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ABSTRACT
As the UK battery modelling community grows, there is a clear need for software 
that uses modern software engineering techniques to facilitate cross-institutional 
collaboration and democratise research progress. The Python package PyBaMM aims 
to provide a flexible platform for implementation and comparison of new models 
and numerical methods. This is achieved by implementing models as expression 
trees and processing them in a modular fashion through a pipeline. Comprehensive 
testing provides robustness to changes and hence eases the implementation of model 
extensions. PyBaMM is open source and available on GitHub. For more information visit 
www.pybamm.org.
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1 OVERVIEW
INTRODUCTION
With the battery modelling research community growing 
rapidly in the UK in the last few years [1], it is essential 
to develop tools that facilitate cross-institutional 
collaboration. One such tool is battery modelling software 
that allows new research (e.g. new physics, numerical 
methods) to be employed with minimal effort by the 
rest of the community. Modelling software should also 
facilitate quantitative comparison of different models 
and numerical methods. To be reusable and extendable, 
the software should be both modular, so that new 
models and numerical methods can easily be added, and 
rigorously tested, in order to be robust to changes.

EXISTING SOFTWARE
Currently, COMSOL [2] is the modelling software 
most commonly utilised by the the battery modelling 
community, providing a simple graphical user interface 
(GUI) to implement and solve standard battery models. 
However, there are several drawbacks to COMSOL. 
Firstly, its prohibitively expensive licence fee is a barrier 
to collaboration and sharing of software. Secondly, it 
has limited flexibility for adaptation of existing battery 
models, or investigation of new numerical methods. 
Thirdly, as the implementation is performed through 
a GUI, programs cannot be directly scripted without 
additional software, which inhibits version control, 
unit testing and combination with other software (for 
example, for parameter estimation).

Several existing open-source battery modelling 
software packages provide an alternative option to 
COMSOL. Examples include DUALFOIL [3], fastDFN [4], 
LIONSIMBA [5], and M-PET [6]. However, each of these 
packages is focused on the implementation of one 
specific battery model under a specific choice of operating 
conditions. As a result, these software packages lack the 
flexibility required to allow for easy implementation of 
reduced-order versions of a model or to include model 
extensions. This lack of flexibility considerably limits the 
reuse of such packages across different research projects.

OVERVIEW OF PYBAMM
PyBaMM (Python Battery Mathematical Modelling) 
is a tool for fast and flexible simulations of battery 
models. Our mission is to accelerate battery modelling 
research by providing an open-source framework for 
multi-institutional, interdisciplinary collaboration. 
PyBaMM offers improved collaboration and research 
impact in battery modelling by creating a modular 
framework through which either existing or new 
tools can be combined in order to solve continuum 
models for batteries. To achieve this, PyBaMM 
separates the models, discretisation and solver, giving 
ultimate flexibility to the end user, and provides a 
unified interface through which to incorporate new 

models, alternative spatial discretisations, or new 
time-stepping algorithms. Any such additions can 
then immediately be used with the existing suite of 
models already implemented, and comparisons can 
be made between different models, discretisations, 
or algorithms with variables such as hardware, 
software and implementation details held fixed. 
Similarly, additional physics can be incorporated into 
the existing models, enabled by the extensible “plug-
and-play” submodel structure around which models 
are constructed. As a result, the need to start from 
scratch to study each new effect is removed, and the 
simultaneous study of a range of extensions to the 
standard battery models, for example by coupling 
together several degradation mechanisms, is readily 
achieved. A comprehensive suite of tests provides the 
robustness necessary to allow the continual addition of 
new models and solvers in an open-source framework.

PyBaMM is one of the major components of the 
Faraday Institution’s ‘Common Modelling Framework’, 
part of the Multi-Scale Modelling Fast Start project, which 
will act as a central repository for UK battery modelling 
research. PyBaMM has already been used to develop 
and compare reduced-order models for lithium-ion [7] 
and lead-acid [8, 9] batteries, parameterize lithium-ion 
cells [10], model spirally-wound batteries [11], model 
two-dimensional distributions in the current collectors 
[12, 13], and model SEI growth [14]. Further research 
outcomes are anticipated from continued collaborations 
with other members of the modelling community, both 
within and beyond the Faraday Institution. An up-to-
date list of papers that use PyBaMM can be found at 
pybamm.org/publications.

PyBaMM is an Affiliated Project with NumFOCUS, 
and builds on other tools in the NumFOCUS ecosystem 
including NumPy [15], SciPy [16], pandas [17], Matplotlib 
[18], and Project Jupyter [19].

IMPLEMENTATION AND ARCHITECTURE
PyBaMM’s architecture is based around two core 
components. The first is the expression tree, which 
encodes mathematical equations symbolically (see 
Figure 1). Each expression tree consists of a set of 
symbols, each of which represents either a variable, 
parameter, mathematical operation, matrix, or vector. 
Every battery model in PyBaMM is then defined as a 
collection of symbolic expression trees. The expression 
trees in each model are organised within python 
dictionaries representing the governing equations, 
boundary equations, and initial conditions of the 
model.

An example of implementing a simple diffusion model 
using expression trees is provided in Appendix A. Further 
examples of creating ODE and PDE models can be found 
in the “Creating Models” notebooks hosted online. To 
clearly demonstrate how to set up multi-domain and  

https://doi.org/10.5334/jors.309
https://www.pybamm.org/publications
https://numfocus.org/
https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks/Creating%20Models
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multi-physics models PyBaMM includes “basic” versions 
of the SPM (basic_spm.py) and DFN (basic_dfn.py) 
which are defined in a single script, separate from the 
submodel structure. These are intended to act as a 
learning tool, and can be found in the lithium-ion models 
sub-directory of the PyBaMM GitHub repository.

The second core component of PyBaMM’s architecture 
is the pipeline process (see Figure 2). In the pipeline 
process different modular components operate on the 
model in turn. The pipeline is constructed in Python using 
PyBaMM classes, so that users have full control over the 
entire process, and can customise the pipeline or insert 
their own components at any stage. Figure 2 depicts a 
typical pipeline with the following stages:

1.	 Define a battery model and geometry using 
PyBaMM’s syntax. This generates a collection of 
expression trees representing the model.

2.	 Parse the expression trees for the battery model 
and geometry, replacing any parameters with 
their provided numerical values. For convenience, 
parameter values may be provided in a csv file.

3.	 Mesh the geometry and discretise the model on this 
mesh with user-defined spatial methods. This process 
parses each expression tree converting variables into 
state vectors, and spatial operators (e.g. gradient 
and divergence) into matrices (accounting for the 
boundary conditions of the model).

4.	 Solve the model using a time-stepping algorithm. 
PyBaMM offers a consistent interface to a number 
of ordinary differential equation (ODE), differential 

algebraic equation (DAE), and algebraic (root-
finding) solvers, including via SciPy [16], SUNDIALS 
[20, 21, 22], CasADi [23], and JAX [24]. One of the 
main benefits of PyBaMM’s expression tree structure 
is that it provides the capability to automatically 
compute the Jacobian for any model, using symbolic 
differentiation, which significantly improves the 
performance of the numerical solvers.

5.	 Post-processes the solution. Built-in post processing 
utilities provided access to any user-defined output 
variables at any solution time or state. Additionally, 
PyBaMM includes a number of visualisation utilities 
which allow for easy plotting and comparison of 
any of the model variables (for example output, see 
Figure 3).

The various stages of the pipeline process are 
handled automatically by PyBaMM’s Simulation 
class, providing a user friendly way to solve battery 
models. The simplest example to use PyBaMM is to run 
a 1C constant-current discharge with a given model 
with all the default settings, as shown in Listing 1. 
For greater customisation users can pass different 
parameters, adjust the mesh and discretisation, 
change the solver, and tailor the output of the plots, all 
via the Simulation class. For example, experimental 
protocols can be simulated using a simple text-
based syntax, as shown in Listing 2, or simulate non-
constant current (dis)charge by passing time-current 
data. For more information please consult the latest 
documentation.

Figure 1 Models are encoded and passed down the pipeline 
using a symbolic expression tree data-structure. Leafs in 
the tree represent parameters, variables, matrices etc., 
while internal nodes represent either basic operators such 
multiplication or division, or continuous operators such as 
divergence or gradients.

+

* *

*

Figure 2 PyBaMM is designed around a pipeline approach. 
Models are initially defined using mathematical expressions 
encoded as expression trees. These models are then passed to 
a class which sets the parameters of the model, before being 
discretised into linear algebra expressions, and finally solved 
using a time-stepping class.

1. Model

2. Parameter
Values

3. Discretisation

4. Solver

5. Post-process
/ Visualisation

Mesh

https://github.com/pybamm-team/PyBaMM/blob/master/pybamm/models/full_battery_models/lithium_ion/basic_spm.py
https://github.com/pybamm-team/PyBaMM/blob/master/pybamm/models/full_battery_models/lithium_ion/basic_dfn.py
https://github.com/pybamm-team/PyBaMM/tree/master/pybamm/models/full_battery_models/lithium_ion
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QUALITY CONTROL
Tests in PyBaMM are performed within the unittest 
framework. We follow a test-driven development 
process, and unit tests are implemented for every 

class with unit test code coverage consistently above 
98%. In addition, a smaller set of integration tests are 
implemented to ensure the end-to-end reliability of the 
code. The integration tests consist of tests that check 
every model in PyBaMM can be processed and solved 
for a set of default inputs, convergence tests between 
reduced-order and full-order models, convergence 
tests for each spatial method, and tests for each solver 
type.

PyBaMM is developed using git version control, with 
all unit and integration tests being run cross-platform via 
GitHub Actions every time a pull request is made. At the 
time of writing, the PyBaMM tests run on Ubuntu, macOS 
and Windows systems with Python 3.7-3.9.

The main PyBaMM repository contains a selection  
of Jupyter Notebooks that provide a useful set of  
examples on how to use PyBaMM for different tasks 
such as creating a new battery model, running the 
existing models, or changing the default parameters. 
These are tested along with the main PyBaMM code 
to ensure they are up to date. All of the examples, as 
well as a “Getting Started” guide can be accessed from  
the PyBaMM website and can be run interactively in a 
web browser via Google Colab with no installation 
necessary. Further examples can be found on the 
accompanying case studies repository, which, among 
other things, shows how PyBaMM can be used for 
parameter estimation and simulation of drive-cycle 
experiments.

Please consult the CONTRIBUTING.md file in the 
PyBaMM repository for more detailed and up-to-date 
information on our development workflow, testing and 
CI infrastructure, and coding style guidelines.

Figure 3 Interactive visualisation of solutions. The user can select the time at which to view the output using the time-slider bar at 
the bottom. This interactive plot is automatically generated by providing a list of model solutions and output variables.

Listing 1 Running a simulation in PyBaMM.

1 import pybamm
2 # Doyle-Fuller-Newman model
3 model = pybamm.lithium_ion.DFN()
4 sim = pybamm.Simulation(model)
5 sim.solve([0, 3600]) # solve for 1 hour
6 sim.plot()

Listing 2 Running an experiment in PyBaMM.

1 import pybamm
2 experiment = pybamm.Experiment(
3 [
4 ″Discharge at C/10 for 10 hours 

or until 3.3 V″,
5 ″Rest for 1 hour″,
6 ″Charge at 1 A until 4.1 V″,
7 ″Hold at 4.1 V until 50 mA″,
8 ″Rest for 1 hour”,
9 ]
10 * 3,
11 )
12 model = pybamm.lithium_ion.DFN()
13 sim = pybamm.Simulation(
14 model,
15 experiment=experiment,
16 solver=pybamm.CasadiSolver(),
17 )
18 sim.solve()
19 sim.plot()

https://docs.python.org/3/library/unittest.html
https://github.com/pybamm-team/PyBaMM/tree/main/examples/notebooks
https://pybamm.org
https://colab.research.google.com
https://github.com/pybamm-team/pybamm-case-studies
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
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(2) AVAILABILITY
OPERATING SYSTEM
PyBaMM can run on any Linux, MacOS or Windows 
sytem that has Python 3.6-3.8 installed, along with the 
dependencies listed below. The optional dependency, 
scikits-odes, currently only supports Linux and MacOS. For 
Windows users, we therefore recommend using Windows 
Subsystems for Linux (WSL); detailed instructions are 
available on GitHub. On Linux and MacOS, Google’s JAX 
library can be used to provide additional autograd and 
solver capabilities.

PROGRAMMING LANGUAGE
Python 3.6-3.8

ADDITIONAL SYSTEM REQUIREMENTS
PyBaMM has no special requirements and can be run on 
a standard laptop or desktop machine.

DEPENDENCIES
Required:

•	 numpy≥1.16
•	 scipy≥1.3
•	 pandas≥0.24
•	 anytree≥2.4.3
•	 autograd≥1.2
•	 scikit-fem≥0.2.0
•	 casasi≥3.5.0,
•	 jupyter (for example notebooks)
•	 matplotlib≥2.0
•	 jax=0.1.75, (not supported on Windows)
•	 jaxlib==0.1.52, (not supported on Windows)

Optional:

•	 scikits.odes≥2.4.0 (optional DAE solver, requires 
SUNDIALS 5.0.0)

LIST OF CONTRIBUTORS
The following people have contributed in some form to 
the development of PyBaMM at time of writing. An up-to-
date list of contributors can be found in our README. Core 
developers are indicated in bold.

Valentin Sulzer, Scott Marquis, Robert Timms, 
Martin Robinson, Ferran Brosa-Planella, Tom Tranter, 
Thibault Lestang, Diego Alonso Álvarez, Jacqueline 
Edge, Colin Please, Jon Chapman, Fergus Cooper, Felipe 
Salinas, Peter Cho, Suhak Lee, Vivian Tran, Yannick Kuhn, 
Alexander Bessman, Daniel Albamonte, Anand Mohan 
Yadav, Weilong Ai.

SOFTWARE LOCATION
Name: GitHub (release v0.2.4)
Persistent identifier: https://github.com/pybamm-team/

PyBaMM/releases/tag/v0.2.4

Licence: BSD 3-clause
Publisher: The PyBaMM team
Version published: v0.2.4
Date published: 07/09/20

Code repository
Name: GitHub
Persistent identifier: https://github.com/pybamm-team/

PyBaMM

Licence: BSD-3-Clause
Date published: 04/11/2018

LANGUAGE
English

(3) REUSE POTENTIAL

We anticipate that the main use case will be the 
implementation, extension, and comparison of new models 
and parameter sets. For example, this will allow researchers 
to implement models that couple several degradation 
mechanisms together. Further, although PyBaMM has been 
written with battery models in mind, the expression tree 
and pipeline architecture could be potentially be used to 
solve different sets of continuum models numerically.

In addition to new models and parameter sets, 
the modular framework described in Section 1 allows 
researchers to add new numerical algorithms in the form 
of spatial discretisations or new ODE/DAE solvers. Any 
such extensions can then be immediately tested with 
the existing set of models and parameters. This allows 
researchers to quickly assess the accuracy and speed 
of their numerical algorithms for a range of models and 
relevant parameter values.

Information on how to extend the software in these 
ways is available both through tutorials in the API docs 
and example notebooks. All of the development is 
done through GitHub issues and pull requests, using the 
workflow explained in the CONTRIBUTING.md file. Users 
can request support by raising an issue on GitHub.

A CREATING A MODEL

In this section, we present an example of how to enter a 
simple diffusion model in PyBaMM. This model serves as 
a good representation of the types of models that arise 
in battery modelling because it contains most of the key 
components: spatial operators, parameters, Dirichlet and 
Neumann boundary conditions, and initial conditions.

We consider the concentration of some species 
c, on a spatial domain x ∈ [0,1], and at some time t 
∈ [0,∞). The concentration of the species is taken to 
evolve according to a nonlinear diffusion process with 
the concentration being fixed at x = 0 and a constant 

https://github.com/google/jax
https://github.com/pybamm-team/PyBaMM
https://github.com/pybamm-team/PyBaMM/releases/tag/v0.2.4
https://github.com/pybamm-team/PyBaMM/releases/tag/v0.2.4
https://github.com/pybamm-team/PyBaMM
https://github.com/pybamm-team/PyBaMM
https://pybamm.readthedocs.io/en/latest/
https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks/Creating%20Models
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md


6Sulzer et al. Journal of Open Research DOI: 10.5334/jors.309

inward flux of species imposed at x = 1. Mathematically, 
the model is stated as

	           , ( )  in     0 1, 0D c
c

t
t

c x


   


   � (1a)

	                     , 1            t   a  0c x  � (1b)

	
         ,      ( ) 1 t        a   1D c x

c
x



  � (1c)

	                 , 1 t           0  ac x t   � (1d)

where D(c) = k(1+c) is the diffusion coefficient and k is 
a parameter, which we will refer to as the diffusion 
parameter.

In Listing 3, we provide the PyBaMM code implementing 
(1). Note that operator overloading of * and + allows 
symbols to be intuitively combined to produce expression 
trees. A more detailed and up-to-date introduction to 
the syntax is provided in the online examples available 
on GitHub.

The model is now represented by a collection of 
expression trees and can therefore be solved by passing 
it through the pipeline just like any other model in 
PyBaMM. Additionally, extending the model to include 

additional physics is simple and intuitive due to the 
simple symbolic representation of the underlying 
mathematical equations. For example, we can add a 
source term to the governing equation (1a) by only 
modifying one line of code (line 10 of Listing 3) and 
still obtain useful properties of the model such as the 
analytical Jacobian.

The common interface of all PyBaMM models makes 
it easy to perform the pipeline process as illustrated here 
upon multiple models or the same model with different 
options activated. Therefore, comparing the results of 
different models, mesh types, discretisations, and solvers 
then becomes straightforward within the PyBaMM 
framework.
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Listing 3 Defining a model in PyBaMM.

1 # 1. Initialise model

2 model = pybamm.BaseModel()

3

4 # 2. Define parameters and variables

5 c = pybamm.Variable(″c″, domain=″unit 
line″)

6 k = pybamm.Parameter(″Diffusion parameter″)

7

8 # 3. State governing equations

9 D = k * (1 + c)

10 dcdt = pybamm.div(D * pybamm.grad(c))

11 model.rhs = {c: dcdt}

12

13 # 4. State boundary conditions

14 D_right = pybamm.BoundaryValue(D, ″right″)

15 model.boundary_conditions = {

16 c: {

17 ″left″: (1, ″Dirichlet″),

18 ″right″: (1/D_right, ″Neumann″)

19 }

20 }

21

22 # 5. State initial conditions

23 x = pybamm.SpatialVariable(″x″, 
domain=″unit line″)

24 model.initial_conditions = {c: x + 1}
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