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Inferring the properties of black holes and neutron stars is a key science goal of gravitational-wave (GW)
astronomy. To extract as much information as possible from GWobservations, we must develop methods to
reduce the cost of Bayesian inference. In this paper, we use artificial neural networks (ANNs) and the
parallelization power of graphics processing units (GPUs) to improve the surrogate modeling method,
which can produce accelerated versions of existing models. As a first application of our method, the
artificial neural networks surrogate model (ANN-Sur), we build a time-domain surrogate model of the spin-
aligned binary black hole (BBH) waveform model SEOBNRv4. We achieve median mismatches of
approximately 2e − 5 and mismatches no worse than approximately 2e − 3. For a typical BBH waveform
generated from 12 Hz with a total mass of 60 M⊙, the original SEOBNRv4 model takes 1794 ms. Existing
custom-made code optimizations (SEOBNRv4opt) reduced this to 83.7 ms, and the interpolation-based,
frequency-domain surrogate SEOBNRv4ROM can generate this waveform in 3.5 ms. Our ANN-Sur model
when run on a CPU takes 1.2 ms and when run on a graphics processing unit (GPU) takes just 0.5 ms.
ANN-Sur can also generate large batches of waveforms simultaneously. We find that batches of up to 103

waveforms can be evaluated on a GPU in just 1.57 ms, corresponding to a time per waveform of 0.0016 ms.
This method is a promising way to utilize the parallelization power of GPUs to drastically increase the
computational efficiency of Bayesian parameter estimation.

DOI: 10.1103/PhysRevD.103.064015

I. INTRODUCTION

The swift and accurate computation of the gravitational-
wave (GW) signal from merging compact binaries is a
crucial part of GW astronomy. Over the past few years,
enormous progress has been made in modeling the GW
signal [1–20], and recent models have played important
roles in the analysis of recent GWevents [21,22]. However,
as waveform models relax simplifying approximations
(such as including subdominant multipoles), the computa-
tional cost tends to increase, which ultimately limits their
use in GW analyses.
To reduce the computational cost of generatingwaveforms,

the community has developed several custom-made optimi-
zations [23–25]. But these typically require expert knowledge
andmightnot providegeneral optimizations that othermodels
can incorporate. There are many methods to accelerate
Bayesian parameter estimation [26–34], but in general, they
each make simplifying assumptions that mean not all wave-
form models can readily take advantage of the potential
speed-up. Another way to accelerate analyses is by paralle-
lization. Typically, this means parallelizing your analysis
across multiple CPUs; however, there has been growing
interest in the use of graphics processing units (GPUs), see
Refs. [35–40] for applications in GW astronomy.

Alternatively, data-driven methods can be employed that
are waveform model agnostic and hence are of great interest.
One such method is called surrogate modeling [41]. Here,
one attempts to build a fast and accurate approximation
(a surrogate or emulator) of a slower model. A successful
way to build these models typically begins with building a
reduced basis representation (e.g., a singular value decom-
position or greedy reduced basis) of the model [41–47]. One
of the biggest issues in reduced basis surrogate modeling is
the approximation of the reduced basis coefficients. This is a
multidimension interpolation or regression problem and has
recently been investigated in Ref. [48], in which the authors
systematically compared different interpolation and regres-
sion methods.
In this work, we train artificial neural networks (ANNs),

developed with the TensorFlow [49] library, to accurately and
efficiently estimate the projection coefficients of a reduced
basis representation. ANNs are a versatile tool [50] and
have recently been applied to solve reduced-order modeling
problems across multiple disciplines using a nonintrusive
framework [51–55]. The use of ANNs in GWastronomy is
increasing [48,56–73]. In particular, the authors of [74]
used ANNs to model the greedy reduced basis coefficients
for a frequency domain inspiral post-Newtonian waveforms
in the context of massive binary black holes (BBHs) that
the space-based GW observatory LISA [75] will be
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sensitive to. Here, we look at the projection coefficients of
an empirical interpolation basis for time-domain wave-
forms. We generate the complete inspiral, merger, and
ringdown waveform for the dominant (l ¼ jmj ¼ 2) multi-
pole of spin-aligned BBH coalescences using the
SEOBNRv4 model [76].
One advantage of our approach is that our ANN powered

surrogate model (ANN-Sur) can be executed on either a
CPU or GPU because it is developed with TensorFlow and
allows us to explore the possible benefits of utilizing GPUs.
We find that by generating waveform on a GPU, we gain a
significant improvement in computationally efficiency. On
average, waveforms generated with ANN-Sur take 1.2 ms
on a CPU, which corresponds to a speed-up factor of 1495
when compared to the SEOBNRv4 and a factor of 70 when
compared to SEOBNRv4opt. Moving waveform genera-
tion to a GPU provides a further factor of 2.5 improvement
taking just 0.5 ms, which corresponds to a speed-up of
3588 when compared to SEOBNRv4 167 when compared
to SEOBNRv4opt. These improvements can be readily
passed on to standard parameter estimation codes.
Our model can also generate large batches of waveforms

simultaneously [77]. We find that batches of waveforms up
to sizes of 103 take only 1.57 ms on the GPU, a factor of 216
times faster than the CPU.We estimate that the time taken to
generate the same waveforms using the SEOBNRv4opt
model, on a single CPU, would takeOð1Þ min, correspond-
ing to a speed-up factor of approximately 38,000. These
results are encouraging and suggest a way to drastically
reduce waveform generation times using GPUs.

II. METHOD

Let hðtÞ ¼ hþðtÞ − ih×ðtÞ be the predicted complex
gravitational-wave strain from a fiducial model, where t
is the time. We expand this in terms of a spin-weight −2
spherical harmonic basis, which allows us to separate out
the intrinsic parameters λ (black hole component masses
and spin angular momenta) from extrinsic parameters
ðθ;φÞ (direction of propagation)

hðt; λ; θ;φÞ ¼
X
l≥2

X
−l≤m≤l

hl;mðt; λÞ−2Yl;mðθ;φÞ: ð1Þ

If we restrict ourselves to noneccentric binary black hole
systems with spins either aligned or antialigned with respect
to the orbital angular momentum, then the system is
completely specified by its mass ratio q ¼ m1=m2 (m1

andm2 are the primary and secondary masses, respectively)
and the components of the individual BH spin vectors that
are aligned with the orbital angular momentum ðχ1; χ2Þ.
Furthermore, we will model the ðl; mÞ ¼ ð2;�2Þ multi-
poles which are the dominant multipoles for comparable
mass BBH systems. The method we use is agnostic to the
specific GW multipole and can therefore be applied to the
other multipoles in a similar way; however, here we are

interested in developing ourmethod and restrict ourselves to
just the dominant multipoles. For a final simplification, we
note that for aligned-spin binaries the (2, 2) and ð2;−2Þ
multipoles are related to each other according to h2;2ðtÞ ¼
h�2;−2ðtÞ, where � denotes the complex conjugation.
Therefore, we will only model the h2;2ðt; λÞ data where
λ ¼ ðq; χ1; χ2Þ. Instead of modeling the real and imaginary
parts of h2;2ðt; λÞ as done in Ref. [74], we decompose the
data into an amplitude, Aðt; λÞ≡ jh2;2ðt; λÞj, and phase,
ϕðt; λÞ≡ argðh2;2ðt; λÞÞ, and model these independently
[41]. The original complex data are recovered with

h2;2ðt; λÞ ¼ Aðt; λÞe−iϕðt;λÞ: ð2Þ

We use the surrogate modeling methods described in
Refs. [41,78], borrowing notation and only recounting the
basic steps here. We aim to build a surrogate model of the
GW signal, denoted hSðt; λÞ, that emulates the fiducial
model such that hSðt; λÞ ≈ hðt; λÞ to within a given error
tolerance. The surrogate model is defined for times t ∈
½tmin; tmax� and for system parameters λ ∈ T , where T is the
compact parameter space of all possible BBH parameters.
We therefore aim to build computationally efficient and
accurate representations of the amplitude and phase func-
tions ASðt; λÞ and ϕSðt; λÞ, respectively, with the final
surrogate hS2;2 given by

hS2;2ðt; λÞ ¼ Asðt; λÞe−iϕSðt;λÞ: ð3Þ

In the following discussion, we will use Xðt; λÞ as a
placeholder variable to describe either the amplitude or the
phase and XSðt; λÞ as the surrogate approximation.
We can build an efficient representation of a function

Xðt; λÞ by building a reduced basis. A reduced basis is a
linear decomposition such that for any value λ ∈ T we can
approximate Xðt; λÞ as a linear combination of projection
coefficients fciðλÞgni¼1 and the n-element basis Bn ¼
feiðtÞgni¼1 given by

Xðt; λÞ ≈
Xn
i¼1

ciðλÞeiðtÞ: ð4Þ

We define the representation error between the true
function and our reduced basis approximation as σ,

σ ¼
����Xðt; λÞ −

Xn
i¼1

ciðλÞeiðtÞ
����
2

; ð5Þ

where k · k is the L2 norm. To find the reduced basis
representation, we use a greedy algorithm implemented in
the RomPy PYTHON package [41,79]. We begin by densely
sampling the parameter space and thus creating our training
set T TS; we then pick one of the points randomly to seed
the greedy algorithm. This seed point is the first greedy
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point and the first element in the basis B. The greedy
algorithm iteratively builds up the basis by computing the
current representation error σ against all points in T TS. The
sample with the largest representation error is added to
the set of greedy points and also added to the basis using
the iterative-modified Gram-Schmidt algorithm [80]. The
greedy algorithm stops when the sample with the largest
representation error is already in the basis or if the largest
representation error is below the user-specified tolerance
σtol. This results in a set ofm greedy points and a basis B of
size m that covers T TS to within an accuracy of σtol. If the
T TS is sufficiently dense and thus representative of the
entire T , then we can use the reduced basis to approximate
the function for any point in T .
After we have built a reduced basis, we use the empirical

interpolation method (EIM) [81,82] to construct an empiri-
cal interpolant of Xðt; λÞ. This results in a new basis,
B̄n ¼ feiðtÞgni¼1, also of size m, that is constructed such
that the coefficients of the basis fαjðλÞgnj¼1 are values of the
function X themselves at the empirical time nodes Tj,

αjðλÞ ¼ XðTj; λÞ: ð6Þ

To evaluate the surrogate model at any point in T , one
can approximate the α coefficients by either fitting or
interpolating them across T . We denote the fitted coef-
ficients as α̂. We use the EIM because typically the
variation of the α coefficients is smoother than the c
reduced basis coefficients. This makes it easier to fit or
interpolate the coefficients and requires a smaller training
set to obtain a model of the coefficients.
Up to this point, we only know the α coefficients at the

greedy points. This is typically not enough points to sample
the α functions to accurately fit or interpolate across the
parameter space. In this paper, we build a surrogate model
of SEOBNRv4, which permits us to generate large training
sets that we can use to sample the αjðλÞ functions.
Finally, the surrogate model for Xðt; λÞ is defined as

XSðt; λÞ ≈
Xn
i¼1

α̂iðλÞB̄iðtÞ: ð7Þ

The problem therefore is reduced to finding a fast and
accurate approximation to α. There are many machine
learning methods that can be used to interpolate or fit these
coefficients, and depending on the accuracy required and
the dimensionality, different methods will be more suitable
than others. In Ref. [43], the authors interpolate the reduced
basis coefficients directly in the three-dimensional (3D)
aligned-spin parameter space. Interpolation is a good
method for low-dimensional parameter spaces, but in
dimensions greater than or approximately equal to 3,
interpolation becomes difficult due to the large number
of data points typically required. In Refs. [9,78], the authors
built a surrogate model for numerical relativity produced

precessing BBHs corresponding to a seven-dimensional
parameter space with the EIM. Here, because of the
relatively small size of their training set and the high-
dimensional parameter space, interpolation was not appro-
priate and instead used a basis of monomials constructed
with a greedy algorithm to reduce overfitting. In Ref. [9],
the authors modeled the 3D aligned-spin parameter space
with numerical relativity simulations using EIM and fit the
coefficients using Gaussian process regression.
In Ref. [48], the authors systematically explored several

methods and ranked them in terms of accuracy, time to fit,
and prediction time. They also experimented with ANNs
but restricted to shallow networks with only two hidden
layers and training/execution on CPUs only. In Ref. [74],
the authors modeled the reduced basis coefficients of post-
Newtonian inspiral waveforms using a four-dimensional
parameter space, comprising the component masses and the
aligned-spin components, using ANNs. In this work, we
use a similar approach but instead applied to the empirical
interpolation (EI) α coefficients and model the complete
inspiral, merger, and ringdown signal.

III. BINARY BLACK HOLE SURROGATE MODEL

A. Parameter space

In this paper, we investigate the possibility to use ANNs in
the construction of surrogate waveform models for BBH
signals.Webuild a surrogatemodel of themodel SEOBNRv4
[76].1 It predicts the GW signal emitted from noneccentric
BBHmergerswhere the black hole spin angularmomenta are
constrained to be parallel (or antiparallel) with the orbital
angular momentum. Extensions of this model to include
subdominant multipoles and precession have been done
[5,83]; however, we develop our method with the simpler
case. This model is based on the effective-one-body (EOB)
formalism, extended to predict the merger and ringdown
signal by fitting free coefficients to numerical relativity
solutions. This is a time-domain model where the inspiral
model is calculated by solving the EOB Hamiltonian equa-
tions of motion: a set of coupled, ordinary differential
equations. This method has proven to provide accurate
GW templates, but typical implementations of EOB models
tend to be computationally expensive. As such, a lot of work
has gone into optimizing the production of EOB templates,
either by improving the computational efficiency of the
inspiral calculation [23–25] or by developing the frequency
domain, reduced-order surrogate model [43]. While there
already exists frequency domain surrogate models for both
SEOBNRv4 [76] and SEOBNRv4HM [84], it is an excellent
model to develop new methodology, and we apply this to the
time domain rather than the frequency domain.

1Waveforms were generated with version 2.1.0 of the
LALSimulation library.
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Motivated by past work [9] and to facilitate comparisons,
we build a surrogate model of SEOBNRv4 covering mass
ratios from 1∶1 to 1∶8 and allowing each black hole spin to
range from −0.99 to 0.99. For each system, we generate the
h22ðtÞ ∈ C multipole data. This method to construct the
reduced basis requires that all data are evaluated on the same
time grid. We choose to build a surrogate model that is valid
from 15 Hz at a total mass of 60 M⊙ for all mass ratios and
spins in the training set. To find the start frequency of the
surrogate, fstart, for a new total mass, Mnew, we can use the
formula fstartðMnewÞ ¼ 15 × ð60 M⊙=MnewÞ Hz. We work
with geometric units M and perform a time shift such that
t ¼ 0M corresponds to the peak of the amplitude. It is
important that this procedure is done with high accuracy to
avoid an unnecessarily large reduced basis [41].
To ensure that the surrogate is valid for the domain stated

above, we generate all waveforms with a lower start
frequency of 8 Hz and then truncate all data such that the
data start at atleast 15 Hz. For the parameter space we
consider, this corresponds to a start time of −20;000M. In
addition to performing a time shift to the data, we also
perform a phase shift such that the phase is zero at the start
time (i.e., −20;000M). We keep 100M of postpeak ring-
down data. Finally, the data are resampled at a resolution of
Δt ¼ 0.5M onto the domain ½tmin;tmax�¼½−20;000;100�M.
When analyzing long signals, then the physical constraints
of computer memory become an issue. There are a number
of ways to compress the training data which typically
involve nonuniformly sampled data [26,85–87]; however,
these were unnecessary here.
We generate three different sets of data using uniform

random sampling: training, validation, and test sets. The
training set is used to (1) build the reduced basis and
(2) densely sample the projection coefficients that we will
fit. The validation set is also used to sample the projection
coefficients but is only used to monitor the accuracy of the
fit to diagnose if the model is under- or overfitting and to
help tune the hyperparameters of the network. The test set,
or hold-out set, is not used in the training of the network but
is used to evaluate the final accuracy of the model. The
validation and test sets serves as a way to assess the size
“generalization gap” of the model, the distance between the
performance of the model on the training set and on the

hold-out set. The training set contains 2 × 105 samples, and
the validation and test sets both contain 2 × 104 samples.

B. Waveform performance metrics

To quantify the level of agreement between two, real-
valued, waveforms h1 and h2, we use the standard inner
product weighted by the noise power spectral density
(PSD) of the GW detector SnðfÞ. It is defined as [88]

hh1; h2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df: ð8Þ

The match between two waveforms is defined as the
inner product between normalized waveforms ðĥ≡
h=

ffiffiffiffiffiffiffiffiffiffiffiffihh; hip Þ maximized over a relative time (t0) and phase
ðϕ0Þ shift between the two waveforms,

Mðh1; h2Þ ¼ max
t0;ϕ0

hĥ1; ĥ2i: ð9Þ

Finally, we shall quote results in terms of the mismatch,
which is the fractional loss in the signal-to-noise ratio due
to modeling errors defined as

Mðh1; h2Þ ¼ 1 −Mðh1; h2Þ: ð10Þ

C. Reduced basis construction

We choose to monitor the relative greedy error, that is,
the error relative to the representation error at the first
iteration. To determine what value to use for the tolerance,
we varied the tolerance from 10−6 to 10−16 logarithmically
in steps of 2. For each resulting basis, we computed the
mismatch [Eq. (10)] between the training data and the basis
representation. We also did this for the validation set, and
Table I shows the results. We find that the number of basis
functions grows much faster for the amplitude than for
the phase.
We base our choice of greedy tolerance, and therefore of

the number of basis functions to use, on the accuracy of the
SEOBNR4 model. In Ref. [76], the accuracy in terms of
the mismatch was found to be between 10−2–10−4 when

TABLE I. Worst mismatch of the reduced basis and reduced basis size (for amplitude and phase bases) as a
function of greedy error tolerance.

Greedy
tolerance σtol

Training
set

Validation
set

Number of bases:
amplitude

Number of bases:
phase

10−6 3.1 × 10−1 3.1 × 10−1 9 3
10−8 1.9 × 10−2 1.8 × 10−2 13 5
10−10 6.5 × 10−5 6.2 × 10−5 19 8
10−12 1.2 × 10−6 1.1 × 10−6 39 12
10−14 1.1 × 10−8 8.2 × 10−9 91 33
10−16 9.7 × 10−10 9.7 × 10−10 102 51
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compared to numerical relativity data. Therefore, we use a
greedy tolerance of 10−10, which produces a basis with
mismatch errors of at worst approximately 6.5 × 10−5 for
both the training and validation set. The consistency
between the training and validation set implies that we
have sampled the space with the training set densely
enough that the basis can represent out of sample wave-
forms with equivalent accuracy. This produces a reduced
basis with only 19 basis functions for the amplitude and 8
basis functions for the phase.

IV. NEURAL NETWORK TRAINING STRATEGY

In this section, we investigate how different choices of
data preprocessing, neural network architecture, optimiz-
ers, and minibatch size impact the networks ability to fit (or
learn) the data. We will call the combined set of choices our
training strategy, and our goal is to find the optimal training
strategy to minimize the loss function over different train-
ing strategies. We only outline our investigation here and
leave details to Appendix.
In general, is it not trivial to know how a particular

change to any of these parameters will effect the network or
indeed if the choices are independent of each other. To
make this problem tractable, we will use a greedy method,
making locally optimal choices at each step. We explore
each aspect of the training strategy in the following order:
(i) data preprocessing, (ii) width and depth of the neural
network, (iii) activation functions, and finally (iv) optimiz-
ers. At each step, we perform the experiment twice, once
using batched gradient decent (using the entire dataset) and
again using minibatch gradient decent with a minibatch size
of 1000 [89]. At each step, we typically will take the neural
network which has the smallest final loss and use those
parameters in the next step; however, in some tests, we find
there are several network configurations that perform
equally well. For those cases, we used the settings that
resulted in the fastest trained network. We note that if the
ordering of exploration were different then it would be
possible that we would end up with a different training
strategy.
The independent variables of the data we will fit are the

mass ratio (q), the aligned-spin component of the primary
(χ1), and the aligned-spin component of the secondary (χ2).
As done in previous surrogate models [9,90], we first
perform a logarithmic transformation on the mass ratio,
as we also find that this helps fit the data more accurately.
In the following sections, we will refer to the independent
variables, i.e., logðqÞ, χ1, and χ2, simply as X and the
dependent variables, i.e., the coefficients of the empirical
interpolation basis, as Y. For the amplitude, Y is a
19-dimensional vector, and for the phase, it is an 8-dimen-
sional vector (see Table I).
We use TensorFlow [49] and KERAS [91] to design and train

two independent feed-forward, fully connected neural
networks, one for the amplitude and one for the phase,

using the mean-squared error loss function. The input layer
is given by the dimensionality of the independent variables
(X). The rest of the network, the number of hidden layers,
number of neurons in each layer, and choice of activation
function, will be explored. The output layer uses a linear
activation function (suitable for regression problems), and
the number of output neurons is given by dimensionality
of the dependent variables (Y). We train the networks using
the backpropagation algorithm to minimize the loss func-
tion with respect to the network’s weights and biases.
One of the key decisions to make is how one should

choose the learning rate for the stochastic gradient decent
algorithm. Some authors suggest that the choice of mini-
batch size should be linked with the choice of learning rate
[92–94]. We explore a range of different optimizers in
Appendix but always use a learning rate that decreases with
time according to

τk ¼ ðτinit − τfinalÞ=ð1þ Rbk=ΔkcÞ þ τfinal; ð11Þ

where τk is the learning rate at epoch k, τinit is the initial
learning rate (10−3), τfinal is the final learning rate (10−5),R is
the decay rate (10), andΔk is the interval between decaying
(2000); unless otherwise stated, the values we use are given
in parentheses. We choose to compute the floor of the ratio
k=Δk, which means the learning rate exhibits stepwise
changes. Some optimizers, such as Adam [95], already
use an adaptive learning rate; however, by using a learning
rate scheduler, we can further control the maximum value of
the learning rate as a function of time (epoch).

A. Final neural network model

The final training strategies for the amplitude and phase
data are given in Table II. The networks were for trained for
105 epochs with a minibatch size of 1000, which took
approximately 6–7 hours on a Tesla P100 GPU.
We found that the data preprocessing method had a large

impact on the performance of the networks; see Appendix
for details. For the amplitude data, the optimal preprocessing

TABLE II. Final training strategy for amplitude and phase data.
Data preprocessing, neural network architecture, and hyper-
parameter choices for amplitude and phase data. A minibatch
size of 1000 was used for both. GPU used: Tesla P100.

Amplitude Phase

X preprocessing Standard scaler Standard scaler
Y preprocessing None Min-max scaler
N hidden layers 4 4
Units per layer 320 320
Activation function ReLU Softplus
Optimizer Adam AdaMax
Final loss 4.93 × 10−7 1.82 × 10−9
Final validation loss 5.74 × 10−7 1.90 × 10−9
Training time 6–7 hr 6–7 hr
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methods are to normalize theX data and use the rawY data.
For the phase, we normalize theX data and scale theY data.
For both the amplitude and phase networks, we use four
hidden layers, each with a width of 320 units per layer. As
detailed in Appendix, we find that deeper networks can
achieve lower losses, but not by a significant amount. For the
hidden layer activation functions, we find that the rectified
linear unit (ReLU) function performedbest for the amplitude
data and the Softplus function performed best for the phase
data. Finally, we used the Adam optimizer for the amplitude
data and the AdaMax optimizer for the phase data.
In Fig. 1, we show the loss and validation-loss learning

curves for the amplitude and phase data on a log-log scale.
The top panel shows the learning rate as a function of
epoch, which decreases according to Eq. (11), every 2000
epochs. The sudden drops in the loss curves correspond to
the drops in the learning rate.
We find that the amplitude data show some very mild

signs of overfitting and the phase data show signs of
underfitting; however, as we will see in the next section,
these networks produce mismatch errors below our error
tolerance.

V. MODEL EVALUATION

With the final neural networkmodels for the EI amplitude
and phase coefficients in hand, we can evaluate the perfor-
mance of ANN-Surwe have built tomimic SEOBNRv4.We
scrutinize the surrogate model using a two different tests.
The first test (Sec. VA) is to see how accurate the surrogate
model is when compared to the original model. The second
test (Sec. V B) is to quantify what is the speed improvement
we have achieved compared with SEOBNRv4. We also
compare to other state-of-the-art models in terms of com-
putational efficiency and the improvement obtained when
running the model on a GPU rather than a CPU.

For a first cross-check of the ANN-Sur model, we
computed the root mean squared error (RMSE) for the
amplitude and phase for all the cases in the validation
dataset. The worst RMSE occurred at parameters q ¼ 4.54,
χ1 ¼ 0.99, χ2 ¼ 0.90 giving a RMSE of 4.4 × 10−4 for the
amplitude and 2.1 × 10−2 rad for the phase.
In Fig. 2, we show the residuals for this case. The top

panel shows the complete signal, and the bottom panel
shows a zoom-in around the merger (at t ¼ 0 M). The left y
axis corresponds to the amplitude residuals (red curve), and
the right y axis shows the phase residuals (blue curve). We
find that the majority of the signal has a small, slowly
varying error. The main source of error comes from the
region of time around the merger. The peak errors in
amplitude and phase are approximately 0.006 and approx-
imately 0.2 rad, respectively.

A. Mismatch vs total mass

To quantify the accuracy of the surrogate model, we
compute the mismatch, using the expected noise curve for
Advanced LIGO operating at design sensitivity [96],
between Reðh2;2Þ generated by ANN-Sur and all the wave-
forms in the validation dataset, noting that results are similar
for the training and test datasets. Because of the shape of the
PSD, the smaller (larger) values of Mtot tend to accentuate

FIG. 1. Top panel: learning rate. Middle panel: the amplitude
loss (orange) and validation loss (blue) curves as a function of
epochs. Bottom panel: the phase loss (red) and validation loss
(green) curves as a function of epochs.

FIG. 2. Amplitude and phase residuals for the case q ¼ 4.54,
χ1 ¼ 0.99, χ2 ¼ 0.90. The top panel shows the complete signal,
and the bottom panel shows a zoom-in around the merger
(at t ¼ 0 M). The left y axis corresponds to the amplitude
residuals (red curve), and the right y axis shows the phase
residuals (blue curve).
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modeling errors during the inspiral (merger); therefore, we
consider the values Mtot ¼ ð60; 120; 180; 240; 300Þ M⊙.
We used a low-frequency cutoff of 15 Hz and variable
high-frequency cutoff given by 1.4fRD Hz, where fRD is an
estimate of the final black hole ringdown frequency [97], the
results of which are shown in Fig. 3. We find that the
mismatch is stable as a function ofMtot with a slight rise in
the mismatch by 1e−3 for larger values of Mtot. The vast
majority of cases havemismatches belowapproximately3 ×
10−4 (95th percentile) with amedian value of approximately
2 × 10−5. The lowestmismatchwe achieve is approximately
4 × 10−6. The highest mismatch obtained is approximately

2 × 10−3, and these cases are distributed primarily in two
clusters as shown in Fig. 4. One cluster is toward the upper
boundary of χ1. The other cluster is toward the corner of low
χ1 and low q. If more training points in these regions do not
improve performance here, then a domain decomposition
strategy can be employed.

B. Computational speed

Most waveform models are designed to run on CPUs
with some recent work on moving waveform generation
onto a GPU [37,38,73,77]; however, it is still an open
question of how waveform generation can make the most
use of GPUs. With TensorFlow, we can generate optimized
TensorFlow graphs with accelerated linear algebra [98]
compilation that can be executed on either a CPU or
GPU. Note that these results will vary depending on the
hardware used. Here, we used an Intel 2.40 GHz Xeon CPU
E5-2630v3 and a Tesla V100 GPU for our comparisons.
In Table III, we quantify the speed-up we achieve

compared with the original SEOBNRv4 model as well
as the optimized version of the model SEOBNRv4opt. We
generated the GW signal with the parameters q ¼ 3,
Mtot ¼ 60 M⊙, χ1 ¼ 0.8, and χ2 ¼ 0.5 and use a sample
rate of 1=2048 s and an initial frequency of fmin ¼ 12 Hz
(corresponding to a length of approximately 20;000 M).
When generating the GW signal with the ANN-Sur model,
we use a linear interpolation algorithm, available in the
TensorFlow Probability library, to resample the amplitude and
phase onto the same time grid as the EOB waveform as well
as compute the hþ polarization.
We find that the SEOBNRv4 model takes 1794 ms to

compute this waveform with the SEOBNRv4opt model
improving upon this by a factor of approximately 20 to
83.7ms. TheANN-Surmodel on aCPU takes 1.2ms, giving

FIG. 3. Mismatches between the ANN-Sur and the SEOBNRv4
validation dataset represented as a violin plot. The median is
marked by the middle horizontal line, and the extent of the lines
shows the minimum and maximum values. The envelope is
proportional to the density of points. The black triangles mark the
95th percentile. We remind the reader that the accuracy of the
SEOBNRv4 model is between 10−2 and 10−4 [76].

FIG. 4. Mismatches plotted across the ðq; χ1; χ2Þ parameter
space. Only cases with mismatches larger than the 95th percentile
(3e − 4) are shown. This is the result forMtot ¼ 60 M⊙, but other
Mtot are similar.

TABLE III. Average time (ms) to generate a one waveform
averaged over 100 waveforms. Times and speed-ups in paren-
theses correspond to the SEOBNRv4opt model. q ¼ 3,
Mtot ¼ 60 M⊙, χ1 ¼ 0.8, χ2 ¼ 0.5. fmin ¼ 12 Hz (correspond-
ing to a length of approximately 20;000 M). For time-domain
approximants, we used a sample rate of 1=2048 s. Models
prefixed with a * are frequency-domain models, and we used
a sample rate of 1=8 Hz. When evaluating ANN-Sur,
SEOBNRv4ROM, and NRHybSur3dq8, “warm-up” execution
is performed to load one-time overhead data. Additionally, for
NRHybSur3dq8, we only evaluate the (2, 2) mode.

Model Time (ms) Speed-up

SEOBNRv4 (opt) 1794 (83.7) � � �
ANN-Sur CPU 1.2 1495 (70)
ANN-Sur GPU 0.5 3588 (167)

*SEOBNRv4ROM 3.5 � � �
*IMRPhenomD 1.4 � � �
*IMRPhenomXAS 1.4 � � �
NRHybSur3dq8 27.3 � � �
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a speed up of 1495 (70 with respect to SEOBNRv4opt).
When running the ANN-Sur model on a GPU waveform,
generation takes just 0.5 ms, giving a speed-up of 3588 (167
with respect to SEOBNRv4opt).
We generated the same GW signal with other state-of-the-

art GW signal models for the dominant (2,2) harmonic for
nonprecessing binaries. SEOBNRv4ROM is also a surrogate
model for SEOBNRv4; however, it is constructed in the
frequency domain and interpolates reduced basis projection
coefficients. NRHybSur3dq8 [9] is a time-domain surrogate
model for numerical relativity simulations produced with
the SpEC code and hybridized with Post-Newtonian/EOB
inspiral waveforms. It also uses EIM but models the α
projection coefficients using Gaussian process regression.
IMRPhenomD [99] and its successor IMRPhenomXAS [16]
are frequency domain phenomenological models. Pheno-
menological models combine results from post-Newtonian
theory, black hole perturbation theory, and numerical rela-
tivity solutions together with sophisticated modeling tech-
niques to build custom-made models for the GW signal. We
note that comparing to other surrogatemodels should be done
with caution. The computational speed-up of a surrogate
model comes from (i) the size of the basis and (ii) the
efficiency of the method used to estimate the projection
coefficients. Both of these are affected by the parameter space
(including the duration of the signal) that the surrogate
hopes to cover. Therefore, for SEOBNRv4ROM and
NRHybSur3dq8, that cover longer-duration signals, the
comparisons relate to their specific implementation and not
necessarily to the optimal performance of the method used to
predict the basis coefficients.
We find that NRHybSur3dq8 takes the longest to

generate this waveform taking 27.3 ms. Next is
SEOBNRv4ROM taking 3.5 ms. Finally, the fastest models
are the IMRPhenomD and IMRPhenomXASmodels taking
approximately 1.4 ms. ANN-Sur is highly competitive in
terms of computational speed, outperforming all but the
IMRPhenom models when run on a CPU and outperform-
ing all models when run on a GPU by a factor of
approximately 3.
Some calculations can be rapidly accelerated by using a

GPU by processing similar calculations in parallel using
batches. ANN-Sur is built with TensorFlow and can readily
take advantage of this. In Table IV, we time how long ANN-
Sur takes to generate random batches of (10, 100, 1000)

waveforms, averaged over 100 trials, both on a CPU and a
GPU. We find that, even on a single CPU, the batched
calculation can produce 1e3 waveforms in approximately
0.4 s and the use of a GPU provides a speed-up factor of
216 taking only 1.57 ms. To generate the same number of
SEOBNRv4opt waveforms on a single CPU, we estimate it
would take approximately 1 min. Therefore, ANN-Sur
produces a speed-up factor of approximately 38,000.
The ability to extremely efficiently produce large num-

bers of template waveforms simultaneously on a single
CPU or GPU has the potential to substantially reduce the
computational cost of GW analyses such as parameter
estimation [100,101] and in the generation of GW template
banks [102,103].

VI. CONCLUSION

In the next five years, the size of GW catalogs is expected
to grow from Oð10Þ to Oð103Þ [104,105]. It is therefore
imperative that we devise methods that can make use of the
most accurate waveform models, which are typically also
the most computationally expensive, in the analysis of all
GW events.
In this paper, we have presented ANN-Sur, our method-

ology to construct surrogates forGWsignalmodels powered
by artificial neural networks. A similar ideawas presented in
Ref. [74] with a focus on inspiral-only signal models and
masses suitable for the LISA detector. Here, we focus on
GW signals for the complete inspiral, merger, and ringdown
with a mass range targeted for current ground-based
detectors. In a first application of our method, we have
built a time-domain surrogate model of the SEOBNRv4
model for spin-aligned binary black hole mergers, which
covers the following 3D intrinsic parameter space:
q ∈ ½1; 8�, χ1;2 ∈ ½−0.99; 0.99�. We built the surrogate to
bevalid from15Hz for a totalmass of60 M⊙, which leads to
a length of approximately 20;000 M. When compared with
the original SEOBNRv4 model, our surrogate model has a
worst mismatch of approximately 2e−3 and a median
mismatch of approximately 2e−5; see Fig. 3.
ANN-Sur is built with the TensorFlow library and can

seamlessly run on either a CPU or GPU. In Sec. V B, we
compared the computational efficiency of ANN-Sur with
the original SEOBNRv4 model. We find that the average
time to compute a single waveform with the optimized
SEOBNRv4 model is 83.7 ms; when running ANN-Sur on

TABLE IV. Computational efficiency of ANN-Sur when generating batches of waveforms.

CPU GPU Speed-up

Total time (ms) Time per waveform (ms) Total time (ms) Time per waveform (ms) (CPU/GPU)

Single 1.2 1.2 0.5 0.5 2.4
Batched (10) 6.7 0.67 0.6 0.06 11
Batched (102) 48 0.48 0.57 0.0057 84
Batched (103) 339 0.34 1.57 0.0016 216
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a CPU, this is reduced to 1.2 ms, and when run on a GPU,
this takes just 0.5 ms, a factor of 167 improvement. When
comparing with the frequency-domain surrogate model
SEOBNRv4ROM, we find that ANN-Sur is a factor of
3 (7) times faster when run on a CPU (GPU).We expect that
frequency-domain surrogate models built using this method
would be significantly improved, which may further
increase the performance of likelihood acceleration tech-
niques such as the reduced-order quadrature rule [26–28].
ANN-Sur also permits us to generate large numbers of

waveforms simultaneously in batches on a single CPU or
GPU. In Table IV, we find that we can generate batches of
up to 103 waveforms in approximately 340 ms on a CPU
and in just approximately 1.57 ms on a GPU, correspond-
ing to a per waveform generation time of just 0.0016 ms.
This new kind of parallelization allows for the generation of
large training sets to train deep learning methods to perform
Bayesian inference [63,77,106] or to rapidly generate
waveforms for grid-based methods such as [39,100,101].
The increased computational efficiency gained here should
also be obtained for binary neutron star systems [6,14] and
neutron star black hole binaries [107,108], increasing the
likelihood that we will find multimessenger events [109].
While our surrogatemeets current accuracy requirements,

with only 19 and 8 basis functions for the amplitude and
phase, respectively, higher-accuracy surrogate models will
be required in the future as detectors becomemore sensitive.
Higher-accuracy surrogates can be built by including more
basis functions (for example, see Table I); however, we
found that the ANNs we used were unable to model the
projection coefficients accurately enough. This issue should
be solved by using larger training sets and improving our
training strategy.
One of the next steps will be to incorporate the full BBH

parameter space, i.e., build a surrogate model that includes
spin-precession and higher harmonics [3,11,19,83,110].
Extending our method to work effectively in higher dimen-
sions is also possible by increasing the size of the training set
and network capacity.
A final and unique advantage of our method is to be able

compute waveform derivatives using automatic differentia-
tion [111]. This is a key ingredient for the Bayesian
inference sampling method Hamiltonian Monte Carlo
[112–114]. This has rarely been used in the GWastronomy
community [115,116] as the computational cost of comput-
ing the required likelihood derivatives quickly offsets any
performance gained from using Hamiltonian Monte Carlo.
We are currently exploring the benefits of combining
Hamiltonian Monte Carlo with ANN-Sur, which will be
presented in the future.
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APPENDIX: NEURAL NETWORK
EXPLORATION

In this Appendix, we show additional material to justify
our choice for the final networks. As mentioned in Sec. IV,
we run each experiment twice, first using batched gradient
decent and second using minibatch gradient decent with a
minibatch size of 1000. We find that the minibatch results
always outperform the batched results, and so we only
present the minibatch results for most cases.
Data preprocessing.—Data preprocessing refers to

actions we do to modify the X and Y data. We considered
three different options: (i) do nothing, (ii) normalize the
data such that it has zero mean and unit variance, or
(iii) scale the data to lie between 0 and 1. To normalize and
scale the data, we use the StandardScaler and MinMaxScaler

functions in the SCIKIT-LEARN PYTHON package.
Before performing a more exhaustive search to find the

optimal number of hidden layers and artificial neurons, we
use an initial network to explore the effects of data
preprocessing. This initial network, found through manual
prototyping, makes use of several common choices in
neural network design. It has six hidden layers with 256
neurons in each layer, and each neuron uses the ReLU
activation function.
For each dimension or feature of X and Y, we apply the

three preprocessing methods and train a neural network for
each pair of preprocessing methods. We also consider the
effect of the minibatch size on the training by repeating
each experiment twice, once with a batch size equal to the
entire training set (2 × 105) and again with a minibatch size
downsampled by 200, giving a minibatch size of 1000. We
trained the networks for 103 epochs, which took approx-
imately 20 mins for the batched gradient decent case and
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approximately 40 mins for the minibatch case on a Tesla
P100 GPU.
We find that the phaseY data are influenced the strongest

by the choice of preprocessing and the X data preprocess-
ing has a smaller impact, although is noticeable. For the
amplitude data, we find that preprocessing can influence
the results but not as strongly as the phase data. The reason
for this is because the amplitude data are, for the most part,
of the same order of magnitude and O(1). The phase, on the
other hand, as it is accumulated as the binary system
evolves, can span many orders of magnitude depending
on the duration of the signal. Therefore, by applying a
preprocessing step such as normalizing or scaling the data
brings all the EI coefficients into a similar range, which can
help make it easier to train a neural network. We believe that
the preprocessing step applied to theX data is less important
because, for our dataset, the data are between 0 and 1 for the
logðqÞ and between −1 and 1 for the spin dimensions.
We find that, for the phase data, the optimal preprocess-

ing methods are to normalize the X data and scale the Y
data. For the amplitude, we will normalize the X data and
use the raw Y data. We will use these as the optimal choices
for preprocessing the data moving forward and investigate
how the network architecture, choice of optimizer, and
minibatch size can affect the training these neural networks.
Width and depth.—The number of possible configura-

tions a feed-forward, fully connected artificial neural net-
work could take presents a near limitless number of
possible network architectures. While the number of
neurons in each hidden layer does not have to be the
same, we restrict ourselves to neural networks of a constant
width (i.e., number of neurons in each hidden layer) but
allow this number and the number of hidden layers (the
depth) to vary. Following the parametrization in Ref. [118],
we perform a systematic search for the optimal number of
hidden layers (depth) L and number of neurons in each
hidden layer (width) N. We form the ratio β ¼ L=N and
consider values β < 1 which correspond to networks that
are wider than their depth. We consider networks with a
maximum number of hidden layers Lmax ¼ 10 and three
values of β ∈ f0.0125; 0.025; 0.05g.

We find that for the phase data β ¼ 0.0125 predomi-
nantly perform best, followed by β ¼ 0.025 and β ¼ 0.05,
respectively. A similar pattern is observed for the amplitude
data. The amplitude data favor deeper networks with seven
to ten layers, whereas the phase data prefer networks with
three to nine layers.
For the phase, the top two networks both have

β ¼ 0.0125. The best network has L ¼ 5 hidden layers
and N ¼ 400 units per layer, and the second best network
has L ¼ 4 hidden layers and N ¼ 320 units per layer. As
the difference in final loss is insignificant, we chose the
network with four hidden layers as it was significantly
faster to train.
For the amplitude data, the best performing networks

were typically deeper and wider than the phase networks.
However, these differences did not present a significant
increase in accuracy, so we opted to use the same network
chosen for the phase data as it also performed well for the
amplitude data.
Activation function.—We found that the performance of

ANNs on the phase data was strongly influenced by the
choice of activation function but the amplitude data were
fairly insensitive to this choice. For the amplitude, the best-
performing activation functions were PReLU, ReLU, and
the Leaky_ReLU. As the PReLU and the Leaky_ReLU add
addition parameters to the training strategy, we decided to
use the ReLU activation function for the amplitude. For the
phase,we find that the PReLU,ReLU, and the Leaky_ReLU
also perform well but the Softplus outperforms them both in
accuracy and training time.
Optimizer.—We find that SGD, Adadelta, and Adagrad

consistently underperform for both the amplitude and phase
data, producing loss values approximately 3 orders of
magnitude worse than the other optimizers tested. For
the amplitude data, we find that the Adam optimizer
performs equally as well as the Nadam optimizer and
results in a network that is significantly faster to train. For
the phase data, we find that AdaMax outperforms Adam,
Nadam, and RMSprop.
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Hinder, and S. Ossokine, Phys. Rev. D 98, 084028
(2018).

[6] A. Nagar, S. Bernuzzi, W. del Pozzo, G. Riemenschneider,
S. Akcay, G. Carullo, P. Fleig, S. Babak, K. W. Tsang, M.
Colleoni, F. Messina, G. Pratten, D. Radice, P. Rettegno,
M. Agathos, E. Fauchon-Jones, M. Hannam, S. Husa,
T. Dietrich, P. Cerdá-Durán, J. A. Font, F. Pannarale, P. L.
Schmidt, and T. Damour, Phys. Rev. D 98, 104052 (2018).

SEBASTIAN KHAN and RHYS GREEN PHYS. REV. D 103, 064015 (2021)

064015-10

https://doi.org/10.1103/PhysRevD.96.124010
https://doi.org/10.1103/PhysRevD.96.124010
https://doi.org/10.1103/PhysRevD.100.024032
https://doi.org/10.1103/PhysRevD.100.024032
https://doi.org/10.1103/PhysRevD.101.024056
https://arXiv.org/abs/2004.08302
https://arXiv.org/abs/2004.08302
https://doi.org/10.1103/PhysRevD.98.084028
https://doi.org/10.1103/PhysRevD.98.084028
https://doi.org/10.1103/PhysRevD.98.104052


[7] A. Nagar, G. Pratten, G. Riemenschneider, and R. Gamba,
Phys. Rev. D 101, 024041 (2020).

[8] N. E. M. Rifat, S. E. Field, G. Khanna, and V. Varma, Phys.
Rev. D 101, 081502 (2020).

[9] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E.
Kidder, and H. P. Pfeiffer, Phys. Rev. D 99, 064045 (2019).

[10] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme,
Phys. Rev. D 100, 024059 (2019).

[11] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D.
Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer, Phys.
Rev. Research 1, 033015 (2019).

[12] D. Williams, I. S. Heng, J. R. Gair, J. A. Clark, and B.
Khamesra, Phys. Rev. D 101, 063011 (2020).

[13] S. Ossokine, A. Buonanno, S. Marsat, R. Cotesta,
S. Babak, T. Dietrich, R. Haas, I. Hinder, H. P. Pfeiffer,
M. Purrer, C. J. Woodford, M. Boyle, L. E. Kidder, M. A.
Scheel, and B. Szilágyi, Phys. Rev. D 102, 044055 (2020).

[14] T. Dietrich, S. Khan, R. Dudi, S. J. Kapadia, P. Kumar, A.
Nagar, F. Ohme, F. Pannarale, A. Samajdar, S. Bernuzzi,
G. Carullo, W. del Pozzo, M. Haney, C. Markakis, M.
Puerrer, G. Riemenschneider, Y. E. Setyawati, K. W.
Tsang, and C. van Den Broeck, Phys. Rev. D 99,
024029 (2019).

[15] T. Dietrich, A. Samajdar, S. Khan, N. K. Johnson-
McDaniel, R. Dudi, and W. Tichy, Phys. Rev. D 100,
044003 (2019).

[16] G. Pratten, S. Husa, C. Garc’ia-Quir’os, M. Colleoni, A.
Ramos-Buades, H. Estell’es, and R. Jaume, Phys. Rev. D
102, 064001 (2020).

[17] L. London, S. Khan, E. Fauchon-Jones, C. García, M. D.
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