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A B S T R A C T

Beetle elytron plate (BEP) is a biomimetic sandwich structure inspired by the internal architecture of beetle
elytra and characterised by trabeculae in the core. This type of structure has been shown to possess superior
mechanical properties to conventional sandwich plates; however, there are no studies that evaluate its
structural bending resistance. This paper develops an analytical method to calculate the key component of
bending resistance of BEPs: the elastic local buckling load of the compression skin. It assumes that the
compression skin of BEPs is simply supported by the trabecular core. After eliminating local buckling in
the edges of the compression skin outside the trabeculae, two buckling zones, depending on the ratio (𝜂) of
trabecular radius to the distance between two adjacent trabeculae, are identified. At low 𝜂 values (𝜂 ≤0.25),
elastic buckling occurs in the space of the compression skin surrounded by four adjacent trabeculae. Beyond
the critical value of 𝜂 (𝜂>0.25), buckling occurs in the compression skin enclosed by individual trabecula.
Guided by finite element simulation results, this paper identifies a new suite of deformation shape functions
and derives local elastic buckling load for the compression skin according to the principle of minimal total
potential energy. Afterwards, a convenient quadratic polynomial regression equation is proposed to modify
the elastic buckling coefficient of the compression skin of equivalent conventional grid honeycomb sandwich
plates, with the maximum difference between analytical calculation results and finite element simulation results
being about 7%.
1. Introduction

Sandwich plates are a type of structure with high specific strength
and stiffness [1–3]; therefore, many studies have been conducted to
investigate their performance (such as buckling behaviour [4], fire
resistance [5], bending and compressive properties [6,7]), energy dis-
sipation and impact resistance [8,9]) and applications in a variety of
different industrial sectors (such as aerospace [10], automobiles [11],
ships [12] and building structures [13]). As the efficiency of traditional
sandwich structures is fully explored, new types of high-performance
sandwich structures that feature foam [14,15], truss [16,17] and corru-
gated cores [18,19] have been developed to satisfy the ever-increasing
demand for structural efficiency. Recent studies have also focused on
bionic structures, such as nacre [20], biological tissues like fruit walls,
muscle, wood and bone [21] and woodpecker beaks [22]. Based upon
the latter, Ha et al. [22] proposed a type of sandwich plate with a wavy
core with their simulation results suggesting that the new structure has
better energy absorbing ability under impact load relative to sandwich
structures featuring conventional honeycomb cores.

This research is concerned with a new type of bio-inspired sandwich
structure, referred to as the beetle elytron plate (BEP). Over millions of
years, beetles have evolved to fly and their body structure is a result

∗ Corresponding author.
E-mail address: yong.wang@manchester.ac.uk (Y.C. Wang).

of this long evolution to allow for multiple functions [23,24], so as
to adapt and survive under different conditions [25,26]. Xiang [27]
appears to be the first to describe the beetle elytron as a sandwich
structure consisting of upper and lower skins linked by a core structure
of tubular elements, described anatomically as the trabeculae. Chen
et al. [28] provide a detailed account of the structure of the elytron
of Allomyrina dichotoma (A. dichotoma), as shown in Fig. 1(a–c). As
part of their study, they proposed a biomimetic sandwich plate inspired
by beetle elytra [29,30] and conducted mechanical tests to obtain its
compressive properties. The results show that compared to honeycomb
core plates, the trabecular structure greatly enhances the compressive
resistance and energy absorption properties of the BEP by enabling
stiffer and higher-order buckling modes in the core [31,32]. Therefore,
this biomimetic sandwich structure is likely to be advantageous in
applications where these mechanical properties are key, such as crash
box structures [33] and protective equipment used by the aerospace
and aeronautical industries [34,35].

An unexplored application of BEP is for constructing light weight
building facades. In this type of application, BEPs are subjected to
bending under lateral loads. This subject is the focus of a few re-
cent studies on three-point and cantilever experiments of [36,37]. The
https://doi.org/10.1016/j.tws.2021.107922
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Fig. 1. Microstructure of the beetle elytron and corresponding biomimetic model. (a) A. dichotoma [28]; (b) microstructure of elytron upper skin [28,29]; (c) the trabecular
structure [28,29]; (d) biomimetic model, BEP [30]. (Note: broad arrows refer to the trabecular structure; stars refer to the honeycomb wall).
results of these studies confirm that BEP has a higher load-carrying
capacity than comparable conventional sandwich plates in bending.
However, these studies have so far been limited to phenomenological
observations based on experiments. If this innovative structure is to
be used in practice, it is necessary to be able to predict its behaviour
analytically so that a suitable and rational design methodology can be
developed.

The bending resistance of both BEPs and conventional sandwich
plates is predominately controlled by the compression resistance of the
skin. Since the compression skin is slender, the local buckling load of
the skin is expected to be the limiting factor. The first step, which is
the focus of this study, is to quantify the elastic local buckling load
of the compression skin. Therefore, the objectives of this study are:
(1) to understand the different modes of buckling behaviour of the
compression skin of BEP, (2) to identify the preferred local buckling
mode with the highest buckling load based on simulation work, and (3)
to derive an analytical method to calculate the elastic local buckling
load. Validated numerical simulations will be used to achieve these
objectives.

It should be appreciated that there may be other structural shapes
that are more efficient, e.g. using bracing in the core. However, at
present, no such solution exists. Therefore, it is not possible to com-
pare the BEP structure of this research with potentially more efficient
structures. Nevertheless, more efficient structures will be considered in
future research.

2. BEP structure and research methodology

The basic model of a BEP and its structural parameters are shown
in Fig. 2 [30,31]. The BEP consists of two layers of skin with length
L, width W and thickness 𝑡𝑠, which are separated by a core structure
with a height h. The basic geometrical shape of the core structure can
be adjusted to suit functional and manufacturing requirements. The
maximum local buckling stress is achieved for a plate aspect ratio of 1
according to [38,39]. The intended construction of BEP is to maximise
its resistance. In addition to convenience and without loss of general
applicability, a square grid is selected in the present study.

The key characteristic of this biomimetic sandwich plate is the
trabecular structure, with radius R, wall thickness 𝑡𝑐 and centre-to-
centre distance a in both directions, located at the intersections of grid
walls. A dimensionless parameter 𝜂 ( = R/a) is used, where 𝜂 = 0
epresents a conventional grid plate without trabeculae. The maximum
alue of 𝜂 is 0.5.

= 𝑅
a

(1)

In this paper, the theoretical derivations to calculate the elastic
local buckling behaviour of the compressive skin of a BEP are aided
by numerical simulations using the general purpose finite element
package ABAQUS [40]. Therefore, the research methodology of this
paper involves the following main steps:

(1) Validation of the general finite element model. There is no direct
numerical model for the buckling behaviour of the compressive skin of
2

BEP; the only published experimental studies of the bending behaviour
of BEPs [36,37] cannot be used for this validation exercise, because
the failure modes were debonding between the skin and the core
rather than local buckling of the skin. Therefore, local buckling of the
compression skin of the conventional honeycomb sandwich structure is
used. Furthermore, the main effect of trabeculae is imposing a circular
boundary condition to the rectilinear compression skin. Therefore, elas-
tic buckling of circular plates under compression is also simulated. For
validation of ABAQUS simulations, the simulation results are compared
against available analytical solutions [38,39].

(2) The validated ABAQUS model is used to perform a parametric
study in terms of 𝜂 and b/a ratio to understand the effects of trabecular
structure on local buckling behaviour of the compression skin of BEP
in Section 4, including local buckling locations and modes, which is
then utilised to identify the most effective trabecular structure for
maximising local buckling load of the compression skin.

(3) In Section 5, based on the preferred buckling mode, suitable
shape functions of the compression skin are selected and used to derive
an analytical method based on minimisation of the total potential
energy. The results of this theoretical derivation are used to identify the
most important parameters which are then used in Section 6 to propose
a simple regression equation for application in routine engineering
design.

3. Validation of ABAQUS modelling - comparison against analyti-
cal results for conventional sandwich plates

The conventional sandwich plate structure used for validation has
the same arrangement as shown in Fig. 2 except there are no trabeculae.
As the core is very slender, it is assumed that it can only provide lateral
restraint and not rotational restraint to the compression skin. Therefore,
the compression skin is modelled as being simply supported (Fig. 3)
in this first study of the subject by the authors. Future research will
address the effects of rotational stiffness and axial flexibility of the core
on the compression skin.

With the above boundary condition to the compression skin, the
elastic buckling loads of the exterior region (the green region) and
the interior region (the blue region) in Fig. 3 can be calculated using
the following equations [38,39]; and the buckling stress of the whole
compressive skin should be the lower one from Eqs. (2) and (3).

𝜎𝑖 = 4 ⋅ 𝜋2𝐷
(𝑎)2 ⋅ 𝑡𝑠

(2)

𝜎𝑒 =
[

𝜋2𝑏2

𝑎2
+ 6 (1 − 𝜐)

]

⋅
𝐷

(𝑏)2 ⋅ 𝑡𝑠
(3)

where, 𝜎𝑒 refers to buckling stress of the exterior region, 𝜎𝑖 is buckling
stress of the interior region; m is the number of half waves along
the x direction that gives the minimum buckling stress (m = 1 for
square interior zones); flexural rigidity per unit width of the plate:
D=𝐸𝑡3𝑠/[12(1-𝜈2)].

The following material properties and dimensions are used:
The input material properties (Young’s modulus (E) = 5 GPa and

Poisson’s ratio ((v) = 0.38) are for the purpose of obtaining numerical
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Fig. 2. Definition and dimensions of a BEP (half-structure in x and y directions): (a): top view of the core structure; (b and c): elevation views.
Fig. 3. Geometry, boundary condition and loading condition of the compressive skin of a conventional grid honeycomb sandwich model for validation of ABAQUS modelling. (a)
and (b) are 2D and 3D diagrams, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
results only. These values have been used as they are the values of
a type of 3D printing resin [30,32] that may be used in the authors’
further research. However, since this study is about deriving a general
method to calculate the elastic buckling load, the exact values of E and
v do not have any influence on the accuracy of the analytical method.

The thickness of the skin 𝑡𝑠 is 1 mm. The core structure is assumed
to be square on plan with width and length W = 2a. The edge distance
is b. The length of the ABAQUS simulation model is 12a. A wide range
of values (10, 20 and 30) for the slenderness parameter 𝜆 = a/t 𝑠 is
considered in this study.

According to Eqs. (2) and (3), if b/a<0.35, local buckling occurs
in the interior region of the structures and if b/a>0.35, local buckling
occurs in the exterior region. Since these two buckling modes will also
occur in BEP structure, therefore, two geometric conditions with b/a =
0.3 and 0.4 are adopted in the numerical simulations.

The structure is modelled using 3-node triangular general-purpose
shell (S3) elements with five integration points in the thickness direc-
tion.

Fig. 4(a) compares ABAQUS simulation results and analytical solu-
tions using Eq. (2) for interior buckling mode (b/a = 0.3) and Fig. 4(b)
using Eq. (3) for exterior buckling mode (b/a = 0.4). The results are
expressed as ratios of the ABAQUS simulation result for buckling stress
to the analytical solution, and the two figures show their variations
with mesh size for different slenderness values (𝜆 = a/t 𝑠). The results in
both figures indicate that when the mesh size is 0.5 mm, the simulation
results converge to a stable value and the converged values are very
close to the analytical solutions, with a difference of less than 4%.

There is no result available for direct validation of numerical simu-
lation of local buckling involving trabeculae. However, the main effect
of trabeculae is imposing a circular boundary condition to the com-
pression skin of the BEP. Therefore, additional numerical simulations
are carried out for such a compression plate with different slenderness

values and the simulation results are compared with the analytical

3

solution in [39], as shown in Fig. 5. The agreement between numerical
simulation and analytical solutions can be considered good, with a
maximum difference of 4%.

4. Local buckling behaviour of BEP

Due to the similarity with the conventional grid sandwich structure,
only two units of the compressive skin of the BEP structure are pre-
sented in Fig. 6. The following dimensions are used: 𝑡𝑠 = 1 mm; the
ratio of trabecular diameter to trabecular spacing (𝜂 = R/a) ranges from
0 to 0.5; the mesh size is 0.5 × 0.5 mm based on the mesh sensitivity
study result presented in the previous section.

4.1. Buckling modes

There are three potential locations for the occurrence of local buck-
ling in the BEP structure. In addition to the two locations experienced
by conventional grid sandwich structures, specifically the space en-
closed by the four trabeculae (referred to as interior buckling), and on
the edge (termed exterior buckling), it is also possible for local buckling
to occur within the circle of the trabecular (named as circular buckling
in this paper), as shown in Fig. 6.

In practical design, it is preferable to avoid exterior buckling, be-
cause this is an inefficient mode of structural behaviour, which happens
when using more materials on the edge would lead to reduced buckling
stress. Furthermore, this buckling mode can be easily engineered out
by limiting the b/a ratio. For the conventional grid sandwich structure,
this value was found to be 0.3, as discussed in the previous section.
The existence of trabeculae may change this value. Therefore, an extra
parametric study was conducted to investigate the demarking value
for BEP structure. Since the thickness of the skin affects the buckling
load under these three different buckling modes in the same way, it is

expected that changing the skin thickness will not affect the location
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Fig. 4. Validation and mesh sensitivity results. (a) interior buckling mode (b/a = 0.3); (b) exterior buckling mode (b/a = 0.4).
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Fig. 5. Comparison between simulation and analytical solutions for a plate in
compression with circular boundary condition.

of local buckling. Therefore, the parametric study was undertaken for
combinations of b/a and R/a ratios. The a/t 𝑠 ratio is taken as 20.

Fig. 7 depicts how the location of buckling changes with increasing
/a and R/a (𝜂) ratios. The buckling locations is determined accord-
ng to the position of highest amplitude of half wave, such as three
xamples shown in Fig. 7(a). For the interior and circular buckling,
he highest amplitude occurs in the central point of the corresponding
egion; while it occurs in the middle of the free edge for the exterior
uckling. According to Fig. 7(b), it is found that the maximum b/a
alue that avoids exterior buckling varies slightly with the R/a (𝜂) ratio.
4

f the b/a ratio does not exceed 0.3, exterior buckling will not occur.
herefore, in later sections of this paper, the value b/a is set at 0.3.

Similar to eliminating the exterior buckling mode, the end buckling
ode [41] can be engineered out, so that there is no compression skin

eyond any trabeculae. Therefore, the present study does not consider
he end effect.

.2. Effects of trabecular spacing on buckling position

To examine where local buckling occurs (interior or circular), this
ection will compare ABAQAUS simulation results of buckling stress as
function of R/a ratio for different skin slenderness (𝜆) values. Due to

existence of trabecula in the BEP structure, the following two values
may be used to calculate slenderness of the interior buckling area:

𝜆𝑛 =
𝑎
𝑡𝑠

(4)

or:

𝜆𝑟 =
𝑎(1 − 2𝜂)

𝑡𝑠
(5)

Since Eq. (5) takes into consideration the dimension of trabecular,
it is more appropriate and is therefore used in this paper.

Fig. 7 presents simulation results of buckling stress as a function
of parameter 𝜂 for three slenderness values of 8, 16 and 24. In all
cases, the results peak at 𝜂 = 0.3. When 𝜂 < 0.3, elastic local buckling
occurs in the area between adjacent trabeculae (Fig. 6, blue area), with
increasing buckling load at increasing 𝜂 (see Fig. 8). The maximum
local buckling load is about twice of that without trabeculae. However,
in the region of 𝜂 = 0.25–0.30, there is little improvement in buckling
stress.

When 𝜂 ≥ 0.3, elastic buckling occurs in the compression skin
nclosed by individual trabecula (Fig. 6, yellow area), with decreasing
uckling load at increasing trabecular radius. Since increasing the
Fig. 6. Geometry, boundary condition and possible local buckling locations of the compression skin of BEP structure. (a) and (b) are 2D and 3D diagrams, respectively. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Effects of trabecular spacing on elastic local buckling load of BEP.

iameter of trabeculae requires more material for the structure, local
uckling within the trabecular circle should also be avoided. Therefore,
n the remainder of this paper, only buckling in the area bound by four
rabeculae will be considered. The conditions are: b/a ≤ 0.3; R/a ≤
.25.

. Development of the analytical model and identification of de-
ormation shapes to account for trabecular effects

.1. Development of the analytical model

The derivation for elastic local buckling load is based on
inimisation of the total potential energy.

The strain energy (U) and the work (V ) done by an axial load (𝑁𝑥)
an be calculated by [38,39]:

= D
2
⋅∬

{

(

𝜕2W
𝜕x2

+ 𝜕2W
𝜕z2

)2

− 2 (1 − 𝜐)

[

𝜕2W
2

× 𝜕2W
2

−
(

𝜕2W
)2

]}

dxdy (6)

𝜕x 𝜕z 𝜕x𝜕z w

5

V = −1
2 ∬ N𝑥 ⋅ (

𝜕W
𝜕x

)2dxdy (7)

For a given point (𝑥𝑖, 𝑦𝑗) with an infinitesimally small range ±𝛿, the
quation for calculating the strain energy over this range is:

i,j =
D
2
⋅ ∫

xi+𝛿

xi−𝛿
∫

y+𝛿

yj−𝛿

⎧

⎪

⎨

⎪

⎩

(

𝜕2Wij

𝜕x2
+

𝜕2Wij

𝜕z2

)2

− 2 (1 − 𝜐)
⎡

⎢

⎢

⎣

𝜕2Wij

𝜕x2
×

𝜕2Wij

𝜕z2
−

(

𝜕2Wij

𝜕x𝜕z

)2
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

dxdy (8)

imilarly, the work done by the axial load (𝑁𝑥) becomes:

I,j = −1
2 ∫

xi+𝛿

xi−𝛿
∫

y+𝛿

yj−𝛿
⋅N𝑥 ⋅ (

𝜕𝑊𝑖𝑗

𝜕x
)2dxdy (9)

In these equations,

𝑊𝑖𝑗 = 𝐶 ⋅𝑤𝑖𝑗 (10)

where 𝑊𝑖𝑗 are the actual out-of-plane (z direction) deflections; and 𝑤𝑖𝑗
s the shape function.

In general, if the structural zone has the same dimensions and
ame half-wave lengths, unit shape function is used, so the constant
‘C ’’ in Eq. (10) is the maximum deflection of the zone. However, due
o existence of trabeculae, the half-wave lengths may be different in
ifferent directions and vary at different locations. Therefore, instead
f using unit shape function, the half-wave lengths in both directions of
ny zone are included in the corresponding shape function as detailed
elow. The value of ‘‘C ’’ for each zone is then adjusted to ensure that
eformation compatibility is maintained in the entire compression skin.

The strain energy and the work done by the axial load of the whole
late are:

=
∑

Ui,j (11)

V =
∑

Vi,j (12)

The total potential energy of a unit compression skin is:

=U + V (13)

or equilibrium, the total potential energy (𝛱) should be stationary
ith respect to the degree of freedom. Therefore, the buckling load is
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Fig. 10. Local deformation shapes (local reference system) of the interior region of
he compressive skin of BEPs for varying ratios of 𝜂.

obtained from the first non-trivial solution of the following equation:
𝑑𝛱
𝑑𝐶

= 0 (14)

.2. Deformation shapes

In the analytical derivation, only one part bound by four adjacent
rabeculae is considered. This is because the same deformation pattern
s repeated over all parts, as demonstrated by the numerical simulation
esult shown in Fig. 7(b).

The results in Fig. 8 indicate that in region of interest for the interior
uckling mode (𝜂 ≤ 0.25) of compressive skin of BEP, there are three
egions. When 𝜂 (=R/a) is low (between 0 and 0.05), the trabeculae
ave limited effect as the structure changes from the conventional grid
tructure to BEP structure. This is shown by a very small rate of increase
n buckling load as 𝜂 increases. When the 𝜂 value changes in the region
etween 0.05 and 0.2, rates of increase in local buckling load are
arger. The remaining region (between 0.2 and 0.25) has a maximum
ate of increase. It means that these three regions of 𝜂 have different
eformation behaviours and should be considered separately.

According to [38,39], the local load is determined by the defor-
ation shape and half-wave length. For the compression skin of BEP

tructure, these two factors are affected by the trabecular structure, as
llustrated in Figs. 9–11.

For 𝜂 ≤ 0.05, the shape of the whole buckling region can be
escribed by a sine function, which is the same as for the conventional
late, as shown in Fig. 9(a) and Fig. 10(a, b, and c1). For 𝜂 in the range

f 0.05< 𝜂<0.2, near the edges of x (or y) =0 and a/2 (Fig. 10(d)), the a

6

uckling deformation can still be described by a sine function, as shown
n Fig. 9(b) and Fig. 10(a, b). However, when x or y is equal to R, the
eformed shape lies between sine and cosine functions (Fig. 10(c2)).
his indicates that at these two positions (Fig. 10(d), dashed boxes)
he out-of-plane rotational restraint of the edges has been improved.

hen 𝜂 is further increased to the range of 0.2 ≤ 𝜂 ≤ 0.25, the
orresponding deformation shape can be directly described by a cosine
unction Fig. 9(c) and (Fig. 10 (c3)).

Such a phenomenon occurs because the arc-shaped edge partially
onstrains the rotations of the skin in the x and y directions, as shown
n Fig. 10(d, dashed boxes). In other words, the rotational restraint on
he local edges of the skin is enhanced by the circular geometry of
he trabecula. It is also observed that increasing the radius of the arc-
haped edge (namely a larger 𝜂 value) enhances the rotational restraint
f the skin until the deformed shape resembles a full cosine function.

Therefore, two beneficial effects caused by the trabecular structure
an be inferred from the FEM results: (i) a reduced buckling area,
nd (ii) enhanced rotational restraint. On this basis, the buckling
eformation can be categorised into three modes: (i) buckling with
sine function (referred to as the sine buckling mode, Fig. 10(c1))
hen 𝜂 ≤ 0.05; (ii) buckling with a cosine function (referred to as

he cosine buckling mode, Fig. 10(c3)) when 0.2 ≤ 𝜂 ≤ 0.25; and
iii) buckling mode with a mixture of sine and cosine functions when
.5< 𝜂<0.2, Fig. 10(c2). For mode (iii), the exact deformation shape is
ifficult to be determined accurately. However, the buckling load for
his region are expected to be accurately evaluated by assuming the
impler sine deformation shape. Therefore, the exact, but much more
omplex, deformation shape function was not considered in the present
tudy.

Due to irregularity of the buckling unit in the zone between four
rabeculae, it is divided into five zones (I∼V), as shown in Fig. 11.
ecause circular buckling within each trabecular is prevented at 𝜂 ≤
.25, zone V has low deformations, less than 3% that of the maximum
uckling deformation value of the buckling area. Furthermore, the ratio
f area enclosed in the circle of a trabecular is small compared to the
uckling area (less than 𝜋/16 for 𝜂 ≤ 0.25). Therefore, the energy stored
n zone V is ignored for simplicity in the present study.

These observations have informed the detailed proposals described
elow in Sections 5.2.1 and 5.2.2 for deformation shape functions
nd half-wave lengths of different regions of the compression zone
f BEP structure. The simple lateral supports along the trabecular do
ot change the in-plane stress flow, therefore, everywhere, the internal
inear load acts in the x-direction and is equal to 𝑁𝑥.

.2.1. 𝜂 ≤ 0.05
The deformation shapes of these four zones can be described by sine

unction.
Fig. 12 shows the detailed shape functions of zones I and II. Based on

his, the detailed shape functions of the four zones can be determined

s follows.
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Fig. 11. Five zones for interior buckling of the compressive skin. Their half-wave
engths in each zone are marked by red-dashed line. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)

Zone I (𝑅 ≤ 𝑥 ≤ 𝑎∕2 and 𝑅 ≤ 𝑦 ≤ 𝑎∕2):

I,𝑖𝑗 (𝑥, 𝑦) = 𝑓1 (𝑥) ⋅ 𝑓1 (𝑦) =
(

𝑎 ⋅ sin 𝜋𝑥
𝑎

)

⋅
(

𝑎 ⋅ sin
𝜋𝑦
𝑎

)

(15)

where:

𝑓1 (𝑥) = 𝑎 ⋅ sin 𝜋𝑥
𝑎

(16)

𝑓1 (𝑦) = 𝑎 ⋅ sin
𝜋𝑦
𝑎

(17)

Zone II (𝑅 ≤ 𝑥 ≤ 𝑎∕2 and 0 ≤ 𝑦 ≤ 𝑅):
The deformation shape function is the same as that of zone I in

he y-direction. In the x direction, the sine function can still be used,
owever, for any given point (𝑥𝑖, 𝑦𝑗), due to the existence of the

trabecular structure (Fig. 12b), the half-wavelength, 𝑙𝑤, is shortened
from a in Eq. (15) to Eq. (18).

𝑙𝑤 = 𝑎 − 2
√

𝑅2 − 𝑦𝑗2 (18)

Therefore, the shape function in the x direction is:

𝑓2 (𝑥) =
(

𝑎 − 2
√

𝑅2 − 𝑦𝑗2
)

⋅ sin

⎡

⎢

⎢

⎢

⎣

𝜋 ⋅
(

𝑥 −
√

𝑅2 − 𝑦𝑗2
)

𝑎 − 2
√

𝑅2 − 𝑦𝑗2

⎤

⎥

⎥

⎥

⎦

(19)

Therefore, for any given point P (𝑥𝑖, 𝑦𝑗), the complete shape func-
tion of zone II is:

𝑤II,𝑖𝑗 (𝑥, 𝑦) = 𝑓2 (𝑥) ⋅ 𝑓1 (𝑦) =
(

𝑎 − 2
√

𝑅2 − 𝑦𝑗2
)

⋅ sin

⎡

⎢

⎢

⎢

⎣

𝜋 ⋅
(

𝑥 −
√

𝑅2 − 𝑦𝑗2
)

𝑎 − 2
√

𝑅2 − 𝑦𝑗2

⎤

⎥

⎥

⎥

⎦

⋅ 𝑎. sin
𝜋𝑦
𝑎

(20)

or a given point P (𝑥i, 𝑦i), when 𝑦𝑖 is equal to R, Eq. (20) for zone II is
educed to Eq. (15) for zone I. Therefore, at the junction between zones
and II, the shape functions (15 and 20) have the same displacement
nd rotation, thereby satisfying the compatibility condition. Similarly,
ompatibility is satisfied at other junctions (Eqs. (15) and (21) for zones
and III; Eqs. (20) and (22) for zones II and IV; Eqs. (21) and (22) for
ones III and IV).
Zone III (0 ≤ 𝑥 ≤ 𝑅 and 𝑅 ≤ 𝑦 ≤ 𝑎∕2):
7

Due to the symmetry between Zone II and III, the coordinates of
zone II are changed to give the shape function of Zone III:

𝑤III,𝑖𝑗 (𝑥, 𝑦) = 𝑓1 (𝑥) ⋅ 𝑓2 (𝑦) = 𝑎 ⋅ sin 𝜋𝑥
𝑎

⋅
(

𝑎 − 2
√

𝑅2 − 𝑥𝑖2
)

⋅ sin

⎡

⎢

⎢

⎢

⎣

𝜋 ⋅
(

𝑥 −
√

𝑅2 − 𝑥𝑖2
)

𝑎 − 2
√

𝑅2 − 𝑥𝑖2

⎤

⎥

⎥

⎥

⎦

(21)

Zone IV (0 ≤ 𝑥 ≤ 𝑅 and 0 ≤ 𝑦 ≤ 𝑅):
Based on the deformation shapes of zones II and III, the deformation

hape function for zone IV is:

IV,𝑖𝑗 (𝑥, 𝑦) = 𝑓2 (𝑥) ⋅ 𝑓2 (𝑦)

=
(

𝑎 − 2
√

𝑅2 − 𝑦𝑗2
)

⋅ sin

⎡

⎢

⎢

⎢

⎣

𝜋 ⋅
(

𝑥 −
√

𝑅2 − 𝑦𝑗2
)

𝑎 − 2
√

𝑅2 − 𝑦𝑗2

⎤

⎥

⎥

⎥

⎦

⋅
(

𝑎 − 2
√

𝑅2 − 𝑥𝑖2
)

⋅ sin

⎡

⎢

⎢

⎢

⎣

𝜋 ⋅
(

𝑥 −
√

𝑅2 − 𝑥𝑖2
)

𝑎 − 2
√

𝑅2 − 𝑥𝑖2

⎤

⎥

⎥

⎥

⎦

(22)

.2.2. 0.2 ≤ 𝜂 ≤ 0.25
Fig. 13 shows detailed deformed shapes of zones I and II.
Zone I (𝑅 ≤ 𝑥 ≤ 𝑎∕2 and 𝑅 ≤ 𝑦 ≤ 𝑎∕2):
In this zone, the half-wave length is a; while the deformed shape

hanges from sine function on one side to cosine function on the other
ide. The shape function in the x direction is defined as:

1 (𝑥) = 𝑎 ⋅
[

𝑘1 ⋅ 0.5 ⋅
(

1 − cos 2𝜋𝑥
𝑎

)

+ 𝑘2 ⋅ sin
(𝜋𝑥

𝑎

)]

(23)

in which the coefficients 𝑘1 and 𝑘2 are defined as:

𝑘1 = 1 − sin

(

𝑦𝑗 − 𝑅
𝑎
2 − 𝑅

⋅
𝜋
2

)

(24)

𝑘2 = sin

(

𝑦𝑗 − 𝑅
𝑎
2 − 𝑅

⋅
𝜋
2

)

(25)

These functions have been selected to satisfy the boundary condi-
tions of: (i) at 𝑦 = 𝑅, 𝑘1 = 1 and 𝑘2 = 0; and (ii) at 𝑦 = 𝑏, 𝑘1 = 0 and
𝑘2 = 1.

Similarly, in the y-direction:

𝑓1 (𝑦) = 𝑎 ⋅
[

𝑘1 ⋅ 0.5 ⋅
(

1 − cos
2𝜋𝑦
𝑎

)

+ 𝑘2 ⋅ sin
(𝜋𝑦

𝑎

)

]

(26)

with

𝑘1 = 1 − sin

(

𝑥𝑖 − 𝑅
𝑎
2 − 𝑅

⋅
𝜋
2

)

(27)

𝑘2 = sin

(

𝑥𝑖 − 𝑅
𝑎
2 − 𝑅

⋅
𝜋
2

)

(28)

The complete shape function of this zone is:

I,𝑖𝑗 (𝑥, 𝑦) = 𝑓1 (𝑥) ⋅ 𝑓1 (𝑦)

= a ⋅

{[

1 − sin

(

𝑦𝑗 − 𝑅
𝑎
2 − 𝑅

⋅
𝜋
2

)]

⋅ 0.5 ⋅
(

1 − cos 2𝜋𝑥
𝑎

)

+ sin

(

𝑦𝑗 − 𝑅
𝑎
2 − 𝑅

⋅
𝜋
2

)

⋅ sin 𝜋𝑥
𝑎

}

⋅ a

⋅

{[

1 − sin

(

𝑥𝑖 − 𝑅
𝑎
2 − 𝑅

⋅
𝜋
2

)]

⋅ 0.5 ⋅
(

1 − cos
2𝜋𝑦
𝑎

)

+ sin

(

𝑥𝑖 − 𝑅
𝑎
2 − 𝑅

⋅
𝜋
2

)

⋅ sin
𝜋𝑦
𝑎

}

(29)

Zone II (𝑅 ≤ 𝑥 ≤ 𝑎∕2 and 0 ≤ 𝑦 ≤ 𝑅):
Similar to the transition of deformation shape from one edge to

another edge, the shape function along the x direction, 𝑓 (x), is defined
2
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Fig. 12. Local deformation shape functions for 𝜂 ≤ 0.05. (a) Zone I; (b) Zone II.
Fig. 13. Deformation shapes for 0.2 ≤ 𝜂 ≤ 0.25. (a) Zone I; (b) Zone II.
as follows with the consideration in the shortening of the half-wave
length.

𝑓2 (𝑥) =
(

𝑎 − 2
√

𝑅2 − 𝑦𝑗2
)

⋅

⎧

⎪

⎨

⎪

⎩

𝑘1 ⋅ sin
𝜋 ⋅

(

𝑥 −
√

𝑅2 − 𝑦𝑗2
)

𝑎 − 2
√

𝑅2 − 𝑦𝑗2

+ 𝑘2 ⋅ 0.5 ⋅

⎡

⎢

⎢

⎢

⎣

1 − cos
2𝜋

(

𝑥 −
√

𝑅2 − 𝑦𝑗2
)

𝑎 − 2
√

𝑅2 − 𝑦𝑗2

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(30)

Because this zone is bounded by a 1/4 circle, the coefficients 𝑘1 and
𝑘2 are defined as:

𝑘1 = cos
(

arcsin
𝑦𝑗
𝑅

)

(31)

𝑘2 = 1 − cos
(

arcsin
𝑦𝑗
𝑅

)

(32)

They are selected to satisfy the boundary conditions at the edges:
(i) at 𝑦 = 0, 𝑘1 = 1 and 𝑘2 = 0; and (ii) at 𝑦 = 𝑅, 𝑘1 = 0 and 𝑘2 = 1.

The complete shape function of this zone is:

𝑤II,𝑖𝑗 (𝑥, 𝑦) = 𝑓2 (𝑥) ⋅ 𝑓1 (𝑦)

=
(

𝑎 − 2
√

𝑅2 − 𝑦𝑗 2
)

⋅

⎧

⎪

⎨

⎪

cos(arcsin
𝑦𝑗
𝑅
) ⋅ sin

𝜋 ⋅
(

𝑥 −
√

𝑅2 − 𝑦𝑗 2
)

𝑎 − 2
√

𝑅2 − 𝑦 2

⎩

𝑗

8

+
[

1 − cos
(

arcsin
𝑦𝑗
𝑅

)]

⋅ 0.5 ⋅

⎡

⎢

⎢

⎢

⎣

1 − cos
2𝜋

(

𝑥 −
√

𝑅2 − 𝑦𝑗 2
)

𝑎 − 2
√

𝑅2 − 𝑦𝑗 2

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

⋅ 𝑎 ⋅

{[

1 − sin

(

𝑥𝑖 − 𝑅
𝑎
2
− 𝑅

⋅
𝜋
2

)]

⋅ 0.5 ⋅
(

1 − cos
2𝜋𝑦
𝑎

)

+ sin

(

𝑥𝑖 − 𝑅
𝑎
2
− 𝑅

⋅
𝜋
2

)

⋅ sin
𝜋𝑦
𝑎

}

(33)

Zone III (0 ≤ 𝑥 ≤ 𝑅 and 𝑅 ≤ 𝑦 ≤ 𝑎∕2):
For this zone, the coordinates of zone II are swapped to give:

𝑤III,𝑖𝑗 (𝑥, 𝑦) = 𝑓1 (𝑥) ⋅ 𝑓2 (𝑦) (34)

Where

𝑓2 (𝑦) =
(

𝑎 − 2
√

𝑅2 − 𝑥𝑖2
)

⋅

⎧

⎪

⎨

⎪

⎩

𝑘1 ⋅ sin
𝜋 ⋅

(

𝑦 −
√

𝑅2 − 𝑥𝑖2
)

𝑎 − 2
√

𝑅2 − 𝑥𝑖2

+ 𝑘2 ⋅ 0.5 ⋅

⎡

⎢

⎢

⎢

⎣

1 − cos
2𝜋

(

𝑥 −
√

𝑅2 − 𝑥𝑖2
)

𝑎 − 2
√

𝑅2 − 𝑥𝑖2

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(35)

in which:

𝑘1 = cos
(

asin
𝑥𝑖
𝑅

)

(36)

𝑘2 = 1 − cos
(

asin
𝑥𝑖
𝑅

)

(37)

Zone IV (0 ≤ 𝑥 ≤ 𝑅 and 0 ≤ 𝑦 ≤ 𝑅):
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Fig. 14. Comparison between results for the modification coefficient (k) from the
simple regression equation based on analytical solutions and ABAQUS simulation results
for different compression skin slenderness values.

For this zone, the shape functions of zone II in the x direction and
that of zone III in the y direction are used to give:

𝑤IV,𝑖𝑗 (𝑥, 𝑦) = 𝑓2 (𝑥) ⋅ 𝑓2 (𝑦) (38)

6. Comparison of simplified analytical solution and numerical
results

Substituting the general quantities of internal force and deflections
in Eqs. (6)–(14) by the specific equations in Eqs. (15) to (38) for deflec-
tions will result in a solution of the critical local buckling load (𝜎𝑐𝑟) for
the compression skin of BEPs. However, the analytical solutions are too
complex for application in routine engineering design so a simplified
method is sought.

Results from the analytical method reveal that the difference in
elastic local buckling loads between the compressive skins of BEP and
conventional honeycomb sandwich structure is solely determined by
the parameter 𝜂. Thus, if everything else is the same, it is possible
to modify the solution for a traditional grid honeycomb sandwich
structure by replacing the constant value of ‘‘4’’ in Eq. (39a) by a
coefficient k in Eq. (39b) which is a function of 𝜂.

𝜎𝑐𝑟 = 4 ⋅ 𝜋
2

𝑎2
⋅

𝐸𝑡2

12
(

1 − 𝜐2
) (39a)

𝜎𝑐𝑟 = 𝑘 ⋅
𝜋2

𝑎2
⋅

𝐸𝑡2

12
(

1 − 𝜐2
) (39b)

By substituting the buckling load of the BEP into Eq. (39), a series
f k values is obtained and further fitted as a regress function in terms

of 𝜂.

𝑘 = 4 − 4.2𝜂 + 97.07𝜂2 (40)

Fig. 14 compares the modification factor (k) and 𝜂 relationships
etween the regression equation results and the ABAQUS simulation
esults for three different compression skin slenderness values, which
ndicates a very good agreement with the maximum difference being
ess than 7%.

. Conclusions

This paper has presented the results of analytical and numerical
tudies on the elastic local buckling behaviour of the compressive skin
f BEPs. The elastic local buckling load is an important intermediate
alue for calculating the bending resistance of BEP structures.
9

The following conclusions can be drawn:
(1) There are three possible buckling locations for the compressive

kin of BEP structures: interior bucking in the space between four
djacent trabeculae, exterior bucking on the edge between two adjacent
rabeculae, and circular buckling within each individual trabecular.

hen the ratio of the edge distance to trabecular space, b/a, does not
xceed 0.3, exterior buckling can be avoided. This is recommended.

(2) The preferred buckling mode is interior buckling, and this
appens when the ratio 𝜂 of trabecular radius (R) to trabecular spacing
a) does not exceed 0.25 (𝜂 ≤ 0.25). Under this buckling mode, the
lastic buckling load of the compression skin of BEPs increases with
ncreasing 𝜂, reaching a value of about 2 compared to the conventional
rid honeycomb sandwich structure, which corresponds to 𝜂 = 0 for the
EP structure.

(3) The deformation shape of the compression skin of BEP structures
aries with 𝜂. This paper has proposed a suite of deformation shape
unctions for derivation of an analytical solution to calculate the elastic
uckling load of the compression skin of BEP structures.

(4) The elastic buckling load of the compression skin of a BEP
tructure can be obtained by modifying the solution for the compression
kin of the equivalent grid honeycomb sandwich structure by replacing
he constant value of ‘‘4’’ for the latter (Eq. (39)) by a quadratic
quation as a function of the parameter 𝜂 (Eq. (40)).
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