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ABSTRACT 

Wind energy is a continuous, clean source of energy that can be harnessed for electricity 

generation or water pumping. The geographic location of Mozambique, and the long 

coastline renders the country a good wind energy potential that could potentially be 

exploited for water pumping or electrical power systems that have social and economic 

benefits and thereby contribute to a reduction in unsustainable practices of wood 

biomass burning which is the main source of energy in rural villages and high density 

suburbs of the main cities of the country.  

This study is focused on evaluating the potential of harnessing wind energy for 

electrical power generation in Mozambique using the Wind Atlas Analysis and 

Application Programme (WAsP) model. The study characterises wind speed patterns 

and wind frequency distributions at selected meteorological stations based on hourly 

observations, and models the available wind energy in coastal and interior areas. 

Meteorological parameters such as wind speed data from nearby meteorological stations 

and wind turbine characteristics were used as inputs into the model. To effectively 

harness wind energy, mean annual wind speeds should at least be 3 ms-1. For this reason 

only sites satisfying this criterion were selected. The spatial selection criteria considered 

a fair distribution of candidate sites such that coastal areas of the southern, northern and 

the interior Niassa and Nampula provinces were covered.  

The results of the WAsP model simulations, indicate that there is sufficient wind energy 

resource in both interior and coastal areas, which varies with height a.g.l., and that can 

be exploited for pumping water and generating electricity in small or medium electrical 

power systems, particularly the coastal areas of Ponta de Ouro, Mavelane, and Tofinho 

where the mean annual wind speed is above 5.0 ms-1 at the 10 m level and about  

8.0 ms-1 at the highest levels (50 - 60 m a.g.l.) and interior area of Lichinga (mean 

annual wind speed of about 6 ms-1 at the same highest levels). The lowest wind energy 

potential (mean annual wind speed of about 4.0 ms-1) is found in the Nampula area.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study  

Energy is available as two different alternatives; non-renewable (coal, oil, natural gas) 

and renewable (solar, wind, hydro, wave, biomass) sources (Sahin, 2004). Wind energy 

has played a long and important role in the history of civilization. It has been used to 

sail ships, grind grain and pump water (Ahmed and Abouzeid, 2001; Gipe, 2004; 

Erdogdu, 2008). Since 1891, when “Dane Poul LaCour” (Sahin, 2004; Erdogdu, 2008) 

succeeded in generating electricity from wind, wind energy has become a promising 

alternative to oil, mainly because it is continuous and does not cause environmental 

contamination. However, the popularity of using the energy of the wind has always 

fluctuated and the interest in wind energy, particularly wind turbines, declined with the 

fall of fuel prices after World War II (Erdogdu, 2008).  

The energy crisis in 1973 that led to the first oil price shock (Ackermann and Söder, 

2002; Sahin, 2004), associated with the limited supply of fossil fuels and their well-

known negative environmental impacts raised the interest in renewable energy resources 

for electricity generation. Wind energy is one of the clean, sustainable and 

environmentally-friendly alternative energy sources that is currently experiencing 

increasing development worldwide. 

Mozambique is a developing country, with an economy that is highly dependent on the 

agricultural sector, which provides direct and indirect employment or livelihoods for 

about 80% of the economically active population, and which contributes roughly 30% 

of the Gross Domestic Product (GDP) (O’Brien and Vogel, 2003). The country is 

energy rich; it has 39 rivers emptying into Indian Ocean, unexploited biomass (about  

7 Exajoules of biofuels), solar energy (about 1.49 million GWh) that could be used for 

both on-and off-grid application, geothermal resources (about 25 MW of exploitable 

power) and adequate wind energy (an average wind speed of 6 - 7 ms-1) (Hankins, 

2009). The country is aware of the need to promote sustainable development by using 
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environmentally-friendly alternative energy resources. This awareness is clearly stated 

in the Mozambican Poverty Reduction Strategy, PARPA II (GovM, 2006a; IMF, 2007). 

With an area of 799 380 km2 (INE, 1998) and 20 million inhabitants (ENM, 2009), 

Mozambique is primarily dependent on hydro-power from the Cahora Bassa dam 

(Hankins, 2009) that produces 13 105 022 MWh (ME, 2007). Other sources include 

small hydro, thermal and natural gas power stations, which together contribute only 

1.5% of the total 13 284 910 MWh (ME, 2007) produced in the country. 

This quantity of energy produced, coupled with a limited national utility power grid that 

only had about 302 218 households connected to it in 2005 (ME, 2007), point to an 

unsatisfactory situation in terms of meeting electricity demands, particularly in the rural 

areas where more than 70% of the population lives (INE, 1998).  

The shortage of power supplies leads to the massive consumption of fuel wood (wood 

and charcoal) which is the main source (about 96%) of the renewable energy consumed 

in the country (ME, 2007). This consumption contributes negatively to deforestation 

and destruction of biodiversity. 

Wind energy is a clean and readily available renewable energy resource that is widely 

utilized worldwide, yet its exploitation is very limited in Mozambique (Hankins, 2009; 

Chambal, 2010). The location of the country, along the south-eastern coast of southern 

Africa, its long coastline, the second longest in Africa (Hankins, 2009), and some 

highlands in the interior region, consisting of open terrain, are conditions favorable for 

the existence of a good wind resource.  

Fraenkel et al. (1993) state that in the 1980s the first attempt to exploit wind energy for 

water-pumping had been established in the south of the country, under the support of 

the Dutch government programme of wind energy for developing countries. 

Recently, in an effort to promote the exploitation and use of wind energy for electrical 

power production, a study was undertaken to assess the possibility of installing large-

scale wind farms at two locations in the south of the country (Ponta de Ouro and 

Tofinho). This assessment indicated an average wind speed of 6 - 7 ms-1  at a 20 m hub 
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height. It was concluded that electricity could be generated at a cost of 9 US¢/kWh 

(DNER, 2008; Hankins, 2009) . 

Against this background, a more widespread investigation of the wind energy resource 

and wind energy potential in Mozambique is a strategically good starting point to 

promote the exploitation of wind energy, and therefore the promotion of sustainable 

development for the country. 

 

1.2 Problem statement  

Mozambique, like most under-developed countries, is a country in which the electrical 

utility, which provides 7.8% (ME, 2007; Mulder and Tembe, 2008) of the 20 million 

inhabitants with electricity, falls far short of meeting the national demand for energy, 

particularly in rural communities where most of the country’s population lives. This 

level of accessibility to electricity and the lowest per capita use of electricity in the 

world (about 50 kWh/capita/annum) (Hankins, 2009) retard the socio-economic 

development of the country, particularly in the rural areas. 

The rural areas of the county are typically infrastruturally poor. There is very limited 

access to communication, roads and income generation activities because of little 

economic activity (Hankins, 2009). Greater access to electricity could boost local 

industry, trade and the ability to process agricultural products and therefore contribute 

to poverty reduction (GovM, 2005b).  

The apparently significant expansion of the utility grid countrywide between 2003 and 

2005, which was an increase of about 50%, 30% and 15% for the Southern, Central and 

Northern regions (ME, 2007) respectively, is insignificant when considered in the 

context of the total population (20 million inhabitants). The increase in electrification 

represented only an additional 129 000 households connected to the utility grid, giving a 

total of about 302 000 households connected up to 2005 (ME, 2007).  

The total power production of Mozambique is 13 284 910 MWh (ME, 2007), with 

hydro-power from the Cahora Bassa dam being the major source of electricity, 
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producing 98.6% of the total electricity generated (ME, 2007). However, hydro-power 

cannot be the sole source of power. Despite all the advantages that it has, it is well 

known that hydro-power stations require specific locations with special characteristics 

and that large hydro-power schemes have an irreversible negative impact on the 

environment (Esteves, 2004).  

For these reasons and because the country is energy rich in viable green energy sources, 

investigations into the utilization of mini and micro-hydro-power stations, as well as 

other clean renewable energy sources such as solar and wind power, should be 

undertaken to satisfy the energy demands of the country in the medium- and short-term. 

In the light of the Millennium Development Goals (MDGs), the energy policy and 

electrification system of the Mozambican Government are directed to rural areas to 

ensure sustainable development through the use of green energy (GovM, 2006a; 

Hankins, 2009). This is the justification for the introduction of solar off-grid energy 

schemes, which comprise 4% of the total renewable energy produced (ME, 2007), and 

which are used to supply power to rural hospitals (health clinics), schools, government 

offices, street lightning and off-grid tourist hotels (Hankins, 2009), as well as for water 

pumping and grinding activities in rural communities.  

Firewood and charcoal represent the major sources of renewable energy, comprising 

92% and 4% of the total respectively (ME, 2007). Wind power is still an unknown and 

unexploited energy resource in the country (ME, 2007; Hankins, 2009).  

 

1.3 Rationale for the study  

An evaluation of the wind resource and wind energy potential in Mozambique through 

the production of a wind atlas and maps of the wind resource using observed and 

modelled wind data can promote the exploitation of wind energy either for water-

pumping or electrical power production for on-grid or off-grid wind power applications. 
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In addition, evaluation of the wind and energy resource potential can help either in 

planning wind measurements and data collection for the specific purpose of installing 

wind turbines or checking wind speed measurements that have been recorded at local 

weather stations.  

 

A wind energy potential map can also stimulate wind energy projects and promote the 

exploitation of the wind for different applications, such as electricity generation, water 

pumping for irrigation and livestock rearing, and cereal grinding. It can also become a 

tool to help decision-makers seek potential investors in this unexploited field. All these 

have the potential to bring prosperity and raise the standard of living due to improved 

educational facilities and public health benefits, as well as improve opportunities in the 

agricultural sector and promote local enterprises and the development of rural 

infrastruture. 

 

1.4 Aim and objectives of the study  

This project aims to undertake an evaluation of the wind energy potential for electrical 

power generation in Mozambique by using a modeling technique. 

The specific objectives of the study are: 

1. To characterize the wind speed patterns based on hourly observed wind data at 

meteorological stations; and  

2. To model the wind power availability in two selected areas using a numerical model 

that uses wind speed data from individual sites and wind turbine characteristics to 

provide a spatial representation of wind power which enables the identification of 

potential sites with high mean annual wind speeds sufficient for electricity 

generation. 
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1.5  The study areas  

1.5.1 Location  

Mozambique is located on the south-eastern side of the southern African subcontinent, 

between latitudes 10º 27´S and 26º 52´S and longitudes 30º 12´E and 40º 52´E (INE, 

1998), and has a long coastline of about 2 515 km (INE, 1998; O’Brien and Vogel, 

2003). It is expected to possess a good wind resource potential that can be harnessed for 

energy purposes. Figure 1.1 ilustrates the administrative areas or provinces of 

Mozambique.  

 

Figure 1. 1: Map showing provinces of Mozambique. 



An evaluation of Wind Energy Potential for Power Generation in Mozambique 7

The study areas selected are the coastal zones of the southern and northern regions of 

Mozambique and the interior areas of Nampula and Niassa provinces. The southern 

coastal area lies between latitudes 21º 45´S and 26º 52´S and longitudes 32º 27´E and 

36º E, from Ponta de Ouro to Vilankulo; the northern coastal area lies between latitudes 

11º 59´S and 15º 32´S and longitudes 40º 12´E and 40º 33´E, from Mossuril to 

Macomia. The interior area comprises the districts of Lichinga, between latitudes 12º 

59´S and 14º 00´S and longitudes 35º 00´E and 35º 59´E, and Nampula between 

latitudes 15º 00´S and 15º 25´S and longitudes 39º 00´E and 39º 47´E (Fig. 1.2).  

In general, coastal areas are characterized by more frequent strong winds than interior 

areas. This contrast is related to the thermal effect and the low roughness of the water 

surface in coastal areas. Wind speed diminishes rapidly about 3 km away from the shore 

line (Gipe, 2004) when the roughness of the inland surface changes more significantly.  

 

1.5.2 Topography  

The coastal plain lies at an elevation of less than 200 m. The interior province of 

Nampula is between 100 - 500 m altitude and Lichinga is between 1 000 - 1 500 m 

altitude (ENM, 2009). The coastal plain is characterized by dunes and open lands, while 

low grasses and small dispersed bushes are the typical vegetation. 
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Figure 1. 2: Digital elevation model representing the topography of the coastal and interior study areas. 
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Some isolated hilly areas of less that 200 m elevation are sparsely situated throughout 

the coastal plain, but these features are very characteristic of the hinterland area, 

particularly to the south of Maputo near the Swaziland and KwaZulu-Natal borders, 

where elevations reach about 800 m (ENM, 2009). Plate 1.1 illustrates the typical 

topography of the coastal areas. 

 

Plate 1. 1: Ponta de Ouro dunes showing topography typical of all the coastal zones 
[Source: DNER, 2008; Photo by Riso]. 

 

In the interior, the flat terrain is dominated by open areas with low grass and dispersed 

bushes. Mountainous areas, with elevations above 1 500 m (ENM, 2009), are 

characterictic of the north-west of Niassa province, north and north-west of Tete 

(Angonia), the Alta Zambézia in the Zambézia province and the western part of Manica 

province close to the Zimbabwe border. Figure 1.3 illustrates the topography of 

Mozambique. 
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Figure 1. 3: Topography of Mozambique [Source: MINED, 1986]. 
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1.5.3 Climate  

According to the Köppen classification scheme (Faria and Gonçalves, 1968; MINED, 

1986; Matos and Ramalho, 1989; O’Brien and Vogel, 2003, ENM, 2009), the climate of 

Mozambique is tropical savanna, with four main climate zones, namely: Aw (tropical 

and humid), Bs (tropical and dry), Cw (higher altitude) and Bs (tropical semi-arid)  

(Fig. 1.4 a). 

Two typical climate seasons characterize Mozambique: the warm and rainy summer, 

which extends from November to April, and the dry and cooler winter from May to 

October (O’Brien and Vogel, 2003). The annual mean temperature and rainfall  

(Fig. 1.4b and 1.4c) vary from the northern to the southern region and from the coast to 

the highlands in the interior of the country. The coastal plain has a tropical and humid 

climate with a mean temperature of about 24ºC in the southern region and 25°C in the 

northen regions (Fig. 1.4 a and 1.4b).  
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Figure 1. 4a: The climatic zones [Source: 
MINED, 1986]. 

Figure 1.4b:  Annual mean temperatures 
[Source: MINED, 1986]. 

Figure 1.4c:  Annual mean precipitation [Source: 
MINED, 1986]. 
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The wind regime in summer is predominantly of a south-easterly or southerly flow in the 

southern region (Da Mata, 1962; Martyn, 1992) and north-north-east (NNE) in the northern 

region (Da Mata, 1962) (Fig. 1.5).  

In the southern region, the wind regime is a consequence of the south-east trade winds from 

the Indian Ocean High (Martyn, 1992), while the northern region is influenced by the 

north-east Monsoon from Somalia and east Africa (Hastenrath, 1985; Martyn, 1992).  

 

Figure 1. 5: The mean and extreme position of the ITCZ over Southern Africa from 
December to January and the Congo Air Boundary (CAB) [Source: Martyn, 
1992; McGregor and Nieuwolt, 1998]. 

 

In winter, the Intertropical Convergence Zone (ITCZ) is situated in the Northern 

Hemisphere and the whole of south-eastern Africa comes under the influence of the 

permanent Indian Ocean High centered over 30º S (Ayoade, 1983; Wells, 1986; Martyn, 

1992), which dominates the general circulation of the Southern Hemisphere (Wells, 1986; 

Tyson and Preston-Whyte, 2000). 

In view of this pressure distribution over south-eastern Africa, throughout the country 

either north of 15º S or south of 21º S latitude and as well as in between this belt, the wind 
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regime is predominantly south-easterly (SE) or easterly winds (Da Mata, 1962). This wind 

regime is a consequence of the permanent Indian Ocean high centred over 30°S (Martyn, 

1992) associated with the presence of the winter South African High over the subcontinent 

(Van Heerden and Hurry, 1987: Martyn, 1992).  

 

1.5.4 Population  

The vast geographical extent of Mozambique, 799 380 km2 (INE, 1998) and low population 

density of about 25.7 inhabitants/km2 (ENM, 2009) hampers accessibility of rural 

communities to conventional energy (about 8% with acess to electricity) (ME, 2007; 

Mulder and Tembe, 2008; Hankins, 2009). Electrification of sparsely population rural areas 

is difficult and not cost-effective (Mulder and Tembe, 2008; Hankins, 2009). The coastal 

areas of the country are relatively more populated than the interior areas (Fig. 1.6).  

The province of Niassa, one of the study areas in the northern region, is the most extensive  

(8 689 467km2) and least populated province of the country (9.13 inhabitants/km2) (ENM, 

2009). Most of the population is close to Lago Niassa (Fig. 1.6). Maputo (Maputo Cidade), 

one of the study areas in the south, has the smallest area and is the most populated province 

(about 3 664 inhabitants/km2), while Nampula (49.96 inhabitants/km2) in the northern 

region is the second most populated province of the country (ENM, 2009).  



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 15

 

Figure 1. 6: Inhabitants per square kilometer [Source: ENM, 2009]. 

 

1.5.5 Electricity access  

A lack of access to modern energy by most rural communities throughout the country 

hampers productive activities, most of which are dependent on electricity, and prevents 

most of the poor households from increasing their income. According to Mulder and Tembe 
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(2008) and Hankins (2009), more than 80% of Mozambique’s population is off-grid and 

relies on traditional wood and charcoal biomass resources for all of their energy needs.  

The electricity accessibility for all provinces in 2008, was still below 8% (Mulder and 

Tembe, 2008; Hankins, 2009). Exceptions include Maputo Cidade (the county’s capital 

with 61.4% access), Maputo Provincia (about 33.6% access), Gaza (15.5%) and Sofala 

(12.4%) (Hankins, 2009). The province of Tete, where the hydro-power scheme of Cahora 

Bassa is located, had only 6% electricity accessibility in 2008, while Zambézia, the fourth 

most populated province, had the least electricity accessibility, with only 4.7% access 

(Hankins, 2009). 

In order to reduce these asymmetries that are found country-wide, one of the objectives of 

Mozambique’s Poverty Reduction Strategy (GovM, 2005b) for the energy sector is to 

improve the provision of energy to households through its electrification master plan that is 

being implemented by Electricidade de Moçambique (EDM) (Mozambique’s electricity 

utility) to expand the existing national grid fed by hydro-power from Cahora Bassa (Mulder 

and Tembe, 2008).  

In the southern region of the country, despite the operational 110 kV transmission line from 

Xai-Xai (Gaza province) substation to Lindela (Inhambane province) (Fig. 1.7), many rural 

communities, schools, and hospitals less than 5 km away from this corridor do not have 

access to electricity. This scenario is similar across the country and is a consequence of the 

sparsely populated rural areas and the vast geographical area that make the distribution of 

commercial energy to these communities expensive (Hankins, 2009). 

Figure 1.7 illustrates the EDM transmission power lines throughout the country fed by 

hydro-power from Cahora Bassa where the operationl transmission lines are shown in solid 

lines and planned ones in dotted lines. Apart from this main grid, there are numerous off-

grid back-up generators which operate in regional capitals country-wide. One such isolated 

gas-fired mini-grid operates in the rural areas of Inhambane province, namely Nova 
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Mambone, Inhassoro and Vilankulo, which supplies electricity to other small rural villages, 

viz. Mapinhane, Mabote and Maimelane (DNER, 2008).  

Different initiatives are being undertaken in order to provide decentralized off-grid power 

to community centres with common facilities, viz. local enterprises, schools, training and 

health centers, by using renewable energy sources such as solar photovoltaic (Hankins, 

2009). Utilization of wind energy for power generation is also being planned (DNER, 2008; 

Hankins, 2009). 
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Figure 1. 7: The EDM power transmission lines throughout the country [Source: EDM, 
2007]. 
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1.6  Structure of the thesis  

This thesis is divided into five chapters. Chapter One is an introduction to the study, where 

the problem, justification, the aim and objectives of the study are outlined. Chapter Two is 

devoted to a theoretical discussion and literature review about harnessing wind for energy 

applications, while Chapter Three characterizes the meteorological data sets and describes 

the methodological procedures that were used in the study. In Chapter Four, the wind 

energy resources in the selected study areas are predicted and mapped and Chapter Five 

summarizes the results from the previous chapters, draws conclusions and makes general 

recommendations for future investigations. 

 

1.7 Summary  

This chapter has provided the background concerning the need to exploit the wind as a 

continuous and clean energy source for electricity generation.  

In this regard, based on energy statistics from previous studies, it has been highlighted that 

the lack of electricity affects the majority of the country’s population who have no access to 

utility services. This fact leads to the massive consumption of wood biomass and charcoal 

as the main sources of energy, a practice that is environmentally unfriendly as it degrads the 

natural vegetation and furthermore, during combustion emits air pollutants which are 

harmful to human health. 

It was therefore stressed that an evaluation of the wind resource and wind energy potential 

could contribute to and promote the exploitation of this continuous clean source of energy 

to generate electricity. This could contribute to the national electricity grid and could boost 

local industry, trade and create employment and improve the life of the local comunities by 

providing them with access to improved education and health facilities, thus contributing to 

poverty reduction in line with Mozambique’s Poverty Reduction Strategy. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction  

Wind as source of energy is well established source (Wortman, 1983). It is an abundant, 

clean, sustainable and environmentally-friendly alternative energy source. It has been used 

throughout human civilization for different purposes.  

In various parts of the world, wind has been widely used as an energy source for milling 

grain, pumping water and for electrical power production. During World Wars I and II it 

was used to overcome energy shortages (Wortman, 1983; Sahin, 2004; Erdogdu, 2008). In 

Mozambique, the Gaza Province Agricultural Department (DPA) installed fifty small wind 

pumps per year in the mid-1980s for purposes of ground water extraction. This project was 

supported by the Dutch government programme of wind energy for developing countries 

(Fraenkel et el., 1993). The project was interrupted by the unrest in the country.  

This chapter discusses the wind as a source of energy and provides a background on the 

techniques to estimate the available and extractable wind energy. It also highlights some 

benefits of wind energy, and discusses wind energy prediction models used to assess the 

wind energy resource. The different factors determining the amount of energy which can be 

harnessed at particular sites are also highlighted. 

 

2.2 Wind as a source of energy  

Wind energy, comes from solar energy like most other energy sources (Cheremisinoff, 

1978; Twidell and Weir, 2006; Erdogdu, 2008). Wind as a source of energy was used to 
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sail ships, to mill grain and to pump water (Cheremisinoff, 1978; Fraenkel et al., 1993; 

Ahmed and Abouzeid, 2001; Sahin, 2004; Erdogdu, 2008). Wind has also always played an 

essential role in agriculture and forestry, acting as a pollination agent for grain crops and 

several commercially-valuable timber species. 

As far back as 5000 years ago, the ancient Egyptians used wind energy to propel boats 

(Fraenkel et al., 1993; Wortman, 1983; Erdogdu, 2008). Different authors describe the 

crude versions of drag-type vertical axis windmill machines that may have existed as early 

as 2 000 B.C. in Babylonia and China (Cheremisinoff, 1978; Wortman, 1983). Fraenkel et 

al. (1993) refer to Seistan, a province on the border of Iran and Afghanistan, that was 

famous for using wind to run mill-stones and to draw water from wells.  

The aforementioned archaic windmill technology has spread and developed. The literature 

describes the introduction of windmills into Europe by the Arabs through the Iberian 

Peninsula during the Muslim expansion in the year 750 BC (Fraenkel et al., 1993). It is also 

stated that by 1096-1191, during the time of the Crusaders, the use of windmills was well 

established and they spread throughout Europe (Fraenkel et al., 1993; Wortman, 1983). In 

the 1500s, the Spanish explorers and settlers introduced windmills to the Americas 

(Cheremisinoff, 1978). 

Wind as a source of energy from which electricity can be generated is attributed to the work 

of Dane Poul LaCour, in 1891, who built the first wind turbine and began the generation of 

electricity from wind (Sahin, 2004; Erdogdu, 2008). Since that time, the Wind Energy 

Conversion System (WECS) technology has developed significantly. During World Wars I 

and II, Danish engineers improved the technology to overcome the energy shortages (Sahin, 

2004; Erdogdu, 2008), and thereafter the utilization of the energy from the WECS became 

widespread worldwide.  

However, according to Sahin (2004), the interest in large-scale wind turbines declined after 

World War II, so that small-scale wind turbines received greater interest as power systems 

in remote areas. Furthermore, the oil crisis in the early 1970s (Freris, 1990; Fraenkel et al., 
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1993; Walker and Jenkins, 1997; Sahin, 2004; Twidell and Weir, 2006; Erdogdu, 2008;) 

heightened the interest in the WECS and from then onwards, financial support for research 

in, and the development of, wind energy increased rapidly from the early 1980s in the USA 

and Europe (Sahin, 2004).  

Recent times however, have seen the rapid evolution of wind turbine technology, which is 

spurred on by the threat of global warming, making wind energy a promising alternative to 

oil, mainly because it cannot be depleted. Wind turbines can be installed quickly in isolated 

villages or rural sites, with or without connections to the utility services, thus reducing 

financing costs and providing flexibility in meeting the increasing demand for energy 

(NAP, 1991; Twidell and Weir, 2006; Gipe, 2004). Wind turbines can also coexist with 

other land uses (NAP, 1991). The cost of energy (COE) from wind power plants is 

economically competitive now with some conventional energy generation sources (NAP, 

1991). Environmentally, wind power systems are benign, being free of gaseous emissions, 

particulates and radioactive by-products. However, some negative impacts such as 

television signal interference and very specific impacts related to land use and soil 

degradation and aesthetics do exist (WMO, 1981). 

Wind energy for electrical applications in small or large wind energy systems can be placed 

in three major categories, namely, interconnected alternate current (a.c.), non-

interconnected a.c. or direct current (d.c.) and remote d.c. (WMO, 1981). 

Gipe (2004) has stated that a hybrid station using both solar and wind energy is a good 

option, in particular in rural areas where there is a shortage of power. This is because such a 

station offers greater reliability than separate wind or solar technology and is more cost-

effective, particularly for developing countries such as Mozambique. In addition, Gipe 

(2004) contends that such a remote power system would permit the use of less costly 

components than if the system depended on only one power source, and it could also lower 

the cost of a remote power system. 
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2.3 The available and extractable energy from the wind  

The solar radiation which heats the earth, produces large-scale motion of the atmosphere, 

causing regions of unequal heating over land and oceans. This creates a pressure gradient 

which results in air mass movement from high pressure to low pressure, namely, the wind.  

The wind energy is a result of the wind motion and is called kinetic energy (Fraenkel et al., 

1993). The power P due to the kinetic energy of the wind is proportional to the volume of 

air passing through an area A[m] in a unit time t[s] with velocity v, and physically is  

P = 1/2ρAv3; where ρ is the air density (about 1.225 kgm-3) (Jamil et al., 1995; Walker and 

Jenkins, 1997; Ackemann and Söder, 2002; Sahin, 2004; Gipe, 2004; Mortensen et al., 

2007). 

The air density depends on altitude and meteorological conditions, air pressure and 

temperature, both being functions of height above sea level (a.s.l.) (Fraenkel et al., 1993; 

Jamil et al., 1995; Walker and Jenkins, 1997; Ackermann and Söder, 2002; Gipe, 2004).  

The WECS makes use of this kinetic energy by slowing down the wind to remove the 

unaffected inflow kinetic energy (v0), converting it into rotational energy in the spinning 

rotor A1, (Fig. 2.1), where A0 and A2 are upstream and downstream respectively, of the 

rotor (Fraenkel et al., 1993; Ackermann and Söder, 2002; Twidell and Weir, 2006). 

Wortman (1983) and Ackermann and Söder (2002) have stated that the wind power in the 

incoming wind flux A0 is not extracted completely by the wind turbine A1. On the contrary, 

the air mass would be stopped completely in the intercepting rotor area, causing the 

congestion of the cross-sectional area for the following air masses. 
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Figure 2. 1: Ideal air flow through a wind turbine [Source: Walker and Jenkins, 1997]. 

 

Therefore, the optimum (maximum) theoretical amount of wind energy that can be 

extracted from unaffected inflow by the rotor (WMO, 1981; Ackermann and Söder, 2002; 

Twidell and Weir, 2006) is given as: 

3

2
1 AvCP pρ=          (2.1) 

where A is the swept area, v the mean wind speed and Cp = 4a(1-a)2. The constant Cp is the 

dimensionless power coefficient or Betz limit (WMO, 1981; Fraenkel et al., 1993; 

Wortman, 1983; Walker and Jenkins, 1997; Ackermann and Söder, 2002; Gipe, 2004; 

Twidell and Weir, 2006) which can be derived from Newton’s second law (Wortman, 

1983; Walker and Jenkins, 1997; Twidell and Weir, 2006) and a is the downstream velocity 

factor or wind speed ratio (Walker and Jenkins, 1997; Twidell and Weir, 2006), and 

describes the ratio of upstream to downstream wind speeds (Walker and Jenkins, 1997). 

The differentiation of Cp with respect to a, shows Cp to be a maximum when the speed ratio 

a is 1/3 (Wortman, 1983; Walker and Jenkins, 1997; Twidell and Weir, 2006; Gipe, 2004), 

which is about Cp = 16/27 = 59 %. 

Twidell and Weir (2006) have shown that the Betz limit itself does not reveal anything 

about the dynamic rotational state of a turbine that is necessary to reach the criterion of 

maximum efficiency. So, the dimensionless characteristic for dynamic matching is the tip-

speed-ratio (TSR), 0λ , which is related to the blade-tip radius R, speed of the oncoming 



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 25

wind v0 and the angular velocity Ω (Twidell and Weir, 2006) and represents the impact of 

unavoidable swirl losses (Ackermann and Söder, 2002; Sahin, 2004). It is defined as: 

nV
R πλ 4

0
0 ≈

Ω
=           (2.2) 

and n  is the number of turbine blades.  

Another most important wind energy characteristic for wind energy resource evaluation, is 

the mean power density (or available wind energy) P[Wm-2]. The mean power density,  

P = 1/2ρv3 (Troen and Petersen, 1989; Souza and Granja, 1997; Twidell and Weir, 2006) 

and according to Hennessey (1977), it is the instantaneous power density available 

(available wind energy) in a flow of air through a unit cross-sectional area normal to the 

flow.  

According to Gipe (2004), the power density can be calculated in two ways, viz. the sum of 

the series of power density calculations for each wind speed and its frequency of 

occurrence (the number of hours per year the wind blows at that speed) for the site 

distribution of wind speeds, or by using the average wind speed and the appropriate cube 

factor. 

The power density is affected by changes in air density when sites differ markedly from 

those at standard sea-level conditions. Table 2.1 gives the classification of wind power 

density at 10 m and 50 m a.g.l. according to the WMO (1981). 
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Table 2. 1: Classes of wind power density at 10 and 50 m1 a.g.l. [After: WMO, 1981]. 

Wind power 
class Description 

10 m 50 m 

Wind power density 
(Wattsm-2) 

Wind speed  
(ms-1) 

Wind power density 
(Wattsm-2) 

Wind speed 
(ms-1) 

1 Poor 0 - 100 0.0 - 4.4 0 - 200 0.0 -5.6 
2 Marginal 100 - 150 4.4 - 5.1 200 - 300 5.6 -6.4 
3 Fair 150 - 200 5.1 - 5.6 300 - 400 6.4 -7.0 
4 Good 200 - 250 5.6 - 6.0 400 - 500 7.0 -7.5 
5 Excellent 250 - 300 6.0 - 6.4 500 - 600 7.5 -8.0 
6 Outstanding 300 - 400 6.4 - 7.0 600 - 800 8.0 -11.9 
7 Superb 400 - 1000 7.0 - 9.4 800 - 2000 >11.9 

 

2.4 The wind and energy potential prediction models  

According to Mortensen et al. (2007), a regional assessment of wind and energy resources 

over a large area, should predict the mean wind speed and total annual energy production 

(extractable wind energy) for a specific wind turbine at a particular site. A good regional 

wind energy resource assessment is therefore sensitive to the available wind speed 

probability distribution for a given location for a given period of time, and this information 

can help to choose an appropriate WECS. 

Besides the lognormal probability distribution function (PDF) (Justus et al., 1976; Garcia et 

al., 1998; Zaharim et al., 2009b), the Weibull and Rayleigh PDFs are the most widely used 

PDFs to describe the wind speed for WECS applications (Justus et al., 1976; Doran and 

Verholek, 1978; Takle and Brown, 1978; Tuller and Brett, 1984; Jamil et al., 1995; Souza 

and Granja, 1997; Garcia et al., 1998; Lun and Lam, 2000; Gipe, 2004; Twidell and Weir, 

2006; Leite and Filho, 2006; Hrayshat, 2007). The Weibull distribution is a two parameter 

function, and was named after the Swedish physicist W. Weibull, who applied it in the 

1930s to study material strength (Lun and Lam, 2000). Recently, it has been used for 

                                                            
1 Vertical extrapolation of wind based on 1/7 power law. 
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energy applications because it gives a better fit to experimental data at a wider range of 

sites than the Rayleigh distribution (Hennessey, 1977; Lun and Lam, 2000; Gipe, 2004; 

Zaharim et al., 2009a). 

The Weibull probability distribution function (PDF) according to Twidell and Weir (2006) 

is expressed as, 
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where F(v) is the PDF which gives the frequency of occurrence of a given wind speed  

v[ms-1], exp is the base e exponential function, k is a dimensionless shape factor that 

describes the form of the distribution and c[ms-1] is the scale factor. The relation between 

the parameters c and k is given by the mean wind speed, Vavg=cΓ(1+1/k) (Souza and 

Granja, 1997; Justus et al., 1976; Jaramillo and Borja, 2004; Leite and Filho, 2006). 

The shape factor k has a value of about 2 in the mid-latitudes and is relatively higher in the 

trade winds belt and areas of monsoon winds (about 3.5) (Knecht, 2004). It is inversely 

related to the variance, σ2, of the mean wind speed, and Γ is the gamma function and is the 

continuous function defined for positive real numbers t (Gronau, 2003; Jaramillo and Borja, 

2004; Vinh and Ngoc, 2009),  
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and the Gamma function satisfies Г(1)=1 and Г(t+1)=tГ(t). 

For k > 1 the maximum (modal value) lies at v >0, while the function decreases for  

0 < k = 1. The Weibull PDF shows different distribution properties according to the change 

in the k value (Sahin, 2004): 
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• k = 1 exponential probability distribution function; 

• k = 2 Rayleigh probability distribution function; and  

• k = 3.6 the Weibull PDF appears as an approximate of a gaussian PDF. 

The parameter, c, varies with height in accordance with the power law c/c0 = (z/z0)n (Justus 

et al., 1976; Doran and Verholek, 1978); where the exponent n is averaged to 0.23 and 

standard deviation of 0.03 (Justus et al., 1976) and is closely related to the mean wind 

speed (Justus et al., 1976).  

Takle and Brown (1978) state that for data sets with a high probability of calm winds and 

low c, the Weibull function is not likely to provide a good fit to the data. 

For k=2, the Weibull function becomes the Rayleigh function as noted above (Freris, 1990; 

Jamil et al., 1995; Gipe, 2004; Twidell and Weir, 2006), also called the Chi-square 

distribution (Twidell and Weir, 2006) where π is a constant (3.14) and Vavg is the average 

wind speed. 
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The Rayleigh function according to Twidell and Weir (2006) is useful for a preliminary 

analysis of wind power potential in areas where the only available data are either maps, 

showing the interpolated curves of mean wind speed, or where only the average wind speed 

is known. 

Special care should be taken because the power density calculated from the Rayleigh 

distribution function, for a given average wind speed, according to Gipe (2004) is almost 

twice that derived from the average wind speed alone, and it also overestimates the 

potential generation at trade wind sites. 
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The Weibull PDF model is the basic underlying assumption of the WAsP method and is 

used to describe the measured directional wind speed distributions and generates outputs of 

Weibull wind speed distributions in 12 directional sectors (Lange and Højstrup, 2001; 

Bowen and Mortensen, 2004). For short time series, this procedure introduces an error due 

to the deviations of the measured distribution from the Weibull curves (Lange and 

Højstrup, 2001). 

The specific sites where the turbines are frequently sited, are usually different from 

meteorological stations, even though a way of using the climatic wind data recorded at 

meteorological stations is needed to predict the wind climate at a turbine site. The rising 

interest in new and renewable energy sources towards the end of 20th century, especially 

wind energy for electricity production, has led to different models being developed for this 

specific area. 

One of the most widely used models, to evaluate the wind resource estimations is the Wind 

Atlas Analysis and Application Programme (WAsP) (Dube, 1994; Abdeladim et al., 1996; 

Lange and Højstrup, 2001; Ackermann and Söder, 2002; Esteves, 2004; Bowen and 

Mortensen, 2004; Mortensen et al., 2003; Migoya et al., 2007; Narayana, 2008; DNER, 

2008; Palma et al., 2008), which is the standard method for wind resource prediction inland 

and offshore (Lange and Højstrup, 2001; Sahin, 2004; Esteves, 2004). 

The WAsP model is a computer code (Mortensen et al., 1991; Palma et al., 2008) and does 

a horizontal and vertical extrapolation of wind data taking into account the effect of 

obstacles, shelter and terrain height variation to produce a wind climate or regional wind 

climate (RWC) (Troen and Petersen, 1989; Mortensen et al., 1991; Mortensen et al., 2007; 

Migoya et al., 2007). It also estimates the wind climate, the average annual energy 

production (AEP) at a turbine site, and it also maps the wind and energy resources.  
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2.5 The effect of topography, surface roughness and obstacles on the wind 

speed  

2.5.1 The effect of the terrain  

The air flow and the amount of available power from the wind are strongly influenced by 

the local terrain characteristics (Wortman, 1983; Petersen et al., 1997). Therefore, a good 

knowledge of the terrain and its effect on the wind is important to the wind resource and 

energy assessment for siting purposes.  

The wind speed profile is strongly affected by topographic features, such as escarpments, 

hills and ridges. According to Ngoa and Letchford (2008), these features modify the flow 

over them acting as obstructions to the boundary layer accelerating the wind near the 

ground. 

According to Fraenkel et al. (1993) and Loureiro et al. (2005), a change in topography 

causes an immediate response of the boundary layer in the acceleration of flow over the 

crest of the hill, to about twice the original surface wind speed. This phenomenon which is 

known as the speed-up factor, is associated with deceleration of the wind and turbulence on 

the leeward side (Fig. 2.2).  

Taking cognizance of this, Freris (1990) has stated that siting on top of hills takes 

advantage of the higher wind speeds that generally prevail there. Conversely, Fraenkel et 

al. (1993) stated that valleys are not suitable for siting, unless aligned with the prevailing 

winds. Generally, valleys are typically characterised by lower and more variable wind 

speeds than on flat ground or surrounding hills. 
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Figure 2. 2: Acceleration of air flow over a hill [Source: Raupach and Finnigan, 1997]. 

 

2.5.2 The effect of surface roughness  

The surface boundary layer (SBL), about 100 m from the ground, which has a negligible 

(roughly constant) shear stress (Freris, 1990; Crasto, 2007) is the lower layer of the 

atmospheric boundary layer (ABL) (Fig. 2.3). According to Crasto (2007), the friction and 

pressure gradient are the only important forces, therefore the roughness of the ground is the 

more significant parameter and affects both the velocity profile and the angle of incidence 

of wind at the ground.  

 

Figure 2. 3: The atmospheric boundary layer (ABL) shear profile [Source: Crasto, 2007]. 
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The roughness of an area often changes with the season of the year due to foliation, 

vegetation and snow-cover, and then, according to Petersen et al. (1997) and Freris (1990), 

the roughness length must be considered as a climatic parameter. Mortensen et al. (1991) 

and Mortensen et al. (2007) have noted how the roughness of different surface affects the 

retardation of the wind and the wind profile. Figure 2.4 shows that the higher roughness of 

a city results in greater retardation of the wind in the lower layers and that the effects of 

roughness extend through a deeper layer. 

 

 

Figure 2. 4: The surface roughness and the change of wind speed with height [Source 
Fraenkel et al., 1993]. 

 

In the ABL wind is retarded by surface roughness (Lipman et al., 1982; Wortman, 1983; 

Freris, 1990). The friction between the surface and air flow, which generally happens in the 

first few tens of meters above the surface (Fraenkel et al., 1993; SADC, 1996) weakens the 

lower layers of wind above them and as a result a change of mean wind speed occurs with 

height (Lipman et al., 1982; Freris, 1990). 
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This effect, known as wind shear or vertical wind profile (WMO, 1981; Walker and 

Jenkins, 1997; Gipe, 2004; Twidell and Weir, 2006), according to Freris (1990) is almost 

nil above the gradient height typically about 2 000 to 2 500 m, where the wind speeds are 

dependent only upon the pressure field and altitude.  

According to Freris (1990) and Crasto (2007), in the surface layer, the variation of mean 

wind speed with height, can be adequately represented by the Prandtl logarithmic law 

model in neutral2 conditions,  
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where *u  is the friction velocity , k  is the Von Karman constant (about 0.4), U0(z) is the 

mean wind speed at height z  and 0z  is the aerodynamic roughness length or just roughness 

length (Freris, 1990; Crasto, 2007).  

The Prandtl logarithmic law model is the basic underlying assumption of the WAsP 

roughness change method which assumes that within the surface or atmospheric boundry 

layer (Troen and Petersen, 1989; Freris, 1990), the wind speed grows logarithmically with 

height (Giebel and Gryning, 2004), and the upwind terrain must be reasonably 

homogeneous, otherwise a unique surface roughness length to the terrain cannot be 

assigned (Troen and Petersen, 1988). 

The modified Prandtl logarithmic law model that results from eliminating the unknown 

friction velocity u* yields the log-law (Freris, 1990) given as,  
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2 When the thermal effects are neglible. 
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where, v0 and v are the wind speeds at reference height (h0 = 10 m) and new height h, 

respectively and z0 is the roughness length. The log-law is approximately applicable up to 

heights of a few hundred meters (Freris, 1990).  

The power law given by v/vavg(H) = (h/H)α (Justus et al., 1976; Doran and Verholek, 1978; 

Spera and Richards, 1979; Lipman et al., 1982; Walker and Jenkins, 1997; Freris, 1990; 

Gipe, 2004; Shata and Hanitsch, 2006) is an empirical model which is used when simple 

estimates of the distribution of mean wind speed with height are required. Here vavg and v 

are the average wind speeds at reference height (H=10 m) and new height (h), respectively 

(Freris, 1990), and α is the wind shear exponent. The wind shear exponent depends on the 

surface roughness, the range of height and varies with the time of the day, season and 

stability of the atmosphere (Justus et al., 1976; Spera and Richards, 1979; Gipe, 2004; 

Hrayshat, 2007). 

The variation of the exponent α with surface roughness, and typical values (Table 2.2), is 

given approximately by,  
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Freris (1990) stated that despite there being no physical basis for the use of the power law 

model unlike the log-law model for which there is a theoretical basis, it is widely used and 

give reasonable good predictions. 
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Table 2. 2: Typical values of surface roughness length z0 and power law exponent, α, for 
various types of terrain [Source: Freris, 1990]. 

Type of terrain Z0 (m) α 
Mud flats, ice 10-5 to 3.10-5  
Smooth sea 2.10-4 to 3.10-4  
Sand 2.10-4 to 10-3 0.1 
Snow surface 10-3 to 6.10-3  
Mown grass 10-3 to 10-2 0.13 
Low grass, steppe 10-2 to 4.10-2  
Fallow field 2.10-2 to 3.10-2  
High grass 4.10-2 to 10-1 0.19 
Palmetto 10-1 to 3.10-1  
Forest and woodland 10-1 to 1  
Suburb 1 to 2 0.32 
City 1 to 4  

 

2.5.3 The effect of obstacles  

Obstacles such as trees and buildings upwind of the reference (meteorological station) or 

siting site (turbine site), interrupt the air flow and cause turbulence in their wake (Fig. 2.5) 

(Fraenkel et al., 1993). The strong effect of obstacles is the decrease of the wind speed, 

known as the shelter effect.  

According to Mortensen et al. (1991) the shelter effect extends vertically to approximately 

three times the height of the obstacle. Fraenkel et al. (1993) stated that the turbulent region 

extends downwind to about 15 to 20 times the height and this effect is more severe for 

buildings because they present a sharper barrier to the wind and have a higher solidity. 
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Figure 2. 5: The effect of trees and buildings on the air flow [Source Fraenkel et al., 
1993]. 

 

Different solidity of the obstacles can be characterized by their porosity, which is the ratio 

of the area of the windbreak’s pores to its total area (Mortensen et al., 1991). According to 

Troen and Petersen (1989) and Mortensen et al. (1991), the porosity (dimensionless) is set 

to zero for buildings and about 0.5 for trees and 0.33 for a row of similar buildings with a 

separation between them of 1/3 their length. Such information must be set up at the obstacle 

description stage in the modelling.  

The wind assessment either for wind data collection or the siting of turbines, must consider 

the obstacle effect in two different situations: when the point of interest is inside the range 

mentioned by Mortensen et al. (1991), the sheltering must be taken into account, whereas if 

the point of interest is outside that range the obstacle must be treated as a roughness 

element (Mortensen et al., 1991). 

The shelter effect at a specific site depends upon five characteristics: the height of the point 

of interest H[m], the distance from the obstacle to the site x[m], the height h[m], the length 

L[m], and the porosity P of the obstacle (Troen and Mortensen, 1989; Mortensen et al., 

1991). 
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2.5.4 The effect of local winds  

The local winds generally are a result of two main factors, namely, thermal and orographic 

effects. The differential heating of the land and water causes a change in wind flow, which 

results in the occurrence of land-sea-breezes.  

The change of surface roughness influenced by the low roughness of water and the long 

unobstructed fetch that the wind travels over the water, results in more frequent strong 

winds along the shores of lakes and coastal zones (Fraenkel et al,. 1993, Gipe, 2004). The 

sea-breeze diminishes rapidly inland and is insignificant more than 3.0 km from the beach 

(Gipe, 2004). This is related to the high roughness of the inland surface.  

The reversal of the wind flow between the two different surfaces, land and water, has a 

meaningful effect on the wind climatology, and is caused by the differences in thermal 

properties of the two surfaces. A similar phenomenon occurs in valleys and in mountainous 

regions resulting in anabatic and katabatic winds. During the day, warmer air rises up into 

the heated slopes (anabatic winds) and at night the cooler, heavier air descends into the 

valleys (katabatic winds) (Cheremisinoff, 1978; Fraenkel et al., 1993; Gipe, 2004). This 

thermal contrast also generates the valley and mountain breezes, which blow up and down 

the longitudinal axes of valleys respectively.  

Both the local thermal and topographically-induced winds can have a significant influence 

on wind energy applications by enhancing the gradient winds. 

 

2.6 Numerical modelling of wind energy  

Wind field simulation models are widely available and can be subdivided into two main 

groups: the diagnostic (equations with no time-dependent terms) and prognostic models 

(full time-dependent equations), and both are summarized in four main classes by Finardi et 
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al. (1997) as linearized models, mass consistent models, hydrostatic models and non-

hydrostatic models.  

The linearized models, of which the WAsP model is an example, stem from the original 

work of Jackson-Hunt (Walmsley et al., 1990; Mortensen et al., 1991; Finardi et al., 1997; 

Mortensen et al., 2007). They are based on linearized solutions of the dynamic equations 

for the boundary-layer perturbed by terrain under conditions of neutral atmospheric 

stability.  

The advantage of linearized models is their very limited computer requirements. They can 

normally run on personal computers (PC), and are fast and easy to use. They require a very 

small amount of input data such as topography and roughness length description in raster 

format (2-D arrays of data) or vectorial format (isopleths), a time series of wind speed and 

direction data at a given height or wind and temperature vertical profiles (Finardi et al., 

1997).  

The main drawbacks of these models are their inability to describe the flow in the lee 

region of a hill where turbulent wakes and separation develop, and they also cannot be 

applied over mountains where slopes are too steep and the topography too complex (Finardi 

et al., 1997).  

Another limitation of this class of models is the usual hypothesis of a horizontally uniform 

oncoming wind and topography that has to be flat or periodic at model domain boundaries 

due to the Fourier transformation technique which is applied to solve the differential 

equations (Finardi et al., 1997). 

The mass-consistent models, examples of which are the WINDS (Wind–field interpolation 

by non-divergent schemes) and NOABL (Numerical Objective Analysis of Boundary 

Layer) models (Finardi et al., 1997; Gallino et al., 1998) are widely used in applied 

problems like air pollution and wind energy (Finardi et al., 1997). 
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According to Finardi et al. (1997) and Burlando et al. (2007), these models reconstruct 3-D 

wind fields from vertical profiles and near-ground wind measurements, through the 

interpolation of wind observations to the computational mesh, which is adjusted to satisfy 

mass conservation by the least amount of modification. In these kind of models the wind 

data interpolation method is crucial to determine the final wind field features. For local 

scale applications, the incompressible form of the continuity equation, 

∂u/∂x+∂v/∂y+∂w/∂z=0 (Wallace and Hobbs, 1977) is normally used. 

Some advantages of these models are their intrinsic simplicity, which means they have no 

theoretical application limits and, therefore, can be applied to any kind of terrain and they 

are able to describe effectively and clearly the main features of a wind field over complex 

terrain (Finardi et al., 1997). They can run on a PC, and can be used in applications dealing 

with very long time periods and large computational meshes (Finardi et al., 1997). 

The main drawbacks, according to Finardi et al. (1997), are their dependence on the 

availability of good site input data that is relatively more than linearized models. The data 

required are namely: topography and roughness length data over the computational domain, 

wind speed and direction from a number of surface stations, vertical wind profiles and/or 

upper air data, as well as surface and upper air temperature data. 

The hydrostatic models, of which the MM4 (Fourth-Generation NCAR/Penn State 

Mesoscale Model) is an example, use a simplification of the vertical equation of motion 

that consists of neglecting the vertical acceleration and considering only the pressure 

gradient and the gravitational terms. This implies that the vertical scale of motion has to be 

smaller than the horizontal scale (Finardi et al., 1997). 

Previous studies (Finardi et al., 1997) stated that hydrostatic models can describe thermal 

circulations like land/sea breezes, as well as stable stratified flow over complex terrain of 

moderate steepness (less than 45°).  
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They should not be applied to sites characterized by very complex terrain or in the local to 

micro-scale range (grid size less than 1-3 km). In addition, their applicability depends not 

only on the geometry of the wind field, but also strongly on the vertical stability and 

therefore on the time of day and season (Finardi et al., 1997). They require variable 

computer resources and can run on a workstation if a real-time forecast is not needed. 

The non-hydrostatic models, of which the KAMM (Kalsruhe Atmospheric Mesoscale 

Model) and MM5 (Fifth-Generation NCAR/Penn State Mesoscale Model) are examples, 

are considered the new generation models in the framework of applied studies. They use 

the full set of equations describing atmospheric motions (Finardi et al., 1997). 

The advantages of these kind of models are that they have no direct limitations due to 

terrain slopes or scales and are the most suitable models to describe the atmospheric flow 

over complex terrain. Their main drawbacks are the large computer resources and long 

periods of time taken for simulations. The model simulations have to be performed on 

super-computers or parallel machines, while only short-time simulations can be run on 

workstations (Finardi et al., 1997). 

The input data for both hydrostatic and non-hydrostatic models are the vertical profiles of 

wind, temperature, humidity and gridded meteorological fields provided by large-scale 

models (Finardi et al., 1997). 

 

2.6.1 Background to the WAsP model  

The Wind Atlas Analysis and Application Program (WAsP) is a PC program that performs 

the horizontal and vertical extrapolation of wind data from meteorological stations 

considering the roughness, sheltering effect of obstacles and terrain height variation 

(orography) effects to calculate the regional wind climate at a reference site and thereafter 

to predict the wind resources for the prediction sites. It also identifies the best sites for wind 

turbine siting.  
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The model provides a user with the means to correct the wind climate data measured at a 

specific point (meteorological station) to site specific conditions. It also offers tools for the 

detailed siting of wind turbines (Mortensen et al., 1991).  

Its development is ascribed to the Danish wind atlas group who presented the basic surface 

wind statistics, together with detailed procedures for estimating the wind speed distribution 

at a particular site and height (Mortensen et al., 1991).  

Worldwide, WAsP has been used for wind power assessment and siting (Troen and 

Petersen, 1989; Dube, 1994; Mortensen et al., 2003; Esteves, 2004; Bowen and Mortensen, 

2004; Migoya et al., 2007; DNER, 2008), as well as the validation of assessments 

performed by other models (Mortensen et al., 2005; Palma et al., 2008; Narayana, 2008). 

 

2.6.1.1 The principles of the WAsP model  

Generally the WAsP model is implemented in four modules (Mortensen et al., 1991), which 

can be summarized in three main applications. 

1. Analysis with two modules: 

 

• Firstly, an option of the analysis of raw data enables an analysis of any time-series 

of wind measurements to provide a statistical summary of the observed, site-specific 

wind climate into a velocity frequency distribution and in Weibull parameters 

(Mortensen et al., 1991; Mortensen et al., 2007). This output table summary is 

known as the observed wind climate (OWC) and the data are the meteorological 

data input to WAsP. The analysis is implemented in separate sub-routines: the 

Observed Wind Climate (OWC) Wizard or the WAsP Climate Analyst (Mortensen 

et al., 2007). 
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• Secondly, an option allows the generation of the wind atlas data. In this option, the 

OWC can be converted into the regional wind climate (RWC) or wind atlas data 

sets (WADS). At this stage, the wind observations are cleaned or corrected with 

respect to site-specific conditions and reduced to some standard conditions. The 

WADS are therefore site-independent and the wind distributions have been reduced 

into four standard roughness classes and five standard heights a.g.l. (Troen and 

Petersen, 1989; Mortensen et al., 1991; Mortensen et al., 2007). 

2. Application with two modules: 

• The first module permits the wind climate estimation. It uses a wind atlas calculated 

by WAsP to estimate the wind climate at any specific point, performing the inverse 

calculation to that used to generate the wind atlas. By introducing descriptions of 

the terrain around the predicted site, the models can predict the actual expected 

wind climate at this site (Troen and Petersen, 1989; Mortensen et al., 1991; 

Mortensen et al., 2007). The wind climate is estimated in terms of the Weibull 

parameters and the sector-wise distribution of the wind.  

• The second module enables the estimation of the wind power potential. This option 

of WAsP calculates the total energy content of the mean wind. In addition, an 

estimate of the actual, annual mean power production of a turbine can be obtained 

by inputting the power curve of the wind turbine in question (Troen and Petersen, 

1989; Mortensen et al., 1991; Mortensen et al., 2007). 

3. Wind farm application as a single module: 

• This module enables one to calculate the wind farm production. This option of 

WAsP estimates the wake losses for each turbine on a farm and thereby the annual 

energy production of each wind turbine and of the entire farm by inputting the thrust 

coefficient curve of the wind turbine and the wind farm layout (Mortensen et al., 

1991; Mortensen et al., 2007). This module also enables one to map the wind and 

energy resource potential for the selected domain. 
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2.6.1.2 The sub-models of WAsP  

The functioning of WAsP is integrated into five distinct sub-models (Fig. 2.6): 

 

(1) The roughness change sub-model  

According to Mortensen et al. (1991), this model operates by considering that downstream 

of the change in surface roughness, an internal boundary layer develops and the wind 

profile slowly adjusts to the new surface (Fig. 2.7). In addition, this sub-model can take into 

account up to ten consecutive changes in surface roughness in each wind directional sector 

analysed. 

 

Figure 2. 6: The wind atlas methodology [Source: Mortensen et al., 2007]. 
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Figure 2. 7: Ideal flow with a change of roughness class and the modified profile with the 
height of the internal boundary layer h  as function of x  [Source: Troen and 
Petersen 1989]. 

 

The roughness of the surface is determined by the size and distribution of the roughness 

elements it contains (Troen and Petersen, 1989; Mortensen et al., 1991, Mortensen et al., 

2007). For example, the roughness of the terrain is commonly parameterized by a length 

scale called the roughness length, z0 (Table 2.3).  

 

(2) The shelter sub-model  

This sub-model can handle up to fifty obstacles at the same time (Mortensen et al., 1991). 

Mortensen et al. (2007) states that investigations done by Taylor and Salmon in 1993 

indicate that the shelter model of WAsP is likely to overestimate the shelter provided by 3-

dimensional obstacles. 

Most anemometers that are often used for wind energy assessment, are meteorological 

stations which are sited at one standard height, 10 m a.g.l. (Ahmed and Abouzeid, 2001; 

Twidell and Weir, 2006; Hrayshat, 2007; Carta et al., 2008) and are often sited close to 

buildings. Therefore, the shelter effect is potentially important in the analysis of wind data 

acquired from these stations.  
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Table 2. 3: Roughness length, surface characteristics and roughness class according to 
the European wind atlas [Source: Troen and Petersen, 1989; Mortensen et al., 
1991]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z0 [m] Terrain surface characteristics Roughness class 

Snow surface (smooth) 

Sand surface (smooth) 

Water areas (lakes, fjords, open sea) 

Bare soil (smooth) 

Airport  runway areas  

Farmland with very few buildings, trees etc.

Farmland with close appearance

Many trees and /or bushes

Farmland with open appearance 

Shelter belts 

Suburbs 

Forest
City 

Airports areas with buildings and trees 

Mown grass 

3 

1 

0 

2 

0.03 

0.01 

0.05

0.10 

0.20 

0.30

0.50 

1.00 
0.80

0.40

0. 02

0.008 

0.004 
0.005 

0.003 

0.002 

0.001 

0.0003 

0.0001 

0.0002 

0.0005 

0.0007 
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Mortensen et al. (1991) stated that in order to decide whether to include obstacles in the 

terrain as sheltering obstacles or as roughness elements, WAsP requires that if the point of 

interest (anemometer or wind turbine) is closer than 50 obstacle heights to the obstacle and 

closer than about three obstacle heights to the ground, the object should be included as an 

obstacle. In this case the obstacle cannot, at the same time, be considered as a roughness 

element. But if the point of interest is further away than about 50 obstacle heights or higher 

than about three obstacle heights, the obstacle should be included in the roughness 

description.  

The sheltering or shadowing effects sometimes are known quantitatively from 

measurements at the site. Such knowledge must be supplied directly to WAsP through the 

site description at the site visit stage (Table 2.4). An aerial photograph or a detailed map of 

the point of interest might be helpful, if available. 

 

Table 2. 4: Porosity of obstacles [Source: Troen and Petersen, 1989; Mortensen et al., 
1991]. 

 

 

 

 

 

 

 

 

Porosity P Obstacles and Windbreak appearance 

0 

≈0.5 

0.33 

<0.3

>0.5 

0.35–0.5 

Solid (Wall/buildings)

Row of similar buildings (separated between them 
of 1/3 the length of the building)

Very dense 

Trees

Open

Dense
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(3) The orographic sub-model  

This sub-model, according to Troen and Petersen (1989), calculates firstly the potential 

flow perturbation induced by the terrain. In addition, Mortensen et al. (1991) described the 

orographic model3 as a high resolution flow model, the so-called Bessel Expansion on a 

Zooming Grid model (BZ-model), for flow in complex terrain. It is a linearized spectral 

model based on the Jackson-Hunt theory (Walmsley et al., 1990).  

The BZ-model employs a polar computational grid and calculates the wind velocity 

perturbations induced by orographic features such as single hill or more complex terrain 

only at the centre point (Mortensen et al., 1991; Walmsley et al., 1990). This model, 

instead of calculating the Fourier coefficient (Walmsley et al., 1990), which is the typical 

analysis methodology and transformation employed by linearized models (Finardi et al., 

1997), computes the coefficient of Fourier-Bessel expansion for the potential flow 

perturbation on the polar grid with 100 radius and 72 azimuths (5º intervals) (Walmsley et 

al., 1990). 

According to Mortensen et al. (1991), the BZ-model was developed for the specific 

purpose of wind energy siting. It was designed to directly accept arbitrarily-chosen contour 

lines as input and to integrate the estimation of grid-point values and the numerical 

integrations into one process with the following features: 

• Firstly, it employs a high-resolution, zooming, polar grid. This is coupled with a 

map analysis routine, in order to calculate the potential flow perturbation profile at 

the central point of the model; 

• Secondly, it integrates the roughness conditions of the terrain surface into the 

spectral or scale decomposition. The inner layer structure is calculated using a 

balanced condition between surface stress, advection and the pressure gradient; and 

                                                            
3 The map size can have an influence on the sensivity of WAsP therefore according to Bowen and Mortensen 
(2004), a minimum area of about 6x6 km2 is recommended, depending on site complexity. 



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 48

• Thirdly, it uses an atmospheric boundary layer thickness of about 1 km to force the 

large-scale flow around high resolution areas. 

Mortensen et al. (1991) and Mortensen et al. (2007) have stated that for complex terrain, 

the effect of the flow must be taken into account and the height variations around the site 

must be described as well. In such a case, the input to the model is the height of the terrain 

at each grid point and it is more convenient to represent the terrain heights by contour lines 

given on the standard topographic map in meters. 

Special care is recommended by Mortensen et al. (1991) and Mortensen et al. (2007) when 

the site is right at the top of a hill or a ridge. The highest contour line should enclose the 

site and, in this way, it defines the hill-top precisely.  

 

(4) The wind atlas analysis sub-model  

This sub-model performs wind statistics correction of the observed wind statistics by 

employing the above-mentioned models. The result is an atlas data of wind climate in the 

form of Weibull tables, corresponding to the standard azimuth sectors, heights and surface 

roughness conditions. 

According to Mortensen et al. (1991), the sub-model uses the empirical relations between 

the wind over homogeneous terrain and the overlying large-scale synoptic scale wind. The 

data are extrapolated to yield the geostrophic wind climate for the region of the selected 

point in a 100 square kilometer domain, which is referred to as upward transformation in 

the WAsP model (Fig. 2.6, page 43).  

Secondly, the data are analysed in terms of the Weibull distribution function and generate 

the Weibull parameters which constitute the wind atlas data in the region of the selected 

point. Mortensen et al. (1991) also state that this sub-model can use either surface data or 

upper-air data as input to generate a wind atlas data in WAsP.  
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(5) The wind atlas application sub-model  

This sub-model performs the inverse calculation employed by the wind atlas analysis  

sub-model (downward transformation in Figure 2.6, page 43), which estimates the actual 

wind climate at a specific site and standard height over an surface roughness. It generates 

outputs in terms of the Weibull parameters and the sector-wise distribution of the wind.  

The predicted wind and power potential and wind farm production are outputs of the wind 

atlas applications sub-model. The first estimates the wind climate at a turbine site and the 

predicted power production, also known as annual energy production (AEP) is based on the 

regional wind climate (RWC), the site description and power curve of a typical wind 

turbine.  

The second calculates the wind farm production and estimates the wake losses for each 

turbine on farm land, and thereby the total annual energy production, given the thrust 

coefficient curves of the wind turbine and the wind farm layout.  

The wind and energy resource grid is also another application of the wind atlas application 

sub-model. This enables one to calculate a spatial summary prediction of the wind climate 

for a selected rectangular domain for a spatial representation pattern of wind and energy 

resources (mean annual wind speeds, power density and annual energy production) by 

specifying the location of the grid and the spatial resolution (Mortensen et al., 2009). 

The wind power potential from a given wind turbine at a given site is estimated by using 

the wind turbine power curve P(v). This is the power produced as a function of the wind 

speed at hub height, as well as the probability density (or distribution) function (PDF) Pr(v) 

of the wind speed at hub height, which gives the frequency of occurrence of a given wind 

speed. 

The product of these two functions, P(v) and PDF, gives the power density curve, which is 

an integral of the mean power production (Troen and Petersen, 1989; Mortensen et al., 

2007). This integral according to Mortensen et al. (2007) is evaluated by WAsP in terms of 
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the Weibull distribution parameters by approximating the power curve to a piecewise linear 

function. 

Troen and Petersen (1989) stated that for a power curve P(v) that is measured for a wind 

turbine, the mean power production P[MWh] can be estimated. It is known as the PDF of 

the wind speed at hub height which can be determined by measurements or a siting 

procedure such as: 

∫
∞
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In that case the PDF is determined by a siting procedure, then it is given as a Weibull 
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The power production of a wind turbine is a function of the available wind that strikes the 

rotor and is calculated for the interval of wind speed between the cut-in and the cut-out 

speeds.  

According to Troen and Petersen (1989) and Mortensen et al. (2007), if the wind speed is 

less than the cut-in speed, the turbine cannot produce power, but when the wind speed is 

higher than the cut-in speed, the power output P(U) increases with increasing wind speed to 

a maximum value (the rated power) and thereafter the output is almost constant. At wind 

speeds higher than the cut-out speed, the wind turbine is stopped to prevent structural 

failures. 
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2.6.3 Application of WAsP model in wind energy assessment  

The WAsP model has been implemented succssefully for wind power assessment and 

sitting in various partes of the world. Troen and Petersen (1989) implemented the WAsP 

model to generate the European Wind Atlas, which also gives a theoretical background of 

the WAsP implementation methodology.  

In South Africa, WAsP model has been implemented successfully by Jury and Diab (1989) 

and Botha (1989). Diab and Killick (1991) implemented the WAsP to model windflow at 

Saldanha Bay area, and the results have shown that are comparable with those derived from 

NOABL and UVMM models. Denison (1990), in a study in Soetanyberg at Cape Town, 

has shown that the results of the model compare weel with field data. Diab et al. (1992), in 

the demonstration of wind energy project at Mabibi Primary School, used wind data from a 

station situated at Mission Rocks to model wind speeds at Mabibi using WAsP model. 

Dube (1994) implemented the WAsP model to assess the wind energy potential in 

Maputaland. The study findings were that the coastal plain which is relatively flat is 

characterized by higher mean wind speeds of between 4.8 and 6.1 ms-1 at sites adjacents to 

the coast, while inland sites had mean wind speeds closer to 4.5 ms-1. 

Mortensen and Petersen (1997) explored the influence of terrain ruggedness and 

characteristics of the topographical input data in the accuracy of WAsP predictions in 

rugged and mountainous terrain using data from northern Portugal and France. The study 

found that WAsP may give accurate results outside its operational limits, provided that the 

difference in ruggedness indices between the reference and predicted sites is small and the 

topographical input data are adequate and reliable.  

Lange and Højstrup (2001), using the WAsP model, validated modeled data at the offshore 

sites in the Danish Baltic sea region where the wind resources estimated from 

measurements were compared to WAsP predictions and they agreed well. Esteves (2004) 

developed a GIS data base for wind power potential in Portugal implementing WAsP and 

MM5 models to generate the wind power potential resource maps.  
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Mortensen et al. (2005) used the WAsP and KAMM models to produce the wind atlas of 

Egypt. Migoya et al. (2007) implemented the WAsP model to assess the wind energy 

resource in the Madrid region and as a result of the successful application of the model, 

four wind farms with a capacity of 94 MW were licensed.  

In Mozambique, DNER (2008) with support of Danida with RISO as technical consultant 

was implemented the WAsP model to support for wind power development in 

Mozambique. The assessment findings based on wind data for Mozambique from the 

global meteorological database provided by NCEP/NCAR, was that the best wind resources 

in Mozambique is expected to be found along the coastline in the south of Mozambique and 

the wind resources is expected to decrease with the distance from the sea, but this has 

neither been verified nor quantified. The study reveled also that the wind resources along 

the coastline in the south of country correspond to annual wind power generation of 2 to 2.5 

GWh per MW installed wind power capacity. In addition, the costs estimated in 2008 

reveled that the total investment for large-scale wind power are estimated at €2 million per 

MW of installed wind power at 100 to 200 €/MWh generation. Narayana (2008) validated 

the wind resource assessment model (WRAM) map of Sir Lanka using measured data to 

evaluated the wind power generation potential through WAsP model.  

 

2.7 Summary  

This chapter has given a background on wind energy and the factors that have an influence 

on the wind climate such as topography, roughness, obstacles, and local winds. The most 

widely used models for the estimation of wind speed and energy potential and the 

extrapolation of wind data over space considering the aforementioned effects were also 

outlined. A brief overview of the different techniques employed in wind energy assessment 

studies, as well as a detailed discussion of the WAsP model used in this study, is 

highlighted. The application of the WAsP model in different studies and assessment of wind 
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energy in various parts of the world is briefly outlined as evidence that it is one most 

widely used tool for wind energy assessment in the world. 
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CHAPTER THREE 

DATA AND RESEARCH METHODOLOGY 

3.1 Data  

3.1.1 Introduction  

A brief overview is provided of all meteorological stations in Mozambique which collect 

wind data, with the aim of justifying the selection of the potential meteorological stations to 

be used as input for modelling. Mean annual wind speeds and mean seasonal and mean 

diurnal wind speed patterns are presented and analyzed with respect to an annual mean 

reference threshold wind speed of 3.0 ms-1 (Sahin, 2004).  

 

3.1.2 Wind data and data quality  

Meteorological Services (NMS) in Mozambique have two classes of meteorological 

stations which collect wind data: Class 1 (synoptic) and Class 2 (climatological). The 

meteorological stations that collect and provide hourly averaged wind data sets are the 

synoptic stations (or Class 1). The ideal distance between such stations averages 150 to 200 

km (WMO, 1970). Class 2 or climatological stations collect and provide wind data at three 

hourly intervals and the ideal average distance between such stations is 50 to 60 km 

(WMO, 1970). 

The data series used in this study (Table 3.1) are the data sets of both wind speed and 

direction collected by the Instituto Nacional de Meteorologia (INAM) at 10 Class 1 

meteorological stations. All data are measured at a height of 10 m above ground level 

(a.g.l.). In addition, data are available from the National Department of New and 

Renewable Energy (DNER) from two meteorological masts (Ponta de Ouro and Tofinho), 

sited for the specific purpose of wind energy assessment data collection. At these two 
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stations, wind data are measured at three different heights, viz. 10 m, 20 m and 30 m a.g.l. 

(Plate 3.1). 

Data from the INAM stations were only available in hard copy format. For the purpose of 

this study, data were transferred to electronic fromat for a period of two years. It was not 

possible to extend the period due to the considerable effort involved in converting the data. 

 

Table 3. 1: Meteorological stations that collect hourly wind speed. 

Station Name  Designation Data period Period Long(º) Lat (º) Alt (m ) 

Beira Class1 2 years 2006-2007 34º54´ -18º 48´ 8 
Inhambane Class1 2 years 2001-2002 35º 23´ -23º 52´ 14 
Lichinga Class1 2 years 2006-2007 35º 14´ -13º 18´ 136 
Maputo Mavalane Class1 2 years 2006-2007 32º 34´ -25º 55´ 39 
Nampula Class1 2 years 2006-2007 36º 53´ -17º 53´ 6 
Pemba Class1 2 years 2006-2007 40º 32´ -12º 59´ 101 
Ponta de Ouro ME-Mast 1 year 2007/2008 32º 53´ -26º 44´ 30 
Quelimane Class1 2 years 2006-2007 36º 53´ -17º 53´ 6 
Tete Class1 2 years 2006-2007 33º 35´ -16º 11´ 149 
Tofinho ME-Mast 1 year 2007/2008 35º 33´ -23º 52´ 30 
Vilankulo Class1 2 years 2002-2003 35º 19´ -22º 00´ 20 
Xai-Xai Class1 2 years 2006-2007 33º 38´ -25º 03´ 4 
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Plate 3. 1: Ponta do Ouro meteorological mast looking towards the east [Source: 
DNER, 2008; Photo by Risø, 2007]. 

 

Most of the meteorological stations (7) are located in the coastal zone, with the exception of  

Tete, Lichinga and Nampula, which are situated in the interior. Quelimane is located about  

20 km from the coast (Fig. 3.1). Furthermore, 90% of Class 1 meteorological stations are 

situated at the main airports of the provincial capitals. 

The wind speed is captured by a cup anemometer and the mean wind speed and direction 

are recorded every 10 minutes and averaged on an hourly basis at the INAM stations. These 

data are stored as hourly values.  

The majority of the INAM stations still use the anemography of R. Fuess (Fig. 3.2a), which 

measures the wind velocity and gust. Some are automatic weather stations (AWS) and use 

the VAISALA anemometer WAA151 (Fig. 3.2b), with a measuring range between 0.4 and 

75 ms-1, a starting threshold of 0.5 ms-1 and accuracy within 0.4 - 60 ± 0.17ms-1 

(VAISALA, 2002). Most of the AWS are situated at the main airports alongside runways 

(Plate 3.2).  
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Figure 3. 1: Geographic location of stations collecting wind data. 

 

 
 

 

Figure 3. 2a: Anemography Universal 82a [Source: 
Fuess, 1956]. 

 

Figure 3. 2b: Anemometer 
WAA151 [Source: 
VAISALA, 2002]. 
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Plate 3. 2: Mavalane anemometer viewed towards the east (E) [Photo: Author, 2009]. 

 

All the data were checked visually for quality control and to verify missing data, which 

may have been due to instrument failure or other technical reasons related to human error 

or local operational procedures where the meteorological staff office is located. From this 

procedure, it was found that there were no observations recorded at Inhambane from 22:00 

to 04:00, which represented 13.6% of zero and 31.3% of missing observations for the 

whole period of analysis.  
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At Vilankulo, a district airport, 15.6% of the observations were missing and 20.5% 

exhibited zero readings. The zero values of both speed and direction were also found 

mostly from 01:00 to 07:00, most likely because it is not a full-time operational airport. 

Therefore, at both the Vilankulo and Inhambane stations (Plate 3.3), the mean and 

prevailing wind direction might not be the expected, due to zero, and missing, observations.  

At Tofinho, 19.73% of the data was also found to be missing. This figure represented 38 

consecutive days between the end of October and the beginning of December in 2007 when 

no recording was done as the data logger was off. 

Data availability for all twelve stations that collect hourly wind speed and direction, are 

summarized in Table 3.2. From this it is noted that data availability varies between 67% at 

Inhambane and 100% at Pemba, Nampula, Quelimane and Ponta de Ouro.  

 

 

Plate 3. 3: Inhambane meteorological station (left) and Vilankulo anemometer (right) 
[Photo: INAM, 2008]. 
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Table 3. 2: Summary statistics of wind speed at the synoptic stations. 

Station Period 
(year) 

Fr (%) Total nº 
of Hours 

Mean annual 
speed (ms-1) 

Peak 
time 

(hour) 
Calm speed Data Availability 

Beira 2006 6.5 96 8,760 
3.50 15:00 2007 8.6 98 8,760 

All 7.6 97 17,520 

Inhambane 2001 14.9 71 8,760 
3.35 12:00 2002 12.4 67 8,760 

All 13.7 69 17,520 

Lichinga 2006 2.5 99 8,760 
3.90 11:00 2007 2.1 99 8,760 

All 2.3 99 17,520 
Maputo 
Mavalane 

2006 8.5 92 8,760 
4.31 15:00  2007 8.6 88 8,760 

All 8.6 90 17,520 

Nampula 2006 0.1 100 8,760 
3.00 11:00 2007 0.2 100 8,760 

All 0.2 100 17,520 

Pemba 2006 1.4 100 8,760 
3.70 16:00 2007 2.4 99 8,760 

All 1.9 100 17,520 
Ponta de Ouro 2007/08 16.7 100 8,829 4.91 16:00 

Quelimane 2006 23.4 99 8,760 
2.40 12:00 2007 26.4 100 8,760 

All 22.9 100 17,520 

Tete 
2006 56.5 99 8,760 

1.51 13:00 2007 56.6 98 8,760 
All 56.5 98 17,520 

Tofinho 2007/08 0.4 80 8,796 6.58 17:00 

Vilankulo 2002 16.2 73 8,760 
3.25 9:00 2003 15.1 98 8,760 

All 15.6 85 17,520 

Xai-Xai 2006 35.6 99 8,760  
2.09 12:00 2007 36.1 99 8,760 

All 35.8 99 17,520 

 

3.1.3 Wind observations 

It is well known that the wind speed varies with time of the day, the season of the year, 

from year to year and with height above the ground (Jamil et al., 1995; Walker and Jenkins, 

1997; Gipe, 2004; Himri et al., 2008). Therefore, the mean annual (Table 3.2), mean 
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diurnal (Fig. 3.3) and mean monthly wind speeds for the meteorological stations recording 

hourly wind data were calculated. 

All the meteorological stations, except Quelimane, Tete and Xai-Xai, have an annual mean 

wind speed of 3.0 ms-1 or higher. The inland location of two meteorological stations 

(Nampula and Tete), as well as likely sheltering effects at Quelimane, and Xai-Xai might 

be the reason for the low mean wind speeds. 

Tofinho and Ponta de Ouro have higher mean hourly wind speeds of between 3.5 and 6.0 

ms-1 (Ponta de Ouro) and between 6.0 and 7.3 ms-1 (Tofinho) throughout the day (Fig. 3.3). 

The mean monthly wind speed is between 4.0 and 8.0 ms-1 throughout the year (Fig. 3 4). 

Figure 3.3 illustrates the mean diurnal wind speed profile, where Beira, Lichinga, Maputo 

Mavalane, Pemba and Vilankulo have a significant number of hours with wind speeds 

greater than or equal to 3.0 ms-1. Figure 3.4 shows the variation in mean monthly wind 

speeds for all stations. Generally, mean monthly wind speeds vary by less than 2.0 ms-1 

from the lowest to the highest, although Tofinho shows relatively geater variability. 

Daily wind speed profile for class 1 stations
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Figure 3. 3: Mean diurnal wind speeds for Class 1 meteorological stations. 
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Seasonal mean wind speed for Class 1 stations
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Figure 3. 4: Mean monthly wind speeds for Class 1 meteorological stations. 

 

The estimates of the world-wide wind energy resource distribution published many years 

ago (WMO, 1981) revealed that for Mozambique there was more wind and wind energy 

potential in the coastal zone. However, this should not lead to the conclusion that the wind 

resource in the interior of the country is inadequate. On the contrary, Lichinga and 

Nampula meteorological stations are examples of interior stations with annual mean winds 

speed above 3.0 ms-1. 

From Figure 3.3 and Figure 3.4, is clear that the coastal meteorological stations represent 

sites with relatively greater wind resources that could be harnessed for wind power 

generation. This concurs with the results of WMO (1981) for Mozambique that estimated 

wind  speeds of about 4.4 ms-1 at a 10 m height and about 5.6 ms-1 at a 50 m height a.g.l. 

throughout the coastal zone of the country. 
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3.1.4 Meteorological station selection criteria for modelling  

The starting point for this study was an orverview of the wind observations in 

Mozambique. Only twelve meteorological stations throughout the country were collecting 

hourly wind data setes (Table 3.2). These data sets were evaluated in terms of their quality 

(abcence of zero and missing observations) and calculated annual mean wind speeds as 

well as their the monthly and diurnal mean wind distributions.  

Three stations (Xai-Xai, Tete, an Quelimane) were excluded as candidate sites due to their 

low mean annual wind speeds; they were below the threshold of 3.0 ms-1. Inhambane was 

excluded as a result of poor data availability (< 70%) and sheltering by obstacles (trees and 

buildings around). 

Of the eight remaining stations, all had a minimum one and two year data record and all 

were checked in terms of their anemometry siting; viz, well-expoused anemometer, distance 

from buildings and other obstacles. All were candidate potential sites. 

Finally, it was decided to focus the modeling on two regions of Mozambique; the southern 

region where mean wind speeds were the highest (Ponta de ouro, Mavalane, Tofinho and 

Vilankulo) and the northern region (Nampula, Pemba and Lichinga) where relatively little 

research has been conducted. The central region encompassing Beira was eliminated and 

left for futher studies. 

3.1.5 Summary  

A background has been given of the kind of meteorological data sets, the height at which 

they are collected, the class of meteorological stations that collect it and their geographical 

location. 

The selection criteria of the potential modelling stations were based on a reference 

threshold annual mean wind speed of 3.0 ms-1 or higher, and with more than one third (1/3) 
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to half of the day with consecutive hours and wind speeds above the same threshold. Data 

availability was also an important factor. 

It was found that at the northern region of Mozambique Lichinga, Nampula (interior areas) 

and Pemba (coastal area), Vilankulo, Tofinho Mavalane and Ponta de Ouro (coastal areas) 

at the southern region are potential stations suitable for modelling. 

 

3.2 Research methodology  

3.2.1 Introduction  

The wind is a very local characteristic, influenced by the topography and by change of the 

surface roughness. Its measurement takes a long time to obtain a climatological estimate 

and is costly to carry it out. This limitation is also accompanied by the low density of 

meteorological stations, particularly in remote inland areas. 

However, the rising interest in renewable energy, with special reference to fast-growing 

wind energy technology and improvements in wind turbine technology, has forced the 

development of a number of techniques to overcome this limitation by providing a means 

of predicting the wind climate at specific sites without measurements at those sites 

(Petersen et al., 1997). 

This section discusses the methodology based on the WAsP, model that was implemented 

in this study to overcome the shortcomings of the measured data.  

3.2.2 Technique of wind energy assessment  

There are many techniques that are employed in wind energy assessment studies, ranging 

from inferential techniques to sophisticated techniques that involve modelling the wind. 
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Statistical modelling techniques of wind speed for wind energy estimates have been 

undertaken, and the most successful one is the Weibull distribution model (Justus et al., 

1976; Hennessey, 1977; Lun and Lam, 2000; Gipe, 2004; Twidell and Weir, 2006; Zaharim 

et al., 2009a). 

Nevertheless, with the rising interest in renewable energy resources, the use of numerical 

models in recent wind energy studies has became popular due to the fact that models 

provide an objective method by including the characteristics and effects of terrain (shape, 

roughness, and slope) on airflow to interpolate wind data from sites where measurements 

do exist, to locations where measurements do not exist (Petersen et al., 1997). 

The WAsP model is one such example most often used and it is considered the standard 

method for wind resource prediction on land (onshore) and offshore (Lange and Højstrup, 

2001; Ackermann and Söder, 2002; Esteves, 2004; Sahin, 2004; Bowen and Mortensen, 

2004; Mortensen et al., 2007). 

In the present study, the modelling and the evaluation of the wind power potential for the 

selected meteorological stations was done by employing the WAsP model. Figure 3.5 

shows a schematic diagram summarizing the WAsP modelling methodology.  

All wind data input to the model were collected and the data quality checked (Fig. 3.5). The 

geographic location of the stations were converted to World Geodetic system (WGS 84) 

and projected to Universal Transverse Mecator (UTM). The wind data sets of the selected 

meteorological stations were input to the model and the site-specific wind climate summary 

or OWC generated. The wind data set was then represented as a velocity frequency 

distribution (table, graph and wind rose) and Weibull parameters.  

The subsets of digital elevation model (DEM) with spatial coverege of 60 x 60 km (Abrams 

et al., 2005) from Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) which covered the study areas to generate the topographical map were aquired 

(from https://wist.echo.nasa.gov/api) and the topography data at 10 m contour intervals 
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were generated for an area approximately 6 km radius from the meteorological station 

using a GlobalMapper software, then exported to WAsP format and projected to UTM. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5: A schematic representation of the WAsP modeling methodology. 

 

The roughness length and terrain surface characterictics classification around the 

meteorological stations and turbine sites was determined (Table A4, Appendix A) based on 

the European Wind Atlas (Troen and Petersen, 1989); and WMO (1981). Site visits (only at 

Mavalane meteorological station), the topographic maps from Direcção Nacional de 

Geografia e Cadastro (DINAGECA) and Google Earth satellite imagery (land-use/cover) of 

sufficient quality (Fig. 3.6) were used for roughness analysis, classification and collection 

Map of wind and energy 
resources. 

Observed Wind 
Climate (OWC). 

WAsP 
Numerical model. 

Wind Atlas data (or Regional 
Wind Climate). 

Predicted Wind Climate 
(PWC) & Annual Energy 
Production (AEP). 

Wind datasets (position, 
speed & direction). 

Turbine site: 
• Roughness (vector and rose format), 
• Sheltering (obstacle list), 
• Wind turbine characteristics. 

Meteorological station: 
• Roughness (vector and rose format), 
• Sheltering (obstacles list), 
• Elevation (vector map), 

Data collection & quality control of: 
• Wind datasets (position, speed & 

direction),  
• Elevation (vector map format), 
• Site description, 
• Roughness classification, 
• Obstacle description. 
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and the roughness rose was generated for each meteorological station and turbine site 

through the WAsP roughness rose window. 

 

Figure 3. 6: A typical Google Earth image of land-use/cover at potential turbine site 1 in 
the Lichinga area used for roughness classification and collection. 

 

The obstacle description method was employed based on European Wind Atlas method 

(Troen and Petersen, 1989; Mortensen et al., 1991). The obstacles were collected for each 

meteorological station and turbine site. The centre was the meteorological station (or 

turbine site), and a list of obstacles was generated considering the height (h), depth (d), 

porosity (P) of the obstacles and was assigned α1 and α2 values (the angles in degrees from 

North to the first and second corner), R1 and R2 values (the radial distances to the first and 

second corner, of each obstacle, in meters). The obstacle collection was based on Google 

Earth satellite imagery (Fig. 3.7) by implementing the WAsP obstacle group window. 

Considering the source from which data were collected, the height (h) and depth (d) of the 

obstacles are approximate values.  
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Obstacle and roughness data were collected for a 9 km radius from the meteorological 

station and turbine sites (Troen and Petersen, 1989; Mortensen et al., 1991) for the twelve 

azimuth sectors of 30 degrees each. In Appendices C and D, the obstacle lists and 

roughness data respectively, are depicted. 

 

Figure 3. 7: A typical Google Earth image at potential turbine site 1 in the Mavale area 
used for obstacles collection. 

 

The wind atlas for each meteorological station selected for modeling was implemented with 

the integration of the OWC and meteorological station UTM coordinates, a topographical 

map, the roughness rose and obstacle list into the WAsP model. 

Most of the meteorological stations selected for modelling (Ponta de Ouro, Mavalane, 

Tofinho, Vilankulo, Nampula, Pemba and Lichinga) have a mean annual wind speed of 



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 69

about 4 ms-1 or higher. Therefore, a Vestas (V52-850kW) wind turbine, the characteristics 

of which are given in Figure 3.8 and Table 3.3, was selected for modeling. It was also one 

of the turbines for which full information on the turbine characteristics was available from 

the manufacturer.  

 

 

Figure 3. 8: The Vestas V52 power curve [Source: Vestas Wind Systems A/S, 2008]. 
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Table 3. 3: Specifications and performance of V52-850 kW wind turbine. [Source: 
Vestas Wind Systems A/S, 2008]. 

Rotor Description 
Diameter 52.0 m 
Swept area 2 124 m2 
Rated rotor speed 26.0 Rotations Per Minute (RPM) 
Rotor speed range 14.0 - 31.4 RPM 
Tilt angle 6º 
Number of blades 3 
Weight 10 000 Kg (Rotor) & 22 000 Kg (Nacelle) 
Yaw system and gears 
Yawing speed <0.5º/s 
Motor 2.2 KW, 6 – pole asynchronous with electrical brake 
Gear box  
Type 1 planetary stage/2 helical stages 
Ratio 1:62 at 50 Hertz (Hz) - 1:74.4 at 60 Hz 
Generator 

Type Asynchronous with wound rotor. slip ring and Vestas 
Converter System (VCS) 

Rated power 850 kW 
Voltage 690 Volts Alternate current (VAC) 
Number of poles 4 
Rated speed 1620 RPM (50 Hz) and 1944 RPM (60 Hz) 
Rated current  711 A 
Control unity 
Voltage 3x690 VAC - 50/60 Hz 
Power supply for lighting - Standard 1x10 A - 230 VAC - 50/60 Hz 
Power supply for outlets - Standard 1x13 A - 230 VAC - 50/60 HZ 
Environmental conditions 
Ambient temperature Between - 20º and +40º C 
Noise level - Standard 104.2 dB (A) 
Hub height  Weight/Bottom diameter 
40.0 m  39.0 t/3.0 m 
44.0 m 43.0 t/3.0 m 
49.0 m 51.0 t/3.3 m 
55.0 m 58.0 t/3.3 m 
60.0 m 70.0 t/3.6 m 
65.0 m 77.0 t/3.6 m 
74.0 m 95.0 t/4.0 m 
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The WAsP application modules were implemented to estimate the wind power potential at 

predicted sites. The turbine sites were chosen randomly and the predicted wind climate 

(PWC) and the extractable wind energy based on the Vestas (V52-850kW) wind turbine 

was determined at the default wind turbine height (55 m a.g.l.), and then the wind resource 

grid sub-model was implemented and the wind resource map generated. Different runs 

were performed with randomly chosen predicted sites around the study area defined by the 

topographic map over the meteorological station and the outputs were visually compared. 

This procedure was repeated for all study areas and then the potential turbine sites were 

selected based on this analysis. Furtheremore, the selected wind turbine sites were checked 

visually by means of Google Earth satellite imagery (land-use/cover) to their proximity to a 

road (about 2 to 3 km) to facilitate the transport of goods for installation and maintenance; 

to nearby obstacles and the surrounding topography due to its effect on the retardation or 

acceleration of wind speed. Open areas or open areas with relief were therefore potentially 

optimum sites.  

A number up to three potential wind turbine sites were selected in the vicinity of each 

meteorological station and their coordinates are illustrated in Appendix B (Table B4). At 

each potential wind turbine site, the roughness and obstacle characteristics were determined 

using the same procedure as described above. The predicted wind climate (PWC), including 

extractable wind energy, for five heights (10, 25, 40, 50 and 60 m a.g.l) was determined 

based on the Vestas (V52-850kW) wind turbine. Thereafter, a wind resource map for each 

area with spatial resolution of 100 meters was generated implementing the WAsP wind 

resource grid sub-model. 

 

3.2.3 Summary  

In this chapter the criteria for selection of the meteorological stations for modelling were 

highlighted. The WAsP model was selected from amongst others, as the best tool for the 

study because it is one of the most widely used and is considered the standard method for 



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 72

wind resource assessment on land (onshore) and offshore. It forms the basis of most wind 

atlases around the wolrd. It is also suitable for use in data scarce regions, particularly 

relevant for Mozambique, and has the facility to incorporate the characteristics of a 

particular wind turbine to predict the extractable wind energy at specific sites, giving a 

spatial representation of wind and energy resources in a given spatial domain. Furthermore, 

it has very limited computer requirements; it is fast and easy to use and it requires a very 

small amount of input data. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

4.1 Introduction  

This chapter presents the results of the modeling undertaken for the three different study 

areas. The procedure adopted for each modeling domain was to first describe the observed 

wind data at the meteorological station. Secondly, the wind atlas analysis sub-model was 

applied at the same site to generate the cleaned wind data that takes account of topography, 

roughness and obstacles at the site. Topography data at 10 m contour intervals were 

generated for an area approximately 6 km radius from the meteorological station from the 

Digital Elevation Model (DEM). Obstacle and roughness data were collected for a 9 km 

radius from the meteorological station and turbine sites using Google Earth land use 

imagery.  

A number (up to three) potential wind turbine sites were selected in the vicinity of each 

meteorological station. At each potential wind turbine site, the roughness and obstacle 

characteristics were determined using the same procedure as described above. The 

predicted wind climate, including extractable wind energy, for five heights (10, 25, 40, 50 

and 60 m a.g.l.) was determined based on the Vestas (V52-850kW) wind turbine and 

thereafter, a wind resource map for each area was generated. 
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4.2 Results for Mavelane 

4.2.1 Observed wind data  

The Mavalane meteorological station has a mean annual wind speed of 4.38 ms-1 and an 

available wind energy of 87 Wm-2 for all azimuth sectors. Figure 4.1 shows the observed 

wind rose and wind speed frequency distribution at Mavalane. 

 

Figure 4. 1: Observed wind rose and wind speed frequency distribution at Mavalane 
meteorological station.  

 

The most frequent winds are from the 210º (16.8%) and 90º (15.3 %) sectors (Figs. 4.1 and 

4.2). Highest mean wind speeds and available wind energy are associated with the 180º 

(4.81ms-1; 109 Wm-2) and 90º (4.75 ms-1; 100 Wm-2) sectors.  
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Figure 4. 2: Wind speed frequency distribution and mean wind speed by directional 
sector at Mavalane. 

 

4.2.2 Wind atlas data at Mavalane  

After application of the wind atlas analysis sub-model, the relevant wind data for Mavalane 

are presented in Table 4.1. The data are cleaned of the influence of obstacles and are 

presented for four roughness classes (0.0, 0.03, 0.1, and 0.4 m) and four standard heights. 

Figure 4.3 represents the mean wind speed for three roughness classes (Z00 to Z02 

representing roughness values of 0.00, 0.03 and 0.10 m respectively) and for the first three 

standard heights (10, 25 and 50 m). The results show clearly that relatively higher wind 

speeds are associated with lower roughness and with greater heights a.g.l. Highest wind 

speeds are associated with the 120° directional sector (Fig. 4.3). 
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Table 4. 1: Wind atlas data at Mavalane, where A = Weibull scale factor; k = Weibull 
shape factor; v = mean wind speed; and E = Available wind energy (or 
power density).  

Height [m] Parameter Roughness-class 
0.00 m 0.030 m 0.10 m 0.40 m 

10 

A [ms-1] 7.7 5.4 4.7 3.7 
k 2.15 1.88 1.89 1.90 
v [ms-1] 6.8 4.8 4.1 3.3 
E [Wm-²] 346 134 88 42 

25 

A [ms-1] 8.3 6.4 5.8 4.8 
k 2.18 2.00 1.99 2.00 
v [ms-1] 7.4 5.7 5.1 4.3 
E [Wm-²] 435 214 155 92 

50 

A [ms-1] 8.8 7.4 6.7 5.8 
k 2.20 2.19 2.16 2.14 
v [ms-1] 7.8 6.5 6.0 5.2 
E [Wm-²] 509 300 229 150 

100 

A [ms-1] 9.3 8.7 8.0 7.0 
k 2.10 2.35 2.37 2.38 
v [ms-1] 8.2 7.7 7.1 6.2 
E [Wm-²] 616 462 354 242 

 

Immediately evident form Figure 4.3 is a shift in the maximum speed directional sector 

from 90° to 120°. It is also evident that the observed wind peak associated with the 210° 

sector has disappeared, leading to the conclusion that it was most likely due to speed up or 

channeling of winds due to obstacles. 
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Figure 4. 3: Regional wind climate of Mavalane meteorological station. 

 

4.2.3 Predicted wind climate for the Mavalane area  

The predicted wind climate (PWC) was calculated for three potential wind turbine sites 

located on the coastal plain at distances of less than 7 km from the meteorological station 

and less than 400 m from the shoreline (Fig. 4.4). 
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Figure 4. 4: Map showing the location of the three potential wind turbine sites ( ) and 
the location of the Mavalane meteorological station ( ) and the selected 
area for wind resource maps. 

 

The predicted mean annual wind speeds and extractable energy at the three potential wind 

turbine sites are presented in Figure 4.5 for five heights a.g.l. The mean annual wind speed 

is lowest at site 3, but exceeds 4.5 ms-1 at 10 m a.g.l. Highest mean annual wind speeds are 

found at site 1, where values approach 8.0 ms-1 at higher levels (50 and 60 m). Site 1 shows 
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evidence of a relatively steep rise in terrain which could account for the higher wind 

speeds. Available wind energy at 60 m a.g.l. ranges between 334 and 533 Wm-2 at the three 

different sites.  

A similarity of the predicted wind climate (PWC) to the regional wind climate (RWC) is 

found for the roughness class 0 (Z00=0.000 m) and class 1 (0.030 m). 

 

 

Figure 4. 5: Predicted mean wind speed and available wind energy at three potential 
wind turbine sites in the Mavalane area. 

 

Figure 4.6 illustrates the predicted wind rose and wind speed frequency distribution at sites 

1, 2 and 3 in the Mavalane area. It is noted that the winds are predominantly from the 210º 

and 90º with a secondary contribution from the 60º and 180º sectors. Highest wind speeds 

are associated with the 120° directional sector (Fig. 4.7). 
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Site 1 

Site 2 

Site 3 

Figure 4. 6: Predicted wind rose and wind speed frequency distribution at wind turbine 
sites in the Mavalane area.  
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Figure 4. 7: Predicted wind speed frequency distribution for 3 standard heights (10, 25 
and 50 m a.g.l.) at turbine sites in the Mavalane area.  

 

The annual energy production or extractable wind energy (AEP) in the Mavalane area is 

above 2 000 MWh for heights greater than 25 m a.g.l. and between 870 and 2 400 MWh for 

a 10 m a.g.l. hub height. Figure 4.8 illustrates the extractable wind energy at the three 

potential wind turbine sites in the Mavalane area. 

 

Figure 4. 8: The extractable wind energy at three potential wind turbine sites in the 
Mavalane area. 
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The highest extractable wind energy is from the 90° and 120° azimuth sectors. Figure 4.9 

depicts the extractable average wind energy by azimuth sector for three standard heights 

(10, 25 and 50 m a.g.l.) at potential turbine sites in the Mavalane area, while Figure 4.10 

illustrates the extractable energy rose and energy frequency distribution at 50 m a.g.l. at site 

2 in the Mavalane area. 

 

Figure 4. 9: Extractable wind energy by azimuth sector for 3 standard heights (10, 25, 
and 50 m a.g.l.) at site 2 in the Mavalane area. 

 

 

Figure 4. 10: Extractable energy rose and energy frequency distribution at 50 m a.g.l. for 
site 2 in the Mavalane area. 
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The speed-up (down) due to roughness change and orography at the lowest level (10 m 

a.g.l.) was between -8.4 and 13.5% and -3.1 to 6%, while at highest level (50 m a.g.l.) it 

was between -3.5 and 4.7% and -2.8 to 2.7% respectively. The turning effect due to 

orography was between -1.9° and 3.5° at 10 m a.g.l. and -1.4° to 1.9° at 50 m a.g.l.  

 

4.2.4 Wind resource maps  

The wind resource maps (Fig. 4.11) illustrate the spatial distribution of wind speed and 

energy resource in the Mavalane area at a height of 55 m a.g.l.  

 

Wind speed Average annual energy production (AEP) 
  

Figure 4. 11: Wind and energy resource maps in the Mavalane area. 
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The maps show an average wind speed over the domain of 6.72 ms-1 and average annual 

energy production (AEP) of 2 130 MWh. Highest wind energy potential is found in the 

southernmost section of the modeling domain, near Maputo Bay facing Catembe village, 

where the mean wind speed reaches 7.47 ms-1 with an AEP of 2 643 MWh. The site with 

the highest wind speeds and the greatest wind power potential has UTM coordinates of 

459200; -2873100.  

 

4.3 Results for Ponta de Ouro 

4.3.1 Observed wind data  

The Ponta de Ouro meteorological station has a mean annual observed wind speed of 4.9 

ms-1 and an available wind energy of 116 Wm-2 for all azimuth sectors. Figure 4.12 shows 

the observed wind rose and wind speed frequency distribution at Ponta de Ouro. 

 

Figure 4. 12: Observed wind rose and wind speed frequency distribution at Ponta de Ouro 
meteorological station.  
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The most frequent winds are from the 210º (17%) and 30º (15%) sectors (Figs. 4.12 and 

4.13). Highest mean wind speeds and available wind energy are associated with the 180º 

(6.7 ms-1; 259 Wm-2) and 30º (6.4 ms-1; 186 Wm-2) sectors. The double maximum is a 

feature that was also observed at Mavalane futher to the north. 

 

Figure 4. 13: Wind speed frequency distribution and mean wind speed by directional 
sector at Ponta de Ouro. 

 

4.3.2 Wind atlas data at Ponta de Ouro  

After application of the wind atlas analysis sub-model, the relevant wind data for Ponta de 

Ouro are presented in Table 4.2. The data are cleaned of the influence of obstacles and are 

presented for four roughness classes (0.00, 0.03, 0.10, and 0.40 m) and four standard 

heights. Figure 4.14 depicts the mean wind speed for three roughness classes (Z00 to Z02 

representing roughness values of 0.00, 0.03 and 0.10 m respectively) and for the first three 

standard heights (10, 25 and 50 m a.g.l.). The results show clearly that relatively higher 

wind speeds are associated with lower roughness and with greater heights a.g.l. Highest 

wind speeds are associated with the 0°-60° and 180° directional sectors (Fig. 4.14). 
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Table 4. 2: Wind atlas data at Ponta de Ouro, where A = Weibull scale factor; k = 
Weibull shape factor; v = mean wind speed; and E = Available wind energy 
(or Power density).  

Height [m] Parameter 
Roughness-class 

0.00 m 0.03 m 0.10 m 0.40 m 

10 

A [ms-1] 7.9 5.5 4.8 3.8 
k 2.68 2.34 2.32 2.30 
v [ms-1] 7.0 4.9 4.2 3.3 
E [Wm-²] 319 119 78 38 

25 

A [ms-1] 8.6 6.6 5.9 4.9 
k 2.72 2.50 2.46 2.43 
v [ms-1] 7.6 5.9 5.2 4.4 
E [Wm-²] 402 194 140 83 

50 

A [ms-1] 9.0 7.6 6.9 6.0 
k 2.74 2.76 2.69 2.62 
v [ms-1] 8.0 6.8 6.1 5.3 
E [Wm-²] 472 281 213 138 

100 

A [ms-1] 9.5 9.0 8.2 7.2 
k 2.59 2.90 2.90 2.90 
v [ms-1] 8.5 8.0 7.3 6.4 
E [Wm-²] 568 456 346 232 

 

 

Figure 4. 14: Regional wind climate of Ponta de Ouro meteorological station. 
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4.3.3 Predicted wind climate for the Ponta de Ouro area  

The predicted wind climate (PWC) was calculated for two potential wind turbine sites 

located to the north-west of the meteorological station at distances of 3 and 6 km from the 

meteorological station to site 2 and site 1 respectively (Fig. 4.15). 

 

Figure 4. 15: Map showing the location of the two potential wind turbine sites ( ) and 
the location of the Ponta de Ouro meteorological station ( ) and the 
selected area for wind resource maps. 

 

The predicted mean annual wind speeds and extractable energy at the two potential wind 

turbine sites are presented in Figure 4.16 for five heights a.g.l. The mean annual wind speed 

is greater than 5.0 ms-1 at 10 m a.g.l. Highest mean annual wind speeds are found at higher 
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levels (50 and 60 m) where values approach 8.0 ms-1 at the two sites. Available wind 

energy at 60 m a.g.l. ranges between 333 and 418 Wm-2 at the two different sites.  

A similarity of the predicted wind climate (PWC) to the regional wind climate (RWC) is 

found for the roughness class 0 (Z00=0.00 m) at higher levels, class 1 and class 2 

(Z01=0.030, Z02=0.10 m) at lower levels (10 and 25 m a.g.l.). 

 

Figure 4. 16: Predicted mean wind speed and available wind energy at two potential wind 
turbine sites in the Ponta de Ouro area. 

 

Figure 4.17 illustrates the predicted wind rose and wind speed frequency distribution at 

sites 1 and 2 in the Ponta de Ouro area. It is noted that the winds are predominantly from 

the 210º and 30º sectors. Highest predicted wind speeds are associated with the 30° - 60° 

and 180° directional sectors (Fig. 4.18). 
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Site 1 

Site 2 

Figure 4. 17: Predicted wind rose and wind speed frequency distribution at potential wind 
turbine sites in the Ponta de Ouro area. 

 

 

Figure 4. 18: Predicted wind speed frequency distribution for 3 standard heights (10, 25 
and 50 m a.g.l.) at potential wind turbine sites in the Ponta de Ouro area.  
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The annual energy production or extractable wind energy (AEP) in the Ponta de Ouro area 

is between 2 000 and 2 800 MWh for heights greater than 25 m a.g.l. and below 1 500 

MWh for a 10 m a.g.l. hub height. Figure 4.19 illustrates the extractable wind energy at the 

two potential wind turbine sites in the Ponta de Ouro area. 

 

Figure 4. 19: The extractable wind energy at two potential wind turbine sites in the Ponta 
de Ouro area. 

 

The highest extractable wind energy is from the 30° and 180º azimuth sectors. Figure 4.20 

depicts the extractable average wind energy by azimuth sector for three standard heights 

(10, 25 and 50 m a.g.l.) at potential turbine sites in the Ponta de Ouro area, while Figure 

4.21 illustrates the extractable energy rose and energy frequency distribution at 50 m a.g.l. 

at site 2 in the Ponta de Ouro area. 

The speed-up (down) due to roughness change and orography at the lowest level (10 m 

a.g.l.) was between -12.9 and 1.1% and -3.3 to 5.8%, while at the highest level (50 m 

a.g.l.), it was between -4.4 and 1.5% and -1.9 to 2.7% respectively. The turning effect due 

to orography was between -2.7° and 2.7° at 10 m a.g.l. and -1.4° to 1.3° at 50 m a.g.l.  
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Figure 4. 20: Extractable average wind energy by azimuth sector for 3 standard heights 
(10, 25 and 50 m a.g.l.) at potential wind turbine sites in the Ponta de Ouro 
area. 

 

  

Figure 4. 21: Extractable energy rose and energy frequency distribution at 50 m a.g.l. at 
site 2 in the Ponta de Ouro area. 
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4.3.4 Wind resource maps  

The wind resource maps illustrate the spatial distribution of wind speed (Fig. 4.22) and 

energy (Fig. 4.23) in the Ponta de Ouro area at a height of 55 m a.g.l. The average wind 

speed is 6.8 ms-1 and average annual energy production (AEP) is 2 116 MWh. Highest 

wind energy potential is found in the western highland areas, inland from sites 1 and 2 and 

in a narrow NW to S valley that leads to Maputo Bay, where the mean wind speed reaches 

8.3 ms-1 with an AEP of 3 240 MWh. Clearly, proximity to the coast, where wind speeds 

are traditionally higher due to lower roughness values over the ocean, and channeling of 

winds are factors accounting for the modeled maxima. The site with UTM coordinates of 

483015; -2954883 is the site with the highest wind energy potential.  

Wind speed
 

Figure 4. 22: Wind speed resource map in the Ponta de Ouro area. 
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Average annual energy production (AEP)
 

Figure 4. 23: Wind energy resource map in the Ponta de Ouro area. 
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4.4 Results for Tofinho 

4.4.1 Observed wind data  

The Tofinho meteorological station has a mean annual observed wind speed of 6.5 ms-1 (the 

highest value of all the meteorological stations) and an available wind energy of 291 Wm-2 

for all azimuth sectors. Figure 4.24 shows the observed wind rose and wind speed 

frequency distribution at Tofinho. 

 

Figure 4. 24: Observed wind rose and wind speed frequency distribution at Tofinho 
meteorological station.  

 

The most frequent winds are from the 150º (22.6%) sector, with a secondary maximum 

from the 30º (15%) sector (Figs. 4.24 and 4.25). The orientation of coastline accounts for 

winds from a more SE sector than a SW sector as was the case in the two former stations. 

High mean wind speeds and available wind energy are associated with the 180º (8.65 ms-1; 

562 Wm-2) and 0º (8.64 ms-1; 519 Wm-2) sectors. 
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Figure 4. 25: Wind speed frequency distribution and mean wind speed by directional 
sector at Tofinho. 

 

4.4.2 Wind atlas data at Tofinho  

After application of the wind atlas analysis sub-model, the relevant wind data for Tofinho 

are presented in Table 4.3. The data are cleaned of the influence of obstacles and are 

presented for four roughness classes (0.00, 0.03, 0.10, and 0.40 m) and four standard 

heights. Figure 4.26 depicts the mean wind speed for three roughness classes (Z00 to Z02 

representing roughness values of 0.00, 0.03 and 0.10 m respectively) and for the first three 

standard heights (10, 25 and 50 m). The results show clearly that relatively higher wind 

speeds are associated with lower roughness and with greater heights a.g.l. Highest wind 

speeds are associated with the 180°, 150° and 0° directional sectors (Fig. 4.26). 

 

 

 



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 96

Table 4. 3: Wind atlas data at Tofinho, where A = Weibull scale factor; k = Weibull 
shape factor; v = mean wind speed; and E = Available wind energy (or 
Power density).  

Height [m] Parameter Roughness-class 
0.00 m 0.03 m 0.10 m 0.40 m 

10 

A [ms-1] 7.8 5.4 4.7 3.7 
k 2.37 2.07 2.06 2.07 
U [ms-1] 6.9 4.8 4.2 3.3 
E [Wm-²] 326 124 82 39 

25 

A [ms-1] 8.4 6.5 5.8 4.8 
k 2.40 2.20 2.18 2.18 
U [ms-1] 7.4 5.7 5.1 4.3 
E [Wm-²] 410 200 145 85 

50 

A [ms-1] 8.9 7.5 6.8 5.9 
k 2.42 2.42 2.37 2.34 
U [ms-1] 7.9 6.6 6.0 5.2 
E [Wm-²] 481 285 218 141 

100 

A [ms-1] 9.3 8.8 8.1 7.1 
k 2.31 2.56 2.57 2.59 
U [ms-1] 8.3 7.8 7.2 6.3 
E [Wm-²] 580 452 346 233 

 

 

Figure 4. 26: Regional wind climate of Tofinho meteorological station. 
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4.4.3 Predicted wind climate for the Tofinho area  

The predicted wind climate (PWC) was calculated for two potential wind turbine sites 

located on the south-westward of meteorological station at distances between 3 and 4.5 km 

from the meteorological station to site 2 and site 1 respectively (Fig. 4.27). 

 

Figure 4. 27: Map showing the location of the two potential wind turbine sites ( ) and 
the location of the Tofinho meteorological station ( ) and the selected area for wind 
resource maps. 
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The predicted mean annual wind speeds and extractable energy at the two potential wind 

turbine sites are presented in Figure 4.28 for five heights a.g.l. The mean annual wind speed 

is about 6.0 ms-1 at 10 m a.g.l. Higher mean annual wind speeds are found at higher levels 

(50 and 60 m) where values approach 8.0 ms-1 at the two sites. Available wind energy at 60 

m a.g.l. ranges between 441 and 504 Wm-2 at the two different sites. In general, the wind 

resource in the vicinity of Tofinho is good. 

A similarity of the predicted wind climate (PWC) to the regional wind climate (RWC) is 

found for the roughness class 0 (Z00=0.00 m) at higher levels (above 25 m) and roughness 

class 1 and class 2 (Z01=0.030, Z02=0.10 m) at lower levels (10 - 25 m a.g.l.). 

 

Figure 4. 28: Predicted mean wind speed and available wind energy at two potential wind 
turbine sites in the Tifinho area. 

 

Figure 4.29 illustrates the predicted wind rose and wind speed frequency distribution at 

sites 1 and 2 in the Tofinho area. It is noted that the winds are predominantly from the 150º 

and 30º sectors. Highest predicted wind speeds are associated with the 180° and 150° and 

0° to 30° directional sectors (Fig. 4.30). 
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Site 1 

 

Site 2 

 

Figure 4. 29: Predicted wind rose and wind speed frequency distribution at potential wind 
turbine sites in the Tofinho area. 

 

 

Figure 4. 30: Predicted wind speed frequency distribution for 3 standard heights (10, 25 
and 50 m a.g.l.) at potential wind turbine sites in the Tofinho area.  
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The annual energy production or extractable wind energy (AEP) in the Tofinho area is 

between 2 359 and 2 990 MWh for heights greater than 25 m a.g.l. and less than  

1 600 MWh for 10 m a.g.l. hub height. Figure 4.31 illustrates the extractable wind energy 

in two sites in the Tofinho area. 

 

Figure 4. 31: The extractable wind energy at two potential wind turbine sites in the 
Tofinho area. 

 

The highest extractable wind energy is from the 150° and 180º azimuth sectors. Figure 4.32 

depicts the extractable wind energy by azimuth sector for three standard heights (10, 25 and 

50 m a.g.l.) at potential turbine sites in the Tofinho area, while Figure 4.33 illustrates the 

extractable energy rose and wind energy frequency distribution at 50 m a.g.l. at site 1 in the 

Tofinho area. 

The speed-up (down) due to roughness change and orography at the lowest level (10 m 

a.g.l.) was between -16.0 and 0.0% and 3.8 to 10.0%, while at highest level (50 m a.g.l.) it 

was between -7.7 and 0.0% and 2.8 to 5.5% respectively. The turning effect due to 

orography was between -1.4° and 1.5° at 10 m a.g.l. and -0.7° to 0.7° at 50 m a.g.l.  
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Figure 4. 32: Extractable average wind energy by azimuth sector for 3 standard heights 
(10, 25 and 50 m a.g.l.) at potential wind turbine sites in the Tofinho area. 

  

Figure 4. 33: Extractable energy rose and energy frequency distribution at 50 m a.g.l. at 
site 1 in the Tofinho area. 

 

4.4.4 Wind resource maps  

The wind resource maps (Fig. 4.34) illustrate the spatial distribution of wind speed and 

energy resource in the Tofinho area at a height of 55 m a.g.l. The average wind speed over 

the domain is 6.6 ms-1 and the mean annual energy production (AEP) is 2 031 MWh. 

Highest wind energy potential is in the south-western highland areas inland of the 

meteorological station area, around sites 1 and 2 and towards the north-west, where the 
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mean wind speed reaches 7.5 ms-1 with an AEP of 2 633 MWh. The SE (150°) - S-SW 

(210°) and N sectors are these with higher magnitude of mean wind speed (6.3 – 7.5 ms-1) 

and AEP (2 000 – 2 633 MWh). The site with UTM coordinates of 752996; -2642558 is the 

site with the highest wind energy potential.  

 

Wind speed Average annual energy production (AEP) 

Figure 4. 34: Wind speed and energy resource maps in the Tofinho area. 

 

4.5 Results for Vilankulo 

4.5.1 Observed wind data  

The Vilankulo meteorological station has a mean annual observed wind speed of 3.3 ms-1 

and an available wind energy of 45 Wm-2 for all azimuth sectors. Figure 4.35 shows the 

observed wind rose and wind speed frequency distribution at Vilankulo. 
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Figure 4. 35: Observed wind rose and wind speed frequency distribution at Vilankulo 
meteorological station.  

 

The most frequent winds are from the 180º (17.5%) to 150º and 120º (15.2 and 12%) 

sectors (Figs. 4.35 and 4.36). High mean wind speeds and available wind energy are 

associated with the 180º (4.62 ms-1; 86 Wm-2) sector.  

 

Figure 4. 36: Wind speed frequency distribution and mean wind speed by directional 
sector at Vilankulo. 
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4.5.2 Wind atlas data at Vilankulo  

After application of the wind atlas analysis sub-model, the relevant wind data for Vilankulo 

are presented in Table 4.4. The data are cleaned of the influence of obstacles and are 

presented for four roughness classes (0.00, 0.03, 0.10, and 0.40 m) and four standard 

heights. Figure 4.37 depicts the mean wind speed for three roughness classes (Z00 to Z02 

representing roughness values of 0.00, 0.03 and 0.10 m respectively) and for the first three 

standard heights (10, 25 and 50 m). The results show clearly that relatively higher wind 

speeds are associated with lower roughness and with greater heights a.g.l. Highest wind 

speeds are associated with the 180° and 150° directional sector (Fig. 4.37). 

 

Table 4. 4: Wind atlas data at Vilankulo, where A = Weibull scale factor; k = Weibull 
shape factor; v = mean wind speed; and E = Available wind energy (or 
Power density).  

Height [ m] Parameter Roughness-class 
0.00 m 0.03 m 0.10 m 0.40 m 

10 

A [ms-1] 5.1 3.6 3.1 2.5 
K 1.86 1.64 1.63 1.65 
U [ms-1] 4.6 3.2 2.8 2.2 
E [Wm-²] 120 48 31 15 

25 

A [ms-1] 5.6 4.3 3.8 3.2 
K 1.89 1.75 1.72 1.73 
U [ms-1] 4.9 3.8 3.4 2.9 
E [Wm-²] 150 76 55 33 

50 

A [ms-1] 5.9 5.0 4.5 3.9 
K 1.90 1.90 1.87 1.85 
U [ms-1] 5.2 4.4 4.0 3.5 
E [Wm-²] 175 106 81 54 

100 

A [ms-1] 6.2 5.9 5.4 4.8 
K 1.81 2.00 2.00 2.03 
U [ms-1] 5.5 5.2 4.8 4.2 
E [Wm-²] 214 169 129 87 

 



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 105

 

Figure 4. 37: Regional wind climate of Vilankulo meteorological station. 

 

4.5.3 Predicted wind climate for the Vilankulo area  

The predicted wind climate (PWC) was calculated for two potential wind turbine sites 

located on the south-westward of meteorological station at distances between 2 and 7 km 

from the meteorological station to site 2 and site 1 respectively (Fig. 4.38). 
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Figure 4. 38: Map showing the location of the two potential wind turbine sites ( ) and 
the location of the Vilankulo meteorological station ( ) and the selected 
area for wind resource maps. 

 

The predicted mean annual wind speeds and extractable energy at the two potential wind 

turbine sites are presented in Figure 4.39 for four heights a.g.l. The mean annual wind 

speed is greater than 3.5 ms-1 at 10 m a.g.l. The higher mean annual wind speeds are found 

at higher levels (40 and 50 m a.g.l.) where values approach 4.99 ms-1 at the two sites. 

Available wind energy at 50 m a.g.l. ranges between 138 and 145 Wm-2 at the two different 

sites.  
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A similarity of the predicted wind climate (PWC) to the regional wind climate (RWC) is 

found for the roughness class 0 (Z00=0.00 m) at higher levels and class 1 (Z01=0.030 m) at 

lower levels (10 and 25 m a.g.l.). 

 

Figure 4. 39: Predicted mean wind speed and available wind energy at two potential wind 
turbine sites in the Vilankulo area. 

 

Figure 4.40 illustrates the predicted wind rose and wind speed frequency distribution at 

sites 1 and 2 in the Vilankulo area. It is noted that the winds are predominantly from the 

180º, 150º and 120º sectors with a secondary contribution from the 90º and 240º sectors. 

Highest predicted wind speeds are associated with the 180°, 120° and 60° directional 

sectors (Fig. 4.41). 
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Site 1 

Site 2 

Figure 4. 40: Predicted wind rose and wind speed frequency distribution at potential wind 
turbine sites in the Vilankulo area. 

 

 

Figure 4. 41: Predicted wind speed frequency distribution for 3 standard heights (10, 25 
and 50 m a.g.l.) at potential wind turbine sites in the Vilankulo area.  
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The annual energy production or extractable wind energy (AEP) in the Vilankulo area is 

between 936 and 1040 MWh for heights greater than 25 m a.g.l. and about 800 MWh for  

10 m a.g.l. hub height. Figure 4.42 illustrates the extractable wind energy in two sites in the 

Vilankulo area. 

 

Figure 4. 42: The extractable wind energy at two potential wind turbine sites in the 
Vilankulo area. 

 

The azimuth sectors with greater frequency of extractable wind energy are S-SW-SE (180°, 

210° and 150°). Figure 4.43 depicts the average extractable wind energy by azimuth sector 

for three standard heights (10, 25, and 50 m a.g.l.) at turbine sites in the Vilankulo area 

while Figure 4.44 illustrates the extractable energy rose and wind energy frequency 

distribution at 50 m a.g.l. at site 2 in the Vilankulo area. 

The speed-up (down) due to roughness change and orography at the lower level (10 m 

a.g.l.) was between -7.1 and 9.3% and 0.6 to 15.1%, while at higher level (50 m a.g.l.) it 

was between -3.4 and 1.4% and 1.9 to 7.4% respectively. The turning effect due to 

orography was between -3.6° and 3.3° at 10 m a.g.l. and -1.5° to 1.5° at 50 m a.g.l.  
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Figure 4. 43: Extractable average wind energy by azimuth sector for 3 standard heights 
(10, 25 and 50 m a.g.l.) at potential wind turbine sites in the Vilankulo area. 

 

 

Figure 4. 44: Extractable energy rose and energy frequency distribution at 50 m a.g.l. at 
site 2 in the Vilankulo area. 

 

4.5.4 Wind resource maps  

The wind resource maps illustrate the spatial distribution of wind speed (Fig. 4.45) and 

energy resource (Fig. 4.46) in the Vilankulo area at a height of 55 m a.g.l. The map gives 

an average wind speed of 4.42 ms-1 and a mean annual energy production (AEP) of  
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793 MWh. The higher potential wind energy potential is found on south-west side of 

meteorological station and in the vicinity of site 2 towards the NW where the mean wind 

speed reaches 4.7 ms-1 with an AEP of 980 MWh The site with UTM coordinates of 

732486; -2432454 is the site with the highest wind energy potential.  

 

Wind speed
 

 

Figure 4. 45: Wind speed resource map in the Vilankulo area. 
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Average anual energy production (AEP)
 

 

Figure 4. 46: Wind energy resource map in the Vilankulo area. 
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4.6 Results for Pemba 

4.6.1 Observed wind data  

The Pemba meteorological station has a mean annual observed wind speed of 3.7 ms-1 and 

an available wind energy of 57 Wm-2 for all azimuth sectors. Figure 4.47 shows the 

observed wind rose and wind speed frequency distribution at Pemba. 

 

Figure 4. 47: Observed wind rose and wind speed frequency distribution at Pemba 
meteorological station.  

 

The most frequent winds are from the 210º (16.0%) and 150º to 180º (14% and 12.2%) 

sectors (Figs. 4.47 and 4.48). Highest mean wind speeds and available wind energy are 

associated with the 150º and 180º (4.65 and 4.55 ms-1; 102 and 93 Wm-2) with a secondary 

maximum from the 30º (4.18 ms-1; 69 Wm-2) sectors.  
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Figure 4. 48: Wind speed frequency distribution and mean wind speed by directional 
sector at Pemba. 

 

4.6.2 Wind atlas data at Pemba  

After application of the wind atlas analysis sub-model, the relevant wind data for Pemba 

are presented in Table 4.5. The data are cleaned of the influence of obstacles and are 

presented for four roughness classes (0.0, 0.03, 0.1, and 0.4 m) and four standard heights. 

Figure 4.49 depicts the mean wind speed for three roughness classes (Z00 to Z02 

representing roughness values of 0.00, 0.03 and 0.10 m respectively) and for the first three 

standard heights (10, 25 and 50 m a.g.l.). The results show clearly that relatively higher 

wind speeds are associated with lower roughness and with greater heights a.g.l. Highest 

wind speeds are associated with the 150° directional sector (Fig. 4.49). 
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Table 4. 5: Wind atlas data at Pemba, where A = Weibull scale factor; k = Weibull 
shape factor; and E = Available wind energy (or Power density).  

Height 
[m] Parameter Roughness-class 

0.00 m 0.03 m 0.10 m 0.40 m 

10 

A [ms-1] 4.8 3.3 2.9 2.2 
k 2.01 1.74 1.77 1.75 
V [ms-1] 4.2 2.9 2.5 2.0 
E [Wm-²] 87 34 22 11 

25 

A [ms-1] 5.2 3.9 3.5 2.9 
k 2.04 1.86 1.87 1.84 
V [ms-1] 4.6 3.5 3.1 2.6 
E [Wm-²] 108 53 39 23 

50 

A [ms-1] 5.4 4.6 4.2 3.6 
k 2.06 2.04 2.04 1.98 
V [ms-1] 4.8 4.0 3.7 3.2 
E [Wm-²] 127 75 57 37 

100 

A [ms-1] 5.7 5.4 5.0 4.3 
k 1.96 2.15 2.19 2.18 
V [ms-1] 5.1 4.8 4.4 3.8 
E [Wm-²] 155 120 91 61 

 

 

Figure 4. 49: Regional wind climate of Pemba meteorological station. 
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4.6.3 Predicted wind climate for the Pemba area  

The predicted wind climate (PWC) was calculated for three potential wind turbine sites 

located on the east and south-eastward of the meteorological station at distances of 3 and 6 

km from the meteorological station to site 1 and site 2 respectively, and 4 km to site 3  

(Fig. 4.50). 

 

Figure 4. 50: Map showing the location of the three potential wind turbine sites ( ) and 
the location of the Pemba meteorological station ( ) and the selected area 
for wind resource maps. 

 

The predicted mean annual wind speeds and extractable energy at the three potential wind 

turbine sites are presented in Figure 4.51 for five heights a.g.l. The mean annual wind speed 

is lower than the mean annual observed wind speed (3.7 ms-1) at 10 m a.g.l. Highest mean 

annual wind speeds is almost similar for the three sites, where values approach 4.6 ms-1 at 
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higher levels (60 m a.g.l.). Available wind energy at 60 m a.g.l. ranges between 97 and  

110 Wm-2 at the three different sites.  

A similarity of the predicted wind climate (PWC) to the regional wind climate (RWC) is 

found for the roughness class 0 (Z00=0.00 m) and class 1 (Z01=0.03 m) for the higher levels 

(above 25 m a.g.l.) and to class 2 (Z02=0.10 m) for the lower level (10 m a.gl.). 

 

 

Figure 4. 51: Predicted mean wind speed and available wind energy at three potential 
wind turbine sites in the Pemba area. 

 

Figure 4.52 illustrates the predicted wind rose and wind speed frequency distribution at 

sites 1, 2 and 3 in the Pemba area. It is noted that the winds are predominantly from the 

150º, 180º and 210º sectors. Highest predicted wind speeds are associated with the 150° and 

180° directional sector (Fig. 4.53). 
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Site 1 

Site 2 

Site 3 

Figure 4. 52: Predicted wind rose and wind speed frequency distribution at potential wind 
turbine sites in the Pemba area. 
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Figure 4. 53: Predicted wind speed frequency distribution for 3 standard heights (10, 25 
and 50 m a.g.l.) at potential wind turbine sites in the Pemba area.  

 

The annual energy production or extractable wind energy (AEP) in the Pemba area is 

between 600 and 900 MWh for heights greater than 25 m a.g.l. and less than 350 MWh for 

a 10 m hub height. Figure 4.54 illustrates the extractable wind energy at the three potential 

wind turbine sites in the Pemba area. 

 

Figure 4. 54: The extractable wind energy at three potential turbine sites in the Pemba 
area. 
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The highest extractable wind energy is from the 150° and 180º azimuth sectors. Figure 4.55 

depicts the average extractable wind energy by azimuth sector for three standard heights 

(10, 25 and 50 m a.g.l.) at potential turbine sites in the Pemba area, while Figure 4.56 

illustrate the extractable energy rose and energy frequency distribution at 50 m a.g.l. at site 

2 in the Pemba area. 

 

 

Figure 4. 55: Extractable average wind energy by azimuth sector for 3 standard heights 
(10, 25 and 50 m a.g.l.) at potential wind turbine sites in the Pemba area. 

 

   

Figure 4. 56: Extractable energy rose and energy frequency distribution at 50 m a.g.l. at 
site 2 in the Pemba area. 
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The speed-up (down) due to roughness change and orography at the lowest level (10 m 

a.g.l.) was between -14 and 0.0% and -3.9 to 3.9%, while at highest level (50 m a.g.l.) it 

was between -6.3 and 0.0% and -1.7 to 2.3% respectively. The turning effect due to 

orography was between -2.5° and 2.5° at 10 m a.g.l. and -1.1° to 1.1° at 50 m a.g.l.  

 

4.6.4 Wind resource maps  

The wind resource maps illustrate the spatial distribution of wind speed (Fig. 4. 57) and 

energy resource (Fig. 4. 58) in the Pemba area at a height of 55 m a.g.l. The maps show an 

average wind speed of 4.10 ms-1 and a mean annual energy production (AEP) of 563 MWh. 

The highest wind energy potential is found around the meteorological station, as well as S 

and NW of meteorological station on the west side of Pemba Bay where the mean wind 

speed reaches 4.63 ms-1 with an AEP of 868 MWh. The site with UTM coordinates of 

664427; -1436313 is the site with the highest wind energy potential.  

Wind speed
 

 

Figure 4. 57: Wind speed resource map in the Pemba area. 
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Average annual energy production (AEP)
 

Figure 4. 58: Wind energy resource map in the Pemba area. 

 

4.7 Results for Nampula 

4.7.1 Observed wind data  

The Nampula meteorological station has a mean annual observed wind speed of 3.0 ms-1 

and an available wind energy of 30 Wm-2 for all azimuth sectors. Figure 4.59 shows the 

observed wind rose and wind speed frequency distribution at Nampula. 
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Figure 4. 59: Observed wind rose and wind speed frequency distribution at Nampula 
meteorological station.  

 

The most frequent winds are from the 210º (18.0%) to 240º (13%) with a secondary 

contribution from the 180º (12%) sectors (Figs. 4.59 and 4.60). Highest mean wind speeds 

and available wind energy are associated with the 210º (3.5 ms-1; 38 Wm-2) sector.  

 

Figure 4. 60: Wind speed frequency distribution and mean wind speed by directional 
sector at Nampula. 
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4.7.2 Wind atlas data at Nampula  

After application of the wind atlas analysis sub-model, the relevant wind data for Nampula 

are presented in Table 4.6. The data are cleaned of the influence of obstacles and are 

presented for four roughness classes (0.00, 0.03, 0.10, and 0.40 m) and four standard 

heights. Figure 4.61 depicts the mean wind speed for three roughness classes (Z00 to Z02 

representing roughness values of 0.00, 0.03 and 0.10 m respectively) and for the first three 

standard heights (10, 25 and 50 m a.g.l.). The results show clearly that relatively higher 

wind speeds are associated with lower roughness and with greater heights a.g.l. Highest 

wind speeds are associated with the 240° and 210° directional sector (Fig. 4.61). 

 

Table 4. 6: Wind atlas data at Nampula, where A = Weibull scale factor; k = Weibull 
shape factor; v = mean wind speed; and E = Available wind energy (or 
Power density).  

Height [m] Parameter 
Roughness-class 

0.00 m 0.03mm 0.10 m 0.40 m 

10 

A [ms-1] 4.6 3.2 2.7 2.2 
k 2.37 1.99 1.95 2.04 
U [ms-1] 4.1 2.8 2.4 2.0 
E [Wm-²] 67 26 17 8 

25 

A [ms-1] 5.0 3.8 3.4 2.9 
k 2.41 2.13 2.08 2.15 
U [ms-1] 4.4 3.4 3.0 2.6 
E [Wm-²] 84 42 30 18 

50 

A [ms-1] 5.2 4.4 4.0 3.5 
k 2.42 2.38 2.29 2.34 
U [ms-1] 4.6 3.9 3.5 3.1 
E [Wm-²] 99 59 45 30 

100 

A [ms-1] 5.5 5.2 4.7 4.2 
k 2.28 2.52 2.49 2.62 
U [ms-1] 4.9 4.6 4.2 3.8 
E [Wm-²] 120 95 71 50 

 



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 125

 

Figure 4. 61: Regional wind climate of Nampula meteorological station. 

 

4.7.3 Predicted wind climate for the Nampula area  

The predicted wind climate (PWC) was calculated for two potential wind turbine sites 

located to the north-east of the meteorological station at distances of 6 and 8 km from the 

meteorological station to site 1 and site 2 respectively (Fig. 4.62). 
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Figure 4. 62: Map showing the location of the two potential wind turbine sites ( ) and 
the location of the Nampula meteorological station ( ) and the selected 
area for wind resource maps. 

 

The predicted mean annual wind speeds and extractable energy at the two potential wind 

turbine sites are presented in Figure 4.63 for five heights a.g.l. The mean annual wind speed 

is lower than the mean annual observed wind speed (3.0 ms-1) at 10 m a.g.l. Higher mean 

annual wind speeds are found at higher levels (60 m a.g.l.) where values approach 4.0 ms-1 

at the two sites. Available wind energy at 60 m a.g.l. ranges between 60 and 65 Wm-2 at the 

two different sites.  
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A similarity of the predicted wind climate (PWC) to the regional wind climate (RWC) is 

found for the roughness class 1 (Z01=0.03 m) and class 2 (Z02=0.10 m). 

 

 

Figure 4. 63: Predicted mean wind speed and available wind energy at two potential wind 
turbine sites in the Nampula area. 

 

Figure 4.64 illustrates the predicted wind rose and wind speed frequency distribution at 

sites 1 and 2 in the Nampula area. It is noted that the winds are predominantly from the 

210º, 240º and 180° with a secondary contribution from the 30º and 60º sectors. Highest 

predicted wind speeds are associated with the 240° and 90° directional sectors (Fig. 4.65). 
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Site 1 

Site 2 

Figure 4. 64: Predicted wind rose and wind speed frequency distribution at potential wind 
turbine sites in the Nampula area. 

 

 

Figure 4. 65: Predicted wind speed frequency distribution for 3 standard heights (10, 25 
and 50 m a.g.l.) at potential wind turbine sites in the Nampula area.  
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The annual energy production or extractable wind energy (AEP) in the Nampula area is 

between 300 and 470 MWh for heights greater than 25 m a.g.l. and below 140 MWh for a 

10 m a.g.l. hub height. Figure 4.66 illustrates the extractable wind energy at the two 

potential wind turbine sites in the Nampula area. 

 

Figure 4. 66: The extractable wind energy at two potential wind turbine sites in the 
Nampula area. 

 

The highest extractable wind energy is from the 240° to 210° and 60º to 90º azimuth 

sectors. Figure 4.67 depicts the average extractable wind energy by azimuth sector for three 

standard heights (10, 25 and 50 m a.g.l) at potential turbine sites in the Nampula area, while 

Figure 4.68 illustrates the extractable energy rose and energy frequency distribution at 50 m 

a.g.l. at site 2 in the Nampula area. 

The speed-up (down) due to roughness change and orography at the lowest level (10 m 

a.g.l.) was between 12 and 17.8% and -8.1 to 2.4%, while at highest level (50 m a.g.l.) it 

was between 5.7 and 6.9% and -3.5 to 0.9% respectively. The turning effect due to 

orography was between -1.7° and 1.8° at 10 m a.g.l. and -0.8° to 0.8° at 50 m a.g.l.  
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Figure 4. 67: Extractable average wind energy by azimuth sector for 3 standard heights 
(10, 25 and 50 m a.g.l.) at potential wind turbine sites in the Nampula area. 

 

   

Figure 4. 68: Extractable energy rose and energy frequency distribution at 50 m a.g.l. at 
site 2 in the Nampula area. 

 

4.7.4 Wind resource maps  

The wind resource maps illustrate the spatial distribution of wind speed (Fig. 4.69) and 

energy resource (Fig. 4.70) in the Nampula area at a height of 55 m a.g.l. The maps show 

an average wind speed of 3.93 ms-1 and an average annual energy production (AEP) of  
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432 MWh. Highest potential is found on the E and W side of meteorological station area, 

where the mean wind speed reaches 4.72 ms-1 with an AEP of 825 MWh. The site with 

UTM coordinates of 529300; -1668836 is the site with the highest wind energy potential.  

 

Wind speed
 

Figure 4. 69: Wind speed resource map in the Nampula area. 
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Average annual energy production (AEP)
 

Figure 4. 70: Wind energy resource map in the Nampula area. 
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4.8 Results for Lichinga 

4.8.1 Observed wind data  

The Lichinga meteorological station has a mean annual observed wind speed of 3.9 ms-1 

and an available wind energy of 65 Wm-2 for all azimuth sectors. Figure 4.71 shows the 

observed wind rose and wind speed frequency distribution at Lichinga. 

 

Figure 4. 71: Observed wind rose and wind speed frequency distribution at Lichinga 
meteorological station.  

 

The most frequent winds are from the 90º (20.3%), 120º and 150º (17.0%) and 60º 

(15.70%) sectors (Figs. 4.71 and 4.72). Highest mean wind speeds and available wind 

energy are associated with the 120º and 150º (4.8 and 4.25 ms-1; 100 and 82 Wm-2) and 90º 

(4.25 ms-1; 71 Wm-2) sectors.  
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Figure 4. 72: Wind speed frequency distribution and mean wind speed by directional 
sector at Lichinga. 

 

4.8.2 Wind atlas data at Lichinga  

After application of the wind atlas analysis sub-model, the relevant wind data for Lichinga 

are presented in Table 4.7. The data are cleaned of the influence of obstacles and are 

presented for four roughness classes (0.0, 0.03, 0.1, and 0.4 m) and four standard heights. 

Figure 4.73 depicts the mean wind speed for three roughness classes (Z00 to Z02 

representing roughness values of 0.00, 0.03 and 0.10 m respectively) and for the first three 

standard heights (10, 25 and 50 m a.g.l.). The results show clearly that relatively higher 

wind speeds are associated with lower roughness and with greater heights a.g.l. Highest 

wind speeds are associated with the 120° and 150° directional sector (Fig. 4.73). 
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Table 4. 7: Wind atlas data at Lichinga, where A = Weibull scale factor; k = Weibull 
shape factor; v = mean wind speed; and E = Available wind energy (or 
Power density).  

Height [m] Parameter Roughness-class 
0.00 m 0.03 m 0.10 m 0.40 m 

10 

A [ms-1] 6.0 4.2 3.6 2.9 
k 2.54 2.18 2.16 2.21 
U [ms-1] 5.4 3.7 3.2 2.5 
E [Wm-²] 146 55 36 17 

25 

A [ms-1] 6.5 5.0 4.5 3.8 
k 2.58 2.33 2.29 2.33 
U [ms-1] 5.8 4.4 4.0 3.3 
E [Wm-²] 183 88 64 38 

50 

A [ms-1] 6.9 5.8 5.2 4.5 
k 2.60 2.58 2.51 2.52 
U [ms-1] 6.1 5.1 4.6 4.0 
E [Wm-²] 215 127 96 63 

100 

A [ms-1] 7.3 6.8 6.2 5.5 
k 2.46 2.73 2.72 2.8 
U [ms-1] 6.4 6.1 5.5 4.9 
E [Wm-²] 261 205 155 104 

 

 

Figure 4. 73: Regional wind climate of Lichinga meteorological station. 
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4.8.3 Predicted wind climate for the Lichinga area  

The predicted wind climate (PWC) was calculated for three potential wind turbine sites 

located near the dam to the south-east of meteorological station at distances of 4 and 6 km 

from the meteorological station to site 2 and site 3 respectively, and less than 9 km from 

Lichinga city in the west (Fig. 4.74). 

 

 

Figure 4. 74: Map showing the location of the three potential wind turbine sites ( ) and 
the location of the Lichinga meteorological station ( ) and the selected 
area for wind resource maps. 
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The predicted mean annual wind speeds and extractable energy at the three potential wind 

turbine sites are presented in Figure 4.75 for five heights a.g.l. Wind speeds on site 1 and 2 

are similer probably due to close proximity of these sites.The mean annual wind speed is 

lower at site 1 and 2 than at site 3, but equal to the mean annual observed wind speed of  

3.9 ms-1 at 10 m a.g.l. Highest mean annual wind speeds are found at site 3, where values 

approach 6.0 ms-1 at 60 m a.g.l. Available wind energy at 60 m a.g.l. ranges between 142 

and 184 Wm-2 at the three different sites.  

A similarity of the predicted wind climate (PWC) to the regional wind climate (RWC) is 

found for the roughness class 1 (Z01=0.03 m) and class 2 (Z02=0.10 m). 

 

Figure 4. 75: Predicted mean wind speed and available wind energy at three potential 
wind turbine sites in the Lichinga area. 

 

Figure 4.76 illustrates the predicted wind rose and wind speed frequency distribution at 

sites 1, 2 and 3 in the Lichinga area. It is noted that the winds are predominantly from the 

90º and 120º, with a secondary contribution from the 30º and 150º sectors. Highest 

predicted wind speeds are associated with the 150° and 120° directional sector (Fig. 4.77). 
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Site 1 

Site 2 

Site 3 

Figure 4. 76: Predicted wind rose and wind speed frequency distribution at potential wind 
turbine sites in the Lichinga area. 
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Figure 4. 77: Predicted wind speed frequency distribution for 3 standard heights (10, 25 
and 50 m a.g.l.) at potential wind turbine sites in the Lichinga area.  

 

The annual energy production or extractable wind energy (AEP) in the Lichinga area is 

above 900 MWh for heights greater than 25 m a.g.l. and below 650 MWh for a 10 m a.g.l. 

hub height. Figure 4.78 illustrates the extractable wind energy at the three potential wind 

turbine sites in the Lichinga area. 

 

Figure 4. 78: The extractable wind energy at three potential wind turbine sites in the 
Lichinga area. 
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The highest extractable wind energy is from the 150° and 120º to 90º azimuth sectors.  

Figure 4.79 depicts the average extractable wind energy by azimuth sector for three 

standard heights (10, 25, 50 m a.g.l.) at potential turbine sites in the Lichinga area, while 

Figure 4.80 illustrates the extractable energy rose and energy frequency distribution at 50 m 

a.g.l. at site 2 in the Lichinga area. 

The speed-up (down) due to roughness change and orography at the lowest level (10 m 

a.g.l.) was between -0.1 and 2.8% and -1.6 to 10.1%, while at highest level (50 m a.g.l.) it 

was between -2.7 and 0.2% and -0.1 to 5.1% respectively. The turning effect due to 

orography was between -3.4° and 3.2° at 10 m a.g.l. and -1.4° to 1.4° at 50 m a.g.l.  

 

Figure 4. 79: Extractable average wind energy by azimuth sector for 3 standard heights at 
potential wind turbine sites in the Lichinga area. 

 

  

Figure 4. 80: Extractable energy rose and energy frequency distribution at 50 m a.g.l. at 
site 2 in the Lichinga area. 
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4.8.4 Wind resource maps  

The wind resource maps illustrate the spatial distribution of wind speed (Fig. 4.81) and 

energy resource (Fig. 4.82) in the Lichinga area at a height of 55 m a.g.l. The maps 

show an average wind speed of 5.2 ms-1 and an average annual energy production 

(AEP) of 1 021 MWh. The highest wind energy potential is found in the highland areas 

situated to the NE and SE of the meteorological station where the mean wind speed 

reches 6.95 ms-1 with an AEP of 2 292 MWh. The site with UTM coordinates of 

746527; -1466678 is the site with the highest wind energy potential. These sites are on 

the north and north-east side of the meteorological station upward the river which runs 

north-east-southward down to the dam by the Chiulugo settlement.  

Wind speed
 

Figure 4. 81: Wind speed resource map in the Lichinga area. 
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Average annual energy production (AEP)
 

Figure 4. 82: Wind energy resource map in the Lichinga area. 
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4.9 General discussion  

The predicted results revealed that at the lowest level (10 m a.g.l.), the coastal sites of 

Ponta de Ouro, Mavalane and Tofinho have relatively higher mean wind speeds ranging 

between 4.5 - 6.0 ms-1 and an AEP value up to 1 600 MWh, while Vilankulo and Pemba 

have mean wind speeds below 4.0 ms-1 and AEP up to 900 MWh. The potential wind 

turbine sites in the interior in the vicinity of Nampula area have mean annual wind 

speeds below 3.0 ms-1 and AEP values below 150 WMh. Potential wind turbine sites in 

the vicinity of Lichinga have slightly higher mean annual wind speeds approximately 

3.9 ms-1 at 10 m a.g.l. and AEP value up to 800 MWh.  

At the highest levels (50 - 60 m), the coastal areas in the vicinity of Pemba and 

Vilankulo have mean annual wind speeds below 5.0 ms-1 and AEP up to 1000 MWh), 

whereas the coastal areas of Ponta de Ouro, Mavalane and Tofinho areas have relatively 

greater wind energy potential (mean annual wind speed of about 8.0 ms-1 and AEP up to 

3 000 MWh). The interior site of Nampula area has the lowest mean wind speeds (3.9 

ms-1) and AEP (below 500 MWh) compared with potential wind turbine sites at 

Lichinga area (mean annual wind speeds of about 6.0 ms-1 and AEP up to  

1 200 MWh). 

The poor observed wind data quality (15.5% missing data and 20.5% zero observations) 

at the Vilankulo meteorological station may have caused an underestimate of the wind 

energy potential as described above. The poor wind energy resource at Pemba, which 

was expected to have a good resource similar to that of the Mavalane area, might be due 

to its geographic location. It is located alongside a runway at an elevation of 194 m 

above sea level (a.s.l.), near the coast but on the west side of the Bay of Pemba, in 

contrast to locations on the east side of the bay where there is a low friction and more 

undisturbed free flow of wind from the coast. 

In addition, the lower annual wind speeds and extractable wind energy at these two 

coastal areas (Vilankulo and Pemba) might be exacerbated by poor anemometry siting. 

With the exception of Tofinho (150 m from the sea) and Ponta de Ouro (about 500 m 

from the sea) which were explicitly sited for wind energy resource evaluation at coastal 
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areas, the other meteorological stations are at airport locations, and are located in 

protected, rather than exposed areas. As such, this might result in an underestimate of 

the wind energy resource at this locations. 

The achievement of this study is the finding that both interior and coastal areas are 

suitable for wind energy exploitation in the form of small and medium scale power 

systems to generate electricity although the coastal area possesses higher wind 

resources, concurring with the published estimates by the WMO in 1981 and DNER in 

2008. 

The wind and energy resource maps show average mean annual wind speed and AEP in 

the vicinity of Ponta de Ouro and Vilankulo, mean annual wind speeds and AEP at 

Pemba, Tofinho and Mavalane, and are relatively values in the interiorareas (Nampula).  

The geographic location of the Lichinga meteorological station area (above 1350 m 

a.s.l.), the low roughness change (at both reference and predicted sites) and almost no 

obstacles around the meteorological station might account for the high wind energy 

potential which is almost comparable to the Vilankulo area which is a coastal area. This 

finding is a good indication that there are some interior areas suited to wind power 

generation.  

At Nampula the potential wind turbine sitespossess the least wind energy potential 

(mean wind speed of about 4.0 ms-1 and annual energy production less than or equal to 

450 MWh). Despite the good observed wind data quality (almost no missing 

observations) and the similarity of instrumentation, its interior location might be 

indicative of the fact that some interior regions do not have a sufficient wind energy 

resource. This result concurs with the estimates published by the WMO (1981) which 

revealed poor wind and energy resource potential in inland areas. 

The short climatic data series used for the analysis (one to 2 years), according to a study 

published by Lange and Højstrup in 2001, might influence the high value of the 

Weibull-A parameter, which exceeds the mean annual wind speed by a magnitude of  

1.1 ms-1. In addition, the WAsP analysis procedure which forces the measured data to fit 

the standard Weibull frequency distribution, according to the study published by Bowen 
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and Mortensen (2004) might be also another possible reason that accounts for Weibull-

A parameter in excess of the mean annual wind speed. 

Mozambique is in a trade winds belt, hence the Weibull-k parameter (shape factor) of 

between 1.63 and 2.90 found in this study, concurs with previous studies for similar 

areas (Gipe, 2004; Knecht, 2004). 

 

4.10 Summary  

The results of the WAsP model simulations indicate that there is sufficient wind energy 

potential in most areas, particularly Ponta de Ouro, Mavelane, and Tofinho areas, where 

the mean annual wind speed is above 5.0 ms-1 at the 10 m level and about 8.0 ms-1 at the 

highest levels (50 - 60 m). The lowest mean annual wind speed and consequently wind 

energy is found in the Nampula area. 
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CHAPTER FIVE 

CONCLUSION 

 

5.1 Summary  

The purpose of this study was to evaluate the wind energy potential for the purpose of 

electricity generation in Mozambique. It was established that wind energy is a viable 

option. 

The selected study areas (coastal and interior areas) revealed that for the two main 

heights (10 m and 50 m a.g.l.) that were used as reference heights, in accordance with 

thresholds determined by the WMO (1981), there is a sufficient wind energy resource 

that can be harnessed for both water pumping and electrical power generation.  

The results of the present study found that coastal areas of the country are more suited 

for wind power exploitation which concurs with the estimate published by the WMO in 

1981 and the study conducted by DNER in 2008. However, some inland areas, such as 

Lichinga, are also determined to be suitable for wind power generation, a finding that 

was not evident from both the WMO and DNER studies. 

The wind resource maps from this study are a valuable tool for wind energy 

development planning, viz. siting instrumentation for wind data collection at different 

heights, wind turbines for water pumping and wind power production in the vicinity of 

the identified potential sites. 

Despite the infrastructural and economic constraints that Mozambique is experiencing, 

the exploitation of wind energy can be a viable option. The exploitation of this 

renewable energy resource can bring some advantages, such as, increased provision of 

electricity that can improve access to electricity in the country and at the same time 

reduce pressure on the environment through the reduction of biomass fuel consumption.  
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5.2 Limitations of the study  

The present study was conducted with limited climatic data series (2 years) which is not 

ideal from a climatological perspective to account for the wind resource availability of a 

region. However, although limited in the number of years of data, the seasonality was 

captured by having a full annual cycle. 

Furthermore, the data used for modeling were hourly mean wind velocities which do 

not give details of extreme winds (gusts) that are also important for the evaluation of the 

wind resource and particularly important when it comes to siting considerations.  

One of most important components of an evaluation of wind and energy resources, 

using the methodology employed in this study, are the field site visits used to verify 

roughness characteristics and presence of obstacles. For logistical reasons (funds) it was 

only possible to visit one of the reference stations, viz. Mavalane. It is acknowledged 

that better site characteristics could have been obtained if further site visits had been 

undertaken. 

 

5.3 Recommendations  

This research was intended to provide a general overview of the potential that 

Mozambique possesses for the exploitation of wind as a source of energy. Due to some 

of the limitations of this study, the following recommendations for future investigations 

are made:  

1. The selected potential wind turbine sites used for the model simulations were not 

all included in the field survey. In this regard, it is recommended that subsequent 

studies must ensure that site visits are undertaken to determine detailed site 

characteristics in order to improve accuracy and achieve better results. Precise 

descriptions of the obstacles and roughness elements that impact on wind flow 

and which cannot be seen from a satellite image will improve results.  
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2. The possibility of using strategically located Vodacom, Mozambique Cellular 

(Mcel) or Mozambique’s Telecommunications (TDM) masts spread throughout 

the country to install anemometers for wind velocity data collection should be 

explored. 

 

3. To accomplish the aforementioned wind velocity data collection, the Ministry of 

Energy (ME) through the National Department of New and Renewable Energy 

(DNER) and the National Energy Fund (FUNAE), in collaboration with a 

number of organizations and institutions such as INAM, UEM, the Mozambican 

Confederation of Economic Association (CTA) and relevant non-governmental 

organizations, should promote this initiative by seeking funds and potential 

investors for wind data collection and wind energy exploitation.  

 

4. Some areas which appear to have good wind power potential (i.e. they have 

mean monthly wind speeds above 3.0 ms-1) based on data from second class 

meteorological stations must be prioritized. These include the coastal areas of 

Mocimboa da Praia and Angoche, as well as the interior region of 

Chicualacuala. 

 

5. Further detailed investigations are required at Vilankulo, Pemba and Nampula, 

in order to verify that the wind energy resource at these locations is insufficient, 

as determined by this study. 

 

6. Considering the interest in renewable energy, particularly wind energy, in the 

country, INAM should promote the digitization of historical wind data collected 

from previous years, adding the data to the official database.  
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7. It is also recommended that INAM should co-operate with all governmental and 

private institutions that collect wind data to integrate all wind observations into a 

single database that could be made available to any users, particularly those 

from the scientific community.  

 

8. A similler study should be carried out at the central region coastal and interior of 

the country. To ensure good results, reliable wind velocity data should be 

collected at coastal and interior areas of Sofala, Manica, Tete and Zambézia 

provinces. Furthermore, the Niassa Province, from which the Lichinga area 

showed, in this study, a good indication of wind power potential, should be more 

fully investigared, particularly in the Niassa Lake area. 

 

9. A ground-truthed survey, which would comprise data collection at different 

heights around the identified potential sites should be conducted to validade the 

results of this study. 
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APPENDIX A Roughness length and terrain surface characteristics used for 

modelling  

Table A4: Roughness length (Z0), terrain surface characteristics and roughness 
classes used for modeling in WAsP[After Troen and Petersen 1989]. 

Z0 (m) Terrain surface characteristics Roughness class 
0.0000 Water 0 
0.0070 Wetland 0 
0.0050 Bore soil (smooth) 0 
0.0100 Airport Runway area 1 
0.0500 Cultivated land/Open land 1 
0.2000 Many trees/Plantation or bushes 2 
0.5000 Suburbs 3 
1.0000 City 3 

Observed two or more roughness 
0.0085 Marshes and open land 0 
0.0150 Marshes and cultivated land/trees/water 1 
0.0200 Airport Areas with few Buildings/ trees or plantation 1 
0.0250 Open land with grass/very few buildings and some trees 1 
0.0300 Cultivated Land with few buildings /trees or plantation 1 

0.0400 
Cultivated Land with open appearance and 
trees/plantation 1 

0.0600 Cultivated Land with closed appearance 1 
0.0750 Open land and trees 1 
0.1000 Land and trees with closed appearance 2 

0.150 
Residential area with open appearance and very few 
buildings 2 

0.4000 Residential area with trees/plantation 3 
0.6000 Trees /plantation with open appearance 3 
0.7500 Plantation and trees with closed appearance 3 
0.8000 Forest 3 
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APPENDIX B Coordinates of the meteorological station and predicted sites  

 

Table B4: Coordinates in UTM of the meteorological stations and potential wind 
turbine sites used for modeling.  

Area Turbine site Coordinates UTM Elevation 
[m] x [m] y [m] 

Mavalane 

Turbine site 1 459261.5 -2873788.0 30.0
Turbine site 2 461035.0 -2868682.0 17.0
Turbine site 3 462589.3 -2864656.0 10.0
Mavalane meteorological station 456937.0 -2866906.0 27.0

Ponta de Ouro 

Turbine site 1 486010.1 -2951959.0 40.0
Turbine site 2 486065.9 -2955304.0 21.0
Ponta de Ouro meteorological 
station 489129.7 -2956178.0 21.0

Tofinho 
Turbine site 1 755044.6 -2644929.0 61.0
Turbine site 2 757067.9 -2643824.0 40.0
Tofinho meteorological station 758946.3 -2640778.0 12.0

Vilankulo 
Turbine site 1 731993.2 -2436900.0 41.0
Turbine site 2 737048.5 -2436315.0 24.0
Vilankulo meteorological station 739168.0 -2434156.0 12.0

Nampula 
Turbine site 1 531710.4 -1667606.0 372.0
Turbine site 2 532732.5 -1667056.0 371.0
Nampula meteorological station 530606.8 -1670549.0 430.0

Pemba 

Turbine site 1 666856.1 -1436712.0 43.0
Turbine site 2 666690.6 -1438450.0 55.0
Turbine site 3 668248.9 -1435789.0 21.0
Pemba meteorological station 665311.1 -1436298.0 90.0

Lichinga 

Turbine site 1 748662.0 -1470473.0 1327.0
Turbine site 2 747968.5 -1469932.0 1332.0
Turbine site 3 750216.1 -1471644.0 1366.0
Lichinga meteorological station 746146.9 -1467952 1368
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APPENDIX C Obstacle description 

 

Table C4 List of obstacles around the selected met stations. 

a) Mavalane  

Object ID α1[°] R1 [m] α2[°] R2 [m] Height[m] Depth[m] Porosity 
1 111.41 190.0 155.58 260.0 14.0 43.92 0 
2 158.24 270.0 159.57 280.0 25.0 40.83 0 
3 167.48 404.64 174.6 397.1 18.0 00.46 0 
4 104.84 254.28 118.85 256.51 16.0 139.53 0 
5 301.07 686.65 305.05 673.97 12.75 46.0 0 
6 296.36 808.69 300.09 830.89 6.0 38.68 0 
7 227.89 987.58 229.37 967.37 6.0 45.34 0 
8 346.39 581.54 351.84 592.0 12.75 31.0 0 
9 338.29 712.74 340.0 729.76 12.75 26.69 0 
10 240.03 1013.47 242.03 1007.23 8.5 38.1 0 
11 182.07 768.27 192.09 826.31 6.5 50.0 0 
12 329.78 651.23 334.36 631.2 12.75 15.23 0 
13 314.58 666.07 318.34 664.07 12.75 39.08 0 
14 258.14 744.72 261.37 710.75 12.75 13.6 0 
15 270.37 712.62 273.75 718.59 12.75 15.56 0 
16 252.05 1006.46 253.86 1007.24 5.0 31.14 0.5 

 

 

b) Ponta de Ouro  

Object ID Angle1[°] Radius1[m] Angle2[°] Radius2[m] Height[m] Depth[m] Porosity 
1 42.71 1405.74 135.02 1118.86 110.0 285.92 0.30
2 32.83 2054.51 40.58 1476.21 80.0 290.47 0.30
3 148.88 1952.65 170.46 2985.75 120.0 190.82 0.30
4 8.41 4448.81 10.78 3883.21 120.0 300.95 0.30
5 10.94 3827.27 18.84 2002.02 70.0 305.88 0.30
6 169.64 2935.47 188.51 3397.18 80.0 185.79 0.35
7 250.30 1021.32 265.23 1175.67 130.0 348.39 0.35
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c) Tofinho  

Object ID Angle1[°] Radius1[m] Angle2[°] Radius2[m] Height[m] Depth[m] Porosity 
1 292.16 33.00 312.06 29.49 5.50 13.45 0.50
2 281.89 68.82 292.07 64.63 6.50 11.72 0.50
3 260.11 112.75 269.64 102.05 6.00 11.89 0.50
4 202.71 67.87 219.28 64.28 12.49 12.49 0.40
5 212.98 163.89 216.44 156.45 7.50 7.07 0.00
6 230.88 180.38 233.91 176.94 5.00 11.14 0.00
7 191.06 181.06 193.76 173.92 7.50 6.80 0.00
8 174.41 238.87 174.82 250.14 7.50 7.00 0.00

 

d) Vilankulo 

Object ID Angle1[°] Radius1[m] Angle2[°] Radius2[m] Height[m] Depth[m] Porosity 
1 124.81 41.07 141.13 36.54 5.00 11.80 0.00 
2 129.62 71.90 148.60 63.89 6.50 40.09 0.00 
3 85.15 27.53 109.18 30.98 4.50 9.12 0.50 
4 1.15 61.80 9.46 60.34 6.50 13.78 0.50 
5 348.27 64.44 355.74 64.16 5.00 23.88 0.50 
6 6.38 123.77 357.49 73.72 5.00 26.60 0.00 
7 347.98 123.77 353.38 126.69 5.50 26.59 0.00 
8 90.41 252.82 95.46 253.38 8.00 19.34 0.50 

 

 

e) Nampula 

Obstacle ID 
 Angle 1 
[°]  

Radius 1 
[m]  

 Angle 2 
[°]  

 Radius 2 
[m]  

 Height 
[m]  

 Depth 
[m]  Porosity 

1 73.01 445.33 75.37 414.17 5.50 23.99 0.00 
2 64.77 624.13 68.59 520.83 5.50 22.75 0.00 
3 65.98 601.67 66.32 594.71 7.00 7.19 0.00 
4 62.88 702.60 64.71 630.45 4.50 21.24 0.00 
5 71.06 518.26 71.22 501.75 3.50 67.27 0.00 
6 69.48 493.04 71.53 486.01 3.50 5.07 0.00 
7 109.86 257.03 115.42 245.60 3.00 11.37 0.00 
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f) Pemba 

Obstacle ID 
 Angle 1 
[°]  

Radius 1 
[m]  

 Angle 2 
[°]  

Radius 2 
[m]  

 Height 
[m]  

 Depth 
[m]  Porosity  

1 64.45 201.14 67.71 200.30 3.00 13.06 0.00 
2 117.92 275.98 120.25 266.37 3.00 18.46 0.00 
3 117.97 323.40 120.32 315.43 3.00 13.87 0.00 
4 130.59 367.11 132.18 362.08 3.50 20.78 0.00 
5 124.13 428.46 126.15 417.53 3.50 12.83 0.00 
6 128.56 350.88 130.44 343.64 3.50 18.38 0.00 

 

 

g) Lichinga 

Obstacle ID  
 Angle 1 
[°]  

 Radius 1 
[m]  

 Angle 2 
[°]  

Rradius 2 
[m]  

 Height 
[m]  

 Depth 
[m]   Porosity  

1 54.56 60.92 56.25 47.61 3.50 7.60 0.00
2 343.17 34.93 0.540 36.33 4.50 80.97 0.33
3 261.59 191.65 310.20 52.32 4.50 10.07 0.33
4 248.05 164.45 248.37 140.53 3.50 20.58 0.00
5 314.12 86.92 318.17 44.74 4.50 11.71 0.33
6 66.91 173.46 69.96 173.02 3.50 23.5 0.00
7 63.92 238.15 69.74 237.16 3.50 20.51 0.00
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APPENDIX D Roughness description 

 

Table D4: Roughness length and change assigned to the surrounding meteorological 
station at: 

 

a) Ponta de Ouro  

Sector Z01[m] X1[m] Z02[m] X2[m] Z03[m] X3[m] Z04[m] X4[m] Z05[m] X5[m] 
1 0º 0.007 0.00 0.600 972.20       
2 30º 0.007 0.00 0.600 663.26 0.0085 1 084.57 0.750 1 537.02 0.000 2 230.28
3 60º 0.007 0.00 0.750 686.18 0.000 1 273.64     
4 90º 0.007 0.00 0.750 685.99 0.000 979.06     
5 120º 0.007 0.00 0.750 878.49 0.000 1 066.12     
6 150º 0.007 0.00 0.025 1 941.92 0.000 2 092.88     
7 180º 0.007 0.00 0.600 2 638.48 0.000 5 917.09     
8 210º 0.007 0.00 0.0085 1 433.78 0.600 3 480.81 0.025 4 867.93 0.007 4 867.91
9 240º 0.007 0.00 0.0085 4 168.12 0.600 6 447.05     

10 270º 0.007 0.00 0.600 235.94 0.600 1 146.36     
11 300º 0.007 0.00 0.600 163.63 0.600 429.11     
12 330º 0.007 0.00 0.600 238.62 0.600 1 274.61     

 

b) Tofinho (Inhambane)  

Sector Z01[m] X1[m] Z02[m] X2[m] Z03[m] X3[m] Z04[m] X4[m] Z05[m] X5[m] 
1 0º 0.007 0.00 0.000 39.72       
2 30º 0.007 0.00 0.000 37.74       
3 60º 0.007 0.00 0.000 37.31       
4 90º 0.007 0.00 0.000 51.11       
5 120º 0.007 0.00 0.000 98.87       
6 150º 0.007 0.00 0.000 168.29       
7 180º 0.007 0.00 0.000 559.93       
8 210º 0.025 0.00 0.007 528.86       
9 240º 0.025 0.00 0.030 650.48       
10 270º 0.025 0.00 0.030 969.96 0.000 8 160.23     
11 300º 0.025 0.00 0.007 1 272.24 0.060 2 450.09 0.000 6 916.10   
12 330º 0.007 0.00 0.000 56.16 0.025 577.70 0.000 1 684.47 0.600 8 168.62
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c) Mavalane  

Sector [Z01[m] [X1[m] [Z02[m] X2 [m] Z03[m] X3 [m] [Z04[m] X4 [m] [Z05[m] X5 [m] [Z06[m] X6 [m] 
1 0° 0.20 0.0 0.50 1,133.29 0.75 5,258.13 0.50 7,237.08     
2 30° 0.010 0.0 0.50 4,886.90         
3 60° 0.010 0.0 0.50 1,483.26 0.015 6,188.64  
4 90° 0.020 0.0 0.50 810.55 0.015 5,386.37 0.50 6,276.28 0.0 6,831.89   
5 120° 0.020 0.0 0.50 641.23 1.00 4,395.88 0.00 5,336.38     
6 150° 0.020 0.0 0.50 871.81 1.00 3,544.19 0.60 5,553.95 0.0 5,684.01   
7 180° 0.020 0.0 0.50 864.34 1.00 3,700.68 0.0 6,090.08     
8 210° 0.010 0.0 0.50 1,216.88 1.00 3,581.25 0.00 5,061.70 0.007 6,820.45 0.05 8,165.06 
9 240° 0.02 0.0 0.50 1,300.13 0.00 4,593.33       
10 270° 0.020 0.0 0.50 1,087.01 0.015 2,937.28 0.50 6,287.78     
11 300° 0.010 0.0 0.50 820.56 0.015 2,548.71 0.50 3,213.80     
12 330° 0.02 0.0 0.50 1,133.89 0.015 2,880.59 0.50 3,652.27     
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d) Vilankulo 

Sector Z01[m] X1[m] Z02[m] X2[m] Z03[m] X3[m] Z04[m] X4[m] Z05[m] X5[m] Z06[m] X6[m] Z07[m] X7[m] 
1 0° 0.020 0.0 0.40 159.39 0.007 961.80 0.40 1 286.93 0.0 4 260.92 0.075 7 013.39   
2 30° 0.020 0.0 0.40 73.35 0.007 539.53 0.40 607.87 0.0 1 900.21     
3 60° 0.020 0.0 0.40 60.44 0.007 404.45 0.40 511.02 0.0 849.18     
4 90° 0.020 0.0 0.40 65.59 0.007 395.33 0.75 535.89 0.0 679.81     
5 120° 0.020 0.0 0.40 251.26 0.005 376.06 0.007 524.92 0.005 583.96 0.0 667.58
6 150° 0.010 0.0 0.40 446.59 0.007 845.23 0.10 949.50 0.0 1 340.50     
7 180° 0.010 0.0 0.075 961.81 0.007 8 097.66 0.075 8 204.29       
8 210° 0.010 0.0 0.075 497.56 0.0 3 614.47 0.075 4 549.33       
9 240° 0.010 0.0 0.075 660.53 0.0 4 520.98 0.075 7 754.46       
10 270° 0.010 0.0 0.075 592.20 0.0 4 937.77 0.075 7 969.37       
11 300° 0.010 0.0 0.15 722.03 0.0 7 146.46 0.075 8 221.68       
12 330° 0.010 0.0 0.40 831.78 0.075 3 291.59 0.0 6 023.25 0.075 7 121.19 0.0 8 541.35 0.075 8 931.99 
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e) Nampula 

Sector Z01[m] X1[m] Z02[m] X2[m] Z03[m] X3[m] Z04[m] X4[m] Z05[m] X5[m] 
1 0º 0.01 0.0 0.15 45.00 0.050 2096.00     
2 30º 0.01 0.0 0.40 1126.00 0.050 1 724.00     
3 60º 0.01 0.0 0.05 2065.00       
4 90º 0.01 0.0 0.40 553.00 0.050 1724.00     
5 120º 0.01 0.0 0.40 573.0 0.05 3 009.00     
6 150º 0.01 0.0 0.40 266.00 0.075 4 651.00     
7 180º 0.01 0.0 0.40 296.00 0.075 4 068.00     
8 210º 0.01 0.0 0.40 464.00 0.075 3 563.00     
9 240º 0.01 0.0 0.50 796.00 0.075 4 718.00     
10 270º 0.01 0.0 0.50 438.00 0.075 6 899.00     
11 300º 0.01 0.0 0.50 319.00 0.075 1665.00 0.40 2287.00 0.075 3726.00 
12 330º 0.01 0.0 0.50 314.00 0.050 2 411.00     

 

 

 

f) Pemba 

Sector Z01[m] X1[m] Z02[m] X2[m] Z03[m] X3[m] Z04[m] X4[m] Z05[m] X06[m] 

1 0º 0.01 0.0 0.5 947.00 0.005 2 836.00 0.00 2997.00   
2 30º 0.01 0.0 0.5 424.00 0.005 2 281.00 0.00 2 516.00   
3 60º 0.01 0.0 0.5 328.00 0.03 4 791.00 0.00 4911.00   
4 90º 0.01 0.0 0.5 346.00 0.075 1962.00 0.00 6724.00   
5 120º 0.01 0.0 0.02 259.00 0.5 498.00 0.075 1410.00 0 6 355.00 
6 150º 0.01 0.0 0.075 1 547.00 0.0 7 684.00     
7 180º 0.01 0.0 0.075 920.00 0.0 6 700.00     
8 210º 0.01 0.0 0.075 838.00 0.0 2 200.00     
9 240º 0.01 0.0 0.075 759.00 0.0 1 215.00     
10 270º 0.01 0.0 0.075 851.00 0.0 1 123.00     
11 300º 0.01 0.0 0.07 920.00 0.0 1636.00     
12 330º 0.01 0.0 0.07 764.00 0.5 1 444.00 0.00 4742.00   

 

 



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 170

g) Lichinga 

Sector Z01[m] X1[m] Z02[m] X2[m] Z03[m] X3[m] Z04[m] X4[m] 
1 0º 0.01 0.0 0.075 129.00 0.1 461.00   
2 30º 0.01 0.0 0.03 144.00 0.075 768.00   
3 60º 0.02 0.0 0.05 415.00     
4 90º 0.01 0.0 0.05 415.00     
5 120º 0.01 0.0 0.05 627.00 0.6 5 236.00   
6 150º 0.01 0.0 0.05 3 188.00 0.05 3 280.00   
7 180º 0.01 0.0 0.05 592.00 0.06 2 494.00 0.5 4 332.00
8 210º 0.01 0.0 0.02 856.00 0.5 1 519.00 0.04 5 512.00
9 240º 0.01 0.0 0.5 1 989.00 0.05 3 711.00   
10 270º 0.01 0.0 0.05 2152.00     
11 300º 0.02 0.0 0.05 178.00     
12 330º 0.02 0.0 0.075 130.00     

 

 



An Evaluation of Wind Energy Potential for Power Generation in Mozambique 171

APPENDIX E The wind speed and Weibull-k frequency distribution 

Table E4.1: The sector-wise wind speed and Weibull-k parameter frequency 
distribution by roughness class and height at Mavalane. 

 

a) Mavalane roughness class Z0=0.0002 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10.0 7.9 6.8 7.7 8.4 10.4 9.3 7.8 7.2 4.4 3.1 4.6 7.2 
2.49 2.63 3.02 2.49 2.25 2.22 2.55 2.61 1.73 1.24 1.49 2.31

25.0 8.7 7.5 8.4 9.2 11.3 10.1 8.6 7.9 4.8 3.4 5.1 7.9 
2.57 2.72 3.12 2.56 2.28 2.28 2.63 2.69 1.78 1.28 1.54 2.38

50.0 9.3 8.0 9.0 9.9 12.1 10.8 9.2 8.5 5.2 3.7 5.4 8.4 
2.64 2.79 3.20 2.63 2.34 2.34 2.70 2.76 1.83 1.31 1.58 2.44

100.0 10.1 8.7 9.8 10.7 12.9 11.7 10.0 9.2 5.6 4.0 5.9 9.2 
2.55 2.70 3.10 2.55 2.31 2.29 2.62 2.67 1.77 1.27 1.53 2.37

200.0 
11.2 9.6 10.9 11.9 13.9 12.7 11.1 10.2 6.2 4.3 6.5 10.1
2.42 2.56 2.93 2.41 2.24 2.20 2.48 2.53 1.68 1.21 1.45 2.24

Fr[%] 8.6 8.4 11.5 13.9 8.7 8.0 12.5 14.1 4.4 2.0 2.5 5.3 

 

 

 

b) Mavalane roughness class Z01=0.030 m 

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10.0 5.7 4.6 5.2 5.6 7.4 6.9 5.7 5.1 3.1 2.1 2.2 4.4 
2.15 2.14 2.48 2.32 2.02 2.01 2.22 2.22 1.51 1.09 0.99 1.78

25.0 6.8 5.5 6.2 6.7 8.7 8.2 6.8 6.1 3.7 2.5 2.7 5.3 
2.32 2.31 2.68 2.50 2.10 2.10 2.40 2.40 1.63 1.17 1.06 1.93

50.0 7.9 6.3 7.1 7.7 9.8 9.3 7.8 7.0 4.4 3.0 3.2 6.2 
2.61 2.60 3.02 2.81 2.22 2.26 2.70 2.70 1.83 1.31 1.18 2.17

100.0 9.3 7.5 8.5 9.1 11.2 10.7 9.3 8.3 5.2 3.6 3.9 7.3 
2.78 2.76 3.21 3.00 2.39 2.43 2.87 2.87 1.94 1.39 1.25 2.31

200.0 11.6 9.3 10.5 11.3 13.0 12.6 11.5 10.4 6.5 4.5 4.8 9.1 
2.65 2.64 3.06 2.86 2.32 2.35 2.74 2.74 1.86 1.33 1.20 2.20

Fr[%] 8.8 7.9 10.4 15.4 9.2 7.1 11.0 16.8 5.2 2.0 2.0 4.3 
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c) Mavalane roughness class Z02=0.100 m 

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10.0 5.0 4.0 4.5 4.8 6.2 6.0 5.0 4.5 3.0 2.0 1.7 3.8 
2.16 2.09 2.42 2.43 1.98 2.01 2.22 2.23 1.54 1.18 0.93 1.79

25.0 6.1 5.0 5.5 5.9 7.6 7.4 6.1 5.5 3.7 2.5 2.2 4.7 
2.31 2.23 2.58 2.60 2.06 2.10 2.38 2.39 1.65 1.26 0.99 1.92

50.0 7.2 5.8 6.4 6.9 8.7 8.5 7.2 6.4 4.4 3.0 2.6 5.5 
2.56 2.47 2.86 2.88 2.17 2.23 2.63 2.65 1.82 1.39 1.08 2.13

100.0 
8.5 6.9 7.6 8.2 10.1 9.9 8.5 7.7 5.2 3.6 3.2 6.6 
2.81 2.72 3.15 3.16 2.37 2.45 2.90 2.91 2.00 1.52 1.18 2.34

200.0 
10.5 8.5 9.4 10.2 11.8 11.7 10.6 9.5 6.5 4.4 3.9 8.2 
2.69 2.60 3.01 3.03 2.30 2.37 2.77 2.78 1.91 1.46 1.13 2.24

Fr[%] 8.7 7.8 10.2 15.0 10.0 7.2 10.6 16.5 6.0 2.3 1.9 4.0 

 

 

 

d) Mavalane roughness class Z03=0.400 m 

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10.0 3.8 3.2 3.5 3.8 4.7 4.8 4.0 3.6 2.7 1.8 1.6 2.9 
2.14 2.04 2.38 2.46 1.92 2.03 2.20 2.30 1.65 1.38 1.06 1.67

25.0 5.1 4.3 4.6 4.9 6.1 6.2 5.2 4.7 3.5 2.4 2.1 3.8 
2.27 2.16 2.52 2.61 1.99 2.10 2.33 2.44 1.75 1.46 1.12 1.76

50.0 6.1 5.2 5.5 5.9 7.2 7.4 6.3 5.7 4.3 3.0 2.6 4.6 
2.46 2.35 2.74 2.84 2.09 2.21 2.53 2.65 1.90 1.58 1.21 1.92

100.0 
7.3 6.2 6.6 7.1 8.5 8.8 7.6 6.8 5.1 3.6 3.2 5.5 
2.81 2.68 3.12 3.23 2.28 2.41 2.88 3.02 2.16 1.80 1.37 2.18

200.0 
9.0 7.6 8.1 8.7 10.1 10.4 9.3 8.3 6.3 4.4 3.9 6.8 
2.71 2.58 3.01 3.11 2.28 2.41 2.78 2.91 2.08 1.74 1.32 2.10

Fr[%] 8.1 7.9 9.9 14.4 10.7 7.4 10.1 15.7 7.3 2.7 1.9 3.8 
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Table E4.2: The sector-wise wind speed and Weibull-k parameter and frequency 
distribution by roughmess class and hight at Ponta de Ouro. 

 

a) Ponta de Ouro roughness class Z0=0.0002 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10.0 
9.8 9.5 9.3 7.9 7.0 7.2 8.9 6.5 6.3 7.3 6.8 7.7 
4.08 4.46 3.24 3.01 3.30 2.92 2.67 2.40 2.50 2.14 2.11 2.49

25.0 10.7 10.3 10.2 8.6 7.7 7.9 9.7 7.1 6.9 8.0 7.5 8.5 
4.21 4.59 3.35 3.11 3.41 3.01 2.76 2.47 2.58 2.21 2.18 2.57

50.0 11.5 11.1 10.9 9.2 8.2 8.5 10.4 7.6 7.4 8.6 8.0 9.1 
4.31 4.71 3.44 3.19 3.50 3.09 2.83 2.54 2.65 2.27 2.23 2.64

100.0 12.5 12.0 11.9 10.0 8.9 9.2 11.3 8.3 8.0 9.3 8.7 9.9 
4.18 4.56 3.33 3.09 3.39 2.99 2.74 2.46 2.57 2.19 2.16 2.56

200.0 13.8 13.3 13.2 11.1 9.9 10.2 12.5 9.2 8.9 10.3 9.6 10.9
3.96 4.33 3.15 2.92 3.21 2.83 2.60 2.33 2.43 2.08 2.05 2.42

Fr [%] 6.7 13.2 8.7 7.0 7.9 8.3 11.8 15.7 7.9 4.0 4.3 4.4 

 

 

 

b) Ponta de Ouro roughness class Z01=0.030 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10.0 6.6 6.5 6.6 5.7 5.0 4.7 6.5 4.6 4.3 5.1 4.7 5.0 
2.95 3.90 2.83 2.55 2.70 3.01 2.46 1.97 2.12 1.87 1.77 1.97

25.0 7.9 7.8 7.8 6.8 5.9 5.6 7.7 5.6 5.2 6.1 5.7 6.0 
3.19 4.22 3.06 2.76 2.92 3.25 2.65 2.13 2.29 2.01 1.91 2.13

50.0 9.1 9.0 9.0 7.8 6.8 6.5 8.9 6.4 6.0 7.0 6.6 7.0 
3.58 4.73 3.44 3.10 3.28 3.66 2.98 2.39 2.57 2.26 2.15 2.39

100.0 10.8 10.6 10.7 9.2 8.1 7.6 10.5 7.6 7.1 8.3 7.8 8.3 
3.81 5.03 3.66 3.30 3.49 3.89 3.18 2.55 2.74 2.41 2.29 2.55

200.0 13.4 13.2 13.3 11.5 10.1 9.5 13.1 9.5 8.8 10.4 9.7 10.3
3.64 4.81 3.49 3.15 3.33 3.72 3.03 2.43 2.62 2.30 2.19 2.43

Fr [%] 5.4 13.2 9.5 7.0 7.8 7.9 10.6 16.3 9.3 4.5 4.3 4.2 
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c) Ponta de Ouro roughness class Z02=0.100 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10.0 
5.7 5.7 5.7 5.0 4.4 4.1 5.5 4.1 3.8 4.2 4.1 4.3 
2.86 3.72 2.86 2.54 2.62 3.00 2.40 1.94 2.18 1.78 1.75 1.93

25.0 
7.0 7.0 7.0 6.2 5.4 5.1 6.8 5.1 4.7 5.2 5.1 5.4 
3.06 3.98 3.06 2.72 2.81 3.21 2.56 2.08 2.34 1.90 1.87 2.06

50.0 
8.2 8.1 8.2 7.2 6.3 5.9 7.9 6.0 5.5 6.1 6.0 6.3 
3.39 4.40 3.38 3.01 3.11 3.56 2.84 2.30 2.59 2.11 2.07 2.28

100.0 
9.7 9.6 9.7 8.5 7.4 7.0 9.4 7.1 6.6 7.3 7.1 7.5 
3.72 4.83 3.72 3.31 3.41 3.90 3.12 2.53 2.84 2.31 2.28 2.51

200.0 
12.0 11.9 12.0 10.6 9.2 8.7 11.7 8.8 8.1 9.0 8.8 9.2 
3.56 4.62 3.56 3.17 3.27 3.74 2.99 2.42 2.72 2.22 2.18 2.40

Fr [%] 5.4 12.5 9.8 7.2 7.7 7.9 10.4 15.8 10.0 4.9 4.3 4.3 

 

 

 

d) Ponta de Ouro roughness class Z03=0.400 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10.0 
4.3 4.4 4.5 4.0 3.5 3.3 4.2 3.4 3.0 3.2 3.3 3.4 
2.72 3.55 2.97 2.53 2.54 2.95 2.29 1.97 2.13 1.76 1.76 1.93

25.0 
5.7 5.8 5.9 5.3 4.5 4.3 5.5 4.5 4.0 4.2 4.3 4.5 
2.88 3.77 3.15 2.69 2.69 3.13 2.43 2.08 2.26 1.87 1.87 2.04

50.0 
6.9 7.0 7.0 6.3 5.5 5.1 6.6 5.4 4.8 5.0 5.2 5.4 
3.13 4.09 3.42 2.92 2.92 3.40 2.64 2.26 2.46 2.03 2.03 2.22

100.0 
8.2 8.4 8.4 7.6 6.6 6.2 8.0 6.5 5.8 6.1 6.3 6.5 
3.56 4.65 3.90 3.33 3.33 3.87 3.01 2.58 2.80 2.31 2.31 2.53

200.0 
10.1 10.3 10.3 9.3 8.0 7.6 9.7 7.9 7.0 7.4 7.7 7.9 
3.44 4.49 3.76 3.21 3.21 3.73 2.90 2.49 2.70 2.23 2.22 2.44

Fr [%] 5.2 11.6 10.4 7.4 7.5 7.8 10.1 15.0 11.0 5.4 4.2 4.3 
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Table E4.3: The sector-wise wind speed and Weibull-k parameter frequency 
distribution by roughness class and height at Tofinho. 

 

a) Tofinho roughness class Z0=0.0002 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 

10.0 
9.3 7.2 5.6 5.4 7.3 9.0 10.4 7.4 6.8 5.4 6.1 6.1 
3.25 2.92 2.97 2.37 2.52 2.99 2.90 2.17 4.13 1.65 1.86 2.24 

25.0 
10.2 7.9 6.2 5.9 8.0 9.8 11.4 8.1 7.5 6.0 6.6 6.6 
3.35 3.01 3.06 2.44 2.60 3.08 2.97 2.24 4.26 1.71 1.92 2.31 

50.0 
10.9 8.5 6.6 6.4 8.6 10.5 12.2 8.7 8.0 6.4 7.1 7.1 
3.44 3.09 3.14 2.51 2.67 3.16 3.05 2.30 4.37 1.75 1.97 2.37 

100.0 
11.8 9.2 7.2 6.9 9.3 11.4 13.1 9.4 8.7 6.9 7.7 7.7 
3.33 2.99 3.04 2.42 2.58 3.06 2.98 2.23 4.24 1.69 1.91 2.29 

200.0 
13.1 10.2 7.9 7.6 10.3 12.7 14.3 10.4 9.6 7.6 8.5 8.5 
3.15 2.83 2.88 2.29 2.44 2.90 2.87 2.11 4.01 1.61 1.81 2.17 

Freq [%] 6.0 14.7 9.0 9.5 15.2 21.9 11.2 4.0 3.2 1.7 1.5 2.1 

 

 

 

b) Tofinho roughness class Z01=0.030 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 

10.0 6.5 5.2 4.2 3.8 4.8 6.1 7.0 5.9 4.9 4.0 4.0 4.0 
2.76 2.38 2.21 2.21 1.99 2.47 2.39 1.92 2.92 1.64 1.49 2.28 

25.0 7.8 6.2 5.0 4.5 5.8 7.2 8.3 7.1 5.8 4.8 4.8 4.7 
2.98 2.58 2.38 2.38 2.15 2.67 2.54 2.05 3.15 1.78 1.61 2.46 

50.0 9.0 7.1 5.8 5.2 6.6 8.3 9.4 8.1 6.7 5.6 5.7 5.4 
3.35 2.90 2.68 2.68 2.42 3.00 2.77 2.28 3.54 1.99 1.81 2.77 

100.0 10.6 8.4 6.8 6.1 7.9 9.9 11.0 9.5 8.0 6.6 6.7 6.4 
3.57 3.08 2.86 2.86 2.57 3.19 2.97 2.43 3.77 2.12 1.92 2.95 

200.0 13.2 10.5 8.5 7.7 9.8 12.3 13.3 11.7 9.9 8.3 8.4 8.0 
3.41 2.94 2.73 2.73 2.46 3.05 2.86 2.33 3.60 2.03 1.83 2.82 

Freq [%] 4.8 13.4 9.9 9.1 13.9 21.3 13.5 5.3 3.4 2.0 1.5 1.9 
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c) Tofinho roughness class Z02=0.100 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 

10.0 5.6 4.5 3.7 3.3 4.1 5.2 5.9 5.4 4.3 3.7 3.5 3.6 
2.63 2.39 2.13 2.25 1.90 2.44 2.36 2.04 2.58 1.88 1.51 2.45 

25.0 6.9 5.6 4.6 4.1 5.0 6.4 7.3 6.7 5.3 4.6 4.4 4.4 
2.81 2.56 2.28 2.41 2.04 2.62 2.49 2.15 2.76 2.01 1.62 2.62 

50.0 8.0 6.5 5.4 4.8 5.9 7.5 8.4 7.8 6.1 5.4 5.2 5.1 
3.12 2.83 2.53 2.67 2.25 2.90 2.71 2.35 3.06 2.23 1.79 2.90 

100.0 9.5 7.8 6.4 5.7 7.0 8.9 9.9 9.1 7.3 6.4 6.2 6.1 
3.42 3.11 2.78 2.93 2.48 3.19 2.97 2.58 3.36 2.45 1.97 3.19 

200.0 11.8 9.6 7.9 7.0 8.7 11.0 12.0 11.1 9.0 7.9 7.6 7.5 
3.28 2.98 2.66 2.80 2.37 3.05 2.86 2.48 3.22 2.34 1.88 3.05 

Freq [%] 4.6 12.6 10.4 9.1 13.4 20.7 14.4 5.9 3.5 2.1 1.5 1.8 

 

 

 

d) Tofinho roughness class Z03=0.400 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 

10.0 4.3 3.6 3.0 2.6 3.1 4.0 4.5 4.5 3.4 3.0 2.7 2.7 
2.51 2.37 2.10 2.30 1.85 2.40 2.38 2.26 2.50 2.02 1.49 2.03 

25.0 5.6 4.8 3.9 3.4 4.1 5.3 5.9 5.9 4.5 3.9 3.6 3.6 
2.66 2.51 2.22 2.44 1.96 2.54 2.51 2.37 2.65 2.14 1.58 2.15 

50.0 6.7 5.7 4.8 4.1 5.0 6.3 7.1 7.1 5.4 4.7 4.4 4.3 
2.89 2.73 2.42 2.65 2.13 2.76 2.70 2.54 2.88 2.33 1.71 2.34 

100.0 8.1 6.9 5.7 5.0 6.0 7.6 8.5 8.4 6.5 5.7 5.3 5.2 
3.29 3.11 2.75 3.03 2.42 3.15 3.06 2.87 3.28 2.65 1.95 2.66 

200.0 9.9 8.4 7.0 6.1 7.3 9.3 10.3 10.2 7.9 6.9 6.5 6.4 
3.18 3.00 2.65 2.92 2.33 3.03 2.96 2.78 3.16 2.55 1.88 2.56 

Freq [%] 4.2 11.4 11.1 9.0 12.8 19.9 15.6 6.7 3.6 2.3 1.6 1.8 
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Table E4.4: The sector-wise wind speed and Weibull-k parameter wind speed 
frequency distribution by roughness class and height at Vilankulo. 

 

a) Vilankulo roughness class Z0=0.0002 m  

Height[m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 

10.0 
1.8 4.0 5.5 4.6 4.3 6.0 7.4 6.0 4.4 3.5 1.9 1.0 

0.87 1.37 2.28 2.02 2.16 2.65 3.29 2.27 1.99 1.63 0.72 0.56 

25.0 
2.1 4.4 6.1 5.0 4.7 6.6 8.1 6.6 4.8 3.9 2.0 1.1 

0.89 1.41 2.35 2.09 2.23 2.73 3.40 2.34 2.05 1.69 0.74 0.57 

50.0 
2.2 4.7 6.5 5.4 5.1 7.0 8.7 7.1 5.2 4.1 2.2 1.1 

0.91 1.45 2.41 2.14 2.29 2.80 3.49 2.40 2.11 1.73 0.75 0.57 

100.0 
2.4 5.1 7.1 5.8 5.5 7.6 9.4 7.7 5.6 4.5 2.4 1.2 

0.88 1.40 2.33 2.07 2.21 2.71 3.38 2.33 2.04 1.68 0.74 0.57 

200.0 
2.6 5.6 7.8 6.5 6.1 8.5 10.5 8.5 6.2 4.9 2.5 1.3 

0.85 1.33 2.21 1.96 2.10 2.57 3.20 2.20 1.93 1.59 0.72 0.56 
Fr[%] 2.4 3.8 8.6 10.4 12.9 15.9 15.9 8.4 10.1 6.8 2.8 2.1 

 

 

 

b) Vilankulo roughness class Z01=0.030 m  

Height[m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 

10.0 
1.3 1.8 3.9 3.3 2.8 4.0 5.1 4.6 3.2 2.5 1.6 0.4 
0.78 0.87 1.93 1.73 1.80 2.12 2.83 2.16 1.68 1.51 0.76 0.47 

25.0 
1.6 2.2 4.7 4.0 3.3 4.7 6.1 5.4 3.8 3.0 2.0 0.5 
0.84 0.94 2.08 1.87 1.94 2.29 3.06 2.33 1.81 1.63 0.81 0.47 

50.0 
1.9 2.7 5.4 4.6 3.8 5.5 7.0 6.3 4.4 3.5 2.4 0.5 
0.93 1.04 2.35 2.10 2.18 2.58 3.44 2.63 2.04 1.83 0.90 0.48 

100.0 
2.4 3.3 6.5 5.5 4.5 6.5 8.3 7.5 5.3 4.2 2.9 0.6 
0.98 1.10 2.50 2.24 2.32 2.74 3.65 2.79 2.17 1.95 0.95 0.49 

200.0 
2.9 4.0 8.0 6.8 5.6 8.1 10.4 9.3 6.6 5.2 3.6 0.7 
0.94 1.05 2.38 2.14 2.22 2.62 3.49 2.67 2.07 1.87 0.91 0.49 

Fr[%] 2.3 2.9 7.8 9.9 12.1 15.7 17.1 8.6 10.3 7.8 3.4 2.1 
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c) Vilankulo roughness class Z02=0.100 m  

Height[m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 

10.0 
1.0 1.5 3.4 2.9 2.4 3.4 4.4 4.0 2.8 2.2 1.6 0.4 

0.74 0.85 1.93 1.65 1.73 2.13 2.71 2.21 1.61 1.52 0.86 0.47 

25.0 
1.3 1.9 4.2 3.6 3.0 4.2 5.4 5.0 3.4 2.8 2.1 0.4 

0.78 0.90 2.07 1.77 1.85 2.28 2.90 2.37 1.72 1.62 0.91 0.47 

50.0 
1.6 2.4 4.9 4.2 3.5 4.9 6.3 5.8 4.1 3.3 2.5 0.5 

0.85 0.99 2.29 1.96 2.05 2.53 3.22 2.62 1.91 1.79 1.00 0.48 

100.0 
2.0 2.9 5.9 5.0 4.2 5.8 7.5 6.9 4.9 3.9 3.1 0.6 

0.92 1.08 2.52 2.15 2.26 2.78 3.53 2.88 2.10 1.97 1.09 0.49 

200.0 
2.4 3.5 7.3 6.2 5.2 7.2 9.2 8.5 6.0 4.8 3.8 0.7 

0.88 1.03 2.41 2.06 2.16 2.66 3.38 2.76 2.01 1.89 1.04 0.50 
Fr[%] 2.3 2.8 7.4 9.7 11.9 15.4 17.0 9.4 10.0 8.0 3.8 2.2 

 

 

 

d) Vilankulo roughness class Z03=0.400 m  

Height[m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 

10.0 
0.5 1.2 2.6 2.3 2.0 2.5 3.4 3.2 2.3 1.9 1.5 0.4 

0.60 0.84 1.79 1.73 1.81 1.97 2.63 2.29 1.69 1.60 0.99 0.52 

25.0 
0.7 1.6 3.4 3.1 2.6 3.4 4.4 4.2 3.1 2.5 2.0 0.5 

0.62 0.88 1.90 1.83 1.92 2.09 2.79 2.42 1.79 1.70 1.04 0.52 

50.0 
0.9 2.0 4.1 3.7 3.2 4.0 5.3 5.1 3.7 3.0 2.5 0.6 

0.67 0.96 2.07 1.99 2.08 2.27 3.04 2.63 1.94 1.84 1.13 0.53 

100.0 
1.2 2.5 5.0 4.5 3.8 4.9 6.4 6.1 4.5 3.6 3.1 0.8 

0.74 1.07 2.36 2.27 2.37 2.58 3.46 3.00 2.21 2.10 1.28 0.55 

200.0 
1.4 3.0 6.1 5.5 4.7 6.0 7.8 7.5 5.5 4.4 3.7 0.9 

0.71 1.04 2.27 2.19 2.29 2.49 3.33 2.89 2.13 2.02 1.23 0.56 
Fr[%] 2.3 2.7 6.8 9.5 11.5 15.1 16.9 10.5 9.7 8.4 4.3 2.3 
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Table E4.5: The sector-wise wind speed and Weibull-k parameter wind speed 
frequency distribution by roughness class and height at Nampula. 

 

a) Nampula roughness class Z0=0.0002 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
3.9 4 4.2 4.2 3.49 3.86 4.21 4.45 4.75 2.84 2.41 3.09

2.21 2.50 2.46 2.37 2.13 2.40 2.67 2.90 2.92 1.47 1.37 1.61

25 
4.2 4.3 4.6 4.5 3.77 4.18 4.56 4.82 5.14 3.08 2.61 3.35

2.25 2.54 2.50 2.41 2.17 2.44 2.72 2.96 2.97 1.50 1.40 1.64

50 
4.4 4.5 4.8 4.8 3.99 4.41 4.81 5.09 5.43 3.26 2.75 3.53

2.26 2.56 2.52 2.43 2.19 2.46 2.74 2.98 3.00 1.51 1.41 1.65

100 
4.7 4.8 5.1 5 4.19 4.64 5.06 5.35 5.71 3.42 2.89 3.72

2.12 2.40 2.36 2.28 2.05 2.31 2.56 2.79 2.81 1.42 1.32 1.55

200 
4.9 5 5.3 5.3 4.38 4.84 5.28 5.59 5.96 3.57 3.02 3.88

1.89 2.14 2.10 2.03 1.83 2.05 2.28 2.49 2.50 1.27 1.19 1.38
Fr [%] 7.1 10 9.7 8.6 7 8.3 12.7 16.7 11.1 2.9 2.5 3.5

 

 

 

b) Nampula roughness class Z01=0.030 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
2.7 2.7 2.9 3 2.37 2.59 2.92 3.01 3.33 2.03 1.64 1.82

1.76 2.06 2.04 2.07 1.71 1.94 2.19 2.36 2.55 1.24 1.15 1.18

25 
3.2 3.2 3.5 3.6 2.84 3.1 3.49 3.6 3.99 2.43 1.96 2.18

1.90 2.23 2.20 2.24 1.85 2.10 2.37 2.55 2.76 1.33 1.24 1.27

50 
3.7 3.7 4 4.2 3.29 3.58 4.04 4.17 4.61 2.81 2.27 2.52

2.13 2.51 2.47 2.52 2.07 2.36 2.66 2.87 3.10 1.49 1.38 1.42

100 
4.4 4.4 4.8 5 3.9 4.25 4.8 4.95 5.48 3.34 2.7 3

2.28 2.67 2.63 2.68 2.21 2.51 2.83 3.06 3.30 1.59 1.47 1.51

200 
5.5 5.5 6 6.2 4.85 5.29 5.97 6.15 6.81 4.15 3.35 3.73

2.17 2.55 2.51 2.56 2.11 2.40 2.71 2.92 3.15 1.52 1.40 1.44
Fr [%] 6.1 10 9.8 9.1 6.9 7.6 11.1 17.5 13.6 3 2.4 2.8
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c) Nampula roughness class Z02=0.100 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
2.3 2.3 2.5 2.6 2.07 2.21 2.49 2.55 2.85 1.88 1.5 1.58

1.71 2.09 2.01 2.00 1.74 1.89 2.10 2.26 2.39 1.32 1.22 1.26

25 
2.9 2.9 3.1 3.2 2.55 2.73 3.07 3.15 3.52 2.32 1.85 1.95

1.83 2.24 2.16 2.14 1.86 2.02 2.24 2.42 2.56 1.41 1.30 1.35

50 
3.4 3.4 3.6 3.8 2.99 3.21 3.61 3.7 4.13 2.72 2.17 2.29
2.0 2.5 2.4 2.4 2.1 2.2 2.5 2.7 2.8 1.6 1.4 1.5

100 
4 4 4.3 4.5 3.57 3.83 4.31 4.42 4.93 3.24 2.59 2.73

2.22 2.72 2.62 2.60 2.26 2.46 2.72 2.94 3.11 1.71 1.57 1.63

200 
5 5 5.4 5.6 4.43 4.74 5.34 5.48 6.11 4.02 3.21 3.39

2.12 2.60 2.50 2.49 2.16 2.35 2.60 2.81 2.97 1.63 1.50 1.56
Fr [%] 5.9 9.9 9.8 9.4 6.8 7.4 10.6 17.6 14.4 3.2 2.4 2.5

 

 

 

d) Nampula roughness class Z03=0.400 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
1.9 1.9 2.0 2.1 1.7 1.8 2.0 2.1 2.3 1.8 1.2 1.2

1.78 2.09 2.06 2.10 1.85 1.98 2.18 2.35 2.47 1.73 1.24 1.24

25 
2.5 2.4 2.6 2.7 2.3 2.4 2.6 2.7 3.0 2.4 1.6 1.6

1.89 2.22 2.19 2.23 1.96 2.10 2.31 2.49 2.63 1.84 1.31 1.31

50 
3.0 3.0 3.1 3.3 2.8 2.8 3.2 3.3 3.6 2.9 2.0 2.0

2.06 2.43 2.40 2.44 2.14 2.29 2.53 2.72 2.87 2.00 1.43 1.42

100 
3.6 3.6 3.8 4.0 3.4 3.4 3.9 4.0 4.4 3.5 2.4 2.4

2.32 2.74 2.70 2.75 2.41 2.58 2.85 3.07 3.23 2.26 1.60 1.60

200 
4.5 4.5 4.7 5.0 4.2 4.3 4.8 4.9 5.4 4.4 3.0 3.0

2.22 2.62 2.58 2.63 2.31 2.47 2.72 2.94 3.10 2.16 1.53 1.53
Fr [%] 5.5 9.4 9.9 9.4 7.1 7.4 10.2 16.8 14.8 4.5 2.5 2.5
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Table E4.6: The sector-wise wind speed and Weibull-k parameter wind speed 
frequency distribution by roughness class and height at Pemba. 

 

a) Pemba roughness class Z0=0.0002 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
3.8 4.4 4.5 3.8 4.6 5.7 5.0 3.5 2.5 2.2 2.5 3.3

2.24 2.41 2.48 2.27 2.40 2.63 2.43 2.02 1.64 1.51 1.68 1.99

25 
4.1 4.8 4.9 4.1 5.0 6.2 5.5 3.7 2.7 2.4 2.7 3.6

2.29 2.46 2.53 2.31 2.45 2.68 2.48 2.06 1.67 1.54 1.71 2.03

50 
4.3 5.1 5.2 4.3 5.3 6.6 5.8 4.0 2.9 2.6 2.9 3.8

2.31 2.47 2.55 2.33 2.47 2.70 2.50 2.08 1.69 1.55 1.72 2.04

100 
4.6 5.4 5.4 4.5 5.6 6.9 6.1 4.2 3.0 2.7 3.0 4.0

2.16 2.31 2.38 2.18 2.31 2.53 2.34 1.95 1.58 1.46 1.62 1.91

200 
4.8 5.6 5.7 4.7 5.8 7.2 6.3 4.3 3.1 2.8 3.1 4.1

1.92 2.06 2.13 1.94 2.06 2.25 2.08 1.74 1.41 1.30 1.44 1.71
Fr [%] 5.6 10 8.8 7.8 9.8 15.1 13.1 14 6.1 3.3 2.9 3.5

 

 

 

b) Pemba roughness class Z01=0.030 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
2.5 3.0 3.2 2.7 3.1 3.9 3.6 2.5 1.9 1.7 1.7 2.2

1.83 2.03 2.10 1.91 1.99 2.19 2.10 1.61 1.44 1.41 1.44 1.54

25 
3.0 3.6 3.8 3.2 3.7 4.7 4.3 3.0 2.3 2.0 2.0 2.6

1.97 2.20 2.26 2.06 2.14 2.36 2.27 1.74 1.55 1.52 1.55 1.67

50 
3.5 4.2 4.4 3.7 4.2 5.4 5.0 3.5 2.7 2.3 2.4 3.0

2.22 2.47 2.54 2.32 2.41 2.66 2.55 1.96 1.74 1.70 1.74 1.87

100 
4.2 5.0 5.2 4.4 5.0 6.4 6.0 4.2 3.2 2.7 2.8 3.6

2.36 2.63 2.71 2.47 2.57 2.83 2.71 2.08 1.85 1.81 1.85 1.99

200 
5.2 6.2 6.4 5.5 6.3 8.0 7.4 5.2 4.0 3.4 3.5 4.4

2.25 2.51 2.59 2.36 2.45 2.70 2.59 1.99 1.77 1.73 1.76 1.90
Fr [%] 5 9.4 9.1 7.8 9.2 14.4 13.3 14.2 7.6 3.8 3 3.3
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c) Pemba roughness class Z02=0.100 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
2.2 2.6 2.7 2.4 2.6 3.4 3.2 2.3 1.8 1.5 1.5 1.9

1.85 1.94 2.08 1.91 1.92 2.23 2.19 1.66 1.48 1.48 1.56 1.56

25 
2.7 3.2 3.4 2.9 3.2 4.2 4.0 2.8 2.2 1.9 1.9 2.3

1.98 2.08 2.23 2.05 2.06 2.39 2.35 1.78 1.59 1.58 1.67 1.67

50 
3.2 3.8 4.0 3.4 3.8 4.9 4.6 3.3 2.6 2.2 2.2 2.7

2.19 2.31 2.47 2.27 2.28 2.65 2.60 1.97 1.76 1.75 1.85 1.84

100 
3.8 4.5 4.7 4.1 4.5 5.8 5.5 4.0 3.1 2.6 2.7 3.2

2.40 2.53 2.71 2.49 2.50 2.90 2.85 2.16 1.92 1.92 2.03 2.02

200 
4.7 5.6 5.8 5.1 5.6 7.2 6.9 4.9 3.8 3.2 3.3 4.0

2.30 2.42 2.58 2.38 2.38 2.78 2.72 2.06 1.84 1.83 1.94 1.93
Fr [%] 4.8 9 9.2 7.9 9.1 14 13.4 14 8.2 4.1 3 3.3

 

 

 

d) Pemba roughness class Z03=0.400 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
1.7 2.0 2.1 1.9 2.0 2.6 2.5 1.8 1.4 1.2 1.2 1.5

1.79 2.00 2.15 2.01 1.95 2.10 2.14 1.61 1.51 1.38 1.40 1.62

25 
2.2 2.7 2.8 2.5 2.7 3.4 3.3 2.4 1.9 1.5 1.5 1.9

1.90 2.13 2.29 2.13 2.07 2.23 2.28 1.71 1.60 1.46 1.48 1.72

50 
2.7 3.3 3.4 3.1 3.2 4.1 4.0 2.9 2.3 1.8 1.8 2.3

2.08 2.32 2.50 2.33 2.26 2.43 2.49 1.86 1.74 1.59 1.61 1.87

100 
3.3 4.0 4.1 3.7 3.9 5.0 4.9 3.6 2.8 2.2 2.2 2.8

2.34 2.62 2.81 2.62 2.54 2.74 2.80 2.10 1.96 1.79 1.81 2.11

200 
4.1 4.9 5.2 4.6 4.9 6.2 6.0 4.4 3.5 2.8 2.8 3.5

2.24 2.51 2.69 2.51 2.44 2.62 2.68 2.01 1.88 1.71 1.74 2.02
Fr [%] 4.6 8.5 9.3 8 8.9 13.4 13.6 13.7 9.2 4.4 3.1 3.3
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Table E4.7: The sector-wise wind speed and Weibull-k parameter wind speed 
frequency distribution by roughness class and height at Lichinga. 

 

a) Lichinga roughness class Z0=0.0002 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
4.9 5.0 5.0 5.8 6.2 6.2 4.5 4.6 4.2 3.7 2.8 3.5

2.21 2.37 2.58 3.12 3.13 3.15 2.35 2.57 2.27 1.81 1.47 1.62

25 
5.3 5.4 5.5 6.3 6.7 6.7 4.8 4.9 4.6 4.1 3.1 3.8

2.26 2.42 2.63 3.17 3.19 3.21 2.40 2.62 2.31 1.85 1.49 1.65

50 
5.6 5.7 5.8 6.7 7.1 7.0 5.1 5.2 4.8 4.3 3.3 4.0

2.28 2.44 2.65 3.20 3.21 3.23 2.42 2.64 2.33 1.86 1.51 1.67

100 
5.9 6.0 6.1 7.0 7.5 7.4 5.4 5.5 5.1 4.5 3.4 4.2

2.13 2.28 2.48 2.99 3.01 3.03 2.26 2.47 2.18 1.74 1.41 1.56

200 
6.1 6.3 6.3 7.3 7.8 7.7 5.6 5.7 5.3 4.7 3.6 4.4

1.90 2.04 2.21 2.67 2.68 2.69 2.02 2.21 1.94 1.56 1.26 1.40
Fr [%] 5.5 11.1 16.9 19.7 17.0 13.1 3.1 3.2 3.1 3.0 1.9 2.4

 

 

 

b) Lichinga roughness class Z01=0.030 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
3.3 3.6 3.3 4.0 4.3 4.3 3.0 3.2 3.0 2.7 2.0 2.1

1.78 2.04 2.06 2.60 2.59 2.69 1.90 2.17 2.01 1.57 1.26 1.31

25 
3.9 4.3 4.0 4.8 5.1 5.1 3.6 3.8 3.6 3.2 2.4 2.5

1.92 2.21 2.23 2.81 2.80 2.91 2.06 2.35 2.18 1.70 1.35 1.40

50 
4.5 5.0 4.6 5.5 5.9 5.9 4.2 4.4 4.2 3.7 2.8 2.8

2.16 2.48 2.51 3.15 3.15 3.27 2.31 2.64 2.45 1.91 1.52 1.58

100 
5.4 5.9 5.5 6.5 7.0 7.0 5.0 5.2 5.0 4.4 3.3 3.4

2.30 2.64 2.67 3.36 3.35 3.48 2.46 2.81 2.61 2.03 1.61 1.67

200 
6.7 7.4 6.8 8.1 8.7 8.7 6.2 6.5 6.2 5.5 4.1 4.2

2.20 2.52 2.55 3.21 3.20 3.32 2.35 2.68 2.49 1.94 1.54 1.60
Fr [%] 4.4 9.7 15.9 20.4 17.1 16.1 3.0 3.3 3.0 3.3 2.0 1.9
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c) Lichinga roughness class Z02=0.100 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
2.8 3.2 2.8 3.4 3.7 3.7 2.7 2.7 2.6 2.3 1.8 1.7

1.72 2.05 1.97 2.59 2.61 2.68 1.85 2.08 1.98 1.57 1.23 1.42

25 
3.4 3.9 3.5 4.2 4.6 4.6 3.4 3.4 3.2 2.9 2.2 2.1

1.83 2.20 2.12 2.77 2.79 2.87 1.99 2.23 2.12 1.68 1.31 1.51

50 
4.0 4.6 4.1 5.0 5.4 5.4 3.9 3.9 3.8 3.4 2.6 2.5

2.03 2.43 2.35 3.07 3.10 3.18 2.20 2.47 2.35 1.86 1.45 1.67

100 
4.8 5.5 4.9 5.9 6.4 6.4 4.7 4.7 4.5 4.0 3.1 3.0

2.23 2.67 2.57 3.37 3.40 3.49 2.41 2.71 2.57 2.03 1.58 1.83

200 
6.0 6.8 6.0 7.3 7.9 8.0 5.8 5.8 5.6 5.0 3.8 3.7

2.13 2.55 2.46 3.22 3.24 3.33 2.31 2.59 2.46 1.94 1.51 1.75
Fr [%] 4.1 9.1 15.6 20.5 17.3 16.7 3.3 3.3 2.9 3.4 2.0 1.7

 

 

 

d) Lichinga roughness class Z03=0.400 m  

Height [m] 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

10 
2.2 2.5 2.3 2.6 2.9 2.9 2.4 2.2 2.1 1.9 1.6 1.5

1.72 2.05 2.03 2.52 2.56 2.67 2.14 2.13 2.08 1.72 1.58 1.65

25 
2.8 3.3 3.0 3.5 3.8 3.8 3.2 2.8 2.8 2.5 2.2 2.0

1.83 2.18 2.16 2.67 2.72 2.84 2.27 2.26 2.21 1.83 1.68 1.76

50 
3.4 3.9 3.6 4.2 4.6 4.6 3.9 3.4 3.3 3.1 2.6 2.4

1.99 2.38 2.36 2.92 2.97 3.10 2.48 2.47 2.42 1.99 1.83 1.92

100 
4.2 4.8 4.4 5.1 5.6 5.6 4.7 4.2 4.0 3.7 3.2 2.9

2.25 2.68 2.66 3.29 3.35 3.49 2.79 2.78 2.72 2.25 2.06 2.16

200 
5.2 6.0 5.4 6.4 6.9 7.0 5.9 5.2 5.0 4.6 3.9 3.6

2.15 2.57 2.54 3.15 3.21 3.35 2.67 2.66 2.61 2.15 1.97 2.06
Fr [%] 3.8 8.6 14.8 20.0 17.7 16.7 4.8 3.3 3.0 3.3 2.2 1.8
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