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ABSTRACT

The Wallacea biogeographic region of Sulawesi, the Moluccas and Lesser Sunda, is globally 

renowned for exceptional endemism, but is currently emerging as a development frontier in 

Indonesia. We assessed patterns and drivers of forest loss and fragmentation across the region, and 

used dynamic deforestation models to project future deforestation to 2053. Up to 10,231 km2 was 

deforested between 2000 and 2018, and a further 49,570 km2 is expected to be lost by 2053, with 

annual deforestation rates ranging between 0.09% and 2.17% in different sub-regions (average: 

1.23%). Key Biodiversity Areas (priority sites for endemic and threatened biodiversity) are 

particularly vulnerable to deforestation if they are small, coastal and unprotected. Sub-regional 

variation in deforestation patterns and drivers must be acknowledged if conservation interventions 

are to be targeted and effective. We provide a valuable baseline from which to monitor Wallacea’s 

new development course, as Indonesia undergoes profound policy changes that will provide both 

challenges and opportunities for environmental governance and conservation. 

Keywords: Biodiversity, Conservation, Forest, Indonesia, Key Biodiversity Areas, Land-cover 

change, Maluku, Nusa Tenggara, Sulawesi, Tropics.

Type of article: Research Letter
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INTRODUCTION

Deforestation drives biodiversity declines in tropical countries (Alroy 2017), with acute impacts in 

regions of high endemism (Barlow et al 2018, Brooks et al 2002). Indonesia, as one of the world’s 

most diverse archipelagos, has experienced some of the highest deforestation rates in the world; 

more than 60,000 km2 deforested between 2000 and 2012 (Margono et al 2014). Previous analyses 

of forest data across the country revealed substantial regional variation in deforestation rates and 

drivers (Austin et al., 2019). The highest rates of deforestation occurred on Sumatra and Borneo, 

mainly as a consequence of the expansion of industrial oil palm and timber plantations (Curtis et al 

2018). Together with infrastructural development, these sectors more recently appear to be having a 

similar role in deforestation in Papua in Eastern Indonesia (e.g. Gaveau et al 2021), but far less 

attention has been paid to central Indonesia and the Wallacea biodiversity hotspot (CEPF 2014, 

Supriatna et al 2020). 

Despite comprising one-fifth of Indonesia’s land surface, Wallacea, including the islands 

of Sulawesi, Maluku (the Molluccas) and Nusa Tenggara (Lesser Sundas), supports more than half 

the country’s species listed as threatened on the IUCN Red List (CEPF 2014, Supriatna et al 2020). 

The archipelago’s rich biogeographic history resulted in levels of endemism that are among the 

highest worldwide, making the region a global priority for conservation (Brooks et al 2006), 

ecosystem service provision (Turner et al 2012) and restoration (Strassburg et al 2020). The main 

threats to the region’s biodiversity are reported to be similar to other parts of Indonesia – primarily 

deforestation and forest degradation driven by agriculture, mining, and infrastructure development 

(CEPF 2014). However, unlike the islands of western Indonesia crop production in Wallacea is 

currently dominated by smallholders producing commodities including coconut and cocoa 

(Sulawesi), cashew and coffee (Nusa Tenggara) and nutmeg (Maluku) (Directorate General of 

Estate Crops Indonesia, 2019). It is therefore likely that the patterns and drivers of deforestation are 

somewhat different to those experienced in other more heavily studied regions. As land-use 
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trajectories are little studied in Wallacea, predicting future environmental change remains 

challenging (Kelley et al 2017), making it difficult to comprehend the future impacts on 

biodiversity. This is especially concerning given that the archipelago is emerging as a new 

development frontier to support Indonesia’s extractive industries, food and fuel security, and 

infrastructure, with the potential to considerably increase existing threats (Supriatna et al 2020, 

Sutherland et al 2019). 

Here we examine the patterns and drivers of deforestation in Wallacea, revealing the 

emerging pressures threatening the region’s Key Biodiversity Areas (KBAs; globally recognized 

sites that support threatened or irreplaceable species) (IUCN 2016). We use this information to 

parameterize deforestation models and predict the extent of future deforestation to understand how 

this could exacerbate threats to KBAs. We apply a spatially-explicit and dynamic deforestation 

modelling approach that internalises estimating both rate and location of land-cover change based 

on historical dynamics and a randomised process. 

Further to deforestation impacts, we also assess the effects of fragmentation, leading to 

pervasive impacts on forests and biodiversity globally (Haddad et al 2015), by capturing past and 

projected fragmentation rates and estimating the vulnerability of the KBA network to both. 

As KBAs typically extend beyond protected areas, and are based on population viability 

requirements for range-restricted and threatened species, our assessment highlights where to target 

limited conservation resources to protect vulnerable areas that have the greatest value for endemic 

taxa. In the context of land-use planning, deforestation risk information could also be useful for 

land-use planning seeking to ensure development targets are met. 

METHODS                
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Study system

Wallacea encompasses approximately 1680 islands of Sulawesi, Maluku and Nusa 

Tenggara (Lohman et al 2011), covering 338,000 km2 (Figure 1). Across this diverse region there 

are 227 terrestrial KBAs (BirdLife International 2020). To capture potential geographic variation in 

land-cover change patterns and drivers, we divided Wallacea into nine sub-regions following 

historical provincial boundaries and island groups: Gorontalo and North Sulawesi; Central 

Sulawesi; West and South Sulawesi; Southeast Sulawesi; North Maluku; Central Maluku; South 

Maluku; West Nusa Tenggara; and East Nusa Tenggara) (Figure 1, Supporting Information S1). 

Forest was defined according to Margono et al. (2014) as stands >5 ha with a natural 

composition and structure that had not been cleared in recent history (before the year 2000) and 

having >70% tree canopy cover at the Landsat pixel (30 m resolution) scale (Supporting 

Information S2). This definition corresponds with primary and secondary forest categories used by 

the Indonesian Ministry of Forestry in the year 2000. Mangrove forests were added using maps 

from Giri et al. (2011). We acquired annual forest loss data between 2001 and 2018 from the Global 

Forest Change repository (Hansen et al 2013), and applied it to forest cover data from 2000 

(Margono et al 2014).
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Figure 1 The Wallacea region in Southeast Asia (top panel) and forest cover for the nine sub-

regions (bottom panel) subject to deforestation projections. The dashed lines in the top panel 

represent the biogeographic boundaries of Wallacea. Forest cover in the bottom panel (light green) 

is extracted for the year 2000 from Hansen et al. (2013) and Margono et al. (2014). 
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The Global Forest Change dataset includes both forest loss from permanent conversion, as 

well as temporary forest loss from different natural and anthropogenic sources. We sought to 

minimize the inclusion of temporary loss events by choosing a conservative definition of forest, 

which excluded tree cover loss within plantations, agro-forests, mixed gardens, regrowth or 

scrubland. Since most wildfires in Indonesia are associated with anthropogenic causes and lead to 

forest loss in highly degraded rather than primary areas, we are confident that most of the mapped 

changes in forest we refer to are anthropogenic and permanent, rather than temporary. We therefore 

use the terms deforestation and forest loss interchangeably. 

We selected potential deforestation predictors based on those known to be important in the 

tropics and, more specifically, Indonesia (Table 1; Supporting Information S2, Austin et al. (2019)). 

All layers were converted to the Asia South Albers Equal Area Conic projection and resampled to 

the same extent and origin at 180 x 180 m pixel size (bilinear for continuous predictors, and nearest-

neighbour resampling for categorical predictors) to facilitate computational processes. All spatial 

manipulations were performed in Python (Van Rossum and Drake 2009), and data aggregated, 

analysed and visualized in Python, R (R Core Team 2020) and ArcGIS Pro (Esri Inc. 2014).
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Table 1 Predictors used in deforestation modelling, including their description, source and year 

(Supporting Information S2).

Name Description Source Year

Forest cover and 
loss

Forest cover and loss previous to the 
calibration period (2001-2013) and 
in the calibration period (2014-
2018)

Giri et al. (2011), Hansen et al. 
(2013), Margono et al. (2014)

2000,
2001-2013,
2014-2018

Slope Slope in 2000 derived from the 
digital elevation model (30 m)

Farr et al. (2007) 2000

Fire activity The average number of active fires 
per year (MODIS and VIIRS) as a 
proxy for fire proneness and 
agricultural activity.

MODIS Collection 6 NRT (2018), 
VIIRS 375m NRT (2018)

2000-2018,
2012-2018

Accessibility Accessibility from settlements, 
considering roads, slope  and 
landcover (Deere et al 2020, Weiss 
et al 2018)

Populated places (Indonesia Atlas 
2011), Ministry of Environment and 
Forestry Landcover (2011), Roads 
(WRI), Slope (2007)

1990-2011

Human 
population 
pressure

Local population pressure (Σ = 1) This publication, Rose et al. (2018) 1990-2017

Main 
commodity

Distance to an Indonesian village 
(Desa) (includes human settlements 
and surrounding land mapped by the 
Indonesian Bureau of Statistics) 
which derives income from staple 
food agricultural, plantation 
agriculture, non-agricultural or 
fisheries commodities

Indonesian Bureau of Statistics 
(2018)

2018

Transmigrant 
settlements

Distance to settlements with an 
ethnic majority from outside of 
Wallacea

Indonesian Bureau of Statistics 
(2011), Indonesian Ministry of 
Environment and Forestry (2011)

2011

Mining Exploration and production mining 
concessions (absence of mining 
concessions as reference)

World Resources Institute 2017

Land-use Non-forest areas (APL), production 
forests (HP, HPK), and limited 
production forests (HPT). Protected 
forests (CA, HSAW, KSPA, SM, 
TN, TAHURA, TNL, TWA, 
TWA/HW, TWAL, TB) as reference 
areas

Ministry of Forestry (2010) 2010
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Future deforestation projections                                                                                   

We adapted a dynamic and spatially-explicit modelling framework developed by Rosa et 

al. (2013) to project future deforestation in each of the nine sub-regions (Supporting Information 

S3). The model is a data-driven probabilistic model that uses past deforestation, a spatial 

autocorrelation effect of the neighbourhood of deforested pixels and predictors of deforestation as 

inputs to capture three important aspects of deforestation: uncertainty, emergence, and contagion. In 

contrast to other models (e.g. Soares-Filho et al 2002, Verburg et al 2002) it internalises estimating 

both rate and location of forest loss based on historical dynamics and randomised processes (Rosa 

et al 2013). The model has been applied in different contexts for Latin America (e.g., Bradley et al 

2017, Guerra et al 2020, Ochoa-Quintero et al 2015), but less so in other tropical regions. 

The model dynamically updates past deforestation for each projection step based on the 

outcome of the previous step. Predictors are invariable static either because they are unlikely to 

change within the calibration or projection timeframe (e.g. slope), change slightly and unpredictably 

over long time-scales (e.g. accessibility, human pressure, the presence of transmigrant settlements) 

or are poorly documented or difficult to reliably predict (e.g. main commodity produced in villages, 

land-use allocation). An exception is fire, which although included as a static predictor, integrates 

18 years of past fire alerts and thus reflects the spatial footprint of proneness to fire and high levels 

of agricultural activities involving burning. It represents likely future fire dynamics, as previously 

burnt areas are more susceptible to burning in the future (Hoscilo et al 2011).

We used a forward step-wise regression to fit models that describe forest loss as a function 

of predictors for each region by successively adding all potential non-correlated predictors 

(Pearson’s correlation coefficient <0.7). The models were fitted using ‘Filzbach’, a freely available 

library (https://github.com/predictionmachines/Filzbach), which uses a Markov Chain Monte Carlo 

(MCMC) sampling method. Starting with all models with a single predictor, we selected and 

retained the predictors with the most predictive power employing a cross-validation technique 
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(Rosa et al 2013). For the cross-validation, we trained the models with a random subset of 50% 

pixels, and then calculated a goodness of fit likelihood between the model projection and the 

observations with the other 50% pixels. The predictor yielding the model with the highest 

likelihood was kept and the remaining predictors added individually until all were tested. Out of the 

complete set of models, ranging between 56-79 for each sub-region depending on the total number 

of predictors, we then used the best performing model (Table S1) for each sub-region to estimate 

the probability of deforestation for the five-year calibration period (2014–2018) and subsequent 

five-year periods up until 2053. 

This estimation of the probability of deforestation was done using a slightly different set of 

predictor values at each iteration, thereby incorporating parameter uncertainty. These predictor 

values were drawn from a Gaussian distribution resulting from the MCMC fitting, and the estimated 

mean and standard deviation for each. The updated probability of loss per pixel was then converted 

into loss or no loss by drawing a random number from a uniform distribution between 0 and 1. We 

then classified the pixel as lost if the number was less than the probability of deforestation. This 

procedure was run multiple times (n = 100 iterations) to assess the uncertainty in model projections 

over time. The binary maps of forest loss and resulting forest cover were used to validate the 

projections, to calculate deforestation and estimate fragmentation across the study region and for 

each KBA. 

We validated the projected forest by calculating the perfect match, commission and 

omission errors for the calibration period (2014-2018). We also validated the match of  the  

projected deforestation (i.e., the modelled change) of a pixel, within a 1, 2 and 10-pixel 

neighbourhood, against observed deforestation data following Rosa et al. (2013, 2014). 

The probability of deforestation, including model uncertainty, was visualized by 

aggregating the binary map iterations into the summed probability of deforestation (i.e., if a pixel 

was deemed to be deforested in 50 of 100 iterations, it was assigned a summed deforestation 
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probability of 50%). 

Forest fragmentation 

We quantified past and future forest fragmentation in each sub-region for the years 2000, 2018, 

2033 and 2053. We estimated the size and number of fragments, and the percentage forest within 

fragments that were <=2 km2 (the minimum size reported to be ecologically viable based on 

datasets from neighbouring Borneo; Lucey et al., 2017) by converting observed or binary projected 

forest loss maps into individual polygons, and calculating the area of each using Python 

GDAL/OGR libraries. We then quantified the change in fragmentation between the different years, 

compared to the baseline in 2000. 

Deforestation and fragmentation in Key Biodiversity Areas

We intersected the KBA and forest layers to quantify forest loss and fragmentation in each KBA in 

2018, 2033 and 2053, relative to the 2000 baseline. We considered the 227 non-nested terrestrial 

KBAs delineated by Burung Indonesia (BirdLife International 2020), each having an area between 

0.6 km2 and 4,644 km2. Within the sub-regions, the KBA network covers between 18% (West and 

South Sulawesi) and 39% (South Maluku) of the terrestrial area. We used official land-use maps 

(Ministry of Forestry 2010) to identify the overlap of KBAs with protected forests. Out of the 227 

KBAs, 102 had most of their area protected (>=50% protection; 14 of which were fully protected), 

163 mostly unprotected (<50% protection) and 41 entirely unprotected.

The vulnerability of KBAs to future land-cover changes was assessed by ranking them 

according to the percentage of projected forest loss (median across the 100 model iterations) within 

their boundaries, and the percentage of forest in small fragments, by 2053. Only KBAs that were in 

the top 20% for both measures in all iterations (200 out of 200) were considered and the rank order 

was defined by the percentage forest loss as all highly ranked KBAs had 100% forest in 

fragments<=2 km2. Since KBAs were developed as a network of sites that support endemic or 
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highly threatened species, losing a large proportion of habitat in smaller KBAs has a 

disproportionately adverse impact on endemic species than in larger ones. However, we also ranked 

KBAs by the total area lost or fragmented as an alternative prioritisation of threat. 

RESULTS

Model accuracy and predictors of deforestation

The model achieved high spatial agreement between observed and projected forest maps: a 

median of 97% of pixels were perfectly matched between projections and the calibration data 

(2014-2018) across Wallacea, and accuracy ranged between 96 and 99% for the nine sub-regions 

(Table S2). The overall prevalence of false positives (commission errors) was 2% (<0.01-4% for 

sub-regions), and the prevalence of false negatives (omission errors) was 3% (1-4% for sub-regions) 

(Table S2). Assessing the match of observed deforestation versus modelled deforestation as 

suggested by Rosa et al. (2014) across the calibration period, we found a median of 50% of the 

observed deforestation events were in the immediate neighbourhood (within 180 m) of projected 

forest loss, 73% within 360 m and 99% within 1800 m (Figure S1).

Among the predictors considered in the deforestation models, high average fire incidence 

over time (a proxy for fire proneness and agricultural activity involving burning; median 

coefficient: 10.90) and proximity to deforestation prior to the calibration period (4.84) contributed 

the largest increase in deforestation probability overall across sub-regions (Figure 2; Table S3). 

Predictors relating to resource extraction (mining, forestry) and conversion of forest also 

intensified deforestation in most sub-regions. 
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Figure 2 Influence of predictors on deforestation between 2000 and 2018 in modelling sub-regions 

of Wallacea. Predictor coefficients are summarised across sub-regions (boxplot showing median 

and 25th and 75th quartiles). Coefficient values <0 (dashed line) decreased, while values >0 

increased the probability of deforestation. The effect of mining concessions (exploration and 

exploitation) is relative to the effect of not having a mining concession (*). The effect of non-forest, 

production forest and limited production forest is relative to the effect of protected forests (†) 

(Supporting Information S2). Combinations of predictors were tested for each sub-region, and the 

combination resulting in the highest likelihood selected as the best model. The predictors for each 

sub-regional model could therefore differ (Table S1). Predictors for which all sub-regional 

coefficients were close to zero (mean coefficient smaller than 0.05 and a spread smaller than 0.1) 

were excluded from the figure (accessibility, plantation, non-agricultural and fisheries commodity 

production, transmigrant settlements). The 95% confidence intervals derived from the 100 model 

iterations around points are not shown, as they fall within the points. 
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Deforestation in the past and future

In the year 2000, forest cover in the sub-regions varied from just 4% (East Nusa Tenggara) to 72% 

(North Maluku) (Figures 3 & 4; Table S4). By 2018, overall forest cover had decreased to 93% of 

that present in 2000 over all, at an annual deforestation rate of 0.39%. Forest cover is then projected 

to decline to 60% by 2053, at an annual rate of 1.23%, equating to a loss of 49,570 km2 across 

Wallacea. Compared to 2000, the forest expected to remain in 2053 varies by sub-region, from 95% 

in East Nusa Tenggara to 44% in North Maluku (annual rates of future loss 0.1% and 2.17% 

respectively) (Table S4). 

Figure 3 Forest cover change and percent loss for sub-regions in Wallacea. Forest cover observed in 2000 

and 2018 (dark green) and median area projected for five-year periods 2029-2033 and 2049-2053 (light 

green). Percentage loss between the forest cover in 2000 and 2053 is shown above bars. Sub-regions in 

Wallacea and respective colour codes in inlay map and underneath bars. 
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Figure 4 Observed and projected deforestation across Wallacea (A) and focal areas (1, Northern Sulawesi; 2, 

Southeast Sulawesi; 3, Halmahera; 4, Seram) over time (B-D). Probability of deforestation in panel A, C and 

D (green, low; yellow, medium; purple, high) is summed over 100 binary forest loss projections and 

accumulated from 2019 to 2033 (C), and 2019 to 2053 (A and D). Observed deforestation (light blue) from 

2000 to 2018 and remaining forest cover (dark green) in focal areas (B). 
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Forest fragmentation 

Across Wallacea, there were 34% more fragments in 2018 compared to the baseline in 2000, which 

grew to 253% (3.5-fold) by 2053. The highest increase in number of fragments is projected for 

North Maluku, rising by 786% (9-fold) in 2053. The percentage of forest in fragments across 

Wallacea rose 35% between 2000 and 2018, and up to 484% (5.8-fold) by 2053 (Table S5). The 

sub-region with the greatest levels of fragmentation is North Sulawesi and Gorontalo with 1030% 

(11-times) more of its forest as fragments in 2053 compared to 2000.

Vulnerability of Wallacea’s KBAs

Forest cover in Wallacea’s KBAs declined by 2% between 2000 and 2018, and this trend was set to 

continue: 12% loss by 2033 and 26% by 2053. Over time, KBAs in Central Sulawesi are projected 

to experience the greatest deforestation of any sub-region: 39% loss between 2000 and 2053 (Table 

S6). Meanwhile, the deforestation expected for individual KBAs ranges from 2% to 52% in East 

Nusa Tenggara and Central Sulawesi respectively. KBAs across both East and West Nusa Tenggara 

as well as South Maluku are expected to experience negligible future fragmentation. However, 

those in North Maluku will become highly fragmented, with a 2200% (23-fold) increase in the 

number of fragments and a 3420% (35-fold) rise in the percentage of forest fragmented between 

2000 and 2053.

In total, 21 KBAs comprise the top 20% most adversely affected by percentage deforestation 

and forest fragmentation (across all iterations). All of these are projected to lose at least 74% forest 

cover by 2053, and all remaining forest will be found in fragments<=2 km2 in size. The most 

vulnerable KBAs according to percentage loss criteria are typically small (median 57 km2 compared 

to 114 km2 for all KBAs) and located in coastal regions or small islands, with 19 of the 21 found in 

the provinces of Sulawesi or Central and North Maluku (Figure 5; Table S7). When considering an 

area-criterion for ranking vulnerable KBAs, 41 were in the top 20% most affected by forest loss and 

fragmentation, with at least 54 km2 reduction in forest cover and 13 km2 of forest in small 
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fragments. These KBAs are typically large (median 940 km2) (Figure S2, Table S8). 

Figure 5 Vulnerability of Key Biodiversity Areas (KBAs) to percentage forest loss and fragmentation. (A) 

Map of KBAs with bivariate colour coding of the percentage forest in KBAs in 2053 compared to 2000 

(blues) and the percentage forest in fragments (=<2 km2; purples). KBAs that were ranked in highest 20% for 

both percentage forest loss and fragmentation are labelled with their ranks (Table S7). An asterisk marks 

KBAs in which the majority of their forest area are protected, KBAs without asterisk are mostly unprotected. 

(B) Percentage forest loss since 2000 and (C) Percentage area in fragments relative to 2000 for the sub-
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regions and years 2018, 2033 and 2053. Violin plots width in B and C were scaled to 1. Boxplots show 

median and 25th and 75th quartiles. 

DISCUSSION

The Wallacea archipelago comprises 20% of Indonesia, with exceptionally high levels of 

endemism. Development has been relatively slow compared to that on the western islands of 

Sumatra, Java and Kalimantan (Tolo 2018), which dominate the environmental literature (e.g., 

Gaveau et al 2018, Supriatna et al 2017). However, in a bid to become a major global economy by 

2025, Indonesia is promoting policies and foreign investment opportunities for agriculture, resource 

extraction and infrastructure, with a focus on previously underdeveloped regions such as Wallacea 

(CEPF 2014, Song et al 2018, Tolo 2019). While past development has resulted in 10,231 km2 of 

deforestation in Wallacea between 2000 and 2018, our analysis suggests that an additional 49,570 

km2 of forest could be lost by 2053 under current trajectories. The resulting annual deforestation 

rate of 1.23% would be higher than the global average (0.49%) in the 1990s and 2000s, as well as 

exceeding those experienced in the last 20 years on neighbouring Borneo (Achard et al 2014, 

Gaveau et al 2013). 

With increasing deforestation in Wallacea comes increased forest fragmentation, in line 

with worldwide trends. Fragmentation of forest ecosystems has pervasive impacts on biodiversity, 

degrading key ecological processes and altering nutrient cycles (Haddad et al 2015). Smaller, more 

isolated habitat fragments support fewer species, often resulting in a disproportionate loss of species 

of high conservation concern such endemics and threatened taxa (Crooks et al 2017). Fragmentation 

also exacerbates edge effects whereby habitat and biodiversity become more susceptible to further 

deterioration due to biophysical changes near habitat edges (Pfeifer et al). Therefore, fragmentation 

not only increases the potential for further habitat degradation in Wallacean islands, but could also 

exacerbate the biodiversity losses already experienced through deforestation. The effects are likely 

to take some time to accrue, and may be more adversely experienced by endemic taxa.
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Variation in sub-regional patterns and drivers of deforestation 

Archipelago-wide patterns of deforestation, degradation and drivers can mask important 

regional variation. For example, the islands of Nusa Tenggara had the least forest cover in 2000 

and, consequently, will experience low rates of deforestation (<0.16% by 2053). In comparison, 

North Maluku is projected to lose 56% forest cover by 2053 and Central Sulawesi is projected to 

lose the greatest primary forest extent in the archipelago (21,596 km2). The smallest and least 

protected KBAs in these two regions tend to be most vulnerable to loss and degradation of large 

proportions of their forest, highlighting the need for localized conservation interventions. 

Mining and industrial agriculture were key drivers of deforestation in Wallacea, as 

elsewhere in Indonesia (Austin et al 2019, Gaveau et al 2021) and worldwide (Curtis et al 2018). 

These drivers are associated with above average economic growth in Sulawesi and North Maluku 

provinces (Tolo 2019), and are expected to lead to further expansion into forests in the future. For 

example, most active mines are currently located in Central and South Sulawesi and North Maluku, 

but concessions to explore mining potential are distributed across Wallacea 

(https://geoportal.esdm.go.id/minerba/) and were linked to higher deforestation probability in our 

model. Conversion of forest to oil palm agriculture has been less prevalent in central Indonesia 

compared to other parts of the country, such as Sumatra and Kalimantan or neighbouring Malaysia 

(Gaveau et al 2018, Supriatna et al 2017). On Borneo, for example, plantations expanded by 170% 

between 2001 and 2017 (Gaveau et al 2018). Instead, communities have favoured small-scale 

farming for corn, coffee, cacao, coconut and tobacco, although this also leads to significant 

deforestation (Austin et al 2019). For instance, in Gorontalo, corn cultivation was promoted as a 

means to decrease poverty, but has resulted in growing encroachment and deforestation in protected 

areas (Supriatna et al 2020). However, in recent years, the oil palm industry has expanded in 

Central and West Sulawesi, a trend that together with expansion of resource extraction could lead to 

forest loss above the baseline projections presented here.
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Caveats, uncertainties and scenario development 

Like other modelling approaches, the accuracy of the deforestation projections are dependent on the 

assumptions made about what drives forest loss, the spatial resolution of the data, and the temporal 

scale at which models are calibrated. The scale of interpretation is limited to the scale at which the 

model was applied (180 m pixel resolution). The model is not intended to identify small 

deforestation events below the spatial resolution of the data, and projected dynamics inevitably 

become increasingly uncertain in the future. As with any such approach, being able to detect 

deforestation events at landscape scale would require refining models and incorporating finer-scale 

deforestation source data as well as predictor data at this higher resolution, which are not yet readily 

available at the scale of Wallacea. 

We took a business-as-usual approach to our projections in order to assess a baseline 

trajectory against which subsequent trends, including possible interventions, can be compared. 

Although forest loss drivers and patterns in coming years will likely be similar to the recent past, 

future dynamics are unlikely to match the past perfectly. For example, future deforestation could be 

affected by changes in political leadership, agendas and development priorities (e.g., Ferrante and 

Fearnside 2019), variations in commodity prices for agricultural products (Gaveau et al 2018), 

changes in global climate and the socio-economic impacts of shock events such environmental 

catastrophes (earthquakes, tsunamis) or the global COVID-19 pandemic (Brancalion et al 2020). 

Such potential future changes and their impact are impossible to anticipate and thus 

challenging to include in models as the one presented here. However, more refined landscape scale 

scenarios could be developed based on the presented baseline models, working with relevant 

stakeholders and beneficiaries in the region. These scenarios could help to explore the potential 

future developments that influence deforestation and better understand the uncertainties of our 

assumptions. Potential scenarios include allocation of investment in infrastructure and urban 

development projects, resource extraction such as mines or further agricultural expansion on the one 
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hand, as well as the implementation and effectiveness of deforestation mitigation measures on the 

other. The data necessary to develop these scenarios could be more easily compiled and 

assumptions co-developed at landscape scale, creating highly relevant fine-scale projections of 

forest loss outcomes, their potential impact on endemic and threatened biodiversity and pathways to 

mitigate the impact. 

Conservation solutions for Wallacea’s forests

Protected forests experience the lowest deforestation across Wallacea. KBAs that are 

predominately protected are predicted to suffer less deforestation by 2053 (median percentage loss: 

21%) than those than those primarily unprotected (median percentage loss: 37%). Out of the 21 

KBAs identified as the 20% most vulnerable, only three are fully protected, and most contained 

forests that were designated for conversion to agriculture. However, protection status does not 

prevent deforestation in every case. For example, in the two KBAs with highest expected forest loss 

by 2053 in terms of area (Pegunungan Tokalekaju and Gunung Lumut in Central Sulawesi, Table 

S8 and Figure S2), deforestation is projected in protected areas and areas designated as limited 

production forest, which cannot be legally converted to agriculture or other land-uses. Overlapping 

land claims for protection and resource extraction has led to substantial illegal extraction, 

encroachment and deforestation across Indonesia (Baja et al 2019, Gaveau et al 2017), indicating 

that long-term investment in monitoring and law enforcement is needed. Some of the best examples 

of improvements to date involve local communities, and have led to positive environmental 

outcomes in some protected areas in Sumatra (Linkie et al 2014, 2015). 

Local community involvement in forest management has been the cornerstone of 

Indonesia’s social forestry programme since 2015, and has been promoted as a solution to alleviate 

development pressures on forest while improving social welfare (Kartodihardjo et al 2013, 

Meijaard et al 2020). By allowing the land to be used for multiple purposes the opportunity costs 

for conservation can be reduced, although the success of these schemes in addressing deforestation 
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and poverty alleviation has been variable (Santika et al 2019), and the uptake of social forestry has 

been low outside West Indonesia (Meijaard et al 2020). Using deforestation risk maps as the one 

presented here in combination with socio-economic information on what influences success of 

social forestry programmes, could help optimize these schemes by implementing them in areas in 

which high socio-economic gains coincide spatially with positive outcomes for deforestation 

reduction.

Other opportunities for bolstering forest protection arise from zero-deforestation pledges 

and sustainability certification systems in forestry and agricultural sectors. They could direct 

agricultural expansion away from areas with high biodiversity value and reduce pressure on 

primary forests. The designation of high conservation areas in oil palm plantations, for instance, 

can lead to positive outcomes for at least some threatened species (Deere et al 2020), although 

certification appears to have mixed outcomes for local communities (Santika et al 2020). 

Involvement of these communities in sustainability efforts is fundamental to reducing 

deforestation.

Large areas of Wallacea, particularly South Sulawesi and Nusa Tenggara, already lost 

substantial forest cover to urbanisation, farmland and mining, but still hold potential value to 

biodiversity and habitat connectivity. Restoration of mining sites and expired logging leases is 

already required in Indonesia, but the costs to fully compensate for biodiversity losses are extremely 

high (Budiharta et al 2018). This reinforces the need for strategic planning and mitigation at an 

early development phase, aided by information about potential future forest change such as the one 

presented here. 

The future of Wallacea’s forests and biodiversity is at a crossroad, as Indonesia develops a 

new regulatory framework within which the natural environment is to be managed. With the 

introduction of the Omnibus Law and a new mining law in 2020, profound shifts in policy bring 

significant challenges and opportunities for environmental governance and conservation (Amatullah 
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et al 2020, Sembiring et al 2020). Legislation for permit systems, environmental impact assessment 

and foreign/national investment in infrastructure and resource extraction projects are all under 

review. While Indonesia’s decentralisation led to more permits for mining, logging and large-scale 

agriculture, the upcoming ‘recentralisation’ could prove beneficial for strategic planning that 

reduces the environmental impacts of operations and curtails opportunities for corruption. However, 

loosening of permit requirements and changes to environmental impact assessments could also 

accelerate forest loss. Thus, our assessment provides a valuable baseline from which the effects of 

Wallacea’s new development plans can be evaluated, providing insights into how regional and 

localised interventions can help improve prospects for the archipelago’s highly threatened endemic 

biodiversity. 
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