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Resting state functional magnetic resonance imaging (rsfMRI), and the underlying brain

networks identified with it, have recently appeared as a promising avenue for the

evaluation of functional deficits without the need for active patient participation. We

hypothesize here that such alteration can be inferred from tissue damage within the

network. From an engineering perspective, the numerical prediction of tissue mechanical

damage following an impact remains computationally expensive. To this end, we propose

a numerical framework aimed at predicting resting state network disruption for an

arbitrary head impact, as described by the head velocity, location and angle of impact,

and impactor shape. The proposed method uses a library of precalculated cases

leveraged by a machine learning layer for efficient and quick prediction. The accuracy

of the machine learning layer is illustrated with a dummy fall case, where the machine

learning prediction is shown to closely match the full simulation results. The resulting

framework is finally tested against the rsfMRI data of nine TBI patients scanned within

24 h of injury, for which paramedical information was used to reconstruct in silico the

accident. While more clinical data are required for full validation, this approach opens

the door to (i) on-the-fly prediction of rsfMRI alterations, readily measurable on clinical

premises from paramedical data, and (ii) reverse-engineered accident reconstruction

through rsfMRI measurements.

Keywords: traumatic brain injury, resting state functional magnetic resonance imaging, default mode network,

finite element simulation, machine learning

1. INTRODUCTION

Traumatic brain injury (TBI) is one of the leading causes of death in people under the age of 45
years (Maas et al., 2008). In the EU, it is estimated that 2.5 million people suffer annually from
TBI (Maas et al., 2015). While they can also result from non-impact conditions such as blast waves
arising from an explosion, most TBIs occur as a consequence of head impacts, e.g., during falls, road
traffic accidents, assaults, and sport injuries. The impact conditions can be very diverse, as expected
from the large parameter space characterizing the boundary conditions of the contact (location,
impact velocity, angle of impact, impactor shape, impactor material properties, etc.), as well as the
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high sensitivity associated to some of these (Fahlstedt et al., 2012).
Despite improvements in care, functional outcomes are equally
variable, even among those with apparently minor early injury
severity. The limited predictive power of current clinical head
injury scales raises a prominent need for tools better able to
anticipate the long-term effects of TBI.

To understand better the effects of these impact conditions,
computational models, and, in particular, finite element head
models (FEHMs), have been used to predict mechanical
deformation and stress levels on brain tissue (Raul et al., 2008;
Dixit and Liu, 2017). This approach has typically been leveraged
to correlate mechanistic measures (e.g., pressure, von Mises
stress, principal strains, etc.) with different degrees of tissue
damage. Historically, FEHMs have successfully been utilized for
the prediction of structural events such as skull fracture (Garcia-
Gonzalez et al., 2017). However, as local mechanical disturbances
in the brain can lead to time-dependent systemic biological and
multiphysics responses, these models are intrinsically unable
to mechanistically predict functional alterations or cognitive
deficits. Barring a few exceptions (Garcia-Gonzalez et al., 2018b),
very little work has focussed on correlating functional deficits,
tissue damage, and mechanical features in a fully validated
framework, e.g., with clinical or animal data. Even then, in most
of the cases, the high cost (both in man-hour and computational)
to develop, run, and analyze the underlying FEHM remains
extremely impractical and not fit for direct clinical use. While
coupling mechanistic approaches to machine learning (ML)
methods has been recently highlighted as a potential avenue for
alleviating these restrictions (Baker et al., 2018), very little has
been done in this field.

At the clinical end of the spectrum, the diagnosis and
prognosis of TBI rely heavily on the clinician’s experience.
Indeed, while a lot of effort has focused on outcome prediction—
outcome being often defined in relatively broad terms, e.g.,
“mortality” or “unfavorable outcome” (Roozenbeek et al.,
2012)—, these prognostic models are not directly usable for
individual patients (Menon and Harrison, 2008). Instead, head
injury assessment by healthcare professionals still relies on
general guidance built around a set of recommendations such as
the ones provided by the National Institute for Health and Care
Excellence (National Institute for Health and Care Excellence,
2019). Even then, the immediate cognitive evaluation of the
sufferer is generally based on the Glasgow Coma Scale (GCS)
originally defined in mid 70s (Royal College of Physicians and
Surgeons of Glasgow, 1974), and solely focused on symptoms as
opposed to cause identification.

The recent development in magnetic resonance imaging
(MRI) has allowed for the identification of new candidates for
direct functional evaluation of the brain. In particular, resting
state functional MRI (rsfMRI) is a technique that identifies
correlated networks in the absence of specific tasks (Fox and
Raichle, 2007), offering insight into network function among
unconscious patients unable to engage in active cognitive tasks
(Kondziella et al., 2016). Among the common findings in patients
with TBI is the alteration to the default mode network (DMN)
(Sharp et al., 2014). While rsfMRI could hold the key to a more
direct and straightforward diagnosis of eventual cognitive deficits

in TBI, a prognostic/diagnostic tool to link network alteration
and tissue damage still remains elusive.

To this end, this work proposes a new method aimed at
predicting rsfMRI network deficit directly from trauma data
by means of a ML layer taking as inputs a combination of
impact conditions, namely: location, velocity of impact, angle
of impact (represented by a binary input indicating whether
the impact is perpendicular or not), and shape of the impactor
(represented by their radii of curvature). The ML layer predicts
the extent of tissue damage after being trained by a library
of pre-simulated impact loaded FEHMs for which a shear
energy rate threshold is used to estimate the percentage of
tissue damage in the DMN. Our results show that it is able
to capture very well the proportion of brain damage sustained
mechanically, and thus alleviate significantly the computational
time experienced by direct FEHM simulations. In parallel to this,
a functional criterion defined as the proportion of brain voxels
statistically decoupled from the neurologically normal DMN is
proposed to quantify the functional damage to the DMN. Both
mechanistic and functional criteria are then evaluated for nine
TBI patients with clinical and rsfMRI data available in the hyper-
acute phase (first few hours) after trauma, for whom the accident
is reproduced in silico from paramedical data. Despite a very wide
variability in the extent of the predicted DMN tissue damage,
the mechanical damage values are generally aligned in trend with
the “ground truth” functional damage observed in these patients
as quantified by the functional criterion. Assuming a direct
relationship between the two criteria, the proposed framework is
ultimately used to estimate the real velocity of impact experienced
by the nine patients.

While future validation work is needed to extend these
model predictions to an even more comprehensive range of
head injuries, we propose that this virtual prediction framework
offers avenues for realistic estimation of either brain functional
deficit when knowing the accident conditions, or the accident
conditions when having access to the functional evaluation.
Such estimations have direct clinical utility in the general clinical
setting where very rare hyper-acute MRI scans, used to validate
model predictions here, are not obtainable. Once fully validated
on a larger cohort, this approach could find a direct use in clinical
and forensic environments.

2. MATERIALS AND METHODS

2.1. Clinical Data
2.1.1. Participants
Adult patients (aged 18 years and over) were prospectively
recruited from the Emergency Department at the Oxford
University Hospitals NHS Foundation Trust as early as possible
following traumatic head injury. Eighteen patients in total were
recruited, among which nine patients (mean age: 55.8 range: 22–
83) were selected for this study based on having a single defined
mechanism of injury suited to modeling. Patients underwent a
CT scan as part of standard trauma care. Once immediately
life-threatening conditions were identified and treated, patients
were recruited for a research MRI scan within 24 h of injury
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(the “hyper-acute” phase). Patients who were intubated and
ventilated at the time of recruitment were transferred to MRI
by a dedicated neuro-intensive care team consisting of a
consultant neuro-anaesthetist, neuro-intensive care nurse, MRI
research nurse, and consultant neurosurgeon. The same team
managed the patient throughout the scan before transferring to
intensive care. Patients were excluded from the study if they
had contraindications to MRI, injuries requiring urgent surgery,
or were medically unstable so that scanning would not be
safe. Patients were followed throughout their hospital stay and
returned at 6–9 months following injury for repeat assessments.
Initial severity of injury was assessed using post-resuscitation
GCS at presentation. Severity, at 1 week/short term outcome,
was assessed using both the GCS and location of the patient (in
hospital or discharged). Patients with a GCS of 12 or less were
considered moderate-severe. Patients with a GCS 13–15 were
considered mild. All patients still in hospital with a GCS 12 or
less and/or still in hospital (due to TBI) at 7 days were considered
moderate-severe at this point. A neurological examination and
GlasgowOutcome Scale (extended)—GOSe—questionnaire were
completed at 6–9 months by the patients or their relatives/carers
if they were unable. The mechanism of injury for every patient
was ascertained from medical notes recorded at the scene or in
discussion with the patient/witnesses. Patient demographics and
clinical data are presented in Table 1.

Eighteen healthy controls, age and sex-matched to the
patients, were recruited for normative data. Exclusion criteria
for controls included contraindications to MRI and any current
or historical neurological or psychiatric conditions. Healthy
controls provided informed written consent. All patients with
capacity at the time of initial recruitment gave written informed
consent. For patients lacking capacity, the lead clinician, in
consultation with the family, signed a declaration form to
confirm agreement for the patient to be recruited into the study.
Explicit patient consent was sought as soon as possible upon
recovery. The study was approved by the South Central-Berkshire
Research Ethics Committee.

2.1.2. MRI Data Acquisition
MRI data were acquired on a 3T Siemens Magnetom Verio
scanner at the Oxford Acute Vascular Imaging Centre (AVIC).
The scanning protocol included T1-weighted MPRAGE and
resting fMRI, acquired using an echo-planar T2*-weighted
imaging sequence. The resting fMRI sequence parameters were:
voxel size of 3 × 3 × 3 mm3, multiband acceleration factor: 2,
repetition time: 1,640 ms, echo time: 30 ms, acquisition time:
05:35 min. Field maps were acquired to allow for correction of
field inhomogeneity-induced geometric distortions in the fMRI
data.

2.1.3. rsfMRI Data Pre-processing
The rsfMRI data were analyzed using dedicated tools in the
FMRIB Software Library (FSL) (http://fsl.fmrib.ox.ac.uk/fsl).
First, standard pre-processing was performed, including brain
extraction, motion correction, distortion correction using field
maps, spatial smoothing (full-width at half maximum of 5
mm), and high-pass temporal filtering (100 s). To enable

between-subject comparisons, individual subjects’ functional
scans were linearly registered to their respective high resolution
structural (T1) scans and then nonlinearly aligned to the
Montreal Neurological Institute (MNI) standard template brain,
accounting for any gross brain pathology (such as contusions,
haematoma).

Next, in order to objectively extract the DMN from each
individual participant’s resting fMRI data, we performed a dual-
regression analysis, as previously described (Khalili-Mahani et al.,
2012; Voets et al., 2012). For this analysis, we obtained a template
set of 10 well-validated resting state networks (including the
DMN) identified in healthy adults (Smith et al., 2009). A two-
stage (temporal and spatial) regression was then performed.
Each template resting network has a characteristic time-course.
Therefore, in the first stage, each of the template networks
was regressed against the rsfMRI time-series acquired in our
individual subjects to identify time-courses corresponding to
each template component (Voets et al., 2012). The second stage
then identified brain voxels that shared this time course, for each
of the 10 networks separately, from which we selected the DMN
for further analysis. In this way, we obtained z-normalized single
subject spatial maps, representing for every voxel in the brain the
strength of its functional connectivity with the DMN in our nine
patients and eighteen healthy controls (see Figure 1).

2.1.4. Resting State Network Based Damage
Finally, we performed single-subject case-control statistical
analyses. The objective of these analyses was to generate a DMN
“damage load” index for every TBI patient by calculating the
number of voxels in each patient’s DMN whose connectivity was
altered when compared to healthy controls. Since distributions in
small samples may violate the assumptions underlying single case
t-test analyses, for this analysis, we performed inference testing
using Permutation Analysis of LinearModels (PALM)with signal
flipping (Winkler et al., 2014), as described previously (Voets
et al., 2017). These analyses were constrained to cortical voxels
by constructing a group mean gray matter mask from automatic
tissue segmentations of each subject’s T1-weighted anatomical
scan obtained using FSL-FAST (Zhang et al., 2001). For each
patient, we compared the whole-brain DMN connectivity map
to the distribution of connectivity maps generated from our 18
healthy controls using the general linear model framework. Two
groups were created (corresponding to n = 18 healthy control and
n = 1 patient, substituting the data for each of the nine patients in
turn) and a single contrast (controls > patient, testing for voxels
with lower DMN functional connectivity in the patient compared
with controls). We performed 5,000 permutations for each case-
control analysis and report permutation p-values for significant
voxels using the thresholding method Cluster Free Threshold
Enhancement (TFCE). TFCE offers a simple approach for
calculating cluster-like voxel-wise statistics, providing sensitivity
both to local maxima and spatial extent of signal without the
need to define an arbitrary hard initial cluster-forming threshold
(Smith and Nichols, 2009).

To obtain the individual patient DMN “damage load”
metric, the resulting t-statistic maps (not corrected for multiple
comparisons) were thresholded at a p-value of 0.05 to
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TABLE 1 | GCS, Glasgow Coma Scale; GOSe, Glasgow Outcome Score (extended).

Case Age Sex Mechanism of injury Severity at

presentation

GCS (15-point scale),

at 7–9 days

GOSe at 6–9 months

(8-point scale)

1 83 M Fall from a 2-story house, injuries suggestive of hip and left frontal

head impact

Severe Intubated and sedated 3

2 22 M Closed hand hit to the face, fell backwards Moderate 15 7

3 70 F Kicked by a horse in the abdomen and head, fell backwards Mild 15 8

4 30 M Pedestrian, hit by van traveling at 20–30 mph. Hit head on wing

mirror and knocked to the floor

Mild 15 8

5 61 F Pedestrian, hit by cyclist. Impact to right side of the head behind ear Moderate 15 4

6 52 F Pedestrian, hit by car traveling at approx. 30 mph. Impact to right

orbital/frontal region of the head

Moderate 15 8

7 41 M Fall from 3-story roof. Impact to left temporal and frontal head

regions. Additional right wrist fracture, cervical, and thoracic

transverse spinous process fractures

Severe Intubated and sedated 5

8 62 M Charge by bull running out of a cattle truck. Thrown back against a

metal fence and onto concrete. Landed on back of head

Moderate 15 6

9 72 M Cyclist, knocked off bike, landed on head. Impact to left parietal head

region and left shoulder.

Severe Intubated and sedated 3

The GOSe provides a numeric measure corresponding to the degree of disability a patient is left with after a head injury (Weir et al., 2012); lower scores indicate worse outcomes.

GOSe differs from the GCS which is a 15-point measure of a patient’s degree of consciousness, typically used as a marker of severity following injury (lower scores indicate more severe

injury). The scale is intended for use after discharge from hospital, and in particular, moderate disability and good recovery are not assessable until after discharge. Assessment beyond

6 months is considered to provide a reasonable marker of the long-term cognitive effects attributable to the TBI (Dikmen et al., 2009).

FIGURE 1 | rsfMRI DMN analysis workflow.

calculate the number of statistically “disconnected” voxels.
Finally, the number of “disconnected” voxels was expressed
as a percentage of the total DMN mask. The latter was
calculated by generating a binary mask of the DMN, by

thresholding the template DMN mask (Smith and Nichols,
2009) at z-score of 3.1 (corresponding to a p-value of
0.05) and binarizing the resulting spatial map to extract
its volume.
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2.1.5. Impact Velocity and Location Estimations
The data gathered in Table 1 were analyzed to estimate the
impact location and velocity in a fashion consistent with
medico-legal expertise. Additional data were made available by
neurosurgeon and paramedic.

• Case 1: An unwitnessed fall from a 2-story house roof, the
victim sustained abrasions to the left forehead and face, a
fracture to the left zygoma and a left intratrochanteric hip

fracture, suggesting that the left frontal region made contact
with the ground; the hip fracture suggests that the head was
unlikely to have contacted the ground first. That forehead

and facial grazes were in evidence, suggests a concomitant
or subsequent involvement of the maxilla and or temporal
bones and thus, a more diffuse, focal loading. The general
description of the grazes suggests some tangential motion of

the head, relative to a primary contact between the lower
limb and the ground. This potentially was a result of angular
motion of the trunk and upper body, relative to the contact of
the lower limb. The provision of greater detail of the grazes
may have informed the directionality and mechanics of the

relationship between the head and contact surface further. The
site and limited severity of the zygomatic fracture suggests
that the head impact was relatively low energy, certainly
compared to the potential for injury posed by a fall height
through the distance presented in this case and that the

surface was flat and firm, rather than irregular. Whether
the surface was unyielding is unknown, however, given the
overall low level of injury, the surface was probably not hard,
i.e., neither concrete nor tarmac. The first point of contact
was logically likely to have absorbed/dissipated a significant

proportion of the impact energy. If it had been the head, a
greater degree of injury severity might have been expected.
However, a glancing head contact and subsequent lateral
upper leg impact cannot be excluded. The fall height can
be assumed to have been in the region of 5.7 m (typical
height to the gutter of a 2-story house), the height of the
gutter approximately 0.1 m, the assumed standing height of
the accident victim, assumed 50th percentile male = 1.76 m,
minus the 0.1 m distance from the top of the head to the likely
point of contact around the “hat brim region.” Therefore,
a total minimum fall height of 7.3 m is assumed, since by
default, the assumption is that the male was standing at the
lower edge of the roof, with no initial velocity and simply
pitched forwards. Therefore, a simple fall is assumed, with
no initial velocity or arc of rotation considered, through 7.3
m from which a maximum impact velocity is calculated to
be 12 m/s. Forces which exceed the fracture tolerance limit
in the literature are in the region of 5.35 kN (1,200 lbf),
assuming an adult head mass of 6.82 kg (15 lb) and an
acceleration of 80 g (Pappachan and Alexander, 2012). The
fracture tolerance of the zygoma is in the order of 0.89–2.00
kN (200–450 lbf) (Pappachan and Alexander, 2012). Thus, the
minimum velocity to produce fracture would be in the order
of 2.24–5.02 m/s (5–11.25 mph). The left frontal region is

suspected to have made first contact with ground between

2.24 and 12 m/s.

• Case 2: : Involved a typical “sucker punch” (or “king hit”)
assault case (Patton and McIntosh, 2017). The male victim
was punched to the face, which resulted in him falling
backwards and striking his occiput on a rigid surface. The
resulting head injuries may have been due to the punch,
the fall, or a combination of both. A spectrum of punch
response outcomes is possible, for example, if the punch
had been delivered, such that little momentum (push)
was transferred, producing a sudden loss of consciousness
and no reflexive actions, then victim could have simply
collapsed downwards and backwards, or downwards into
sitting position and backwards. Alternatively, if the victim
had been struck squarely, then momentum transfer would
have produced an angular (arcing) motion of the upper body
relative to his fixed feet, acting as a fulcrum. This would have
resulted either in a relatively pure angular velocity about the
fixed feet, if the legs had stiffened as a result of the blow,
or alternatively, produced a combined linear and angular
velocity if the legs had given way. Thus, a higher velocity
and impact energy would have been produced. The worst
case would be for a punch with significant transference of
momentum such that the victim’s straight body is submitted
to translational velocity of 6.75 ± 0.27 m/s. The best case
would be for the victim’s body being slightly bent at waist
with a translational velocity of 4.85 ± 1.33 m/s (Patton and
McIntosh, 2017) The victim is estimated to have hit his

occiput on the ground with a velocity between 4.85 and 6.75

m/s.

• Case 3: The victim was reported to have been kicked by
a horse both to the abdomen and head and to have fallen
backwards, prior to striking her head against the ground.
Thus, the areas of impact were to the front, as a result of
contact with the kick to the abdomen and head and back
of the head (occipital region), due to the fall backwards.
This was accompanied by a loss of consciousness for a
brief period. Although the sequence was not specified, one
could assume that the abdominal kick was first, since a
kick to the head would have likely caused the victim to
have initially fallen backwards away from any subsequent
kick. With respect to the occipital impact, the velocity range
is reported as being between a straight body translational
velocity of 4.80 ± 0.22 m/s and a slightly bent at waist
translational velocity of 3.78± 0.53m/s (Patton andMcIntosh,
2017). In light of all the unknowns, an occipital impact

velocity is estimated to have been between 3.2 and 4.8

m/s.

• Case 4: The victim was a pedestrian hit by a van traveling
at an estimated 20–30 mph. The head was reported to
have contacted with the wing mirror before the victim was
knocked to the ground. Frontal and occipital scalp degloving
and significant arm and soft tissue injuries were produced.
The primary impact velocity of the van cannot be directly
attributed to the subsequent occipital contact with the ground,
which can be assumed to be a result of a secondary impact,
from momentum transfer producing a kinematic pedestrian
response. If one were to consider just the vertical velocity
of falling, one might consider the impact scenario similar
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to a crouched fall from standing, i.e., a slightly bent at
waist translational velocity of 4.85 ± 1.33 m/s (Patton and
McIntosh, 2017), though the degloving does suggest a more
complex tangential component. If the head impact had been
with a non-yielding part of the van, the fact that serious
extra- and intracranial injury is absent would indicate an
impact velocity to the front or rear of the head below 20
km/h (12 mph) (AL-Graitti et al., 2017). This is probably
not the case here, since significant arm and soft tissue
injuries were also reported. Considering all these results

in combination and comparing with other reported cases,

the occipital region was probably impacted at velocity of

between 4.17 and 9.72 m/s (15 and 35 km/h) (AL-Graitti

et al., 2017).

• Case 5:The victimwas a pedestrian hit by a cyclist. Subsequent
to a brief loss of consciousness, the victim had no recollection
of the events prior to the accident. The right side of the
head behind the ear impacted with the ground. A right
posterior fossa epidural hematoma accumulated between the
skull and dura, a consequence of skull fracture tearing an
underlying blood vessel. This is frequently caused by a
lateral force over the mastoid. Threshold velocity for impact
related fracture data is of the order of 5 m/s (Gurdjian
and Lissner, 1947; McIntosh et al., 1996; Yoganandan and
Pintar, 2004). As such, the impact is assumed to be on the

right side of the head behind the ear at a velocity of 5

m/s.

• Case 6: The victim was a pedestrian hit by a car traveling
at approximately 30 mph. The right orbital/frontal region
was impacted and fractured. This was followed by a loss
of consciousness at the scene for at least 5 min. Fracture
tolerance data does not exist for the facial fractures in
evidence in this case. The mechanism of fracture is often
associated with a “blow out,” a sudden increase in pressure
in the orbit of the eye. This is attributed to an impact or
impactor, which is larger than the orbital rim. The bones of
the orbit are very fragile and no reliable fracture tolerance
data exists. Whilst the fracture tolerance of the orbital rim
is unknown, the frontal bone is the strongest bone of the
face/head and since no fracture has occurred in this area,
this suggests that a sub fracture level of loading has occurred.
Force to the face is associated in the literature, assuming
a head mass of 6.82 kg (15 lb) and an acceleration of 80
g [easily obtainable in a 13.4 m/s (30 mph) impact], with
5.35 kN (1,200 lbf), which exceeds the fracture limit of most
of the facial bones (Pappachan and Alexander, 2012). The
fracture tolerance of the frontal bones is in the order of
3.57–7.13 kN (800–1,600 lbf) corresponding to minimum
impact velocities in the order of 8.9–17.88 m/s (20–40
mph) (Pappachan and Alexander, 2012). Thus, an absence
of frontal bone fracture suggests impact velocities below this
level. Since significantly lower average strength has been found
for the female bone structure during impact experiments, the
lowest values are considered. As a consequence, an impact

on the right orbital/frontal region at a velocity of 9 m/s

is assumed.

• Case 7 The victim fell from a 3-story roof. The left temporal
and frontal regions are reported to have made contact with
the ground and a right wrist fracture, cervical and thoracic
transverse spinous process fractures were also observed. The
hand fracture, multiple rib and transverse process fractures
suggest an impact to the back or side of the torso (no details
provided about location), and a sacrifice related injury to
the hand. As a result of a lack of detail, one can assume a
superficial contact to the front/side of the head. That these
injuries are as superficial as they are, given that cervical and
thoracic transverse process fractures are in evidence, suggests
that either the head made contact with a pliant surface,
such as sand or soil, or that the significant impact energy
was dissipated during an impact with the right hand and
subsequently the side or back. The fall height can be assumed
to be approximately 8.3 m (height to the gutter of a 3-
story house), plus the height of the gutter approximately 0.1
m, plus the assumed standing height of the accident victim,
assumed 50th percentile male = 1.76 m, minus the 0.1 m
distance from the top of the head to the likely point of
contact around the “hat brim region.” Therefore, a minimum
fall height of 10.1 m is assumed, since again by default,
the assumption is that the male was standing at the lower
edge of the roof. Therefore, a simple fall with no initial
velocity is assumed and no arc or rotation considered, with
a height of 10.1 m producing an impact velocity of 14.1
m/s. This analysis demonstrates that an impact to the left

temporal and frontal region at a peak velocity of 14.1 m/s

could have occurred, however, a lower velocity could be

expected.

• Case 8: The victim was charged by a bull running
out of a cattle truck and thrown backwards against
a metal fence and onto concrete, impacting his head,
(occiput mainly), rendering him unconscious for a few
minutes. Reverse engineering of a bull’s velocity from the
account provided, would require an appreciation of the
bull’s acceleration and velocity at the point of contact,
which is not possible here. However, it is reasonable
to assume that the victim’s secondary impact velocity
had to be at least as great as a simple fall backwards
from standing, i.e., a straight body translational from
standing velocity of 6.75 ± 0.27 m/s (Patton and McIntosh,
2017). Since there are facial fractures in evidence, and
that the fracture tolerance of the frontal bones is 3.57–
7.13 kN (800–1,600 lbf), corresponding minimum impact
velocities are of the order of 8.94–17.88 m/s (20–40
mph) (Pappachan and Alexander, 2012). As a consequence,

an impact velocity at the occiput between 6.75 and 8.94 m/s

is assumed.

• Case 9: The victim was a cyclist knocked off a bicycle and
reported to have landed on his head, such that his left
parietal region made contact with the ground. This was
accompanied by a left shoulder injury and multiple skin
abrasions. Bitemporal contusions, traumatic subarachnoid
hemorrhage and frontal and left parietal fractures were
reported. A similar case was simulated and reported in
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the literature (Fahlstedt et al., 2012) with a resultant linear
velocity of 5.3 m/s and a vertical velocity between 4 and
5.4 m/s. As a consequence, an impact velocity of between

4 and 5.4 m/s on the left parietal region is assumed

here.

While some of these estimations are probably relatively accurate,
an important proportion of these are extremely difficult to
evaluate, due to an insufficiency of detail, and may be subject to
very large variations. Those (e.g., case 7) were left anyway for the
sake of discussion.

2.2. Mechanistic Simulations
The mechanistic simulations consisted of a FEHM submitted
to different loading scenarios defined by predefined sets of
impact boundary conditions. For each simulation, a mechanistic
criterion was defined by the maximum shear energy rate each
gray matter element of the head model experiences throughout
the duration of the impact. This simulation was repeated with a
range of loading scenarios to provide a library of pre-calculated
damages.

2.2.1. Finite Element Head Model
The FEHM is adapted from a previous version proposed earlier
by Garcia-Gonzalez et al. (2018b), where it was validated for
cranial impacts. It accounts for the gray matter, white matter with
axonal anisotropy captured from diffusion tensor imaging (DTI),
cerebrospinal fluid (CSF), skull, falx, scalp, and ventricles and
consists of 2,354,594 tetrahedral elements. For each simulation,
the boundary conditions were specified as described below, and
a dynamic explicit simulation was run for 8 ms on Abaqus
(ABAQUS Inc.). The mechanical behavior of each skull and gray
matter element was tracked throughout each simulation. The
von Mises stress was calculated in the skull elements and the
shear energy rate was calculated in the gray matter elements.
The maximum value experienced by each element throughout
each simulation was recorded. A total of 445 simulations was
run, of which 407 did not result in a fractured skull (see
section 2.2.4).

One important assumption of this model is that only
the inertia of the head contributes to the impact, and the
rest of the body is left unmodeled. While this assumption
has implications on the evaluation of the brain damage, the
additional modeling of the body would be hampered by a lack
of paramedical information. As such, this assumption is kept
as a first approximation. Moreover , it is worth emphasizing
that, under this assumption, the FEHM was validated against
experimental data by means of acceleration-time curves for
three impact conditions representative of real accidents and
falls (see Garcia-Gonzalez et al., 2017 for more details): fall
of a person from a bed; bike accident reconstruction; and
experimental impact of human heads from cadavers against a
rigid plate.

2.2.2. Material Models
The constitutive framework originally developed by Garcia-
Gonzalez et al. (2018a), and further extended for blast TBI
simulations by Garcia-Gonzalez et al. (2018b), is taken as a

basis. In this regard, the mechanical response of each tissue is
decomposed into volumetric and shear components, leading to
the definition of the Cauchy stress tensor as:

σ = σ vol + σ iso (1)

where σ vol and σ iso are the volumetric and isochoric Cauchy
stress tensor components, respectively. This decomposition is
also adopted to describe the total deformation gradient F as:

F = J1/3F∗ (2)

where J = det(F) is the Jacobian and F∗ is the distortional part of
the deformation gradient.

In this work, the skull, falx, CSF, and ventricles are modeled
as proposed by Garcia-Gonzalez et al. (2017) for similar impact
conditions: skull and falx as elasto-plastic materials with their
corresponding material properties at the mean strain rate
observed in the impact conditions tested (≈ 1 s−1); CSF
and ventricles by the Mie-Grüneisen equation of state and a
dynamic viscosity. Regarding the scalp, white and gray matter,
these tissues are modeled by Garcia-Gonzalez et al. (2018b) by
more sophisticated approaches based on hyperelastic theories
to accurately describe nonlinearities. While the scalp tissue is
defined in the exact same manner by a neo-Hookean model,
the constitutive law for white and gray matter is modified
to provide a more efficient solution for the specific impact
simulations conducted here (the aforementioned work dealt
with blast scenarios rather than head impact). The modified
formulation for the total Cauchy stress contribution reads as:

σ =
µm

J

1

1−
I∗1−3
jm

dev
(

B∗
)

+
2k1

J

(

I∗4 − 1
)

exp
[

k2
(

I∗4 − 1
)2

]

dev
(

F∗AoF
∗T

)

−
Ko

3o + 1

[

(

ρ

ρo

)3o+1

− 1

]

I (3)

where B∗ = F∗F∗T , I∗1 = tr(F∗TF∗), I∗4 = tr(AoF
∗TF∗),

Ao is the structural tensor providing axonal orientation within
the white matter (see Garcia-Gonzalez et al., 2018b for more
details), ρ is the current density and I is the second order unit
tensor. Moreover, µm, jm, k1, k2, Ko, 3o, and ρo are material
parameters, whose values are provided for white and gray matter
in Tables 2, 3. The calibration of the isochoric response of both
white and gray matter was consistently performed accounting
for the mean strain rate observed in the simulations. Note
that this formulation, for the strain rate conditions observed in
the simulations, is equivalent to the full original formulation
published by Garcia-Gonzalez et al. (2018b).

2.2.3. Impact Boundary Conditions
Simulations were defined by a set of inputs for velocity, location
of incidence, angle of incidence, and impactor geometry. The
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TABLE 2 | Constitutive parameters for white matter used in the simulations.

Volumetric response

ρo (kg/m3) Ko (GPa) 3o (−)

1, 140 2.19 6.15

Isochoric response

µm (kPa) jm (−) k1 (kPa) k2 (kPa)

550 1.1 2.14 0

TABLE 3 | Constitutive parameters for gray matter used in the simulations.

Volumetric response

ρo (kg/m3) Ko (GPa) 3o (−)

1, 140 2.19 6.15

Isochoric response

µm (kPa) jm (−) k1 (kPa) k2 (kPa)

450 1.4 − −

TABLE 4 | Impact boundary conditions.

Boundary condition feature Range

Velocity 1 m/s <V< 16 m/s

Locations of impact (a) lateral fronto-parietal

(b) fronto-polar

(c) vertex

(d) occipital

(e) temporal

Angle of impact (from perpendicular) −45◦ < θ < 45 ◦

Indenter geometry (i) blunt corner

(ii) round

(iii) flat

(iv) sharp corner

range of these boundary conditions were chosen so as to
encompass the vast majority of impact cases, while avoiding
velocities either a priori too small or too high to avoid extreme
cases, e.g., no trauma or death on impact (see Table 4). All
impactors were modeled as rigid, with a friction coefficient of
0.4 (Garcia-Gonzalez et al., 2017). For the “round” impactor, a
cylindrical shape with a radius of curvature of 3.6 cm was used,
while the “blunt corner” impactor was made of a right angle
analytical surface smoothed along the edge with a 1 cm radius of
curvature quarter of a cylinder, and the “sharp corner” impactor
was made of an right angle smoothed with an edge of 0.3 cm. This
determined the range of inputs for the library of pre-calculated
FEHM simulations (see Figure 2).

2.2.4. Mechanical Damage
All cases which resulted in a fractured skull were removed from
the database. The skull was assumed to be fractured if more than
4% of all skull elements in the headmodel (4% corresponds to the
percentage of skull elements spanning the maximum thickness of
the skull) underwent a maximum von Mises stress exceeding the
ultimate strength of bone (92.72 MPa; Wood, 1971).

A binary mask of the DMNmask was created by thresholding
the template DMN mask from Smith and Nichols (2009) at a z-
score of 3.1 (corresponding to a p-value of 0.05) and binarizing
the resulting spatial map. The coordinate system of the finite
element mesh was aligned with that of the fMRI images. The
binary mask of the DMN (see section 2.1.4) was applied and
all mesh nodes with coordinates within the DMN mask were
extracted. Finally, all elements connected to these nodes were
extracted to provide a DMN element set, and hence a mapping
from the MRI domain to the element mesh. Damage to each gray
matter element was determined by a material damage criterion.
Previous studies of blast induced TBI suggested that a shear
energy rate damage criterion of 100 MJ/m3s in the gray matter
provides a good correspondence to regions with oxidative stress
in rat brains (Garcia-Gonzalez et al., 2018b). As both loading
conditions and damage pathways are different (blast injuries
and impact injuries have very different injury signatures), other
thresholds were evaluated to match the functional criterion (see
section 3). A final value of ≈ 1 MJ/m3s was eventually chosen
maximizing the correlation between mechanical and functional
criteria. Figure 3 shows the isosurface of the damaged region of
the brain for a blunt corner impact, perpendicular velocity of 8
m/s, lateral fronto-parietal location at 1.6 ms after initial contact
(note that this case resulted in a damage of 50.22% to the DMN).

For each simulation in which the skull was not fractured,
when the shear energy rate exceeded this criterion during the
simulation, the element was assumed to be damaged. The
percentage of damaged elements in theDMNwas then calculated.
This provided a library of pre-calculated loading scenarios on
which the ML model could be trained and evaluated.

2.3. Machine Learning Layer
AML layer was created to avoid the need to reproduce the FEHM
simulations for each single scenario. To this end, the model was
trained with 407 FEHM simulations for a range of combinations
listed inTable 4. The overall approach and validation is explained
below (see Figure 4).

2.3.1. Machine Learning Algorithm
A ML layer was trained on binary outcome data to predict the
probability that the extent of network damage exceeds a given
threshold during an impact. In order to do this, a separate model
was trained for each proposed threshold of network damage.
The inputs used in the layer correspond to the inputs defined in
section 2.2.3. Note that the shape of the impactor was represented
by the radius of curvature of the impactor (the flat one was given
a radius of 1m). From these inputs and the FEHM, two additional
features were extracted to be included in the ML layer inputs:
distance from the point of impact to the closest element of the
DMN; and angle between trajectory to the closest DMN node and
trajectory of impact. To define the binary outcome, the DMNwas
considered damaged if the percentage of damaged gray matter
elements exceeded the given network damage threshold.

The predictive ability of two ML approaches were compared
in this paper. Logistic regression (Pregibon et al., 1981) was
compared to a bagging ensemble method (Breiman, 1996).
Although several other algorithms have been used to analyze
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FIGURE 2 | Impact boundary conditions for the FEHM; location: (A) lateral fronto-parietal, (B) fronto-polar, (C) vertex, (D) occipital, (E) temporal (the shown impactor

corresponds to flat impactor iii); impactors: (i) blunt corner, (ii) round, (iii) flat, (iv) sharp corner.

TBI-related data (Siddiqui et al., 2015; Mitra et al., 2016; Minaee
et al., 2019), logistic regression has previously been shown
to outperform more complex models in TBI clinical outcome
prediction (Steyerberg et al., 2008). The bagging method involves
training a model with each of the following ML techniques:
logistic regression (Pregibon et al., 1981), gaussian discriminant
analysis (Fisher, 1936), k-nearest neighbor (Cover and Hart,
1967), Naïve Bayes classifier (Hand and Yu, 2001), and support
vector machines (Boser et al., 1992). Given a test point, the
ensemble method calculates the mean probability of damage
from each of these trained models. This approach reduces the
risk of incorrect classification and has been shown to outperform
single algorithms (Dietterich, 2000).

A greedy forward feature selection approach was used to select
statistically relevant input variables for each model; all other
variables were excluded from the model. This was implemented
with 5-fold cross validation and a fast algorithm (logistic
regression) to reduce computational costs (Zhang, 2009). Feature
selection was performed for each model independently. This
resulted in a range of input variable sets dependent on the
network damage threshold considered in each model.

In order to validate the ML pipeline and ensure robustness,
the network damage threshold was set to a range of values
(10, 30, 50, 70, 90%), and the model performance was assessed
for each threshold. Performance was evaluated by leave-one-
out validation (Wong, 2015). The area under the curve (AUC),
sensitivity, and specificity were calculated for each model.
When validating the model against the dummy and clinical
datasets, the network damage threshold was set to the FEHM
estimated network damage, and the clinically estimated network
damage, respectively. This allowed the ML layer to predict the

FIGURE 3 | Isosurface of the damaged region (1 MJ/m3s shear energy rate

threshold) of the brain for a blunt corner impact, perpendicular velocity of 8

m/s, lateral fronto-parietal location at 1.6 ms after initial contact. Note that,

while only the gray matter results are compared to the rsfMRI results, both

white and gray matter are shown here.

probability that at least the given proportion of the network was
damaged.

Given the trained model and model inputs from nine clinical
cases, the probability that mechanical damage exceeded the
FEHM network damage estimation was predicted. In seven of
the nine cases, there was a degree of uncertainty in the accident
reconstruction, resulting in a range of mechanical damage
predictions.

Finally, the ML models were used to predict the velocity at
which the proportion of network damage is reached. For this
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FIGURE 4 | Schematic of the ML layer.

analysis, the input velocity of each scenario was varied between
1 and 15 m/s whilst all other inputs remained constant. The
predicted probability of reaching the network damage proportion
was calculated for each velocity. This was plotted on a graph of
probability against velocity. Because the ML model predicts only
the probability that at least a given proportion of the DMN is
damaged, the velocity at which the DMN is damaged by exactly
this proportion can be understood as the velocity at which this
plateau is first reached. This is assumed to be at≈95% of the final
plateau region.

2.3.2. Dummy Validation
A series of experiments were carried out to simulate real-
world accident scenarios to illustrate the comparison between
direct FEHM and ML predictions of mechanical damage. These
experiments provide a range of realistic inputs to the models.

The experiments involved a dummy falling down a set of
stairs in a range of motions: forwards and backwards. Each
fall was captured with video and motion capture software in
Audiomotion Studios (Oxford, UK). Themotion capture enabled
accurate measurement of the velocity of impact, whilst video
footage provided the location and angle of head impact and
the impactor geometry. The dummy used in these experiments
weighed 65 kg and was approximately 1.7 m tall, whilst the full
height of the staircase was 2.07 m.

From these experiments, two scenarios were extracted, one fall
forwards and one backwards, see Supplementary Videos 1, 2,
respectively. In each of these scenarios, the stairs were the first
point of contact for the head. In the forward fall, the head of the
dummy impacted the (blunt) corner of the stairs in the fronto-
polar region with a perpendicular impact velocity of 7.12 m/s. In
the backwards fall the occipital region impacted the corner of the
stairs with a perpendicular velocity of 7.69 m/s.

The FEHM, which simulated the impact, and the ML model
were both used to predict damage to the DMN. These damage
estimates were carried out independently from one another and
the FEHM results were not used to train the ML layer. These
damage estimates provided a means of comparing the FEHM
outputs to those of the ML layer in a scenario used by the police
and medico-legal community.

3. RESULTS

3.1. DMN Functional Damage
The DMN resting brain network was successfully identified from
MRI scans conducted in the hyper-acute phase through dual
regression in each of nine TBI patients and all 18 healthy controls.
The “disconnectivity” within the DMN, i.e., the proposed
functional damage parameter, varied substantially across the nine
patients (see Figure 5), ranging from 1.5 to 19.4% (see Table 5).

3.2. Numerical Model Performance
3.2.1. Machine Learning Layer Performance
Tables 6, 7 provide a comparison of model performance
when implementing a bagging ensemble method and logistic
regression, respectively. These models were validated over a
range of network damaged proportion thresholds. All models
provide good discrimination, with AUC values consistently
>0.975 across all damage thresholds. The bagging method
outperformed the use of logistic regression alone. The average
AUC across all network damaged proportion thresholds was
0.985 for the bagging method, and 0.981 for logistic regression.

Dataset balance identifies the proportion of simulations which
resulted in damage to the brain’s network. Inmostmetrics, results
were unbiased by the dataset balance, with AUC and Brier’s scores
remaining relatively constant. However, the dataset balance had
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FIGURE 5 | Analysis of functional connectivity (rsfMRI signal correlation) within the DMN across nine patients with varying degrees of TBI and different mechanisms of

injury. Individual patient resting data were compared to 18 controls using permutation testing. Each map shows the patient-specific threshold-free

cluster-enhancement t-statistic images, depicting all voxels with significantly lower functional connectivity (p < 0.05) than the corresponding values in healthy controls.

TABLE 5 | Proportion of functional damage in the DMN as evaluated from

functional correlation disruption.

Cases 1 2 3 4 5 6 7 8 9

Damaged DMN (%) 1.48 3.2 5.17 14.67 4 2.53 8.93 19.43 6.17

an impact on the model’s sensitivity, its ability to predict the cases
that resulted in damage to the DMN. On average, the bagging
method provided improved AUC to that of logistic regression,
and was thus used subsequently.

3.2.2. Dummy Validation
In the two dummy fall scenarios, damage to the DMN
was predicted by both full FEHM simulations and the ML
model. Table 8 shows the resulting damage and velocity
predictions from these two approaches. The predictions
of 64.1 and 24.9% are the proportions of elements in
the DMN region having reached the threshold of shear
energy rate of 1MJ/m3s in the direct FEHM simulations

TABLE 6 | Bagging method performance for a range of network damaged

proportion thresholds.

DMN damaged proportion threshold (%)

10 30 50 70 90

AUC 0.987 0.986 0.986 0.989 0.976

Brier’s score 0.052 0.046 0.034 0.027 0.030

Sensitivity 0.752 0.702 0.790 0.829 0.731

Specificity 0.983 0.988 0.988 0.981 0.976

Accuracy 0.921 0.958 0.958 0.966 0.961

Dataset balance 0.268 0.206 0.1523 0.101 0.064

for the forward and backward impacts, respectively. The
ML probabilities correspond to the predicted probability
that the two impact scenarios would lead to, at least, those
proportions, i.e., the ML layer predicts that there is 50.6 and
72.7% of chance that the impact damages at least 64.1 and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 March 2021 | Volume 9 | Article 587082

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Schroder et al. ML/FE TBI Functional Deficit Prediction

TABLE 7 | Logistic regression method performance for a range of network

damaged proportion thresholds.

DMN damaged proportion threshold (%)

10 30 50 70 90

AUC 0.979 0.981 0.978 0.988 0.979

Brier’s score 0.056 0.048 0.034 0.027 0.028

Sensitivity 0.817 0.762 0.823 0.829 0.615

Specificity 0.956 0.966 0.986 0.986 0.987

Accuracy 0.919 0.924 0.961 0.971 0.963

Dataset balance 0.268 0.206 0.1523 0.101 0.064

TABLE 8 | A comparison of FEHM and ML mechanical damage prediction for two

dummy fall scenarios: “FEHM prediction” is the proportion of the DMN region

damaged according to the finite element simulation, “ML probability” is the

ML-predicted probability that “at least that much DMN region is damaged,” “ML

velocity” is the ML-predicted velocity at which there is 95% chance that the

FEHM-predicted damaged proportion is reached.

Fall motion FEHM ML ML

(impact velocity) prediction (%) probability (%) velocity (m/s)

Forwards (7.12 m/s) 64.1 50.6 ≈8.6

Backwards (7.69 m/s) 24.9 72.7 ≈7.9

FIGURE 6 | ML predicted probability of damaging at least 64.1% of the DMN

region in forward fall and 24.9% in backward fall for different impact velocities.

24.9% of the DMN region, for the forward and backward
impacts, respectively.

Figure 6 offers another way to use the ML model by showing
the probabilities that these proportions are reached for a range of
potential impact velocities, for both scenarios. Both curves are
sigmoids with plateau regions of ≈83% (≈75% if considering
the last portion of the plateau) and ≈76.5%. Assuming that
the plateau is first reached at ≈ 95% of the plateau value, the
ML model predicts that reaching 64.1 and 24.9% a damaged
proportion would occur at ≈8.6 m/s (≈8 m/s if considering
the last portion of the plateau) and ≈7.9 m/s for the forward
and backward falls, respectively (see Table 8). In this graph, the
sigmoid never reaches 100% probability. This is due to nature of

FIGURE 7 | Improvement in ML model AUC with each additional attribute, for

ML model trained at a 50% threshold.

the MLmethods, which are unlikely to estimate 100% probability
that the given network damage threshold has been reached.

While an overall good match is confirmed between the FEHM
and the ML model in this “real life” scenario, it is worth
emphasizing that, because of the nature of the sigmoid shapes,
velocity predictions for a given proportion of damaged DMN are
less subject to noise error than the probability predictions for a
given impact velocity. Another point is that theML layer is bound
to struggle at high velocities/high proportions because of the
smallest population of training data having such large damage;
this explains why the sigmoid curves might oscillate in the upper
plateau region.

3.3. In silico Model Prediction
3.3.1. Input Sensitivity
A feature selection algorithm was implemented to identify
the most predictive model inputs. Figure 7 highlights the
improvement in model performance with each additional input
when the model is trained at a 50% threshold. Velocity was
selected as the most predictive attribute, providing an AUC of
0.985 when used alone to predict network damage. Whether
the fronto-polar region was impacted, whether the impact was
perpendicular to the head, and whether the temporal region was
impacted, best improved the prediction in this order, with the
angle between impact location to closest DMN node, and impact
direction finally allowing the AUC to reach a value of≈0.988.

3.3.2. Clinical Validation
In this section, the conditions established in section 2.1.5 were
used as inputs for the ML model. The same methodology
described in section 3.2.2 was used, but instead of taking as
input the DMN damaged proportion as predicted from FEHM
simulations, the proportion of damaged DMN calculated from
the proposed functional criterion (see section 2.1.4) was used
instead. Table 9 shows the ML predicted probabilities that the
clinically predicted damaged DMN proportion (see Table 5) was
reached for the velocity ranges evaluated in section 2.1.5 for all
nine patients.

As highlighted in section 2.3.2, the impact velocity prediction
for a given damaged DMN proportion is prone to greater error
than the damagedDMNproportion prediction for a given impact
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TABLE 9 | Proportion of functional damage in the DMN as evaluated from

correlation disruption, ML predicted probabilities that at least this proportion is

reached for the manually estimated range of impact velocities, and ML predicted

impact velocities at which 95% of the final plateau probability Pf is reached for the

clinical DMN damaged proportion, for the nine patients (see section 2.1.5 and

Figure 2).

Cases Functionally ML predicted probability (P) ML predicted

(conditions) damaged range for impact velocity (V) velocity

DMN (%) range evaluation at 95% Pf (m/s)

1 1.48 5.2% < P < 91.1%

(b-iii) (2.24 m/s < V < 12 m/s) ≈ 6

2 3.2 17.5% < P < 70.7%

(d-iii) (4.85 m/s < V < 6.75 m/s) ≈7.5

3 5.17 6.0% < P < 30.5%

(d-iii) (3.25 m/s < V < 4.8 m/s) ≈7.4

4 14.67 2.6% < P < 97.0%

(d-iii) (3.52 m/s < V < 9.72 m/s) ≈7.1

5 4 P ≈ 36.0%

(a-iii) (V ≈ 5 m/s) ≈6.9

6 2.53 P ≈ 95.3%

(b-iii) (V ≈ 9 m/s) ≈5.9

7 8.93 P < 76.5%

(e-iii) (V < 14.1 m/s) ≈7

8 19.43 56.0% < P < 77.0%

(d-iii) (6.75 m/s < V < 8.94 m/s) ≈7.9

9 6.17 18.0% < P < 71.4%

(a-iii) (4 m/s < V < 5.4 m/s) ≈6.9

FIGURE 8 | ML predicted impact velocities at which 95% of the final plateau

probability Pf is reached for the clinical DMN damaged proportion; orange

bars are the velocity range estimates from the analysis of section 2.1.5.

velocity. In addition, the probability refers to the fact that at
least a given proportion of DMN is damaged. As such, while
case 1’s results point toward a velocity of impact most likely to
be toward the end of the range (12 m/s), it is not clear whether
the probability of 91.1% for 12 m/s sits in the plateau region of
the sigmoid, i.e., if a lower velocity would also reach such high
proportion. To avoid this difficulty in the interpretation of the
results, the sigmoid curves of the ML predicted probabilities of
reaching the clinically evaluated damaged DMN against different
impact velocities were plotted for all nine cases (not shown here).

For each one of them, the velocity at which 95% of the plateau
probability is reached was extracted. This value corresponds to
the velocity at which the clinically evaluated damaged DMN
proportion is first reached according to the ML model. The
results are compared against the “manually” estimated range of
velocity of section 2.1.5 in Figure 8 and Table 9.

4. DISCUSSION

4.1. Model Limitations
4.1.1. Head Model Dependence
The FEHM used here was originally developed from high
resolution anatomical T1 and T2-weighted MRI images of a
subject available from the Human Connectome Project (HCP
Subject ID: 100307) (Essen et al., 2013; Garcia-Gonzalez et al.,
2018b). Ideally, one would use a dedicated FEHM for each
individual to offer a more tailored solution to the damage
prediction by accounting for morphological differences between
patients. Because of the time it would take to develop suchmodels
(on-the-fly in the context of clinical admission), and despite some
recent advances in this direction (Li et al., 2020), such a solution
remains impractical. Additionally, due to the very nature of the
ML layer, which first requires training on a library of FEHM
simulations, doing so would not allow forML prediction. It is also
worth mentioning that having a morphologically correct head
model scanned before injury for any TBI patient is unrealistic. An
alternative would be to create a finite library of population-wide
representative head morphologies, which would constitute one
of the inputs of the ML layer. This would however require much
larger libraries for the training of the layer, if one were to account
for sex, age, etc. A direct comparison between three different head
models has shown significant disparities in the brain mechanical
response in nearly all brain regions of the models (with the caveat
that these head models were all idealized and not constructed
from imaging) (Ji et al., 2014). More recently, the study of more
realistic head models for different morphologies has reached
similar conclusions (Li et al., 2020). However, in the former study,
the models showed similar trends in the relationship between
mechanical response and kinematic response, indicating that a
given model can be used independently of the others for a given
set of impact conditions as long as it is used consistently. While
not excluding the possibility to include more flexibility in the
morphological variations between patients in some future work
by using, e.g., novel morphing approaches (Li et al., 2020), the
approach consisting of using only one model thus seems justified
as a first approximation, while allowing for faster ML predictions.

Each FEHM requires a set of constitutive models for the
different regions identified within the head (typically, gray
and white matter, skull, CSF as a minimum). Those need
to be chosen carefully depending on the level of detail (e.g.,
homogenized brain vs. independent white and gray matter) but
also loading conditions. For instance, blast loading conditions
would typically require equations of state to adequately capture
the volumetric response under shock waves and the viscous-
relaxation processes can a priori be ignored for very short time-
scales (Moore et al., 2009), while slow loading scenarios, such
as in the second stage of labor, when the head of the foetus
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is being compressed in the vaginal canal, would ideally require
viscoelastic laws to capture the fetal head molding of the infant
head (Ami et al., 2019). Any intermediate situation, such as
the ones considered here, would need to balance the need for
time-dependent models against the timescales involved, along
with other features more or less relevant depending on the
leading deformation mechanisms: whether viscoelastic models
are required, whether tissue damage and/or fracture should be
accounted for, whether tissue anisotropy is relevant, etc. Here, a
careful analysis of the most salient features was carried out, and
each region of the used FEHM was assigned a constitutive model
with parameters identified for the range of loading considered
in this work. While more work is required to ensure that each
chosen constitutive model and its associated material parameters
are indeed optimum, the proposed setup is believed to constitute
a first good approximation. It must finally be noted that as
better models and material parameters are identified, the overall
framework function remains the same and those new changes
would be trivial to incorporate.

4.1.2. Kinematics
In the approach followed here, the kinematic behavior
immediately after impact is assumed to be solely driven by
the inertia of the head, i.e., the contribution of the rest of the
body, and in particular, the neck is not accounted for. This
approach has been proven to be deficient in some cases (Wang
et al., 2020). While it could be argued that it could still be
considered as valid in cases where the inertia of the body does
not contribute to the impact (e.g., if one falls sideways, and/or
is hit directly at the head), or when the neck does not hamper
the movement of the head (e.g., during and immediately after
the impact of an unaware or unconscious individual), it remains
an inaccurate representation of the real-life impact. An ideal
simulation would couple a multibody dynamics simulation
to the proposed FEHM to ensure that the kinematic behavior
of the head is more accurately modeled. It must, however, be
emphasized that the more complex the underlying mechanistic
model is, the more inputs a given ML layer would have to
incorporate. Therefore, while having a set of impact conditions
on the head, as done here, can easily be incorporated in the
ML layer, incorporating inputs related to the entire body based
on clinical information from the scene is realistically currently
unworkable.

4.1.3. Skull Fracture
A final limitation of the FEHM is that, while the onset of skull
fracture was predicted, its mechanical deformation post-fracture
was not modeled. As such, the choice was made to train the
ML layer exclusively on simulations which did not result in
skull fracture. However, five out of the nine patients studied in
this work experienced skull fracture (cases 1, 6, 7, 8, and 9),
and, while those were not judged to be important enough to
influence significantly the brain deformation in those cases (e.g.,
left zygoma fracture for case 1), it is clear that better predictions
would be expected with additional fracture mechanistic features
embedded in the FEHM for a more general applicability.

4.2. Predictive Accuracy
The ML layer has been shown to be very effective in the
prediction of the simulation behavior (with AUC values all
above 0.97 in the worst case), especially considering the reduced
number of simulation scenarios. This prediction could be enough
for some preliminary clinical assessment. An eventual high-
fidelity ML prediction with additional inputs could be leading
to some overfitting, owing to the relatively general nature of
the mechanistic model. The proposed approach is a trade-
off between the descriptive power of the simulation and the
granularity of the ML predictions. According to this, the number
of features and the feature selection procedure are tailored to
the overall complexity of the ML tasks (in number of instances
and features). As seen in section 3.3.1, a single feature already
provides a reasonable high accuracy level. Additionally, the
characteristics of the data also constrain the use of a given ML
algorithm. More advanced techniques, such as neural networks
(e.g., deep learning as an extreme case) are designed for two or
more higher orders of magnitude in the number of simulations
to analyze.

Another interesting aspect is the stability of the results
independently of the DMN damage proportion threshold (see
Tables 6, 7). Indeed, from 10% threshold up to 90% threshold,
there is a×4 factor in the ratio of the minority class (0.064–0.268
for 90 and 10%, respectively). In all cases, neither the AUC nor
the sensitivity or the specificity are compromised.

The stability of the sensitivity and specificity is of particular
importance in the clinical setting. Sensitivity would be crucial
to enable identification of network damage within the DMN
in the acute or hyper acute phase following injury. Specificity
would allow clinicians to rule out the possibility of injury
enabling decisions regarding discontinuation of neuro protective
interventions. Tables 6, 7 show that the specificity consistently
performs higher than the sensitivity for both models. Future
ML models could be tuned to ensure that the specificity is not
maximized at the expense of the sensitivity.

In the future, both the mechanistic simulations and the
ML layer should become more detailed. This also means that
the number of required simulations should become larger but
also the number of descriptive features (now constrained to
the primary characteristics: velocity, location, and angle). In
addition, other derived indicators shall be obtained and other
topological and spatial considerations shall be included.

4.3. Clinical Data
One of the main limitations of this work is the relative scarcity
of clinical data. However, the data were acquired within the first
24 h of head trauma, including severe injuries. This quick-paced
availability requires a specialist center, able to acquire data in
patients who are ventilated and intubated. For logistical reasons
such data are therefore exceptionally difficult to acquire in large
volumes. While our sample size is limited for this reason, the
type of data presented here is precisely what is required to make
realistic predictions in a clinically meaningful (“hyper-acute”)
time period. As such, balancing data quality and data quantity
was a necessary challenge in this work. By providing here a
novel framework with proactively gathered (albeit limited) data,
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the goal of this work is to emphasize the need for established
widespread protocols for data curation in a proactive model
driven fashion, as opposed to models making use of limited
data available after their independent retrieval, usually from
much later time-periods after injury, and likely brain recovery
processes, have occurred.

It is finally worth emphasizing that our patients were followed
for 6–9 months, which could offer further development to the
model predictions in future work.

4.4. Resting State Network Relevance for
TBI Prediction
Despite advances in the care of patients suffering TBI, long-
term clinical and neuropsychological outcomes are often poor,
irrespective of apparent injury severity (Brooks et al., 2013;
Stocchetti and Zanier, 2016). MRI studies performed in the
days, weeks, and months following TBI have uncovered a
crucial role played by diffuse axonal injury (DAI) in the
long term clinical, functional and neuropsychological outcome
(Tong et al., 2004; Li and Feng, 2009; Skandsen et al., 2010).
Midline structures, including the corpus callosum and cingulum
bundle are particularly susceptible to the shearing forces causing
DAI (Yount et al., 2002; Chan et al., 2003). Since high level
cognitive functions such as memory, attention and executive
function require the integration of information processing across
spatially distinct brain regions, it has been proposed that DAI
induces cognitive impairment by disconnecting distributed brain
networks (Inglese et al., 2005; Niogi et al., 2008; Kinnunen et al.,
2010; Bonnelle et al., 2011).

rsfMRI is not, per se, optimum to measure functional activity,
given that one cannot be certain of what function is being
measured (this applies especially in the context of the DMN,
which “shuts off” during tasks). However, this remains to date
the only method available for use in severely head injured
patients, many of whom were intubated and ventilated during
scanning. rsfMRI allows measurement of slow neuronal signal
fluctuations without the need for a task, enabling the study of
functionally relevant brain networks in TBI patients regardless
of the severity of injury. In this way, the use of rsfMRI enabled
us to measure functional brain networks in patients among our
cohort who were intubated and ventilated during MRI scanning.
Among brain networks known to be disrupted following TBI
(Stevens et al., 2012), the DMN has received particular interest
due to its proposed role in the development of attentional deficits
(Raichle, 2010; Bonnelle et al., 2011; Sharp et al., 2011) which
often follow DAI (Scheid et al., 2003; Povlishock and Katz,
2005). The brain regions that make up the DMN (Raichle et al.,
2001) are particularly susceptible to DAI, including notably the
midline posterior cingulate cortex, precuneus, and ventromedial
prefrontal cortex alongside the inferior parietal lobe, lateral
temporal cortex, and hippocampal formation. Crucially, the
regions of the DMN show highly correlated brain activity at rest.

Previous studies report differingDMN functional connectivity
according to severity of injury and timing of imaging (Zhou
et al., 2012; van der Horn et al., 2017). Here, we show that
DMN disruption can be identified within the first 24 h following

trauma, using an objective statistical metric sensitive to network
disruption at the single patient level. We propose that our
damage load metric offers advantages over typical group-based
studies in understanding and predicting the effects of trauma.
Group-based or population average studies, by definition, aim
to identify features that are common across patients. Such
approaches consequently discard the fundamental heterogeneity
in head injury mechanisms and their downstream network
impact that likely account for vast differences in outcomes among
individuals.

4.5. In silico TBI Prediction
4.5.1. Coupling of Causality and Correlation
Figure 7 shows the fivemore important attributes in theML layer
per increased order of contribution to the prediction of the layer
when used at a 50% threshold. Unsurprisingly, the velocity of
impact is the most important factor. Whether or not the impact
location is in the fronto-polar region or the temporal region
are the second and fourth most important attributes, with the
third being whether the impact was perpendicular to the head.
Finally, the angle between impact location to closest DMN node
and impact direction allows for a slight increase in the predictive
ability.

From a geometrical perspective with respect to the DMN
nodes, an impact location in the fronto-polar should indeed a
priori have a stronger influence on the DMN than a temporal
impact. The relative importance of the angle to DMN (by
0.3%) is slightly more surprising, especially considering the
fact that the binary attribute indicating whether the impact
is perpendicular or not was already selected as the third
most important attribute. This particular trait demonstrates the
advantage to couple mechanistic simulations with ML. In this
case, the mechanistic FEHM simulations incorporate indirectly
information related to the angle between impact direction with
respect to the closest DMN node. A ML layer on its own
would not be able to incorporate information of this kind
without additional preprocessing of the head morphologies and
mechanical features of stress wave propagation with respect to
impact direction. Such complementarity of causality (through
the mechanistic simulations) and correlation (through the ML
layer) has already been advocated as an ideal way to incorporate
physical mechanisms in a scalable fashion (Baker et al., 2018).
This work demonstrates that additional information driven by
a mechanistic understanding of the physical processes at play
during tissue damage can indeed allow for additional predictive
power in the ML layer.

It is worth noticing that, for each given damaged DMN
proportion, a new training session is needed. This means that,
while Figure 7 only shows the results for a 50% threshold, each
new threshold, and thus each curve in Figure 6, will select a new
set of attributes to work with. For two of the nine patients of this
study, training did not use the angle to DMN but selected the
fact that the impactor is or is not perpendicular (results not show
here). In all cases however, the velocity of impact was the main
attribute followed by either the shape of the impactor or the angle
to DMN.
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Overall, this dynamic feature selection offers an individualized
prediction of the impact on brain function based on a given head
injury. These predictions shed light onto the nature and extent
of likely associated tissue disruption in an individual patient
that is not captured by current clinical assessments. In this way,
models able to predict down-stream functional outcomes from
early paraclinical metrics offer potential to optimize treatment at
a time when crucial clinical decisions need to be made.

4.5.2. Predictive Performance
The method proposed here postulates a direct relationship
between mechanical damage and functional damage. It can be
used in two ways: (i) it can assess the probability that the DMN
has been damaged to the extent measured clinically for a given
impact, (ii) or it can predict a velocity at which such extent
of damage can be reached, assuming one knows the remaining
boundary condition attributes (impact location, angle, etc.). This
approach was tested for nine patients whose impact conditions
were estimated from paramedical and clinical notes in a manner
consistent with medico-legal methodology.

The shear energy rate damage criterion was taken to be at
≈ 1 MJ/m3s (see section 2.2.4). The quantitative evaluation
of DMN damage proposed here is a novel approach whose
correlation with mechanical damage has never been attempted.
Garcia-Gonzalez et al. (2018b) successfully observed a correlation
with oxidative stress in the context of blast injury for a much
larger value of the shear energy rate damage criterion, but as
loading conditions and damage pathways are different (blast
injuries and impact injuries have very different injury signatures),
another value needed to be estimated. The proposed threshold
of ≈ 1 MJ/m3s is interestingly close to the axonal deformation
energy rate threshold of 1.5 MJ/m3s for oxidative stress in
blasted white matter (Garcia-Gonzalez et al., 2018b). While white
matter damage was not predicted here for lack of experimental
comparison (rsfMRI measures gray matter activity), indirect
damage of white matter might also directly influence the rsfMRI
results, and the proposed model could be benchmarked in future
work against DTI data to assess damage in the whitematter tracts.
This could also be done indirectly by measuring the correlation
(or lack thereof) of the DMNwith the rest of the brain. It is finally
important to note that the results obtained here intrinsically
depend on this threshold calibration. However, to confirm with
sufficient significance that the value chosen here is indeed the
right one, a much larger dataset of patients would be needed.
Future work shall focus on gathering such data.

The two predictions made by the ML method are assessed
in Table 9 and Figure 8. Firstly, the model should be able to
assess the probability that the DMN exceeds a given threshold.
When the threshold of the model was set to the clinically
observed network damage, an ideal model should provide a high
probability that the network is damaged for the given scenario.
In Table 9, seven out of nine cases produce a probability of
damage over 70%, however some probabilities of damage range
from small to large values, for example in cases 2 and 4. This
reflects the difficulties faced in estimating the impact scenarios
from parametric data, which often resulted in a large range of
possible impact velocities.

The model also provides an estimate of the velocity at which
the clinically observed network damage was met. As shown in
Table 9 and Figure 8, four out of nine patients’ ML predicted
velocity is within the range manually estimated. As indicated
earlier, a few of these cases did not have enough information
to allow for a confident estimation; very rough values were still
proposed in the interest of discussion. All patients presented
significant TBI and the model predicts that the range of velocity
expected to lead to such TBI is much narrower than manually
evaluated. In particular, values of impact velocity between 6
and 8 m/s for all nine patients are expected, while the manual
estimation of the range was six-fold larger. Note, however, that
different ML training designs could be used to better estimate
velocities. In particular, a backward estimator (from the damage
to the characteristics of the impact) could be used instead of the
forward model proposed here (from the features to the predicted
damage).

4.5.3. Forensic Relevance
Establishing whether a traumatic head injury is a result of an
accidental or non-accidental cause is a fundamental question in
forensic investigations. Often, practitioners are provided with
only a brief third-party description of a causal event and struggle
to establish a sufficiently detailed understanding of a cause
and effect relationship with which to make a differentiation.
Current medical understanding, acquired by training, anecdote,
and experience is supplemented with scientific evidence, drawn
from specialities such as pathology, radiology, and population-
based epidemiology. The head and central nervous system may
be injured by many different mechanisms; therefore, developing
a necessary understanding of the cause from practical experience
and epidemiology alone is a significant challenge, since there are
very many biomechanical variables that require consideration.

A retrospective biomechanical engineering analysis can
assist a forensic investigation by providing cause and effect
understanding with regard to a stated or inferred injury-
causing event. This can be undertaken by characterizing
the biomechanical loading environment during the event
in question, quantifying the physical loading conditions
and evaluating their potential to produce injury by, where
possible, drawing comparisons with injury tolerance and/or
epidemiological data.

Given the wide range of velocities, locations, angles, and
materials associated with head injury mechanics, it is unrealistic
to anticipate that a single injury risk metric can exist for every
possible scenario. Specific to the head, one primary reason is
the very many different motions that can occur when a head is
struck with an object, or when a head strikes a surface and/or
is whiplashed, since the complex variety of potential responses
makes each injury-causing event potentially unique.

General characterization of the biomechanical loading
environment can, however, assist in developing a better
understanding of the mechanisms of injury in question. In
particular, the approach proposed here has a direct forensic
value in the analysis of image based evidence, e.g., CCTV
video footage, from which more accurate measures of velocity,
location, and angle of impact might be obtained.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 16 March 2021 | Volume 9 | Article 587082

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Schroder et al. ML/FE TBI Functional Deficit Prediction

DATA AVAILABILITY STATEMENT

The datasets generated during and/or analyzed during the
current study are not publicly available due to restrictions
stipulated by the ethical approval for the study in order
to protect patient confidentiality. The FEHM model used in
this work is available on http://jerugroup.eng.ox.ac.uk/fehm.
html and on the Oxford University Innovation Software Store
https://process.innovation.ox.ac.uk/software. The ML pipeline is
available under academic license on http://jerugroup.eng.ox.ac.
uk/mltbi.html and on the Oxford University Innovation Software
Store. Requests to access the datasets should be directed to
antoine.jerusalem@eng.ox.ac.uk.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by South central—Berkshire Research Ethics
Committee. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

AS, NV, DG-G, MJ, J-MP, and AJ wrote the article. TL and
NV designed the clinical programme. TL produced the

clinical data. NV produced the functional clinical criterion
and post-processed the clinical data. MJ produced the
forensic analysis. DG-G produced the constitutive models.
AS implemented the model and performed the simulations.
J-MP and AJ designed the overall computational study.
All authors contributed to the article and approved the
submitted version.

FUNDING

AS, J-MP, and AJ acknowledge funding from the University
of Oxford University Challenge Seed Fund. DG-G and AJ also
acknowledge funding from the EPSRC Healthcare Technologies
Challenge Award No. EP/N020987/1. Finally, TL acknowledge
funding from the NIHR Oxford Biomedical Research Centre
and NV, from the University of Oxford Wellcome Centre for
Integrative Neuroimaging.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2021.587082/full#supplementary-material

REFERENCES

AL-Graitti, A., Khalid, G., Berthelson, P., Mason-Jones, A., Prabhu, R., and Jones,

M. (2017). Auto rickshaw impacts with pedestrians - a computational analysis

of post-collision kinematics and injury mechanics. Int. J. Biomed. Biol. Eng. 11,

568–587.

Ami, O., Maran, J. C., Gabor, P., Whitacre, E. B., Musset, D., Dubray,

C., et al. (2019). Three-dimensional magnetic resonance imaging

of fetal head molding and brain shape changes during the second

stage of labor. PLoS ONE 14:e215721. doi: 10.1371/journal.pone.

0215721

Baker, R. E., Pea, J.-M., Jayamohan, J., and Jerusalem, A. (2018). Mechanistic

models versus machine learning, a fight worth fighting for the biological

community? Biol. Lett. 14:20170660. doi: 10.1098/rsbl.2017.0660

Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De

Boissezon, X., et al. (2011). Default mode network connectivity predicts

sustained attention deficits after traumatic brain injury. J. Neurosci. 31,

13442–13451. doi: 10.1523/JNEUROSCI.1163-11.2011

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). “A training algorithm

for optimal margin classifiers,” in Proceedings of the Fifth Annual

Workshop on Computational Learning Theory (New York, NY), 144–152.

doi: 10.1145/130385.130401

Breiman, L. (1996). Bagging predictors. Mach. Learn. 24, 123–140.

doi: 10.1007/BF00058655

Brooks, J., Strauss, D., Shavelle, R., Paculdo, D., Hammond, F., and Harrison-

Felix, C. (2013). Long-term disability and survival in traumatic brain

injury: results from the national institute on disability and rehabilitation

research model systems. Arch. Phys. Med. Rehabil. 94, 2203–2209.

doi: 10.1016/j.apmr.2013.07.005

Chan, J., Tsui, E., Peh, W., Fong, D., Fok, K., Leung, K., et al. (2003). Diffuse axonal

injury: detection of changes in anisotropy of water diffusion by diffusion-

weighted imaging. Neuroradiology 45, 34–38. doi: 10.1007/s00234-002-0891-y

Cover, T., and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Trans.

Inform. Theory 13, 21–27. doi: 10.1109/TIT.1967.1053964

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), Vol. 1857. Berlin; Heidelberg: Springer.

doi: 10.1007/3-540-45014-9_1

Dikmen, S. S., Corrigan, J. D., Levin, H. S., Machamer, J., Stiers,W., andWeisskopf,

M. G. (2009). Cognitive outcome following traumatic brain injury. J. Head

Trauma Rehabil. 24. doi: 10.1097/HTR.0b013e3181c133e9

Dixit, P., and Liu, G. R. (2017). A review on recent development of finite element

models for head injury simulations. Arch. Comput. Methods Eng. 24, 979–1031.

doi: 10.1007/s11831-016-9196-x

Essen, D. C. V., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E.,

and Ugurbil, K. (2013). The WU-minn human connectome project:

an overview. NeuroImage 80, 62–79. doi: 10.1016/j.neuroimage.2013.

05.041

Fahlstedt, M., Halldin, P., Vander Sloten, J., Goffin, J., Depreitere, B., and Kleiven,

S. (2012). “Influence of impact velocity and angle in a detailed reconstruction

of a bicycle accident,” in IRCOBI Proceedings (Dublin), 787–799.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.

Ann. Eugen. 7, 179–188. doi: 10.1111/j.1469-1809.1936.tb02137.x

Fox, M. D., and Raichle, M. E. (2007). Spontaneous fluctuations in brain activity

observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8,

700–711. doi: 10.1038/nrn2201

Garcia-Gonzalez, D., Jayamohan, J., Sotiropoulos, S., Yoon, S.-H., Cook, J., Siviour,

C., et al. (2017). On the mechanical behaviour of PEEK and HA cranial

implants under impact loading. J. Mech. Behav. Biomed. Mater. 69, 342–354.

doi: 10.1016/j.jmbbm.2017.01.012

Garcia-Gonzalez, D., Jérusalem, A., Garzon-Hernandez, S., Zaera, R., and

Arias, A. (2018a). A continuum mechanics constitutive framework for

transverse isotropic soft tissues. J. Mech. Phys. Solids 112, 209–224.

doi: 10.1016/j.jmps.2017.12.001

Garcia-Gonzalez, D., Race, N. S., Voets, N. L., Jenkins, D. R., Sotiropoulos, S.

N., Acosta, G., et al. (2018b). Cognition based bTBI mechanistic criteria;

A tool for preventive and therapeutic innovations. Sci. Rep. 8:10273.

doi: 10.1038/s41598-018-28271-7

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 17 March 2021 | Volume 9 | Article 587082

http://jerugroup.eng.ox.ac.uk/fehm.html
http://jerugroup.eng.ox.ac.uk/fehm.html
https://process.innovation.ox.ac.uk/software
http://jerugroup.eng.ox.ac.uk/mltbi.html
http://jerugroup.eng.ox.ac.uk/mltbi.html
mailto:antoine.jerusalem@eng.ox.ac.uk
https://www.frontiersin.org/articles/10.3389/fbioe.2021.587082/full#supplementary-material
https://doi.org/10.1371/journal.pone.0215721
https://doi.org/10.1098/rsbl.2017.0660
https://doi.org/10.1523/JNEUROSCI.1163-11.2011
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/BF00058655
https://doi.org/10.1016/j.apmr.2013.07.005
https://doi.org/10.1007/s00234-002-0891-y
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1097/HTR.0b013e3181c133e9
https://doi.org/10.1007/s11831-016-9196-x
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1038/nrn2201
https://doi.org/10.1016/j.jmbbm.2017.01.012
https://doi.org/10.1016/j.jmps.2017.12.001
https://doi.org/10.1038/s41598-018-28271-7
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Schroder et al. ML/FE TBI Functional Deficit Prediction

Gurdjian, E., and Lissner, H. (1947). Deformations of the skull in head

injury as studied by the “stresscoat” technic. Am. J. Surg. 73, 269–281.

doi: 10.1016/0002-9610(47)90321-8

Hand, D. J., and Yu, K. (2001). Idiot’s Bayes-not so stupid after all? Int. Stat. Rev.

69, 385–398. doi: 10.1111/j.1751-5823.2001.tb00465.x

Inglese, M., Makani, S., Johnson, G., Cohen, B. A., Silver, J. A., Gonen, O.,

et al. (2005). Diffuse axonal injury in mild traumatic brain injury: a diffusion

tensor imaging study. J. Neurosurg. 103, 298–303. doi: 10.3171/jns.2005.103.2.

0298

Ji, S., Ghadyani, H., Bolander, R. P., Beckwith, J. G., Ford, J. C., McAllister, T.

W., et al. (2014). Parametric comparisons of intracranial mechanical responses

from three validated finite element models of the human head. Ann. Biomed.

Eng. 42, 11–24. doi: 10.1007/s10439-013-0907-2

Khalili-Mahani, N., Zoethout, R. M., Beckmann, C. F., Baerends, E., de Kam, M.

L., Soeter, R. P., et al. (2012). Effects of morphine and alcohol on functional

brain connectivity during “resting state”: a placebo-controlled crossover study

in healthy young men. Hum. Brain Mapp. 33, 1003–1018. doi: 10.1002/hbm.

21265

Kinnunen, K. M., Greenwood, R., Powell, J. H., Leech, R., Hawkins, P. C.,

Bonnelle, V., et al. (2010).Whitematter damage and cognitive impairment after

traumatic brain injury. Brain 134, 449–463. doi: 10.1093/brain/awq347

Kondziella, D., Friberg, C. K., Frokjaer, V. G., Fabricius, M., and Møller, K.

(2016). Preserved consciousness in vegetative and minimal conscious states:

systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 87,

485–492. doi: 10.1136/jnnp-2015-310958

Li, X., Zhou, Z., and Kleiven, S. (2020). An anatomically detailed and

personalizable head injury model: significance of brain and white matter

tract morphological variability on strain. Biomech. Model. Mechanobiol. 1–29.

doi: 10.1007/s10237-020-01391-8

Li, X.-Y., and Feng, D.-F. (2009). Diffuse axonal injury: Novel insights

into detection and treatment. J. Clin. Neurosci. 16, 614–619.

doi: 10.1016/j.jocn.2008.08.005

Maas, A. I., Menon, D. K., Steyerberg, E. W., Citerio, G., Lecky, F.,

Manley, G. T., et al. (2015). Collaborative European neurotrauma

effectiveness research in traumatic brain injury (CENTER-TBI): a

prospective longitudinal observational study. Neurosurgery 76, 67–80.

doi: 10.1227/NEU.0000000000000575

Maas, A. I., Stocchetti, N., and Bullock, R. (2008). Moderate and

severe traumatic brain injury in adults. Lancet Neurol. 7, 728–741.

doi: 10.1016/S1474-4422(08)70164-9

McIntosh, A., Svensson, N., Kallieris, D., Mattern, R., Krabbel, G., and Ikels, K.

(1996). “Head impact tolerance in side impacts,” in Proceedings of the Fifteenth

International Technical Conference on the Enhanced Safety of Vehicles, Vol. 2

(Melbourne), 1273–1280.

Menon, D., and Harrison, D. (2008). Prognostic modelling in traumatic brain

injury. BMJ 336, 397–398. doi: 10.1136/bmj.39461.616991.80

Minaee, S., Wang, Y., Aygar, A., Chung, S., Wang, X., Lui, Y. W.,

et al. (2019). MTBI identification from diffusion MR images using bag

of adversarial visual features. IEEE Trans. Med. Imag. 38, 2545–2555.

doi: 10.1109/TMI.2019.2905917

Mitra, J., Shen, K.-K., Ghose, S., Bourgeat, P., Fripp, J., Salvado, O., et al. (2016).

Statistical machine learning to identify traumatic brain injury (TBI) from

structural disconnections of white matter networks. NeuroImage 129, 247–259.

doi: 10.1016/j.neuroimage.2016.01.056

Moore, D. F., Jérusalem, A., Nyein, M., Noels, L., Jaffee, M. S., and

Radovitzky, R. A. (2009). Computational biology-modeling of primary

blast effects on the central nervous system. NeuroImage 47, T10–T20.

doi: 10.1016/j.neuroimage.2009.02.019

National Institute for Health and Care Excellence (2019). Head Injury: Assessment

and Early Management, Clinical Guideline [CG176]. Available online at: https://

www.nice.org.uk (accessed February 1, 2021).

Niogi, S., Mukherjee, P., Ghajar, J., Johnson, C., Kolster, R., Sarkar, R., et al. (2008).

Extent of microstructural white matter injury in postconcussive syndrome

correlates with impaired cognitive reaction time: a 3t diffusion tensor imaging

study of mild traumatic brain injury. Am. J. Neuroradiol. 29, 967–973.

doi: 10.3174/ajnr.A0970

Pappachan, B., and Alexander, M. (2012). Biomechanics of cranio-maxillofacial

trauma. J. Maxillofac. Oral Surg. 11, 224–230. doi: 10.1007/s12663-011-0289-7

Patton, D. A., and McIntosh, A. S. (2017). Head Impact Biomechanics

of “King Hit” Assaults. Cham: Springer International Publishing.

doi: 10.1007/978-3-319-30808-1_185-1

Povlishock, J. T., and Katz, D. I. (2005). Update of neuropathology and

neurological recovery after traumatic brain injury. J. Head Trauma Rehabil. 20,

76–94. doi: 10.1097/00001199-200501000-00008

Pregibon, D., et al. (1981). Logistic regression diagnostics. Ann. Stat. 9, 705–724.

doi: 10.1214/aos/1176345513

Raichle, M. E. (2010). Two views of brain function. Trends Cogn. Sci. 14, 180–190.

doi: 10.1016/j.tics.2010.01.008

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and

Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.

U.S.A. 98, 676–682. doi: 10.1073/pnas.98.2.676

Raul, J.-S., Deck, C., Willinger, R., and Ludes, B. (2008). Finite-element

models of the human head and their applications in forensic

practice. Int. J. Legal Med. 122, 359–366. doi: 10.1007/s00414-008-

0248-0

Roozenbeek, B., Lingsma, H. F., Lecky, F. E., Lu, J., Weir, J., Butcher, I., et al.

(2012). Prediction of outcome aftermoderate and severe traumatic brain injury:

external validation of the international mission on prognosis and analysis

of clinical trials (IMPACT) and corticoid randomisation after significant

head injury (CRASH) prognostic models. Crit. Care Med. 40, 1609–1617.

doi: 10.1097/CCM.0b013e31824519ce

Royal College of Physicians and Surgeons of Glasgow (1974). The Glasgow

Structured Approach to Assessment of the Glasgow Coma Scale. Available

online at: https://www.glasgowcomascale.org/what-is-gcs/ (accessed February

1, 2021).

Scheid, R., Preul, C., Gruber, O., Wiggins, C., and von Cramon, D. Y. (2003).

Diffuse axonal injury associated with chronic traumatic brain injury: evidence

from t2*-weighted gradient-echo imaging at 3 t. Am. J. Neuroradiol. 24,

1049–1056.

Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle,

V., De Boissezon, X., et al. (2011). Default mode network functional and

structural connectivity after traumatic brain injury. Brain 134, 2233–2247.

doi: 10.1093/brain/awr175

Sharp, D. J., Scott, G., and Leech, R. (2014). Network dysfunction after traumatic

brain injury. Nat. Rev. Neurol. 10, 156–166. doi: 10.1038/nrneurol.2014.15

Siddiqui, Z. F., Krempl, G., Spiliopoulou, M., Pe na, J. M., Paul, N., and

Maestu, F. (2015). Predicting the post-treatment recovery of patients

suffering from traumatic brain injury (TBI). Brain Informatics 2, 33–44.

doi: 10.1007/s40708-015-0010-6

Skandsen, T., Kvistad, K. A., Solheim, O., Strand, I. H., Folvik, M., and

Vik, A. (2010). Prevalence and impact of diffuse axonal injury in patients

with moderate and severe head injury: a cohort study of early magnetic

resonance imaging findings and 1-year outcome. J. Neurosurg. 113, 556–563.

doi: 10.3171/2009.9.JNS09626

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay,

C. E., et al. (2009). Correspondence of the brain’s functional architecture

during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045.

doi: 10.1073/pnas.0905267106

Smith, S. M., and Nichols, T. E. (2009). Threshold-free cluster

enhancement: addressing problems of smoothing, threshold dependence

and localisation in cluster inference. NeuroImage 44, 83–98.

doi: 10.1016/j.neuroimage.2008.03.061

Stevens, M. C., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., and Witt,

S. T. (2012). Multiple resting state network functional connectivity

abnormalities in mild traumatic brain injury. Brain Imag. Behav. 6, 293–318.

doi: 10.1007/s11682-012-9157-4

Steyerberg, E. W., Mushkudiani, N., Perel, P., Butcher, I., Lu, J., McHugh,

G. S., et al. (2008). Predicting outcome after traumatic brain injury:

Development and international validation of prognostic scores based on

admission characteristics. PLoS Med. 5:e50165. doi: 10.1371/journal.pmed.00

50165

Stocchetti, N., and Zanier, E. (2016). Chronic impact of traumatic brain injury

on outcome and quality of life: a narrative review. Crit. Care 20:148.

doi: 10.1186/s13054-016-1318-1

Tong, K. A., Ashwal, S., Holshouser, B. A., Nickerson, J. P., Wall, C. J.,

Shutter, L. A., et al. (2004). Diffuse axonal injury in children: clinical

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 18 March 2021 | Volume 9 | Article 587082

https://doi.org/10.1016/0002-9610(47)90321-8
https://doi.org/10.1111/j.1751-5823.2001.tb00465.x
https://doi.org/10.3171/jns.2005.103.2.0298
https://doi.org/10.1007/s10439-013-0907-2
https://doi.org/10.1002/hbm.21265
https://doi.org/10.1093/brain/awq347
https://doi.org/10.1136/jnnp-2015-310958
https://doi.org/10.1007/s10237-020-01391-8
https://doi.org/10.1016/j.jocn.2008.08.005
https://doi.org/10.1227/NEU.0000000000000575
https://doi.org/10.1016/S1474-4422(08)70164-9
https://doi.org/10.1136/bmj.39461.616991.80
https://doi.org/10.1109/TMI.2019.2905917
https://doi.org/10.1016/j.neuroimage.2016.01.056
https://doi.org/10.1016/j.neuroimage.2009.02.019
https://www.nice.org.uk
https://www.nice.org.uk
https://doi.org/10.3174/ajnr.A0970
https://doi.org/10.1007/s12663-011-0289-7
https://doi.org/10.1007/978-3-319-30808-1_185-1
https://doi.org/10.1097/00001199-200501000-00008
https://doi.org/10.1214/aos/1176345513
https://doi.org/10.1016/j.tics.2010.01.008
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1007/s00414-008-0248-0
https://doi.org/10.1097/CCM.0b013e31824519ce
https://www.glasgowcomascale.org/what-is-gcs/
https://doi.org/10.1093/brain/awr175
https://doi.org/10.1038/nrneurol.2014.15
https://doi.org/10.1007/s40708-015-0010-6
https://doi.org/10.3171/2009.9.JNS09626
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1007/s11682-012-9157-4
https://doi.org/10.1371/journal.pmed.0050165
https://doi.org/10.1186/s13054-016-1318-1
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Schroder et al. ML/FE TBI Functional Deficit Prediction

correlation with hemorrhagic lesions.Ann. Neurol. 56, 36–50. doi: 10.1002/ana.

20123

van der Horn, H. J., Scheenen, M. E., de Koning, M. E., Liemburg, E. J., Spikman, J.

M., and van der Naalt, J. (2017). The default mode network as a biomarker

of persistent complaints after mild traumatic brain injury: a longitudinal

functional magnetic resonance imaging study. J. Neurotrauma 34, 3262–3269.

doi: 10.1089/neu.2017.5185

Voets, N. L., Beckmann, C. F., Cole, D. M., Hong, S., Bernasconi, A., and

Bernasconi, N. (2012). Structural substrates for resting network disruption in

temporal lobe epilepsy. Brain 135, 2350–2357. doi: 10.1093/brain/aws137

Voets, N. L., Hodgetts, C. J., Sen, A., Adcock, J. E., and Emir, U. (2017).

HippocampalMRS and subfield volumetry at 7t detects dysfunction not specific

to seizure focus. Sci. Rep. 7:16138. doi: 10.1038/s41598-017-16046-5

Wang, F., Yu, C., Wang, B., Li, G., Miller, K., and Witterk, K. (2020).

Prediction of pedestrian brain injury due to vehicle impact using computational

biomechanics models: are head-only models sufficient? Traff. Injury Prevent.

21, 102–107. doi: 10.1080/15389588.2019.1680837

Weir, J., Steyerberg, E. W., Butcher, I., Lu, J., Lingsma, H. F., McHugh, G. S., et al.

(2012). Does the extended glasgow outcome scale add value to the conventional

glasgow outcome scale? J. Neurotrauma 29, 53–58. doi: 10.1089/neu.2011.2137

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., and Nichols, T. E.

(2014). Permutation inference for the general linear model. NeuroImage 92,

381–397. doi: 10.1016/j.neuroimage.2014.01.060

Wong, T.-T. (2015). Performance evaluation of classification algorithms by

k-fold and leave-one-out cross validation. Pattern Recogn. 48, 2839–2846.

doi: 10.1016/j.patcog.2015.03.009

Wood, J. L. (1971). Dynamic response of human cranial bone. J. Biomech. 4.

doi: 10.1016/0021-9290(71)90010-8

Yoganandan, N., and Pintar, F. A. (2004). Biomechanics of temporo-parietal skull

fracture. Clin. Biomech. 19, 225–239. doi: 10.1016/j.clinbiomech.2003.12.014

Yount, R., Raschke, K. A., Biru, M., Tate, D. F., Miller, M. J., Abildskov, T.,

et al. (2002). Traumatic brain injury and atrophy of the cingulate gyrus. J.

Neuropsychiatry Clin. Neurosci. 14, 416–423. doi: 10.1176/jnp.14.4.416

Zhang, T. (2009). On the consistency of feature selection using greedy least squares

regression. J. Mach. Learn. Res. 10, 555–568.

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain

MR images through a hidden Markov random field model and the

expectation-maximization algorithm. IEEE Trans. Med. Imag. 20, 45–57.

doi: 10.1109/42.906424

Zhou, Y., Milham, M. P., Lui, Y. W., Miles, L., Reaume, J., Sodickson, D. K.,

et al. (2012). Default-mode network disruption in mild traumatic brain injury.

Radiology 265, 882–892. doi: 10.1148/radiol.12120748

Conflict of Interest: JM-P was employed by the company Lurtis, Ltd.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Schroder, Lawrence, Voets, Garcia-Gonzalez, Jones, Peña and

Jerusalem. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 19 March 2021 | Volume 9 | Article 587082

https://doi.org/10.1002/ana.20123
https://doi.org/10.1089/neu.2017.5185
https://doi.org/10.1093/brain/aws137
https://doi.org/10.1038/s41598-017-16046-5
https://doi.org/10.1080/15389588.2019.1680837
https://doi.org/10.1089/neu.2011.2137
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1016/0021-9290(71)90010-8
https://doi.org/10.1016/j.clinbiomech.2003.12.014
https://doi.org/10.1176/jnp.14.4.416
https://doi.org/10.1109/42.906424
https://doi.org/10.1148/radiol.12120748
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	A Machine Learning Enhanced Mechanistic Simulation Framework for Functional Deficit Prediction in TBI
	1. Introduction
	2. Materials and Methods
	2.1. Clinical Data
	2.1.1. Participants
	2.1.2. MRI Data Acquisition
	2.1.3. rsfMRI Data Pre-processing
	2.1.4. Resting State Network Based Damage
	2.1.5. Impact Velocity and Location Estimations

	2.2. Mechanistic Simulations
	2.2.1. Finite Element Head Model
	2.2.2. Material Models
	2.2.3. Impact Boundary Conditions
	2.2.4. Mechanical Damage

	2.3. Machine Learning Layer
	2.3.1. Machine Learning Algorithm
	2.3.2. Dummy Validation


	3. Results
	3.1. DMN Functional Damage
	3.2. Numerical Model Performance
	3.2.1. Machine Learning Layer Performance
	3.2.2. Dummy Validation

	3.3. In silico Model Prediction
	3.3.1. Input Sensitivity
	3.3.2. Clinical Validation


	4. Discussion
	4.1. Model Limitations
	4.1.1. Head Model Dependence
	4.1.2. Kinematics
	4.1.3. Skull Fracture

	4.2. Predictive Accuracy
	4.3. Clinical Data
	4.4. Resting State Network Relevance for TBI Prediction
	4.5. In silico TBI Prediction
	4.5.1. Coupling of Causality and Correlation
	4.5.2. Predictive Performance
	4.5.3. Forensic Relevance


	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


