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INTRODUCTION
Perfusion is the process by which blood flows through 
tissue, provides nutrition and removes metabolic waste 
products. It can be quantified using imaging techniques, the 
gold-standard of which include radiolabelled water ([15O]-
H2O)` positron emission tomography (PET) and Xenon-
enhanced CT. In these techniques, a tracer is delivered to 
the tissue and leaves the vasculature producing changes 
in signal which directly reflect blood flow and capillary 
exchange, producing a true measurement of perfusion.1 
However, these techniques cannot be performed in routine 
clinical practice. Recent advances have therefore attempted 
to quantify perfusion metrics using MRI.

MRI-derived perfusion metrics can aid in the diagnosis of 
gliomas.2 They can also aid understanding of several clin-
ically relevant processes including angiogenesis, intracra-
nial pressure effects, drug delivery, tumour infiltration and 
hypoxia.3–5 To date, the most widely studied MRI-derived 
perfusion metrics in the glioma literature are cerebral blood 
volume (CBV), which is the total volume of blood moving 
through a tissue per unit volume of brain, and the contrast 
transfer constant (Ktrans), which is a composite parameter 
reflecting both tissue blood flow and the capillary perme-
ability surface area product.6,7 However, blood flow, repre-
senting the rate over which blood moves through a unit of 
tissue, is understudied though uniquely relevant to a wide 
range of biological processes.
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Objective: Blood flow is the rate of blood movement and 
relevant to numerous processes, though understudied in 
gliomas. The aim of this review was to pool blood flow 
metrics obtained from MRI modalities in adult supraten-
torial gliomas.
Methods: MEDLINE, EMBASE and the Cochrane data-
base were queried 01/01/2000–31/12/2019. Studies 
measuring blood flow in adult Grade II–IV supratento-
rial gliomas using dynamic susceptibility contrast (DSC) 
MRI, dynamic contrast enhanced MRI (DCE-MRI) or arte-
rial spin labelling (ASL) were included. Absolute and 
relative cerebral blood flow (CBF), peritumoral blood 
flow and tumoral blood flow (TBF) were reported.
Results: 34 studies were included with 1415 patients and 
1460 scans. The mean age was 52.4 ± 7.3 years. Most 
patients had glioblastoma (n = 880, 64.6%). The most 
common imaging modality was ASL (n = 765, 52.4%) 

followed by DSC (n = 538, 36.8%). Most studies were 
performed pre-operatively (n = 1268, 86.8%). With 
increasing glioma grade (II vs IV), TBF increased (70.8 vs 
145.5 ml/100 g/min, p < 0.001) and CBF decreased (85.3 
vs 49.6 ml/100 g/min, p < 0.001). In Grade IV gliomas, 
following treatment, CBF increased in ipsilateral (24.9 ± 
1.2 vs 26.1 ± 0.0 ml/100 g/min, p < 0.001) and contralat-
eral white matter (25.6 ± 0.2 vs 26.0± 0.0 ml/100 g/min, 
p < 0.001).
Conclusion: Our findings demonstrate that increased 
mass effect from high-grade gliomas impairs blood 
flow within the surrounding brain that can improve with 
surgery.
Advances in knowledge: This systematic review demon-
strates how mass effect from brain tumours impairs 
blood flow in the surrounding brain parenchyma that 
can improve with treatment.

http://creativecommons.org/licenses/by-nc/4.0/
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MRI techniques to measure local blood flow can be split into 
contrast-based methods such as dynamic susceptibility contrast 
(DSC) and dynamic contrast enhanced (DCE) MRI, and non-
contrast based methods such as arterial spin labelling (ASL).1 
DSC relies on proton decay of transverse magnetisation induced 
by adjacent intra-arterial paramagnetic contrast media (T2* 
shortening effects). DCE also exploits contrast effects, but is 
based on recovery of proton longitudinal magnetisation (T1 
shortening effects). ASL avoids exogenous contrast agent and 
instead, labels protons in the neck, usually by application of 
a 180 degree inversion radiofrequency pulse. These inverted 
protons subsequently flow into the region of interest and the 
signal differences between a pre- and post-inversion image are 
used to determine blood flow.8

To date, there is limited data on MRI derived blood flow metrics 
in adult supratentorial gliomas. The aim of this systematic review 
was to quantitatively pool blood flow metrics obtained from 
commonly used MRI modalities in adult supratentorial gliomas.

METHODS AND MATERIALS
Registration
The study protocol was registered on the international prospec-
tive register of systematic reviews (PROSPERO) under the ID 
number: CRD42019111578. The review was undertaken and 
the manuscript composed according to PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis) 
guidelines.

Literature search
The literature search strategy is outlined in Supplementary 
Table 1. All searches were conducted by two authors (MW 
and DL). MEDLINE, EMBASE and the Cochrane Database of 
Systematic Reviews were queried starting from 01/01/2000 to 
31/12/2019 using the NICE Healthcare Databases Advanced 
Search (HDAS) service. References of included studies were 
examined to extract potential further papers that may have 
been missed during the initial systematic search. Two authors 
(MW and DL) screened titles, abstracts and full-texts inde-
pendently to identify articles meeting the inclusion criteria. 
Discrepancies were resolved through discussion and review by 
a third author (EA).

Inclusion criteria
Articles meeting the following criteria were included in the 
study, grouped as per our Participants, Interventions, Compar-
isons and Outcomes (PICO) strategy:

•	 Participants:

–– Adult patients (≥18 years)
–– Minimum sample size = 5
–– Diagnosis of WHO Grade II, III or IV glioma
–– Treatment prior to imaging clearly described

•	 Interventions

–– DSC, DCE or ASL imaging

•	 Comparisons

–– Presentation of quantitative blood flow data by individual 
glioma grade.

•	 Outcome

–– Absolute or relative blood flow metrics reported

Data extraction
For each study, data on patient characteristics, imaging 
modality, blood flow metrics and key confounding variables 
was extracted into an excel spreadsheet. Only results from 
study groups and subgroups with ≥5 patients were analysed. 
Differences and subsequent bias in blood flow results can be 
attributed to heterogeneity in imaging modality (DSC, DCE or 
ASL), region of interest (ROI) analysis, reference tissue selec-
tion for measurement of relative blood flow and the time point 
at which imaging is performed (e.g. pre-, post-operatively 
or at recurrence). Data on these variables were therefore 
collected to account for potential bias in reported outcomes 
and inform our analysis. For inclusion, studies must therefore 
have provided data on these confounding variables to mini-
mise bias.

Risk of bias
The risk of bias in each included study was assessed using the 
QUADAS-2 tool that is designed for diagnostic studies.9 Two 
authors (MW and DL) agreed a set of standards for bias assess-
ment using this tool prior to screening, particularly those 
relating to selection bias (e.g. consideration of which patients 
were excluded) and assessment of the reference standard (e.g. 
correlation to histological grade). These authors then screened 
each included study independently using the QUADAS-2 tool. 
Disagreements were resolved through discussion with a third 
author (EA).

Data analysis
Data on ROIs employed by studies was used to group 
reported blood flow metrics and create universal definitions 
(Table  1). Three main groups of flow metrics were consid-
ered, including: cerebral blood flow (CBF) relating to non-
tumoral brain parenchyma; peritumoral flow – relating to 
signal abnormality beyond the enhancing edge of the glioma; 
and tumoral flow – relating to the tumour itself (defined 
variably as the total T1-enhancing hyperintensity or T2 
hyperintensity).

Data were described as categorised by the following variables 
that can influence blood flow metrics:

•	 Grade of glioma: results were presented separately for WHO 
Grade 2 (G2), Grade 3 (G3) and Grade 4 (G4) gliomas. 
Subgroup analysis was also performed between gliomas with 
an oligodendroglial component to those without.

•	 Time point of imaging: pre-operative; post-treatment, where 
treatment refers to surgery ±radiotherapy/chemotherapy; and 
recurrence.

•	 Type of imaging: contrast based – (DSC/DCE); and non-
contrast based – (all types of ASL).

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/10.1259/bjr.20201450/suppl_file/Supplementary table.docx
www.birpublications.org/doi/suppl/10.1259/bjr.20201450/suppl_file/Supplementary table.docx
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Statistical analysis
Statistical analysis was performed using SPSS v. 22 (IBM Corp., 
Armonk, NY). Absolute blood flow results were reported in 
ml/100 g/min whilst relative values were unit-less. Means were 
derived for each blood metric and provided with standard devi-
ations. Means were weighted by study sample size as measures 
of variance were not reported often enough to allow inverse 
variance weighting for the majority of studies. Group compari-
sons were performed using independent t-tests (t-t) or one-way 
analysis of variance (ANOVA), for two or three group compar-
isons, respectively. In the case of one-way ANOVA, post-hoc 
comparisons were performed using Bonferroni tests. The inter-
relation between two categorical variables of interest (time point 
of imaging and type of imaging) was modelled using a factorial 
ANOVA generalised linear model. A sensitivity analysis was 
performed for the most commonly reported blood flow metric 
using inverse variance weighting, including only studies that 
reported measures of variance.

RESULTS
Literature search
A PRISMA flow diagram describing the literature search and 
study identification is provided (see Supplement). A total of 
1770 unique records were identified and 195 full texts retrieved. 
34 studies were included in the final quantitative analysis 
(Table 2).10–43

The overall risk of bias in included studies was low (see Supple-
mentary Table 2 and Supplementary Figure 1). The major source 
of bias was in patient selection.

Patient and imaging characteristics
Blood flow metrics were reported in 1415 patients undergoing 
1460 MRI studies. The mean age was 52.4 (±7.3) years. Glioma 
grades were as follows: G2 (n = 319, 22.5%), G3 (n = 190, 13.4%) 
and G4 (n = 906, 64.0%). The commonest imaging modality 
was ASL (n = 765, 52.4%), followed by DSC (n = 538, 36.8%) 
and DCE (n = 157, 10.8%). MRI studies were performed pre-
operatively (n = 1268, 86.8%), post-treatment (n = 102, 7.0%) 
and at recurrence (n = 90, 6.2%).

Pre-operative flow metrics
The full list of pre-operative flow metrics by glioma grade is 
shown in Supplementary Table 3. The most commonly reported 
flow metric overall was max relative Tumoural Blood Flow 
(rTBF) - white matter reference, in 20 studies.

Most absolute blood flow values in cerebral and peritumoral 
areas were reported only for Grade IV gliomas (Supplementary 
Table 3). Pre-operatively, CBF values were as follows: overall - 
30–50 ml/100 g/min; white matter - 20–30 ml/100 g/min; and 
grey matter - 70 ml/100 g/min. Peritumoral flow values were 
similar to CBF in white matter at around 15–25 ml/100 g/min.

Pre-operative tumour blood flow metrics are presented separately 
in Supplementary Table 4 together with 95% confidence intervals 
to aid diagnostic use. There was a clear stepwise increase in these 
values with glioma grade.

Flow metrics in which statistical comparison was possible 
between the different grades are shown in Table 3 and visually 
represented in Figure  1a. In pre-operative studies, all tumoral 
flow metrics increased with increasing glioma grade as shown in 
Table 3. For example, max TBF increased sequentially from G2 to 
G3 and G4 tumours (70.8 vs 122.9 vs 145.5, ANOVA, F = 56.9, p 
< 0.001). Relative max peritumoral flow showed a similar pattern 
(1.1 vs 1.3 vs 1.7, respectively; ANOVA, F = 39.8, p < 0.001). 
Meanwhile, total max CBF decreased with increasing glioma 
grade and this change was statistically significant between G2/
G3 and G4 tumours (85.3/80.0 vs 49.6 ml/100 g/min, ANOVA, F 
= 39.7, p < 0.001).

A subgroup comparison was performed between Grade II-III 
oligodendroglial tumors and pure astrocytic tumours, including 
results from those studies reporting exclusively on these tumour 
types. This analysis included 88 gliomas with oligodendroglial 
components and 60 pure astrocytic tumors. The max relative 
TBF with all reference ROIs was significant higher in oligoden-
droglial tumours (3.2 ± 2.4 vs 2.4 ± 1.1, t-t, t = 3.4, p < 0.001).

Type of imaging
Blood flow metrics were significantly different between contrast 
and non-contrast based MRI studies (Table 4). Where n > 30 for 
both imaging types (seven studies highlighted with an asterisk* 
in Table 4), non-contrast based methods produced significantly 
higher flow results for most measures (in five out of seven of 
these studies).

Time point of imaging
Time point comparison of blood flow metrics was only possible 
for G2 and G4 tumours. This analysis was limited due to the small 
number of studies reporting on post-treatment and recurrence 
blood flow metrics. In G2 tumours, only one study reported on 
post-treatment max relative TBF (relative to white matter), with 
a significant increase in this parameter compared to the pre-
operative stage (2.1 ± 0.9 vs 2.6 ± 0, t-t, t = 6.8, p < 0.001).

Time point comparison for G4 tumours is shown in Table  5 
and visually represented in Figure  1b. Following treatment 
(surgery ± oncological therapy), there were marginal but statisti-
cally significant increases in mean CBF in ipsilateral (24.9 ± 1.2 
vs 26.1±0.0 ml/100 g/min, t-t, t = 6.79, p < 0.001) and contralat-
eral white matter (25.6 ± 0.2 vs 26.0±0.0 ml/100 g/min, t-t, t = 
20.0, p < 0.001). This was accompanied by variable changes in 
TBF. There was a significant reduction in mean TBF (98.0 ± 34.5 
vs 68.2±0.0 ml/100 g/min, t-t, t = 10.7, p < 0.001), but increase in 
relative flow values (Table 5). At recurrence, there were signifi-
cant reductions in all flow metrics compared to the pre-operative 
stage.

Sensitivity analysis
A sensitivity analysis of max rTBF (relative to white matter) 
revealed a serial increase with increasing tumour grade 
(ANOVA, F = 286.3, p < 0.001). Changes were significant when 
comparing G2 and G3 (Post-hoc Bonferroni, p < 0.001), G2 and 
G4 (Post-hoc Bonferroni, p < 0.001) and G3 and G4 (Post-hoc 
Bonferroni, p < 0.001).

http://birpublications.org/bjr
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DISCUSSION
In this systematic review, we reported blood flow characteristics 
in gliomas obtained from conventional MRI sequences – DSC, 
DCE or ASL. Pre-operative TBF and peritumoral flow increased 

with increasing tumour grade and was associated with a corre-
sponding decrease in CBF. TBF was also higher in oligodendro-
gliomas compared to astrocytomas. Although only a handful of 
studies reported post-treatment results, CBF seemed to increase 

Table 2. Study characteristics9–42

Study Imaging modality Stage of imaging nG2 nG3 nG4
Hakyemez et al35 DSC Preoperative 8 18

Wolf et al42 CASL Preoperative 5 8 11

Bastin et al31 DSC Preoperative 10

Kim et al37 PASL Preoperative 11 7 15

Haris et al36 DCE Preoperative 17 7 35

Kim et al38 PASL Preoperative 26

Weber et al41 PASL, DSC Preoperative 12 26 24

Server et al39 DSC Preoperative 18 14 47

Thomsen et al40 DSC Preoperative, post-treatment 6 38

Fellah et al33 DSC Preoperative 24 26

Artzi et al30 DSC Post-treatment 14

Falk et al32 DSC, DCE Preoperative 18 7

Furtner et al34 PASL Preoperative 14

Andre et al10 pCASL Recurrence 18

Qiao et al24 pCASL Preoperative 53

Smitha et al25 DSC Preoperative 15 18 7

Lin et al19 pCASL Preoperative 24

Petr et al22 pCASL Post-treatment 24

Puig et al23 DSC Preoperative 15

Yang et al27 PASL Preoperative 15 15 13

Ganbold et al13 pCASL Preoperative 25

Kim et al16 pCASL Recurrence 72

Lin et al20 DSC Preoperative 18 15

Zeng et al29 pCASL Preoperative 13 17 28

Brendle et al11 DCE, PASL Preoperative 20

Durmo et al12 DSC Preoperative 10

Han et al14 pCASL Preoperative 92

Khashbat et al15 pCASL Preoperative 6

Komatsu et al17 ASL - type unspecified Preoperative 40 18 44

Lee et al18 DSC Preoperative 89

Liu et al21 pCASL Preoperative 22

Stadlbauer et al26 DSC Preoperative, post-treatment 57

You et al28 pCASL Preoperative 93

Sengupta et al43 DCE Preoperative 15 12 26

CASL, Continuous arterial spin labelling; DCE, Dynamic contrast enhanced MRI; DSC, Dynamic susceptibility contrast MRI; G2, WHO grade two 
gliomas; G3, WHO grade three gliomas; G4, WHO grade four gliomas; PASL, Pulsed arterial spin labelling; pCASL, Pseudo continuous-continuous 
arterial spin labelling.
34 studies were included in the final quantitative meta-analysis. Please note that the numbers refer to the number of patients in the study. Most 
studies reported imaging metrics at the preoperative stage. G4 tumours were the most commonly studied.

http://birpublications.org/bjr
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marginally, with variable changes reported for relative and abso-
lute TBF. Non-contrast based imaging modalities (ASL) tended 
to produce higher flow results.

We found that TBF increases with increasing glioma grade. 
In contrast to normal brain vasculature, glioma vessels have 
increased total vessel surface area, branch points and vessel 
length, but reduced diameter and branch length.44 They can 
also aggregate to form complex glomeruloid structures, with 
increased gap between endothelial cells to facilitate vascular 
leak.45 These characteristics transition from less to more frequent 
with increasing glioma grade.46,47 However, the net effect of these 
vascular changes is increased flow with increasing glioma grade, 
despite some features producing increased resistance to flow 
(increased branch points, increased permeability) and decreased 
local flow (increased vessel length, decreased vessel diameter). 
Presumably, the net effect of increased total vessel surface area 
outweighs that of the other factors.

The higher TBF in oligodendrogliomas versus astrocytomas 
corresponds to prior reports of a higher cerebral blood volumes 
(CBVs).48 The exact reasoning for this is unclear. One explana-
tion relates to oligodendroglioma vasculature, often described 
as a network of regular fine branching capillaries, resulting in 
a “chicken wire” appearance on imaging. Oligodendrogliomas 
vessels also have a larger mean vessel size to facilitate greater 
flow.49 Another explanation relates to the preferentially cortical 
location of oligodendrogliomas, arising mostly in grey matter, 
which has a higher flow rate than white matter.48

Absolute flow metrics were sparsely reported. In Grade IV gliomas, 
absolute pre-operative CBF values were 30–50 ml/100 g/min 
overall, 20–30 ml/100 g/min in white matter, and 70 ml/100 g/min 
in grey matter. These values are similar, but not completely homol-
ogous, to those reported in healthy volunteers.50,51 Therefore, rela-
tive flow metrics such as rTBF are less useful than absolute metrics, 
as they assume normality in normal appearing tissue, whereas our 
data suggest this is not a valid assumption. There is also variation in 
perfusion metrics across normal tissue such that their mean value 
is not a useful reference marker.50,51 Tumour-related raised intra-
cranial pressure may also impact relative flow metrics more so than 
absolute values in the setting of impaired autoregulation, which is 
found in a high proportion of brain tumour patients.52

Non-contrast based imaging modalities tended to produce higher 
results. Prior studies comparing ASL to quantitative [15O]-H2O 
PET in healthy volunteers have also reported a tendency for the 
former to overestimate flow values.53 However, evidence to the 
contrary also exists, and in one study comparing ASL and DSC 
in the ischaemic penumbra of cerebral infarcts, ASL tended to 
underestimate true blood flow compared to DSC, producing in 
turn a higher total hypoperfusive tissue volume.54 Studies using 
ASL have highlighted the importance of a long enough post-
labelling delay to produce robust results.55 Limitations of ASL 
techniques include their relatively low signal-to-noise ratio in 
comparison to DSC/DCE, sensitivity to motion due to reliance 
on image subtraction, and potential for discrepant results in 
elderly patients due to prolonged arterial transit.56

G
ra

de
 2

G
ra

de
 3

G
ra

de
 4

A
N

O
VA

Bo
nf

er
ro

ni
Fa

ct
or

ia
l 

A
N

O
VA

M
 ±

 S
D

R
N

M
 ±

 S
D

R
N

M
 ±

 S
D

R
N

A
N

O
V

A
, O

ne
 w

ay
 a

na
ly

si
s 

o
f 

va
ri

an
ce

; C
B

F,
 C

er
eb

ra
l b

lo
o

d
 fl

o
w

; M
 ±

 S
D

, M
ea

n±
st

an
d

ar
d

 d
ev

ia
ti

o
n;

 N
, N

um
b

er
 o

f 
st

ud
ie

s 
fo

llo
w

ed
 b

y 
nu

m
b

er
 o

f 
p

at
ie

nt
s 

b
et

w
ee

n 
st

ud
ie

s;
 N

/A
, C

ur
re

nt
 s

ta
ti

st
ic

al
 

te
st

 c
o

ul
d

 n
o

t 
b

e 
p

er
fo

rm
ed

; R
, R

an
g

e;
 R

O
I, 

R
eg

io
n 

o
f 

in
te

re
st

; T
B

F,
 T

um
o

ra
l b

lo
o

d
 fl

o
w

; r
T

B
F,

 R
el

at
iv

e 
tu

m
o

ra
l b

lo
o

d
 fl

o
w

.
T

hi
s 

ta
b

le
 s

ho
w

s 
th

e 
b

lo
o

d
 fl

o
w

 m
et

ri
cs

 t
ha

t 
co

ul
d

 b
e 

co
m

p
ar

ed
 b

et
w

ee
n 

d
iff

er
en

t 
g

lio
m

a 
g

ra
d

es
. A

 o
ne

-w
ay

 a
na

ly
si

s 
o

f 
va

ri
an

ce
 (

A
N

O
V

A
) 

an
d

 p
o

st
-h

o
c 

B
o

nf
er

ro
ni

 t
es

ts
, w

er
e 

un
d

er
ta

ke
n 

to
 

d
et

er
m

in
e 

w
he

th
er

 d
iff

er
en

ce
s 

in
 m

ea
n 

va
lu

es
 b

et
w

ee
n 

g
lio

m
a 

g
ra

d
es

 w
er

e 
st

at
is

ti
ca

lly
 s

ig
ni

fi
ca

nt
. T

hi
s 

w
as

 f
ur

th
er

 v
al

id
at

ed
 w

it
h 

a 
fa

ct
o

ri
al

 A
N

O
V

A
 t

o
 c

o
nt

ro
l f

o
r 

th
e 

ty
p

e 
o

f 
M

R
 im

ag
in

g
 u

se
d

 
(c

o
nt

ra
st

 b
as

ed
 o

r 
no

n-
co

nt
ra

st
 b

as
ed

).
 W

it
h 

in
cr

ea
si

ng
 g

lio
m

a 
g

ra
d

e,
 t

um
o

ra
l a

nd
 p

er
ile

si
o

na
l b

lo
o

d
 fl

o
w

 in
cr

ea
se

d
, w

he
re

as
 C

B
F

 d
ec

re
as

ed
. A

ll 
ab

so
lu

te
 fl

o
w

 m
et

ri
cs

 a
re

 in
 m

l/
10

0
 g

/m
in

 a
nd

 
al

l r
el

at
iv

e 
fl

o
w

 v
al

ue
s 

ar
e 

un
it

le
ss

.

Ta
b

le
 3

. (
C

o
nt

in
ue

d
)

http://birpublications.org/bjr


11 of 16 birpublications.org/bjr Br J Radiol;94:20201450

BJRCerebral and tumoral blood flow in gliomas

There are important limitations of contrast-based imaging 
techniques that could limit interpretation of our results, given 
that most data were derived from these techniques. The spatial 
resolution of both DSC and DCE is limited. In DSC, the main 
sources of error are: susceptibility artefacts around air-bone 
interfaces, especially at the skull base; tissue contrast leakage 
effects as a result of blood-brain-barrier breakdown and strong 
relaxation effects on T2*; and systematic errors from the assump-
tion of uniform tissue relaxivity and blood haematocrit.57–59 In 
DCE, errors can arise from these same factors and in addition: 
motion artefacts resulting from a longer data acquisition time; 

differences in contrast timing and dose; and the kinetic model 
used for data analysis.60–63

Blood flow can be measured using imaging modalities not 
included in this review. MRI-based modalities include 
diffusion-weighted MRI using intravoxel incoherent motion 
and phase contrast angiography.64,65 Non-MRI modalities 
include CT perfusion, Xenon enhanced CT, Single Photon 
Emission CT (SPECT) and [15O]-H2O PET. Studies using these 
techniques have similarly reported increasing TBF with glioma 
grade.65–68

Figure 1. Visual representation of flow metrics. Statistical significance is denoted by an asterisk (*). (a) Line graph to show the 
relationship between histological glioma grade and absolute CBF and TBF. Opposite trends were observed such that an increase 
in the grade of glioma was accompanied by an increase in TBF (ANOVA, p < 0.001), but decrease in CBF (ANOVA, p < 0.001), 
presumably due to the increased mass effect from a high-grade glioma. (b) Line graph to show the relationship between the time 
point of imaging and CBF/TBF in Grade IV gliomas. Treatment in the form of surgery ± oncological chemoradiotherapy resulted in 
a decrease in TBF (t-t, p < 0.001), but increase in CBF (t-t, p < 0.001). CBF, cerebral blood flow; TBF, tumoral blood flow.

Table 4. Comparison of pre-operative flow metrics obtained by contrast and non-contrast MRI studies

Contrast-based Non-contrast-based

T-testM ± SD R N M ± SD R N
Max perilesional flow 23.7 ± 0.0  �  1, 15 26.4 ± 0.5 26.2–27.4 2, 117 t = 60.0, p < 0.001

Max perilesional relative flow - 
white matter reference

1.6 ± 0.4 1.1–2.0 4, 89 1.1 ± 0.0  �  1, 24 t = 10.1, p < 0.001

Mean TBF* 42.6 ± 25.0 4.2–63.9 4, 70 79.1 ± 41.5 12.1–136.5 11, 223 t = 9.0, p < 0.001

Max TBF 151.6 ± 0.0  �  1, 15 130.4 ± 52.3 46.9–250.0 11, 270 t = 6.7, p < 0.001

Mean rTBF - all reference ROIs* 2.9 ± 2.0 1.5–7.9 3, 
192

3.1 ± 1.9 0.9–5.7 6, 144 t = 0.59, p = 0.56

Mean rTBF - white matter 
reference*

2.9 ± 2.0 1.5–7.9 3, 
192

4.1 ± 1.5 1.3–5.7 3, 92 t = 5.6, p < 0.001

Max rTBF - all reference ROIs* 4.0 ± 1.8 1.0–7.3 20, 
355

3.5 ± 2.9 1.0–9.5 17, 330 t = 3.0, p = 0.003

Max rTBF - mixed* 3.8 ± 1.7 1.7–5.9 5, 
109

5.3 ± 3.0 1.3–9.5 6, 169 t = 5.1, p < 0.001

Max rTBF - white matter 
reference*

4.1 ± 1.8 1.0–7.3 15, 
246

1.3 ± 0.2 1.1–1.6 4, 59 t = 24.2, p < 0.001

Max rTBF - grey matter reference* 1.2 ± 0.5 0.6–1.7 3, 46 1.8 ± 0.5 1.0–2.7 6, 96 t = 6.6, p < 0.001

ANOVA, One way analysis of variance; CBF, Cerebral blood flow; M ± SD, Mean±standard deviation; N, Number of studies followed by number of 
patients between studies; N/A, Current statistical test could not be performed; R, Range; ROI, Region of interest; TBF, Tumoral blood flow; rTBF, 
Relative tumoral blood flow.
This table shows blood flow metrics that were comparable between contrast and non-contrast based MRI studies. Where n > 30 for both imaging 
types (*), there was a trend for non-contrast based methods to produce higher flow results. All absolute flow metrics are in ml/100 g/min and all 
relative flow values are unitless.
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A better understanding of glioma perfusion has several appli-
cations. Blood flow metrics could aid in selecting patients for 
antivascular endothelial growth factor (VEGF) treatment.69 
Knowledge of blood flow in addition to other perfusion metrics, 
could guide treatment planning and chemotherapy dose adjust-
ment, and serve as a marker of treatment response.10 Blood flow 
metrics could help to better define the tumour edge to aid oper-
ative resection.70 They could also provide an indication of cere-
bral perfusion pressure, which in turn could help determine the 
urgency of surgical intervention.71

Limitations of the current review include the fact that different 
software packages/analytical processing methods to extract blood 
flow metrics, were not accounted for, this is especially relevant 
for ASL, for which several processing models exist. This includes 
quality control measures during measurement of blood flow to 
avoid extreme values (e.g. excluding necrotic areas, major vessels 
within the regions of interest). Different imaging protocols 
between studies were also not considered. However, arguably, 
attempting to adjust for these factors would have reduced the 
overall number of results that could be aggregated and made our 
methodology overly complex. The majority of studies presented 
results at the pre-operative stage such that interpretation of flow 
metrics at other time points - post-treatment and recurrence, 
was limited by study size and number. There was a lack of data 
on glioma genomics and how they relate to blood flow.

CONCLUSION
This study represents the first systematic review of MRI derived 
blood flow metrics in adult supratentorial gliomas. Pooling 
data from 3 MRI sequences – DSC, DCE and ASL, we reported 
blood flow metrics related to the tumor, peritumoral area and 
normal surrounding brain parenchyma. Pre-operative TBF and 
peritumoral flow increased with increasing tumour grade and 
was accompanied by a corresponding decrease in CBF. TBF was 
higher in oligodendrogliomas compared to astrocytomas. After 
treatment, there were marginal increases in CBF, presumably 
relating to relief of mass effect. ASL techniques tended to over-
estimate flow metrics in comparison to DSC/DCE. Our results 
have a number of potential applications and aid understanding 
of perfusion in adult gliomas.
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