ≥99% of the time. Nine cases 

(30%) failed to be correctly categorised by two DCBs ≥99% of the time with several cases being 

misclassified 40-50% of the time. The use of DFNA equivalent to one core biopsy resulted in the 

correct classification of a tumour in 93% of all simulations, with 38 cases (63%) correctly categorised 

by DFNA 1 ≥99% of the time. This improved to a correct classification rate in 96% of all simulations 

when using DFNA equivalent to two core biopsies, with 50 cases (83%) correctly classified ≥99% of 

the time. Five cases (17%) failed to be correctly categorised by DFNA 2 ≥99% of the time, with 

several cases being misclassified 20-30% of the time. Results are summarised in Table 6.2.5.  

 DCB1 DCB2 

Cases % 67 70 

Simulations % 88 91 

 DFNA1 DFNA2 

Cases % 63 83 

Simulations % 93 96 

 

 

 

 

As with primary NSCLC, there are some cases of heterogeneous PD-L1 expression, particularly very 

focal expression, for which repeated sampling does not improve the chances of correct classification. 

Example is shown in Fig 6.2.5. The use of DFNA to the equivalent tissue of 1-2 core biopsies found a 

significantly reduced number of incorrect misclassifications compared to use of one or two DCBs 

respectively (7% vs 12% p=0.025 for 1 DCB/DFNA, 4% vs 9% p=0.008 for 2DCBs/DFNA).  

Table 6.2.4 Intra-tumoural heterogeneity of PD-L1 expression in 30 lymph nodes containing metastatic 

NSCLC and the accuracy of sampling by DCBs and DFNA for PD-L1. TPSs for DCBs and DFNAs are 

compared to TPSs from the section that they were sampled from, and the rate of misclassification by 

multiple DCBs or DFNA is recorded as a percentage of the total number of simulations performed 

using negative, weak or strong positive clinical categories (<1%, 1-49%, ≥50% TPS). COV is a measure 

of heterogeneity.  

 

Table 6.2.5 Summary of the accuracy of DCBs and DFNAs of metastatic NSCLC for scoring PD-L1. 

Misclassification rate is given as a percentage of cases and simulations that resulted in the incorrect 

classification of a tumour for PD-L1 expression using negative, weak or strong positive clinical 

categories (<1%, 1-49%, ≥50% TPS) by 1 or 2 DCBs, or DFNAs equivalent to 10mm² or 20mm² area. 
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6.2.5 Inter-tumoural heterogeneity – Primary vs metastases 

All 107 cases had PD-L1 expression assessed in primary tumour and matched nodal metastatic 

deposits. In cases with multiple metastases, all metastatic tissue was included to generate an overall 

TPS score. In 50 cases (47%) there was no difference in TPS. Of the remaining 57 cases (53%) with a 

difference in TPS, 38 cases (36%) had a change of ≥10% TPS and 7 cases (6.5%) a change of ≥50% 

TPS. In all available tested tissue, three cases had no PD-L1 expression in the primary tumour, but 

were PD-L1 positive in their metastases, and 13 cases went from PD-L1 positive primary to entirely 

negative in their metastases, examples shown in Fig 6.2.6. 22 cases (21%) were placed in different 

clinical categories (<1%, 1-49%, ≥50% TPS) depending on their primary or metastatic tissue, with six 

cases going to a higher, and 16 cases to a lower category if scoring metastatic tissue. There is no 

significant difference in the overall mean TPS between primary and secondary tumours (mean 28 vs 

27 p=0.403) but significantly more metastases were placed in the <1% clinical group (47 vs 37, 

p<0.0001), and fewer in the 1-49% group (20 vs 37) and ≥50% group (31 vs 33) in the lymph node 

metastases. Data is shown in Table 6.2.6.  

 

 

Fig 6.2.5 Challenges of focal PD-L1 (SP263) expression in metastatic NSCLC in a lymph node. A – 

Overview of the PD-L1 expression in the metastatic deposit (TPS 30%). B – Example of potential DCBs 

that may underscore (Red - <1% TPS) or over score (Yellow - ≥50% TPS) compared to whole metastasis. 
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Case 1ry 
TPS 

2ry 
TPS 

TPS 
change 

1ry 
Clinical 
Group 

2ry 
Clinical 
Group 

Clinical 
change? 

1ry PD-L1 
Pattern 

2ry PD-L1 
Pattern 

2 0 0 0 <1% <1% No Negative Negative 

4 0 0 0 <1% <1% No Negative Negative 

9 0 0 0 <1% <1% No Negative Negative 

10 0 0 0 <1% <1% No Negative Negative 

15 0 0 0 <1% <1% No Negative Negative 

17 0 0 0 <1% <1% No Negative Negative 

18 0 0 0 <1% <1% No Negative Negative 

21 0 0 0 <1% <1% No Negative Negative 

23 0 0 0 <1% <1% No Negative Negative 

25 0 0 0 <1% <1% No Negative Negative 

30 0 0 0 <1% <1% No Negative Negative 

32 0 0 0 <1% <1% No Negative Negative 

33 0 0 0 <1% <1% No Negative Negative 

34 0 0 0 <1% <1% No Negative Negative 

35 0 0 0 <1% <1% No Negative Negative 

37 0 95 95 <1% ≥50% Yes Negative Scattered 

38 0 0 0 <1% <1% No Negative Negative 

43 0 0 0 <1% <1% No Negative Negative 

58 0 0 0 <1% <1% No Negative Negative 

71 0 0 0 <1% <1% No Negative Negative 

72 0 0 0 <1% <1% No Negative Negative 

73 0 0 0 <1% <1% No Negative Negative 

74 0 0 0 <1% <1% No Negative Negative 

77 0 0 0 <1% <1% No Negative Negative 

78 0 0 0 <1% <1% No Negative Negative 

83 0 0 0 <1% <1% No Negative Negative 

84 0 0 0 <1% <1% No Negative Negative 

88 0 0 0 <1% <1% No Negative Negative 

89 0 0 0 <1% <1% No Negative Negative 

90 0 0 0 <1% <1% No Negative Negative 

92 0 0 0 <1% <1% No Negative Negative 

94 0 0 0 <1% <1% No Negative Negative 

100 0 0 0 <1% <1% No Negative Negative 

103 0 0 0 <1% <1% No Negative Negative 

105 0 1 1 <1% 1-49% Yes Negative Scattered 

107 0 1 1 <1% 1-49% Yes Negative Scattered 

3 1 0 -1 1-49% <1% Yes Scattered Negative 

12 1 1 0 1-49% 1-49% No Scattered Scattered 

13 1 1 0 1-49% 1-49% No Focal Focal 

27 1 1 0 1-49% 1-49% No Scattered Scattered 

28 1 2 1 1-49% 1-49% No Scattered Focal 

45 1 0 -1 1-49% <1% Yes Focal Negative 

57 1 1 0 1-49% 1-49% No Scattered Scattered 

65 1 0 -1 1-49% <1% Yes Scattered Negative 

66 1 1 0 1-49% 1-49% No Scattered Scattered 

79 1 5 4 1-49% 1-49% No Scattered Scattered 

81 1 1 0 1-49% 1-49% No Scattered Scattered 
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93 1 1 0 1-49% 1-49% No Focal Focal 

95 1 5 4 1-49% 1-49% No Scattered Scattered 

96 1 1 0 1-49% 1-49% No Scattered Scattered 

29 2 1 -1 1-49% 1-49% No Scattered Scattered 

62 2 0 -2 1-49% <1% Yes Scattered Negative 

1 5 0 -5 1-49% <1% Yes Scattered Negative 

5 5 5 0 1-49% 1-49% No Scattered Focal 

19 5 1 -4 1-49% 1-49% No Scattered Scattered 

22 5 0 -5 1-49% <1% Yes Focal Negative 

42 5 0 -5 1-49% <1% Yes Focal Negative 

46 5 5 0 1-49% 1-49% No Scattered Scattered 

87 5 15 10 1-49% 1-49% No Focal Focal 

24 10 0 -10 1-49% <1% Yes Focal Negative 

31 10 90 80 1-49% ≥50% Yes Focal Uniform 

39 10 20 10 1-49% 1-49% No Scattered Scattered 

50 10 5 -5 1-49% 1-49% No Scattered Scattered 

59 10 0 -10 1-49% <1% Yes Focal Negative 

85 10 45 35 1-49% 1-49% No Focal Focal 

53 15 0 -15 1-49% <1% Yes Scattered Negative 

8 20 20 0 1-49% 1-49% No Scattered Scattered 

52 20 1 -19 1-49% 1-49% No Focal Focal 

69 25 5 -20 1-49% 1-49% No Focal Scattered 

7 30 30 0 1-49% 1-49% No Focal Focal 

11 30 70 40 1-49% ≥50% Yes Focal Focal 

64 35 80 45 1-49% ≥50% Yes Focal Focal 

41 40 0 -40 ≥50% <1% Yes Focal Negative 

75 40 10 -30 1-49% 1-49% No Focal Scattered 

80 40 30 -10 1-49% 1-49% No Focal Focal 

26 50 50 0 ≥50% ≥50% No Focal Focal 

36 50 20 -30 ≥50% 1-49% Yes Uniform Scattered 

44 50 70 20 ≥50% ≥50% No Focal Uniform 

60 50 90 40 ≥50% ≥50% No Focal Uniform 

82 50 60 10 ≥50% ≥50% No Scattered Scattered 

55 60 80 20 ≥50% ≥50% No Uniform Uniform 

104 60 60 0 ≥50% ≥50% No Focal Uniform 

14 70 95 25 ≥50% ≥50% No Uniform Uniform 

16 80 60 -20 ≥50% ≥50% No Uniform Uniform 

20 80 80 0 ≥50% ≥50% No Uniform Uniform 

47 80 100 20 ≥50% ≥50% No Uniform Uniform 

51 80 5 -75 ≥50% 1-49% Yes Uniform Scattered 

99 80 90 10 ≥50% ≥50% No Uniform Uniform 

40 85 100 15 ≥50% ≥50% No Uniform Uniform 

48 85 0 -85 ≥50% <1% Yes Uniform Uniform 

91 85 95 10 ≥50% ≥50% No Uniform Uniform 

49 90 100 10 ≥50% ≥50% No Uniform Uniform 

54 90 100 10 ≥50% ≥50% No Uniform Uniform 

56 90 100 10 ≥50% ≥50% No Uniform Uniform 

63 90 70 -20 ≥50% ≥50% No Uniform Uniform 

67 90 100 10 ≥50% ≥50% No Uniform Uniform 

86 90 60 -30 ≥50% ≥50% No Uniform Uniform 
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98 90 40 -50 ≥50% 1-49% Yes Uniform Focal 

102 90 100 10 ≥50% ≥50% No Uniform Uniform 

6 95 0 -95 ≥50% <1% Yes Uniform Negative 

68 95 100 5 ≥50% ≥50% No Uniform Uniform 

70 95 60 -35 ≥50% ≥50% No Uniform Uniform 

76 95 80 -15 ≥50% ≥50% No Uniform Uniform 

97 95 95 0 ≥50% ≥50% No Uniform Uniform 

61 100 90 -10 ≥50% ≥50% No Uniform Uniform 

101 100 100 0 ≥50% ≥50% No Uniform Uniform 

106 100 100 0 ≥50% ≥50% No Uniform Uniform 

 

 

 

Fig 6.2.6 Examples of dramatic inter-tumoural heterogeneity of PD-L1 (SP263) expression between 

primary NSCLC and matched metastatic deposits. A1 – Primary NSCLC (TPS 0%) with matched (A2) 

metastases (TPS 95%). B1 - Primary NSCLC (TPS 95%) with matched (B2) metastases (TPS 0%).  

Table 6.2.6 Inter-tumoural heterogeneity of PD-L1 expression in 107 NSCLCs showing PD-L1 TPSs from 

primary tumour and matched metastases in regional lymph nodes. 22 cases (21%) had sufficient inter-

tumoural variation of PD-L1 expression sufficient to classify primary and metastatic tissue into 

different clinical categories of negative, weak or positive (<1%, 1-49%, ≥50% TPS). Predominant 

patterns of PD-L1 expression heterogeneity is summarised for each sample. In addition to loss or gain 

of TPS, 5 cases (5%) demonstrated different predominance of focal or scattered staining between 

matched tumour samples.  
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6.2.6 Inter-tumoural heterogeneity – Metastases vs metastases 

35 cases had multiple lymph nodes with metastatic deposits suitable for testing PD-L1, with a total 

of 85 lymph nodes tested (range 2-5 per case). Of these, 29 cases (83%) had no difference in TPS 

between metastatic deposits. Of the 6 cases with variation between metastatic deposits, four (11%) 

had TPS changes sufficient to change clinical groups. Two cases had small foci of PD-L1 expression 

(<1%). Of the remaining four cases, TPS changes ranged from 1% to 95%, with one case having five 

lymph nodes with different TPS score for each metastasis. Heterogeneity was variable: for example, 

two lymph nodes from the same station having vastly differing TPSs (Fig 6.2.7) and significant intra-

tumoural heterogeneity across a lymph node metastases (Fig 6.2.8). Data is summarised in Table 

6.2.7.  

 

6.2.7 Heterogeneity and pathological/clinical features 

All 107 cases were assessed for their patterns of heterogeneity. PD-L1 expression is minimally 

heterogeneous at the extremes of TPSs, either being negative (37 cases) or uniformly positive (all 

cases ≥70% TPS, 27 cases). Of the remaining 43 cases, intra-tumoural heterogeneity was either 

classified as scattered (example Fig 6.2.2 A,B) or focal/multifocal (Fig 6.2.2 C,D). Cases with both 

elements were grouped based on the predominant pattern. As such, 21 cases were deemed to have 

their PD-L1 expression in the primary tumour as predominantly focal, and 22 cases as having 

scattered PD-L1 expression. Focal expression had a higher average TPS (26 vs 6 p<0.0001) but there 

Fig 6.2.7 Examples of dramatic inter-tumoural heterogeneity of PD-L1 (SP263) expression between 

matched metastatic NSCLC deposits in regional lymph nodes. A – Lymph node metastases (TPS 5%) B – 

Matched lymph node metastases (TPS 100%) 
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was no significant difference in clinical categorisation (16 vs 21 1-49% TPS, 5 vs 1 ≥50% TPS, 

p=0.068). There was no difference between focal or scattered heterogeneity for morphology 

(p=0.287), T stage (p=0.681), age (63 vs 68 p=0.630), pleural status (p=0.427), necrosis (p=0.454), 

gender (p=0.284) or smoking status (p=0.770). Survival analysis by Kaplan-Meier Log-Rank testing 

found no significant difference in outcome between focal and scattered patterns of PD-L1 expression 

(45 vs 42 months OS p=0.780).   

Case Average 2ry TPS N1 N2 Nodes tested TPS changes (Values) 

6 0 1 1 2 N 

24 0 1 1 2 N 

32 0 2 1 2 N 

35 0 3 4 2 N 

38 0 3 1 2 N 

42 0 2 1 2 N 

43 0 1 1 2 N 

62 0 4 0 4 N 

65 0 1 1 2 N 

78 0 5 1 2 N 

83 0 3 1 4 N 

88 0 4 2 2 N 

94 0 2 1 2 Y – (1%/0%) 

100 0 1 1 2 Y – (<1%/0%) 

103 0 1 1 2 N 

29 1 1 1 2 N 

66 1 2 1 2 N 

107 1 1 1 2 Y – (<1%/0%) 

28 2 1 1 2 N 

46 5 2 0 2 N 

50 5 2 1 2 N 

51 5 1 3 4 Y – (5%/5%/5%/100%) 

69 5 2 1 2 N 

36 20 4 1 5 N 

39 20 3 1 2 N 

80 30 2 1 2 N 

98 40 2 2 5 Y – (70%/20%/50%/30%/95%) 

85 45 2 1 2 Y – (50%/15%) 

26 50 3 0 3 N 

16 60 2 1 2 N 

11 70 1 1 2 N 

31 90 3 2 5 N 

37 95 2 0 2 N 

101 100 1 1 2 N 

106 100 1 1 2 N 

 

 

 

Table 6.2.7 Inter-tumoural heterogeneity of PD-L1 expression in 35 NSCLCs showing PD-L1 TPSs 

between matched metastases in regional lymph nodes. 4 cases (11%) had sufficient inter-tumoural 

variation of PD-L1 expression sufficient to classify primary and metastatic tissue into different clinical 

categories of negative, weak or positive (<1%, 1-49%, ≥50% TPS).  
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Fig 6.2.8 Examples of dramatic intra-tumoural heterogeneity of PD-L1 (SP263) expression in metastatic 

NSCLC within a single lymph node. A – Low powered view of a single lymph node with multiple 

metastatic NSCLC deposits B – High power view of metastases (TPS 80%) C – High power view of 

metastases (TPS 1%) 
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6.3 Discussion  

6.3.0 Extensive sampling and PD-L1 heterogeneity 

PD-L1 expression by IHC quantitatively interpreted to provide a TPS remains the only clinically-

validated method of predicting response to PD-1/PD-L1 IMs in NSCLC, with greater levels of PD-L1 

expression broadly associated with improved responses.47, 48, 254, 255 However, only the tissue sampled 

can be tested for PD-L1, and often these are small biopsies or cytology specimens that contain only a 

very small proportion of the total tumour burden. Intra-tumoural heterogeneity therefore presents 

itself as a problem in that small samples may return a TPS that is lower or higher than the true 

overall TPS of the tumour. Various other studies have studied the impact of intra-tumoural PD-L1 

expression and how this might impact concordance between specimens. Studies comparing TMAs to 

matched larger specimens suggest that these very small samples have a high risk of providing 

inconsistent results, ranging in discordance between 2.6% to 66% of cases.376, 378, 380, 382, 384, 386, 570, 572 

Papers using small biopsies compared to surgical specimens also found a variable amount of 

concordance between the specimens, with discordance ranging from 8.6% of cases to 48%, with 

most studies generally finding small biopsies could misclassify patients.388, 390-392, 568 However, studies 

that used whole tissue sections from surgical specimens to analyse intra-tumoural heterogeneity 

found a much lower rate of discordance with the authors generally concluding that these larger 

pieces of tumour, if available, would in most cases provide sufficient tissue to overcome intra-

tumoural heterogeneity of PD-L1 expression, with one study suggesting that variation within a block 

was generally greater than between blocks (91% vs 9% field of view variance).379, 393 The overall 

conclusion from these papers is that more tissue provides a greater chance of achieving a TPS truly 

representative of the whole tumour. This study agrees with these findings: intra-tumoural 

heterogeneity is a considerable problem with significant variation seen within 1cm² areas for some 

tumours, and no variation at all seen for others. However, when using as much as a whole section 

from a surgical specimen, the difference between two blocks is typically small, and rarely enough to 

change clinical categories, with typically more variation occurring between 1cm² areas within the 

same section than seen between blocks; suggesting a whole section from a surgical specimen is 

indeed sufficient to overcome intra-tumoural heterogeneity in the majority of cases. However, as 

this is not plausible in any patient pre-surgery (or not undergoing surgery), the question of how 

representative biopsies are is highly pertinent. In keeping with other studies, the more core biopsies 

taken, generally the more accurate the TPS is. However, this is not universally true, and a small 

number of cases saw minimal, or no improvement despite the use of more simulated samples. These 

cases were generally associated with very focal expression of PD-L1. The presence of very focal PD-

L1 expression, therefore, appears to be more problematic than scattered PD-L1 expression 
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heterogeneity. For example, if a relatively small T1 tumour with a maximum diameter of 20mm can 

be assumed to be ~20mm³ in total dimension, and if a generous core biopsy is equivalent to 

2x10x1mm, then this tumour has the theoretical equivalent of 400 potential core biopsies. The 

difference between one or two small biopsies seems inconsequential against many hundreds, if not 

thousands of potential sites, but if the TPS is a relatively modest 10% and PD-L1 expression is equally 

scattered across the tumour, there is actually a high chance of sampling an area with at least some 

PD-L1 expression. Although in this theoretical scenario any given core biopsy might not have a TPS of 

precisely 10%, an expression level of at least 1% TPS, and therefore remaining in the same clinical 

category, remains more likely to occur than not. However, if PD-L1 expression is very focally 

expressed, the majority of core biopsies would return a TPS of 0%, and therefore incorrectly classify 

this theoretical tumour. In addition the chances of hitting any given tumour area is partially 

determined by anatomical location: if the tumour is bronchial and central, the most likely route of 

access is via EBUS, and therefore sampling of the tumour is more likely to occur at the region closest 

to the bronchus. If the expression is equally scattered, this may make little difference, but if the focal 

area of PD-L1 expression is at an area distant to the bronchus, then a core biopsy may fail to sample 

the area of PD-L1 positive tumour cells.   

Despite this, the results from this study suggest a dramatic improvement in successful classification 

of tumours for PD-L1 if increasing from just one to two biopsies, with the majority of cases correctly 

classified with 3 biopsies, after which diminishing returns are achieved by the use of four and five 

biopsies. A previous study has suggested at least four biopsies are required for accurate PD-L1 

expression analysis, though their approach was TMA construction using much smaller 0.6mm 

diameter cores.386 Random sampling via DFNA performed modestly better than the equivalent 

quantity of sampling via DCBs, which likely reflects the increased chance of hitting PD-L1 expressing 

areas even in focally positive areas, but again struggled with specific cases, and in both instances the 

areas of biggest difficulty were, unsurprisingly, in cases very close to the clinical cut-offs of ≥1% or 

≥50%, with misclassifications of tumours into higher or lower groups both occurring, a not 

uncommon problem seen in other studies.382, 386, 388, 391, 392  

These results are mirrored when considering the intra-tumoural heterogeneity of the lymph node 

metastases. However, overall variation was significantly less in metastatic tissue than primary tissue, 

and, most likely as a reflection of the smaller size of metastatic deposits, less tissue was required to 

accurately score PD-L1. Both DCBs and DFNAs were superior at correctly classifying metastatic 

tumour PD-L1 compared to the equivalent in primary NSCLC specimens, and DFNAs was significantly 

better than DCBs within metastatic tissue. As the rationale behind DFNAs was to simulate the more 

random sampling that cytology specimens achieve, this may suggest that cytology samples acquired 
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from lymph node metastases might be more accurate than core biopsies of the same specimens. As 

discussed in Chapter 3 (Pre-analytics), the use of cytology specimens in terms of fixation and other 

pre-analytical factors should not been seen as a barrier to their use, and can be considered 

equivalent to histology samples,302, 307-309, 311-314, 471, 472, 573, 574 and this data suggests there may be 

further benefits currently underappreciated.  

6.3.1 Inter-tumoural heterogeneity: hinderer and helper 

Metastatic deposits in lymph nodes therefore provide an attractive target for ascertaining PD-L1 

expression in NSCLC cases, but the issue of inter-tumoural variation between primary tumour and 

metastatic sites, including both nodal disease and distant metastases has been seen in a number of 

other studies, ranging from 9% to 40% discordance, suggesting that they cannot be considered 

equivalent to primary tumours.306, 355, 396, 400, 401, 403, 542, 570 This study echoes these findings in that over 

half of cases have some discrepancy in TPS between primary and metastatic tissue, with 22% of 

cases having differences sufficient to place the primary and metastatic samples in different clinical 

categories.  In addition to being a significant proportion of cases potentially affected by this, it was 

interesting to note that PD-L1 positive primary tumours could become entirely negative in their 

metastases, and that the inverse was also true. Both could be explained by focal PD-L1 expression 

simply being missed by sampling, but in several cases PD-L1 expression went from nearly 100% to 

0% and vice versa, with several cases demonstrating profound differences of PD-L1 expression 

between metastatic deposits, in one case, even on the same slide, thus suggesting this is a genuine 

observation in at least some instances. Immune escape of NSCLC is thought to require, in addition to 

PD-L1 expression, specific conditions within the TME, such as the proximity of CD8+ cytotoxic T-cell 

lymphocytes and a non-suppressive immune environment.75, 545, 575 It is perhaps not surprising 

therefore that PD-L1 expression varies between a primary NSCLC and its nodal metastases; the 

microenvironment in the lung is very different from that in a lymph node.576, 577 

Apparent de novo expression of PD-L1 in metastatic cells from an apparently negative primary 

tumour is harder to explain, and may more easily be dismissed as an error of sampling, though the 

acquisition of survival traits and presence of differing immune markers in metastatic cells has been 

described before577-580 and certain forms of PD-L1, such as soluble or highly glycosylated forms of PD-

L1, which are not detectable by IHC, may play a clinically relevant role currently not fully 

characterised, and result in occult PD-L1 expression not identifiable by standard IHC assays.360, 366, 581 

Regardless of the underlying mechanism, primary tissue and metastatic tissue cannot be uniformly 

considered to be equivalent when testing for PD-L1 expression. In addition, whilst the phenomenon 

of variable PD-L1 expression between metastatic deposits was relatively uncommon in this cohort, 
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micro-environmental differences between evolving NSCLC metastatic deposits has been previously 

described,580 which could potentially account for some of the inter-tumoural heterogeneity observed 

between metastatic sites. As such, any single site, no matter how thoroughly sampled, should not be 

considered representative of a patients total tumour burden when deciding IM therapy, and this 

study would strongly suggest thorough sampling of multiple sites in patients with metastatic disease 

to ensure an accurate reflection of PD-L1 expression can be established.  

However, rather than considering the lack of PD-L1 expression concordance between primary 

tumour and metastases as a setback, it should perhaps be seen as an opportunity to re-evaluate the 

rationale for testing certain specimens and how their result should guide treatment. Neoadjuvant 

treatment of NSCLC by IMs is being assessed in current clinical trials55, 56 and extensive sampling of 

the primary tumour pre-surgery would seem prudent . Metastasis, however, is a reflection of 

evolution of the tumour, and it would seem reasonable to assume that the most advanced and 

potentially successful component of a disseminated tumour would be the most informative in terms 

of targeting for biopsy.545, 579, 582, 583 If the primary tumour is negative for PD-L1, but the metastases 

are positive, the latter would intuitively provide a better rationale for making a decision to treat with 

PD-1/PD-L1 IMs. As such, in patients with metastatic disease, it might be considered a reasonable 

approach to preferentially target metastases to ascertain PD-L1 expression, particularly as even 

cytology specimens from lymph nodes are demonstrably adequate for molecular profiling of 

actionable targets308, 438-440 and this study would suggest they are superior at overcoming intra-

tumoural heterogeneity issues. In addition, multiple samples from different nodes would be 

advisable as inter-tumoural heterogeneity between metastatic deposits is also observed, albeit in a 

minority of cases.  

6.3.2 Novel approaches to quantifying heterogeneity  

Whilst the use of digital images to simulate core biopsies and cytology sampling has advantages, 

specifically in that many thousands of replicates could be performed without the loss of additional 

tissue, a number of limitations must be considered. Some limitations to this approach mimic the 

limitations in the reality of sampling and are not easily overcome: a FFPE section is a 2D 

representation of a 3D structure and only samples a relatively small part of the total tumour. 

Biopsies of tumours near important structures (e.g. the pericardium) or of tumours limited by access 

due to anatomical location will not typically present the sampling clinician with the option to 

thoroughly sample every area of the tumour or every tumour deposit.584-586 In addition, the synthesis 

of TPSs taken from different mm² areas results in a mathematical average, which may put a biopsy in 

a different category to the true TPS by only a very small margin; for example if the true TPS is 50%, 
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and the biopsy average is 49%, these will be placed in different categories, whereas in reality a 

pathologist may be more likely to round this up. As a result, this novel digital simulation approach is 

probably unfair on a number of cases, but I have made no attempt to manually round-up any of the 

figures, on the basis that this would not be good practice, and also highlights the difficult nature of 

cases that are around clinical cut-offs. In addition, DCBs and DFNAs have been simulated from a 

limited area of the tumour (1cm² area), which in a number of cases has an average TPS different to 

the whole section TPS, which may over or underestimate the accuracy of DCBs and DFNAs in these 

instances.  

This study focuses purely on intra- and inter-tumoural heterogeneity, and does not address the 

impact of temporal or iatrogenic heterogeneity. Whilst this is a limitation, it is also a strength: other 

studies that have attempted to quantify PD-L1 expression heterogeneity include studies that include 

metastatic samples that are acquired weeks or months subsequent to the primary tissue or have had 

treatment in between paired sample collections.303, 312, 313, 396, 397, 400 The advantage of this cohort is 

that they received no neoadjuvant therapy, and all lymph nodes metastases were taken at the time 

of surgical resection, meaning the scale of intra- and inter-tumoural heterogeneity could be studied 

without the impact of temporal or iatrogenic heterogeneity. Whilst this study focuses purely on 

NSCLC, PD-L1 expression heterogeneity in also seen in other tumour types, with intra-tumoural, 

inter-tumoural or spatial heterogeneity seen  in breast cancer,406, 407 malignant mesothelioma,408 

HNCC409 CRC,410 lymphoma411 and various tumours that have metastasised specifically to the lung.412, 

413 Whilst the data is not directly transferable, the implications of this data in regards to adequate 

and widespread sampling would seem a reasonable precaution to apply to any tumour type when 

considering PD-L1 expression.  

Finally, whilst an attempt to classify PD-L1 expression heterogeneity by qualitative features was 

made, there is no clear pattern or apparent underlying reason for PD-L1 heterogeneity. Grouping by 

heterogeneity type was associated with no other pathological or any clinical traits, including by the 

separation into ADC or SCC morphologies. PD-L1 heterogeneity is unlikely, however, to be a 

randomly driven phenomenon; merely that its presence represents underlying aspects of the 

relationship of tumour cells and the immune response within the TME that is not fully understood.  

It is important with PD-L1 IHC, as with any single biomarker, to realise the limitations of what a 

single target can provide in terms of biological and clinical data. Whilst the optimisation of PD-L1 IHC 

can be achieved to ensure consistent results that minimise the impact of heterogeneity, additional 

biomarkers within the context of the TME are required to both understand the underlying reasons 

for heterogeneous expression, and to improve the predictive power of PD-L1 IHC. These will be 

explored in the following chapter.  
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Chapter 7 – The tumour microenvironment 

7.0 Introduction 

In the previous chapter PD-L1 expression heterogeneity was explored in depth, but despite being 

able to quantify intra- and inter-tumoural heterogeneity and suggest approaches that would 

minimise the clinical impact when sampling tumours, the underlying mechanism of PD-L1 expression 

heterogeneity remains elusive. Further interrogation of the TME in an attempt to understand this 

heterogeneity will be the focus of this chapter.  

7.0.1 PD-L1 and the TME 

The main mechanism by which PD-1/PD-L1 IMs are proposed to work is via disruption of the PD-L1-

PD-1 axis; PD-L1 expressed on tumour cells are able to bind to their receptor, PD-1, expressed on 

cytotoxic T-cells and exert an immunosuppressive effect on these T-cells, resulting in the inhibition 

of their cytotoxic function and decrease in cytokine production, eventually culminating in cell 

death.60, 587, 588 It has been demonstrated that tumour cells can be poor antigen presenters, and so 

the recruitment of professional APCs to express PD-L1 are necessary to suppress cytotoxic T-cell 

function in a similar fashion and induce an immunosuppressive TME.60, 589 By both direct inhibition of 

cytotoxic T-cells and the generation of a more immunosuppressive TME, the tumour cells are able to 

achieve immune escape. Targeting this interaction with PD-1/PD-L1 IMs will revert the TME to more 

active, anti-tumour immune response, and provide a better outcome for patients.60, 588 

PD-L1 expression within the TME is therefore likely to have a survival benefit for the tumour cells 

that express it, particularly in the context of an immune response targeted against them. This 

reactive expression of PD-L1 is regulated by many factors within the TME including IFN-γ, TNF-α, ILs, 

exosomes and other immune-related cytokines and messengers.60, 194, 210, 590 Not all PD-L1 expression 

is reactive, however, with some expression driven purely by chance as a result of genomic 

alterations within the tumour cells; so-called constitutive expression.564 NSCLCs have some of the 

highest levels of mutations relative to most other tumour types, and thus have an increased rate of 

expressing proteins, antigens and neo-antigens by chance (Fig 7.0.0)591, 592 Constitutive expression of 

PD-L1 may therefore occur even in the context of an immune desert, and as there is no active 

immune response targeted against the tumour cells, PD-L1 may be present, but it does not 

necessarily convey a survival benefit to the tumour cells.593 Furthermore, there are multiple possible 

pathways of immune escape: in addition to the myriad ways in which immunosuppressive TMEs can 

be altered by the cancerous cells, other direct immune checkpoints, such as IDO1, VISTA, TIM3 and 

others may be present.75 
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PD-L1 expression alone is therefore unlikely to be a perfect predictor of response to PD-1/PD-L1 IM 

therapy, and indeed its presence has been associated with superior response in only some of the 

major clinical trials.46, 47, 49 Therefore the presence, type and quantity of an immune response 

targeted against the cancerous cells within the TME is required to more fully understand the role of 

PD-L1 expressed by tumour cells. 

7.0.2 Types of immune TME 

Multiple different attempts to classify the TME based on immune activity have been made 

previously, with efforts including gene-signature based approaches,594-596 and the presence of TILs 

within the TME.597-599  Defining the types of TME remains a challenge, however, with multiple 

different definitions depending on the approach used. For example, Immunoscore, used in colorectal 

cancers, provides a sliding scale of prognostic information depending on two T-cell markers and their 

location within the tumour.597 Other approaches such as X-cell splits TME types based on clusters of 

gene expression profiles instead.594 TMEs can also be split based on the spatial context of TILs alone; 

immune desert (no TILs), immune excluded (TILs are present but cannot infiltrate the tumour) and 

immune infiltrated (TILs infiltrating the tumour epithelium), which can all be demonstrated with 

simple H&E (Fig 7.1.0). Further sub classifications of TMEs exist, such as separating immune 

Fig 7.0.0. Somatic mutation frequencies observed in exomes of 27 cancer types. Lung ADCs and 

lung SCCs (red arrows) have two of the highest rates of mutations. Modified from Lawrence et al. 

2013.⁵⁹²  
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infiltrated TMEs by the presence or absence of tertiary lymphoid structures.600 TMEs can also be 

classified as ‘immune hot’, usually defined as the presence of cytotoxic T-cells as the major 

infiltrating TIL, with ‘immune cold’ tumours described as either having a predominance of 

immunosuppressive Tregs or a lack of cytotoxic T-cells infiltrating the tumour.600, 601 However, these 

categories are not perfect, as they oversimplify a complex relationship, and in reality there are many 

overlaps and sub classifications that have yet to be elucidated,600, 602 and indeed many tumours have 

a mix of the patterns shown in Fig 7.0.1, with some tumours defying easy categorisation. (Fig 7.0.2). 

Given the different patterns of PD-L1 expression heterogeneity and the difficulty in classifying it, it 

seems reasonable to assume that the heterogeneity of multiple immune factors within the TME will 

also defy simplistic classification.  

7.0.3 T-cells within the TME 

Many immune cells are important within the TME, with fibroblasts, macrophages, MDSCs and others 

all playing roles in determining the nature of the immune response. However, PD-L1 expression as a 

means of immune escape is primarily involved with the interaction of T-cells and tumour cells, so a 

brief overview of the main T-cell types will be given here. The chief mature effector T-cells include 

cytotoxic, memory and helper T-cells. CD4+ve Th cells play a variety of roles, including the assistance 

of cytotoxic T-cells, whilst memory T-cells largely remain circulating in order to produce long term 

immunity to specific antigenic signals. CD8+ve cytotoxic T-cells have been associated with improved 

outcome in a variety of cancers, and the impact of these cells is determined by both their tumour 

infiltration and their differentiation.603, 604 Naïve CD8+ve T-cells infiltrate the TME and differentiate 

into effector T-cells. Cytotoxic T-cell differentiation is dependent on the tumour antigen-MHC 

formation, and influenced by cytokines and co-stimulatory factors from APCs, as well as other 

sources (such as metabolic, epigenetic, transcription factors and so forth). CD8+ve cytotoxic T-cells 

mostly act to produce cytokines such as IL-2, IL-12, Granzyme B and IFN-γ which promote cytotoxic 

functions via TNF-related apoptosis ligands, ROS and perforin pathways.605-607 Trafficking and 

localisation of CD8+ve T-cells is important, and requires the matching of chemokines secreted by 

both tumour and non-tumour cells within the TME with the receptors on the T cells.608, 609 For 

example CXCR3 on the surface of CD8+ve T-cells can bind to CXCL9, 10 and 11 which are highly 

secreted by many solid tumours, with corresponding low levels of these chemokines resulting in low 

levels of CD8+ve T-cells within the TME.609, 610 Vasculature also plays an important role in T-cell 

trafficking; aberrant vasculature and poor angiogenesis, a feature often seen in TMEs, has been 

shown to result in fewer CD8+ve T-cells infiltrating the tumour.611 
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Fig 7.0.1. Different TMEs by the pattern of TILs by H&E with corresponding PD-L1 expression 

(SP263) for each tissue section. A – Immune desert. B – Immune excluded. C – Immune 

infiltrated.  
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Once T-cells have been successfully trafficked, they need to be activated. This is a three step 

process: interaction between TCR and antigen-MHC complex, the delivery of co-regulatory signals, 

and stimulation from extracellular cytokines. Once activated they are differentiated into an early 

CD8+ve state, and then finally differentiated into terminal effector CD8+ve T-cells. The second stage 

of activation, delivery of co-regulatory signals, is the key step for PD-L1, as it acts as a co-inhibitory 

signal. PD-1, expressed on T-cells and upregulated in response to TCR activation, binds to PD-L1 

expressed on tumour cells and APCs, which downregulates effector cytokines produced by both Th 

and CD8+ve T-cells, and results in increased Treg function, as well as directly inhibiting the CD8+ve T-

cells.60, 600, 609 T-cells can become dysfunctional, and exhausted CD8+ve T-cells may express high 

levels of co-inhibitory receptors, including PD-1, (as well as others such as CTLA4, LAG3, TIM3) and 

lose their ability to produce immunostimulatory cytokines.225, 612 Various markers are lost at various 

stages, (e.g. IL-2 is lost at an early stage, TNF-α at a mid-stage with IFN-γ and Granzyme B lost at a 

late stage).609, 613 Thus, for example, decreasing levels of Granzyme B in the presence of high PD-1 

would imply exhausted cytotoxic T-cells.  

 

 

 

Fig 7.0.2. H&E of a squamous cell carcinoma of lung showing a difficult to classify TME. On the 

right is an island of tumour cells relatively free of TILs, but on the left tumour cells are admixed 

with TILs. The overall prevalence of an infiltrating pattern of TILs was dominant throughout this 

case, so was ultimately considered to be an immune infiltrating pattern of TME.  
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Tregs inhibit APCs, impair the interaction between APCs and T-cells, and supress the function of NK 

cells, and have a generally immunosuppressive pro-tumoural effect within the TME.614, 615 Tregs are 

typically produced from multiple sources including the migration from lymphoid or blood supply, the 

differentiation of naïve T-cells driven by APC suppression and conversion of effector T-cells into 

Tregs by TGF-β. FoxP3 is a marker of Tregs and Treg activity, and high levels of FoxP3 is associated 

with generally poorer outcomes for patients and higher risks of tumour recurrence in most solid 

tumours, although the converse is true for colorectal cancers specifically.616, 617 Interestingly, if FoxP3 

expression is limited to Tregs within the stroma, there is a similar outcome to tumours with low 

overall FoxP3 levels, suggesting that infiltration of FoxP3 Tregs is just as important as it is for 

cytotoxic T-cells.618  

A combination of these T-cell and immune markers may therefore determine the presence of 

cytotoxic T-cells, the probability of their being regulated by the PD-1/PD-L1 axis, and a measure of 

how exhausted/dysfunctional they may be, as well as a measure of immunosuppressive features 

within the TME more generally.  

7.0.4 Defining the TME 

In attempting to decide which markers are appropriate in ascertaining the immune features within 

the TME, I had to balance availability, cost, tissue use, specificity, sensitivity and simplicity to ensure 

a clear and precise outcome. To that end the following immune markers were chosen: CD3, CD8, PD-

1, FoxP3, Granzyme B, CD68 and PD-L1. CD3 is a general marker of mature T-cells (both resting and 

activated T lymphocytes), but does not stain for other immune cells such as B-cells, macrophages or 

myeloid cells.619 The presence of CD3 can thus be used to determine an overall level of TILs, both 

cytotoxic and Th and others, and the precise location of them can help ascertain which parts of the 

tumour are most heavily inflamed (e.g. epithelium vs non-epithelium). CD8 is a marker of cytotoxic 

T-cells (both naïve and fully differentiated, as well as weakly found in NK-cells) but not of T-helper 

cells.620 It is therefore well established as a marker of cytotoxic lymphocyte activity. FoxP3 is a 

marker of Treg cells and therefore a surrogate marker of an immunosuppressive TME.621 Granzyme B 

is a cytotoxic serum protease protein that participates in inducing apoptosis of target cells by 

cytotoxic T-cells and NK cells, and has been shown to be a marker of mature cytotoxic T-cell 

differentiation, activation and, inversely, exhaustion.620, 622 CD68 is expressed on a variety of cells but 

functions as a marker of macrophages, and is not expressed by epithelial tumour cells 

(carcinomas).620 CD68 is therefore used in this context to differentiate between tumour cells and 

macrophages, both of which can express PD-L1. Finally, PD-L1 and PD-1 must of course be looked 

for, as the chief components of the immune escape pathway regulated by the PD-1/PD-L1 axis. The 
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relationship of these markers in the context of each other is critical to understanding the role of PD-

L1 within the TME; in terms of the quantity of each cell type, the location of each cell type, and the 

spatial relationship of each cell type.  

7.0.5 Multiplex technologies 

PD-L1 expression by IHC and H&E can begin to group tumours into simple TMEs based on the 

pattern of TILs with possible clinical relevance (e.g. PD-L1 expression in a TME devoid of TILS is 

probably constitutive PD-L1 expression and likely won’t respond to IMs) but is problematic for a 

number of reasons: it can be hard to categorise tumours, especially when heterogeneity of the 

tumour may result in different TIL patterns, there may be insufficient tissue in a small biopsy to 

accurately assess the pattern of TILs, and specific samples, such as FNAs of LN metastases, are 

impossible to categorise by this approach, due to an inability to distinguish resident LN lymphocytes 

from tumour associated lymphocytes. In addition, the presence of TILs by H&E alone cannot tell the 

nature of the lymphocytes (if they are cytotoxic, Ths, Tregs and so forth) or the functional status of 

the lymphocytes (e.g. if they are exhausted or anergic). Using IHC to categorise the immune features 

of the lymphocytes is a simple and powerful tool, but with monoplex IHC, tumour heterogeneity can 

be such that when multiple sections for multiple markers are used, wholly different cell populations 

may be observed when several sections apart. An eloquent solution to this problem is the use of 

multiplex assays, which combine multiple markers of immune activity within a single slide, and are 

expressed as chromophores or fluorophores.339, 623 Not only does this save tissue and prevent cells 

being too far distant, this also allows for the specific nature of individual cells to be quantified in 

relationship to others; a single lymphocyte can be ascertained as being CD8+ve, and therefore 

cytotoxic, but can also be stained for PD-1, the combined presence of which would suggest a cell 

prone to inhibition by PD-L1, and therefore a TME likely to respond to PD-1/PD-L1 IMs. These 

technologies are unlikely to be integrated into the routine clinical setting of a pathology laboratory 

in the foreseeable future due to the expense, technical difficulty in achieving viable assay results and 

increased time associated with their use, but do provide an attractive research tool to further study 

the relationship of PD-L1 with immune cell markers.339, 623, 624 

The main aim of this chapter is to attempt to define TMEs based on the presence of immune 

markers, including PD-L1, within the TME in an attempt to elucidate associations with intra-tumoural 

and inter-tumoural PD-L1 expression heterogeneity, and to find prognostic data based on these 

categories. Other objectives include the assessment of different platforms, ranging from simple H&E 

to multiplex immuno-techniques, in both their ability to determine these classifications of TMEs, and 

their ease of use from the perspective of a routine clinical pathological assessment.  
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7.1 Methods 

7.1.0 Selection of cohort 

All patients from the LLP cohort were reviewed as per the main methods section to ensure suitable 

quantity and qualities of tissue, as well as to confirm a diagnosis of NSCLC. H&E sections prepared at 

the time of original pathological assessment, alongside the FFPE blocks, original reports and data 

from the LLP were used to collect pathological and clinical details for each case. A total of 92 

patients were selected for use in this project, all of which were previously used in the heterogeneity 

studies in Chapter 6. As a result each case already had H&E and PD-L1 IHC sections prepared, as well 

as a primary tumour PD-L1 TPS, a secondary (metastatic) tumour PD-L1 TPS, and a sub-cohort which 

were used in the ‘squares method’ that had data on intra-tumoural heterogeneity. Each patient was 

assigned an arbitrary case number so that all blocks and sections could be pseudo-anonymised. A 

summary of these cases are shown in Table 7.1.1. 
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1 ADC 171 4 0 0 W 1 0 W H H H H L L 

2 SCC 269 0 1 0 N 1 1 W L L L L L L 

3 SCC 73 2 100 0 S 90 100 S H H L L L L 

4 ADC 176 7 50 30 S 55 55 S L L L L H H 

5 ADC 175 14 25 20 W 11 8 W L L L L L L 

6 ADC 128 7 30 70 W 18 16 W H L H H L L 

7 ADC 97 7 0 1 W 0 0 W L L L L L L 

8 SCC 62 14 70 95 S 56 65 S H H H H H H 

9 ADC 57 2 0 0 N 1 0 N L H L L L L 

10 ADC 63 13 70 60 S 65 76 S H H H H L H 

11 SCC 105 16 0 0 N 11 1 N L L L L H H 

12 ADC 90 17 85 80 S 83 91 S H H H H L L 

13 ADC 307 0 0 0 N 0 0 N L L L L L H 

14 SCC 124 12 50 50 S 42 43 S L L L L L L 

15 ADC 114 5 0 1 W 0 0 N L L L L L L 

16 SCC 144 8 1 2 N 2 1 N L H L L H L 

17 ADC 93 15 1 0 W 4 2 W L L L L H L 

18 ADC 189 14 5 90 W 10 11 W H H H H H L 

19 SCC 80 10 0 0 N 2 0 N H H L H H H 

20 ADC 111 0 0 0 N 0 0 N L L L L H L 

21 ADC 177 0 0 0 N 0 0 N H L H H L H 

22 ADC 50 11 50 20 S 49 47 W H H H H H L 

23 ADC 106 7 0 95 W 0 0 W H H L H L L 
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24 ADC 298 0 0 0 N 0 0 N L L L L L L 

25 ADC 178 20 10 20 S 9 7 S L L L L L L 

26 SCC 69 3 80 100 S 34 35 S H H H H H H 

27 SCC 121 11 1 0 W 3 2 W L L L L L L 

28 ADC 330 0 0 0 N 0 0 N L L L L H H 

29 SCC 203 22 30 70 S 10 10 W L L L L H H 

30 SCC 106 5 1 0 W 4 2 W L L L L L L 

31 ADC 274 12 85 100 S 93 93 S H H H H H H 

32 SCC 108 8 50 0 S 37 43 S L L H L H L 

33 ADC 92 6 100 100 S 94 100 S H H H L H H 

34 ADC 306 0 15 5 W 7 7 W H H H L H H 

35 ADC 171 21 80 5 S 83 84 S H H H H H H 

36 SCC 68 15 10 1 W 14 3 S H H H H L H 

37 SCC 51 5 90 100 S 99 100 S H H H H H H 

38 SCC 216 0 50 80 S 39 39 S H H L H L H 

39 SCC 112 16 90 100 S 84 88 S H H H H H H 

40 SCC 126 13 0 0 N 2 0 N L L L L H L 

41 ADC 98 25 1 0 N 3 1 N H L L L L L 

42 ADC 47 5 60 90 W 56 62 W H L H L H L 

43 SCC 42 15 5 0 N 18 0 N L L L L L L 

44 SCC 209 19 90 70 S 89 90 S H H H H L H 

45 SCC 175 11 25 80 S 39 38 S H H H H L H 

46 ADC 192 14 0 0 W 0 0 W L L L H L L 

47 ADC 214 0 0 1 W 0 0 N L L L L L L 

48 ADC 203 14 90 100 S 94 94 S H H H H H H 

49 SCC 131 17 95 60 S 82 83 S H H H L L H 

50 ADC 50 10 5 0 W 10 6 W L H L L H L 

51 ADC 250 0 0 0 N 2 2 N H L H H H H 

52 ADC 236 11 0 0 N 0 0 N L L L L H L 

53 ADC 179 6 40 10 S 21 20 S H L H H L H 

54 ADC 166 16 95 80 S 96 96 S H H H H H L 

55 ADC 310 10 0 0 N 0 0 N L L L L L L 

56 SCC 59 16 1 5 W 13 2 W H H H H H H 

57 ADC 240 20 40 30 W 35 36 W H H H H L H 

58 ADC 121 4 0 1 W 0 0 W H H H H H L 

59 SCC 73 27 80 60 W 88 89 W L H L H L L 

60 SCC 130 18 0 0 N 0 0 N L L L L H L 

61 ADC 163 12 10 45 S 12 11 W L L L L L H 

62 ADC 147 16 90 60 S 78 81 S H H H H H H 

63 SCC 71 23 5 15 W 6 6 W H L H H H H 

64 ADC 265 0 0 0 N 0 0 N L L L L L L 

65 ADC 110 13 0 0 N 0 0 W L H H H L L 

66 ADC 161 11 0 0 N 0 0 N L H H H H L 

67 SCC 130 7 85 95 S 77 78 W H H L H H H 

68 ADC 312 20 1 0 N 2 2 N L L L L L L 

69 ADC 344 0 0 1 N 0 0 N L L L L L H 

70 ADC 149 13 0 0 N 0 0 N L L L L L L 

71 SCC 37 14 1 5 N 1 0 N H H H H H L 

72 ADC 148 15 1 1 N 4 0 N H H H L H L 

73 SCC 186 21 95 95 S 95 95 S H H H H H H 
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74 ADC 120 12 90 40 S 79 78 S H L H H H H 

75 ADC 293 8 80 90 S 87 87 S L L L H L H 

76 SCC 209 23 0 0 W 2 1 N H H H H H H 

77 ADC 11 8 100 100 S 100 100 S H H H H H H 

78 ADC 346 5 90 100 S 99 99 S L L L L L H 

79 ADC 91 31 0 0 N 3 2 N L H H L L H 

80 SCC 61 18 60 60 S 76 77 S H H H H H L 

81 SCC 132 18 0 1 N 0 0 N L L H H H H 

82 ADC 122 9 100 100 S 98 100 S H H H H H H 

83 SCC 132 13 0 1 N 1 0 N L H L L H L 

84 ADC 200 18 10 30 W 3 3 W L L L L L H 

85 ADC 110 15 35 70 W 34 34 S H H H H L L 

86 SCC 199 13 30 50 W 7 7 W L L L L L H 

87 ADC 170 2 2 1 W 2 2 W L L L L L L 

88 ADC 148 28 1 20 W 7 6 W L L L L H H 

89 ADC 288 0 0 0 N 0 0 N L L H H L H 

90 SCC 130 15 30 1 W 16 13 W L H L L H H 

91 SCC 198 24 80 100 S 75 75 S H H H H H H 

92 ADC 208 0 20 90 W 12 12 W H L H H L L 

 

 

 

 

7.1.1 TME categorisation by H&E 

H&E and monoplex PD-L1 sections were scanned via Aperio CS2 Scanscope slide scanner at 20x and 

viewed via Aperio ImageScope or the open source QuPath (v0.1.2) software package. A whole 

section slide of H&E for each case was reviewed to give a subjective interpretation of the immune 

activity in regards to TILs. Each case had the predominant TIL expression pattern recorded as either 

immune infiltrated, immune excluded, or an immune desert. This was based on the presence of 

significant quantities of TILs within the tumour epithelium (infiltrated), significant quantities of TILS 

present in either the stroma of the tumour and/or around the invading margin of the tumour 

(excluded) or featured no significant TIL presence (immune desert). Examples are shown in Fig 7.0.1.  

7.1.2 Multiplex immunohistochemistry 

All 92 cases were prepared for multiplex IHC by having a block of primary tumour cut to produce five 

serial sections, each of 4µm thickness, placed on a separate glass slides as detailed in the main 

methods section. A total of 460 tissue sections were thus prepared for this study. After tissue was 

warmed overnight in a 60°C oven, sections were stored in a 4°C fridge for no longer than two days 

before being prepared for further work. One section from each case were stored locally as a 

Table 7.1.0. 92 cases of NSCLC assessed by multiplex IHC with immune markers as high (H) or low 

(L) by median. PD-L1 expression by manual interpretation, algorithm assessment of monoplex 

IHC and assessment of triplex IHC are also shown as TPS or Negative (N) weak (W) or strong (S) 

expressers.  
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precautionary backup of tissue, with four sections from each case shipped to Mosaic Laboratories 

under cool and dry conditions. (Mosaic Laboratories LLC, 12 Spectrum Pointe Drive, Lake Forest, CA 

92630, USA). Mosaic Laboratories provide a range of analytical services including a range of 

multiplex IHC protocols and have been cited in a large number of publications, including multiple 

Phase III clinical trials.625 Sections sent to Mosaic had the following stains performed: 

• Slide 1 – Triplex IHC for PD-L1-CD68-CD3 

• Slide 2 – Triplex IHC for FoxP3-PD-1-CD8 

• Slide 3 – Monoplex IHC for Granzyme B;  

• Slide 4 – H&E.  

In so doing each case would have a total of 8 markers of the TME produced. Finally, PD-L1 is studied 

by both SP263 (monoplex) and SP142 (triplex). Example shown in Fig 7.1.0. Slides were then scanned 

by Mosaic to produce digital images for each section, and the images sent to Definiens (Definiens 

AG, Bernhard-Wicki-Straße 5, 80636, München, Germany). In addition, PD-L1 (SP263) already 

performed in this study were scanned and sent to Definiens directly. Definiens were a company 

specialising in digital image analysis and machine learning to improve analysis of digitally acquired 

images (they were fully taken over by AstraZeneca during this project in 2019). Definiens’ approach 

was to segment and annotate regions of the tumour into distinct areas by a mixture of morphology 

and IHC to generate the following for each case: the ‘tumour core’ (TC), which was further divided 

into ‘tumour epithelium’ (TE) and ‘tumour non-epithelium’ (NE), to divide the tumours into regions 

of carcinoma tumour cells and stroma. In addition, the ‘invasive margin’ (IM) was also determined. 

Image analysis of the sections was then performed to provide measures of each component in mm². 

Finally, the total number of cells in each component positive for immune markers was provided in 

cells/mm² to provide a total of 33 metrics. These are shown in Table 7.1.1.  
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Fig 7.1.0 Low power view of NSCLC tumour with panel of stains performed for multiplex IHC.            
A – H&E; B –PD-L1 IHC (SP263); C – Triplex PD-L1, CD68, CD3; D – Triplex FoxP3, PD1, CD8; E – 
Granzyme B; F – Annotated regions of TC (RED) and IM (Yellow).  
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Area (mm²) IHC markers (cells/mm²) 

Triplex 1 Triplex 2 Gran B PD-L1 PD-1 CD3 CD8 FoxP3 CD68 Gran B 

TC TC TC TE TC TC TC TC TC TC 

TE TE IM  TE TE TE TE TE IM 

NE NE   NE NE NE NE NE  

IM IM   IM IM IM IM IM  

 

 

Scanned images were accessible via an online portal (Definiens Insights Portal), as well as a report 

detailing the above metrics for each case. The glass slides were also shipped back to Liverpool where 

I could review each slide manually as required.  

7.1.3 Multiplex Immunofluorescence (mIF) 

20 cases were prepared for mIF by having a block of primary tumour cut to produce two serial 

sections, each of 4µm thickness, placed on a separate glass slides as detailed in the main methods 

section. A total of 40 tissue sections were prepared, which were dried overnight in a 60°C oven, and 

then stored in a 4°C fridge for no longer than two days before being prepared for further work. Both 

sections were shipped to Ultivue under cool and dry conditions, (Ultivue Inc, 763D Concord Avenue, 

Cambridge, MA, 02138 USA) whom provide a variety of multiplex immuno based techniques. One 

section for each case was stained with multiplex DAPI-CD8-CD68-PDL1-Pan-CK to provide a measure 

of PD-L1 expression and immune activity. DAPI (4’,6-diamidino-2-phenylindole) is a DNA stain that 

fluoresces blue and binds to regions of A-T base pair dsDNA, and thus acts as a marker of all cells 

with nuclei. Cell types are differentiated through the use of CD8 (a cytotoxic T-cell marker) CD68 (a 

macrophage marker) and a pan-CK which will stain both normal and tumour epithelium, with PD-L1 

expression also detected. Example shown in Fig 7.1.1. Slides were then scanned by Ultivue to 

produce digital images for each section, and the images sent to Definiens. Definiens again applied 

their image analysis approach to divide each marker into areas of the TC, TE, NE and IM, and in 

addition to raw values of cell densities per mm², also provided a percentage value of all PD-L1 

positive cells, and percentage value of PD-L1 positive and CD68 positive cells to provide 21 metrics 

for each case. These are shown in Table 7.1.2.  

 

Table 7.1.1. The 33 metrics provided by the multiplex IHC images and subsequent image 

analysis. 

IHC, immunohistochemistry; TC, tumour core; TE, tumour epithelium; NE, non-epithelial tumour 

component; IM invasive margin.  
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 IF markers (cells/mm²) 

Area (mm²) PD-L1 CD8 CD68 PD-L1 % PD-L1/CD68 
% 

TC TC TC TC TC TC 

TE TE TE TE  TE 

NE NE NE NE  NE 

IM IM IM IM IM IM 

 

 

 

Fig 7.1.1. mIF example A - mIF showing DAPI (blue), pan-CK (orange) PD-L1 (yellow), CD8 (green) 

and CD68 (turquoise). B – Higher power view of PD-L1 positive cluster of cells with all IF. C – PD-

L1 positive cluster of cells with CD8 and DAPI channel removed. D – PD-L1 positive cluster of cells 

with only CD68 and pan-CK channels observable. The identification of the cells as pan-CK positive 

is now easily achievable.  

Table 7.1.2. The 21 metrics provided by the mIF images and subsequent image analysis. 

IF, immunofluorescence; TC, tumour core; TE, tumour epithelium; NE, non-epithelial tumour 

component; IM invasive margin.  



223 
 

7.1.4 Validation of image analysis and multiplex IHC approach 

As far as possible the same cases and blocks have been used for this project as with previous 

projects using the LLP cohort. This gives the advantage that many of the cases will already be well 

characterised for PD-L1 expression. Although Definiens provided explanations of the image analysis 

and cell density findings within this cohort, and I had access to the images after the event, much of 

the deep learning and algorithms used to provide the cell densities for markers were something of a 

‘black-box’ approach. In an attempt to validate the accuracy of the image analysis approach, the 

monoplex IHC for PD-L1 using the SP263 clone was also sent to Definiens for their interpretation 

using their image analysis. Two PD-L1 TPS sets of data were provided from Definiens: a whole 

section PD-L1 TPS, and a tumour only (‘tumour core’) PD-L1 TPS. These could then be compared to 

the true TPS taken as the whole section manual interpretation scored as per Chapter 4. In addition, 

whilst the advantages of multiplex IHC make it an attractive tool, difficulties surrounding the 

interpretation of multiple chromophores within a single section render them difficult to allow for 

manual interpretation of any specific marker. Example shown in Fig 7.1.2. As a measure of validity of 

the multiplex approach, the triplex scored PD-L1 cases were also used to generate cell densities of 

PD-L1 positive, CD68 negative and CD3 negative populations (CD68 excluding macrophages and CD3 

excluding TILs, both of which can express PD-L1 (Fig 7.1.3) and therefore increase false positive TPS 

rates) which could be compared to PD-L1 TPS from the monoplex sections both as raw data (cell 

densities/mm²) and by converting the raw data to TPSs by using TC area values. (See statistics 

section). 

 

 

Fig 7.1.2. Multiplex IHC with 3 immune cell markers: Haematoxylin nuclear stain in blue, CD8 in 
red, FoxP3 in aquamarine and PD-1 in orange. The nature of cells that are positive for multiple 
markers is hard to discern by eye.  
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Fig 7.1.3. Tumour cells and macrophages positive for PD-L1 A - H&E of tumour cells and 
macrophages at IM. B - PD-L1 IHC (SP263) is positive for both tumour cells and macrophages. C – 
Multiplex IHC shows PD-L1 (brown) for both cell populations, with CD68 staining (red) limited to 
macrophages.   
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7.1.5 Association of TME features with PD-L1 expression heterogeneity 

Intra-tumoural heterogeneity was defined by the COV within a 1cm² area of primary tumour of PD-

L1 expression as per Chapter 4, with higher COV indicating more intra-tumoural heterogeneity. 

Inter-tumoural heterogeneity was determined by a comparison of primary PD-L1 TPS and metastatic 

tissue PD-L1 TPS as per Chapter 4, and recorded both as absolute TPS value differences, and as a 

change in clinical categorisation using PD-L1 negative, weak or strong positive categories (<1%, 1-

49% ≥50% TPS). Associations with clinical and pathological features including TME data from the 

multiplexed tissue analysis was determined in relation to both types of PD-L1 heterogeneity by 

linear regression for each variable. In addition, multivariate linear regression using all variables was 

performed for both types of heterogeneity, with a backwards step linear regression model applied to 

determine all significant factors associated with a change in heterogeneity. A final model was thus 

determined that describes the significant features associated with both intra- and inter-tumoural 

PD-L1 expression heterogeneity.  

7.1.6 Classification of TMEs  

Classification of TMEs was performed by use of the immune cell markers (split into high and low 

expressers as per median value for each metric in Table 7.1.0) and PD-L1 expression by several 

methods.  First, the patterns of TILs within the TME were examined to classify patients into immune 

infiltrated, excluded or desert, based on the properties from the multiplex stains. Secondly, tumours 

were classified by the type of immune activity present within the TME as cytotoxic, immuno-

suppressive, mixed-immune (elements of both) or Thelper (Non-Treg) predominant. Thirdly, 

tumours were classified by their PD-L1 expression (reactive versus constitutive).  Finally, the various 

marker data and classifications devised were combined to devise an approach that classifies tumours 

into groups based on the likelihood of response to PD-1/PD-L1 IM therapy. These classification tools 

are shown in Fig 7.1.4-7.1.7. For the final classification, PD-L1 expression is split into clinical 

categories of negative, weak and strong positive (<1%, 1-49%, ≥50% TPS). As this represents a 

categorical division of an essentially continuous variable, weak expressers could potentially follow 

either route. In a bid to average out the difference, tumours with weak PD-L1 expression and high 

CD8+ve TE are considered to be partial responders to treatment. (Fig 7.1.7) 

 

 

 

  



226 
 

 

 

Fig 7.1.4. Flow chart detailing approach to dividing NSCLC carcinomas into different types of 

immune TME based on expression and distribution of TIL types within the TME.  Excluded (1) is 

stromal, Excluded (2) is IM 
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Fig 7.1.5 Flow chart detailing approach to dividing NSCLC carcinomas into different types of 

immune TME based on expression and distribution of TIL types within the TME, with a further 

division using Granzyme B.  
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Fig 7.1.6. Flow chart detailing approach to dividing NSCLC carcinomas by types of PD-L1 

expression and potential cause for lack of PD-L1 expression based on expression and distribution 

of TIL types within the TME 
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Fig 7.1.7. Flow chart detailing approach to dividing NSCLC carcinomas into predicted response to 

PD-1/PD-L1 IMs based on PD-L1 expression and  the expression and distribution of TIL types 

within the TME.  
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7.1.7 Validation of Multiplex immunofluorescence  

mIF provides an additional metric to study the validity of multiplex immune approaches for analysing 

the TME. A PD-L1 TPS generated from the mIF was compared to the manual TPS for all 20 cases. 

Digital image analysis by Definiens included a simulated rendering of PD-L1 IHC monoplex based on 

the mIF data, which could be compared to the actual PD-L1 IHC stains for qualitative assessment, 

example shown in Fig 7.1.8. In addition, 11 of the cases underwent both multiplex IHC and mIF, 

although fewer markers were used for mIF; (FoxP3, CD3 and Granzyme B are absent). The markers 

explored in both assays (CD8, PD-L1 and CD68) were compared for densities within the TC (all 3 

markers) and TE (CD8 and PD-L1)  

 

 

Fig 7.1.8. Matched images for multiplex IHC and miF. A1-3 IHC stain for PD-L1 (SP263). B1-3 mIF 

showing DAPI (blue), pan-CK (orange) PD-L1 (yellow), CD8 (green) and CD68 (turquoise). C1-C3 – 

Pseudo-IHC for PD-L1 from the mIF images. The quality and shade of PD-L1 expression is 

different, but generally in agreement.  
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7.1.8 Statistics 

Comparison between image analysis for monoplex IHC TPS, triplex IHC TPS and mIF compared to 

manual TPS was performed using ICC for raw TPSs and Cohen’s kappa for TPS scores divided into 

clinical categories of negative, weak and strong positive (<1%, 1-49%, ≥50% TPS). Multiplex IHC and 

mIF data for PD-L1 was taken as a cell density of PD-L1 positive, CD68/CD3 negative cells per mm² 

area. This was compared to manual TPS scores by two methods: firstly, raw cell densities were 

divided into clinical categories using the 33rd and 66th percentile, secondly cell densities were 

converted to a surrogate TPS using the uppermost triplex score within this cohort to define 

maximum TPS (IE 100%) after outliers were excluded using the inter-quartile method. TPS could then 

be compared using ICC and in both instances clinical categories compared using Cohen’s Kappa. 

Classification of immune markers from multiplex data was performed used the median value to 

define cases as ‘high’ or ‘low’ for each variable. Spearman’s correlation and univariate linear 

regression was performed to ascertain the relationship between variables. Univariate linear 

regression was performed in SPSS for each individual independent factor, with subsequent 

multivariate linear regression using a backwards elimination process to determine significant factors 

for the dependent variable (PD-L1 expression intra and inter-tumoural heterogeneity). R² values, β 

co-efficient values and p values are acquired from this method. Fitted models were compared using 

SPSS generalised linear models with all included variables used as main effects within the model to 

generate a Log Likelihood and Akaike’s information Criterion (AIC) as additional measures of the 

‘goodness of fit’ of the model, with changes of ≥4 in AIC taken as important. Prognostic data is 

calculated using Kaplan-Meier log-rank testing for predicting survival. All significances are taken as 

p<0.05.  

7.2 Results 

7.2.0 Multiplex IHC Data 

All 92 cases were successfully stained for all triplex and monoplex IHC to give 33 metrics as defined 

in the methods section above. Raw data tables for each case and variable is shown in Appendix 1. 78 

cases (85%) had a measurable IM, with the remaining 14 cases therefore unable to have any of the 

immune markers measured in the IM. All other data was complete for all cases. 

 7.2.1 Comparison of image analysis PD-L1 TPS and manual TPS 

All 92 cases had a manual PD-L1 (SP263) TPS compared to the image analysis TPS score of matched 

tissue for both the whole section (WS) and within the tumour core (TC) only. There was no 

significant difference in average TPS between the scoring methods (Manual 31 vs WS 30 vs TC 30 
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p=0.252) with a high ICC for both WS and TC compared to manual scoring. Compared to manual TPS 

scores, WS misclassified 16 cases (17%) and TC misclassified 11 cases (12%) with overall OPA, PPV 

and NPAs generally improved for TC than for WS scoring. Data is summarised in Table 7.2.0. 

 

 OPA PPV NPV ICC Significance Kappa Significance 

WS 83 89 85 0.986 p<0.0001 0.888 p<0.0001 

TC 88 87 90 0.988 p<0.0001 0.909 p<0.0001 

 

 

Triplex IHC PD-L1/CD68/CD3 sections were analysed to give a cell density/mm² of PD-L1 (SP142) 

positive-CD68/CD3 negative cells that were used as a surrogate marker of a PD-L1 TPS. These were 

compared to manual PD-L1 (SP263) TPSs. Raw data for cell densities/mm² ranged from 0-5100, with 

a strong relationship to manual TPS scores (Correl. 0.888 (p<0.001) R² 0.722 (p<0.001)). 

Categorisation of triplex raw data in clinical categories using 33rd and 66th percentiles showed a 

reasonably good OPA of 79% (Kappa 0.69, p<0.0001). Converting the triplex data to TPS values 

showed a good consistency between triplex and manual scoring (ICC 0.801 (p<0.0001)) with no 

significant difference in average TPS (31 vs 27 p=0.646).  However, triplex PD-L1 TPS underscored 

PD-L1 in several cases, relative to monoplex scoring; an example is shown in Fig 7.2.0. Grouping into 

clinical categories was generally more accurate when using raw triplex data than for converted TPSs. 

Results summarised in Table 7.2.1  

 

 OPA PPV NPV ICC Significance Kappa Significance 

Tri 79 89 90 n/a n/a 0.69 p<0.0001 

Tri TPS 68 89 79 0.801 p<0.0001 0.572 p<0.0001 

 

 

Table 7.2.0. Correlations and predictive values of image analysis of IHC for assessing PD-L1 

expression compared to manual scoring of PD-L1 IHC (SP263).  

Table 7.2.1. Correlations and predictive values of image analysis of multiplex IHC for assessing 

PD-L1 expression using Triplex cell densities (Tri) and Triplex converted to percentage (Tri TPS) 

compared to manual scoring of monoplex PD-L1 IHC (SP263).  
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7.2.3 Associations of immune markers with PD-L1 expression heterogeneity using multivariate 

analysis modelling 

Four immune variables within the TME were associated with significant but generally modest 

changes in PD-L1 expression inter-tumoural heterogeneity by univariate linear regression: increasing 

CD8 and CD3 were both associated with increasing inter-tumoural heterogeneity (CD8: correl. 0.336 

p=0.001, R²=0.102, p=0.002; CD3 correl. 0.293 p=0.022, R²=0.062 p=0.016) as was categorical 

placement into an infiltrating pattern of TILs by TME (R² 0.058, p=0.021) and the ratio of CD8TE:NE 

(a measure of infiltrating TILs) (correl. 0.384 p<0.0001, R² 0.058 p=0.021) Being female was also 

associated with increased inter-tumoural heterogeneity (R2 0.041, p=0.041). Increasing PD-1 and 

CD68 levels both trended towards decreasing inter-tumoural heterogeneity (R² 0.026 p=0.122 and R² 

0.035 p=0.074 respectively). A multivariate analysis model using all variables (Appendix 2) and inter-

tumoural heterogeneity of PD-L1 expression was then performed to confirm associations and control 

for confounding factors, which provided a baseline AIC of 848 and LLP of -394. Linear regression with 

backwards elimination for least significant variables resulted in a 20 step process resulting in four 

significant variables remaining: CD8 and CD3, which were both associated with significantly 

increased inter-tumoural variation (b 0.027 p=0.001; b 0.012 p=0.024) and PD-1 and CD68 which 

were both associated with significantly decreased inter-tumoural variation (b -0.065 p=0.003; b -.031 

p=0.02). Gender and measures of infiltration did not retain their significance in multivariate analysis. 

Fig 7.2.0. Matched sections of NSCLC tumour stained for PD-L1 by monoplex and triplex assays. A 

– Monoplex PD-L1 (SP263) shows majority of tumour cells are staining positive for PD-L1 B – 

Triplex PD-L1 (SP142) shows few tumour cells staining for PD-L1.  
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Use of the four significant variables in multivariate analysis resulted in an improved fit of the model: 

AIC 818 and LL -403 (an AIC decrease of 30).  

This process was then repeated to ascertain the association of each variable with PD-L1 expression 

intra-tumoural heterogeneity. By univariate linear regression five variables were significantly 

associated with a modest decrease in intra-tumoural heterogeneity: increasing CD8, CD3, FoxP3 and 

CD68 levels (CD8 correl. -0.451 p=0.003, R²=0.137, p=0.017; CD3 correl. -0.519 p=0.001, R²=0.215 

p=0.002; FoxP3 correl. -0.411 p =0.008, R² 0.108 p=0.036, CD68 correl. -0.477 p=0.003, R² 0.180 

p=0.006), and an increased ratio of CD8TE:NE (correl. -0.391 p=0.011, R² 0.122 p=0.014). Increasing 

Granzyme B levels significantly correlated with decreasing intra-tumoural heterogeneity (correl. -

0.331 p=0.034) but not as an independent variable in linear regression (R² 0.078 p=0.077). 

Multivariate analysis was then performed to look for associations with PD-L1 expression intra-

tumoural heterogeneity and provided a baseline AIC of 450 and LL of -195. Linear regression with 

backwards elimination for least significant variables resulted in a 12 step process resulting in a single 

remaining significant variable: CD8 expression, which was associated with a significant decrease in 

intra-tumoural heterogeneity (b -0.84 p=0.023). Use of a single variable, however, did not improve 

the goodness of fit of the model (AIC 487, LLP-241).  

7.2.4 Categorisation of TILs by H&E 

The 92 selected cases were reviewed for the predominant pattern of TILs within a whole tumour 

section H&E slide and categorised as infiltrated, excluded or immune desert. The PD-L1 TPS for each 

category was also recorded. Immune desert TIL TMEs had a significantly lower average PD-L1 TPS 

than both infiltrated (6 vs 36 p<0.012) and excluded (6 vs 38 p<0.007). Results are summarised in 

Table 7.2.2.  

TME Cases PD-L1 Desert (%) Excluded (%) Infiltrated (%) 

Desert 17 Negative 9 (53) 9 (36) 14 (28) 

Excluded 25 Weak 7 (41) 5 (20) 15 (30) 

Infiltrated 50 Strong 1 (6) 11 (44) 21 (42) 

 

Immune desert TMEs had significantly less inter-tumoural PD-L1 expression heterogeneity compared 

to excluded (3 vs 14 p=0.025) and infiltrated TMEs (3 vs 17 p=0.002) although this did not translate 

to a significant change in cases placed into different clinical group categories. Immune desert TMEs 

had significantly less CD3, CD8, FoxP3, PD-1 and Granzyme B than both infiltrated (CD3 665 vs 1398 

Table 7.2.2. PD-L1 expression in 92 NSCLCs divided into clinical categories for different immune 

TMEs by H&E.  
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p<0.001, CD8 265 vs 651 p<0.001, FoxP3 107 vs 239 p=0.001, PD-1 56 vs 144 p<0.0001, Granzyme B 

0.01 vs 0.11 p=0.001) and excluded TMEs (CD3 665 vs 1385 p=0.001, CD8 265 vs 549 p=0.001, FoxP3 

107 vs 179 p=0.024, PD-1 56 vs 174 p<0.001, Granzyme B 0.01 vs 0.06 p=0.032), and significantly less 

CD68 than infiltrated TMEs (223 vs 424 p=0.007). Results summarised in Table 7.2.3.  

 Desert Excluded Infiltrated Sig  

COV (Intra) 122 109 86 N (p=0.576) 

TPS change (Inter) 3 14* 17* Y (p=0.05) 

Group change 7 10 13 N (p=0.336) 

CD3 665 1385* 1398* Y (p<0.0001) 

CD8 265 549* 651* Y (p<0.0001) 

FoxP3 107 179* 231* Y (p=0.002) 

PD-1 56 174* 144* Y (p<0.0001) 

CD68 223 315* 424* Y (p=0.008) 

Granzyme B 0.01 0.06* 0.11* Y (p=0.001) 

TME categories were also compared for prognostic information by KM survival analysis, with a non-

significant trend in worse predicted outcome for immune desert vs excluded and infiltrated TMEs 

(43 vs 54 vs 59 months OS, χ² value 1.677, p=0.432).  

7.2.5 Classification of TMEs by multiplex IHC TIL data 

All 92 cases were classified into TIL status as per Fig 7.1.4. Cases were thus divided into immune 

infiltrating, excluded 1 (stromal), excluded 2 (invasive margin) or immune desert. The PD-L1 TPS for 

each category was also recorded. There was an overall 81% concordance rate for categorisation of 

TIL expression by multiplex IHC with categorisation by H&E assessment. Infiltrated TIL TMEs had a 

significantly higher PD-L1 TPS than both immune desert (53 vs 9 p<0.0001) and excluded (53 vs 10 

p<0.0001). These results are summarised in Table 7.2.4.  

TME Cases H&E PD-L1 Desert (%) Exclude 1 
(%) 

Exclude 2 
(%) 

Infiltrated (%) 

Desert 25 17 Negative 13 (52) 11 (55) 2 (40) 6 (13) 

Exclude 1 15 25* Weak 10 (40) 7 (35) 3 (60) 14 (30) 

Exclude 2 5  Strong 2 (8) 2 (10) 0 (0) 27 (57) 

Infiltrated 47 50      

 

Table 7.2.3. Comparison of different immune TMEs (desert, excluded and immune) by H&E for 

PD-L1 expression in 92 NSCLCs for intra-tumoural and inter-tumoural heterogeneity and immune 

cell markers. * denotes significantly higher value.  

Table 7.2.4. PD-L1 expression in 92 NSCLCs divided into clinical categories for different immune 
TMEs by multiplex IHC. * = includes both types of excluded 
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A significant increase in intra-tumoural PD-L1 expression heterogeneity is seen between excluded 

and infiltrated TMEs (209 vs 73 p=0.023) and a non-significant trend of increased intra-tumoural 

heterogeneity between desert and infiltrated TMEs (152 vs 73 p=0.056). There is a significant 

increase in inter-tumoural PD-L1 expression heterogeneity between infiltrated and excluded TMEs 

(22 vs 7 p<0.0001) and infiltrated and immune desert TMEs (22 vs 5 p<0.0001), although this did not 

translate to more cases changing clinical categories.  Immune desert TMEs had less PD-1 than both 

infiltrated (63 vs 180 p<0.001) and excluded TMEs (63 vs 123 p=0.08) and less CD68 than infiltrated 

TMEs (232 vs 311 p=0.002). Infiltrated TMEs had significantly more Granzyme B than both excluded 

(0.14 vs 0.03 p=0.002) and immune desert TMEs (0.14 vs 0.01 p<0.001) and significantly more FoxP3 

that immune desert TMEs (251 vs 105 p<0.001) and trended towards higher levels than excluded 

TMEs (251 vs 171 p=0.067. These results are summarised in Table 7.2.5 

 Desert Excluded** Infiltrated Sig  

COV (Intra) 152 209 73 Y (p=0.005) 

TPS Change (Inter) 5 7 22* Y (p<0.0001) 

Group change 6 14 10 N (p=0.586) 

FoxP3 105 171 251* Y (p<0.0001) 

PD-1 63 123* 180* Y (p<0.0001) 

CD68 232 311 444* Y (p=0.003) 

Granzyme B 0.01 0.03 0.14* Y (p<0.0001) 

 

 

TME categories were also compared for prognostic information by KM survival analysis: Infiltrated 

TIL TMEs trended non-significantly towards longer predicted OS vs excluded and desert (57 vs 37 vs 

35 months, χ² value 3.743, p=0.154).  

7.2.6 Classification of TME immune status by multiplex IHC immune markers 

All 92 cases were classified into TME immune status as per Fig 7.1.5. The PD-L1 TPS for each category 

was also recorded. Mixed immune status had a significantly higher average TPS than immune desert 

(54 vs 7 p<0.0001) and immuno-suppressive TMEs (54 vs 4 p=0.012). Cytotoxic TMEs trended 

towards a higher average TPS vs immuno-suppressive (32 vs 4 p=0.072). Results summarised in Table 

7.2.6.   

 

Table 7.2.5. Comparison of different immune TMEs (desert, excluded, infiltrated) by multiplex 

IHC  in 92 NSCLCs for intra-tumoural and inter-tumoural PD-L1 expression heterogeneity and 

immune cell markers.     *denotes significantly higher value. ** = includes both types of 

excluded.  
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TME Cases PD-L1: Negative (%) Weak (%) Strong (%) 

Desert 19 11 (58) 7 (37) 1 (5) 

Mixed 39 6 (15) 10 (26) 23 (59) 

Cytotoxic 18 5 (28) 6 (33) 7 (39) 

Immuno-suppressive 10 2 (20) 8 (80) 0 

Thelper 3 2 (67) 1 (33) 0 

 

There was no significant difference in intra-tumoural PD-L1 expression heterogeneity between TME 

types, although immune desert and immuno-suppressed TMEs trended non-significantly towards 

more intra-tumoural heterogeneity compared to mixed immune TMEs (158 vs 85 p=0.062, 140 vs 85 

p=0.068 respectively). There was a significant increase in inter-tumoural PD-L1 expression 

heterogeneity of mixed immune TMEs compared to immune deserts (54 vs 7 p=0.006) and Th only 

TMEs (54 vs 0 p=0.043) and trended towards more inter-tumoural heterogeneity compared to 

immuno-suppressive TMEs (54 vs 4 p=0.086). Cytotoxic TMEs also had a significant increase in inter-

tumoural PD-L1 expression heterogeneity versus immune desert TMEs (32 vs 7 p=0.014) and Th only 

TMEs (32 vs 0 p=0.045) and trended towards higher inter-tumoural heterogeneity vs immuno-

suppressive TME (32 vs 4 p=0.101). 

Immune deserts had significantly fewer PD-1 positive cells than immuno-stimulatory (45 vs 108 

p=0.037) and mixed immune TMEs (45 vs 207 p<0.001), and mixed immune TMEs had significantly 

more PD-1 positive cells than cytotoxic TMEs (207 vs 108 p=0.036). Mixed immune TMEs had 

significantly more CD68 positive cells than immune desert (490 vs 218 p<0.0001) and cytotoxic TMEs 

(490 vs 273 p=0.012). Mixed immune TMEs has significantly more Granzyme B (0.15 vs 0.01 p=0.001) 

than immune desert and immuno-suppressive TMEs (0.15 vs 0.03 p=0.021). Sub-group analysis of 

cytotoxic TMEs divided by the presence of high vs low Granzyme B found no significant difference in 

intra-tumoural heterogeneity (COV 97 vs 108 p=0.748) or inter-tumoural heterogeneity (TPS change 

15 vs 25 p=0.408). Results summarised in Table 7.2.7. 

 

 

 

 

Table 7.2.6. PD-L1 expression in 92 NSCLCs divided into different TMEs based on immune marker 
expression and distribution by multiplex IHC.  
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 Desert Mixed Cytotoxic Immuno-
suppressive 

Thelper Sig Difference 

COV (Intra) 158 85 104 140 n/a N (p=0.08) 

TPS change (Inter) 7 20* 20* 4 0 Y (p=0.011) 

Group Change 7 8 8 5 1 N (p=0.253) 

PD-1 45 207* 108* 99 79 Y (p<0.0001) 

CD68 218 490* 273 278 307 Y (p<0.0001) 

Granzyme B 0.01 0.15* 0.03 0.03 0.02 Y (p<0.0001) 

 

 

Mixed immune and cytotoxic TMEs trended towards longer predicted OS than immune deserts, 

immuno-suppressive and Thelper only TMEs (62 vs 52 vs 37 vs 34 vs 22 months OS respectively, χ² 

value 6.303, p=0.178). Sub-group analysis of cytotoxic TMEs divided by the presence of high versus 

low Granzyme B found a significant difference in predicted OS in favour of low Granzyme B (79 vs 26 

months, p=0.009). Analysis of the entire cohort comparing CD8+ve TE high, Granzyme B low TMEs 

versus all other cases showed an improved predicted OS in favour of the former, (77 vs 42 months 

p=0.006), but this significance is lost by further stratifying the groups for high PD-1 expression (73 vs 

45 months p=0.081).  

7.2.7 Classification of PD-L1 expression by multiplex IHC 

All 92 cases were classified into PD-L1 expression groups as per Fig 7.1.6 and shown in Table 7.2.8. 

There was no significant intra-tumoural heterogeneity difference between reactive and constitutive 

expression or between PD-L1 negative categories, although intra-tumoural heterogeneity was 

significantly greater for reactive PD-L1 expression versus immunosuppressed categories (COV 260 vs 

77 p=0.042). Inter-tumoural heterogeneity was significantly higher for reactive PD-L1 expression 

than constitutive expression (23 vs 9 TPS difference p=0.018). PD-1, CD68 and Granzyme B were all 

significantly higher for reactive PD-L1 expression than constitutive expression (185 vs 54, p<0.0001; 

436 vs 244 p=0.05; 0.13 vs 0.01 p=0.001 respectively). Results are shown in Table 7.2.9.  

 

 

 

 

Table 7.2.7. Comparison of different immune TMEs by multiplex IHC in 92 NSCLCs for intra-

tumoural and inter-tumoural PD-L1 expression heterogeneity and immune cell markers. * 

denotes significantly higher value.  
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TME Cases Negative (%) Weak (%) Strong (%) 

Reactive 47 0 17 (36) 30 (64) 

Constitutive 15 0 14 (93) 1 (7) 

Immunosuppressed 15 15 (100) 0 0 

Alternate 15 15 (100) 0 0 

 

 

 Reactive Constitutive Immunosuppressed Alternate Sig Difference 

COV 77 118 242 260* p=0.006 

TPS change 23* 9* <1 7 p<0.0001 

PD-1 185* 54 55 145* p<0.0001 

CD68 436* 244 248 332 p=0.015 

Granzyme B 0.13* 0.01 0.01 0.04 p<0.0001 

 

 

There was a non-significant trend towards improved predicted OS for reactive expression than 

constitutive, immunosuppressed and alternate immune escape categories (52 vs 37 vs 43 vs 38 

months respectively, χ² value 2.944, p =0.400) 

7.2.8 Classification by potential response to PD-1/PD-L1 IMs by multiplex IHC  

As per Fig 7.1.7, all 92 cases were divided into probable response to PD-1/PD-L1 IM therapy 

categories. PD-L1 strong expressers (≥50% TPS) and PD-L1 negative (<1% TPS) tumours followed a 

single route, whereas PD-L1 weak expressers (1-49% TPS) could potentially follow either the strong 

positive or negative classification routes; however there was only a single case difference in final 

categories if all weak positive cases followed either. This is summarised in Table 7.2.10 with final 

groups shown in Table 7.2.11.  

 

 

 

Table 7.2.8. PD-L1 expression in 92 NSCLCs divided into clinical categories based on expression of 

PD-L1 (reactive or constitutive) or possible reasons for being PD-L1 negative (immunosuppressed 

TME or alternative immune-escape mechanism deployed) by multiplex IHC. 

Table 7.2.9 Comparison of different immune TMEs by multiplex IHC for intra-tumoural and inter-

tumoural PD-L1 expression heterogeneity and immune cell markers. * denotes significantly 

higher value.  
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PDL1 Strong Weak PDL1 Negative Weak 

Total 31 31 Total 30 31 

CD8 TE High 27 13 CD8 TE High 6 13 

CD8 NE High 2 4 FoxP3 High 10 8 

CD3 IM high 0 3 FoxP3 Low 14 10 

CD8 /3 Low 2 11    

 

 N % 

Good response 27 29 
Partial response 32-33 35-36 

No response 32-33 35-36 

 

Intra-tumoural heterogeneity is significantly reduced in the good response category compared to 

both partial and no response groups (30 vs 160 p=0.001, 30 vs 141 p<0.0001 respectively). Inter-

tumoural heterogeneity is significantly reduced in the no response category compared to both good 

and partial response groups (5 vs 23 p<0.0001, 5 vs 17 p=0.037 respectively). The no response group 

had significantly lower PD-1 expression levels than both good and partial response groups (71 vs 205 

p<0.001, 71 vs 145 p<0.001 respectively). The good response group had significantly higher CD68 

and Granzyme B levels than both partial (CD68 546 vs 295 p=0.004; Granzyme B 0.19 vs 0.05 

p<0.001) and no response groups (CD68 546 vs 264 p=0.002, 0.19 vs 0.02 p<0.001). These results are 

shown in table 7.2.12 

 Good response Partial response No response Significance 

COV (Intra) 30 160* 141* Y (p<0.0001) 

TPS change (Inter) 23* 17* 5 Y (p<0.0001) 

Group Change 6 12 11 N (p=0.436) 

PD-1 205* 145* 71 Y (p<0.0001) 

CD68 546* 295 263 Y (p<0.0001) 

Granzyme B 0.19* 0.05 0.02 Y (p<0.0001) 

 

Table 7.2.10. NSCLC tumours divided by PD-L1 expression and immune cell markers by multiplex 

IHC into categories of potential response to PD-1/PD-L1 IMs (Green – good, Orange – partial, Red 

– no response).  

Table 7.2.11. Final categories for potential response to PD-1/PD-L1 IMs. PD-L1 weak positive (1-

49%) could potentially follow positive or negative route, but only a single case change is noted in 

final categorisation.  

Table 7.2.12. Comparison of different groups of NSCLCs categorised by potential response to PD-

1/PD-L1 IMs for intra-tumoural and inter-tumoural PD-L1 expression heterogeneity and immune 

cell markers by multiplex IHC. * denotes significantly higher value.  
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There was a non-significant trend toward improved survival for the good respond group compared 

to partial and no response groups (55 vs 43 vs 40 months respectively, χ² value 2.384 p=0.304). Sub 

group analysis by Granzyme B found no difference in predicted OS in the good responders (high vs 

low 41 vs 68 months p=0.351), partial responders (high vs low 37 vs 47 months p=0.450) or no 

responders group (high vs low 22 vs 47 months p=0.085). Fig 7.2.1.. 

 

 

 

 

7.2.9 Predicted survival by TME features 

PD-L1 alone trended towards a higher OS when using a ≥50% TPS dichotomous division (41 vs 55 

months (p=0.99)), and the presence of CD8+ve T-cells (TE) alone also trends towards a higher OS 

using the median to split the cohort as high or low (40 vs 52 months (p=0.13)). Combining these to 

compare PD-L1 high/CD8 high against PD-L1 low/CD8 low found a significant difference in predicted 

OS (55 vs 35 months, χ² value 4.708 p=0.03), as shown in Fig 7.2.2. Interestingly, if using the same 

≥50% TPS dichotomous division by the monoplex deep learning algorithm instead of manual scoring, 

only ficw cases are changed (all decreased from manual score of strong ≥50% TPS to weak 1-49% TPS 

PD-L1 expressers), but the prognostic outcome is slightly further in favour of PD-L1 strong/CD8 

strong, with greater statistical significance, (57 vs 35 months, χ² value 5.896 p=0.015). The 

Fig 7.2.1. Kaplan-Meier (Log-Rank) survival curve for NSCLC patients divided by predicted 

response to PD-1/PD-L1 IMs based on the immune characteristics of their tumour TME. No 

significant differences are seen, but improved response to IMs is associated with a trend towards 

improved OS. (55.1 vs 42.9 vs 39.7 months, p=0.304.) 

N=92 
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significance is not seen if using Triplex PD-L1 data to define PD-L1 high (56 vs 40 months, χ² value 

2.325, p=0.127).  

 
 

 

7.2.10 MIF for PD-L1 assessment 

mIF was compared to manual PD-L1 scores in 18 cases. There was no significant difference in 

average PD-L1 expression between manual TPS scoring and mIF (20 vs 25 p=0.372), but the OPA for 

using clinical categories is 0.39 with non-significant intra-class coefficient and Cohen’s kappa. This 

could be improved if using a dichotomous cut-off of ≥50% TPS. Results are shown in Table 7.2.13.  

 

 

 

 

 

Fig 7.2.2. Kaplan-Meier (Log-Rank) survival curve for NSCLC patients grouped into PD-L1 

expression high and CD8 expression high vs. PD-L1 expression low and CD8 expression low. A 

significant difference in OS is seen in favour of the high group. (55 vs 35 months p=0.03) 

N=92 
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Case PD-L1 Manual PD-L1 IF Difference Change 
category? 

1 10 25 15 N 

2 0 5 5 Y 

3 1 10 9 N 

4 0 53 53 Y 

5 5 3 -2 N 

6 100 61 -39 N 

7 50 30 -20 Y 

8 25 13 -12 N 

9 0 50 50 Y 

10 0 6 6 Y 

12 30 35 5 N 

13 1 23 22 N 

14 0 15 15 Y 

15 70 44 -26 Y 

16 0 8 8 Y 

17 70 15 -55 Y 

19 0 47 47 Y 

20 0 7 7 Y 

 

 

7.2.11 mIF compared to multiplex IHC for immune cell markers  

mIF cell densities were compared to multiplex IHC cell densities for PD-L1, CD8 and CD68 for the 11 

cases which underwent both sets of assays. Correlation was highly significant for PD-L1 (Correl. 

0.867 p<0.0001, R² 0.788 p<0.0001), CD8 in the TC (Correl. 0.909 p<0.0001, R² 0.919 p<0.0001) and 

CD8 in the TE only (Correl. 0.891 p<0.0001, R² 0.827 p<0.0001), but not for CD68 (Correl. 0.427 

p=0.190, R² 0.161 p=0.221). Each cohort was divided into ‘high’ and ‘low’ categories for each 

immune marker by the median value. Illustrative examples are shown in Fig 7.2.3. Grouping each 

case into ‘high’ or ‘low’ for each marker was compared between mIF and multiplex IHC, with 

agreement in 9 cases (81%) for PD-L1, 9 cases (81%) for CD8 in the TC, 8 cases (73%) for CD8 in the 

TE only, and 7 cases (64%) for CD68. Results are summarised in Table 7.2.14 

Table 7.2.13. 18 NSCLC cases selected for mIF showing comparison of manually scored PD-L1 IHC 

(SP263) compared to mIF score for PD-L1, with a change in category taken as any difference 

resulting in tumour crossing clinical categories of negative, weak or strong positive (<1%, 1-49%, 

≥50% TPS) 
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Fig 7.2.3. Multiplex IHC and mIF for immune markers. A1-A4 Multiplex IHC, B1-B4 mIF. A1 – CD68, CD8, 

PD-L1 B1 - DAPI (blue), pan-CK (orange) PD-L1 (yellow), CD8 (green) and CD68 (turquoise). A2 & B2 – CD8 

alone. A3 & B3 – CD68 alone. A4 and B4 – PD-L1 alone (Multiplex IHC has overlaid annotations for each 

cell (yellow)  
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 OPA PPV NPV ICC Significance 

Both 0.39 0.44 0 0.554 N (0.053) 

≥1% 0.39 0.55 0   

≥50% 0.72 0.33 0.8   

 

 

 

 

 

mIF produced both falsely high and falsely low PD-L1 expression in several cases. An example of 

falsely reduced PD-L1 expression relative to the monoplex PD-L1 (SP263) IHC stain is shown in Fig 

7.2.4. H&E at higher power shows a number of tumour cells with appreciable understaining for IF 

Pan-CK, and a corresponding decrease in cells considered PD-L1 positive tumour cells within the 

pseudo-IHC stain for PD-L1. An example of falsely raised PD-L1 expression relative to the monoplex 

PD-L1 (SP263) IHC stain is shown in Fig 7.2.5. Low power H&E shows extensive necrosis throughout 

the section, with necrotic and non-viable tumour cells, as well as cellular debris staining for PD-L1 via 

the mIF, with a corresponding falsely raised PD-L1 in the pseudo-IHC stain for PD-L1. Extensive 

necrosis was a common feature for all cases with a falsely raised PD-L1 expression level by mIF. 

Aberrant expression of PD-L1 by necrotic cells is a well-documented cause of false positive PD-L1, as 

illustrated in Fig 7.2.6.  

 

 PD-L1 CD8 TC CD8 TE CD68 TC 

Average density IHC 1364 526 252 257 

Average density IF 1632 290 185 232 

Average Difference 461 -237 -67 -25 

Table 7.2.14 Correlations and predictive values of image analysis of mIF for assessing PD-L1 

expression compared to manual scoring of PD-L1 IHC (SP263). Improvement is achieved using a 

1% or 50% dichotomous cut-off value only.  

Table 7.2.15. Average densities and differences for immune cell markers by either multiplex IHC 

or mIF.  
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Fig 7.2.4. Under-expression of PD-L1 by mIF. A – Low power of PD-L1 IHC (SP263) showing 

widespread PD-L1 expression around a core of necrotic tumour. B – mIF showing PD-L1 (Yellow) 

with a similar distribution to that in A. C – H&E view of tumour showing tumour cells at invasive 

margin. D – The same area as C with DAPI positive cells widely apparent (blue) but with a large 

number of the tumour cells not staining for pan-CK (orange). E – PD-L1 IHC stain for same area 

showing mostly positive tumour cells. F – Pseudo-IHC for PD-L1 from mIF at the same area 

showing fewer PD-L1 positive tumour cells.  
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Fig 7.2.5. Over-expression of PD-L1 by mIF. A – Low power view of PD-L1 IHC (SP263) showing a 

largely negative tumour for PD-L1 expression. B – Pseudo-IHC for PD-L1 from mIF showing 

widespread false positivity. C – H&E view of tumour showing widespread necrosis. D – mIF area 

of necrotic cells and debris staining positive for PD-L1 (yellow) E – PD-L1 IHC stain for same area 

as D showing negative tumour cells. F – Pseudo-IHC for PD-L1 from mIF for same areas as D 

showing mostly positive ‘tumour cells’.  
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7.2.12 Classification of TMEs by mIF 

Tumours were classified into TIL status TME as per Fig 7.1.5 (using CD8 alone) by mIF and by PD-L1 

status (Table 7.2.16). There was no significant difference in CD68 levels between the TMEs (131 vs 

151 vs 114 p=0.669). There was a non-significant trend towards increased inter-tumoural 

heterogeneity for infiltrated TMEs (TPS difference 21 vs 0.5 vs 3 p=0.248) and a non-significant trend 

towards decreased intra-tumoural heterogeneity for infiltrated TMEs (COV 126 vs 361 vs 181 

p=0.253) 

Survival analysis found immune desert TMEs had a significantly poorer predicted OS than immune 

excluded and immune infiltrated TMEs (21 vs 83 vs 70 χ² value 6.383 p=0.041). 

TME Cases PD-L1 Desert (%) Excluded (%) Infiltrated (%) 

Desert 7 Negative 5 (71) 1 (50) 2 (20) 

Excluded 2 Weak 1 (14) 1 (50) 4 (40) 

Infiltrated 9 Strong 1 (14) 0 3 (30) 

 

Tumours were classified by predicted response to PD-1/PD-L1 IM therapy as per Fig 7.1.7 (CD8 only, 

FoxP3 could not be utilised) by mIF and PD-L1 status. The good predicted response category had 

significantly more inter-tumoural PD-L1 expression heterogeneity than the no response group (TPS 

Fig 7.2.6. Aberrant PD-L1 expression in necrosis A – H&E of NSCLC demonstrating viable tumour 

in close proximity to fibrotic and necrotic tumour cells. B – Same area showing the viable tumour 

cells negative for PD-L1, with necrotic and non-viable tumour cells aberrantly expressing PD-L1 

(SP263) 

Table 7.2.16. PD-L1 expression in 18 NSCLCs divided into clinical categories for different immune 

TMEs by mIF.  
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change 45 vs 0 p=0.019), and trended towards less intra-tumoural heterogeneity than the partial 

and no response groups (27 vs 210 vs 189 p=0.085). There was no significant difference between the 

groups for CD68. Results are summarised in Table 7.2.17.  

 Good response Partial response No response Significance 

Number 3 12 3 n/a 

COV (Intra) 27 210 189 N (p=0.085) 

TPS change (Inter) 45* 7 0 Y (p=0.022) 

Group Change 1 4* 0 Y (p=0.026) 

CD68 260 219 185 N (p=0.342) 

 

Survival analysis found the good response trended non-significantly towards a superior outcome 

than partial and no response groups (88 vs 48 vs 46 months OS respectively, χ² value 2.153, p=0.341) 

7.3 Discussion 

The TME is a vastly complex biological entity, comprised of multiple different components, including 

the tumour cells themselves as well as a large number of other features that include the 

‘background’ host tissue that the tumour cells have originated from or are invading into, and other 

cell types such as vascular and immune cells that may both be hindering or helping the growth of the 

malignant process. Categorising aspects of the TME to group them by type or behaviour is therefore 

a challenging process, and this chapter has attempted to focus on a limited number of immune cell 

types than are associated with both pro-tumoural and anti-tumoural activity. Current attempts to 

categorise the immune component TME of tumours include the pattern of TILs, the use of immune 

cell markers and genetic signatures.594, 595, 598 However, an inherent problem when dealing with an 

environment as complicated as the TME is the difficulty in striking a balance between simple, easily 

useable and clinically relevant groups, that have a risk of over-fitting or misclassifying tumours that 

don’t neatly fit into a small number of categories, and the use of a sliding scale or spectrum of 

properties that may more precisely characterise the tumours, but can result in too complicated an 

approach for routine clinical application. This project has explored the ability of defining TMEs by 

various immune cell markers, and the pros and cons of using multiplex data and image analysis 

approaches to do so, with a particular focus on understanding and categorising different types of 

PD-L1 expression, with the ultimate objective of refining complex polyfactorial data to a small 

Table 7.2.17. Comparison of different groups of NSCLCs categorised by potential response to PD-

1/PD-L1 IMs for intra-tumoural and inter-tumoural PD-L1 expression heterogeneity and immune 

cell markers by mIF.  * denotes significantly higher value.  
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number of measurable data that still reflects the underlying TME but maybe translatable to the 

clinical setting.  

7.3.0 Immune TMEs and their relationship to PD-L1 expression heterogeneity 

In this chapter, several different approaches to categorising TMEs using a mixture of PD-L1 

expression and immune cell markers was made, generally with a good overlap of similar 

characteristic TMEs regardless of the method used. A consistent observation was that increased 

immune activity, defined as infiltrating TILs, cytotoxic activity and/or reactive PD-L1 expression is 

associated with increased inter-tumoural PD-L1 expression heterogeneity but decreased intra-

tumoural heterogeneity of PD-L1 expression. Conversely, low minimal immune activity, defined as 

immune desert, immune excluded, immunosuppressive and/or constitutive PD-L1 expression were 

generally associated with increased intra-tumoural, but reduced inter-tumoural PD-L1 expression 

heterogeneity. Overall this suggests that when PD-L1 expression is being used as an active 

mechanism of immune escape, it has a greater ability to up or downregulate PD-L1 expression in 

metastatic cells in response to variations within the metastatic TME compared to the primary lung 

tissue. This is also true even for tumours with reactive PD-L1 expression at low overall levels. 

Previous work has shown that the majority of PD-L1 expression in NSCLC is reactive, rather than 

constitutive,563, 564, 566 explaining why a higher number of PD-L1 positive tumours are characterised as 

immune active. It has also been shown that immune and genetic markers can be down or 

upregulated as tumours metastasise, indicating that this is a common approach to survival for 

tumour cells when infiltrating different tissue types,577, 578, 580, 626, 627 and that the immune properties 

of the TME can affect metastatic potential of tumour cells.628-630 Macrophages in particular are 

associated with pro-metastatic behaviour631 and in this project the more immune-active tumours are 

typically associated with higher levels of CD68. All tumours in this cohort are metastatic, however, so 

CD68 may well be at higher levels within this cohort than a mixed or non-metastatic NSCLC cohort, 

and CD68 alone cannot differentiate between M1 and M2 macrophage subtypes, which have 

differing roles in tumour promotion, but TAMs are typically thought to have pro-tumour M2 

phenotypes,130, 132 and thus the high overall levels of macrophages in the tumours with most inter-

tumoural PD-L1 expression heterogeneity suggests macrophages have both a pro-metastatic 

function and a potential impact on the metastasising cells to regulate PD-L1 expression. Studies have 

shown the role in B-cell derived interleukins and neutrophils in contributing towards metastases,632, 

633 and whilst neither of these immune cell populations were studied directly in this project, it 

further suggests that specific TME immune functions can effect metastatic potential. The 

observation that tumours with an active and anti-tumoral immune TME more frequently 

demonstrate larger amounts of PD-L1 expression inter-tumoural heterogeneity suggests the immune 
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TME is not only important for metastatic potential per se, but also the behaviour and interaction of 

the tumour cells when they have metastasised.  

Interestingly, when PD-L1 expression is reactive there is less intra-tumoural heterogeneity than 

when PD-L1 expression is constitutive. The former is likely explained by the fact that when PD-L1 

expression is being successfully deployed as an immune escape mechanism, the tumour cells 

without the ability to express PD-L1 are eradicated, and the remaining cells are therefore more 

consistent in this expression. Eradication of tumour cells without favourable properties in an 

immune active TME has been previously described, resulting in a dominance of clones with a 

particular feature.578, 579, 634  At low levels of PD-L1 expression this is still observed, suggesting even 

when PD-L1 is only part of the mechanism of immune escape, and only required at low levels, the 

ability of the tumour cells to increase PD-L1 expression may still be active, and indeed PD-L1 

expression has been to shown to be upregulated in tumour cells in response to immune stimuli.136, 

196. The high levels of intra-tumoural PD-L1 expression heterogeneity seen when PD-L1 expression is 

generally constitutive is probably due to PD-L1 expression not being driven by the immune process 

but by genomic changes within the tumour cells, which would understandably see no relationship to 

immune cell markers. Considerable intra-tumoural genetic heterogeneity has been observed in a 

wide variety of tumours,547, 635 and if survival benefit is only minimally driven by anti-tumoural 

immunity, the more random distribution of PD-L1 is likely a result of this genetic diversity. Tumours 

with constitutive expression would also be less likely to change PD-L1 levels in response to differing 

TMEs within the lymph nodes, and would explain the lower inter-tumoural heterogeneity observed.  

7.3.1 TMEs and their clinical relevance 

PD-L1 expression can be thought of as reactive or constitutive, with relevance to tumoural 

heterogeneity as described, but a more clinically orientated categorisation might be thought of in 

terms of potential response to PD-1/PD-L1 IMs. In this project, patients with a potentially good 

response to PD-1/PD-L1 IMs are defined as having tumours with reactive PD-L1 expression in the 

context of a suitably active immune response targeted against the tumour, and for PD-L1 expression 

to be the major mechanism of immune escape. Non-responders are either a result of no PD-L1 

expression, wholly constitutive PD-L1 expression, or insufficient/no appropriate immune response 

targeted against the tumour, which may be due to immunosuppressive factors or lack of presenting 

antigenic stimulation. Partial responders to treatment could be a mix of these features: a poor or 

partially inhibited immune response, where PD-L1 expression is weak or has constitutive 

components, where PD-L1 is only one mechanism of immune escape, if PD-L1 is achieving immune 

escape through suppression of cytokines rather than through direct T-cell inhibition, or a 
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combination of these features. By combining different properties of the immune signatures within 

the TMEs, patients in this cohort was thus divided into potential responders, and it has been 

previously demonstrated that good responders to PD-1/PD-L1 IM therapy have been shown to have 

specific immune and genetic signatures.636 

By utilising these categories to divide this cohort of patients, a trend towards improved overall 

survival is seen, in keeping with previous observations that immune active, anti-tumour TMEs will 

result in a more favourable prognosis.603, 604 Interestingly, a significant improvement in predicted OS 

was seen when using just two features within the TME: a high PD-L1 in the context of high CD8+ve T-

cells within the tumour epithelium. At its simplest, this suggests the presence of an active infiltrating 

cytotoxic immune response with PD-L1 expression as the main mechanism of immune escape 

conveys a superior outcome for patients even without IM treatment. This does not necessarily 

translate to the best predictive power of response to PD-L1 IMs however; high PD-L1 levels even in 

TMEs infiltrated by CD8+ve T-cells may have dysfunctional T-cells, and conversely PD-L1 IM may be 

successful even in the presence of high quantities of Tregs and low Granzyme B, because even 

moderately exhausted T-cells can be stimulated by PD-1/PD-L1 IMs.246 However, on average, high 

CD8+ve and high PD-L1 expressing tumours would be expected to respond well to PD-1/PD-L1 IMs, 

and if this phenotype is already associated with superior outcome, it may suggest why a subset of 

NSCLC patients respond so favourably to these therapies.28, 637 

The use of a similar approach utilising a smaller number of immune markers and interpretation of 

H&E slides could thus be used to classify patients into similar potential responders to therapy in a 

fashion that does not involve the complicated multiplex assays and digital image analysis.  

7.3.2 Assessment of multiplex and digital image analysis 

A practical problem with multiplex approaches is the interpretation; mIF fluorophores can be 

relatively easily quantified by an automated approach, but the quantification of chromophores is 

more challenging.339, 623, 624 In addition, components of the TME must be studied in spatial 

relationship to each other; knowing the total cell density of CD8+ve T-cells is not sufficient; where 

the T-cells are in relation to other cells is also necessary. The use of digital image analysis approach 

to provide these metrics was used to help overcome this, but relatively novel approaches must be 

treated with caution. Even simple monoplex approaches can see considerable variation: PD-L1 IHC 

can be vary between clones, assays and platforms,266, 331, 332 and so it seems reasonable to assume 

more complex multiplex technologies may also suffer a lack of concordance.  
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Despite these potential issues, the comparison of data provided between multiplex IHC and mIF in 

this project was generally reasonable for PD-L1 and CD8 by overall cell densities, though the former 

were generally over-represented, and the latter generally under-represented by IF compared to IHC. 

CD68, a marker of macrophages, correlated very poorly between multiplex IHC and IF however. 

Different clones for the same marker can be notoriously difficult in achieving concordance, and this 

may account for some of the differences seen between IHC and IF. In addition, despite a good 

correlation of PD-L1 expression between IHC and IF in terms of cell density, the ability of the mIF to 

provide equivalent TPS to the manual scoring is poor. This is probably partially due to limitations in 

the mIF approach itself: necrotic and fibrotic areas in particular seemed to return false positives, and 

false negatives may be a result of tumour cells that appeared to be aberrantly negative for pan-CK in 

some cases (Fig 7.2.4 and 7.2.5). Indeed false positives for IF dyes is a well-documented area,638 as 

are false positives for PD-L1 IHC in necrotic cells.282 Converting manual cell densities to TPS 

equivalent to clinical categories was also problematic; multiplex IHC for PD-L1+ve, CD8/CD68-ve cells 

provided a reasonable surrogate TPS when compared to manual monoplex scoring, but generally 

underscored TPS when there was a difference and could not reliably classify tumours by clinical 

categories, though this is partially likely a result in keeping with the general observation that SP142 

stains fewer tumour cells than SP263.297, 304 mIF was also poor at classifying tumours into clinical 

categories by the same method. When considering the TPS scores provided by digital image analysis 

of the monoplex IHC compared to manual scoring of the same, however, this showed a very high 

correlation by both overall TPS and clinical categories, suggesting the image analysis approach per se 

is an accurate one, but is only as good as the images provided.  

A simple approach was thus adopted by using a simple dichotomous division of immune cell markers 

using the median from this cohort into ‘strong’ and ‘weak’ for each marker. By so doing a good level 

of concordance was seen when dividing TMEs by TIL patterns by either H&E or the multiplex IHC 

data, suggesting this approach to interpreting the data in this project is reasonable. The biggest 

limitation of this approach is lack of a secondary dataset to compare values to. Whilst the selected 

tumours represent a wide array of typical NSCLC morphologies, stages, demographic details and so 

forth, it is unknown if these are typical in terms of immune cell markers. Dividing the cohort into 

‘high’ or ‘low’ for each immune marker is thus purely dependent on an internal measure, and it is 

possible several tumours would be classified differently if using median cut-offs determined from a 

different cohort. The difficulty presented in turning absolute cell values into a percentage score is 

similarly effected and would suggest a far larger set of data is required before determining absolute 

values for high or low that could be applied to any given sample. The other main limitation of this 

approach, and a general issue in this area, is the division of PD-L1 into categories based on 
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percentage cut-offs of 1% and 50%. Whilst this allows for relatively simple classification with 

predictive power in the routine clinical situation, PD-L1 expression is more likely a continuous 

variable and is more likely to have clinical implications when considering other factors within the 

TME than a TPS alone.603, 639 As a result, when using clinical categories, tumours barely expressing 

PD-L1 at 1% are grouped with tumours expressing PD-L1 in nearly half of all cells, and tumours 

expressing PD-L1 on only half their cells are grouped with tumours expressing PD-L1 in all their cells, 

which intuitively feels like oversimplifying the situation. My approach has been to consider 

categorisation in a more dynamic fashion; weak PD-L1 expressers could therefore be grouped in with 

negative tumours or strong tumours, but whilst this more flexible approach may be more suitable 

for diving tumours into biological relevance, it is probably too ambiguous for the routine clinical 

setting.  

 

7.3.3 Other findings 

An unexpected observation was high CD8+ve T-cell and low Granzyme B TMEs has a superior OS 

compared to other TMEs. This would imply that patients with tumours harbouring exhausted TMEs 

survive longer than those with TMEs that are active and functional, whereas the opposite has been 

previously demonstrated in hepatocellular carcinoma.640 However, only a small number of cases fit 

into this category (n=13) and when stratifying for PD-1 (high levels of which would also be 

anticipated in exhausted T-cells) the significance is lost, and when splitting tumours by Granzyme B 

in any other scenario, this observation is not maintained.  This could therefore be a statistical 

anomaly.  

Image analysis continues to be a reliable method of aiding the interpretation of tumours for immune 

cell markers and PD-L1 expression in general. The limiting factor is the quality and substance of the 

images provided. Multiplex approaches provide an attractive platform for performing image 

analysis, but have technical and financial issues associated with them, and the use of differing 

assays, molecules and platforms to look for immune markers makes their application in the routine 

clinical situation difficult to envisage in the foreseeable future. Importantly, however, they do 

provide reasonably consistent categorisation of TMEs, regardless of the approach used, and the 

findings that pertain to inter-tumoural and intra-tumoural PD-L1 expression heterogeneity, and 

general prognosis are consistently seen in both multiplex IHC and mIF in this project.  
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The challenge will be to apply a simplified version of the approaches developed in this chapter to a 

range of typical specimens used in NSCLC diagnostic and molecular profiling, in order to best predict 

clinical response to PD-1/PD-L1 IMs.  
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Chapter 8 – Predicting response to PD-1/PD-L1 immunomodulatory therapy 

8.0 Introduction  

The main objective of this thesis has been to identify ways in which NSCLC patients can be accurately 

assessed so as to predict their response to PD-1/PD-L1 IMs. As such, the main focus has been on 

aspects of PD-L1 IHC, the only clinically validated predictive biomarker for this purpose to date, and 

considered ways in which to optimise its use. However, the majority of the work has been 

performed on the LLP cohort; an excellent cohort of NSCLC patients with generous quantities of 

resected NSCLC tissue and for whom all of which have nodal disease and clinical outcomes recorded. 

The major limitation of the LLP cohort, however, is that none of the patients have been treated with 

PD-1/PD-L1 IMs. Therefore although I have been able to assess changes in expression of PD-L1 by 

IHC, and, where relevant, to consider the prognostic power of these findings, I have not been able to 

translate that to predicting response to IM therapy.   

As a result, the data, outcomes and hypotheses generated thus far should be applied to the CCC 

cohort, which consists of NSCLC patients treated with PD-1/PD-L1 IMs and for which full clinical data 

is available. In so doing, an attempt to generate predictive data can be made, as well understanding 

the limitations of using the typically smaller specimens used in the routine clinical setting of 

diagnosing NSCLC patients. The approximately 300 patients in the CCC cohort represent ‘real-world’ 

data and are a relatively homogenous group in terms of being stage III/IV NSCLC (as per AJCC 

(American Joint Committee on Cancer) guidelines)641. Work performed on the CCC cohort has been 

limited to date, with several future studies planned (explored in more detail in Chapter 9 (The Next 

Frontier)), but an overview of the challenges of using this cohort, and the data of interest generated 

thus far, and how this fits with current evidence for PD-L1 IHC as a predictive biomarker will be given 

here.  

8.0.0. PD-L1 cut-offs for predicting response 

In the various PD-1/PD-L1 IM clinical trials for NSCLC, different PD-L1 IHC clones were used with 

different cut-offs to define patients as ‘PD-L1 positive’. Despite sharing the same target of PD-1, (e.g. 

pembrolizumab, nivolumab,) or PD-L1 (e.g. atezolizumab, durvalumab) there remains a disparity of 

the value of using PD-L1 IHC to define patients as ‘PD-L1 positive’ from clinical trial data in NSCLC.46-

48, 254 This is reflected in the guidance of prescribing PD-1/PD-L1 IMs, in which PD-L1 may be a 

companion diagnostic, complementary diagnostic, or not required, depending on the specific IM and 

clinical status of the patient. In regards to defining PD-L1 positive patients, the UK advice from NICE 

provides guidance for the treatment of NSCLC with PD-1/PD-L1 IMs which uses the categories of 
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negative, weak and strong expressers defined as <1%, 1-49% and ≥50% TPS respectively.567 European 

guidance from ESMO also uses the same groups in NSCLC642, as does American FDA guidance11 and 

Japanese guidance.643 Other cut-offs are occasionally used, most typically ≥25%, but these other cut-

offs do no always act as a powerful predictor of response.644, 645  

These clinical guidelines are largely based on the observation that PD-L1 positive patients, defined as 

≥1% TPS, are generally associated with superior outcomes with PD-1/PD-L1 IMs versus the standard 

treatment of care, with further benefit in ‘high’ PD-L1 expressers also seen.47, 299 Furthermore, ≥50% 

TPS is generally used to define eligibility for IM therapy in the 1st line setting.567, 646 The caveat that 

these patients are wildtype for the commonest targetable single driver mutations in NSCLC is also 

taken into consideration. 299, 647 However, in some clinical trials, PD-L1 expression was of minimal 

predictive value, and so PD-1/PD-L1 IMs can still be prescribed even for PD-L1 negative patients in 

certain circumstances.260 These trials are discussed in more detail within Chapter 1, but importantly, 

there are no head-to-head trials comparing different PD-1/PD-L1 IMs, and so data is limited as to 

why PD-L1 positive patients vary in terms of response to treatment. This variation in response is  

likely to include a combination of clinical differences between patient cohorts, pharmacological 

variation between the IMs, factors that affect PD-L1 IHC and differing cut-offs to define ‘PD-L1 

positive'.  

An important question therefore, is whether the current cut-offs of ≥1% and ≥50% TPS best reflect 

the biological mechanisms that underpin PD-L1 mediated immune escape, and therefore provide the 

best predictive power for grouping NSCLC patients as responders to IMs.  As has been explored 

earlier in this thesis, a tumour of 0.5% and 1% PD-L1 expression are likely to have more in common 

from an immune escape perspective than a tumour of 1% and 45% PD-L1 expression, yet the latter 

pairing are typically grouped together and the former are not. The expression of PD-L1 can be 

thought of numerically (e.g. a TPS) but also biologically; for example, if PD-L1 is being expressed 

reactively or constitutively. As Chapter 7 (The tumour microenvironment) explored, the presence or 

absence of specific T-cell populations within a TME will likely be a helpful parameter in determining 

PD-L1 expression as reactive or not, but the feasibility of whether testing for these in the typically 

small tissue or cytology specimens used to diagnose NSCLC is a realistic possibility is an important 

aspect to consider, and one this chapter will attempt to address.  

8.0.1 Measuring clinical response 

Measuring clinical response to therapy is not necessarily a straightforward task. Traditionally clinical 

trials used OS as a measurement in cancer therapy, as this is an objective measure of response 

measured as a clear clinical endpoint (i.e. patient death), which takes into account the impact of 
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treatment and any irAEs with a generally agreed upon outcome.648 However other endpoints have 

been increasingly utilised, including PFS which has a number of potential advantages over OS: a 

smaller sample size is required, follow-up is shorter, it is a more practical metric for disease states 

requiring very long follow-up, it may take better account of stable disease and could deal with 

patient cross-over more effectively, as well as providing a meaningful quality of life metric for 

treatment decisions.305, 649 However, PFS may introduce bias, is harder to measure than OS and does 

not necessarily correlate with OS, particularly in advanced NSCLC or immunotherapy trials.648-651 ORR 

(overall response rate) is another outcome measure that typically uses RECIST and iRECIST criteria to 

measure patient response652, 653(Table 8.1.0) and is particularly useful in single-arm trials, as it 

requires no control arm for comparison.648, 649 ORR is defined as the proportion of patients with 

complete or partial response to treatment. Other potential measures of clinical response in clinical 

trials include durable response, quality of life endpoints, surrogate/biomarker endpoints and 

milestone survival, with advantages and limitations to all.648 It is outside the scope of this thesis to 

provide a comprehensive overview of clinical measure outcomes, but where ‘real-world’ data is 

concerned, a mixture of OS and PFS is typically used, with many papers also integrating clinical 

prognostic markers, such as ECOG PS (Eastern Cooperative Oncology Group performance status)654 

that has been shown to have a consistent effect on predicting survival in NSCLC patients treated with 

IM therapy.655-657   

Predicting toxicity and irAEs is also an important outcome which would be hugely valuable to 

oncologists. It is generally well established that the occurrence of irAEs positively correlates with 

response to treatment by PD-1/PD-L1 IMs,121, 658-662 and therefore a predictor of response to PD-

1/PD-L1 IM might be a useful predictor of irAEs.  

This chapter will therefore look to explore the feasibility and challenges of using a variety of non-

resection specimens for predicting response to PD-1/PD-L1 IMs by the interrogation of the immune 

TME and PD-L1 expression. The challenge of using these ‘routine diagnostic specimens’ that 

generally contain far smaller quantities of tissue than resections specimens is a key translational 

issue. I will also attempt to measure clinical response to IM therapy by a multitude of factors, 

including OS, PFS, and measurements involving RECIST criteria, whilst utilising other metrics such 

ECOG PS, number of IM cycles received, irAEs, demographic data and so forth. 
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8.1 Methods 

8.1.0 Analysis of CCC clinical outcomes 

The CCC cohort included data gathered by oncologist colleagues from the CCC (Led by Dr Ana 

Ortega-Franco and Dr Carles Escriu) and includes demographic and clinical details as shown in Table 

8.2.0. OS and PFS were used as a measure of response to PD-1/PD-L1 IM therapy, with irAEs and the 

specific grade of irAE were used as a measure of toxicity. Outcomes and events were defined as per 

Table 8.1.0.  

 Outcome/event Definition 

OS Time between date of metastatic disease diagnosis and date of death.  

PFS Time between date of metastatic disease diagnosis and last date of no 
detectable progression of disease by clinical or imaging measures.  

Best response: Best response during treatment according to Recist 1.1:652 

CR Complete response: Disappearance of all target lesions. Involved lymph 
nodes require reduction in short axis to <10mm 

PR Partial response: At least a 30% reduction in the sum of target lesions 

PD Progressive disease: At least a 20% increase in the sum of target lesions 
with a minimum absolute increase of ≥5mm 

SD Stable disease: No change or change insufficient to meet criteria for PR or 
PD.  

ORR Overall response rate: the proportion of patients with CR or PR.  

Rapid Progression Decrease in ECOG PS* of ≥1 point within 4 weeks of commencing IM 
therapy 

Hyperprogression Increase of 40% of sum of target lesions with a minimum absolute increase 
of ≥10mm or an increase of 20% with new metastatic lesions 

IM cycles The number of IM cycles received by patient before termination due to 
toxicity, death or other adverse event.  

irAE Immune related adverse events of any grade toxicity 

Grade 3/4 Toxicity Severe, significant or life threating AEs requiring intervention as per NCI 
guidelines 

*ECOG PS = Eastern Cooperative Oncology Group performance status654 

8.1.1 Analysis of survival data in the CCC cohort 

In order to best match cases, only patients receiving pembrolizumab were included. All patients 

were Stage III/IV (as per AJCC guidelines), were wild-type for EGFR and ALK and were considered as 

both ‘whole cohort’ and divided into a sub-cohort of patients receiving IM either in 1st line setting or 

in the 2nd/3rd line setting (‘2nd-line plus’).  

Table 8.1.0 Definitions of outcomes and events used as markers of clinical response or measures 
of toxicity in NSCLC patients treated with PD-1/PD-L1 IM therapy.  
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First, comparison of OS and PFS within the CCC cohort using the conventional ‘weak’ (1-49%) and 

‘strong’ (≥50%) TPS groups was performed. OS and PFS was then looked at using a ≥25% TPS cut-off 

to define ‘PD-L1 positive’. Due to the observations pertaining to the 2nd-line plus cohort, OS and PFS 

relationship to PD-L1 expression in the 2nd-line plus cohort was then looked for in a series of 

exploratory analyses by using 10% PD-L1 TPS incremental groupings to either divide the cohort 

dichotomously (≥10% as ‘positive’, then ≥20% as ‘positive’, then ≥30% as ‘positive’ etc.) or into 10% 

PD-L1 TPS groups (1-10%, 11-20%, 21-30% etc.). Predicted survival data and hazard ratios for each 

group was thus captured and analysed.  

To ascertain the impact of specific features that may account for differences observed between OS 

and PFS, both the entire CCC cohort and the cohort divided by 1st-line or 2nd-line plus IM treatment 

were assessed for the association between survival data and PD-L1 expression with irAEs, ECOG 

status and the number of IM cycles received. Multivariate linear analysis which included PD-L1 

expression, number of IM cycles, ECOG status, gender, patient age, tumour morphology, irAEs and 

whether IM therapy was received 1st line or 2nd-line plus was then looked for in regards to predicting 

survival outcome. 

8.1.3 Pathological analysis of CCC cohort 

For cases from the CCC cohort which had H&E and PD-L1 sections available, these were assessed for 

PD-L1 TPS and for TIL infiltration pattern as per Chapter 7 (Desert, excluded and infiltrated TMEs). 

Grouping these cases by TME on H&E assessment into immune TME subtypes was dependent on the 

type and site of specimen. In generous biopsy samples of primary tumour, the presence of 

lymphocytes mixed throughout the tumour cells marked the sample as immune infiltrated (Fig 8.1.0 

A1-A2), whereas lymphocytes confined to the stroma marked the sample as immune excluded (Fig 

8.1.0 B1-B2). A generous biopsy of tumour with minimal immune presence could indicate an 

immune desert (Fig 8.1.1 A1-A2), but a small biopsy, deficient in tumour stroma, whilst technically 

sufficient to diagnose a patient and assess PD-L1 expression, is likely uninformative and 

unrepresentative of the rest of the tumour in regards to its TME (Fig 8.1.1 B1-B2). Biopsies of 

metastatic deposits which have not formed a discrete tumour mass could also not be accurately 

subtyped into immune TMEs, but an attempt to quantify some type of immune response can be 

made in generous samples from these sites: for example, in pleural biopsies, infiltrating tumour cells 

may elicit no apparent immune response, or be associated with lymphoid aggregates close to their 

proximity (Fig 8.1.3). For metastatic deposits which form clear tumour masses, immune TME 

classification may be determined with sufficient sampling (Fig 8.1.2). In samples from lymph nodes, 

the presence of lymphocytes is to be expected, and therefore their presence is not helpful in 

determining an immune TME type. Cytology specimens from sites other than lymph nodes, such as 
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pleural fluid, may also be difficult to classify an immune TME due to the admixing of tumour cells, 

immune cells and mesothelial cells (Fig 8.1.4). As such, subtyping of immune TMEs was limited to 

samples of primary NSCLC with preserved architecture and sufficient quantities of tumour stroma. 

Specimens that do not fit these criteria, including cytology specimens, metastases and small biopsies 

with limited tissue were categorised as being either unsuitable for immune status categorisation 

(e.g. lymph node aspirate), or divided into ‘lymphocytes present’ or ‘lymphocytes absent’.  

 

Fig 8.1.0 Examples of NSCLC biopsies for which immune TMEs can be accurately depicted. A1-A2 
- Infiltrated TME on H&E (A1) and PD-L1 (22C3) (A2). Note the admixing of TILs within the 
tumour epithelium. B1-B2 - Excluded TME on H&E (B1) and PD-L1 (22C3). Note the TILs are 
confined to the stroma of the tumour. PD-L1 expression is limited to the TILs.  
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Fig 8.1.1 Examples of NSCLC biopsies with minimal immune cell presence. A1-A2 – Generous 
biopsy with minimal TILs can be subtyped as an immune desert TME on H&E (A1) and PD-L1 
(22C3) (A2). B1-B2 – Minimal tissue in small biopsy with no tumour stroma by H&E (B1) and PD-
L1 (22C3) (B2). Despite being technically sufficient to make a diagnosis and to analyse PD-L1 
expression, there is insufficient tissue to accurately define the TME as an immune desert due to 
the absence of tumour stroma.   
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Fig 8.1.2 Examples of pleural biopsy with striking example of immune exclusion and PD-L1 
expression at the interface. A1-C1 – H&E A2-C2 – PD-L1 (SP263) expression. A – Low power view 
showing every deposit of metastatic NSCLC demonstrates the same pattern of immune 
exclusion. B-C – Higher power views. PD-L1 expression is mostly in TILs but there is also 
expression of PD-L1 in tumour cells at the interface between the tumour and excluded immune 
cells. 
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Fig 8.1.3 Example of pleural biopsy samples with infiltrating NSCLC metastases. A – Groups of 
tumour cells eliciting no apparent immune response. B – Infiltrating tumour cells with dense 
areas of lymphocytic infiltrate nearby.  

Fig 8.1.4 Admixed tumour and immune cells from pleural fluid sample by H&E (A) and PD-L1 
(22C3) (B). This specimen is not suitable to classify the TME due to admixing of cells and loss of 
tissue architecture. 



265 
 

8.1.4 Statistics 

Associations between PD-L1 expression as a continuous variable and outcome/events as defined in 

Table 8.1.0 was looked for by Spearman’s correlation and linear regression. Use of PD-L1 as a 

categorical variable was compared using cross tabulation and chi-squared analysis with Bonferroni’s 

corrected post-hoc analysis for multiple groups. Survival analysis was performed using Log Rank 

statistics to compare factors within Kaplan Meier analysis, and Cox Regression to generate hazard 

ratios. Forest plots for hazard ratios were generated for exploratory analyses of novel PD-L1 

categories. Univariate linear regression was performed in SPSS with subsequent multivariate linear 

regression to determine significant factors for the dependent variable (survival data). R² values, β co-

efficient values and p values are acquired from this method. All significances are taken as p<0.05.  

8.2 Results 

8.2.0 Demographic and pathological details of the CCC cohort 

A total of 308 patients from the CCC cohort were initially available. A total of 31 cases were excluded 

from further analysis as per exclusion criteria (PD-L1 negative (20) or insufficient tissue for PD-L1 IHC 

(11) and/or IM therapy other than pembrolizumab  (15) and/or harbouring EGFR mutations (4)). All 

remaining 277 patients were stage III or stage IV (all types) as per AJCC guidelines.641 Finally the 

cases were considered as both whole cohort, or divided into patients whom had received 

pembrolizumab first line (107 patients) and those whom had pembrolizumab in the second or third 

line setting following XCT (170 patients). A summary of the CCC cohort is shown in Table 8.2.0. For 

further tissue analysis, 168 blocks across 131 patients were available for retrieval, with 72 cases 

having H&E and PD-L1 (22C3) slides available for review. 

8.2.1 Assessment of PFS and OS in CCC cohort by conventional cut-offs 

The OS and PFS for the entire CCC cohort divided into patients with tumours being weak (1-49% TPS) 

or strong (≥50% TPS) expressors of PD-L1 is shown in Fig 8.2.0 and 8.2.1. The cohort defined as 

tumours with strong PD-L1 expression had a significantly superior OS (15.7 vs 12.3 months p=0.005) 

and PFS (12.9 vs 8.1 months p<0.001) than weak PD-L1 expression.  
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N % 

Median age (at diagnosis) 69 (Range 33-87) 

Gender 
  

Male 147 53 

Female 130 47 

ECOG Status 
  

0 72 26 

1 136 49 

2 64 23 

3 5 2 

OS status - dead 188 68 

Rapid progressors 48 17 

Hyperprogressors 12 4 

Mean number of IM cycles 6 (range 1-40) 

Pembrolizumab 1st-line 107  

Pembrolizumab 2nd-line 170  

irAE (any grade) 113 41 

Grade 3/4 Toxicity 35 13 

Morphology 
  

ADC 176 64 

SCC 91 33 

Other 10 4 

 

 

Table 8.2.0 Demographic and pathological details of the 277 included patients from the CCC 
cohort.   

Fig 8.2.0 OS in PD-L1 strong vs PD-L1 weak NSCLC patients treated with pembrolizumab. There 

was a significant improvement of OS in the strong expressors compared to the weak expressors 

(15.7 vs 12.3 months p=0.005). 

N=277 
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Utilising a ≥25% TPS to categorise patient tumours as PD-L1 positive showed a similar result: PD-L1 

‘positive’ patients had a superior OS (15.8 vs 14.4 months p<0.001) and PFS (11.7 vs 10.4 months 

p<0.001) than PD-L1 ‘negative’ patients, as shown in Fig 8.2.2 and 8.2.3. 

 

Fig 8.2.1 PFS in PD-L1 strong vs PD-L1 weak NSCLC patients treated with pembrolizumab. There 

was a significant improvement of PFS in the strong expressors compared to the weak expressors 

(12.9 vs 8.1 months p<0.001). 

Fig 8.2.2 OS in PD-L1 ‘positive’ (≥25% TPS) vs PD-L1 ‘negative’ (1-24% TPS) NSCLC patients 

treated with pembrolizumab. There was a significant improvement of OS in the ‘positive’ 

expressors compared to the weak expressors (15.8 vs 14.4 months p<0.001). 

N=277 

N=277 
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These results confirmed the expected outcome that the clinically validated cut-offs of PD-L1 

expression predict response to IM therapy in a NSCLC cohort. 

Only patients with a TPS of ≥50% received pembrolizumab first line, so no comparison could be 

made using the same cut-offs (1-49% and ≥50% TPS, or ≥25% TPS) for the 1st-line IM treated 

patients. However, this comparison was made in patients receiving IM therapy in the second or third 

line setting (2nd-line plus). The analysis of 2nd-line plus IM therapy group found there was no 

significant difference in OS (13.5 vs 12.3 months p=0.350) or PFS (9.7 vs 8.1 months p=0.127) in 

patients with tumours expressing ‘strong’ or ‘weak’ amounts of PD-L1. However, when utilising the 

≥25% TPS cut-off to define ‘positive’ in patients treated with pembrolizumab in the 2nd-line plus 

setting, the difference in OS approached but did not quite reach a significant improval in PD-L1 

‘positive’ patients (14.3 vs 11.1 months p=0.051), but did demonstrate a significant improval in PFS 

(10.4 vs 6.9 months p<0.004) (Fig 8.2.4)  

Fig 8.2.3 PFS in PD-L1 ‘positive’ (≥25% TPS) vs PD-L1 ‘negative’ (1-24% TPS) NSCLC patients 

treated with pembrolizumab. There was a significant improvement of PFS in the ‘positive’ 

expressors compared to the weak expressors (11.7 vs 10.4 months p<0.001). 

N=277 
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To correctly interpret the following section of results, a brief explanation follows: as the patients of 

the CCC cohort were treated with pembrolizumab utilising the 22C3 clone to determine PD-L1 status 

of the tumours, they  most closely resembled data from the Keynote-024 and Keynote-042 trials.46, 47 

However, it was only when utilising the ≥25% TPS cut-off, which was largely pioneered in the context 

of durvalumab and the SP263 clone,50 that a significant benefit in PFS (with a trend that neared 

significance for OS) was seen in the 2nd-line plus setting.  

This suggested that predictive power of PD-L1 IHC may not be limited to specific clones for specific 

PD-1/PD-L1 IM therapies, and that there may be advantages to utilising alternative PD-L1 ‘cut-offs’ in 

specific clinical settings, and therefore an exploratory analysis to further investigate this was 

performed. 

 

8.2.2 – Exploratory analysis of PD-L1 expression for OS and PFS 

The 170 patients from the CCC cohort whom received pembrolizumab in the 2nd or 3rd line setting 

were divided by their tumour PD-L1 TPS into 10% incremental groups with the OS and corresponding 

HR for each group calculated and plotted (Fig 8.2.5), followed by the PFS and corresponding HR (Fig 

8.2.6).  

Fig 8.2.4 PFS in PD-L1 ‘positive’ (≥25% TPS) vs PD-L1 ‘negative’ (1-24% TPS) NSCLC patients 

treated with pembrolizumab in the 2nd or 3rd line setting. There was a significant improvement of 

PFS in the ‘positive’ expressors compared to the weak expressors (10.4 vs 6.9 months p<0.004). 

N=170 
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Fig 8.2.5. The OS (A) and HR (B) for NSCLC patients divided by PD-L1 expression of their tumours 

into 10% incremental groups. The midline represents the median OS (A) or a HR of 1 (B).  

Although no statistical significance is seen, the trends show that above 20% there is a general 

improvement in OS with a slight reduction in the very highest PD-L1 expressors (71-80%, >90%).  



271 
 

 

 

The same cohort of 2nd-line plus treated patients were then divided into ‘positive’ for PD-L1 by 

dichotomous division of the cohort based on their tumour TPS expression using 10% increments, 

with the OS and corresponding HR for each group calculated and plotted (Fig 8.2.7), followed by the 

PFS and corresponding HR (Fig 8.2.8). 

Fig 8.2.6. The PFS (A) and HR (B) for NSCLC patients divided by PD-L1 expression of their tumours 

into 10% incremental groups. The midline represents the median PFS (A) or a HR of 1 (B).  The 1-

10% group has a statistically significant worse PFS. Higher categories of PD-L1 show only trends, 

with a general increase in PFS seen in the >20% groups. Unlike OS for the same categories, there 

is no trend towards a decreasing PFS seen in the highest expressors.   
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The data generated from the exploratory analysis fits with the earlier observation that a ≥50% TPS 

threshold may not be the optimal cut-off in predicting response to IM therapy specifically within the 

2nd line setting, and that other thresholds may yield finer predictive power. Interestingly, when 

splitting the cohort into 10% TPS groups, there is a general improvement seen above low levels of 

PD-L1 expression, but there is no further improvement in OS or PFS with increasing levels of PD-L1; 

the relationship between PD-L1 expression and survival is not linear. Indeed the very highest 

expressors showed perhaps a slight reduction in OS.  

 

Fig 8.2.7. The OS (A) and HR (B) for NSCLC patients divided into ‘positive’ by increasing 

thresholds at 10% intervals. The midline represents the median OS (A) or a HR of 1 (B).  No 

statistical significance is seen, but when raising the threshold of ‘positive’ the very high 

expressors have a slight trend towards a lower OS.  
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To further investigate this, a novel categorisation of ‘Very Weak’ (1-20% TPS), ‘Moderate’ (21-79% 

TPS) and ‘Very Strong’ (80-100% TPS) PD-L1 expressors based on patients’ tumour PD-L1 expression 

levels was generated to explore the possibility that further subdivisions, particularly at the highest 

levels of PD-L1 expression, may yield additional predictive value.  

The OS for the moderate PD-L1 expressors was significantly longer than the very weak PD-L1 

expressors (15.2 vs 11.2 months p=0.029) and trended non-significantly towards longer OS than the 

very strong expressors (15.2 vs 12.8 months p=0.301)There was however no significant difference in 

Fig 8.2.8. The PFS (A) and HR (B) for NSCLC patients divided into ‘positive’ by increasing 

thresholds at 10% intervals. The midline represents the median PFS (A) or a HR of 1 (B).  A 

statistically significant improval in PFS and HR is seen when using lower thresholds to determine 

PD-L1 ‘positive’ relative to PD-L1 ‘negative’ in the same cohort (≥10%, ≥20% ≥30% and ≥40%) 

with no change between ‘positive’ and ‘negative’ patients seen when using higher thresholds. 
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OS between the very strong and very weak PD-L1 expressors (12.8 vs 11.2 months p=0.408). Results 

shown in Fig 8.2.9.  

 

 

 

 

The PFS for the moderate and very high expressors were both significantly higher than the very weak 

expressors (10.0 vs 11.0 vs 6.9 months p=0.013), but there was no significant difference between 

very strong and moderate expressors for PFS (11.0 vs 10.0 months p=0.652). Results shown in Fig 

8.2.10. 

 

The 1st-line IM treated cohort was then assessed using similar categories based on their tumours 

demonstrating moderate (50-79%) or very strong (80-100%) PD-L1 expression . The very highest PD-

L1 expressors in the 1st-line setting had a significantly improved OS (19.2 vs 13.3 months p=0.009) 

and PFS (15.3 vs 8.0 p=0.001) compared to the moderate expressors. Results shown in Fig 8.2.11 and 

Fig 8.1.12.  

 

Fig 8.2.9 OS in PD-L1 ‘Very Strong’ (80-100% TPS) vs PD-L1 ‘moderate’ (21-79% TPS) vs PD-L1 

‘Very Weak’ (1-20% TPS) NSCLC patients treated with pembrolizumab in the 2nd or 3rd line 

setting. There was an overall trend towards different OS (15.2 vs 12.8 vs 11.2 months p=0.098) 

for all groups with significantly longer OS between the moderate and weak expressors (p=0.029) 

and no significant difference in OS between the very weak and very strong (p=0.408) 

N=170 
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Fig 8.2.10 PFS in PD-L1 ‘Very Strong’ (80-100% TPS) vs PD-L1 ‘moderate’ (21-79% TPS) vs 

PD-L1 ‘Very Weak’ (1-20% TPS) NSCLC patients treated with pembrolizumab in the 2nd or 3rd 

line setting. There was an overall significant difference in PFS (11.0 vs 10.0 vs 6.9 p=0.013) 

for all groups with significantly longer PFS between the moderate and weak expressors 

(p=0.019) and the very strong and very weak expressors (p=0.019) but no significant 

difference in OS between the moderate and very strong (p=0.652) 

Fig 8.2.11 OS in PD-L1 ‘Very Strong’ (80-100% TPS) vs PD-L1 ‘moderate’ (50-79% TPS) NSCLC 

patients treated with pembrolizumab in the 1st line setting. There is a significant improval in OS 

for the very high expressors (19.2 vs 13.3 months p=0.009).  

N=170 

N=107 
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8.2.3 Relationship of irAEs, PD-L1 expression and treatment response 

The entire CCC cohort was split into patients who had an irAE and those that did not. There was a 

significant increase in average OS (14.5 vs 10.1 months p<0.0001) and average PFS (10.9 vs 7.0 

months p<0.001) for the group that suffered irAEs. There was no difference between low grade 

(Grade 1/2 toxicity) and high grade (Grade 3/4 toxicity) in predicting OS (14.6 vs 14.7 months 

p=0.997) or PFS (10.9 vs 11.1 months p=0.985).  

The 2nd-line plus treated cohort also demonstrated a significant improval in average OS (13.8 vs 9.3 

months p<0.0001) and PFS (9.5 vs 6.1 months p<0.001) for the patients that suffered irAEs 

compared to those that did not.  

The entire CCC cohort also demonstrated a significant difference in irAEs when split by RECIST 

criteria, with progressive disease associated with fewer irAEs relative to the other groups (PD 23.3% 

vs CR 40%, PR 61%, SD 49% p<0.0001). Partial responders also had statistically significant higher 

rates of irAEs (61% p=0.001).The 2nd-line plus IM treated cohort demonstrated a significant 

difference in irAEs when split by RECIST criteria, with progressive disease associated with fewer irAEs 

relative to the other groups (PD 25.7% vs CR 62.5%, PR 58.3%, SD 56.4%, p=0.002) and a non-

Fig 8.2.12 PFS in PD-L1 ‘Very Strong’ (80-100% TPS) vs PD-L1 ‘moderate’ (50-79% TPS) NSCLC 

patients treated with pembrolizumab in the 1st line setting. There is a significant improval in PFS 

for the very high expressors (19.2 vs 13.3 months p=0.009).  

N=107 
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statistically significant trend towards higher rates of irAEs in the partial responders (58.3% p=0.231) 

and complete responders (62.5% p=0.368).  

When considering the relationship between PD-L1 expression and irAEs in the 2nd-line plus treated 

cohort, by dividing the cohort into 10% TPS groups, there was no significant relationship noted (Chi-

Squared p=0.248), with around 40-50% of all patients suffering some form of irAE regardless of PD-

L1 expression (Table 8.2.1) 

 
irAE Total 

N Y 
 

PDL1 
Status 

1-10% Count 36a 35a 71 

Adjusted Residual -1.6 1.6 
 

11-20% Count 6a 4a 10 

Adjusted Residual 0.1 -0.1 
 

21-30% Count 11a 2b 13 

Adjusted Residual 2.0 -2.0 
 

31-40% Count 5a 3a 8 

Adjusted Residual 0.3 -0.3 
 

41-50% Count 5a 5a 10 

Adjusted Residual -0.5 0.5 
 

51-60% Count 5a 5a 10 

Adjusted Residual -0.5 0.5 
 

61-70% Count 8a 3a 11 

Adjusted Residual 1.0 -1.0 
 

71-80% Count 4a 7a 11 

Adjusted Residual -1.5 1.5 
 

81-90% Count 13a 4a 17 

Adjusted Residual 1.6 -1.6 
 

91-
100% 

Count 6a 4a 10 

Adjusted Residual 0.1 -0.1 
 

Total Count 99 72 171 

Pearson Chi-Square p=0.248 

 

8.2.4 Relationship of ECOG-PS and IM cycles, PD-L1 expression and treatment response 

The entire CCC cohort was divided by ECOG status; there was no significant difference in average OS 

(11.6 vs 12.0 vs 11.8 vs 14.1 months p=0.885) or PFS (8.6 vs 8.7 vs 8.3 vs 11.9 months p=0.723). It 

also worth noting, however, that only 5 patients in the entire cohort were ECOG status of three. The 

2nd-line IM treated cohort was also divided by ECOG status (excluding the single patient with ECOG 

Table 8.2.1 NSCLC patients treated 2nd-line plus with pembrolizumab divided into groups 

determined by their tumours expressing PD-L1 in 10% TPS increments compared for the rate of 

irAEs. No statistically significant change in the rate of irAEs is seen across the cohort when split 

by PD-L1 TPS.  
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status of 3), and saw a non-significant trend in decreasing OS (11.9 vs 10.9 vs 10.1 months p=0.399) 

and a statistically significant reduction in PFS (8.1 vs 7.3 vs 6.7 p=0.04) with poorer performance 

status.  

When considering the relationship between PD-L1 expression and ECOG status in the 2nd-line plus IM 

treated cohort, by dividing the cohort into 10% TPS groups, there was no significant relationship 

noted (Chi Squared p=0.464) with a generally equal split of ECOG status in each group (Table 8.2.2) 

 
 

ECOG Total 

.00 1.00 2.00 

PDL1 1-10% Count 24a 34a 12a 70 

Adjusted Residual 0.3 0.3 -0.8 
 

11-20 Count 3a 7a 0a 10 

Adjusted Residual -0.2 1.5 -1.6 
 

21-30 Count 4a 4a 5a 13 

Adjusted Residual -0.2 -1.2 1.7 
 

31-40 Count 3a 4a 1a 8 

Adjusted Residual 0.3 0.2 -0.5 
 

41-50 Count 2a 4a 4a 10 

Adjusted Residual -0.9 -0.5 1.6 
 

51-60 Count 6a 2a 2a 10 

Adjusted Residual 1.9 -1.8 0.0 
 

61-70 Count 2a 7a 2a 11 

Adjusted Residual -1.1 1.1 -0.2 
 

71-80 Count 2a 7a 2a 11 

Adjusted Residual -1.1 1.1 -0.2 
 

81-90 Count 6a 6a 5a 17 

Adjusted Residual 0.2 -1.0 1.0 
 

91-10 Count 4a 5a 1a 10 

Adjusted Residual 0.5 0.2 -0.8 
 

Total Count 56 80 34 170 

Pearson Chi-Square p=0.464 

 

The association with the number of IM cycles received and its association with survival data was 

looked for in the entire CCC cohort and showed that higher numbers of IM cycles received was 

associated with improved OS (adjusted R² 0.522, β 6.316 p<0.0001) and PFS (adjusted R² 0.661, β 

2.422 p<0.0001). There was also a statistically significant but very weak positive correlation between 

the number of cycles received and PD-L1 TPS (Spearman’s correlation 0.178 p=0.003).  

Table 8.2.2 NSCLC patients treated 2nd-line plus with pembrolizumab divided into groups 

determined by their tumours expressing PD-L1 in 10% TPS increments and compared by ECOG 

status. No statistically significant change in performance status as PD-L1 TPS changes was noted.  
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The number of IM cycles received and the association with survival data was looked for in the same 

way in the 2nd-line plus IM treated cohort and showed that higher numbers of IM cycles received 

was associated with improved OS (adjusted R² 0.619, β 5.582 p<0.0001) and PFS (adjusted R²0.697, 

β1.715 p<0.0001). There was no statistically significant relationship between the number of cycles 

received and PD-L1 TPS in the 2nd-line IM treated cohort, however. (Spearman’s correlation 0.103 

p=0.181). 

 

8.2.5 Univariate and multivariate linear regression modelling 

In the entire CCC cohort, the association of PD-L1 expression with survival data was looked for with 

univariate linear regression modelling, and was found that increasing PD-L1 expression was a 

significant predictor of improved OS (adjusted R²=0.018, p=0.014) and increased PFS (adjusted 

R²=0.05 p<0.001).  

Multivariate linear analysis included PD-L1 expression, number of IM cycles, ECOG status, gender, 

patient age, tumour morphology, irAEs and whether IM therapy was received 1st line or 2nd-line plus 

was then looked for in regards to predicting survival outcome.  

The occurrence of an irAE, PD-L1 status and the number of IM cycles received were all statistically 

significant predictors of PFS (irAE β 2.16 p<0.0001; PD-L1 β 1.58 p=0.05; IM cycles β 0.57 p<0.0001). 

Interestingly, although receiving IM therapy 1st or 2nd line was not found to be a statistically 

significant predictor (β 0.64 p=0.284), removing it from the model overestimated the impact of PD-

L1 expression (PD-L1 β 2.06 p=0.002), highlighting the value of this data point. Gender, morphology, 

age and ECOG status were not statistically significant predictors of PFS. The impact of combining the 

combined significant predictors and the non-significant predictors of PFS are shown in Fig 8.2.13.  

 

For OS, the occurrence of irAEs and number of cycles received were both statistically significant 

predictors of OS (irAE β 2.96 p<0.0001; IM cycles β 0.531 p<0.0001) but PD-L1 expression was not a 

predictor of OS (β 0.367, p=0.714). Removing 1st/2nd line IM data again saw a trend towards 

overestimating the impact of PD-L1, but did not reach significance. (β 0.978 p=0.243) Gender, 

morphology, age and ECOG status were not statistically significant predictors of OS.  

 

In the 2nd-line plus IM treated cohort, the association of PD-L1 expression and survival was looked 

for with univariate linear regression modelling, and was found to have no association with OS 

(adjusted R²=0.018, p=0.674) or PFS (adjusted R²=0.015 p=0.294).  
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Fig 8.2.13 Multivariate analysis predicted values as a function of predicting PFS by combining the 

significant factors (A) and the non-significant factors (B). A model that accounts for 70.4% of 

variance can be achieved using the variables PD-L1 status, irAEs and number IM cycles.  
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Multivariate linear analysis included PD-L1 expression, number of IM cycles, ECOG status, gender, 

patient age, tumour morphology and irAEs was then looked for in regards to predicting survival 

outcome.  

Only the number of cycles was a statistically significant predictor of PFS (β 0.620 p<0.0001), but both 

the number of cycles and the occurrence of irAEs were statistically significant predictors of OS 

(cycles β 0.598 p<0.0001; irAE β2.111 p=0.004). PD-L1 expression, gender, morphology, ECOG status 

and age were not significant predictors of survival outcome in the 2nd-line plus IM treated cohort in 

this multivariate analysis.  

 

8.2.6 Pathological assessment of CCC cohort tumours 

A total of 72 cases from the CCC cohort had tissue stained for 22C3 and for which the slides were 

available for analysis. These represented a variety of cases (Table 8.2.3). In addition to a modest 

number of resections, these samples were composed of biopsies of primary tissue, as well as some 

cytology specimens, pleural biopsies and samples from distant metastases.  

The distinction of immune TMEs based on H&E was limited to primary NSCLC biopsy or resection 

specimens, and other specimens simply noted as having lymphocytes present or absent, if suitable. 

Of the 72 cases, only 60 were of primary tissue, but only 34 (47%) met the inclusion criteria for 

subtyping the immune TME. Dividing the cohort into immune infiltrated, excluded and desert TMEs 

found no significant difference in PFS (26 vs 25 vs 22 months χ² value = 1.05 p=0.594) or OS (34 vs 27 

vs 33 months, χ² value = 2.42 p=0.298), and further subdivisions of the TMEs integrating PD-L1 status 

had no significant change on PFS or OS. Immune excluded TMEs had fewer irAEs than immune 

infiltrated and immune desert TMEs, (37% vs 44% vs 50% respectively, p=0.689) and had no Grade 

3/4 irAEs, (0% vs 15% vs 17% respectively, p=0.182), but neither of these trends were significant.  

In regards to best response, there was no statistical difference between immune TMEs for complete 

response, partial response, stable disease or progressive disease by RECIST criteria (p=0.394), 

although it is interesting to note that all cases of complete response were immune infiltrated TMEs. 

The hyperprogressive disease cases were all either immune infiltrated or immune excluded, 

although this was not statistically significant (13% vs 10% vs 0% p=0.648 infiltrated, excluded, desert 

TMEs respectively). There was also no statistical difference in the number of cycles of IM therapy 

tolerated by patients between immune TMEs (average IM cycles tolerated 11 vs 14 vs 10 p=0.552 

infiltrated, excluded and desert TMEs respectively). Further subdivisions of the TMEs integrating PD-

L1 status had no significant change on any of these outcomes.  
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A simpler classification of lymphocytes ‘present’ or ‘absent’ within the specimens was looked for 

across all samples, with 40 cases (56%) meeting the inclusion criteria for this. There was no 

significant difference in ‘lymphocyte present’ cases for PD-L1 high (≥50%) compared to PD-L1 low (1-

49%): (68% vs 63% p=0.717). Very high PD-L1 expressers (≥61%) had fewer ‘lymphocyte present’ 

cases than moderate PD-L1 expressers (10-60%), but this was not significant, (10% vs 33% p=0.068). 

There was also  no difference in OS (13.8 vs 13.7 months p=0.815) or PFS (11.5 vs 10.8 months 

p=0.821) when dividing the cohort into lymphocytes ‘present’ or ‘absent’. 

Specimen Type N % 

Primary Biopsy 41 57 

Primary Resection 16 22 

EBUS FNA 3 4 

Pleural Fluid 2 3 

Pleural Biopsy 8 11 

Distant metastases 2 3 

   

Cellular Content   

Good 19 26 

Moderate 21 29 

Low 32 44 

   

TME (1ry only)   

Infiltrated 21 36 

Excluded 17 29 

Desert 7 12 

Unassessable 14 24 

   

Lymphocytes (Other)   

Present 5 33 

Absent 3 20 

Unassessable 7 47 

   

PD-L1 status   

<1% 4 6 

1-19% 25 35 

20-79 28 39 

≥80% 15 21 

Finally, differences in toxicity by TME type were looked for. There was no statistical difference 

between immune infiltrated, excluded and desert TMEs for irAEs (43% vs 22% vs 40% p=0.358) or 

grade 3/4 toxicities (10% vs 6% vs 15% p=0.625). There was no statistical difference between 

lymphocytes ‘present’ or ‘absent’ for irAEs (33% vs 40% p=0.613) or for grade 3/4 toxicities (8% vs 

15% p=0.379).  

Table 8.2.3 NSCLC cases from the CCC cohort with specimens available for PD-L1 analysis and immune TME 
subtyping. Specimen location, cellular content, PD-L1 expression and immune TME subtypes are shown. 
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8.3 Discussion 

Predicting response to PD-1/PD-L1 IMs so as to guide management of patients before any systemic 

treatment is commenced is a vitally important piece of information to acquire from initial diagnostic 

material. Unfortunately, the nature of sampling lung masses in the routine clinical setting often 

produces specimens that have limited tissue and are therefore difficult to perform extensive testing 

on. In addition, even if relatively generous, the use of specimens that have lost morphological 

architecture, contain no stroma, are from lymph node metastases or other metastatic sites, are all 

potential limitations in the ability to interrogate the type of immune TME. Simple H&E is unlikely to 

provide the required detail to subtype TMEs even if of primary NSCLC. A tumour with dense 

lymphocytic infiltration, even in the context of high PD-L1, does not necessarily convey a high 

probability of response to IM therapy, as the nature and type of the T-cells present are unknown 

without extensive further immune cell markers. As diagnostic material may be small, the precious 

tissue available must be used in the most efficient manner so as to predict response to treatment. As 

such, anything than can improve predictive power that utilises current methods without requiring 

additional tests is a valuable asset. 

8.3.0 PD-L1 positive – What cut-off? 

PD-L1 IHC is the only clinically validated biomarker for predicting response to PD-1/PD-L1 IMs, but an 

important question remains unanswered; why is PD-L1 expression by IHC inconsistent as a predictive 

biomarker?  This thesis has explored many reasons for this: pre-analytical, analytical and post-

analytical variables, tumour heterogeneity and PD-L1 expression in the context of different immune 

TMEs, but the fact remains that the predictive power of PD-L1 expression by IHC varies between 

clinical trials and patient cohorts. 46, 47, 49, 663 

A potential solution may lie in a simple question: are we defining ‘PD-L1 positive’ correctly? In NSCLC 

a ≥1% TPS cut-off is typically used, with ≥50% used to define ‘strong positive’, and it might therefore 

be reasonable to assume that particularly high expressers drive the majority of the most favourable 

responses to IM therapy. In this study, results across the entire cohort fitted in with the previous 

findings of the seminal clinical trials that higher PD-L1 expression is broadly associated with better 

response to IM therapy. 46, 47, 49 When splitting the cohort into 1st line only patients, further evidence 

that the highest expressors responded most favourably to IM therapy was seen. However, the 2nd-

line plus IM treated cohort was more difficult to predict. Very weak expressors (approximately less 

than 20-25% TPS) were indeed associated with poorer response to IM therapy, both in regards to OS 

and PFS. However, there was no further benefit noted above this cut-off, and indeed data from this 

sub-cohort suggested that perhaps the very highest PD-L1 tumours conveyed a slightly poorer OS to 
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patients treated with PD-1 IM, even if the PFS remained relatively unchanged. Using PD-L1 as a 

continuous variable also demonstrated it had no statistically significant predictive power in the 2nd-

line plus IM treated cohort.  

Taking these findings together, it would suggest that, in the 2nd-line setting particularly, there is not a 

linear relationship between PD-L1 TPS and response to IM therapy. If patients were categorised by 

their tumours by PD-L1 expression into a ‘moderate TPS’ group within the 2nd-line plus IM cohort, it 

was noted that they were associated with a superior OS compared to the ‘very high’ expressors, 

albeit, non-significantly. In addition, whilst the ‘moderate’ expressors had a superior OS compared to 

the ‘very weak’ expressors, the ‘very strong’ group did not. Again, a reduction in PFS was noted only 

for the ‘very weak’ group. These findings further suggest that the ‘high’ PD-L1 expressors should not 

be considered as a homogenous group in terms of response, and that treatment response is not 

necessarily driven by the highest of PD-L1 expressing tumours.  

A change in OS but not PFS would suggest survival differences that are not entirely attributable to 

tumour response to therapy. Therefore the difference in OS is likely to be in part related to three 

areas in the context of IM therapy: irAEs, co-morbidities and the general immune status of the 

patient. The latter is a difficult metric to quantify, and indeed all cancer patients could arguably be 

considered as having impaired immune responses.664 However, irAEs and co-

morbidities/performance status were both measured in this cohort. ECOG PS was associated with a 

change in PFS, but not OS, in the 2nd-line plus cohort, but there was an equal distribution of ECOG 

status amongst differing PD-L1 expressors. A similar observation was noted for irAEs; whilst their 

presence was generally associated with superior survival outcomes, there was an equal occurrence 

of irAEs amongst the different PD-L1 expressing groups. PD-L1 thus remains a biomarker related to, 

but independent of, these other factors.  

This provides evidence that the current clinical approach of using PD-L1 expression as a categorical 

variable will provide good predictive power, but that using PD-L1 as a linear continuous variable is 

less robust. However, whilst the weakest PD-L1 expressing tumours are generally consistent in their 

relatively poor response to IM therapy, these findings also suggests the need to further investigate 

the observation that the highest PD-L1 expressors are potentially associated with poorer survival 

outcomes relative to moderate PD-L1 expressors in some patient cohorts.  
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8.3.1 PD-L1 TPS as a marker of reactive or constitutive expression 

Intuitively very high PD-L1 expressers should represent a group of tumours for which PD-L1 

expression represents the main method of immune escape. However, although the PD-L1/PD-1 

mediated inhibition of T-cells is the main target of PD-1/PD-L1 IMs, long-term inhibition of cytotoxic 

T-cells can result in extreme T-cell exhaustion and anergy, unrecoverable even with the aid of 

immune checkpoint inhibition,246, 665, 666 and very high expressers of PD-L1 may therefore reflect 

more instances of this extreme T-cell dysfunction. In addition, PD-L1 mediated signalling has 

functions outside of direct T-cell inhibition and, importantly, by PD-1 independent mechanisms in 

some circumstances; including inducing anti-apoptotic survival,166 acting as a direct defence against 

IFN-γ,167 and inducing mTOR mediated survival in tumours cells169, 170 and so very high PD-L1 

expressing tumours may also reflect tumours resistant to IM therapy in a PD-1 independent fashion. 

It is also worth noting data from Chapter 7 that demonstrated in the LLP cohort that PD-1 levels had 

the weakest correlation with PD-L1, and there was no significant difference in PD-1 levels between 

high and low categories of PD-L1 expression, in contrast to other T-cell markers.  

As such, very high levels of PD-L1 expression may reflect a TME that contains three factors that will 

minimise response to IM therapy: severely dysfunctional T-cells unrecoverable by IMs, non PD-1 

mediated tumour cell survival, and relatively low levels of PD-1, all of which will limit the efficacy of 

treatment by PD-L1 IMs, but the latter two will particularly limit the function of PD-1 IMs, an 

important point as the included patients from the CCC cohort were treated by pembrolizumab, an 

anti-PD-1-mAb. In addition, a dominant tumour cell clone with constitutive expression of PD-L1 may 

result in a homogenous, very high level of PD-L1 expression, but would not be a candidate for 

response to treatment by IMs. As the majority of PD-L1 expression is thought to be reactive,563, 564 

however, this is only likely to play a minor role in the very high expressing group, but this may still 

reflect a small but important number of tumours within this category.  

Conversely, moderate PD-L1 expressers might represent tumours for which PD-L1 expression is 

reactive and plays a major immune escape role, but in which T-cells are not so dysfunctional they 

cannot be reactivated by IM therapy, and in which there is less pro-tumoural activity by PD-L1 via 

alternative mechanisms. Very low PD-L1 expressers are on average likely to only partially respond to 

PD-1/PD-L1 IMs on the basis that these represent tumours for whom PD-L1 expression is part of 

their mechanism of immune escape, but also includes tumours for which PD-L1 expression is 

minimal as a result of small numbers of clones constitutively expressing it.   

The weakest expressors of PD-L1 have remained as those least likely to respond to PD-1/PD-L1 

therapy, most likely as a result that PD-L1 is only a minor part of their immune escape mechanism. 
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Indeed this observation was true across the entire cohort. However, an important observation is 

that, in contrast to the 2nd-line plus IM treated patients, the 1st-line IM treated patients appeared to 

have a consistent relationship between PD-L1 expression and treatment response. The cause for the 

discrepancy between 1st-line and 2nd-line plus IM treated patients is not clear, but may be related to 

the fact that 2nd-line treated patients have had their tumours for longer, and thus potentially 

allowing tumours to develop more alternative immune escape mechanisms and resistances. For 

example, T-cell exhaustion takes time, 612, 667 and it is therefore expected that ‘older’ tumours may 

have more robust or complex TMEs that are less susceptible to treatment with single agent IMs. In 

addition, the major clinical difference is that the 2nd-line plus IM treated patients have received XCT 

first. Whilst the impact on XCT on PD-L1 expression specifically has showed mixed results, 418-420 it is 

generally accepted that XCT impairs the overall immune function of patients receiving it.668-670 

Contemporary studies looking at the potential of stimulating immune response prior to IM therapy 

with XCT acknowledge the complexity of this process. 671 It is therefore likely that a combination of 

these factors at least partially contribute to the difference between 1st-line and 2nd-line plus cohorts. 

As 2nd-line patients generally have poorer outcomes, it is an important observation that PD-L1 

expression should perhaps be treated slightly differently in these patients.  

Although by necessity this cohort has excluded the PD-L1 negative tumours, (<1% TPS), it seems 

reasonable to state that genuinely negative tumours are likely to remain poor candidates for 

response to PD-1/PD-L1 IMs. It is an intriguing notion that further subdivision of the high PD-L1 

expressing tumours may better yield predictive power, but in this cohort many of the trends were 

not significant, and in reality additional biomarkers beyond PD-L1 expression will still be required.  

8.3.2 Using the TME to predict response 

In Chapter 7, I proposed a method of differentiating reactive from constitutive PD-L1 expression by 

the presence of various TILs within the TME. A logical extension of this is to consider how to apply 

these findings to specimens available in routine clinical practice. Perhaps the most important 

observation was how few specimens had suitable tissue for subtyping the immune TME. Excluding 

lymph node samples and biopsies without stroma as a minimum, only around half of cases were 

suitable, and if excluding resection specimens (for which PD-L1 is now rarely performed in the 

advanced disease setting and clearly not an option for initial diagnostic tissue) less than a third of 

specimens were suitable. Whilst attempting to score TILs in solid tumours, including lung ADCs, has 

been the subject of much previous work, 672, 673 with it having the potential to be combined with 

digital pathology and algorithm assessment, 674 almost the entirety of these studies were performed 

on significant quantities of tumour, and in the lung cancer setting specifically virtually always on 
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resection specimens. Small samples, such as cytology specimens and small biopsies, present a robust 

challenge: an initial diagnosis is largely possible but there may be insufficient tissue for molecular 

profiling of driver mutations and PD-L1 expression, and despite careful handling, a small number of 

specimens remain unsuitable for these analyses.675, 676 Furthermore, due to tumoural heterogeneity, 

these very small samples may not be fully informative of the tumour, particularly in regards to 

predicting response to treatment.386, 677 As more immune-checkpoint inhibitors are developed, it 

seems reasonable to assume the number of predictive assays may increase, and the value of 

determining the type of immune TME may increase as a pan-IM predictor of response. Combined 

with the push towards NGS panel testing for molecular profiling, which requires more tissue than 

single-driver analysis, there is a strong argument to push for significant increases in tissue quantity 

when sampling NSCLC patients.678, 679 Cost, access and patient eligibility are all things that need to be 

taken into consideration, but it is interesting to note the recent coronavirus (COVID-19) pandemic 

has seen a sharp rise of CT-guided biopsies at our centre, in lieu of the normally large number of 

EBUS acquired samples, with the former generally providing more generous samples of tumour. A 

change in sampling born of necessity could perhaps be an argument to change approaches in 

sampling for optimised profiling.  

In the meantime, however, the subtyping of immune TMEs is likely to be accurate only in very 

generous primary tumour biopsies or patients undergoing surgical resection. As such, PD-L1 IHC 

remains a standalone test that can be easily applied to all tissue; therefore if the observation holds 

that moderate expressers of PD-L1 do indeed represent a group most likely to benefit from PD-1 

(and perhaps PD-L1) IM therapy, in the 2nd-line plus setting, this would be an important and simple 

improvement in predictive profiling.  

8.3.3 Predicting toxicity from PD-L1 expression 

irAEs are common in patients treated with IMs. Incidence of irAEs vary considerably between studies 

and databases, but as many as 70-90% of patients will suffer some form of irAE, with the commonest 

being skin rashes, thyroiditis, pneumonitis and colitis, resulting in a broad array of complications 

ranging in severity, including a number of relatively uncommon fatal irAEs including pancreatitis, 

stroke, MI, sepsis, PE, myocarditis and long-term conditions including diabetes mellitus and pancreas 

dysfunction.680-683  

Much work on IM therapy has looked at CTLA4 inhibitors specifically (as they have been in clinical 

use longer than PD-1/PD-L1 IMs), although CTLA4 and PD-1/PD-L1 IMs typically have distinct pattern 

of irAEs to each other680, 684, 685 and whilst frequency of irAEs are associated with clinical response to 

PD-1/PD-L1 IMs, this relationship is much less consistent for CTLA4 inhibitors.680, 683 It is a general 
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observation, however, that the combination of PD-1/PD-L1 IMs with CTLA4 IMs significantly increase 

the risk of irAEs over monotherapy.686, 687 There are few head to head comparisons of PD-1 and PD-

L1 IMs for irAEs, although a meta-analysis of 19 RCTs found that although treatment with anti-PD-1 

mAbs resulted in superior PFS and OS than anti-PD-L1 mAbs, there was no statistical difference in 

safety profiles or toxicity.688 Nonetheless, despite these distinct patterns of irAEs between IMs, and 

the differences in normal functioning between PD-1 and CTLA4, there are likely to be some overlaps 

in the mechanisms of irAEs between IM types,680, 683 and important lessons to be learnt from all 

classes of IMs.  

irAEs likely occur as a result of auto-immune dysfunction from the deregulation of normal immune 

checkpoint function subsequent to treatment with IMs. Normal immune tolerance is characterised 

by a lack of T-cell activity against host cells whilst maintaining the ability to mount a robust defence 

against foreign cells.689 This process is primarily regulated by the thymus on naïve T-cells, but is also 

controlled on peripheral T-cells by a variety of mechanisms, including the expression of immune 

checkpoints by certain host cells. Several mechanisms have been proposed as to how treatment with 

IMs results in auto-immunity dysfunction. One is that certain patients have underlying, subclinical 

auto-immunity characteristics, and that the IMs tip the balance in favour of overt auto-immune 

disease, although there is little evidence that analysis of pre-existing autoantibodies and single-

nucleotide polymorphisms associated with auto-immune disease can predict response to irAEs.680 

Other proposed mechanisms of toxicity are related to the function of anti-tumour immune cell 

behaviour evoked by IM therapy. CTLA4 IMs results in T-cells being easier to activate, and has been 

shown to result in increased diversification of circulating T-cells, a process which correlates with 

increased irAEs in patients treated with CTLA4 IMs, but is also linked to improved response to 

treatment.690, 691 A particularly interesting proposed mechanism of toxicity is that of loss of self-

tolerance as a result of epitope spreading.680, 692, 693 Epitope spreading is the concept that initial 

immune responses targeted against a specific epitope of a protein can be diversified to include other 

epitope regions on the same or different proteins in order to enhance an immune response, and has 

been associated with deleterious effects in auto-immune disorders, and beneficial outcomes, for 

example following the administration of a vaccine.692 Epitope spreading maybe beneficial to an 

immune response targeted against a tumour, in which multiple neoantigens can become the target 

of T-cells, but may also result in an increased risk of self-antigens becoming targets of T-cells, and 

the auto-immune disease process that this entails.680 

In both of these latter instances, the mechanisms that contribute to anti-tumoural efficacy of IMs 

also contribute to the increased likelihood of auto-immune activity, and this fits the data in this 
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cohort in that the same patients who respond most favourably to PD-1 IMs are also the patients with 

the highest risk of suffering irAEs, an observation seen in several previous studies.121, 658-662  

8.3.4 Predicting toxicity from the TME 

As with predicting response to treatment, the prediction of irAEs may well be further enhanced via 

subtyping of immune TMEs. Previous studies have highlighted the importance of immune cells and 

markers for irAEs; Oh et al. 2017 found that an immediate diversification of T-cells after 

commencement of CTLA4 inhibitors may be an indicator of irAEs,691 Schindler et al. 2014 and Tarhini 

et al. 2015 found increased IL-17 and eosinophils were related to irAEs from CLTA4 inhibitors in 

melanoma patients,694, 695 and Ke et al. 2020 has demonstrated a potential role for IL-6 for predicting 

irAEs in NSCLC.696 Robust and reliable biomarkers of irAEs, particularly for PD-1/PD-L1 IMs, remain 

elusive, and like predicting response to treatment in this cohort, division of immune TMEs by H&E 

alone did not see any predictive power in anticipating irAEs. It is probable further interrogation of 

the TME could result in better prediction of irAEs, but small biopsies and cytology specimens are 

unlikely to provide the necessary quantity and quality of tissue to provide such clarification. Several 

major recent reviews and meta-analyses have summarised potential markers of response to irAEs, 

but PD-L1 expression does not appear to have been looked for as a potential candidate, or these 

data have not been reported.682, 683, 697, 698 However, given the high correlation of response to PD-

1/PD-L1 IMs and irAEs, an eloquent and simple solution maybe the use of moderate PD-L1 

expressing categories to predict toxicity, as well as clinical response. As discussed already, relatively 

few samples in the CCC cohort would be suitable for such in-depth analysis, but this is an area of 

potential future work.  

An intriguing additional possibility is the use of circulating biomarkers in conjunction with tissue to 

predict response and toxicity. This is an area explored in more detail in Chapter 9, but the role of 

circulating markers in predicting irAEs has shown promise in several studies,699-701 and may prove to 

be a key metric to use alongside tissue pathology.  

8.3.6 Limitations 

Limitations with work in this chapter include the nature of the specimens available to me. This does 

however neatly reflect the challenge of using routine diagnostic specimens from NSCLC patients and 

emphasise the issues with the often paltry quantities of tissue we receive. The use of novel 

categories for defining tumour PD-L1 expression as  ‘moderate’, ‘very strong’ and ‘very weak’ is 

based largely on trends within a relatively modest sized cohort, many of which are not significant, 

and the possibility these trends may not be observed in larger, independent cohorts is a possible 
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scenario. Nonetheless, it is well established that some patients with strongly PD-L1 positive tumours 

may not respond to PD-1/PD-L1 IM therapy, so the discussion as to why this may be, and how 

perhaps the highest expressors are the exemplars of specific resistance mechanisms, remains a valid 

area.  

8.3.5 Conclusion 

The CCC cohort is arguably the most powerful cohort I have access to, and certainly provides the 

greatest data on predicting response to treatment by PD-1/PD-L1 IMs. In-depth and complex 

analysis of the TME of tumours will hopefully reveal greater predictive power of clinical response 

and irAEs, but it is likely many specimens received for new diagnoses of NSCLC will be unsuitable for 

these analyses, even if the technologies were feasibly applicable in the routine clinical laboratory. It 

is my hope that more complex studies applied to the CCC cohort can provide data that may suggest 

a small number of easily measurable metrics that can be routinely applied to these specimens.  

This study has confirmed the powerful nature of PD-L1 expression as a predictive biomarker, but has 

yielded the intriguing notion that yet further categorisation can be exploited to better predict 

response to treatment. In particular, the division of high PD-L1 expression tumours into ‘moderate’ 

and ‘very strong’ may help predict both response and toxicity in the 2nd-line setting, with the 

significant caveat this would want further investigation, ideally in a wholly distinct cohort of NSCLC 

patients. The predictive power of PD-L1 is a boon to the clinical decision pathway, but even taken to 

the theoretical limits of this, additional biomarkers will undoubtedly hold the key to the most 

optimal prediction of response to IM therapy.  
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Chapter 9 – The Next Frontier: Improving the prediction of response to PD-1/PD-L1 IMs 

In the previous chapter, the benefits and limitations of using the PD-1/PD-L1 IM treated CCC cohort 

of NSCLC patients in order to predict response to therapy was explored. The work performed to date 

on this cohort has revealed important information that challenges the current paradigm of 

categorising patients as PD-L1 positive by conventional cut-offs, but has also demonstrated the 

difficulty in using routine diagnostic NSCLC specimens composed of small biopsies and cytology 

samples.  

Therefore the following future projects are based on data generated during this thesis in order to 

ensure there is a good rationale for using this precious resource. Some of the hypotheses generated 

during this thesis, and for which I wish to confirm or refute these, will be explored in further detail in 

this chapter, as well as an overview of some of the potential future predictive biomarkers of 

response and how these may fit into routine clinical practice. It is important to note that the process 

of generating hypotheses to test in future work is both limited and informed by the accessibility of 

specific platforms and technologies, the knowledge of specific biomarkers, and the general principles 

and concepts which are backed up by evidence to varying degrees. This process is an ongoing and 

evolving one, and some of the main themes, biomarkers and hypotheses are shown in Fig 9.1.0  

9.1 Novel use of established biomarkers: PD-L1 expression in the pleura 

9.1.0 PD-L1 in pleura and pleural fluid as a function of immune escape 

In Chapter 4 (Pre-Analytics), the distribution of PD-L1 expression by anatomical location was found 

to be generally consistent, with the exception that specimens from pleural fluids (and the small 

number of pericardial fluids) had a disproportionately and significantly increased number of PD-L1 

strong expressers. This trend was also seen to a lesser degree for pleural biopsies. The observation 

that pleural fluid specimens have more high expressers of PD-L1 over primary NSCLC specimens has 

been seen in other studies,318, 472, 702, 703 and whilst the difference in some studies is relatively 

modest, the concordance with primary tissue is far from perfect.313, 702 Most studies looking at this 

phenomena have focused on the concordance of pleural fluid in regards to the value of using it to 

analyse PD-L1 expression. My hypothesis is that the difference between these specimens is not due 

to artefact, but is in fact a genuine immune escape related difference between tumours that 

metastasise to body cavities and those that do not.  

Categorisation of NSCLC as ‘advanced’ refers to stage III/IV tumours which is based on TNM staging 

and can be considered advanced by primary tumour (‘T’ = primary tumour grows to a large enough  
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Fig 9.1.0 Flow chart of 4 areas for developing future projects. Available and accessible technologies, the specific 

biomarkers of interest and the basic principles of future work are used to inform each other and to generate, 

refine and improve hypotheses, which in turn effects the principles of what and how to look for biomarkers.  
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size or is near to anatomical landmarks or has direct invasion through non-parenchymal tissue), 

spread to lymph nodes (‘N’, spread to nodes that drain the thoracic cavity) or by metastases (‘M’, 

tumour in both lungs, pleura/pericardial discrete masses, malignant pleural/pericardial effusion, or 

spread to sites out with the thoracic cavity, including distant lymph nodes).395  Staging is important 

for prognostic data and treatment decisions, but shared categories can still represent distinct 

subtypes of advanced NSCLC; for example, a stage IV patient may be so because of contralateral lung 

tumour, distant nodal disease, malignant pleural effusion, or a combination of these features. Thus, 

many advanced tumours do not display a preference for metastasising to thoracic cavities, and for 

those that do, it may be that specific immune-escape related mechanisms are required for effective 

spread to these cavities (or that effective spread is driven by these mechanisms) and the high rate of 

strong PD-L1 expressers seen in these specimens is a reflection of this.   

Several studies have looked at immune markers that vary between benign and malignant pleural 

effusions, perhaps suggesting specific immune-escaped mediated processes that convey a survival 

benefit for malignant cells in the pleural cavity. In one study, CARD9 (Caspase recruitment domain-

containing protein 9) was found to be significantly upregulated in NSCLC malignant pleural 

effusions.704 CARD9 is a diverse adapter protein playing a regulatory role in a number of cell survival 

and apoptotic pathways, including the MAPK pathway and NF-kB signalling.705 It has also been 

shown to have a role in the innate immune response, and, amongst other pathways, can stimulate 

dendritic cells via the upregulation of cytokines including TNF-A and IL-23 and IL-12.706 The authors 

of the pleural fluid paper concluded one or more of these CARD9 mediated pathways was a key 

determinant in ADCs metastasising and surviving in the pleural fluid, and was therefore a potential 

biomarker of malignancy for these specimens,704 but this finding also provides data that suggests 

certain immune related proteins expressed on tumour cells may be required for metastases and/or 

survival within the pleural space. HMGB1 (High-mobility group box 1) has also been found to be 

highly upregulated in malignant pleural effusions compared to benign pleural effusions, alongside IL-

6 and IL-8.707 HMGB1 has been shown to be overexpressed in NSCLC patients’ tumour tissue and 

serum specimens708, 709 and probably plays a key role in NSCLC development via mediation of the 

MAPK pathway710 or NF-kB signalling711 as well as playing a key role in NSCLC metastases 

specifically.712 HMGB1 has also been shown to drive immune and inflammatory processes in 

malignant and autoimmune diseases.713-715  

For both CARD9 and HMGB1, upregulation may play a role in tumour cell survival, but they also both 

play key roles in regulating immune and inflammatory responses. Antibodies against HMGB1 have 

been shown to provide a protective benefit against inflammatory mediated cell damage716 and 

pulmonary inflammation specifically.717 Therefore, although proteins such as these convey survival 
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benefit to tumour cells through mediation of cell cycle and apoptotic pathways, they are also likely 

to generate significant inflammation and immune responses, for which tumour cells will require an 

immune-escape pathway, and for which it is possible PD-L1 mediated immune-escape plays a 

particularly successful role.   

PD-L1 is also known as B7 homolog 1 or B7-H1. Its relative in the B7 family, B7-H3, has also been 

shown to be upregulated in malignant pleural effusions secondary to NSCLC and associated with a 

poorer survival for these patients.718 It is less well characterised than PD-L1, but it does appear to 

play a key role in immunosuppression in NSCLC719-721 and has been shown to be elevated in the 

serum of NSCLC patients720 and associated with increased TILs in NSCLC tumours.722 B7-H3 appears 

to play a similar role to PD-L1 in some respects in that it has a co-inhibitory role in T-cells leading to 

immune escape for tumour cells721 and has thus retrieved some attention as a potential target for IM 

therapy.74, 723 Its full role is yet to be elucidated, but if the observation holds that B7-H3, like PD-L1, is 

consistently upregulated in pleural effusions, it may suggest that B7 family mediated mechanisms of 

immune escape maybe particularly effective, and potentially unique, for NSCLC tumour cells that 

metastasise to the pleural space.  

9.1.1 Specific immune escape functions for specific tissue invasion 

Certain tissues in the body have particular immune properties that require a specific set of immune 

escape mediated pathways for tumour cells to survive. This is perhaps best illustrated in the case of 

brain metastases. Tumour cells metastasising to the brain have to overcome several barriers 

including the blood-brain-barrier and the unique architecture, blood flow and oxygen availability of 

the brain.724 Whilst molecular features of tumour cells that achieve brain metastases vary between 

tumour types (e.g. Upregulated alterations in ALK, BRAF and HER2 in NSCLC, malignant melanoma 

and breast cancers respectively),725, 726 a number of shared features are required to survive once 

they have invaded. In particular, the unique challenges of the immune response within the brain 

require a shared and unusual set of properties, such as immune escape from microglial cells (a CNS 

specific cell with immune functions) which have been shown to destroy cancer cells.727 If the tumour 

cells can successfully achieve immune escape, the microglia can actually provide a survival benefit to 

the tumour cells728, 729 and so these shared immune escape properties can significantly enhance the 

benefit to these metastasised cells. Metastases to the brain thus sets the precedent that tumour 

cells require unusual characteristics to both successfully invade and to survive in particular 

environments, including a unique set of immune-escape mediated properties, and therefore the 

same maybe true of tumour cells invading the pleural space.  
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Mesotheliomas are malignant tumours that originate in the pleura, pericardium or peritoneum. 

Mesotheliomas are distinct to NSCLC in terms of cellular origin, molecular properties, aetiology and 

most other factors, but the fact both may survive within the pleural cavity raises the intriguing 

possibility that immune escape processes that are successful for mesotheliomas may also be 

successful for NSCLCs metastasising to the pleural space. Indeed several studies have shown PD-L1 

to be expressed in a significant proportion of mesotheliomas or malignant pleural effusions 

secondary to mesotheliomas, varying between studies in terms of incidence, but generally around 

20-50% of specimens being positive for PD-L1 regardless of the clone used.730-734 The prognostic 

significance of PD-L1 positive mesotheliomas, as with NSCLC, varied between studies.731, 735 Although 

response to PD-1/PD-L1 IM therapy has seen mixed response in mesotheliomas, with no IM therapy 

yet approved736, 737 it does still suggest that PD-L1 expression may play a key role in achieving 

immune escape within the pleural cavity or pleural tissue, regardless of the malignant cells’ origin. 

Indeed, as PD-L1 has been shown to induce immunosuppression by multiple methods, including non-

PD-1 mediated pathways, the lack of response to PD-1/PD-L1 IM therapy in mesotheliomas, despite 

the prevalence of PD-L1 expression, may suggest that PD-L1 mediates a unique immune escape 

pathway in the pleural area, and therefore these differences would explain why many NSCLC 

patients with PD-L1 positive pleural effusions do not respond to PD-1/PD-L1 IM therapy.738 

In order to explore the hypothesis that high PD-L1 expression in pleural specimens is a result of 

specific immune escape processes utilised preferentially by NSCLC cells that metastasise to the 

pleural space, specimens from the CCC cohort that represent distinct subtypes of ‘advanced’ tumour 

can be compared. By comparing advanced tumours that have not metastasised, spread only to 

lymph nodes, metastasised to the pleura or pleural space or metastasised to other sites, these 

NSCLC tumours can be separated on the basis these differing behaviours of advanced tumours may 

also reflect distinct immune escape profiles, and so provide insight into the underlying mechanisms 

of immune escape as well as help to better guide PD-1/PD-L1 IM therapy.  

One potential pathway to do this is via an immune-oncology (IO) mRNA-based NGS panel such as 

that offered by HTG.739 It is outside the scope of this thesis to provide an in-depth review of the 

strengths and limitations of mRNA studies for protein expression, but despite mRNA not always 

correlating with protein expression by other methods, including PD-L1,335, 336, 355 it does provide an 

excellent opportunity to compare these potentially distinct groups of tumours by looking at gene 

expression profiles of proteins related to immune functions (such as B-cell function, T-cell function, 

TNF, NK function, ILs and various cytokines and chemokines) and other important roles relating to 

normal and malignant cell function (e.g. cell adhesion, apoptosis, cell cycle, cell signalling and 

proteasomes) including members of the CARD family and HMGB1.  
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mRNA as a marker of gene expression is not perfect, however, and the direct study of proteins 

themselves may yield more informative data, as explored in Chapter 7 (The tumour 

microenvironment) when using multiplex IHC to define the immune TME.  

9.2 Immune TME signatures to predict response to IMs 

A recurring issue in predicting response to IM therapy is the reduction of very complex biology to 

simple categorisation of patients into potential ‘responders’ or ‘non-responders’. As our knowledge 

of immune escape, tumour heterogeneity, and the TME increases, it is increasingly apparent that 

even a single biomarker means different things in different contexts. PD-L1 expression in the context 

of a primary lung NSCLC biopsy with large quantities of CD8+ve, PD-1+ve, functional TILs infiltrating 

the tumour epithelium is probably distinct from PD-L1 expression in a biopsy of metastatic disease 

with an immune desert TME, for example. These scenarios likely reflect a variation in response to IM 

therapy and the distinct biological mechanisms of PD-L1 expression.  

A simple classification of ‘PD-L1 positive’ is therefore insufficient to accurately predict treatment 

response, as is the relatively simple division of tumours into infiltrating, excluded or immune deserts 

based on H&E. Furthermore, patients do not simply ‘respond’ or ‘not-respond’ – some will respond 

very well, some poorly, some will progress rapidly, others more slowly and so forth.  

Predictive assays that utilise multiple markers provide an opportunity to extract additional 

information from the specimen so as help define the significance of expression of any single 

biomarker, such as the presence of cytotoxic TILs in the context of PD-L1 expression given in the 

example above. However, these assays also run the risk of providing clinicians with reams of 

additional data that are not helpful in making a clinical decision. An example outside of 

immunotherapy is NGS panels that screen multiple genes for TKI therapy. These can return data on 

actionable mutations, but may also show the tumour to harbour only rarer mutations of unknown 

clinical significance, the knowledge of which is of dubious clinical benefit.  

Even when predictive assays utilise multiple signals to define a pre-determined ‘cut-off’, it is far from 

simple in being a consistent tool. For example, the use of TMB to predict response to IM therapy is 

hampered by questions surrounding the best approach to measuring TMB, the variable definitions of 

‘high TMB’ as well the mixed clinical responses seen in these patients.267, 740-743 The biggest limitation 

to this approach is the categorisation of patients or tumours as ‘having’ or ‘not having’ a particular 

feature (TMB is ‘high’ or ‘low’, PD-L1 is ‘negative’ or ‘positive’ etc.) when these are often continuous 

variables with expression more accurately reflected as a spectrum. In clinical practice, it is useful to 

have biomarkers that provide clear guidance for treatment decisions, and the division of patients 
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into clear groups is the only practical way of running clinical trials by the established methodology. 

Nonetheless, this simple division does not reflect basic biological principals, oversimplifies an 

incredibly complex area and results in the inevitable exclusion of patients who would benefit, and 

inclusion of patients who do not, based on what is ultimately an arbitrary division of 

‘positive/negative’ or ‘high/low’.   

Despite these issues, there has been success in utilising multiple markers to define useful groups for 

predicting response to IM therapy. Gene expression profiles have been used to create ‘immune 

signatures’ in which the presence of increased levels of mRNA for certain proteins has seen some 

success in predicting response to IM therapy. Ayers et al. 2017 devised a 18 gene signature using 

Nanostring technology that is related to IFN-γ mediated T-cell inflammation of tumours and was 

associated with superior response to PD-1 IM in HNSCCs,744 and Hwang et al. 2020 found two gene 

signatures, one related to TILs, and one related to M1 macrophages, that were both associated with 

superior response to PD-1 IM therapy in NSCLC.745  

Therefore, the creation of immune TME ‘signatures’ based on the presence, location and density of 

TIL types and other protein based immune markers within the TME may well provide a balance 

between oversimplification and providing too much data. Furthermore, although this thesis has 

focused on PD-1/PD-L1 IMs specifically, CTLA4 IMs and many other immune checkpoints being 

actively considered as potential targets of IM therapy may benefit from immune TME signatures. For 

example, a TME signature that can reliably demonstrate that the major mechanism of immune 

escape is immune-checkpoint mediated via direct tumour-cell/APC and T-cell interactions may only 

require the additional information of which checkpoint(s) are involved to identify the optimal IM 

therapy approach.  

Current attempts to utilise multiple markers within the immune TME that produce divisions such as 

subtyping TMEs into  ‘hot’ and ‘cold’ immune types has seen some success746, 747 but, like TMB, the 

assays to define this, the specific metrics to use and the actual cut-off of ‘hot’ is variable. 

Furthermore, it is probable this dichotomous division does not sufficiently take account of the 

variable functionality of immune cells, the knowledge that tumours treated with IMs are 

characterised by a spectrum of responses and resistances, and that the TME may be regulated by 

multiple methods of immunosuppressive and cytotoxic activities.  

As shown by the multiplex and image analysis study in Chapter 7, there are multiple ways to subtype 

immune TMEs depending on which markers are used and the priority they are given. The subtypes of 

immune TME suggested in Chapter 7 are only prototypes, but the advantage of utilising multiple 

immune markers, quantifying their expression and describing their spatial relationship not only more 
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accurately reflects our biological understanding of the processes that lead to immune escape, but 

allows for finer stratification of patients by response to IM therapy and the potential likelihood of 

irAEs. Far from overcomplicating the decision making process for routine clinical practice, this 

stratification of patients via an immune TME signature may provide us with more personalised 

patient information, as well as potentially identifying the best patients eligible for novel treatments 

and clinical trials as they are developed.  

One potential approach to further developing the notion of an immune TME signature is applying 

TME immune subtypes to the PD-1/PD-L1 IM treated CCC cohort based on the data collected in 

Chapter 7. The largest limitations of the CCC cohort, and routine NSCLC diagnostic specimens in 

general, are the small biopsies and cytology specimens, which potentially lack stroma, may have no 

preserved architecture present and can involve considerable admixing of different cell types. As 

already discussed, this is an issue for defining immune TMEs. However, it is possible that immune 

markers present within many specimens will still be suitable for refining the subtyping of TMEs, and 

ultimately provide specific markers that can be used to predict response to PD-1/PD-L1 IMs. The CCC 

cohort would therefore act as a cohort to test the feasibility of creating an immune TME signature by 

this approach in routine NSCLC specimens, as well as providing patient outcome data to help identify 

which immune features of the TME are useful in predicting response to treatment, and if any distinct 

markers can better identify patients likely to suffer irAEs.  

This novel approach to utilising multiple protein expression by multiple IF or IHC, rather than mRNA 

or gene based assays, could be a useful and powerful tool in better predicting response to IM 

therapy, but requires the careful and accurate application of digital pathology and image analysis 

tools. 

9.3 Predictive power of image analysis  

Image analysis combined with digital pathology and other machine learning and AI based techniques 

is undoubtedly the future of pathology. Current attempts to replicate the human pathologist’s ability 

to interpret routine H&E sections are limited to relatively simple distinctions at present,536, 748 and 

the subtle and nuanced distinction of much of pathology, combined with the requirement to 

combine the microscopic image with the macroscopic specimen findings, as well as integrating 

complex clinical understanding and radiological findings means that pathologists are still likely to be 

valuable assets for routine clinical diagnostics for many years hence. The true value of digital 

pathology and image analysis at present lies in its ability to augment pathologists’ work. These can 

range from the simple but convenient advantages of digital pathology such as the visualisation of 

larger quantities of microscopic tissue over conventional microscopy, easy measurement tools and 
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rapid case sharing, to the more complex image analysis techniques required for interpreting 

multiplex immunohistochemical and immunofluorescent stains so as to accurately quantify markers 

as described in Chapter 7. In many centres digital pathology is a reality, with conventional 

microscopy and glass slides used only when there had been failing of the digital service or is a strict 

requirement for viewing a particular assay,507, 508, 512 though it has yet to be fully integrated into 

many labs, even within wealthy countries such as the UK. Nonetheless, as these services are 

developed, it can be hoped that simple additions to digital pathology can be routinely added in a 

seamless fashion.  

Despite these positives, many questions still surround the use of digital pathology, and image 

analysis and machine learning approaches in particular. One such question is the responsibility of an 

automated algorithm. By conventional pathology, a particular assay scored by a named individual 

leaves a clear route in the event of an error, such that re-education and re-training can be initiated. 

An unfortunate reality of modern medicine, however, is a culture of ‘blame’, in which mistakes are 

not always seen as an opportunity to learn and improve. In the theoretical situation that an 

automated algorithm makes a mistake which ultimately results in a patient coming to harm, the 

question of who or what to ‘blame’ has no certain answer. Furthermore, one of the core concepts of 

machine learning and AI is that experience informs the algorithms such that they improve 

overtime.749 Given the tight nature of the regulatory process of new medicines and in-vitro 

diagnostics used in medical practice, it is difficult to see how an automated algorithm can be given 

regulatory approval if the specific device is a constantly changing and evolving process, with no 

guarantee that each iteration will necessarily be superior to the previous one.  

As such, a pragmatic approach will likely lie in the use of semi-automated algorithms, in which 

pathologist input is directly required for their use, or the augmentation of the pathologist’s workload 

by automated algorithms, such that the ultimate oversight of the case still remains the purview of 

the pathologist. Despite the fantastic advances seen in machine learning, the reality is that biology is 

hard to understand, extremely complicated and notoriously inconsistent, and thus far no machine 

learning tool can replicate the subjective and qualitative abilities of a skilled pathologist. 

Nonetheless, humans are generally bad at certain tasks that computers can process extremely 

rapidly, with the example used in Chapter 5 (Analytics) of counting cells: pathologists are masters at 

ascertaining what to count, but computers are the masters of counting.  

The image analysis tools for PD-L1 IHC interpretation as explored in Chapter 5 provides evidence 

that the assistance of machine-learning based algorithms can decrease intra-pathologist and inter-

pathologist discordance when scoring PD-L1, and may therefore increase overall accuracy of PD-L1 
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analysis. The most important metric when considering scoring PD-L1 IHC is its ability to predict 

response to PD-1/PD-L1 IMs. If the division of specimens into negative, weak and strong PD-L1 

expressers (or indeed other categories) sees variation between original manual assessment of the 

specimens and image analysis algorithm assisted scores, the true measure of the value of the 

algorithm would be to see which sets of scores most accurately predicted response to IM therapy. 

The limiting factor for the use of this algorithm is that it was designed specifically to use with the 

SP263 clone. However, the PD-1/PD-L1 IM treated CCC cohort utilised the 22C3 clone to stain for PD-

L1 (in keeping with our laboratories clinical practice at the time of these patients’ diagnoses). 

Therefore tissue from this cohort will need to be re-stained with SP263, scored manually for a PD-L1 

TPS, and then re-scored with the assistance of the Roche-PD-L1-algorithm to assess the value of 

using image analysis. In so doing, an important objective measurement of the value of using the 

image analysis to augment pathologists scoring by predicting response to treatment would be 

provided.  

9.3.0 Image analysis for different PD-L1 clones 

This future study would also provide the opportunity to further compare 22C3 and SP263. As has 

been explored in detail already, 22C3 and SP263 produce generally very similar TPS results, but are 

not identical, and when tumours are close to critical cut-off thresholds the difference between the 

clones is particularly susceptible to grouping patients differently. Therefore, as with the image 

analysis algorithm, the predictive power of 22C3 compared to SP263 would be a valuable area to 

explore. Despite the similarity in staining, there are fundamental differences between the two 

clones: 22C3 is a Dako manufactured clone with a cytoplasmic epitope binding region on the PD-L1 

protein and was used in the Merck sponsored Keynote trials which tested the efficacy of the anti-PD-

1 monoclonal antibody pembrolizumab. SP263 is Roche-Ventana manufactured clone with an 

extracellular epitope binding region and was used in the Astrazeneca sponsored ‘geography’ trials 

which tested the efficacy of the anti-PD-1 mAb durvalumab. 22C3 was originally assessed using the 

≥1% and ≥50% TPS cut-offs to determine patient groupings,48, 255 and is a companion diagnostic for 

pembrolizumab for NSCLC (and many other cancer types) which continues to use these cut-offs. 

SP263 was originally assessed using a ≥25% TPS cut-off as ‘PD-L1 positive’642, 644 but is now used 

within NSCLC (and other cancers) as a complementary diagnostic with varying cut-offs on the specific 

IM agent.251 Whilst many studies have compared the quantitative differences between 22C3 and 

SP263, few have had the data to compare their predictive power. Furthermore, to date there have 

been no clinical trials that involve a head-to-head comparison of PD-1/PD-L1 IMs, nor a trial that has 

used more than 1 PD-L1 IHC clone to guide clinical groupings. The differences between these two 
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clones maybe subtle, but they have potential clinical ramifications, and thus even this modestly sized 

cohort would provide an ideal opportunity to compare the 22C3 and SP263 clones’ predictive power.  

The use of digital image analysis in conjunction with IHC, both monoplex and multiplex, may 

therefore be a powerful tool in better predicting response to IM therapies, but as with mRNA and 

gene expression, IHC is not a perfect technique with many limitations, not least that its use in this 

manner to quantify proteins is overstretching its original function as a qualitative assay, as well as 

the fact IHC cannot reliably detect PD-L1 with certain post-translational modifications or on tissue 

sections that have had poor pre-analytical conditions. Alternative technologies may well be able to 

overcome some of these limitations, and has been explored in brief in Chapter 4 (pre-analytics), 

mass spectrometry is one such technique.  

9.4 Mass-spectrometry (MS) and the proteome  

MS is an established technique for studying substrates of unknown composition, typically by ionising 

the particles within the substrate, accelerating the charged particles to the same speed, and then 

using a magnetic or electric field to divide the particles by mass to charge ratio (m:z), on the 

principle that similarly sized particles will be deflected by the same degree, and so can be compared 

to known libraries of data. It is outside the scope of this thesis for an in depth review of the 

principles and various techniques of MS, but as per Chapter 4, collaboration with Protypia has 

allowed for the application of MS to FFPE tissue samples via liquid chromatography-tandem mass 

spectrometry (LC-MS), in which a sample mixture is separated by liquid chromatography before 

being ionised and characterised using two mass spectrometers in tandem, using m:z and relative 

abundance to qualify and quantify the peptides.  

Different MS technologies have advantages and limitations; for example, the bottom-up approach to 

mass spectrometry (BU-MS) analyses peptides rather than whole proteins, requires extensive 

comparison to known libraries, is confounded by isoforms and does not technically sequence the 

protein. Top-down MS (TD-MS) on the other hand, can detect intact proteins, including sequence 

variations, but is much less sensitive and struggles to cope with proteins of larger molecular mass 

(>50kDa).750, 751 The use of LC-MS allows for the analysis of more complex structures, a broader array 

of molecular weight proteins and improved multiplex abilities, and is widely used in clinical 

biochemistry and proteomic work751-753 and is combined with BU-MS by Protypia for the analysis of 

FFPE tissue proteomes.360 The use of MS on FFPE tissue has been explored by other groups, although 

concerns include uncertainties around mapping FFPE proteomes to libraries acquired from fresh 

tissue in that they may not be concordant, and that aldehyde induced changes may alter protein 

quality considerably.754, 755 However, recent work has shown that LC-MS is potentially superior to 
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predicting immune checkpoint inhibitor expression, including PD-L1, than mRNA levels are, and has 

the potential ability to more accurately and reliably quantify PD-L1 and other immune markers than 

IHC.756  

LC-MS can be utilised to provide a global proteome, allowing for the generation of ‘deep 

proteotypes’, as well as a targeted proteome that provides greater coverage of a smaller number of 

specific proteins. Therefore in a similar manner to multiplex IHC, immune TME signatures based on 

the presence of proteins may be defined by detection via MS.  

By utilising this approach, the LLP cohort can be analysed to provide data on specific protein markers 

and test the feasibility of this technology on FFPE tissue by comparing the presence of proteins that 

have also been assessed by multiplex IHC in Chapter 7. Global analyses of the specimens will allow 

for the generation of prototypes based on the immune TME, to provide further data on the 

mechanisms that underpin PD-L1 expression and variation in immune TMEs by other methods.  

9.5 Circulating biomarkers to predict response 

Another area that has received much interest in the context of predicting response to IM therapy is 

the use of circulating biomarkers, with blood, serum, plasma or other extracted components used as 

the substrate for these assays. These are particularly attractive as blood is much easier and cheaper 

to acquire than tissue samples, allows for repeat sampling over time, and maybe less susceptible to 

issues pertaining to tissue heterogeneity.  

These so called ‘liquid biopsies’ have seen success in NSCLC in other contexts; in particular the 

repeat sampling of patients to detect resistance associated mutations of the EGFR gene (e.g. T790M, 

C797S) and have been explored for predicting response to IM therapies.757  

9.5.0 Circulating tumour cells and PD-L1 expression 

PD-L1 in particular has been studied extensively as a circulating biomarker. Its presence can be 

detected on circulating tumour cells (CTCs), circulating exosomes, or even as a soluble form of PD-L1.  

PD-L1 expression on CTCs has variable correlation with matched tissue samples, at best reaching 

80% but in most studies achieving much poorer or no correlation at all,758-763 and favours a poorer 

prognosis or response IM therapy in NSCLC.762-767  

Perhaps unsurprisingly, but disappointingly, PD-L1 expression on CTCs suffers from intra-patient 

heterogenous expression, ranging from 3% to 100% of tested CTCs expressing PD-L1 in various 

patients.761 Many studies considering the feasibility of PD-L1 on CTCs as a surrogate marker for PD-

L1 expression on tissue samples conclude that the lack of concordance between these specimen 
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types renders it a biomarker of limited value. However, it can also be viewed as a positive in that PD-

L1 on CTCs can potentially function as a distinct biomarker to PD-L1 expression on conventional 

tissue samples, and may therefore act as an additional predictive test, with more recent studies 

taking this approach.768 

Another challenge of CTC PD-L1 expression is the varying techniques and assays that can be used to 

detect it, ranging across techniques such as EpCAM-based,764, 767 size-based e.g. CellSieve 

Microfiltration Assay769 or ISET (isolation by size of epithelial tumour cells)763, Immunomagnetic 

depletion770 and Microfluidic graphene oxide chip765 approaches, the pros and cons of which are 

outside the scope of this thesis, but suffice to say they are not entirely concordant with each 

other.771 CTCs are a route of metastases for many tumours, and their increased prevalence is 

typically associated with increasing overall tumour burden,772, 773 and so it is perhaps unsurprising 

their presence is associated with worse survival and response to IMs regardless of PD-L1 

expression.772, 774 PD-L1 expression may be a remnant of their primary site dominant clone, although 

the disparity between tissue samples and CTC expression of PD-L1 may indicate a further, as yet 

unknown role of PD-L1 expressed on CTCs. Its more immediate application as a biomarker, however, 

is likely to yield success, albeit in patients with already poorer prognoses.  

9.5.1 Exosomal and soluble PD-L1 

Exosomal PD-L1 is thought to arise by endocytosis of plasma membrane in cells that express PD-L1 

including tumour cells, macrophages, dendritic cells and so forth.775, 776 Exosomal PD-L1 appears to 

play a direct role in immunosuppression that benefits cancerous cells with various mechanisms 

described that include the transportation of PD-L1 from tumour cells that express it to those that do 

not,777 the inhibition of cytotoxic T-cells that can result in their dysfunction and eventual apoptosis, 

including circulating T-cells, via multiple mechanisms including the suppression of the MAPK and NF-

κB mediated pathways of activating T-cells, the blockade of T-cell receptors and the suppression of 

Granzyme B, TNF-α and IL-2 production.776, 778-781 As with PD-L1 expression on CTCs, exosomal PD-L1 

expression is also associated with more advanced disease and generally poorer prognosis779, 782, 783 

and does not correlate particularly well with tissue PD-L1 expression,782 although it may be 

associated with improved response to PD-1/PD-L1 IM therapy.784 There are also multiple methods of 

detecting exosomal PD-L1, including ELISA (Enzyme linked immunosorbent assay), flow cytometry, 

and ddPCR (Digital Droplet PCR), each with advantages and disadvantages,775 with the ideal 

approach yet to be agreed upon.  

Soluble PD-L1 is another potential circulating biomarker that appears to be produced from exosomal 

PD-L1, splice variants of PD-L1, proteolytic cleavage of membrane bound PD-L1 or by other sources 
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such as cell injury or cell death.172, 174, 785 As with other forms of circulating PD-L1, its presence is 

associated with poorer clinical outcomes in a variety of tumours, including NSCLC172, 173, 368, 372, 786 and 

does not correlate with tissue expression of PD-L1.172 There are various approaches to detecting and 

measuring soluble PD-L1, although these have largely been concerned with different platforms that 

use ELISA applied to either serum or plasma samples,581, 787, 788 but the optimised approach to 

detecting all forms of soluble PD-L1 is yet to be elucidated.    

There is some potential overlap of circulating forms of PD-L1 and multiple methods of detecting 

them, but they all individually appear to play functional roles that are outwith the conventional 

activity of PD-L1 in primary tissue specimens, and as a result of their lack of concordance and 

independent clinical associations, are prime targets to be utilised as additional biomarkers alongside 

PD-L1 IHC on conventional specimens.  

9.3.2 Other circulating biomarkers 

A large number of other circulating biomarkers to use for predicting response to IM therapy are also 

in active development. These include the study of circulating nucleic acids such as ctDNA (circulating 

DNA). Increasing levels of ctDNA are an early indicator of response to IM therapy789-792 and whilst 

ctDNA is inherently well suited to detecting specific mutations (e.g. EGFR mutants) it can also be 

used to measure TMB793-796 and MSI-H (Micro-satellite instability – High).797, 798 The value of 

measuring MSI-H is that these tumours tend to be highly immunogenic, often expressing high levels 

of PD-L1 and associated with large quantities of TILs799, 800 and therefore respond very favourably to 

IM therapy, which has seen these tumours studied in several IM clinical trials.801, 802 The prevalence 

of MSI-H in NSCLC varies between studies, ranging from 1% to 25%,803-806 but is a potential 

alternative to TMB for at least some patients.  

Other circulating nucleic acids that could act as predictive biomarkers for IM therapy include RNA 

splice variants that produce circular RNAs (circRNA). The functional role of circRNAs is poorly 

understood, but thousands of circRNAs have been shown to be up or downregulated in NSCLC, 

including circRNAs related to genes that control tumour suppression, tumour promotion, apoptosis 

and other key genes relating to tumour development807-812 and have shown in cell lines that some 

specific circRNAs may be involved in resistance to TKIs.813, 814 Their role in predicting immunotherapy 

has yet to be fully understood, but they do appear to play a key role in modulating the TME including 

the inhibition of apoptosis in T-cells, enhancing cytotoxic T-cell activity, mediating the proliferation 

and differentiation of T-cells and B-cells and having activity on macrophages, fibroblasts, MDSCs, NK-

cells and many other aspects of the TME.812, 815 Measuring circRNA has several advantages to 

measuring ctDNA in that it is a highly dynamic biomarker that represents a wider variation of tumour 
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cell stages and can be highly specific for tumour cell activity, although it is less stable than ctDNA and 

is prone to much more non-cancer related variation between patients including age, gender and 

changes due to technical variation.814 miRNA has received attention as a potential screening tool for 

NSCLC816 or a predictor of survival in NSCLC,817 and recent studies have showed the feasibility of 

using panels of miRNAs to predict response to PD-1/PD-L1 IM therapy in NSCLC.818, 819  

The challenges with using nucleic acid based circulating biomarkers includes ascertaining which 

component of a blood sample is most appropriate for their detection, which variants of the 

thousands that can be detected are genuinely useful predictors, what assays and techniques to use, 

what should be used as a ‘cut-off’, individual patient variation and so forth, but the potential 

advantages of having easy access to repeat specimens will ensure continuing development in this 

area.  

The use of routine haematology assays to predict response to IM therapy has also been considered. 

The LIPI (lung immune prognostic index) combines LDH (Lactate-dehydrogenase) and lymphocyte to 

neutrophil ratio,699, 820 with others using the neutrophil‐to‐lymphocyte ratio (NLR) and platelet‐to‐

lymphocyte ratio (PLR) in NSCLC patients, with a recent meta-analysis showing increased levels of 

NLR and PLR are generally associated with worse outcomes for NSCLC patients treated with IM 

therapy.821 The modified Glasgow prognostic score, that uses CRP and albumin is considered a 

marker of systemic inflammation and has been recently shown to have potentially predictive power 

for response to PD-1/PD-L1 IM therapy in HNSCC.822 The measurement of circulating cytokines has 

also seen some success as predictive biomarkers, with increased levels of IL-6,IL-10 and IFN-γ and 

reduced levels of IL-8 associated with superior response to IM-therapy823, 824 with at least one 

attempt made to integrate measurement of serum cytokines into a ‘cytoscore’ made,825 although 

there is little recent data on this area.  

These daunting array of potential circulating biomarkers is far from exhaustive, with tumour 

educated platelets, metabolites and many others all potentially having a role.826, 827 Some of these 

will undoubtedly play a major role in the future, but the example of the various forms of circulating 

PD-L1 exemplifies the difficulty in using circulating biomarkers: what specimen to use, which 

component to measure, what assays to apply, what definition/categories should be integrated are 

all critical questions with no easy answers. Even the notion that circulating biomarkers will bypass 

the challenge of PD-L1 expression heterogeneity does not appear to be true, and it seems quite 

apparent that they will not be able to be used as surrogate or replacement biomarkers for good 

quality tissue assessment. However, using circulating biomarkers to augment current and future 

biomarkers is a valid approach, and the fact that many of these biomarkers are more highly 
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expressed in advanced tumours, means the association of findings in patients in the CCC cohort 

whom have serum/plasma/blood already in storage, or for patients able to consent for additional 

blood testing, would be an excellent opportunity to validate at least some of these biomarkers in a 

robust PD-1/PD-L1 treated cohort of NSCLC patients.  

 

 

 

 

9.6 Predicting response in the near future 

The future of predicting response to IM therapy is an exciting and important one. Unlike treatments 

with XCT, radiotherapy or even targeted therapies by TKIs, IM therapy has seen sustained, durable, 

long-term benefit in advanced NSCLC with a small cohort of long-term survivors tumour free even 

several years after treatment; a notion previously unthinkable for these patients.  

However, an important point to note is that many clinical trials looking at IM therapy have an early 

group of cross-over in which patients treated with IM therapy rapidly progress and perform worse 

Fig 9.1.1 Different areas for sampling NSCLC specimens, the biological material and possible 

techniques that each could provide for better predicting response to PD-1/PD-L1 IM therapy. 

Many of these are future prospects as well as areas for further work following on from data from 

this thesis.   
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than those with standard treatment of care; for these patients IM therapy is profoundly worse than 

other treatment options. (Fig 1.6.2) 

Our ability to predict response to IM therapy is far short of where we would want it to be. PD-L1 IHC 

is the only clinically validated test for predicting response to IM therapy in NSCLC patients at 

present, but other biomarkers are sure to follow in the near future. The combination of new 

technologies, new targets and applying established biomarkers to new clinical situations has been 

reviewed briefly in this chapter (Fig 9.1.0 and Fig 9.1.1). The two main areas of interest likely to yield 

new biomarkers for predicting IM therapy is TMB and the features of the TME. Challenges for the 

use of TMB include which targets should be included to measure it and the types of mutations to 

include, the platforms to measure TMB, where to define ‘high’ and most importantly the conflicting 

evidence that TMB does or does not predict response to IM therapy in NSCLC.267, 740, 742, 743 Using the 

TME has many limitations that include several similar problems in regards to what targets to 

measure, how to measure them, defining the levels of clinical relevance and so forth.  

However, an important point to make is that these novel biomarkers involve the integration of 

measuring tumours by their genome (e.g. TMB), proteome (TME by IHC or MS) as well as the 

intermediary step of gene expression and splice variants (e.g. mRNA, circMRA) and therefore should 

not be seen as conflicting technologies but as complementary approaches that measure multiple 

aspects of the complex biology that is the interaction of tumours and the immune response.  

Furthermore, as our ability to measure this complex biology improves, the need to integrate the 

data together to provide increasing personalised information for each patient is increasingly reliant 

on the use of digital pathology, machine learning, image analysis, AI and so forth in order to ensure 

the accurate and consistent application of these technologies. The opportunity to apply several of 

these technologies on both the LLP and CCC cohorts means comparisons, similarities and key 

differences between these platforms can be identified.  

In an ideal near future, a patient with a new diagnosis of NSCLC may have, in addition to the 

standard clinical and radiological work-up, multiple tissue biopsies of the primary site, plus 

specimens from metastatic tissue if present, that will be tested for a TME immune signature and the 

presence of specific immune checkpoint proteins that includes the use of digital image analysis, 

submitted for a NGS-panel that incorporates actionable mutations/translocations etc. as well as a 

measure of TMB and a blood sample that will be used to look for circulating biomarkers such as CTCs 

expressing PD-L1. A patient will therefore have at the time of their first oncologist meeting data on 

their actionable targets, and in the context of IM therapy, a stratified profile that provides 

personalised data on their chances of response to IM therapy and their risk of irAEs, with monitoring 
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of response to treatment and follow-up by blood samples that can be used to adjust their patient 

profile of response and clinical outcomes.  

This style of approach in the future must consider multiple biomarkers in the context of each other, 

and the use of more flexible groupings, that are prone to change overtime. Alongside new 

treatments being developed in the IM field such as small molecule inhibitors of the PD-1/PD-L1 

axis,828 new checkpoint inhibitors such as IDO, TIM3, LAG3, VISTA,829  CAR-T cells and antibody 

conjugates.238, 830 This thesis has highlighted just some of the fundamental challenges of using PD-L1 

IHC, and the lessons that have been learned in the wider community in order to ensure its accurate 

use. It is vitally important the issues and errors that have limited PD-L1 IHC as a predictive tool are 

not repeated each time a new biomarker or assay is developed. There is no easy solution to this, but 

a move away from ‘blockbuster’ style drugs to stratified or even personalised medicine is a welcome 

acceptance that as each patient and each tumour is unique, so should be the approach to subtyping 

tumours and deciding treatments.  
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Chapter 10 - Discussion 

The main aim of this thesis was to achieve a more comprehensive understanding of the factors that 

influence PD-L1 expression so as to ultimately provide knowledge to further improve the prediction 

of NSCLC patient response to PD-1/PD-L1 IM therapy. The combined outcomes and achievements of 

this project are grouped  into two main categories: optimising the use of PD-L1 IHC in patient 

management, and the analysis of additional biomarkers to use alongside PD-L1 IHC to improve its 

clinical use in immunotherapy of lung cancer patients   

10.0 Strengths and weaknesses of PD-L1 expression by IHC 

This thesis has comprehensively reviewed the current body of knowledge pertaining to the strengths 

and limitations of using PD-L1 expression by IHC as a biomarker. Combining the literature review 

with findings from Chapter 4, ‘The effect of pre-analytical conditions on PD-L1 expression’ , and 

Chapter 5, ‘Analytics and post-analytics: Digital pathology and PD-L1 interpretation’, it can be 

inferred that some conditions have virtually no negative impact on PD-L1 expression, such as 

different sampling methodology282, 300, 302 or the use of minimally aged tissue. 272, 283-285  A number of 

other factors require optimisation and careful regulation in order to minimise aberrant PD-L1 

expression; fixation of specimens and storage conditions are critical but relatively straightforward 

areas where this can be achieved.272, 274, 275, 290 The choice of PD-L1 IHC clones is an extensively 

studied area, and there is wide acknowledgement that inter-observer variation of PD-L1 expression 

interpretation is a significant challenge in achieving consistent results.304, 335  However, data from this 

thesis reinforce the argument that an appreciation and awareness of the specific benefits and 

limitations of each clone, together with quality assurance schemes and good communication with 

clinical  colleagues seem the most sensible approaches in choosing and optimising a specific PD-L1 

IHC assay. The value of digital pathology and machine-learning image analysis algorithms to assist 

with interpretation of PD-L1 expression is a currently unproven area,527, 531, 533 but a promising 

forefront to modern pathology, with data described within this thesis providing promising initial 

results.  

Conversely, certain aspects of PD-L1 expression that undoubtedly impact on its predictive power 

remain a challenging area with no simple solution, most notably that of its heterogeneity. In Chapter 

6, ‘Heterogeneity of PD-L1 expression’, a comprehensive analysis of both intra-tumoural and inter-

tumoural heterogeneity was performed which, in keeping with many previous studies, demonstrates 

it to be a significant and common problem.380, 387, 390, 831 Heterogeneity represents a biological and 

clinical challenge. Biological considerations, the reason for heterogeneity, underlying mechanisms 

and how this informs us concerning other aspects of the TME are questions to which our knowledge 
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is currently limited,832 but Chapter 7, ‘The tumour microenvironment’, provides data to explain the 

inter-relationship between PD-L1 and other immune markers within the TME and suggests how this 

may be practically used by the clinical pathologist. The clinical challenges of PD-L1 expression 

heterogeneity are no less problematic.266, 394 Questions such as whether different patterns of 

heterogeneity impact predictive power, if these patterns can yield information about toxicity and 

irAEs, or conundrums such as the correct therapeutic decision for a patient with a strongly PD-L1 

positive primary tumour and entirely PD-L1 negative metastatic disease remains unsatisfactorily 

answered.  

Ultimately, the current best solution to the issue of PD-L1 heterogeneity is to sample as widely and 

‘generously’ as possible using the most contemporary tissue available. As molecular pathology 

continues to develop towards more comprehensive NGS-based panel assessments, the requirement 

for increasing quantities and qualities of tissue increases,678 and this will provide an excellent 

opportunity to further study tumoural heterogeneity, and in time provide us with solutions to 

further minimise the impact of this phenomenon.  

10.0.1 The predictive power of PD-L1 expression 

The fact that, broadly speaking, PD-L1 expression by IHC works as a predictive biomarker is not in 

doubt.46, 47, 833 In Chapter 8, ‘Predicting response to PD-1/PD-L1 immunomodulatory therapy’, it is 

clear that PD-L1 expression is usually associated with improved response to PD-1 IM therapy in 

NSCLC patients. This is particularly notable in the 1st-line setting, but the relationship with PD-L1 

expression becomes more complex in the 2nd-line or 3rd-line settings, with the very highest 

expressors paradoxically representing a trend towards decreased response to therapy. Indeed, 

regardless of the specific treatment setting, it is consistently found that some patients with tumours 

that have high levels of PD-L1 expression do not respond favourably to treatment, whereas some 

patients with PD-L1 negative tumours do respond well.46, 47, 286, 834 Whilst it is appreciated that some 

of this uncertainty may be explained by heterogeneity or even technical factors, it is clear that even 

the most widely sampled tumour, with the most optimised tissue pathway and careful interpretation 

of PD-L1 IHC cannot guarantee an accurate prediction of response to IM therapy. Additional 

biomarkers are almost certainly critical to enhance the predictive power of PD-L1 IHC.  

10.1 Alternative biomarkers 

Potential additional biomarkers to assist in predicting response to IM therapy are legion, with many 

studies and many groups focusing on this forefront area of research.603, 674, 818, 835 These biomarkers 

can be broken down into three main categories: alternative measurements of the PD-L1 protein, the 
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presence and quantity of other immune-checkpoints, and the systemic and localised activity of the 

host immune response.  

10.1.0 Alternative biomarkers: alternative methods of measuring PD-L1 

PD-L1 IHC is but one way of measuring the PD-L1 protein and, whilst it is the only clinically validated 

technique, it has been demonstrated in previous studies that IHC may not be able to detect all forms 

of PD-L1; for example, PD-L1 protein with extensive post-translational modifications.360 In Chapter 4, 

(Pre-analytics) and in Chapter 7 ‘The tumour microenvironment’, PD-L1 protein was assessed not 

only by conventional IHC, but also by mass-spectrometry and multiplexed IHC and IF. Reassuringly, 

the correlation between these techniques and conventional IHC is, broadly speaking, good. This 

suggests that when looking for the membrane bound form of PD-L1 within tumours, the technique is 

less important than the quality and handling of the specimen. However, when considering future 

directions in Chapter 9 ‘The Next Frontier: Improving the prediction of response to PD-1/PD-L1 IMs’, 

it is evident from multiple studies that circulating forms of PD-L1 to do not seem to correlate with 

tissue PD-L1 IHC expression levels.172, 768, 782 This implies that PD-L1 in these alternative locations can 

act as additional biomarkers rather than as a replacement or surrogate for conventional PD-L1 IHC. 

Given the power that PD-L1 IHC has as a predictive biomarker, these alternative measurements of 

the PD-L1 protein seem like sensible areas to pursue.  

10.1.1 Alternative biomarkers: lessons from single driver mutations 

An important consideration is the inter-relationship of different immune-checkpoints within the 

TME, and much regarding these can be learned from the extensively studied area of single-driver 

mutations. Single-driver mutation status in NSCLC are generally mutually exclusive. For example, a 

tumour harbouring mutant EGFR will typically be wild-type for KRAS or BRAF and vice versa.25 A 

shared feature of driver mutations with PD-L1 expression is clonal and sub-clonal heterogeneity 

within tumours, with even complex heterogeneous metastatic tumours able to be ‘mapped’ by their 

genetic aberrations.544, 546  Furthermore, certain mutants, such as EGFR T790M and C797S mutations 

are rarely encountered de novo, but are a relatively common occurrence in the setting of patients 

treated with EGFR TKIs.836, 837  

Whilst the fundamental mechanisms of immune-checkpoints and single driver mutations are 

distinct, shared features, particularly from a clinical perspective, are worth considering. For example 

the question of when to give a third generation EGFR TKI is complex. Osimertinib given 2nd-line to 

patients who have received an earlier generation TKI and developed a T790M mutation has been 

shown to improve outcome, but recent data from the FLAURA study showed osimertinib to be highly 
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effective in the 1st-line setting.837, 838 Whilst the underlying mechanisms indicate no rationale for dual 

prescribing of an EGFR TKI with a BRAF TKI, the same is not certain for IMs, nor is the best approach 

to multiple immune checkpoint treatment yet established.  

Several studies have combined PD-1/PD-L1 and CTLA4 IMs, on the basis that CTLA4 inhibition might 

increase PD-L1 expression, and that dual blockade may upregulate T-cell recruitment to the TME.231, 

243, 690, 839, 840 Whilst many studies have shown some promise in this area, others have not, probably in 

part due to the differing combinations: the tremelimumab and durvalumab combination has shown 

underwhelming outcomes, whereas ipilimumab and nivolumab appears to show very promising 

results.840, 841 In addition, whilst both PD-L1 expression by IHC and high TMB are used as biomarkers 

of response, there are mixed results on how effective their predictive power might be.232, 236, 743, 841, 

842 It is of note the high frequencies of severe irAEs encountered in these trials686, 687 serves as a 

warning to future potential combination therapies; multiple immune-checkpoint blockade might be 

achievable, but the cost in toxicity may prove to be too high.  

An outstanding question is the relationship of differing immune-checkpoints to each other, and how 

blockade of one may induce another, or even induce as yet unknown iatrogenic resistance 

mechanisms similar to the emergence of the T790M mutation post-EGFR TKI treatment.21 Work that 

has looked at the concurrence of IDO1 and PD-L1, for example, has shown that most NSCLCs do not 

co-express these immune-checkpoints.756, 843, 844 For those that do, it may be an indicator of a more 

aggressive phenotype,845 and might also be a marker of a tumour that  shows particular response to 

IM therapy.844, 846 Furthermore, the blockade of PD-1/PD-L1 has been shown to be associated with 

the upregulation of alternative immune checkpoints, such as TIM3.244 It is, therefore, possible that a 

sequence of IM therapies, rather than combination therapies, may prove to be the best approach.  

To further complicate matters, high levels of many immune-checkpoint markers, including PD-1, 

TIM3 and VISTA, are associated with T-cell exhaustion225, 226, 640, 847 and are therefore indicative of a 

TME that will not respond favourably to IM therapy. Combined with the findings from Chapter 8 

‘Predicting response to PD-1/PD-L1 immunomodulatory therapy’, in that the expression of PD-L1 at 

very high levels may lose predictive power in the 2nd-line setting, this infers both timing and previous 

treatment might be important factors in predicting response to IMs. It is likely that the presence and 

relationship of different immune checkpoints and the ascertainment of methods to measure their 

change over time will be a key step in optimising treatment pathways.  

To borrow again from single-driver mutations, the value of circulating biomarkers may prove to be 

key. The FDA has approved the measurement of circulating EGFR mutations since 2016848 and their 

presence in this capacity is a precursor to radiological and clinical progression. It is a tantalising 
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prospect that a similar achievement can be attained in the IM area by considering PD-L1 and other 

circulating immune checkpoints.  

10.2 Measuring host immunity 

The final piece in the puzzle in optimising predictive power is utilising knowledge of the systemic and 

localised host immune response. Unfortunately, there is no single established method for measuring 

generalised host immune ability as this is an incredibly complex, polyfactorial area with wide 

variation even between healthy individuals.849. Most attempts to measure systemic immune function 

in the context of cancer treatment have focused on circulating leukocytes, but these approaches 

have yet to be established in the routine clinical setting.689, 850-852  

In vitro methods for studying immune response has had more success, and it is with these in mind 

that in Chapter 7, ‘The tumour microenvironment’, the project attempted to find practical ways in 

which to analyse and categorise TME. Many different approaches across many different tumour 

types have been previously suggested, from T-cell scores to ‘immune hot’ and ‘immune cold’, and 

the integration of digital pathology, image analysis and AI.594, 597, 598, 600, 601, 672, 673 The major limitation 

of most of these studies is that they have been performed on large specimens, notably almost 

always with resected surgical specimens of NSCLC. The work described in Chapter 7 is confounded 

by the same potential problem; a technique that can be applied to sections of tissue that may be 

several centimetres squared may be wholly impractical to apply to the scanty specimens often 

received to make a diagnosis of NSCLC. In Chapter 8, ‘Predicting response to PD-1/PD-L1 

immunomodulatory therapy’, this question was directly addressed with the sobering conclusion that 

perhaps only a third of these diagnostic specimens might be suitable for  the more detailed analyses. 

None the less, the appeal of subtyping TMEs is a powerful one. Previous studies describe some 

success in their ability as predictive biomarkers594, 598 and they might also prove to be a ‘pan-tumour’ 

biomarker of response to IM therapy. If the specific conditions for an IM conducive TME can be 

ascertained, this, combined with knowledge of the immune checkpoint(s) present may yield 

powerful predictive data. It may also provide more granularity in predicting irAEs. Whilst irAEs have 

been associated with increased response to PD-1/PD-L1 IMs in previous studies and in the CCC 

cohort studied in this thesis, the same is not generally true of CTLA4 inhibitors. It therefore follows 

that other immune-checkpoint IM therapy response rates will be variably associated with irAEs. 114, 

680, 688   As these are a frequent and often life-threatening complication of IM therapy, this is an 

equally important aspect for prediction by analysing the TME.  
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10.3 Limitations 

A major aim of this thesis was to provide definitive data to improve the predictive power of PD-L1 

IHC and a significant limitation is that the majority of it utilised cohorts of patients that do not have 

clinical data pertaining to response to PD-1/PD-L1 IM therapy. In particular, the LLP cohort, which 

has been used extensively, whilst having robust clinical data and extensive quantities of good quality 

tissue, is limited in that none of the patients received IM therapy, as they were recruited prior to the 

IM era. Furthermore, although the LLP cohort was selected due to their being composed entirely of 

patients with metastatic nodal disease, the findings of this thesis may differ for a study of tumours 

with no metastases or a different pattern of metastases. This is less likely to be an issue when 

studying the technical aspects of PD-L1 IHC, but maybe more relevant for biological changes. 

However, as all lymph nodes were sampled at the time of resection of the primary tumour, and no 

patient received neoadjuvant therapy, the impact of temporal and iatrogenic heterogeneity can at 

least be disregarded. The large quantity of tissue in the LLP cohort has also allowed for a diverse 

range of studies to be performed and future work will allow for a comprehensive study of the 

genomic, proteomic and immune profile of these tumours. It has also enabled this project to 

minimise tissue usage from patient specimens where the quantity of tissue is limited; a recurring 

issue for diagnostic NSCLC specimens.  

Another potential limitation is the use of novel approaches that have yielded interesting data, but 

have not been validated in multiple cohorts. In Chapter 4 (Pre-analytics) an acceleration chamber 

was used to study the effects of antigen degradation by varying the atmospheric conditions within 

the chamber. This reproduced loss of DAB staining equivalent to several months’ or years’ worth of 

storage time in a matter of weeks. It would be an interesting future project to trial out various other 

tissue types and IHC assays to ascertain whether consistency of loss can be achieved through the use 

of this chamber. In Chapter 6 (PD-L1 heterogeneity), the novel concept of ‘simulated digital core 

biopsies’ and ‘digital FNAs’ was developed. These provided a fast and effective way of simulating the 

sampling of tumours tens of thousands of times to provide robust data on the accuracy of small 

samples to overcome tumoural heterogeneity of PD-L1 expression. This preserves tissues and allows 

for ‘sampling’ of the same tumour many times over, which is impossible to achieve by ‘real’ 

sampling. It is not a perfect simulation, however, and falls prey to being limited to the analysis of 2D 

sections of tissue from a 3D tumour, and assumes a quantity and quality of tissue from biopsies and 

cytology specimens that is not always seen in the routine clinical setting.  

In Chapter 7 (Tumour Microenvironment) novel TME subtypes were used to help rationalise the use 

of multiple immune markers alongside PD-L1 expression. In addition to the above limitations, the 
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definition of certain immune TMEs could likely be improved and refined with more biomarkers. 

Furthermore, the definition of any immune marker as ‘high’ or ‘low’ was entirely self-relative; ‘high’ 

in this cohort may be ‘moderate’ in another. It is probably reasonable to make some assumptions 

about certain findings however, for example, a tumour heavily infiltrated by lymphocytes with a 

‘high’ CD3+ve phenotype is probably quite reasonably categorised as a tumour with significant TIL 

presence. The use of novel immune TME signatures is a sensible approach to translate complex 

multiple immune markers into a clinically useful tool, but more work is required to refine this 

approach.  

10.4 Conclusion 

The expression of PD-L1 in NSCLCs by IHC is a powerful, useful and, overall, a clinically accurate 

biomarker for predicting response to PD-1/PD-L1 IM therapy. Despite the many different ways this 

thesis has highlighted how the predictive power of PD-L1 IHC may be impaired, it is, nonetheless, a 

biomarker with a reassuringly robust nature. As the only clinically validated tool for this purpose to 

date, it is important that the optimisation and improvement of PD-L1 IHC continues. It is likely to 

remain at the forefront of predicting response to IM therapy for some time.  

In spite of these general positivises, a significant proportion of patients will not have their response 

to IM treatment accurately predicted. Thus some patients receive treatment from which they derive 

no benefit, exposing them to a high risk of potential toxicity in the process, and others will be denied 

it inappropriately. Despite the successes of PD-L1 expression as a biomarker, improved predictive 

power is an important area of clinical need. This thesis has identified many key aspects in this regard 

and has provided data to help mitigate several of them. A combination of highly optimised PD-L1 IHC 

combined with the novel approaches outlined throughout it might assist in stratifying patients for 

PD-1/PD-L1 IM therapy. Future in this field, based on the results of this thesis, are an exciting area of 

development in the future.   
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Appendix 1- Raw data values provided from Definiens from multiplex IHC image analysis for 92 cases 

from the LLP cohort 
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Appendix 2– Factors used in multivariate analysis modelling in Chapter 7.  

Primary TPS TC Area in FOXP3-PD1-CD8 [mm^2] 

Secondary TPS IM Area in FOXP3-PD1-CD8 [mm^2] 

Gender TC-TE Area in FOXP3-PD1-CD8 [mm^2] 

Age TC-NE Area in FOXP3-PD1-CD8 [mm^2] 

T Stage TC Area in GRANZB [mm^2] 

monoplex PD-L1 IM Area in GRANZB [mm^2] 

TumorCore_monoplex PD-L1 TC-TE Area in CD68-PDL1-CD3 [mm^2] 

Density_PD-L1+CD68-CD3-[1/mm2] TC-NE Area in CD68-PDL1-CD3 [mm^2] 

manual_TPS_score_monoplex  

H&E   

Histology  

Status (1= dead)  

FU (Months)  

PDL1+ Cells in TC-TE  

CD8+ Cells in TC  

CD8+ Cells in TC-TE  

CD8+ Cells in TC-NE  

CD8+ Cells in IM  

FoxP3+ Cells in TC  

FoxP3+ Cells in TC-TE  

FoxP3+ Cells in TC-NE  

FoxP3+ Cells in IM  

CD3+ Cells in TC  

CD3+ Cells in TC-TE  

CD3+ Cells in TC-NE  

CD3+ Cells in IM  

PD-1+ Cells in TC  

PD-1+ Cells in TC-TE  

PD-1+ Cells in TC-NE  

PD-1+ Cells in IM  

CD68+ Cells in TC  

CD68+ Cells in TC-TE  

CD68+ Cells in TC-NE  

CD68+ Cells in IM  

Granzyme B in TC [%]  

Ratio: GranB:CD8 TC  

Granzyme B in IM [%]  

Ratio T-Cells CD8+ [TE/NE]  

Ratio CD8+/FOXP3+ Cells  

TC Area in CD68-PDL1-CD3 [mm^2]  

IM Area in CD68-PDL1-CD3 [mm^2]  

 


