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Abstract—Anxiety is one of the most prevalent mental dis-
orders, affecting approximately 5-10% of the adult population
worldwide. It can severely impact quality of life, but also place a
large burden on the health systems. Despite its omnipresence and
impact on mental and physical health, most of the individuals
suffering from anxiety do not receive appropriate treatment.
Furthermore, while neuroimaging research consistently impli-
cated subcortical structures such as amygdala, hippocampus and
prefrontal cortex in anxiety, there is still a lack of consensus
on the underlying neurophysiological processes contributing to
this condition. Thus, the objective neurophysiological markers for
anxiety remain elusive. Methods allowing non-invasive recording
and assessment of cortical processing provide an opportunity to
help identify anxiety signatures that could be used as interven-
tional targets. In this paper, we tackle this problem by applying
a regression spatial filter called Source-Power Comodulation
(SPoC) to trait anxiety data of 43 individuals. By maximizing the
correlation of alpha band power and the level of trait anxiety in
resting state EEG we are able to obtain neurophysiologically
meaningful patterns that should be helpful in the search of
biomarkers for mental disorders.

Keywords—Trait anxiety, EEG analysis, Alpha band, Correla-
tion, Brain Patterns, Interpretability

I. INTRODUCTION

Anxiety disorders affect 275 million individuals worldwide.
On the subclinical level, heightened anxiety is becoming
increasingly prevalent in light of growing uncertainty over the
global health and economical situation in 2020-2021. In recent
years, an enormous effort has been devoted to understanding
the neurobiology of anxiety disorders, combining animal work
with human neuroimaging studies in healthy and clinical
populations.

Converging neuroimaging evidence in clinical and subclini-
cal anxiety indicates that alterations in dorsal medial prefrontal
(anterior cingulate) cortex and subcortical brain regions can
explain an array of cognitive-affective alterations in these
populations [1, 2, 3]. To date, however, our general understand-
ing of the neurophysiological processes involved in anxiety
is limited. Use of noninvasive techniques to record brain

activity with high temporal resolution, such as EEG or MEG,
provides an opportunity to assess changes in the dynamics of
neural activity associated with anxiety. The analysis of neural
oscillations, in particular, is ideally suited to identify markers
of aberrant physiological processing in neuropsychiatric con-
ditions. By linking alterations in neural oscillations to clinical
and subclinical manifestations of anxiety, it would be possible
to define novel neurophysiological targets for neuromodulatory
and pharmacological interventions.

Previous EEG research pointed to cross-frequency correla-
tions as a candidate marker for anxiety disorders ([3, 4, 5]).
In particular, alterations in the amplitude-amplitude cross-
frequency correlations (AAC) between delta (< 4Hz) and
beta (13-30 Hz) oscillations have been associated with social
anxiety and with aberrant stress regulatory processes ([2, 3]).
The direction of the effect remained, however, unclear, with
some studies linking increased delta-beta AAC over frontal
regions to pronounced social anxiety ([1]), while others asso-
ciated this change with reduced trait anxiety ([6]). Analysis of
phase-amplitude coupling (PAC), which is a different measure
of information transfer between neuronal populations, may
resolve these ambiguities, and can be reliably modulated on a
within-subject level following a social anxiety manipulation
([4]). The functional significance of these effects remains
elusive, however, despite suggestions that delta-beta AAC and
PAC could reflect altered coupling between frontal and sub-
cortical circuits implicated in anxiety disorders.

An alternative EEG marker of aberrant neural dynamics in
anxiety conditions could be the oscillatory power over frontal
regions, consistent with the vast fMRI evidence implicating the
prefrontal cortex in clinical and subclinical anxiety. Measures
of alpha power (8-12 Hz) have been used to obtain the index
of frontal alpha asymmetry, which can be sensitive to a range
of emotional changes including anxiety conditions [7, 8]. Yet
the direction of this effect, as well as the sign of change in
alpha power seem inconsistent [9, 10, 8]. A potential solution
to these inconsistencies is to use methods that provide not
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Fig. 1. Histogram of the Spielberger trait anxiety scores in our participant
sample.

only optimal solutions for the search of associations between
neuronal measures and behavioral/psychological parameters,
but also neurophysiologically interpretable results.

In this work we present results of applying a novel spatial
filtering technique, called Source Power Comodulation (SPoC,
[11]) to find brain patterns maximally correlated to a real
valued variable. This variable is the trait anxiety level of 43
persons whose EEG resting state data was subsequently mea-
sured. We hypothesized that this method would find patterns
more strongly correlated to anxiety than usual sensor-based
correlations and that this pattern can then potentially be used
in the future studies for guiding neuromodulation approaches
(e.g. non-invasive brain stimulation, neurofeedback) to treat
conditions associated with anxiety.

II. METHODS

A. Data availability

The data used for the analyses in this paper were obtained
from our previous study [12], which was approved by the
local ethical review committee at Goldsmiths, University of
London. EEG, ECG and EOG data was available from 43
participants during wakeful rest (5 minutes, eyes open). In
addition, trait anxiety scores were available, which had been
obtained with the Spielberger State-Trait scale (Trait sub-scale,
20 items, score in range 0-80). The trait values in our sample
were distributed between 30 and 68 (Figure 1).

B. EEG acquisition and preprocessing

EEG, ECG and EOG signals were recorded using the
BioSemi ActiveTwo system (64 electrodes, extended inter-

Fig. 2. Electrodes selected for the analyses.

national 10–20, sampling rate 512 Hz). External electrodes
were placed on the left and right earlobes to use as references
upon importing the EEG data in the analysis software. ECG
and EOG signals were recorded using bipolar configurations.
For EOG, we used two external electrodes to acquire vertical
and horizontal eye-movements, one on top of the zygomatic
bone by the right eye, and one between both eyes, on the
glabella. For ECG we used two external electrodes in a two-
lead configuration.

EEG data had been preprocessed in the EEGLAB toolbox
(Delorme and Makeig 2004) for Matlab®[12]. In that study,
the continuous EEG data were filtered using a high-pass filter
at 0.5 Hz (hamming window sinc finite impulse response filter
with order 3380) and then notch-filtered at 48–52 Hz (filter
order 846). Next, artefacts related to eye blinks, saccades and
heartbeats were removed from the signals using independent
component analysis (ICA, runICA implementation; 2.3 com-
ponents were removed on average). See [12] for further details
on pre-processing.

The analyses performed in this work were based on a subset
of electrodes covering the whole scalp (Figure 2).

C. Sensor-based correlation

The usual way for to investigate association of power of
neuronal oscillations and their relation to behavioral/clinical
variables is to use data directly from channels. Specifically,
sensor-based correlations are computed with respect to a
variable of interest (the trait anxiety score in the current study).
To that aim, the sensor signals of resting-state data were
filtered in the alpha band (8-12 Hz) and then the data was
cropped into 2 second windows. For each of those windows,
the variance of each sensor was computed and averaged across
windows, obtaining one power value per sensor. Finally, the
correlation of each sensor to the external value (trait anxiety
score) was computed. We employed the Spearman correlation



coefficient, that is robust against deviations from the normality
assumption.

However, we want to remark that although correlation
values between a variable of interest from individual channels
and some neuroscientific related measure is a common way to
establish relationships in neuroscience, these results cannot be
interpreted to draw conclusions about relationships between
variables of interest and brain sources. In fact, when the
computation of the neuroscientific measures involves non-
linear operations, linking the results with their cerebral origin
is not possible anymore in sensor space. This is the case for
example for power, where squaring data is necessary which
in turn leads to the removal of phase information. However,
phase information is important for the adequate reconstruction
of neuronal sources, and thus such results cannot be related to
the neuronal origin of the observed effects. In any case, and to
reflect the difference between sensor based results and SPoC,
we report both in this manuscript.

D. Source Power Comodulation, SPoC
Source Power Comodulation or SPoC is a method designed

to decompose multivariate neuroimaging data (EEG/MEG)
into source components by using the information contained
in a external target variable to direct the decomposition [11].
As a result, a set of spatial filters is found that optimizes the
covariation or correlation (depending on the selected objective
function) between the external target z and the power time
course of the corresponding SPoC source. That is, SPoC max-
imizes the correlation between neural signals and a variable
of interest, thereby identifying the filters/patterns maximally
related to the variable of interest. Furthermore, although SPoC
was developed to find subject-specific patterns (intra-subject
results), it is also possible to perform inter-subject calculations
by defining each of the epochs as the data of one subject.
Finally, unlike in section III-A, the obtained patterns can be
neurophysiologically interpreted.

Although two different SPoC algorithms exist, for this paper
we have selected the one providing an analytical solution. As
described in [11], by maximizing the covariation between a
brain source and an external variable, one can arrive at the
following optimization problem:

argmaxwTCzw (1)

with respect to the following norm constraint:

wTCw = 1 (2)

with Cz being the covariance between the power (in form of a
covariance matrix) of the band-pass filtered EEG signal at each
epoch and the standardized external value z (with zero mean
and unit variance); and C the averaged value of the epoch
covariance matrices of the band-pass filtered EEG signal.

The aforementioned constrained optimization problem can
be solved using the method of Lagrange multipliers. Setting
the first derivative of the corresponding Lagrangian to zero
leads to the following generalized eigenvalue equation:

Czw = λCw (3)

Fig. 3. Distribution over the scalp of signed correlation values at alpha
frequency.

In order to apply SPoC we proceeded as follows: the data
was pre-processed as in section II-C, i.e. it was filtered in
the alpha band (8-12 Hz) and cropped into 2-second long
windows. Then, instead of the variance of each electrode,
the corresponding covariance matrix was computed for each
window and averaged over epochs. Thus we obtained one
covariance matrix per subject, which was used to feed the
selected SPoC algorithm together with the standardized trait
score results of each participant.

III. RESULTS

This section is divided into two parts. In the first one, we
present results on sensor-based correlations. The second part
presents SPoC-related outcomes.

A. Sensor based correlations

As seen in Figure 3, sensor-based correlations for alpha
power are mostly negative (blue color in Figure 3, that
correspond to the 48 sensors depicted in Figure 2), although
positive values are also present (6 sensors). The absolute
correlation values were small, ranging between -0.23 (p-value
= 0.054) and 0.14 (p-value= 0.125). None of the sensor-based
correlation results were significant.

The largest correlation values – albeit non-significant –
spread over the medial-frontal regions, yet the sign shifted
from negative to positive values in neighboring electrodes.

B. SPoC on resting state EEG data

In this section we present the results of applying SPoC to
band-passed filtered (8− 12 Hz) resting state EEG.

We observed that the largest signed-correlation value was
-0.67, with a p-value of 3.57 ∗ 10−7. This result corresponds
to the pattern presented in Figure 4. This pattern has a fronto-
central distribution with central and right lateralized maxima,
corresponding to neuronal sources in the frontal cortex.



Fig. 4. Maximally correlated SPoC pattern. Note that this Figure does not
represent a distribution of signed-correlation values over the scalp, but a
pattern related to a maximally correlated source to trait anxiety levels.

IV. DISCUSSION

This paper aimed to assess the usefulness of SPoC to iden-
tify topographic patterns in EEG oscillatory activity reflecting
maximum correlation with trait anxiety scores. Using EEG
recordings in healthy participants with different trait anxiety
scores, our SPoC analysis demonstrated a consistent pattern of
alpha power associated with maximal negative and significant
correlations with the trait scores. In contrast to the results
on standard correlation analysis, which revealed different
signs of correlations in neighbouring electrodes, and low non-
significant correlation values, SPoC demonstrated a coherent
pattern with frontocentral maxima. These results suggest that
SPoC presents a unique opportunity to mitigate inconsistencies
in the previous EEG-anxiety correlation findings.

Unlike classic correlation analyses, SPoC patterns can be
neurophysiologically interpreted [11]. The frontocentral dis-
tribution of negative correlations between alpha power and
trait scores is aligned with the spatial distribution of effects
in previous work on anxiety. In particular, existing empirical
evidence linked frontal alpha asymmetry to resting state, but
also to approach and avoidance behaviour, in social anxiety
[9, 10, 8]. Some of this work proposed that greater left frontal
power asymmetry could be a valid marker of anxiety and
depression [10]. However, there is still a lack of consensus
on how (social) anxiety modulates frontal alpha power and
power asymmetry, as some attempts to validate these markers
did not found significant effects [9]. Using SPoC to detect
patterns of maximum correlations between EEG power and
experimental variables (trait scores, behavioral indexes) could
mitigate confounds from standard correlation analyses and
provide an optimised topographical pattern that could be used
to localise anatomical sources.

Follow-up work will aim to localise in the source space
the SPoC patterns reported here, and will clarify whether the
negative association between frontocentral alpha power and
trait anxiety scores is mediated by activity in the prefrontal

cortex, which is one of the key cortical regions implicated in
anxiety disorders [13].
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