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Abstract. Mapless navigation is the capability of a robot to navigate
without knowing the map. Previous works assume the availability of
accurate self-localisation, which is, however, usually unrealistic. In our
work, we deploy simultaneous localisation and mapping (SLAM)-based
self-localisation for mapless navigation. SLAM performance is prone to
the quality of perceived features of the surroundings. This work presents
a Reinforcement Learning (RL)-based mapless navigation algorithm, aim-
ing to improve the robustness of robot localisation by encouraging the
robot to learn to be aware of the quality of its surrounding features and
avoid feature-poor environment, where localisation is less reliable. Parti-
cle filter (PF) is deployed for pose estimation in our work, although, in
principle, any localisation algorithm should work with this framework.
The aim of the work is two-fold: to train a robot to learn 1) to avoid col-
lisions and also 2) to identify paths that optimise PF-based localisation,
hence fail-safe SLAM. A simulation environment is tested in this work
with different maps and randomised training conditions. The trained
policy has demonstrated superior performance compared with standard
mapless navigation without this optimised policy.

Keywords: Fail-safe Localisation Navigation · Mapless Navigation · Re-
inforcement Learning

1 Introduction

For a robot to navigate in an unknown environment without knowing the map,
such as in a search and rescue scenario, reliable decision making for the robot of
immediate responses to collisions or efficient path planning towards the goal is
critical. We categorise such problems as mapless navigation. Conventional path
planning methods have been dominantly applied in most occasions. However,
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there are known limitations with these algorithms [13]. Usually, hand-crafted
heuristic or constraint functions are needed and customised for different condi-
tions. However, too much hand-engineered path planning could limit the gener-
alization capability of mobile robots to be employed in different environments
[14].

To address the limitations above, with recent advances in deep learning and
reinforcement learning (RL), learning based navigation approaches have con-
tinuously attracted increasing attention. Supervised learning that learns from
expert demonstrations is one popular approach, which, however, would require
a large amount of labelled data for training. An alternative approach is RL that
deploys an agent in the environment and lets the agent explore by itself through
direct interaction with the environment. By gaining corresponding rewards from
environment during exploration, the agent will learn how to navigate gradually.
One promising recent work is the RL-based mapless navigation [13] that aims to
train an agent, a mobile robot, to navigate in an unknown environment with the
capabilities of collision avoidance. This could reduce a considerable amount of
time to tailor hand-crafted rules or heuristics for navigation and decision making.

Despite the promising performance from previous works, they all assume that
the robots can access their actual poses. However, this assumption is unrealistic,
especially for GPS-denied environment. Also, even with GPS localisation, lo-
calisation quality along the navigation path should be taken into consideration.
SLAM-base localisation will be required in such cases. However, its performance
is prone to poor observation of environment features, e.g. navigation in areas
with no distinct features, e.g. an open area. Most localisation algorithms, such
as PF or Kalman filter, will be negatively impacted by environment ambiguities
and, hence, more weights will be given to interoceptive sensors, such as odome-
ters, leading to unreliable localisation. The decoupled nature of robot perception
and path planning could lead to catastrophic failures of self-localisation, due to
the unpredictable observable features from the surroundings to perform SLAM-
based localisation. The unreliable localisation will then in turn result in failures
of reaching its goal location. Fig. 1 illustrates a real-world scenario, where the
green path is more preferred than the less reliable path in red for drone navi-
gation (assuming GPS localisation is unavailable). In this case, the green path
would allow the drone to observe more local features, hence improving localisa-
tion robustness.

This leads to the motivation of this work: how to train a policy for an agent
to learn to navigate while also prevent localisation failures during navigation.
The aim of our work is, therefore, two-fold: to train a robot that is able to 1)
avoid collisions, while also 2) plan its paths that can provide robust localisation.
This is different from other mapless navigation agents in previous works, which
only consider obstacle avoidance without considering localisation performance.

The remainder of this paper is organised as follows. Section 2 introduces
related work. Our method in this work is introduced in section 3, followed by
experiments and results in section 4. The conclusion and future research are
presented in section 5.
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Fig. 1: A robot navigates from the start location to the destination on the left-
hand side. The red trajectory is traversing in a feature-poor area, which is not
suitable for SLAM-based localisation. The green trajectory is a more preferred
path, which maximises feature observations for robust SLAM-based localisation.

2 Related Work

With the great advances of neural networks, deep learning has been widely
utilised to teach mobile robots driving by expert demonstrations by various
means. For example, supervised learning techniques, such as Convolutional Neu-
ral Networks (CNN), have been deployed to train robots to autonomously make
decisions or act directly based on depth images or Lidar data, to learn to navi-
gate [5,9,11]. However, as it would be costly to collect labelled data in the real
world, those methods are often trained and evaluated in virtual environments.
In recent years, efforts have been paid to focus on transfer the trained networks
to work in real world too [13,2].

RL, on the other hand, is more favourable, as it allows an agent to perform
autonomous exploration and learning without human intervention. For mapless
navigation, one prominent work is introduced in [12], where robots are trained
with RL by a two-step method with depth images as inputs. Since then, several
variants of related works have been introduced, inheriting the above method
to improve the performance of mapless navigation in different aspects [8]. For
discretized action space, state-of-the-art Deep Q-Networks (DQN), such as dou-
ble networks and duel architectures, are integrated together to enhance robot
navigation abilities [10].

Further, RL is also used for navigation in continuous action space by de-
ploying the Asynchronous Deep Deterministic Policy Gradient (DDPG) algo-
rithm [13]. RL in continuous action space requires more data than discretized
space. To improve its sample efficiency, imitation learning and RL can be com-
bined for improving efficiency [9], where the policy network is first pre-trained
with imitation learning, and, then further tuned with the constraint policy op-
timisation, named as the (CPO)RL algorithm. In [15], a modular architecture
is introduced to train robots on the modular basis by dividing a task into local
obstacle avoidance and global navigation modules. An action scheduling mech-
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anism is proposed to perform efficient exploration and exploitation. Other im-
provements have also been made in sampling efficiency [7] and algorithm hyper
parameters selection [1]. When visual inputs are used for navigation, a technique
called reinforcement learning with auxiliary tasks is applied in order to obtain
effective representations from images for navigation tasks [6,4].

Although the works discussed above have achieved relatively promising per-
formance, few of these works have discussed the effect of localisation quality on
its final navigation performance. In other words, path planning and robot per-
ception should be considered as tightly coupled problems for decision making.
Considerations should be given not only to localisation and mapping, but also
optimal path planning or policy to optimise performance of localisation. The
agent policy makes decisions to ensure paths are also beneficial to the locali-
sation and mapping performance, such that uncertainty of its localisation and
map construction are minimised. This is related to our work.

3 Methodology

3.1 System Description

Fig. 2 shows the system overview of this work. First, measurement data of the
robot are fed to the localisation algorithm for calculating the current estimated
robot pose. The estimated robot pose and the goal position are then used to
compute the relative goal pose, represented by the relative distance and relative
heading with respect to the robot. Finally, the relative goal pose together with
measurement data are provided to the fail-safe localisation reinforcement learn-
ing agent to make decision on the next action. This procedure iterates until the
robot reaches the designated goal position.

Fig. 2: System overview

As mentioned, most mapless navigation algorithms assume the availability
of ground truth poses of the robot and this assumption is highly impractical
for real-world applications. On the other hand, robot pose estimation purely
based on odometry is unacceptable too, due to unpredictable odometry drifts
over time. In our work, it relies on sensors such as Lidar or cameras with a
localisation algorithm to estimate robot poses.
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3.2 Localisation Algorithm

In this paper, we consider a feature-based PF localisation algorithm, specifically,
the Rao-Blackwellized Particle Filter (RBPF) [3], which is probably the most
deployed method for robot state estimation. In principle, our focus should not be
limited to any particular localisation algorithm. Briefly, according to the RBPF
framework, the joint probability of the map m and the robot poses x can be
factorised through Rao-Blackwellization, formulated as follows:

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t−1) (1)

where z and u represent the measurement and the control input respectively. The
particle filter maintains a batch of particles, where each particle produces their
own pose estimation from control inputs and measurements and then builds
a map of their own according to Equation 1. An importance weight factor is
assigned to each particle to evaluate the pose estimation quality of this particle,
which is defined by the following equation:

w
(i)
t ∝ w

(i)
t−1p(zt|m

(i)
t−1, x

i
t) (2)

where the weight factor w is updated recursively and i represents the particle
identification. The particle filter will do re-sampling based on the importance
weight factors. It will recursively select some particles to replace some others.
The larger the importance weight factor is, the higher possibility it is of to be
selected to replace other particles. After a few iterations, the particles will then
converge towards the true pose gradually.

3.3 Reinforcement Learning Agent

An RL agent gains experience from interaction with the environment. At each
time step t, it selects an action a from a θ parameterised policy π(a|s; θ) based
on its current state s and executes the selected action in the environment. After
execution, the state will be updated and the agent will receive a reward r. This
process will iterate continuously until a termination condition is met, such as goal
state achieved or exceeding the maximum time. The aim of training is to generate
a policy, which maximises the accumulated discounted reward, formulated as
Rt =

∑∞
k=0 γ

krt+k, where γ is the discount factor.
In this work, we use the DQN, which is probably the most widely deployed

RL algorithm. A deep neural network is trained to estimate the action value
Qπ(s, a) = E[Rt|st = s, at], which is the expected return for selecting action a
at state s following the policy π.

The details of the DQN configurations in this work are as follows. The state
space of the DQN agent consists of sensor observation measurement ot and
relative goal position gt, which includes the relative distance dg and heading
β with respective to the robot. As the classic DQN is designed for handling
discrete action space, the action space needs to be discretized. During each time
step, the agent selects a linear velocity vlinear among a set of values [vl1 , vl2 ...vli ]
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and an angular velocity among a set of values [w1, w2...wj ]. i and j can be decided
according to different requirements.

In the task, the agent needs to navigate to a designated goal position, while,
meanwhile, also avoids obstacles and minimises its localisation uncertainty. There-
fore, in this work, the reward function is defined as follows:

r =


rlost if no enough features are observed

rcollision if collision happens

rgoal if dg < dgmin

f × (dt−1 − dt) otherwise

(3)

where rlost is negative when the agent observation ot does not contain enough
environmental features for robust localisation; rcollision is a negative value to
punish the agent when it collides with obstacles; rgoal is a positive value and
is set when the robot arrives at the goal position within a minimum acceptable
distance, defined by dgmin; the term dt−1−dt is to encourage the agent to make
decisions that reduce the relative goal distance; and f is the distance rate factor
that can be adjusted.

Previous research works seldom consider the penalty of rlost to regulate agent
behaviours. However, this reward is critical to prevent the robot from moving
into open space, where no or very sparse features can be observed. According to
the description in section 3.2, it is clear that when the robot moves into open
space, where has no enough observed features, the second term in equation 2 will
not be calculated. Hence, the weight factors of the particles will not be updated.
Consequently, the PF will not be able to evaluate the quality of the particles and
will not perform re-sampling to correctly estimate the robot state using these
weight factors. The localisation algorithm will thus fail and depend solely on
odometry, which is not accurate.

4 Experiments and Results

Fig. 3: Environment: robot (green dot)
and goal position (blue star)

Fig. 4: Robot navigation trajectories
with ground truth poses provided
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4.1 Experiment Setup

We test our work in a 2-dimensional simulation environment using a mobile robot
of a 3-dimensional kinematic motion model. As illustrated in Fig. 3, the black
asterisks serve as landmarks that may be observed by the robot for localisation.
Each landmark also represents an obstacle, in the circular shape with the radius
of 1 m (illustrated by the blue regions in Fig. 3). The observation of the robot
contains relative distances and angles of those landmarks to the robot within
the robot maximum observation range, which is 5.0 m with a full 2π coverage.
The robot needs to travel to a goal position, denoted by a blue star, as shown in
Fig. 3. Those red crosses are the estimated landmarks that are observed during
navigation.

During training, those landmarks and goal positions are generated randomly.
We also use randomly generated maps of different shapes. The robot linear veloc-
ity is set to be a constant value vl = 1.0 m/s. The angular velocity is a selection
from the following set of values (−2.0,−1.0, 0.0, 1.0, 2.0) rad/s. Both linear and
angular velocities are added with Gaussian noises during robot execution to sim-
ulate odometry errors. The reward elements rlost, rcollision and rgoal are −300,
−300 and 600 respectively and the distance rate factor f is 10.

For the DQN-based RL framework, measurement data need to be converted
into a discrete structure. The observed landmarks are first divided into 36 groups
according to relative angles (10 degrees per group). The observation ot con-
sists of two value lists: [lmin1 · · · lmin36], where each element represents the
value of the relative distance to the nearest landmark in that angle group and
[number1 · · ·number36], where each element represents the number of observed
landmarks in that angle group. Using the restructured observation (36 + 36 di-
mensions) together with the relative goal position (2 dimensions), the agent state
would be then represented by a 74-dimension vector. The input data is connected
with 2 dense layers (512 nodes each) and the final layer uses a linear activation
function, as shown in Fig. 5.

Fig. 5: Q network Fig. 6: Average rewards
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4.2 Results

As mentioned before, previous work always assume that the robot ground truth
poses are accessible. Fig. 4 shows the trajectory, when a robot is provided with
true poses and trained without the localisation failure penalty. The robot navi-
gates through an open space diagonally to reach the goal position with a rela-
tively short distance. In the real world, however, it is not always easy to obtain
ground truth poses. When PF-based localisation is deployed in the same task,
the robot will diverge from the true trajectory, as shown in Fig. 7, where the
red and blue lines are the estimated and ground truth trajectories respectively.
During navigation, the divergence is caused by the poor observation of environ-
mental features, as shown in Fig. 7a. In the case of navigation with diverged
particles, when new features are observed, particles will be re-sampled to re-
localise the robot to re-converge to a new pose estimated with respect to the
new observed features. However, the estimated pose could potentially lose its
original track and, hence, converge to wrong poses, as illustrated in Fig. 7b. The
PF localisation will then fail catastrophically. In certain cases, due to the PF
failures, the robot goal position might become unreachable for the robot due to
the misaligned obstacles (red crosses at the bottom right corner in Fig. 7b). In
this case, the robot will never reach the goal position.

(a) (b)

Fig. 7: Trajectories generated without localisation failure penalty (a) PF local-
isation diverges when no feature is observed, (b) PF localisation re-converges
to wrong poses (blue star: goal; blue line: ground truth trajectory; red line:
estimated trajectory)

The same experiments are performed with the additional localisation failure
penalty rlost introduced in our work. Fig. 8 shows the trajectories estimated using
the same PF algorithm for localisation. As expected, it can be clearly seen that
the estimated trajectories align closely to the true trajectories. It is also worth
noting that the new trajectories tend to stay close to landmarks, to ensure high-
quality landmark observation for robust localisation. Consequently, the robot can
arrive at the goal successfully with only PF-based localisation. As mentioned,
the performance improvement is mainly attributed to the new landmark-aware
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Fig. 8: Trajectories generated with localisation failure penalty (blue star: goal;
blue line: ground truth trajectory; red line: estimated trajectory)

RL-based navigation policy, which encourages the robot to maintain a distance
with good observation of features to ensure high localisation confidence.

The average rewards evaluated at different training episodes are shown in
Fig. 6. As can be seen, the average rewards are rising as the number of training
episodes increases and becoming stable at about 600 after training for 3000
episodes.

5 Conclusion

In this work, we introduced a novel DQN-based mapless navigation method that
uses SLAM-based localisation for robot pose estimation, rather than relying
on robot ground truth poses as used in previous works. A localisation failure
penalty rlost is introduced in the reward function to regulate agent behaviours
to prevent robots from entering areas with no observable features, where SLAM-
based localisation tend to fail. We performed different tests with and without
the use of localisation failure penalty in different environments for training with
randomised robot start/goal locations and maps. It can be clearly seen that
our work considerably improves localisation performance attributed to the ef-
fectiveness of localisation failure penalty, which encourages a robot to follow
paths with consistent observable landmarks while also free from collisions, hence
fail-safe SLAM.
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