
SOFTWARE METAPAPER

ABSTRACT
As the UK battery modelling community grows, there is a clear need for software
that uses modern software engineering techniques to facilitate cross-institutional
collaboration and democratise research progress. The Python package PyBaMM aims
to provide a flexible platform for implementation and comparison of new models
and numerical methods. This is achieved by implementing models as expression
trees and processing them in a modular fashion through a pipeline. Comprehensive
testing provides robustness to changes and hence eases the implementation of model
extensions. PyBaMM is open source and available on GitHub. For more information visit
www.pybamm.org.

CORRESPONDING AUTHOR:
Valentin Sulzer

DPhil Student; Mathematical
Institute, University of Oxford,
Radcliffe Observatory, Andrew
Wiles Building, Woodstock Rd,
Oxford OX2 6GG, GB

valentinsulzer@hotmail.com

KEYWORDS:
battery modelling; expression
tree; python; symbolic
differentiation

TO CITE THIS ARTICLE:
Sulzer V, Marquis SG, Timms R,
Robinson M, Chapman SJ 2021
Python Battery Mathematical
Modelling (PyBaMM). Journal of
Open Research Software, 9: 14.
DOI: https://doi.org/10.5334/
jors.309

VALENTIN SULZER

SCOTT G. MARQUIS

ROBERT TIMMS

MARTIN ROBINSON

S. JON CHAPMAN

*Author affiliations can be found in the back matter of this article

Python Battery
Mathematical Modelling
(PyBaMM)

http://www.pybamm.org
mailto:valentinsulzer@hotmail.com
https://doi.org/10.5334/jors.309
https://doi.org/10.5334/jors.309
https://orcid.org/0000-0002-8687-327X
https://orcid.org/0000-0002-6895-990X
https://orcid.org/0000-0002-8858-4818
https://orcid.org/0000-0002-1572-6782
https://orcid.org/0000-0003-3347-6024

2Sulzer et al. Journal of Open Research DOI: 10.5334/jors.309

1 OVERVIEW
INTRODUCTION
With the battery modelling research community growing
rapidly in the UK in the last few years [1], it is essential
to develop tools that facilitate cross-institutional
collaboration. One such tool is battery modelling software
that allows new research (e.g. new physics, numerical
methods) to be employed with minimal effort by the
rest of the community. Modelling software should also
facilitate quantitative comparison of different models
and numerical methods. To be reusable and extendable,
the software should be both modular, so that new
models and numerical methods can easily be added, and
rigorously tested, in order to be robust to changes.

EXISTING SOFTWARE
Currently, COMSOL [2] is the modelling software
most commonly utilised by the the battery modelling
community, providing a simple graphical user interface
(GUI) to implement and solve standard battery models.
However, there are several drawbacks to COMSOL.
Firstly, its prohibitively expensive licence fee is a barrier
to collaboration and sharing of software. Secondly, it
has limited flexibility for adaptation of existing battery
models, or investigation of new numerical methods.
Thirdly, as the implementation is performed through
a GUI, programs cannot be directly scripted without
additional software, which inhibits version control,
unit testing and combination with other software (for
example, for parameter estimation).

Several existing open-source battery modelling
software packages provide an alternative option to
COMSOL. Examples include DUALFOIL [3], fastDFN [4],
LIONSIMBA [5], and M-PET [6]. However, each of these
packages is focused on the implementation of one
specific battery model under a specific choice of operating
conditions. As a result, these software packages lack the
flexibility required to allow for easy implementation of
reduced-order versions of a model or to include model
extensions. This lack of flexibility considerably limits the
reuse of such packages across different research projects.

OVERVIEW OF PYBAMM
PyBaMM (Python Battery Mathematical Modelling)
is a tool for fast and flexible simulations of battery
models. Our mission is to accelerate battery modelling
research by providing an open-source framework for
multi-institutional, interdisciplinary collaboration.
PyBaMM offers improved collaboration and research
impact in battery modelling by creating a modular
framework through which either existing or new
tools can be combined in order to solve continuum
models for batteries. To achieve this, PyBaMM
separates the models, discretisation and solver, giving
ultimate flexibility to the end user, and provides a
unified interface through which to incorporate new

models, alternative spatial discretisations, or new
time-stepping algorithms. Any such additions can
then immediately be used with the existing suite of
models already implemented, and comparisons can
be made between different models, discretisations,
or algorithms with variables such as hardware,
software and implementation details held fixed.
Similarly, additional physics can be incorporated into
the existing models, enabled by the extensible “plug-
and-play” submodel structure around which models
are constructed. As a result, the need to start from
scratch to study each new effect is removed, and the
simultaneous study of a range of extensions to the
standard battery models, for example by coupling
together several degradation mechanisms, is readily
achieved. A comprehensive suite of tests provides the
robustness necessary to allow the continual addition of
new models and solvers in an open-source framework.

PyBaMM is one of the major components of the
Faraday Institution’s ‘Common Modelling Framework’,
part of the Multi-Scale Modelling Fast Start project, which
will act as a central repository for UK battery modelling
research. PyBaMM has already been used to develop
and compare reduced-order models for lithium-ion [7]
and lead-acid [8, 9] batteries, parameterize lithium-ion
cells [10], model spirally-wound batteries [11], model
two-dimensional distributions in the current collectors
[12, 13], and model SEI growth [14]. Further research
outcomes are anticipated from continued collaborations
with other members of the modelling community, both
within and beyond the Faraday Institution. An up-to-
date list of papers that use PyBaMM can be found at
pybamm.org/publications.

PyBaMM is an Affiliated Project with NumFOCUS,
and builds on other tools in the NumFOCUS ecosystem
including NumPy [15], SciPy [16], pandas [17], Matplotlib
[18], and Project Jupyter [19].

IMPLEMENTATION AND ARCHITECTURE
PyBaMM’s architecture is based around two core
components. The first is the expression tree, which
encodes mathematical equations symbolically (see
Figure 1). Each expression tree consists of a set of
symbols, each of which represents either a variable,
parameter, mathematical operation, matrix, or vector.
Every battery model in PyBaMM is then defined as a
collection of symbolic expression trees. The expression
trees in each model are organised within python
dictionaries representing the governing equations,
boundary equations, and initial conditions of the
model.

An example of implementing a simple diffusion model
using expression trees is provided in Appendix A. Further
examples of creating ODE and PDE models can be found
in the “Creating Models” notebooks hosted online. To
clearly demonstrate how to set up multi-domain and

https://doi.org/10.5334/jors.309
https://www.pybamm.org/publications
https://numfocus.org/
https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks/Creating%20Models

3Sulzer et al. Journal of Open Research DOI: 10.5334/jors.309

multi-physics models PyBaMM includes “basic” versions
of the SPM (basic_spm.py) and DFN (basic_dfn.py)
which are defined in a single script, separate from the
submodel structure. These are intended to act as a
learning tool, and can be found in the lithium-ion models
sub-directory of the PyBaMM GitHub repository.

The second core component of PyBaMM’s architecture
is the pipeline process (see Figure 2). In the pipeline
process different modular components operate on the
model in turn. The pipeline is constructed in Python using
PyBaMM classes, so that users have full control over the
entire process, and can customise the pipeline or insert
their own components at any stage. Figure 2 depicts a
typical pipeline with the following stages:

1.	 Define a battery model and geometry using
PyBaMM’s syntax. This generates a collection of
expression trees representing the model.

2.	 Parse the expression trees for the battery model
and geometry, replacing any parameters with
their provided numerical values. For convenience,
parameter values may be provided in a csv file.

3.	 Mesh the geometry and discretise the model on this
mesh with user-defined spatial methods. This process
parses each expression tree converting variables into
state vectors, and spatial operators (e.g. gradient
and divergence) into matrices (accounting for the
boundary conditions of the model).

4.	 Solve the model using a time-stepping algorithm.
PyBaMM offers a consistent interface to a number
of ordinary differential equation (ODE), differential

algebraic equation (DAE), and algebraic (root-
finding) solvers, including via SciPy [16], SUNDIALS
[20, 21, 22], CasADi [23], and JAX [24]. One of the
main benefits of PyBaMM’s expression tree structure
is that it provides the capability to automatically
compute the Jacobian for any model, using symbolic
differentiation, which significantly improves the
performance of the numerical solvers.

5.	 Post-processes the solution. Built-in post processing
utilities provided access to any user-defined output
variables at any solution time or state. Additionally,
PyBaMM includes a number of visualisation utilities
which allow for easy plotting and comparison of
any of the model variables (for example output, see
Figure 3).

The various stages of the pipeline process are
handled automatically by PyBaMM’s Simulation
class, providing a user friendly way to solve battery
models. The simplest example to use PyBaMM is to run
a 1C constant-current discharge with a given model
with all the default settings, as shown in Listing 1.
For greater customisation users can pass different
parameters, adjust the mesh and discretisation,
change the solver, and tailor the output of the plots, all
via the Simulation class. For example, experimental
protocols can be simulated using a simple text-
based syntax, as shown in Listing 2, or simulate non-
constant current (dis)charge by passing time-current
data. For more information please consult the latest
documentation.

Figure 1 Models are encoded and passed down the pipeline
using a symbolic expression tree data-structure. Leafs in
the tree represent parameters, variables, matrices etc.,
while internal nodes represent either basic operators such
multiplication or division, or continuous operators such as
divergence or gradients.

+

* *

*

Figure 2 PyBaMM is designed around a pipeline approach.
Models are initially defined using mathematical expressions
encoded as expression trees. These models are then passed to
a class which sets the parameters of the model, before being
discretised into linear algebra expressions, and finally solved
using a time-stepping class.

1. Model

2. Parameter
Values

3. Discretisation

4. Solver

5. Post-process
/ Visualisation

Mesh

https://github.com/pybamm-team/PyBaMM/blob/master/pybamm/models/full_battery_models/lithium_ion/basic_spm.py
https://github.com/pybamm-team/PyBaMM/blob/master/pybamm/models/full_battery_models/lithium_ion/basic_dfn.py
https://github.com/pybamm-team/PyBaMM/tree/master/pybamm/models/full_battery_models/lithium_ion

4Sulzer et al. Journal of Open Research DOI: 10.5334/jors.309

QUALITY CONTROL
Tests in PyBaMM are performed within the unittest
framework. We follow a test-driven development
process, and unit tests are implemented for every

class with unit test code coverage consistently above
98%. In addition, a smaller set of integration tests are
implemented to ensure the end-to-end reliability of the
code. The integration tests consist of tests that check
every model in PyBaMM can be processed and solved
for a set of default inputs, convergence tests between
reduced-order and full-order models, convergence
tests for each spatial method, and tests for each solver
type.

PyBaMM is developed using git version control, with
all unit and integration tests being run cross-platform via
GitHub Actions every time a pull request is made. At the
time of writing, the PyBaMM tests run on Ubuntu, macOS
and Windows systems with Python 3.7-3.9.

The main PyBaMM repository contains a selection
of Jupyter Notebooks that provide a useful set of
examples on how to use PyBaMM for different tasks
such as creating a new battery model, running the
existing models, or changing the default parameters.
These are tested along with the main PyBaMM code
to ensure they are up to date. All of the examples, as
well as a “Getting Started” guide can be accessed from
the PyBaMM website and can be run interactively in a
web browser via Google Colab with no installation
necessary. Further examples can be found on the
accompanying case studies repository, which, among
other things, shows how PyBaMM can be used for
parameter estimation and simulation of drive-cycle
experiments.

Please consult the CONTRIBUTING.md file in the
PyBaMM repository for more detailed and up-to-date
information on our development workflow, testing and
CI infrastructure, and coding style guidelines.

Figure 3 Interactive visualisation of solutions. The user can select the time at which to view the output using the time-slider bar at
the bottom. This interactive plot is automatically generated by providing a list of model solutions and output variables.

Listing 1 Running a simulation in PyBaMM.

1 import pybamm
2 # Doyle-Fuller-Newman model
3 model = pybamm.lithium_ion.DFN()
4 sim = pybamm.Simulation(model)
5 sim.solve([0, 3600]) # solve for 1 hour
6 sim.plot()

Listing 2 Running an experiment in PyBaMM.

1 import pybamm
2 experiment = pybamm.Experiment(
3 [
4 ″Discharge at C/10 for 10 hours

or until 3.3 V″,
5 ″Rest for 1 hour″,
6 ″Charge at 1 A until 4.1 V″,
7 ″Hold at 4.1 V until 50 mA″,
8 ″Rest for 1 hour”,
9]
10 * 3,
11)
12 model = pybamm.lithium_ion.DFN()
13 sim = pybamm.Simulation(
14 model,
15 experiment=experiment,
16 solver=pybamm.CasadiSolver(),
17)
18 sim.solve()
19 sim.plot()

https://docs.python.org/3/library/unittest.html
https://github.com/pybamm-team/PyBaMM/tree/main/examples/notebooks
https://pybamm.org
https://colab.research.google.com
https://github.com/pybamm-team/pybamm-case-studies
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md

5Sulzer et al. Journal of Open Research DOI: 10.5334/jors.309

(2) AVAILABILITY
OPERATING SYSTEM
PyBaMM can run on any Linux, MacOS or Windows
sytem that has Python 3.6-3.8 installed, along with the
dependencies listed below. The optional dependency,
scikits-odes, currently only supports Linux and MacOS. For
Windows users, we therefore recommend using Windows
Subsystems for Linux (WSL); detailed instructions are
available on GitHub. On Linux and MacOS, Google’s JAX
library can be used to provide additional autograd and
solver capabilities.

PROGRAMMING LANGUAGE
Python 3.6-3.8

ADDITIONAL SYSTEM REQUIREMENTS
PyBaMM has no special requirements and can be run on
a standard laptop or desktop machine.

DEPENDENCIES
Required:

•	 numpy≥1.16
•	 scipy≥1.3
•	 pandas≥0.24
•	 anytree≥2.4.3
•	 autograd≥1.2
•	 scikit-fem≥0.2.0
•	 casasi≥3.5.0,
•	 jupyter (for example notebooks)
•	 matplotlib≥2.0
•	 jax=0.1.75, (not supported on Windows)
•	 jaxlib==0.1.52, (not supported on Windows)

Optional:

•	 scikits.odes≥2.4.0 (optional DAE solver, requires
SUNDIALS 5.0.0)

LIST OF CONTRIBUTORS
The following people have contributed in some form to
the development of PyBaMM at time of writing. An up-to-
date list of contributors can be found in our README. Core
developers are indicated in bold.

Valentin Sulzer, Scott Marquis, Robert Timms,
Martin Robinson, Ferran Brosa-Planella, Tom Tranter,
Thibault Lestang, Diego Alonso Álvarez, Jacqueline
Edge, Colin Please, Jon Chapman, Fergus Cooper, Felipe
Salinas, Peter Cho, Suhak Lee, Vivian Tran, Yannick Kuhn,
Alexander Bessman, Daniel Albamonte, Anand Mohan
Yadav, Weilong Ai.

SOFTWARE LOCATION
Name: GitHub (release v0.2.4)
Persistent identifier: https://github.com/pybamm-team/

PyBaMM/releases/tag/v0.2.4

Licence: BSD 3-clause
Publisher: The PyBaMM team
Version published: v0.2.4
Date published: 07/09/20

Code repository
Name: GitHub
Persistent identifier: https://github.com/pybamm-team/

PyBaMM

Licence: BSD-3-Clause
Date published: 04/11/2018

LANGUAGE
English

(3) REUSE POTENTIAL

We anticipate that the main use case will be the
implementation, extension, and comparison of new models
and parameter sets. For example, this will allow researchers
to implement models that couple several degradation
mechanisms together. Further, although PyBaMM has been
written with battery models in mind, the expression tree
and pipeline architecture could be potentially be used to
solve different sets of continuum models numerically.

In addition to new models and parameter sets,
the modular framework described in Section 1 allows
researchers to add new numerical algorithms in the form
of spatial discretisations or new ODE/DAE solvers. Any
such extensions can then be immediately tested with
the existing set of models and parameters. This allows
researchers to quickly assess the accuracy and speed
of their numerical algorithms for a range of models and
relevant parameter values.

Information on how to extend the software in these
ways is available both through tutorials in the API docs
and example notebooks. All of the development is
done through GitHub issues and pull requests, using the
workflow explained in the CONTRIBUTING.md file. Users
can request support by raising an issue on GitHub.

A CREATING A MODEL

In this section, we present an example of how to enter a
simple diffusion model in PyBaMM. This model serves as
a good representation of the types of models that arise
in battery modelling because it contains most of the key
components: spatial operators, parameters, Dirichlet and
Neumann boundary conditions, and initial conditions.

We consider the concentration of some species
c, on a spatial domain x ∈ [0,1], and at some time t
∈ [0,∞). The concentration of the species is taken to
evolve according to a nonlinear diffusion process with
the concentration being fixed at x = 0 and a constant

https://github.com/google/jax
https://github.com/pybamm-team/PyBaMM
https://github.com/pybamm-team/PyBaMM/releases/tag/v0.2.4
https://github.com/pybamm-team/PyBaMM/releases/tag/v0.2.4
https://github.com/pybamm-team/PyBaMM
https://github.com/pybamm-team/PyBaMM
https://pybamm.readthedocs.io/en/latest/
https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks/Creating%20Models
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md

6Sulzer et al. Journal of Open Research DOI: 10.5334/jors.309

inward flux of species imposed at x = 1. Mathematically,
the model is stated as

	   , () in 0 1, 0D c
c

t
t

c x


   


   � (1a)

	 , 1 t a 0c x  � (1b)

	
 , () 1 t a 1D c x

c
x



  � (1c)

	 , 1 t 0 ac x t   � (1d)

where D(c) = k(1+c) is the diffusion coefficient and k is
a parameter, which we will refer to as the diffusion
parameter.

In Listing 3, we provide the PyBaMM code implementing
(1). Note that operator overloading of * and + allows
symbols to be intuitively combined to produce expression
trees. A more detailed and up-to-date introduction to
the syntax is provided in the online examples available
on GitHub.

The model is now represented by a collection of
expression trees and can therefore be solved by passing
it through the pipeline just like any other model in
PyBaMM. Additionally, extending the model to include

additional physics is simple and intuitive due to the
simple symbolic representation of the underlying
mathematical equations. For example, we can add a
source term to the governing equation (1a) by only
modifying one line of code (line 10 of Listing 3) and
still obtain useful properties of the model such as the
analytical Jacobian.

The common interface of all PyBaMM models makes
it easy to perform the pipeline process as illustrated here
upon multiple models or the same model with different
options activated. Therefore, comparing the results of
different models, mesh types, discretisations, and solvers
then becomes straightforward within the PyBaMM
framework.

ACKNOWLEDGEMENTS

The authors are grateful to all contributors, workshop
attendees, and the following people for useful discussions,
feedback and support on the early development of
PyBaMM: Jamie Foster, David Howey, Ivan Korotkin,
Charles Monroe, Greg Offer, and Giles Richardson.

FUNDING STATEMENT

VS acknowledges funding from the EPSRC Center for
Doctoral Training in Industrially Focused Mathematical
Modelling (EP/L015803/1) in collaboration with BBOXX.
SM acknowledges funding from the EPSRC Center for
Doctoral Training in Industrially Focused Mathematical
Modelling (EP/L015803/1) in collaboration with Siemens.
RT and JC acknowledge support from the Faraday
Institution (EP/S003053/1). MR acknowledges funding
from the EPSRC Impact Acceleration Account - University
of Oxford (D4D00010).

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Valentin Sulzer orcid.org/0000-0002-8687-327X
DPhil Student; Mathematical Institute, University of Oxford,
Radcliffe Observatory, Andrew Wiles Building, Woodstock Rd,
Oxford OX2 6GG, GB

Scott G. Marquis orcid.org/0000-0002-6895-990X
DPhil Student; Mathematical Institute, University of Oxford,
Radcliffe Observatory, Andrew Wiles Building, Woodstock Rd,
Oxford OX2 6GG, GB

Robert Timms orcid.org/0000-0002-8858-4818
PDRA; Mathematical Institute, University of Oxford, Radcliffe
Observatory, Andrew Wiles Building, Woodstock Rd, Oxford OX2
6GG, GB

Listing 3 Defining a model in PyBaMM.

1 # 1. Initialise model

2 model = pybamm.BaseModel()

3

4 # 2. Define parameters and variables

5 c = pybamm.Variable(″c″, domain=″unit
line″)

6 k = pybamm.Parameter(″Diffusion parameter″)

7

8 # 3. State governing equations

9 D = k * (1 + c)

10 dcdt = pybamm.div(D * pybamm.grad(c))

11 model.rhs = {c: dcdt}

12

13 # 4. State boundary conditions

14 D_right = pybamm.BoundaryValue(D, ″right″)

15 model.boundary_conditions = {

16 c: {

17 ″left″: (1, ″Dirichlet″),

18 ″right″: (1/D_right, ″Neumann″)

19 }

20 }

21

22 # 5. State initial conditions

23 x = pybamm.SpatialVariable(″x″,
domain=″unit line″)

24 model.initial_conditions = {c: x + 1}

https://orcid.org/0000-0002-8687-327X
https://orcid.org/0000-0002-8687-327X
https://orcid.org/0000-0002-6895-990X
https://orcid.org/0000-0002-6895-990X
https://orcid.org/0000-0002-8858-4818
https://orcid.org/0000-0002-8858-4818

7Sulzer et al. Journal of Open Research DOI: 10.5334/jors.309

Martin Robinson orcid.org/0000-0002-1572-6782

RSE; Department of Computer Science, University of Oxford,

Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

S. Jon Chapman orcid.org/0000-0003-3347-6024
Professor; Mathematical Institute, University of Oxford,
Radcliffe Observatory, Andrew Wiles Building, Woodstock Rd,
Oxford OX2 6GG, GB

REFERENCES

1.	 EPSRC Press Office. Greg Clark announces Faraday

Institution, October 2017. epsrc.ukri.org/newsevents/

news/faradayinstitution/. [Online; accessed

11-September-2019].

2.	 COMSOL Inc. COMSOL multiphysics reference manual,

version 5.4. www.comsol.com.

3.	 Newman J. FORTRAN programs for the simulation of

electrochemical systems. www.cchem.berkeley.edu/jsngrp/

fortran.html.

4.	 Moura SJ. Fast doyle-fuller-newman (DFN)

electrochemical-thermal battery model simulator. github.

com/scott-moura/fastDFN.

5.	 Torchio M, Magni L, Gopaluni RB, Braatz RD, Raimondo

DM. LION-SIMBA: A matlab framework based on a

finite volume model suitable for li-ion battery design,

simulation, and control. Journal of The Electrochemical

Society. 2016; 163(7): A1192–A1205. DOI: https://doi.

org/10.1149/2.0291607jes

6.	 Smith RB, Bazant MZ. Multiphase porous electrode

theory. Journal of The Electrochemical Society.

2017; 164(11): E3291–E3310. DOI: https://doi.

org/10.1149/2.0171711jes

7.	 Marquis SG, Sulzer V, Timms R, Please CP, Chapman SJ.

An asymptotic derivation of a single particle model with

electrolyte. Journal of The Electrochemical Society. 2019;

166(15): A3693. DOI: https://doi.org/10.1149/2.0341915jes

8.	 Sulzer V, Chapman SJ, Please CP, Howey DA, Monroe

CW. Faster lead-acid battery simulations from porous-

electrode theory: Part I. Physical model. Journal of The

Electrochemical Society. 2019; 166(12): A2363–A2371. DOI:

https://doi.org/10.1149/2.0301910jes

9.	 Sulzer V, Chapman SJ, Please CP, Howey DA, Monroe CW.

Faster leadacid battery simulations from porous-electrode

theory: Part II. Asymptotic analysis. Journal of The

Electrochemical Society. 2019; 166(12): A2372–A2382. DOI:

https://doi.org/10.1149/2.0441908jes

10.	 Chen CH, Brosa Planella F, O’Regan K, Gastol D,

Widanage WD, Kendrick E. Development of Experimental

Techniques for Parameterization of Multi-scale Lithium-ion

Battery Models. Journal of The Electrochemical Society.

2020; 167(8): 080534. DOI: https://doi.org/10.1149/1945-

7111/ab9050

11.	 Tranter TG, Timms R, Heenan TMM, Marquis SG, Sulzer

V, Jnawali A, Kok MDR, Please CP, Chapman SJ, Shearing

PR, et al. Probing heterogeneity in li-ion batteries with

coupled multiscale models of electrochemistry and

thermal transport using tomographic domains. Journal of

The Electrochemical Society. 2020; 167(11): 110538. DOI:

https://doi.org/10.1149/1945-7111/aba44b

12.	 Marquis SG, Timms R, Sulzer V, Please CP, Chapman SJ. A

suite of reduced-order models of a single-layer lithium-ion

pouch cell. Journal of The Electrochemical Society. 2020;

167(14): 140513. DOI: https://doi.org/10.1149/1945-7111/

abbce4

13.	 Timms R, Marquis SG, Sulzer V, Please CP, Chapman SJ.

Asymptotic reduction of a lithium-ion pouch cell model.

arXiv preprint arXiv:2005.05127, 2020. https://arxiv.org/

abs/2005.05127.

14.	 Salinas F, Kowal J. Discharge rate capability in aged li-ion

batteries. Journal of the Electrochemical Society. 2020. DOI:

https://doi.org/10.1149/1945-7111/abc207

15.	 Harris CR, Millman KJ, van der Walt SJ, Gommers R,

Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S,

Smith NJ, et al. Array programming with NumPy. Nature.

2020; 585(7825): 357–362. DOI: https://doi.org/10.1038/

s41586-020-2649-2

16.	 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy

T, Cournapeau D, Burovski E, Peterson P, Weckesser

W, Bright J, et al. SciPy 1.0: fundamental algorithms for

scientific computing in python. Nature methods. 2020;

17(3): 261–272. DOI: https://doi.org/10.1038/s41592-019-

0686-2

17.	 The pandas development team. pandas-dev/pandas:

Pandas, February 2020. DOI: https://doi.org/10.5281/

zenodo.3509134

18.	 Hunter JD. Matplotlib: A 2D graphics environment.

Computing in Science & Engineering. 2007; 9(3): 90–95. DOI:

https://doi.org/10.1109/MCSE.2007.55

19.	 Kluyver T, Ragan-Kelley B, Pérez F, Granger B,

Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout

J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C,

Jupyter development team. Jupyter notebooks - a

publishing format for reproducible computational

workflows. In Loizides F, Scmidt B (eds.), Positioning

and Power in Academic Publishing: Players, Agents and

Agendas, pages 87-90, Netherlands, 2016. IOS Press.

DOI: https://doi.org/10.3233/978-1-61499-649-1-87

20.	 Hindmarsh AC. The PVODE and IDA algorithms. Technical

report, Lawrence Livermore National Lab., CA (US), 2000.

DOI: https://doi.org/10.2172/802599

21.	 Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban

R, Shumaker DE, Woodward CS. SUNDIALS: Suite

of nonlinear and di_erential/algebraic equation

solvers. ACM Transactions on Mathematical Software

(TOMS). 2005; 31(3): 363–396. DOI: https://doi.

org/10.1145/1089014.1089020

22.	 Malengier B, Kišon P, Tocknell J, Abert C, Bruckner F,

Bisotti M-A. ODES: a high level interface to ODE and DAE

solvers. The Journal of Open Source Software. Feb 2018;

3(22): 165. DOI: https://doi.org/10.21105/joss.00165

23.	Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl

https://doi.org/10.5334/jors.309
https://orcid.org/0000-0002-1572-6782
https://orcid.org/0000-0002-1572-6782
https://orcid.org/0000-0003-3347-6024
https://orcid.org/0000-0003-3347-6024
epsrc.ukri.org/newsevents/news/faradayinstitution/
epsrc.ukri.org/newsevents/news/faradayinstitution/
http://www.comsol.com
www.cchem.berkeley.edu/jsngrp/fortran.html
www.cchem.berkeley.edu/jsngrp/fortran.html
http://github.com/scott-moura/fastDFN
http://github.com/scott-moura/fastDFN
https://doi.org/10.1149/2.0291607jes
https://doi.org/10.1149/2.0291607jes
https://doi.org/10.1149/2.0171711jes
https://doi.org/10.1149/2.0171711jes
https://doi.org/10.1149/2.0341915jes
https://doi.org/10.1149/2.0301910jes
https://doi.org/10.1149/2.0441908jes
https://doi.org/10.1149/1945-7111/ab9050
https://doi.org/10.1149/1945-7111/ab9050
https://doi.org/10.1149/1945-7111/aba44b
https://doi.org/10.1149/1945-7111/abbce4
https://doi.org/10.1149/1945-7111/abbce4
https://arxiv.org/abs/2005.05127
https://arxiv.org/abs/2005.05127
https://doi.org/10.1149/1945-7111/abc207
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.2172/802599
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.21105/joss.00165

8Sulzer et al. Journal of Open Research DOI: 10.5334/jors.309

TO CITE THIS ARTICLE:
Sulzer V, Marquis SG, Timms R, Robinson M, Chapman SJ 2021 Python Battery Mathematical Modelling (PyBaMM). Journal of Open
Research Software, 9: 14. DOI: https://doi.org/10.5334/jors.309

Submitted: 05 November 2019 Accepted: 13 April 2021 Published: 08 June 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

M. CasADi – A software framework for nonlinear

optimization and optimal control. Mathematical

Programming Computation. 2019; 11(1): 1–36. DOI:

https://doi.org/10.1007/s12532-018-0139-4

24.	 Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary

C, Maclaurin D, Wanderman-Milne S. JAX: composable

transformations of Python+NumPy programs, 2018. github.

com/google/jax.

https://doi.org/10.5334/jors.309
https://doi.org/10.5334/jors.309
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12532-018-0139-4
https://github.com/google/jax
https://github.com/google/jax

