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Abstract

Background: Histopathological analysis of intervertebral disc (IVD) tissues is a critical

domain of back pain research. Identification, description, and classification of attributes that

distinguish abnormal tissues form a basis for probing disease mechanisms and conceiving

novel therapies. Unfortunately, lack of standardized methods and nomenclature can limit

comparisons of results across studies and prevent organizing information into a clear repre-

sentation of the hierarchical, spatial, and temporal patterns of IVD degeneration. Thus, the

following Orthopaedic Research Society (ORS) Spine Section Initiative aimed to develop a

standardized histopathology scoring scheme for human IVD degeneration.

Methods: Guided by a working group of experts, this prospective process entailed a

series of stages that consisted of reviewing and assessing past grading schemes, sur-

veying IVD researchers globally on current practice and recommendations for a new

grading system, utilizing expert opinion a taxonomy of histological grading was devel-

oped, and validation performed.

Results: A standardized taxonomy was developed, which showed excellent intra-

rater reliability for scoring nucleus pulposus (NP), annulus fibrosus (AF), and

Abbreviations: AB-PAS, Alcian blue—Periodic Acid Schiff; AF, annulus fibrosus; BEP, boney end plate; CEP, cartilaginous end plate; ECM, extracellular matrix; H&E, hematoxylin and eosin; ICC,

interclass correlation coefficient; IVD, intervertebral disc; MRI, magnetic resonance imaging; NP, nucleus pulposus; ORS, Orthopaedic Research Society; UTE, ultrashort echo time.
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cartilaginous end plate (CEP) regions (interclass correlation [ICC] > .89). The ability to

reliably detect subtle changes varied by IVD region, being poorest in the NP (ICC:

.89-.95) where changes at the cellular level were important, vs the AF (ICC: .93-.98),

CEP (ICC: .97-.98), and boney end plate (ICC: .96-.99) where matrix and structural

changes varied more dramatically with degeneration.

Conclusions: The proposed grading system incorporates more comprehensive

descriptions of degenerative features for all the IVD sub-tissues than prior criteria.

While there was excellent reliability, our results reinforce the need for improved

training, particularly for novice raters. Future evaluation of the proposed system in

real-world settings (eg, at the microscope) will be needed to further refine criteria and

more fully evaluate utility. This improved taxonomy could aid in the understanding of

IVD degeneration phenotypes and their association with back pain.

K E YWORD S

histopathological scoring, human, intervertebral disc degeneration, standardization

1 | INTRODUCTION

The intervertebral disc (IVD) is a compliant, composite tissue that sepa-

rates vertebrae within the spine. Its structure and composition are

uniquely suited to its biomechanical function, which is to synergize with

facet joints, ligaments, and muscles to support spinal compression, shear

and torsion forces while facilitating multiaxial motion. IVD degeneration

can have a detrimental effect on spinal movement, load sharing with

other tissues, catabolic activity, and can ultimately contribute to back

pain that can become chronic.1-5 Furthermore, IVD degeneration may

also lead to IVD displacement with subsequent nerve root compression

and radiating pain as well as secondary phenotypes of osteophyte forma-

tion, endplate abnormalities, Modic changes, IVD space narrowing, facet

joint changes, and others. IVD degeneration is often part of the spectrum

of degenerative spondylolisthesis and/or spinal stenosis in the older pop-

ulation.6 IVD degeneration, displacement, and other secondary pheno-

types, however, do not just affect the elderly and are common from

teenage years into old age. IVD degeneration per se has been associated

with around 40% of low back pain cases7; however, other studies have

contended that such IVD changes are purely coincidental with respect to

pain. This mismatch further underscores the need to better understand

the IVD phenotype that may shed light upon its correlation with clinical

features.8 IVD degeneration is multifactorial and may start at the cellular

level, including the formation of nucleus pulposus (NP) cell clusters,9

senescent,10,11 or apoptotic cells, caused by, for example, nutrient depri-

vation due to occlusion of the cartilaginous end plates (CEPs) and boney

end plates (BEPs),12 or could initiate via a structural defect for example,

following injury that can cause subsequent cellular changes. The associ-

ated extracellular matrix (ECM) degradation can potentially cause a

dehydrated NP and weakened annulus fibrosus (AF), which can lead to

the formation of fissures and clefts that allow blood vessel and nerve

ingrowth,13-17 and infiltration of inflammatory cells such as macro-

phages18 and other immune cells.19 As such, “discogenic” origins of back

pain are a major socioeconomic concern that affect populations globally

and necessitate improved understanding.

Currently, outcomes of chronic back pain management are often

unsatisfactory and unpredictable, calling for more precision-based

approaches for spine care.20 In fact, improvement of chronic back pain

care is limited by lack of knowledge about degeneration and pain mecha-

nisms at molecular, cellular, and structural levels, further complicated by

multiple mechanisms for discogenic pain. Mechanistic insights ultimately

form the basis for clinical biomarkers to objectively diagnose painful

IVDs, quantify degeneration severity, forecast progression, monitor treat-

ment efficacy, and inform novel therapy development. In this setting, his-

topathological analyses of IVD tissues from cadaveric spines or surgical

samples can be extremely important. However, limitations associated

with both tissue sources can restrict the generalizability of findings. For

example, cadaveric samples typically lack associated clinical information.

Surgically discarded tissues are typically fragments of nucleus, annulus,

and bone, from patients with a variety of diagnoses and may not fully

represent the back pain population. Additionally, there is an assortment

of IVD histopathological methods and classification systems used to

assess the severity of conditions and reporting therein. Together, these

factors can hinder development of firm conclusions about IVD tissue

injury or repair mechanisms. In addition, such limitations of non-

standardization can also impact direct comparison of studies due to

inherent limitations with language and classification variations.

Previous reports assessing IVD histopathology12,21-25 have had

limitations. For one, previous grading schemes have often been the

product of single center investigation, thereby limited in scope with

regards to protocol/grade development and external validation. Sec-

ondly, reliability of such schemes do not garner community driven

consensus. Thirdly, a comprehensive, complete taxonomy of histologi-

cal features have not been addressed, in particular with a focus of

human tissues. In lieu of the above, the Orthopaedic Research Society

(ORS) Spine Section Initiative was conceived to address
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histopathological phenotyping to facilitate standardization and a com-

mon language for widespread utility. This is important in a number of

contexts. Standardized and reproducible techniques are critical for

confident communication of results and comparisons between stud-

ies. Sensitive and reproducible degeneration scoring systems are nec-

essary to clarify disease pathophysiology and progression. Histologic

characterization and scoring systems for human IVDs are instrumental

for providing context and establishing clinical relevance of pre-clinical

studies in animals. The ability to describe degenerative features, par-

ticularly those suspected to associate with painful conditions, is fun-

damental for conceiving new treatment approaches and aligning

clinical practice with evidence. As such, the purpose of our following

study was to utilize a collaborative process to develop best practice

recommendations for consistent processing, identification, nomenclature,

and classification of degeneration features within human IVDs. Informa-

tion obtained could inform models for risk factor identification as well as

post-intervention disease progression. Together this will help elaborate

on diagnostics, prevention, therapeutics, and outcomes that can further

contribute to a more personalized approach to spine care.

To develop a standardized histopathology scoring scheme, our

approach was multifaceted (Figure 1). Firstly, an IVD histopathological

working group was assembled of recognized key opinion leaders in

the field. The group began by reviewing prior classifications systems

(stage 1) and surveying the spinal research community who utilized

histopathological grading in their research (stage 2). These data were

then utilized to develop a taxonomy for histological grading to

describe human IVD degeneration (stage 3). We then developed

detailed training materials that included descriptions and example

images forming 10 “mock” sample IVD image sets (composed of low

magnification image of a whole IVD and accompanying high magnifica-

tion images of features, which could be found in such a representative

IVD). These were distributed to a group of spine experts and early career

scientists for scoring to provide a preliminary assessment of the new

grading system, calculating intra-rater and inter-rater reliability (stage 4),

and providing feedback on the usability of the scheme (stage 5).

The resulting scoring system described here is a first step for

establishing best practices and methodologies for human IVD grading.

We expect this system will undergo continued optimization as it gains

use by the wider spine research community, ultimately resulting in a

consensus scoring system that can be used worldwide.

2 | STAGE 1: NARRATIVE REVIEW OF
HISTORICAL HISTOPATHOLOGIC
CLASSIFICATION SYSTEMS OF IVD
DEGENERATION

The different IVD sub-tissues, namely the NP, AF, CEP, as well as the

adjacent vertebral BEP, each have unique cellular and structural fea-

tures, differing spatial locations, and varying nutritional and physical

stressors. Consequently, the degenerative features vary between

these sub-tissues, making it challenging to define one comprehensive

grading scheme that incorporates all aspects of IVD degeneration.

2.1 | Methods

Historically used human histopathological grading schemes were iden-

tified via a narrative literature search using PubMed and Google

Scholar databases. To identify relevant literature, following keywords

were used: “intervertebral disc,” “grading,” “human,” “morphology,”
“surgical,” “autopsy.” The results where then further refined via

F IGURE 1 Graphical representation of article study design. IVD
histopathological working group began reviewing prior classifications,
surveying the spinal research community and the knowledge of a
panel of expert to develop a preliminary histological grading to
describe human IVD degeneration. Detailed training materials, IVDs
images, and a second survey were distributed to a group of spine
experts. Feedbacks, intra-rater variability, a second-round grading,
and intra-rater variability analysis lead to the resulting scoring system
for human IVD grading evaluation
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thorough hand evaluation. Only publications that were available in

English, had a full text available, and were published in academic

journals were included in the study. Articles were excluded when only

evaluating micro-CT and/or magnetic resonance imaging (MRI) data,

and not describing human IVD morphology, either macroscopically or

histologically. After reviewing all selection criteria, six articles develop-

ing human IVD grading schemes (Table 1) and nine articles describing

morphological changes based on existing human IVD grading schemes

(Table 2) were identified.

2.2 | Key findings

Pathological changes of the degenerating IVDs were first reported in

194526,27 and since then several grading schemes have been devel-

oped to quantify degeneration of human IVD (Table 1). In 1960,

Nachemson et al.,21 reported the first morphologic grading scheme

for human IVD autopsy samples at the macroscopic level. Using trans-

verse cut IVDs, the evaluation was based on changes of the NP and

AF ranging from grade 1 (no gross changes) to grade 4 (severe struc-

tural changes). However, this approach was limited because pathologi-

cal changes often manifest as horizontal clefts or fissures along the

anteroposterior diameter of the IVD and might be missed when

assessing the IVD only in the transverse plane.30 Therefore, degenera-

tive changes are more reliably detected in sagittal sections.22 In 1990,

Thompson et al12 refined the Nachemson classification based on sag-

ittal plane sections including the CEP and BEP. The Thompson et al

classification is still the most widely used method to describe key morpho-

logical changes in human IVDs and builds the foundation for several

descriptions of morphological features during IVD degeneration (Table 2).

Yet, because of limited descriptions of the heterogenous morphological

features that associate with degeneration, not all groups adopt previously

published grading systems when reporting macroscopic IVD changes

(Table 2).

Higher magnification and tinctorial stains are necessary to distin-

guish between the different IVD components and visualize cells and

cell morphology. The first histological grading system was reported by

Gries et al,22 who used hematoxylin and eosin (H&E) staining plus a

four-grade classification system, which assessed NP, AF, CEP sepa-

rately before combining into a single grade. Histological assessment

included details about microscopic degenerative changes, such as

necrotic cells, chondron formation, changes in ECM composition,

invading vascular channels, and minor cleft formation.22 The disadvan-

tage of this system was that, like the Thompson et al, grading system,

it did not fully capture the heterogeneous nature of IVD degeneration

(eg, an intact AF but onset of NP degeneration). In 2002, using a com-

bination of several staining methods (H&E; Masson-Goldner; Alcian

blue—Periodic Acid Schiff, AB-PAS), Boos et al, described a more

detailed scoring system, which scored degeneration of IVD sub-

tissues separately, resulting in separate scoring systems for IVD (0-22)

and CEP (0-18).23 Within the same year, Sieve et al, developed a scor-

ing system specific to NP and AF tissue from surgical samples, which

were further profiled at molecular level by in-situ hybridization for

Sox9, Collagen type II, and immunohistochemistry for Aggrecan.24

The most recent grading system was described by Rutges et al, in

2013, which utilized three tinctorial stains (H&E, Safranin-O/Fast

Green, Picrosirius Red/ Alcian Blue), assessed six features of IVD

degeneration separately, and combined them into a single grade by

using a scale from 0 to 12. Rudges et al validated their grading system

by correlating it to the Boos classification and Thompson grading

systems.25

While several features are included in all previously published his-

tological grading systems (Figure 2), a consensus about the most

appropriate histochemical stain, and a hierarchy of the importance of

features to capture the progression of degeneration within each com-

ponent of the IVD, does not exist. Moreover, only the Boos grading

system includes the separate grading of the BEP in their analysis;

while none of the grading systems provides a system to grade NP and

AF tissue separately, the grading of each region should enable transla-

tion to surgical samples where only certain tissues may be present.

While there are only four distinct published grading systems,10,14-16

these share a number of common features (Figure 2), the most

TABLE 1 Common grading schemes to describe IVD degeneration

Grading
classification Grading range Method Stain Tissue origin Evaluated tissue Year Reference

Nachemson 1 to 4 Macroscopic,
unfixed

- Autopsy (transverse plane) NP, AF 1960 21

Thompson 1 to 5 Macroscopic,
unfixed

- Autopsy (sagittal plane) NP, AF, CEP,
BEP

1990 12

Gries 1 to 4 Histological H&E Autopsy (sagittal plane) NP, AF, CEP,
BEP

2000 22

Boos IVD: 0 to
22CEP: 0
to 18

Histological H&E, Masson-
Goldner, Alcian
blue

Autopsy (sagittal plane)
and surgical tissue

NP+AF separate
from CEP

2002 23

Sive 0–12 Histological H&E Surgical tissue NP+AF 2002 24

Rutges 0 to 12 Histological H&E, SafO, PRAB Surgical tissue NP+AF 2013 25

Abbreviations: AF, annulus fibrosus; BEP, boney end plate; CEP, cartilaginous end plate; NP, nucleus pulposus.
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common being presence of lesions or fissures, loss of demarcation

between the different tissues of the IVD and the presence of cell clus-

ters within the NP, and changes to the structure of the AF (Figure 2).

2.2.1 | Histopathological features not currently
included in prior human IVD scoring systems

In addition to the features identified within prior grading systems, we

propose a number of characteristics for the endplate, which is a hard/

soft-tissue interface where stresses are concentrated and damage is

prevalent.35 One type of endplate damage is at the annulus/vertebra

junction formed by a zone of calcified fibrocartilage (an enthesis)

(Figure 3A). During degeneration, the junction between the annulus

and fibrocartilage (known as the tidemark) becomes a plane of weak-

ness where clefts can form.36 These tidemark avulsions are often near

innervated, high-intensity zones in the adjacent vertebral rim seen on

T2-weighted MRI. Related, the CEP is only loosely adherent to the

subchondral bone, and can separate, thereby forming a route of pro-

inflammatory crosstalk between the IVD and adjacent vertebra. Bone

marrow changes in these areas can be innervated, associated with

bone remodeling, be observed on MRI scans (Modic changes), are

linked to back pain symptoms, and can be predictive of treatment out-

comes.37-44 Consequently, we have added details to the annulus

TABLE 2 Publications that described morphological changes without developing a new grading scheme

Author

Grading

method Method Stain Tissue origin

Evaluated

tissue Year Reference

Coventry - Macroscopic - Autopsy, sagittal cut NP, AF, EP 1945 26

Friberg &

Hirsch

- Macroscopic,

fixed

- Autopsy, transverse cut NP, AF 1949 27

Vernon-

Roberts

- Macroscopic,

fixed

- Autopsy, sagittal cut NP, AF, CEP,

BEP

1977 28

Osti - Macroscopic,

fixed

- Autopsy, sagittal cut NP, AF, EP 1992 29

Vernon-

Roberts

- Macroscopic,

fixed

- Autopsy, transverse cut NP, AF 1997 30

Haefeli Thompson Macroscopic,

fixed

- Autopsy NP, AF, EP 2006 31

Le Maitre Sieve Histological H&E Surgical NP, AF 2005 32

Walter Rutges Histological Various stains Autopsy, transverse cut NP, AF, EP 2015 33

Tomaszewski Boos Histological H&E, Masson-Goldner,

Alcian blue-PAS

Autopsy, sagittal, and

coronal

NP, AF, EP 2017 34

F IGURE 2 Features utilized
in published grading systems.
Numbers of previously published
grading systems for human IVD
degeneration (n = 4), which
utilize degenerative features.
Features classified as whole IVD
measures or specific to the
nucleus pulposus (NP), annulus
fibrosis (AF), cartilaginous end
plate (CEP), or the boney end
plate (BEP)
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F IGURE 3 Examples of additional characteristics included in the grading system and tissue processing artifacts. A, CEP avulsions are sites
where the CEP has separated from the BEP, allowing disc/vertebra cross talk and fibrovascular bone marrow conversion (arrow). B, Tidemark
avulsions are clefts at the interface between the annulus and enthesis fibrocartilage (arrow). C, BEP sclerosis refers to densification of
subchondral bone and reduction of marrow space. There are many artifacts that may arise during tissue processing. Here are some of common
examples including: D, tearing and how to distinguish these from fissures (E); F, drying; G, blade scraping; H, large debris; I, small debris; J,
bubbles; K, tissue lifting; L, folding; M, cells in near slices; N, acid damage: O&R, incomplete mounting; P, contaminating tissue; Q, blood; S,
overheating. Detailed descriptions of these artifacts can be found in the text
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grading to include the tidemark (Figure 3B), and to the CEP and BEP

to include avulsions and changes to the bone marrow compartment

(Figure 3C).

2.2.2 | Tissue artifacts

Oftentimes, artifacts generated during tissue processing can be mis-

interpreted as degenerative features. For example, tissue tearing and

acid damage could be misinterpreted as degenerative features such as

fissures and acellularity (Figure 3D-S). Therefore, it is important to be

able to distinguish between real features and those which are intro-

duced during tissue processing and staining.

Tissue artifacts can include:

Tearing vs fissures: Tearing during processing can be mistaken for

fissures. When tissue tears during processing or extraction, the edges

on either side of the tear will match like a puzzle piece and are both

smooth (Figure 3D). In contrast when a fissure occurs the edges of

the fissure do not match each other, the edges begin to remodel and

become irregular and can often include tissue bridges (Figure 3E). The

black line drawn parallel to the edges in each image illustrate the tex-

ture difference that is apparent when a tissue begins to remodel

(Figure 3E).

Drying: Drying of tissue sections can occur when section of tissue

is under a bubble in the resin or when the resin dries out during long-

term storage. Drying is particularly prevalent when aqueous mounting

medium is used. Dry tissue will appear grey and gravelly (Figure 3F).

Microtome blade scraping vs fissures: During slicing, the micro-

tome blade can occasionally cause a scrape across the tissue. This is

visible as a series of small tears in a straight line across the tissue

(Figure 3G).

Large debris vs lesion: A region that is out of focus and has a differ-

ent color than the surrounding tissue, with defined edges, is likely a

piece of debris. Lesions will blend into the surrounding tissue and be

in focus with the rest of the slice (Figure 3H).

Small debris vs nuclei: There are pieces of small debris and contam-

inants in most samples. These can be small, dark, or tan spots in the

image (Figure 3I). They can be distinguished from cell nuclei, by

the lack of lacuna or membrane. Additionally, studying a section of

slide that contains no tissue will indicate if the particular slide was par-

ticularly dirty.

Bubbles: Bubbles can occur during mounting and appear as out of

focus regions surrounded by a black line (Figure 3J).

Tissue lifting: IVD samples can be difficult to adhere to the slide. If

a straight edge is seen against a region with much darker stain (similar

to a fold), it is an indication that the slice is not adhered to the slide

well or that the methods used are causing the tissue to detach

(Figure 3K).

Folds: Folds in the tissue can occur during slicing and mounting.

This appears as a region with darker staining and unnaturally straight

or geometric shape. In addition to the shape, this artifact is distin-

guishable from color changes due to ECM composition by its defined

borders, as opposed to a gradient transition (Figure 3L).

Cells in adjacent slices: Sections are often thin enough that a por-

tion of a cell is visible in the image, but most of the cell is in a serial

slice. This is apparent as a region of dark stain that is similar in size to

surrounding cells, but contains no nuclei or lacuna (Figure 3M).

Acid damage vs acellularity: In tissue that has undergone acid

decalcification, tissue damage is apparent by the presence of many

non-nucleated lacunae. This can be distinguished from acellularity due

to cell death by the history of the tissue processing and the extent of

nuclear absence (Figure 3N).

Contaminating tissue: It is possible to get contaminating tissue in a

sample during collection or due to improper cleaning of imbedding

and mounting equipment between samples. This could have a variety

of appearances (Figure 3P). Samples can also be contaminated by

blood during sample collection (Figure 3Q).

Incomplete mounting: When the tissue is not fully mounted, it can

lead to a grey appearance. Upon closer examination, small bubbles or

protein aggregates can be seen (Figure 3Q&R).

Overheated tissue during processing: Overheating of a tissue sam-

ple during processing will lead to small holes in the tissue and ill-

defined nuclei and compacted collagen (Figure 3S).

3 | STAGE 2: HUMAN IVD
HISTOPATHOLOGICAL SURVEY

We developed a survey in order to capture the needs of the wider sci-

entific community for analyzing human IVD degeneration at the histo-

logical level and to garner the communities' opinion on important

features that should be incorporated within a grading system,

together with an understanding of what groups currently undertake

during histology processing.

3.1 | Methods

The distribution and collection of the survey was deemed exempt

research by the Corporal Michael J. Crescenz Veterans Affairs

(VA) Medical Center Institutional Review Board (Protocol #01862).

The study conforms to the US Federal Policy for the Protection of

Human Subjects. The survey was based on current published scoring

criteria plus potential additional features as described above and was

distributed to all ORS spine section members (n � 270) and other

spine researchers who were not members of the spine section but

have published articles including histological grading (n � 20). We

received responses from 38 individuals (note many spine

section members do not work with histopathological grading of

human tissues and thus were not relevant for this study), representing

29 different institutions from 11 countries and represented the major-

ity of groups publishing within this field. The survey was categorized

into sections that included information on the standard operating pro-

cedures currently performed within respondents laboratories,

together with opinions on what the respondent thought should be uti-

lized in a future grading scheme with particular emphasis on: scoring
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criteria of each IVD sub-tissue (NP, AF, CEP, and BEP); guidance on

the scoring range; and whether or not to combine scores from each

category to obtain a cumulative score. In addition, sections for addi-

tional comments and feedback were also included for each category.

The survey data from multiple-choice questionnaires were analyzed

for frequencies of response by all survey participants (SPSS 27

(Chicago, Illinois) and Graph pad Prism 9 (San Diego, California).

3.2 | Results

Respondents reported that they currently obtained IVD tissue from

cadavers (63%) or surgical discard (67%), with 13 individuals reporting

access to both tissue sources, 2% did not use IVD tissue, and 2% did

not have an opinion (Figure 4). Lumbar IVDs followed by cervical IVD

were the most available tissues utilized for research (Figure 4A).

Paraffin embedding followed by cryo-sectioning and finally plastic

was utilized for certain applications. Sections between 3 and 10 μm

thickness were reported for histological preparation (only one excep-

tion of 20 μm) (Figure 4C) The sagittal plane was a prominent choice

when analyzing the entire IVD (Figure 4D). H&E was the preferred

staining protocol, Safranin-O/Fast green and Alcian blue/Picrosirius

Red were other choices for histochemical staining (Figure 4E)

(Supplemental file 1—SOPS for staining protocols). Question regarding

analysis of the intensity of the histochemical stain for consideration of

inclusion in future scoring system was not thought to be a necessary

component for histological grading of human IVD tissue (Figure 4F).

The importance of features for histopathological scoring was col-

lected on a six-point Likert scale where least important was scored as

0, and most important was scored as 5. The frequency of response

was calculated for each point for all IVD regions; NP, AF, CEP, and

BEP (Figure 5A). The features of NP included NP phenotype and

F IGURE 4 SOP for
histological preparation of human
IVD tissue. Survey data collected
from spine researchers (n = 38)
show the response in percentage
of commonly utilized standard
operating procedure for
collection and processing of
human IVD tissue for histological

analysis. Histograms present the
response in percentage to
multiple-choice question in each
category related to source of disc
tissue collected (A), region of
spine from where tissue is
collected (B), methodology for
histological preparation of the
tissue (C), histological plane in
which sections are prepared (D),
histochemical staining methods
employed for pathological
analysis of IVD tissues (E). Pie-
chart represents percentage
response to close-ended question
whether the staining intensity
should be assessed for
histopathological evaluation (F)
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cellularity, “fissures in NP” and “fibrosus of NP” all of which were

considered important to include (Figure 5A). Each category was fur-

ther expanded to capture specific features with most features

considered important to characterize (Figure 5B,C). Seventy-six per-

cent of respondents utilized AF within histological grading systems,

with a focus on presence of fissure across and between lamella,

F IGURE 5 Survey of opinion for development of new human IVD scoring system. Survey results show the opinion of spine researchers

(n = 38) on the importance of histological features for histopathological assessment of human IVD tissue. Component band chart shows the
percentage response for importance of key histological features in NP, AF, CEP, BEP collected on six-point Likert scale from 0 to 5, where
0 represents least important and 5 represents most important (A). Histograms showing the percentage response to multiple choice questions
related to grading NP phenotype and cellularity (B) and NP fibrosis (C). Component band chart show the percentage response to close-ended
questions for development of the new grading system (D). The percentage response to multiple choice question on grading of AF regions toward
pathological scoring (E). Response to multiple choice question regarding importance of IVD sub-tissue (F) and scoring range (G) while
development to new histopathological scoring system. The 0 % response to BEP is not plotted in F. NR, not responded in A
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neovascularization, discrete lamella with absence of NP tissue, and

outward and/or inward AF bulging (Figure 5A). It was also felt that

the anterior and posterior AF should be analyzed separately, of course

this is applicable to histopathological analysis of the entire IVD

(Figure 5E). Sixty-six percent of respondents utilized the CEP within

histological grading, with the features for analyzing the histopathological

scoring including cartilage disorganization, cartilage microfracture/fissure,

thickness, scar formation/tissue defects, calcification, neovascularization,

and cell proliferation (Figure 5A). Only 47% of respondents utilized the

BEP within histological scoring, with features for histopathological scor-

ing of BEP including sclerotic subchondral bone, bone remodeling, tra-

becular thickening and osteophyte formation, presence of cartilage or

fibrocartilage, bone marrow changes, irregularity of EP, and the presence

of nodes (Figure 5A). Further, it was felt important to include features of

“Interface regions” to the histopathological scoring including loss of

demarcation of NP / AF (87%) and NP and CEP/BEP (60%) boundaries.

Most survey participants (38%) recommended using 0 to 5 for scor-

ing (Figure 5G), although there was a fairly even split in opinion between

0 and 3 (23%), 0 and 4 (29%), and 0 and 5, and it was recommended to

separately score each region of the IVD as well as include changes in the

IVD aspect ratio. NP tissue was thought to be the most important in

quantifying overall IVD degeneration (Figure 5F).

4 | STAGE 3: DEVELOPMENT OF A NEW
IVD TAXONOMY FOR HISTOPATHOLOGICAL
GRADING

Utilizing the data from the literature review, the survey, and the knowl-

edge and opinions from the authors (Figure 1), a contemporary taxon-

omy for histological grading of human IVD degeneration was developed

that incorporated features that were considered most important in the

categorization of human IVD degeneration. IVD regions were separated

into the NP, AF, CEP and BEP, and features grouped under the subhead-

ings: (Cellularity, Lesions and ECM structure incorporating the features

highlighted in previous scoring systems and ranked important in the sur-

vey). A scoring taxonomy was developed for a scoring range of 0 to 3 as

the subdivision of features into six criteria as suggested by 38% of sur-

vey respondents of 0 to 5 was difficult in practice. Where 0 represents

normal morphology and 3 indicates the most severe signs of degenera-

tion (Figures 6–9). Within each grade, descriptive text was developed to

describe the features associated with a particular grade. A set of training

materials were developed that included the descriptive text plus associ-

ated example images, which were submitted from the spine community.

5 | STAGE 4: ASSESSMENT OF THE
PROPOSED GRADING SYSTEM

5.1 | Methods

To enable first stage assessment of the proposed grading system,

images representing 10 “mock” IVDs were collated using images

supplied of human IVDs collated from the spinal community

(Supplementary file 2). Each IVD was represented with a low power

image showing the whole IVD and a number of subsequent images to

show high magnification regions of the IVD (Figures 10–13). The term

“mock” IVD is utilized to highlight that the images provided for each

example disc were not necessarily high magnification images of the

same IVD but representative of features, which were likely to be iden-

tified in such IVDs. These 10 “mock” IVDs together with the grading

system and instructions were distributed to 24 spine research labs

around the world who distributed the grading system to their stu-

dents, postdoctoral researchers, technical staff, fellow researchers,

and pathologists. All scorers were asked to indicate which images

were utilized to score each feature with an overall score provided for

each “mock” disc. Independent scoring was completed by

40 observers from 17 different labs around the world with some labs

submitting scores from multiple observers. All scorings were per-

formed independently, and no additional training was provided

beyond the training materials provided (Figures 6–9). Raters were

asked to self-declare themselves as experienced or novel histological

grader resulting in 18 experienced graders (eight of which were also

authors) and 22 novice graders (one of which is also an author). Data

were analyzed according to experience of graders with experienced

authors (n = 8), experienced graders (n = 18) and novice graders

(n = 22) analyzed independently. In addition, as the method will be

used within lab members to analyze data from within labs, the degree

of agreement was calculated between raters from the same lab, five

cohorts of labs were obtained and analyzed. Inter-rater reliability of

the grading criteria and the description of features were tested by

interclass correlation coefficient (ICC), confidence intervals, and

P-values determined. Type A ICC was calculated using SPSS 27 for an

absolute agreement definition and two-way mixed effects model

where rater's effects were random and measure effects were fixed,

reliability measures were determined as previously reported.45 For all

mock IVDs, the images that were utilized for each grading criteria

were recorded and percent scorers utilizing the image plotted (Graph

Pad Prism 9). Frequency graphs for submitted grades were generated

for each mock IVD using Graph Pad Prism to visually interpret intra-

rater reliability and dissect differences between experienced authors

(a), all experienced graders (b), and novice graders (c). To assess intra-

rater reliability, six raters rescored seven of the mock IVDs, excluding

the three IVDs which previously raters were unable to score many

features due to lack of images. Intra-rater reliability was assessed

using Cohen's Kappa using StatsDirect 3 (Warrington, UK).

5.2 | Results

Initial analysis determined reliability between all raters, and those that

were experienced and novice (Table 3). There was excellent reliability

(> 0.75) for NP, AF, and CEP regions among all cohorts. However, as

the BEP regions were not uniformly scored, the test could not be exe-

cuted for total and experienced raters. The reliability for BEP was

excellent among the novice raters (Table 3). Intra-rater reliability
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within lab members was calculated utilizing five lab cohorts with vary-

ing numbers of raters that were either experienced or novice

(Table 4). The results indicate excellent reliability (> 0.75) for all fea-

tures when the experienced raters are more than the novice raters.

The ICC was mixed, excellent for some features and moderate (<0.75

and >0.04) to poor (<0.04) for other features when the novice graders

were more than the experienced graders in a cohort.

For some IVDs, it was noted that scorers utilized different images

for scoring that could in part explain the variation seen with clear

examples seen of differential images used linking to poorer grade

F IGURE 6 Taxonomy of grading for nucleus pulposus features. Descriptive text for features utilized for the grading (0-3) of the nucleus
pulposus. Grading criteria broken down into cellularity, lesions and extracellular matrix (ECM) structure. Example images shown to demonstrate:
single cells in lacunae, small cell clusters in lacunae, apoptotic and senescent cells, mucoid degeneration, large cellular clusters and hypercellularity,
micro fissures and large clefts, clear ECM structure and demarcation between the NP and AF, loss of eosin staining in proximity to cells, and loss
of demarcation
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F IGURE 7 Taxonomy of grading for annulus fibrosus features. Descriptive text for features utilized for the grading (0-3) of the annulus
fibrosus. Grading criteria broken down into cellularity, lesions and extracellular matrix (ECM) structure. Example images shown to demonstrate:
normal cellular morphology, mixed cell morphologies, mucoid degeneration, interlamellar fissures, concentric lamella, disruption of bone/AF
interface, extensive matrix disruption and loss of lamella, fissures and blood vessels, inner annular bulging, moderate matrix disruption and loss of
lamella
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agreement for NP, with a number of graders reporting using HS_0015

for NP grading while the tissue shown is in fact AF tissue (Figure 10)

and thus additional information to describe how to identify NP from

AF would have been beneficial, we have now supplemented the train-

ing pack with this additional information (Supplementary file 2). While

other IVDs with multiple images for some regions demonstrated that

not all graders utilized all images of the tissue region to generate the

overall grades for that region, examples shown for the AF (Figure 11)

and CEP (Figure 12), suggesting that some of the variation seen

between raters was due to image selection. While IVDs that had

severe degeneration features (Figure 13) showed excellent agreement

across raters, although within novice raters there remained

disagreement for some features. For most IVDs, most raters showed

single-point disagreement between grades demonstrating general

agreement (Figures 10–13).

When scores for each region of the IVD were pooled generating

a degeneration grade per region resulting in three classifications of

non-degenerate (0-3), mid-grade degeneration (4-6), and severe grade

of degeneration (7-9) (Figure 14), inter-rater reliability improved with

experience of grader (groups A ! C), which was most evident for the

NP and BEP demonstrating the need for more training materials or

microscope time (Figure 14). Improvements in inter-rater reliability

were seen with increasing grade of degeneration (Figure 14). Within

non-degenerate IVD, greatest agreement for the region of the IVD

F IGURE 8 Taxonomy of grading for cartilage end plate features. Descriptive text for features utilized for the grading (0-3) of the cartilage end
plate (CEP). Grading criteria broken down into cellularity, lesions and extracellular matrix (ECM) structure. Example images shown to demonstrate:
single cells in lacunae, dense pairs of clones, loss of demarcation, distinct CEP/BEP boundary and a uniform CEP, cartilage erosion and large CEP
avulsions
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was seen for the CEP and BEP with poorest agreement within the NP

region (Figure 14), although the IVDs with poorer agreement also

aligned with those IVDs that showed graders utilizing different images

to derive their grades. The provision of images for some IVDs did not

enable all features to be scored for all regions, particularly the BEP

resulting in a number of areas being unscored (Figure 14), of interest

however more novice scorers provided scores for all features than

experienced and author scorers. The results from the reliability test

F IGURE 9 Taxonomy of grading for boney end plate features. Descriptive text for features utilized for the grading (0-3) of the boney end
plate (BEP). Grading criteria broken down into cellularity, lesions and extracellular matrix (ECM) structure. Example images shown to demonstrate:
normal end plate, fibrocartilage, osteophytes, fatty bone marrow, nodes and boney sclerosis
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indicate that training and experience has an impact in understanding

and recognition of the features on microscopic images. A larger num-

ber of samples would have impacted the understanding and training

of the novice raters to test the reliability of the features.

Intra-rater reliability utilizing six raters demonstrated differential

agreement levels between raters with agreement levels between

63.86% and 95.18% (Mean 83.07%), with two of six raters showing

moderate agreement (Kappa.47, .51), one of six showing substantial

agreement (Kappa .70), and three of six showing almost perfect agree-

ment (Kappa .87, .87, .94) (Table 5).

6 | STAGE 5: POST-GRADING SURVEY

6.1 | Methods

All those who performed grading within the assessment of the

scoring system were then asked to complete a post-grading survey,

which collected information on grader demographics, and scorers'

opinions on whether they agreed with proposed criteria utilized

and the usability of the taxonomy of grading, in addition scorers

were invited to submit comments via email. While the scoring

F IGURE 10 Disc 3 images utilized and grades generated following assessment of grading exercise demonstrating differential image use could
explain some lack of consensus in nucleus pulposus tissues. Images utilized for mock disc 3 for round robin exercise, percentage scorers for the
two groups: Experienced graders (n = 22) and Novice Graders (n = 18) who utilized each image to grade each feature within each disc region
(nucleus pulposus (NP), annulus fibrosus (AF), cartilaginous end plate (CEP), and boney end plate (BEP)). Proportionality plots utilized to
demonstrate the proportion of raters scoring each feature in each disc region as 0 to 3 or not responded (NR)
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criteria were tested by 40 graders: 22 novice and 18 experienced,

the post-grading survey was completed by only 28 graders: 13 nov-

ice and 15 experienced. The survey results were analyzed using

SPSS 27. Using cross-tabulation analysis, the percentages of

graders and their response in each category were determined. The

survey collected responses on a six-point Likert scale from

0 (disagreement) to 5 (agreement). The percentage response for

each point was calculated using SPSS 27, and the data represented

as diverging stacked-bar chart, with the lower-half of the six-point

response (0-2) for disagreement plotted as negative frequencies,

and the upper-half (3-5) for agreement plotted as positive

frequencies.

F IGURE 11 Disc 6 images
utilized and grades generated
following assessment of grading
exercise demonstrating
differential image use could
explain some lack of consensus in
annulus fibrosus tissues. Images
utilized for mock disc 6 for round
robin exercise, percentage scorers

for the two groups: Experienced
graders (n = 22) and Novice
Graders (n = 18) who utilized
each image to grade each feature
within each disc region (nucleus
pulposus (NP), annulus fibrosus
(AF), cartilaginous end plate (CEP),
and boney end plate (BEP)).
Proportionality plots utilized to
demonstrate the proportion of
raters scoring each feature in
each disc region as 0 to 3 or not
responded (NR)
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6.2 | Results

Experienced graders included PIs/Postdocs, a master's student and

pathologists, while novice scorers included one PI but mainly PhD stu-

dents and undergraduate students with one technician. The majority

of scorers reported were more familiar with the NP tissue (Figure 15).

The post-grading survey showed that while the graders were in gen-

eral agreement with the features described for scoring each IVD

region, particularly for NP, AF and CEP, there was mild disagreement

in whether these features were easily recognizable in the images and

whether it will be easy to adapt for future studies (Figure 16), com-

ments received highlighted the concern of transferability of the full

grading system to surgical tissues that do not contain all tissue types.

7 | DISCUSSION

Our goal was to develop a standardized histopathology scoring

scheme for histologic evaluation of degenerative features within

human IVDs. These recommendations are based on literature review

F IGURE 12 Disc 5 images utilized and grades generated following assessment of grading exercise demonstrating differential image use could
explain some lack of consensus in cartilaginous end plate tissues. Images utilized for mock disc 5 for round robin exercise, percentage scorers for
the two groups: Experienced graders (n = 22) and Novice Graders (n = 18) who utilized each image to grade each feature within each disc region
(nucleus pulposus (NP), annulus fibrosus (AF), cartilaginous end plate (CEP), and boney end plate (BEP)). Proportionality plots utilized to
demonstrate the proportion of raters scoring each feature in each disc region as 0 to 3 or not responded (NR)
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and expert opinion, serving as a first step for establishing best prac-

tices and methodologies for human IVD grading. This work was moti-

vated by the ongoing challenge to consistently document and report

histologic findings across studies, which limits progress toward under-

standing clinically important changes. We developed a set of visual

depictions plus nomenclature to provide a robust system to describe

and classify attributes that reliably distinguish IVDs at various stages

of degeneration. The implementation of this system requires training

materials so raters can improve their recognition for characteristic

patterns that associate with degenerative changes. We observed that

inexperienced raters demonstrated poor reliability in scoring, which

indicates the need for training methods for both processing tissues

and describing findings. This could lead to improved agreement across

groups and broader integration of findings.

The proposed scoring system provides a comprehensive evalua-

tion of the main IVD sub-tissues over a range of hierarchical scales:

cellular, ECM, and structure. This is because the concept of IVD health

includes synergy between sub-tissues at the macroscopic level to

achieve region-dependent physical requirements, plus homeostasis at

the cellular level to maintain tissue integrity. Results from the IVD

F IGURE 13 Disc 4 images utilized and grades generated following assessment of grading exercise demonstrating severely degenerated disc
with good consensus for scoring. Images utilized for mock disc 4 for round robin exercise, percentage scorers for the two groups: Experienced
graders (n = 22) and Novice Graders (n = 18) who utilized each image to grade each feature within each disc region (nucleus pulposus (NP),
annulus fibrosus (AF), cartilaginous end plate (CEP), and boney end plate (BEP)). Proportionality plots utilized to demonstrate the proportion of
raters scoring each feature in each disc region as 0 to 3 or not responded (NR)
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ratings indicate that degenerative changes are observed initially at the

cellular level and become more prominent at the matrix and structural

level as degeneration progresses. Interestingly we identified that

degenerative features were only seen within the BEP, CEP, and AF

when degenerative changes were present in the NP, while degenera-

tive changes were seen in the NP regions in the absence of

degenerative changes within the AF, CEP, and BEP. This could indi-

cate that the IVD degenerates from the “inside-out,” with earliest

degenerative features being observed in the large and avascular NP,

this requires further investigation. The initial survey of spine

researchers indicated interest in scoring the changes related to cellular

features for NP, and features related to structure changes in AF and

CEP. Most enthusiastic response was received for NP, followed by AF

and CEP. There was less response and interest in the BEP, but this

may purely be representative of the research interests of the respon-

dents. The post-grading survey demonstrated agreement with fea-

tures for NP, AF, and CEP.

There was strong inter-rater reliability with more experienced

graders, and mild disagreement among all raters when scoring BEP

represented by moderate to poor inter-rater reliability test results and

a greater number of abstaining graders. This may be because the BEP

is an under-studied region of the IVD, and the graders are not familiar

with the histology and histopathology of this region. The results from

the reliability test indicate that training and experience has an impact

in understanding and recognition of the features on microscopic

images and it would have been beneficial if more novice graders had

completed the post grading survey. A larger number of samples would

have impacted the understanding and training of the novice raters to

test the reliability of the features. Furthermore, this study was limited

by the use of representative images rather than utilizing slides and

microscope-based training, the differential use of images to score cer-

tain regions demonstrates fundamental training on identification of

tissue types is also essential. This also highlighted the need that when

grading scorers should review multiple regions and assess average

scores to take into account variability in features across the IVD. It is

also essential that differential magnifications are utilized to be able to

identify certain features, for example, cellular changes can only be

visualized at higher magnifications and higher magnification is neces-

sary to determine whether a tissue void is a true fissure or an artifact

of tissue processing (Supplementary file 2).

Also, while most participants were enthusiastic about a five- (0-4)

to six-point (0-5) scoring range, based on reliability testing spreading

the scoring range further would result in poor-agreement, as the abil-

ity to distinguish between mild or subtle changes will require a very

thorough histopathological training, and may not yield consistent and

reproducible results in labs with students and trainees. Hence, a

F IGURE 14 Proportionality plots for grades generated following assessment of grading exercise. Ten mock discs were utilized within a beta
testing round robin scoring. Each disc region was scored on a scale 0 to 3 for three features and the sum degeneration score calculated for each
disc region generating an overall grade for each region of non-degenerate (0-3), medium grade of degeneration (4-6), and severe degeneration
(7-9), if any feature was not scored by a rater then the combined degeneration grade was not calculated and shown on plots as not responded
(NR). Grading results represented for three groups: A, Experienced authors (n = 8); B, Experienced graders (n = 22); C, Novice Graders (n = 18).

Discs shown in order of increasing grade of degeneration, together with the low power image utilized for the grading round
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scoring range where changes from non-, mild-, moderate-, and severe-

degeneration can be easily recognized (four-point scoring range) will

be more consistent and reproducible. The combination of scores for

regions of the IVD further improved agreement for the overall grading

of the IVD region as non-, moderate-, and severe degeneration

suggesting that the combined grades for IVD regions would be more

reliable than specific grades for each feature.

Intra-rater reliability was excellent in some observers but poorer

in others. Those with poorer intra-rater reliability results reported that

the discussions on the grading system between scoring had generated

improved understanding of features and impacted on differential

scores in the subsequent round of scoring. Very few grading systems

for the IVD have been assessed as intensively, as studied here, with

inter-rater reliability testing limited to within lab users and intra-rater

reliability normally only completed with one or two scorers.12,25

Thompson et al, 1990, validated their scoring system using 136 sec-

tions, where two sections were analyzed from the same IVD, and

were scored by three independent blinded graders. The reliability of

the scoring system was tested using Counter-rater results showed

61% to 88% agreement, with Cohen's kappa between .67 and .94

range.12 And intra-rater reliability tests showed 85% and 87% agree-

ment, with Cohen's kappa between .87 and .91.12 Boos et al, 2002,

tested the scoring system between two pathologists, who scored

54 samples, and 150 slices. The inter-rater reliability of the Boos grad-

ing system was tested using weighted kappa which was reported

between .49-.98, while intra-rater reliability was not reported.25 The

inter-rater reliability we observed here showed similar agreement

levels across a much broader population of scorers with engagement

TABLE 5 Cohen's Kappa
(unweighted) to test the intra-rater
reliability for the histopathological
features across all features and regions
within seven discs within selected raters

Rater Observed agreement (%) Kappa LL 95% CI UL 95% CI P-value Discs

1 91.36 .87 0.77 0.96 .0001 7

2 95.18 .94 0.87 1 .0001 7

3 90.63 .87 0.77 0.97 .0001 7

4 75.68 .47 0.33 0.62 .0001 7

5 63.86 .51 0.38 0.64 .0001 7

6 81.71 .70 0.56 0.84 .0001 7

F IGURE 15 Frequency
distribution of raters that tested the
new scoring system. Multi-layer donut
for the cross-tabulation analysis shows
the frequency distribution of post-
grading survey participants (n = 28) by
novice (n = 13) and experienced
(n = 15) raters. The layers further
show the percentage response for
each survey category by novice and
experienced graders including: the
comfort in grading specific region of
IVD tissue, and current academic and
training level
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of experienced and inexperienced graders, importantly the inclusion

of early-career scientists (undergraduates, PhDs and postdocs) within

the scoring is essential as these are the individuals who are required

to score for their research studies and thus the usability in the actual

individuals who undertake the grading is essential. The current study

developed a comprehensive, complete taxonomy of histological fea-

tures that can be utilized for assessing human IVD degeneration. The

testing of this grading system across seventeen labs worldwide brings

in a wider perspective rather than single lab development and testing.

Because the pathophysiology of IVD degeneration and chronic

back pain is multifactorial,46 clinical implications drawn from histologic

findings can vary widely. Mechanistic studies typically focus on bio-

logical features, such as cellular and ECM structure. These were the

preferences of the majority of our survey respondents, which may

reflect a mechanistic bias. Alternatively, biomechanical researchers

may view lesions as important evidence of tissue overload and dam-

age. Pain researchers tend to focus on features that associate with

painful clinical conditions, such as inflammatory changes at the

endplate and outer annulus where mechanical and chemical sensitiza-

tion of nerves or the generation of neurotrophic factors can be more

prevalent. The ideal IVD grading scheme should be agnostic to the

intent of the user and be sufficiently comprehensive so as to

investigate degeneration concepts that bridge these perspectives. This

is particularly true when considering the development and evaluation

of new therapies.

Histologic assessment of IVD tissues may be the gold standard

for judging degenerative changes. However, clinical interpretation of

these findings typically relies on the identification of these features in

routine medical imaging, such as plain radiographs and traditional T1-

and/or T2-weighted MRI.47,48 This can be difficult owing to these

modalities' limited spatial resolution and image contrast (Figure 17).

Moreover, cadaveric studies used to characterize histologic features

often lack imaging, patient demographics, and clinical profiles, which

precludes firm conclusions regarding IVD pathologies as pain genera-

tors. Improved characterization and interpretation of IVD pathologies

may also shed light on mechanisms for clinical complications of cur-

rent treatments, such as adjacent segment degeneration/disease, IVD

re-herniation, IVD resorption following an initial herniation, resolution

or intensity of pain, and pain severity among others.

In spite of these challenges, certain imaging/histological findings

do appear to be associated with chronic back pain (Table 6), which

supports the clinical relevance of the individual features and also pro-

vides rationale for their histologic grading. According to systematic

reviews, IVD changes have been found to be related to low back pain

F IGURE 16 Opinion of testers on
the new scoring system. Diverging
stacked bar-chart (A and B) show
percentage response to each question on
Likert scale of 0 to 5, from disagreement
(0) to agreement (5) by testers (n = 28) in
a post-grading survey. The lower-half of
the six-point response (0-2) for
disagreement are plotted as negative

frequencies, and the upper-half (3-5) for
agreement are plotted as positive
frequencies

LE MAITRE ET AL. 23 of 29



but the association requires further investigation because of inherent

heterogeneity between studies, incomplete assessment of phenotypes

that can also be associated with pain, insufficient statistical modeling,

and issues related to imaging quality.2,75 Moreover, recent advances in

quantitative MRI (eg, T2, T2*, T1ρ mapping, sodium, UTE, and spectros-

copy) enable non-invasive measurement of IVD biochemical composi-

tion that can facilitate identification of early IVD changes and identify

the symptomatic IVD(s).76 Furthermore, newer sequences with higher

spatial resolution and improved image contrast permit visualization of

CEP structure and pathologies at the bone-IVD interface as well as

within the IVD itself (ultrashort echo time, UTE).66,77 In the future,

these advanced imaging sequences may make it possible to prospec-

tively validate the clinical relevance of histopathology features

observed in IVDs that are difficult to discern on conventional images.

Histopathology studies performed on tissue samples biopsied

from chronic back pain patients also provide strong support for the

features in the proposed grading scheme. For example, in symptom-

atic patients, innervation is greater in CEPs with cartilage and sub-

chondral bone damage,16 perhaps as a chemotactic response to

neurotrophin production by IVD cells64,78,79 and new blood vessels.15

Innervation is also greater in painful IVDs with annulus fissures,17

which may provide a chemically and mechanically favorable environ-

ment for nerve ingrowth,51 with nerve fibers found to migrate into

the NP associated with loss of proteoglycans and ECM fissures.17

Likewise, elevated levels of pro-inflammatory cytokines measured in

these IVD and endplate tissues,32,80 in particular associated with cel-

lular clusters,81 suggest these cytokines may play an important role in

promoting degeneration and pain.82,83

When interpreting the histologic features described here, it is also

important to distinguish between prevalence vs pathogenesis and

between an association vs causation. Indeed, some features may be

highly prevalent, although their role in IVD degeneration pathophysi-

ology remains unclear. For example, Schmorl's nodes or structural

endplate abnormalities/changes that may vary in size and extent of

indentation involvement across the endplate can be associated with

IVD degeneration severity and pain.84,85 Nevertheless, it is challeng-

ing to distinguish between endplate changes that are developmental

and attributed to neurocentral synchondrosis and improper notochord

regression, those that may arise during skeletal development and

attributed to a weakened endplate, to those that form traumatically or

part of the remodeling process in response to IVD changes and/or

mechanical effects from structural spine changes.86-89 In fact, a hered-

itary and genetic predisposition has been found to be associated with

these endplate phenotypes that may precipitate their manifestation in

relation to IVD degeneration and may be an initiator of IVD

changes.90,91 Consequently, results from clinical studies relating

endplate abnormalities to symptoms are mixed, and the prevalence of

such phenotypes is relatively high in asymptomatic individuals.85,92,93

However, limitations exist with previous studies, largely attributed to

the lack of understanding and definition of the endplate phenotype,

F IGURE 17 Mid-sagittal images of a lumbar, L3/4, intervertebral disc. Left two panels are clinical MRI scans of the intact lumbar spine. Right
panel is a histologic section of the intact disc, coincident with the MRI images (decalcified, paraffin-embedded, and stained with Mallory-
Heidenhain). Images demonstrate how subtle features of the disc sub-tissues are not apparent with clinical imaging

TABLE 6 Summary of human IVD histopathology studies that reported associations between various features and IVD degeneration severity
or low back pain

Feature Imaging/biopsy
Positive association with IVD
degeneration severity (references)

Positive association with
low back pain (references)

AF tear/disruption Imaging/Biopsy 29,49,50 14,17,51-54

IVD height collapse Imaging 55 56

sGAG loss Imaging/Biopsy 57-61 59,62,63

NP cell cluster formation And increased catabolic

phenotype.

Biopsy 9,10,32,64-66

CEP damage Biopsy/Imaging 67,68 69,70

Vertebral endplate bone marrow lesions (Modic

changes)

Biopsy/Imaging 42,71,72 42,69,73,74
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its various sub-phenotypes, study design, mode of assessment, and

depth/breadth of analyses.94

Beyond further work to validate the proposed grading system,

our survey noted interest by the community for future consensus

papers (Figure 18). These include work to develop and validate simpli-

fied radiologic measures of IVD degeneration, such as the IVD height

index. Additionally, mechanistic and clinical interpretation of histologic

changes may be improved from consensus on concurrent changes in

characteristics such as cellular function, matrix composition, and bio-

mechanical behavior. Another interest is the need to have standardi-

zation of MRI phenotypes that will help establish clinical importance

of structural features of IVD degeneration. As previously mentioned,

there is tremendous variation between rater reliability of MRI pheno-

types and the definition of such phenotypes.95-98 This discrepancy

may account for the inconsistent association and predictive utility of

such phenotypes in relation to the LBP profile and disability.95 As such,

international consortia have been formed to help provide a common

language and standardization of MRI and other imaging phenotypes.94

In addition, machine learning approaches regarding feature phenotype

recognition on imaging have been developed to assist with standardiza-

tion of phenotype assessment, shorten time of assessment and facili-

tate multicenter studies.99,100 However, such approaches are based on

a truth set and dependent on human interpretation. Again, the need to

properly define and understand such phenotypes is critical, further

necessitating universal consensus. Such an initiative is further com-

pounded by the need to develop more personalized spine care methods

that aim to further incorporate imaging and clinical phenotypes to maxi-

mize management, address targeted therapeutics, reinforce predictive

modeling algorithms, and further inform preventative measures.20

8 | CONCLUSION

This ORS Initiative to advance histopathologic evaluation of the IVD

in humans has engaged spine researchers from across the world and

at different stages of their careers to develop a robust and compre-

hensive grading scheme of IVD degeneration. This work focused on

the use of a training set of images that were composed of whole

cadaveric and magnified regions of tissues to demonstrate features,

many of which were derived from surgical samples. The use of these

mock images while extremely useful to engage a wide range of poten-

tial users did have some issues with mismatch and difficulties experi-

enced, particularly by novice scorers in identification of tissue types.

The development of defined grading criteria for each region of the

IVD should enable rapid translation to surgical tissues where grading

of the tissue types available can be performed (mainly NP and AF tis-

sues) but compared to cadaveric IVDs for these regions. Future stud-

ies will further refine, verify, and evaluate the grading system for

application to cadaveric and surgical samples, further developing the

training materials to enable online training across labs around

the world.

The resulting scoring system described here is a first step for

establishing best practices and methodologies for human IVD grading.

We expect this system will undergo continued optimization as it gains

use by the wider spine research community, ultimately resulting in a

consensus scoring system that can be used worldwide.
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