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Abstract. In this paper, we present an ensemble data assim-
ilation paradigm over a Riemannian manifold equipped with
the Wasserstein metric. Unlike the Euclidean distance used
in classic data assimilation methodologies, the Wasserstein
metric can capture the translation and difference between the
shapes of square-integrable probability distributions of the
background state and observations. This enables us to for-
mally penalize geophysical biases in state space with non-
Gaussian distributions. The new approach is applied to dis-
sipative and chaotic evolutionary dynamics, and its potential
advantages and limitations are highlighted compared to the
classic ensemble data assimilation approaches under system-
atic errors.

1 Introduction

Extending the forecast skill of Earth system models (ESMs)
relies on advancing the science of data assimilation (DA)
(Tsuyuki and Miyoshi, 2007; Carrassi et al., 2018). A large
body of current DA methodologies, either filtering (Kalman,
1960; Evensen, 1994; Reichle et al., 2002; Evensen, 2003)
or variational approaches (Lorenc, 1986; Le Dimet and Ta-
lagrand, 1986; Talagrand and Courtier, 1987; Park and Žu-
panski, 2003; Trevisan et al., 2010; Carrassi and Vannitsem,
2010; Ebtehaj and Foufoula-Georgiou, 2013), are derived
from basic principles of Bayesian inference under the as-
sumption that the state space is unbiased and can be repre-

sented well with Gaussian distributions, which are not of-
ten consistent with reality (Bocquet et al., 2010; Pires et al.,
2010). It is well documented that this drawback often limits
the forecast skills of DA systems (Walker et al., 2001; Dee,
2005; Ebtehaj et al., 2014; B. Chen et al., 2019), especially
under the presence of systematic errors (Dee, 2003).

Apart from particle filters (Spiller et al., 2008;
Van Leeuwen, 2010), which are intrinsically designed
for state space with a non-Gaussian distribution, numerous
modifications to the variational DA (VDA) and ensemble-
based filtering methods have been made to tackle the
non-Gaussianity of geophysical processes (Pires et al., 1996;
Han and Li, 2008; Mandel and Beezley, 2009; Anderson,
2010). As a few examples, in four-dimensional VDA, a
quasi-static approach is proposed to ensure convergence
by gradually increasing the assimilation intervals (Pires
et al., 1996). To deal with multimodal systems, Kim et al.
(2003) proposed modifications to the ensemble Kalman
filter (EnKF; Evensen, 1994; Li et al., 2009) using an
approximate implementation of Bayes’ theorem in lieu of
a linear interpolation via Kalman gain. For ensemble-based
filters, Anderson (2010) proposed a new approach to account
for non-Gaussian priors and posteriors by utilizing rank
histograms (Anderson, 1996; Hamill, 2001). A hybrid en-
semble approach was also suggested to combine advantages
of both EnKF and particle filter (Mandel and Beezley, 2009).

Even though particle filters can handle non-Gaussian like-
lihood functions, when observations lie away from the sup-
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port set of the particles, the ensemble variance tends to zero
over time and can render the filter degenerate (Poterjoy and
Anderson, 2016). In recent years, significant progress has
been made to treat systematic errors through numerous ad
hoc methods such as the field alignment technique (Rav-
ela et al., 2007) and morphing EnKF (Beezley and Man-
del, 2008) that can tackle position errors between observa-
tions and forecast. Dual state parameter EnKF (Moradkhani
et al., 2005) was also developed to resolve systematic errors
originating from parameter uncertainties. Additionally, bias-
aware variants of the Kalman filter were designed (Drécourt
et al., 2006; De Lannoy et al., 2007a, b; Kollat et al., 2008) to
simultaneously update the state space and an a priori estimate
of the additive biases. In parallel, the cumulative distribution
function matching (Reichle and Koster, 2004) has garnered
widespread attention in the land of DA.

From a geometrical perspective, Gaussian statistical in-
ference methods exhibit a flat geometry (Amari, 2012). In
particular, it is proved that linear autoregressive and mov-
ing average Markov stochastic models, which are driven by
Gaussian noise, form dually flat manifolds (Amari, 2012).
The notion of distance over such a geometrically flat space
is defined over a straight line, which can be quantified by
the Euclidean distance. Consequently, the Euclidean space
has served as a major tool for explaining statistical inference
techniques using linear Gaussian models and has been the
cornerstone of DA techniques. It is important to note that
the Euclidean distance remains (Ning et al., 2014) insensitive
to the magnitude of translation between probability distribu-
tions with disjoint support sets – when used to interpolate
between them.

Non-Gaussian statistical models often form geometrical
manifolds, which is a topological space that is locally Eu-
clidean. In the case of nonlinear regression, it is demon-
strated that the statistical manifold exhibits a Riemannian
geometry (Lauritzen, 1987) over which the notion of dis-
tance between probability distributions is geodesic that can
not only capture translation but also the difference between
the entire shape of probability distributions (Pennec, 2006).
The question is, thus: how can we equip DA with a Rieman-
nian geometry? To answer this question, and inspired by the
theories of optimal mass transport (Villani, 2003), this pa-
per presents the ensemble Riemannian data assimilation (En-
RDA) framework using the Wasserstein metric or distance,
which is a distance function defined between probability dis-
tributions, as explained in detail in Sect. 2.3.

In recent years, a few attempts have been made to utilize
the Wasserstein metric in geophysical DA. Reich (2013) in-
troduced an ensemble transform particle filter, where the op-
timal transport framework was utilized to guide the resam-
pling phase of the filter. Ning et al. (2014) used the Wasser-
stein distance to reduce forecast uncertainty due to param-
eter estimation errors in dissipative evolutionary equations.
Feyeux et al. (2018) suggested a novel approach employing
the Wasserstein distance in lieu of the Euclidean distance to

penalize the position error between state and observations.
More recently, Tamang et al. (2020) introduced a Wasserstein
regularization in a variational setting to correct for geophys-
ical biases under chaotic dynamics.

The EnRDA extends the previous work through the fol-
lowing main contributions: (a) EnRDA defines DA as a dis-
crete barycenter problem over the Wasserstein space for as-
similation in the probability domain without any parametric
or Gaussian assumption. The framework provides a contin-
uum of nonparametric analysis probability histograms that
naturally span between the distributions of the background
state and observations through the optimal transport of prob-
ability masses. (b) The presented methodology operates in an
ensemble setting and utilizes a regularization technique for
improved computational efficiency. (c) The paper studies the
advantages and limitations of DA over the Wasserstein space
for dissipative advection–diffusion dynamics and a nonlinear
chaotic Lorenz-63 model in comparison with the well-known
ensemble-based methodologies.

The organization of the paper is as follows: Section 2 pro-
vides a brief background on Bayesian DA formulations and
optimal mass transport. The mathematical formalism of En-
RDA is described in Sect. 3. Section 4 presents the results
and compares them with their Euclidean counterparts. Sec-
tion 5 discusses the findings and ideas for future research.

2 Background

2.1 Notations

Throughout the paper, small bold letters represent m ele-
ment column vectors x = (x1, . . .,xm)

T
∈ Rm, where (·)T is

the transposition operator. The m by n matrices X ∈ Rm×n
are denoted by capital bold letters, whereas Rm+(R

m×n
+ ) de-

notes those vectors (matrices) only containing nonnegative
real numbers. The 1m refers to an m element vector of ones,
and Im is an m×m identity matrix. A diagonal matrix with
entries given by x ∈ Rm is represented by diag(x) ∈ Rm×m.
The notation x ∼N (µ,6) denotes that the random vector x
is drawn from a Gaussian distribution, with a mean µ and co-
variance 6, and EX(x) is the expectation of x. The `q norm
of x is defined as ‖ x‖q =

(∑m
i=1|xi |

q
)1/q with q > 0, and

the square of the weighted `2 norm of x is represented as
‖ x‖2B−1 = x

TB−1x, where B is a positive definite matrix.
Notations of x� y and x� y represent the element-wise
Hadamard product and the division between equal length
vectors x and y, respectively. The notation 〈A,B〉 = tr(ATB)
denotes the Frobenius inner product between matrices A and
B, and tr(·) and det[·] represent trace and determinant of a
square matrix, respectively. Here, p(x)=

∑M
i=1pxi δxi rep-

resents a discrete probability distribution with the respective
histogram {px ∈ RM+ :

∑
ipxi = 1} supported on xi , where

δxi represents a Kronecker delta function at xi . Throughout,
the dimension of the state or observations is denoted by small
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letters, such as x ∈ Rm, while the number of ensembles or
support points of their respective probability distribution is
shown by capital letters such as px ∈ RM+ .

2.2 Data assimilation on Euclidean space

In this section, we provide a brief review of the derivation
of classic variational DA and particle filters based on Bayes’
theorem to set the stage for the presented ensemble Rieman-
nian DA formalism.

2.2.1 Variational formulation

Let us consider the discrete time Markovian dynamics and
the observations as follows:

xt =M(xt−1)+ωt , ωt ∼N (0,B)
yt =H(xt )+ vt , vt ∼N (0,R), (1)

where xt ∈ Rm and yt ∈ Rn represent the state variables and
the observations at time t , M : Rm→ Rm and H : Rm→ Rn
are the deterministic forward model and observation opera-
tor, and ωt ∈ Rm and vt ∈ Rn are the independent and identi-
cally distributed model and observation errors, respectively.

Recalling Bayes’ theorem, dropping the time superscript
without loss of generality, the posterior probability density
function (pdf) of the state, given the observation, can be ob-
tained as p(x|y)∝ p(y|x)p(x)/p(y), where p(y|x) is pro-
portional to the likelihood function, p(x) is the prior den-
sity, and p(y) denotes the distribution of observations. Let-
ting xb = EX(x) ∈ Rm represents the background state, ig-
noring the constant term logp(y), and assuming Gaussian
distributions for the observation error and the prior, a log-
arithm of the posterior density leads to the following well-
known three-dimensional variational (3D-Var) cost function
(Lorenc, 1986; Kalnay, 2003):

− logp(x|y)∝
1
2
(x− xb)

TB−1(x− xb)+

1
2
(y−H(x))TR−1(y−H(x))

∝‖ x− xb‖
2
B−1+ ‖ y−H(x)‖2R−1 .

(2)

As a result, the analysis state obtained by the minimization of
the cost function in Eq. (2) is the mode of the posterior dis-
tribution that coincides with the posterior mean when errors
are drawn from unbiased Gaussian densities and H(·) is a
linear operator. Using the Woodbury matrix inversion lemma
(Woodbury, 1950), it can be easily demonstrated that, for a
linear observation operator, the analysis states in the 3D-Var
and Kalman filter are equivalent (Tarantola, 1987). As is ev-
ident, zero mean Gaussian assumptions lead to the penaliza-
tion of the error through the weighted Euclidean norm.

2.2.2 Particle filters

Particle filters (Gordon et al., 1993; Doucet and Johansen,
2009; Van Leeuwen et al., 2019) in DA were introduced to

address the issue of a non-Gaussian distribution of the state
by representing the prior and posterior distributions through a
weighted ensemble of model outputs referred to as particles.
In its standard discrete setting, using Monte Carlo simula-
tions, the prior distribution p(x) is represented by a sum of

equal-weight Kronecker delta functions as p(x)= 1
M

M∑
i=1
δxi ,

where xi ∈ Rm is the state variable represented by the ith
particle.

Each of these M particles are then evolved through
the nonlinear model in Eq. (1). Assuming that the

conditional distribution p(y|xi)= 1
(2π)n/2|R|1/2 exp

{
−

1
2 [y−

H(xi)]TR−1
[y−H(xi)]

}
is Gaussian, using Bayes’ theo-

rem, it can be shown that the posterior distribution p(x|y)
can be approximated using a set of weighted particles as

p(x|y)=
∑M
i=1wi δxi , wherewi =

p(y|xi)∑M
j=1p(y|xj )

. The par-

ticles are then resampled from the posterior distribution
p(x|y) based on their relative weights and are propagated
forward in time according to the model dynamics.

As is evident, in particle filters, weights of each parti-
cle are updated using the Gaussian likelihood function un-
der a zero mean error assumption. However, in the presence
of systematic biases, when the support sets of particles and
the observations are disjoint, only the weights of a few par-
ticles become significantly large, and the weights of other
particles tend to zero. As the underlying dynamical system
progresses in time, only those few particles, with relatively
larger weights, are resampled, and the filter can gradually be-
come degenerate in time (Poterjoy and Anderson, 2016).

2.3 Optimal mass transport

The theory of optimal mass transport (OMT), coined by
Gaspard Monge (Monge, 1781) and later extended by Kan-
torovich (Kantorovich, 1942), was developed to minimize
the transportation cost in resource allocation problems with
purely practical motivations. Recent developments in mathe-
matics discovered that OMT provides a rich ground to com-
pare and morph probability distributions and uncover new
connections to partial differential equations (Jordan et al.,
1998; Otto, 2001) and functional analysis (Brenier, 1987; Be-
namou and Brenier, 2000; Villani, 2003).

In a discrete setting, let us define two discrete probability
distributions, p(x)=

∑M
i=1pxi δxi and p(y)=

∑N
j=1pyj δyj ,

with their respective histograms, {px ∈ RM+ :
∑
ipxi = 1}

and {py ∈ RN+ :
∑
jpyj = 1}, supported on xi and yj . A

ground transportation cost matrix C ∈ RM×N+ is defined such
that its elements cij =‖ xi−yj‖

q
q represent the cost of trans-

porting unit probability masses from location xi to yj . The
Kantorovich OMT problem determines an optimal trans-
portation plan Ua ∈ RM×N+ that can linearly map two prob-
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ability histograms onto each other with minimum amount of
total transportation cost, as follows:

Ua = argmin
U
〈C,U〉 s.t. U≥ 0, U1N = px,

UT1M = py . (3)

The transportation plan can be interpreted as a joint dis-
tribution that couples the marginal histograms px and py .
For the transportation cost with q = 2, the OMT problem in
Eq. (3) is convex and defines the square of the 2-Wasserstein
distance d2

W
(
px,py

)
= 〈C,Ua

〉 between the histograms.
Wasserstein distance has some advantages compared to

other measures of proximity, such as the Hellinger distance
(Hellinger, 1909) or the Kullback–Leibler (KL) divergence
(Kullback and Leibler, 1951). To elaborate on the advan-
tages, we confine our consideration to the Gaussian densi-
ties over which the Wasserstein distance can be obtained
in a closed form. In particular, interpolating over the 2-
Wasserstein space between N (µx,6x) and N (µy,6y), us-
ing an interpolation parameter η, results in a Gaussian distri-
bution N (µη,6η), where µη = ηµx + (1− η)µy and 6η =

6
−1/2
x

(
η6x + (1− η) (6

1/2
x 6y6

1/2
x )1/2

)2
6
−1/2
x (Y. Chen

et al., 2019).
Figure 1 shows the spectrum of interpolated distributions

between two Gaussian pdf’s for a range of η ∈ [0,1]. As
shown, the interpolated densities using the Hellinger dis-
tance, which is Euclidean in the space of probability his-
tograms, are bimodal. Although the Gaussian shape of the
interpolated densities using the KL divergence is preserved,
the variance of the interpolants is not necessarily bounded by
the variances of the input Gaussian densities. Unlike these
metrics, as shown, the Wasserstein distance moves the mean
and preserves the shape of the interpolants through a natural
morphing process.

As is previously noted, this metric is not limited to any
Gaussian assumption. Figure 2 shows the 2-Wasserstein in-
terpolation between a gamma and a Gaussian distribution.
The results show that the Wasserstein metric penalizes the
translation and mismatch between the shapes of the pdf’s. It
can be shown that d2

W (px,py)= d
2
W (px,py)+ ‖ µx−µy‖

2
2,

where px and py are the centered zero mean probability
masses, and µx and µy are the respective mean values (Peyré
and Cuturi, 2019).

3 Ensemble Riemannian data assimilation

3.1 Problem formulation

First, let us recall that the weighted mean of a cloud of points
{xi}

M
i=1 ∈ R

m in the Euclidean space is µx =
∑M
i=1ηi xi for

a given family of nonnegative weights
∑
iηi = 1. This ex-

pected value is equivalent to solving the following variational
problem:

µx = argmin
x

M∑
i=1

ηi ‖ xi − x‖
2
2 . (4)

The 3D-Var problem in Eq. (2) reduces to the above
barycenter problem when the model and observation error
covariances are diagonal with uniform error variances across
multiple dimensions of the state space. For non-diagonal
error covariances, it can be shown that the weight of the
background and observation are (B−1

+HTR−1H)−1B−1 and
(B−1
+HTR−1H)−1HTR−1, respectively, where H is the lin-

ear approximation of the observation operator. Therefore, the
3D-Var DA can be interpreted as a barycenter problem in
the Euclidean space, where the analysis state is the weighted
mean of the background state and observation.

By changing the distance metric from Euclidean to
the Wasserstein (Agueh and Carlier, 2011), a Riemannian
barycenter can be defined as the Fréchet mean (Fréchet,
1948) of Np probability histograms with finite second-order
moments, as follows:

pη = argmin
p

Np∑
k=1

ηkd
2
W (p,pk) . (5)

Inspired by (Feyeux et al., 2018), the EnRDA defines the
probability distribution of the analysis state p(xa) ∈ RM as
the Fréchet barycenter over the Wasserstein space as follows:

p(xa)= argmin
px{

ηd2
W (px , pxb )+ (1− η)d

2
W (px , |det

[
H′(x)

]
|py)

}
, (6)

where the displacement parameter η > 0 assigns the relative
weights to the observation and background term to capture
their respective geodesic distances from the true state. Here
H′(·) is the Jacobian of the observation operator, assuming
that H : x→ y is a smooth and a square (i.e., m= n) bijec-
tive map. The displacement parameter η is a hyperparameter,
and its optimal value should be determined empirically using
some reference data through cross-validation studies. For ex-
ample, in practice, one may compute the mean squared error
as a function of η, by comparing the analysis state and some
ground-based observations, and use the minimum point of
that function statically over a window of multiple assimila-
tion cycles. It is also important to note that, due to the bi-
jective assumption for the observation operator, the above
formalism currently lacks the ability to propagate the infor-
mation content of observed dimensions to unobserved ones.
This limitation is discussed further in the Sect. 5.

The solution of the above DA formalism involves finding
the optimal analysis transportation plan or the joint distri-
bution Ua ∈ RM×N , using Eq. (3), that couples the back-
ground and observation marginal histograms. We use Mc-
Cann’s method (McCann, 1997; Peyré and Cuturi, 2019) to
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Figure 1. Interpolation between two Gaussian distributions N (µ1,σ
2
1 ) and N (µ2,σ

2
2 ), where µ1 =−1.1,µ2 = 1.4,σ 2

1 = 0.4, and σ 2
2 =

0.01 act as a function of the interpolation or displacement parameter η ∈ [0,1] for the (a) Hellinger distance, (b) Kullback–Leibler divergence,
and (c) 2-Wasserstein distance (Peyré and Cuturi, 2019)

Figure 2. (a) Optimal transportation plan or the joint distribution Ua between a gamma 0(2,2) and a Gaussian marginal distribution
N (6.5,1) and (b) the 2-Wasserstein interpolation between them for different values of the displacement parameter η ∈ [0,1].

obtain the analysis probability histogram, as follows:

p(xa)=

M∑
i=1

N∑
j=1

uaij δzij , (7)

where the analysis support points are zij = ηxi + (1− η)yj .
To solve Eq. (3), the widely used interior point methods (Alt-
man and Gondzio, 1999) and Orlin’s (Orlin, 1993) algorithm
have a super-cubic run time with a computational complex-
ity of O(M3 logM), where M =N . Therefore, the use of
the original OMT framework in EnRDA is a limitation in
high-dimensional geophysical DA problems. To alleviate this
computational cost, in the next Sect. 3.2, we discuss the use
of entropic regularization.

To solve Eq. (6) in an ensemble setting, let us assume
that, in the absence of any a priori information, the back-
ground probability distribution is initially represented by
i = 1. . .M ensemble members of the state variable xi ∈ Rm
as p(xb)=

1
M

∑M
i=1δxi . An a priori assumption is needed to

reconstruct the observation distribution p(y)=
∑N
i=1pyj δyj

at j = 1. . .N supporting points. To that end, one may choose
a parametric or a nonparametric model based on the past
climatological information. Here, for simplicity, we assume
a zero mean Gaussian representation with covariance R ∈

Rn×n (Burgers et al., 1998) to perturb the observation at
each assimilation cycle. After each cycle, the probability his-
togram of the analysis state p(xa) is estimated using Eq. (7)
over zij atM×N support points. Then p(xa) is resampled at
M points using the multinomial sampling scheme (Li et al.,
2015) to initialize the next time step forecast.

3.2 Entropic regularization of EnRDA

In order to speed up the computation of the coupling, the
problem in Eq. (3) can be regularized as follows (Cuturi,
2013):

Ua = argmin
U
〈C,U〉− γ H(U)

s.t. U≥ 0,U1N = pxb ,U
T1M = py, (8)

where γ > 0 is the regularization parameter, and H(U) :=
〈U, logU− 1M1T

N 〉 represents the Gibbs–Boltzmann relative
entropy function. Note that the relative entropy is a concave
function, and, thus its negative value is convex.

The Lagrangian function (L) of Eq. (8) can be obtained by
adding two dual variables or Lagrangian multipliers q ∈ RM

https://doi.org/10.5194/npg-28-295-2021 Nonlin. Processes Geophys., 28, 295–309, 2021
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and r ∈ RN as follows:

L(U,q,r)= 〈C,U〉− γ H(U)−

〈q,U1N −pxb〉− 〈r,U
T1M −py〉. (9)

Setting the derivative of the Lagrangian function to zero, we
have the following:

∂L(U,q,r)
∂uij

= cij + γ log(uij )− qi − rj = 0 , ∀i,j . (10)

The entropic regularization keeps the problem in Eq. (8)
strongly convex, and it can be shown (Peyré and Cuturi,
2019) that Eq. (10) leads to a unique optimal joint density
with the following form:

Ua = diag(v)Kdiag(w), (11)

where v = exp(q)�(γ 1M) ∈ RM andw = exp(r)�(γ 1N ) ∈
RN are the unknown scaling variables and K ∈ RM×N+ is the
Gibbs kernel with elements kij = exp

(
−
cij
γ

)
, where cij are

the elements of the cost matrix C.
From the mass conservation constraints in Eq. (8) and the

scaling form of the optimal joint density in Eq. (11), we can
derive the following:

diag(v)Kdiag(w)1N = pxb and

diag(w)KT diag(v)1M = py . (12)

The two unknown scaling variables v and w can then be
iteratively solved using Sinkhorn’s matrix scaling algorithm
(Cuturi, 2013) as follows:

vl+1
= pxb � (Kw

l) and wl+1
= py � (KTvl) . (13)

The Sinkhorn algorithm is initialized using w0
= 1N , and

since the marginal densities pxb and py are not zero vectors,
the Hadamard division in Eq. (13) remains valid throughout
the iterations. A summary of the EnRDA implementation is
demonstrated in Algorithm 1.

The entropic regularization parameter plays an important
role in the characterization of the joint density; however,
there exists no closed-form solution for its optimal selection.
Generally speaking, increasing the value of γ will increase
the convexity of the cost function and, thus, computational
efficiency; however, this comes at the expense of reduced
coupling between the marginal histograms, which is consis-
tent with the second law of thermodynamics.

As an example, the effects of γ on the coupling between
two Gaussian mixture models pxb and py are demonstrated in
Fig. 3. It can be seen that, at smaller values of γ = 0.001, the
probability masses of the joint distribution are sparse and lie
compactly along the main diagonal – capturing a strong cou-
pling between the background state and observations. How-
ever, as the value of γ increases, the probability masses of
the joint distribution spread out – reflecting less of a degree

of dependency between the marginals. It is important to note
that in limiting cases, such as γ → 0, the solution of Eq. (8)
converges to the true optimal joint histogram, while in cases
such as γ →∞, the entropy of the analysis state increases
and tends to pxbpT

y . The regularization parameter is depen-
dent on the elements of the transportation cost matrix C and
varies according to the experimental settings. In practice, one
can begin with the value of γ set as the largest element of the
cost matrix C and gradually reduce it to find the minimum
value of γ that provides a stable solution.

4 Numerical experiments and results

In order to demonstrate the performance of EnRDA and
quantify its effectiveness, we focus on the linear advection–
diffusion equation and the chaotic Lorenz-63 model (Lorenz,
1963). The advection–diffusion model explains a wide range
of heat, mass, and momentum transport across the land, veg-
etation, and atmospheric continuum and has been utilized to
evaluate the performance of DA methodologies (Zhang et al.,
1997; Hurkmans et al., 2006; Ning et al., 2014; Ebtehaj et al.,
2014; Berardi et al., 2016). Similarly, the Lorenz-63 model,
as a chaotic model of atmospheric convection, has been
widely used in testing the performance of DA methodolo-
gies (Miller et al., 1994; Nakano et al., 2007; Van Leeuwen,
2010; Goodliff et al., 2015; Tandeo et al., 2015; Tamang
et al., 2020). Throughout, under controlled experimental set-
tings with foreknown model and observation errors, we run
the forward models under systematic errors and compare the
results of EnRDA with a particle filter (PF) and an EnKF.

4.1 Advection–diffusion equation

4.1.1 State space Characterization

The advection–diffusion is a special case of the Navier–
Stokes partial differential equation. In its linear form, with
constant diffusivity in an incompressible fluid flow, it is ex-
pressed for a mass conserved physical quantity x(s, t) as fol-
lows:

∂x(s, t)

∂t
+ a�∇x(s, t)= D∇2x(s, t) , (14)

where s ∈ Rn represents a n-dimensional spatial domain at
time t . In the above expression, a = (a1, . . .,an)

T
∈ Rn is the

advection velocity vector, and D= diag(D1, . . .,Dn) ∈ Rn×n
represents the diffusivity matrix. Given the initial condi-
tion x(s, t = 0), owing to its linearity, the solution at time
t can be obtained by convolving the initial condition with
a Kronecker delta function δ(s− a t) followed by a con-
volution with the fundamental Gaussian kernel G(s, t)=

1
(2π)n/2 |6|1/2 exp

(
−

1
2 s

T6−1s
)

, where 6 = 2D t .
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Figure 3. The effect of the entropic regularization parameter γ on the optimal joint histogram coupling two Gaussian mixture models, where
pxb is 0.5N (−12,0.4)+ 0.5N (−8,0.8) and py is 0.55N (5,4)+ 0.45N (9.5,4).

4.1.2 Experimental setup and results

In this subsection, we first highlight the difference be-
tween Euclidean and Wasserstein barycenters using a 2-D
advection–diffusion model and then compare the results of
EnRDA with the PF and EnKF on a 1-D advection–diffusion
equation.

Figure 4 shows the results of an assimilation experiment
using the 2-D advection–diffusion equation where the under-
lying state is bimodal. This experiment is designed to demon-
strate the differences between the Euclidean and Wasser-
stein barycenters in the presences of bias in a non-Gaussian
state space. In particular, the state space is characterized over
a spatial domain s1 = (0,10] and s2 = (0,10] with a dis-
cretization of 1s1 =1s2 = 0.1. The advection–diffusion is

considered to be an isotropic process with true model pa-
rameters set as a1 = a2 = 0.08 (L/T), and D1 =D2 = 0.02
(L2/T). The shown state variable is obtained after evolving
two Kronecker delta functions x(s, t)= 1000δ(s1, s2) and
x(s, t)= 4000δ(s1, s2) for T =0–25 and T = 0–35 (T), re-
spectively.

To resemble a model with systematic errors, background
state is obtained by increasing the advective velocity to 0.12
(L/T) while diffusivity is reduced to 0.01 (L2/T; Fig. 4b). Ob-
servations are not considered to have position biases; how-
ever, a systematic representative error is imposed, assum-
ing that the sensing system has a lower resolution than the
model. To that end, we evolve two Kronecker delta functions,
x(s, t)= 800δ(s1, s2) and x(s, t)= 2400δ(s1, s2), with a
mass less than the true state for same time period of T = 0–
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Figure 4. The true state xtr, the background state xb, and observation y (a)–(c) with systematic errors under a 2-D advection–diffusion
dynamics, as well as the Euclidean (d)–(f) and the Wasserstein barycenters (g)–(i), between xb and y for different displacement parameters
η. The entropic regularization parameter is set to γ = 0.003, and the black plus signs show the location of the modes for the true state.

25 and T = 0–35 (T) and then upscale the field by a factor of
2 through box averaging (Fig. 4c).

As shown in Fig. 4g–i, the Wasserstein barycenter pre-
serves the shape of the state variable well and gradually
moves the mass towards the background state as the value of
η increases, while the bias remains almost constant, and the
unbiased root mean squared error (ubrmse) increases from
0.12 to 0.95. The error quality metrics are constantly below
the Euclidean counterpart. As shown in Fig. 4d–f, the shape
of the Euclidean barycenter for smaller values of η is not
well recovered due to the position error. As η increases from
0.25 to 0.75, the Euclidean barycenter is nudged towards the
background state and begins to recover the shape. The bias
is reduced by more than 30 %, from 0.15 to 0.05; however,
this occurs at the expense of an almost threefold increase in
ubrmse, from 0.3 to 1.1. The reason for the reduction in the
bias is that the positive differences between the Euclidean

barycenter and the true state are compensated by their neg-
ative differences. However, ubrmse is quadratic and, thus,
measures the average magnitude of the error irrespective of
its signs.

For the 1-D case, the state space is characterized over
a spatial domain s ∈ (0,60] with a discretization of 1s =
0.1. The model parameters are chosen to be a = 0.8 (L/T)
and D = 0.25 (L2/T). The initial state resembles a bimodal
mixture of Gaussian distributions obtained by superposition
of two Kronecker delta functions x(s, t = 0)= 300δ(s) –
evolved for time 15 and 25 (T), respectively. The ground truth
of the trajectory is then obtained by evolving the initial state
at a time step of 1t = 0.5 over a window of T = 0–30 (T) in
the absence of any model error.

The observations are obtained at assimilation intervals
101t , assuming an identity observation operator, through
corrupting the ground truth by a heteroscedastic Gaussian
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noise with a variance εy = 5 % of the squared values of the
ground truth state. We introduce both systematic and ran-
dom errors in the model simulations. For the systematic error,
model velocity and diffusivity coefficient are set to a′ = 0.12
(L/T) and D′ = 0.4 (L2/T), respectively. To impose the ran-
dom error, a heteroscedastic Gaussian noise with variance
εb = 2 % is added at every 1t to model simulations. In total,
100 ensemble members are used in EnRDA, and the regu-
larization and displacement parameters are set to γ = 3 and
η = 0.2 through the previously outlined trial and error pro-
cedures. To obtain a robust comparison of EnRDA with PF
and EnKF, each with 100 particles (ensemble members), the
experiment is repeated for 50 independent simulations.

The evolution of the initial state over a time period T = 0–
30 (T) and the results comparing EnRDA with PF and EnKF
at 5, 15, and 25 (T) are shown in Fig. 5. As demonstrated,
during all time steps, EnRDA reduces the analysis uncer-
tainty in terms of both bias and ubrmse. The shape of the en-
tire state space is also properly preserved and remains closer
to the ground truth. The EnKF performance is comparable
to EnRDA during the initial time steps; however, the perfor-
mance degrades and the error statistics gradually increases
as the system evolves over time. Among the two traditional
ensemble-based methodologies, the PF acquires the highest
error statistics owing to the well-known problem of filter de-
generacy (Poterjoy and Anderson, 2016), which is exacer-
bated by the presence of systematic errors.

We should emphasize that the presented results do not im-
ply that EnRDA always performs better than PF and EnKF.
The EnKF at the limiting case M→∞, in the absence of
bias, is a minimum mean squared error estimator and attains
the lowest possible posterior variance for linear systems, also
referred to as the Cramér–Rao lower bound (Cramér, 1999;
Rao et al., 1973). Thus, when the errors are drawn from zero
mean Gaussian distributions with a linear observation op-
erator, EnKF can outperform EnRDA in terms of the mean
squared error.

4.2 Lorenz-63

4.2.1 State space characterization

The Lorenz system (Lorenz-63; Lorenz, 1963) is derived
through the truncation of the Fourier series of the Rayleigh–
Bénard convection model. This model can be interpreted as
a simplistic local weather system only involving the effect
of local shear stress and buoyancy forces. In the following,
the system is expressed using coupled ordinary differential
equations that describe the temporal evolution of three coor-
dinates x, y, and z representing the rate of convective over-
turn, horizontal, and vertical temperature variations:

dx
dt
=−σ(x− y)

dy
dt
= ρx− y− xz

dz
dt
= xy−βz, (15)

where σ represents the Prandtl number, ρ is a normalized
Rayleigh number proportional to the difference in temper-
ature gradient through the depth of the fluid, and β de-
notes a horizontal wave number of the convective motion.
It is well established that, for parameter values of σ = 10,
ρ = 28, and β = 8/3, the system exhibits chaotic behav-
ior, with the phase space revolving around two unstable sta-
tionary points located at (

√
β(ρ− 1),

√
β(ρ− 1),ρ− 1) and

(−
√
β(ρ− 1),−

√
β(ρ− 1),ρ− 1).

4.2.2 Experimental setup and results

Throughout the paper, we use the classic multinomial re-
sampling for implementation of EnRDA and particle filter.
Apart from the systematic error component, we utilize the
standard experimental setting used in numerous DA stud-
ies (Miller et al., 1994; Furtado et al., 2008; Van Leeuwen,
2010; Amezcua et al., 2014). In order to obtain the ground
truth of the model trajectory, the system is initialized at
x0 = (1.508870, −1.531271, and 25.46091) and integrated
with a time step of 1t = 0.01 over a time period of T = 0–
20 (T) using the fourth-order Runge–Kutta approximation
(Runge, 1895; Kutta, 1901). The observations are obtained at
every assimilation interval 401t by assuming identity obser-
vation operator and perturbing the ground truth with Gaus-
sian noise vt ∼N (0,σ 2

obs6ρ), where σ 2
obs = 2 and the corre-

lation matrix 6ρ ∈ R3×3 is populated with 1 on the diagonal
entries, 0.5 on the first sub- and super-diagonals, and 0.25 on
the second sub- and super-diagonals.

In order to characterize the distribution of the background
state, 100 particles (ensemble members) are used, among all
DA methods, by adding to the ground truth a zero mean
Gaussian noise ω0 ∼N (0,σ 2

0 I3), with σ 2
0 = 2 at the initial

time. To introduce systematic errors, the model parameters
are set to σ ′ = 10.5, ρ′ = 27, and β ′ = 10/3. The random er-
rors are also introduced in time by adding a Gaussian noise
ωt ∼N (0,σ 2

b I3) at every 1t , with σ 2
b = 0.02. Throughout

the paper, to draw a robust statistical inference about the
error statistics, the DA experiments are repeated for 50 in-
dependent simulations. As described previously, to properly
account for the effects of both bias and ubrmse, the opti-
mal value of the displacement parameter η in EnRDA can
be selected based on an offline analysis of the minimum
mean squared error. However, to provide a fair comparison
between EnRDA and other filtering methods, at each assim-
ilation cycle, we set η = tr(R)/tr(R+B) when the observa-
tion operator is an identity matrix. Note that, while the obser-
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Figure 5. (a) Temporal evolution of a bimodal initial state under a linear 1-D advection–diffusion equation (b)–(d) by the particle filter (PF),
ensemble Kalman filter (EnKF), and ensemble Riemannian data assimilation for three time snapshots at 5, 15, and 25 (T). The bias and
ubrmse of the analysis states are also reported in the legends.

vation error covariance remains constant in time, the back-
ground error covariance is obtained from simulated ensem-
bles and changes in time dynamically. This selection assures
that the relative weights assigned to the background state and
observations remain at the same order of magnitude among
different methods.

Figure 6 shows the temporal evolution of the ground truth
and the analysis state by the PF (first column), EnKF (sec-
ond column), and EnRDA (third column) over a time period
of T = 0–15 (T). As is evident, the PF is well capable of
capturing the ground truth when observations lie within the
particle spread. However, when the observations lie far apart
from the support set of particles (Fig. 6; dashed box), and
the distribution of the background state and observations be-
come disjoint, the filter becomes degenerate, and the analysis
state (particle mean) deviates from the ground truth (Fig. 6g;
dashed box). As a result, the bias of PF along the z dimen-
sion is markedly lower than that of the EnKF and EnRDA,
while ubrmse is significantly higher, whereas EnRDA is ca-
pable of capturing the true state well – even when ensemble
spread and observations are far apart from each other. Al-
though EnKF does not suffer from the same problem of filter
degeneracy as the particle filter, in earlier time steps from
2.5 to 7.5 (T), it struggles to adequately nudge the analysis
state towards the ground truth when ensemble members are
far from the observations due to the imposed systematic bias.
EnRDA seems to be robust to the propagation of systematic
errors in this region and follows the true trajectory well.

The time evolution of the bias and ubrmse for 50 inde-
pendent simulations, with the same error structure, is color-
coded over the phase space in Fig. 7. As shown, the error

quality metrics are relatively lower for EnRDA than other DA
methodologies. Nevertheless, we can see that the improve-
ment compared to EnKF is modest. In particular, across all
dimensions of the problem, the mean bias and ubrmse de-
creased in EnRDA by 68 (13) % and 53 (27) % compared
to the particle filter (EnKF). More details about the expected
values of the bias and ubrmse are reported in Table 1. We em-
phasize that the presented results shall be interpreted in light
of the presence of systematic errors. In fact, EnRDA cannot
reduce the analysis error variance beyond a minimum mean
squared estimator such as EnKF in the absence of bias.

5 Discussion and concluding remarks

In this study, we introduced an ensemble data assimilation
(DA) methodology over a Riemannian manifold, namely en-
semble Riemannian DA (EnRDA), and illustrated its perfor-
mance in comparison with other ensemble-based DA tech-
niques for dissipative and chaotic dynamics. We demon-
strated that the presented methodology is capable of assimi-
lating information in the probability domain, which is char-
acterized by the families of distributions with finite second-
order moments. The key message is that when the probability
distribution of the forecast and observations exhibit a non-
Gaussian structure, and their support sets are disjoint due to
the presence of systematic errors; the Wasserstein metric can
be leveraged to potentially extend the geophysical forecast
skills. However, future research for a comprehensive com-
parison with existing filtering and bias correction method-
ologies is needed to completely characterize relative pros and
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Figure 6. Temporal evolution of the true state xtr in Lorenz-63, observations y, and the analysis state xa for the particle filter (PF) (a, d,
g), ensemble Kalman filter (EnKF) (b, e, h), and ensemble Riemannian data assimilation (EnRDA) (c, f, i), with 100 particles (ensemble
members). The temporal evolution of the particles and ensemble members are shown with solid gray lines. Also shown within dashed boxes
are the windows of time over which the DA methods exhibit large errors.

Figure 7. Temporal evolution of bias and ubrmse along three dimensions of the Lorenz-63 for the (a, d) particle filter (PF), (b, e) ensemble
Kalman filter (EnKF), and (c, f) ensemble Riemannian data assimilation (EnRDA), each with 100 particles (ensemble members). The mean
values are computed over 50 independent simulations.

cons of the proposed approach, especially when it comes to
the ensemble size and optimal selection of the displacement
parameter η.

We explained the role of the static regularization and dis-
placement parameter in EnRDA and empirically examined
their effects on the optimal joint histogram, coupling the
background state and observations, and, consequently, on
the analysis state. Nevertheless, future studies are required
to characterize closed-form or heuristic expressions to ex-

pand our understating of their impacts on the forecast un-
certainty dynamically. As was explained earlier, unlike the
Euclidean DA methodologies that assimilate available infor-
mation using different relative weights across multiple di-
mensions through the error covariance matrices, a scalar dis-
placement parameter is utilized in EnRDA that interpolates
uniformly between all dimensions of the problem. Future re-
search can be devoted to developing a framework that utilizes
a dynamic vector representation of the displacement parame-
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Table 1. Expected values of the bias and ubrmse for the particle filter (PF), ensemble Kalman filter (EnKF), and ensemble Riemannian data
assimilation (EnRDA) for 50 independent simulations of Lorenz-63 across all problem dimensions.

Methods Bias Ubrmse

x y z x− z x y z x− z

Particle filter 2.24 2.41 0.59 1.75 6.25 7.95 7.88 7.36
EnKF 0.33 0.35 1.23 0.64 3.80 5.41 5.02 4.74
EnRDA 0.17 0.24 1.25 0.56 2.63 4.0 3.78 3.47

ters to effectively tackle possible the heterogeneity of uncer-
tainty across multiple dimensions.

In its current form, EnRDA requires the observation op-
erator to be smooth and bijective. This is a limitation when
observations of all problem dimensions are not available and
the propagation of observations to non-observed dimensions
is desired. Extending the EnRDA methodology to include
partially observed systems seems to be an important future
research area. This could include performing a rough inver-
sion for unobserved components of the system offline or ex-
tending the methodology in the direction of particle flows
(Van Leeuwen et al., 2019). Another promising area is to use
EnRDA only over the observed dimensions of the state space
and, similar to the EnKF, use the ensemble covariance to up-
date the unobserved part of state space through a hybrid ap-
proach. Furthermore, it is important to note that several bias
correction methodologies are available that explicitly add a
bias term to the control vector in variational and filtering DA
techniques (Dee, 2003; Reichle and Koster, 2004; De Lan-
noy et al., 2007b). Future research is required to compare the
performance of EnRDA with other bias correction method-
ologies to fully characterize its relative advantages and dis-
advantages.

We should mention that EnRDA is computationally expen-
sive as it involves the estimation of the coupling through the
Wasserstein distance. On a desktop machine with a 3.4 GHz
CPU clock rate, it took around 1600 s to complete 50 inde-
pendent simulations on Lorenz-63 for EnRDA compared to
651 (590) s for the PF (EnKF) with 100 particles (ensem-
ble members). Since the computational cost is nonlinearly
related to the problem dimension, it is expected that it grows
significantly for large-scale geophysical DA and becomes a
limiting factor. Furthermore, in high-dimensional geophys-
ical problems, the computational cost of determining opti-
mal displacement parameter η through cross-validation can
be high. Although the entropic regularization works well for
the presented low-dimensional problems, future research is
needed to test its efficiency in high-dimensional problems.
Constraining the solution of the coupling on a submanifold
of probability distributions with a Gaussian mixture structure
(Y. Chen et al., 2019) can also be a future research direction
for lowering the computational cost. Furthermore, recent ad-
vances in approximation of the Wasserstein distance, using
a combination of 1-D Radon projections and dimensionality

reduction (Meng et al., 2019), can significantly reduce the
computational cost to make EnRDA a viable methodology
for tackling high-dimensional geophysical DA problems.

Finally, in the presented formalism, we define the analysis
state distribution through an optimal coupling between fore-
cast and observation distributions. Future lines of research
can be devoted to coupling the forecast distribution with a
normalized version of the likelihood function towards estab-
lishing connections with Bayesian data assimilation.
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